FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abdo, AA Allen, B Aune, T Berley, D Blaufuss, E Casanova, S Chen, C Dingus, BL Ellsworth, RW Fleysher, L Fleysher, R Gonzalez, MM Goodman, JA Hoffman, CM Huntemeyer, PH Kolterman, BE Lansdell, CP Linnemann, JT McEnery, JE Mincer, AI Nemethy, P Noyes, D Pretz, J Ryan, JM Parkinson, PMS Shoup, A Sinnis, G Smith, AJ Sullivan, GW Vasileiou, V Walker, GP Williams, DA Yodh, GB AF Abdo, A. A. Allen, B. Aune, T. Berley, D. Blaufuss, E. Casanova, S. Chen, C. Dingus, B. L. Ellsworth, R. W. Fleysher, L. Fleysher, R. Gonzalez, M. M. Goodman, J. A. Hoffman, C. M. Huentemeyer, P. H. Kolterman, B. E. Lansdell, C. P. Linnemann, J. T. McEnery, J. E. Mincer, A. I. Nemethy, P. Noyes, D. Pretz, J. Ryan, J. M. Parkinson, P. M. Saz Shoup, A. Sinnis, G. Smith, A. J. Sullivan, G. W. Vasileiou, V. Walker, G. P. Williams, D. A. Yodh, G. B. TI Discovery of Localized Regions of Excess 10-TeV Cosmic Rays SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANISOTROPY AB The 7 year data set of the Milagro TeV observatory contains 2.2x10(11) events of which most are due to hadronic cosmic rays. These data are searched for evidence of intermediate scale structure. Excess emission on angular scales of similar to 10 degrees has been found in two localized regions of unknown origin with greater than 12 sigma significance. Both regions are inconsistent with pure gamma-ray emission with high confidence. One of the regions has a different energy spectrum than the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent with hard spectrum protons with an exponential cutoff, with the most significant excess at similar to 10 TeV. Potential causes of these excesses are explored, but no compelling explanations are found. C1 [Abdo, A. A.] USN, Res Lab, Washington, DC 20375 USA. [Allen, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Aune, T.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Berley, D.; Blaufuss, E.; Goodman, J. A.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, College Pk, MD 20742 USA. [Casanova, S.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Chen, C.; Yodh, G. B.] Univ Calif Irvine, Irvine, CA USA. [Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Pretz, J.; Sinnis, G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ellsworth, R. W.] George Mason Univ, Fairfax, VA 22030 USA. [Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, New York, NY USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Lansdell, C. P.] Inst Def Analyses, Alexandria, VA USA. [Linnemann, J. T.] Michigan State Univ, E Lansing, MI 48824 USA. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ryan, J. M.] Univ New Hampshire, Durham, NH 03824 USA. [Shoup, A.] Ohio State Univ, Lima, OH 45804 USA. [Walker, G. P.] Natl Secur Technol, Las Vegas, NV USA. RP Abdo, AA (reprint author), USN, Res Lab, Washington, DC 20375 USA. RI McEnery, Julie/D-6612-2012; Casanova, Sabrina/J-8935-2013; OI Casanova, Sabrina/0000-0002-6144-9122; Mincer, Allen/0000-0002-6307-1418; Dingus, Brenda/0000-0001-8451-7450; Allen, Bruce/0000-0003-4285-6256 FU National Science Foundation [PHY-0245234, -0302000, -0400424, -0504201, -0601080, ATM-0002744]; U. S. Department of Energy; Los Alamos National Laboratory; University of California; Institute of Geophysics and Planetary Physics FX We gratefully acknowledge Scott Delay and Michael Schneider for their dedicated efforts in the construction and maintenance of the Milagro experiment. This work has been supported by the National Science Foundation (under Grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and ATM-0002744), the U. S. Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics), Los Alamos National Laboratory, the University of California, and the Institute of Geophysics and Planetary Physics. NR 13 TC 105 Z9 105 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 221101 DI 10.1103/PhysRevLett.101.221101 PG 5 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400009 PM 19113471 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Gos, H Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kumar, A Kurnadi, P Lamont, MAC Landgraf, JM Langdon, J Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, C Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Rakness, G Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Tatarowicz, J Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Vernet, R Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, CJ Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Zachariou, N Zawisza, M Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S-L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Gos, H. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Langdon, J. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, C. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, X-H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Tatarowicz, J. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C. Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yue, Q. Zachariou, N. Zawisza, M. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Forward Neutral-Pion Transverse Single-Spin Asymmetries in p plus p Collisions at s=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZED PROTON-BEAM; HIGH CHI-F; ANALYZING-POWER; INCLUSIVE PRODUCTION; HARD-SCATTERING; PI-0 PRODUCTION; GEV-C; ANTIPROTONS AB We report precision measurements of the Feynman x (x(F)) dependence, and first measurements of the transverse momentum (p(T)) dependence, of transverse single-spin asymmetries for the production of pi(0) mesons from polarized proton collisions at s=200 GeV. The x(F) dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p(T) dependence at fixed x(F) are not consistent with these same perturbative QCD-based calculations. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Rakness, G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.; Relyea, D.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.] Univ Calif Davis, Davis, CA 95616 USA. [Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Balewski, J.; Djawotho, P.; He, W.; Jacobs, W. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Blyth, S-L.; Dong, X.; Edwards, W. R.; Hjort, E.; van Leeuwen, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, V. I.; Okorokov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, A.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.; Tatarowicz, J.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Liu, H.; Lu, Y.; Shao, M.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Bouchet, J.; Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.] Texas A&M Univ, College Stn, TX 77843 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Grosnick, D.; Pawlak, T.; Peryt, W.; Pluta, J.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; LaPointe, S.; Li, Q.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Fu, J.; Lin, X.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.] Univ Texas Austin, Austin, TX 78712 USA. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Barnby, Lee/G-2135-2010; Chaloupka, Petr/E-5965-2012; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014 OI Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405 FU U. S. DOE Office of Science; U. S. NSF; Renaissance Technologies Corporation; BMBF of Germany; CNRS/IN2P3; EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; Ministry of Education and the NNSFC of China; Polish State Committee for Scientific Research; Slovak Research and Development Agency; Korea Science and Engineering Foundation FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the U. S. DOE Office of Science; the U. S. NSF; a sponsored research grant from Renaissance Technologies Corporation; the BMBF of Germany; CNRS/IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India; Swiss NSF; the Polish State Committee for Scientific Research; Slovak Research and Development Agency, and the Korea Science and Engineering Foundation. NR 38 TC 107 Z9 107 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 222001 DI 10.1103/PhysRevLett.101.222001 PG 6 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400016 PM 19113478 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Ayres, DS Backhouse, C Baller, B Barr, G Barrett, WL Becker, BR Belias, A Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Bower, C Buckley-Geer, E Cavanaugh, S Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Culling, AJ de Jong, JK Dierckxsens, M Diwan, MV Dorman, M Dytman, SA Escobar, CO Evans, JJ Harris, EF Feldman, GJ Frohne, MV Gallagher, HR Godley, A Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Heller, K Himmel, A Holin, A Hsu, L Hylen, J Irwin, GM Ishitsuka, M Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Kim, JJ Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kotelnikov, SK Kreymer, A Kumaratunga, S Lang, K Ling, J Litchfield, PJ Litchfield, RP Loiacono, L Lucas, P Ma, J Mann, WA Marchionni, A Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Messier, MD Metelko, CJ Michael, DG Miller, WH Mishra, SR Moore, CD Morfin, J Mualem, L Mufson, S Murgia, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pawloski, G Pearce, GF Peck, CW Petyt, DA Pittam, R Plunkett, RK Rahaman, A Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Rodrigues, PA Rosenfeld, C Rubin, HA Ryabov, VA Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Shanahan, P Smart, W Smith, C Sousa, A Speakman, B Stamoulis, P Strait, M Tagg, N Talaga, RL Tavera, MA Thomas, J Thomson, MA Thron, JL Tinti, G Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Viren, B Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Yang, T Zhang, K Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Ayres, D. S. Backhouse, C. Baller, B. Barr, G. Barrett, W. L. Becker, B. R. Belias, A. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Bower, C. Buckley-Geer, E. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Culling, A. J. de Jong, J. K. Dierckxsens, M. Diwan, M. V. Dorman, M. Dytman, S. A. Escobar, C. O. Evans, J. J. Harris, E. Falk Feldman, G. J. Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Hsu, L. Hylen, J. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Kim, J. J. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. Ling, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marchionni, A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, W. H. Mishra, S. R. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pawloski, G. Pearce, G. F. Peck, C. W. Petyt, D. A. Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Shanahan, P. Smart, W. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Tagg, N. Talaga, R. L. Tavera, M. A. Thomas, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zhang, K. Zwaska, R. CA MINOS Collaboration TI Search for Active Neutrino Disappearance Using Neutral-Current Interactions in the MINOS Long-Baseline Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-PHOTON PRODUCTION; ATMOSPHERIC-NU; R-PROCESS; OSCILLATIONS; KAMIOKANDE; RESONANCE AB We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between nu(mu) and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of nu(mu) oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from nu(e) appearance at the current experimental limit is also presented. C1 [Adamson, P.; Baller, B.; Bernstein, R. H.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Childress, S.; Choudhary, B. C.; Grossman, N.; Harris, D.; Hatcher, R.; Hsu, L.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Marchionni, A.; Moore, C. D.; Morfin, J.; Para, A.; Plunkett, R. K.; Rameika, R. A.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Wehmann, A.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Stamoulis, P.; Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Zhang, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Peck, C. W.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IF, UNICAMP, BR-13083970 Campinas, SP, Brazil. [Patzak, T.] Univ Paris 07, APC, F-75205 Paris 13, France. [Boehm, J.; Cavanaugh, S.; Feldman, G. J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [de Jong, J. K.; Rubin, H. A.; White, C.] Illinois Inst Technol, Div Phys, Chicago, IL 60616 USA. [Armstrong, R.; Bower, C.; Ishitsuka, M.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Trostin, I.] ITEP, High Energy Expt Phys Dept, Moscow 117218, Russia. [Kotelnikov, S. K.; Ryabov, V. A.; Tsarev, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 119991, Russia. [Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Holin, A.; Koskinen, D. J.; Nichol, R. J.; Smith, C.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Arms, K. E.; Becker, B. R.; Grashorn, E. W.; Heller, K.; Kasahara, S. M. S.; Kumaratunga, S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Petyt, D. A.; Speakman, B.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Backhouse, C.; Barr, G.; Cobb, J. H.; Litchfield, R. P.; Pittam, R.; Rodrigues, P. A.; Sousa, A.; Tinti, G.; Weber, A.; West, N.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Bhattacharya, D.; Dytman, S. A.; Kim, M. S.; Naples, D.; Paolone, V.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Andreopoulos, C.; Belias, A.; Metelko, C. J.; Nicholls, T. C.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Godley, A.; Kim, J. J.; Ling, J.; Mishra, S. R.; Rahaman, A.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Murgia, S.; Pawloski, G.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Harris, E. Falk; Harris, P. G.; Tavera, M. A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Ma, J.; Ospanov, R.; Pavlovic, Z.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. Warsaw Univ, Dept Phys, PL-00681 Warsaw, Poland. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Coleman, S. J.; Nelson, J. K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Ayres, D. S.; Goodman, M. C.; Reichenbacher, J.; Talaga, R. L.; Thron, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Nichol, Ryan/C-1645-2008; Harris, Philip/I-7419-2012; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Evans, Justin/P-4981-2014; Kotelnikov, Sergey/A-9711-2014; Gouffon, Philippe/I-4549-2012; Ling, Jiajie/I-9173-2014 OI Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Harris, Philip/0000-0003-4369-3874; COLEMAN, STEPHEN/0000-0002-4621-9169; Marchionni, Alberto/0000-0003-3039-9537; Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Kotelnikov, Sergey/0000-0002-8027-4612; Gouffon, Philippe/0000-0001-7511-4115; Ling, Jiajie/0000-0003-2982-0670 FU U. S. DOE; U. K. STFC; U. S. NSF; State and University of Minnesota; University of Athens; Brazil's FAPESP; CNPq; Minnesota Department of Natural Resources; Soudan Underground Laboratory FX This work was supported by the U. S. DOE, the U. K. STFC, the U. S. NSF, the State and University of Minnesota, the University of Athens, Greece, and Brazil's FAPESP and CNPq. We thank S. Parke for useful discussions. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contribution to this effort. NR 37 TC 38 Z9 38 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 221804 DI 10.1103/PhysRevLett.101.221804 PG 5 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400015 PM 19113477 ER PT J AU Angst, M Hermann, RP Christianson, AD Lumsden, MD Lee, C Whangbo, MH Kim, JW Ryan, PJ Nagler, SE Tian, W Jin, R Sales, BC Mandrus, D AF Angst, M. Hermann, R. P. Christianson, A. D. Lumsden, M. D. Lee, C. Whangbo, M. -H. Kim, J. -W. Ryan, P. J. Nagler, S. E. Tian, W. Jin, R. Sales, B. C. Mandrus, D. TI Charge Order in LuFe2O4: Antiferroelectric Ground State and Coupling to Magnetism SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYSTEM LUFE2O4; FERROELECTRICITY; MULTIFERROICS AB X- ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3 1/3 3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe= O double layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3 1/3 0) propagation, indicates ferroelectric short- range correlations between neighboring double layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled. C1 [Angst, M.; Tian, W.; Jin, R.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Angst, M.; Hermann, R. P.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. [Hermann, R. P.] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. [Christianson, A. D.; Lumsden, M. D.; Nagler, S. E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Lee, C.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Kim, J. -W.; Ryan, P. J.; Tian, W.] Ames Lab, Ames, IA 50010 USA. RP Angst, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM m.angst@fz-juelich.de RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Angst, Manuel/I-4380-2012; Hermann, Raphael/F-6257-2013; Tian, Wei/C-8604-2013; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012 OI Nagler, Stephen/0000-0002-7234-2339; Angst, Manuel/0000-0001-8892-7019; Hermann, Raphael/0000-0002-6138-5624; Tian, Wei/0000-0001-7735-3187; christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725, DE-FG02-86ER45259, DE-ACD2-07CH11358, DE-AC02-06CH11357] FX We thank D. S. Robinson for assistance and J. Voigt, H. J. Xiang, H. M. Christen, W. Schweika, A. Kreyssig, Y. Janssen, S. Nandi, and A. B. Harris for discussions. Work at ORNL, NCSU, and at the MU-CAT sector of APS was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy ( No. DE-AC05-00OR22725, No. DE-FG02-86ER45259, No. DE-ACD2-07CH11358, and No. DE-AC02-06CH11357). NR 22 TC 80 Z9 82 U1 4 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 227601 DI 10.1103/PhysRevLett.101.227601 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400060 PM 19113522 ER PT J AU Bollinger, AT Dinsmore, RC Rogachev, A Bezryadin, A AF Bollinger, A. T. Dinsmore, R. C., III Rogachev, A. Bezryadin, A. TI Determination of the Superconductor-Insulator Phase Diagram for One-Dimensional Wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID DISSIPATIVE QUANTUM SYSTEM; COULOMB-BLOCKADE; NANOWIRES; FLUCTUATIONS; LOCALIZATION; TRANSITION; COHERENCE; TRANSPORT; JUNCTIONS AB We establish the superconductor-insulator phase diagram for quasi-one-dimensional wires by measuring a large set of MoGe nanowires. This diagram is roughly consistent with the Chakravarty-Schmid-Bulgadaev phase boundary, namely, with the critical resistance being equal to R(Q)=h/4e(2). Deviations from this boundary for a small fraction of the samples prompt us to suggest an alternative phase diagram, which matches the data exactly. Transport properties of wires in the superconducting phase are dominated by phase slips, whereas insulating nanowires exhibit a weak Coulomb blockade behavior. C1 [Bollinger, A. T.; Dinsmore, R. C., III; Rogachev, A.; Bezryadin, A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Bollinger, AT (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. FU U. S. Department of Energy, Division of Materials Sciences [DEFG02-07ER46453]; University of Illinois at Urbana-Champaign; NSF CAREER [DMR 0134770] FX We thank M. W. Brenner, E. Demler, G. Refael, M. Sahu, and T.- C. Wei for assistance and discussions. The work was supported by the U. S. Department of Energy, Division of Materials Sciences Grant No. DEFG02-07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign and NSF CAREER Grant DMR 0134770. NR 37 TC 29 Z9 29 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 227003 DI 10.1103/PhysRevLett.101.227003 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400052 PM 19113514 ER PT J AU Khasanov, R Kondo, T Strassle, S Heron, DOG Kaminski, A Keller, H Lee, SL Takeuchi, T AF Khasanov, R. Kondo, Takeshi Straessle, S. Heron, D. O. G. Kaminski, A. Keller, H. Lee, S. L. Takeuchi, Tsunehiro TI Evidence for a Competition between the Superconducting State and the Pseudogap State of (BiPb)(2)(SrLa)(2)CuO(6+delta) from Muon Spin Rotation Experiments SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH MAGNETIC-FIELDS; VORTEX STATE; UNDERDOPED BI2212; PENETRATION DEPTH; SINGLE-CRYSTAL; DEPENDENCE; BI2.15SR1.85CACU2O8+DELTA; CROSSOVER; LATTICE; GAP AB The in-plane magnetic penetration depth lambda(ab) in optimally doped (BiPb)(2)(SrLa)(2)CuO(6+delta) (OP Bi2201) was studied by means of muon-spin rotation. The measurements of lambda(-2)(ab)(T) are inconsistent with a simple model of a d-wave order parameter and a uniform quasiparticle weight around the Fermi surface. The data are well described assuming the angular gap symmetry obtained in ARPES experiments [Phys. Rev. Lett. 98, 267004 (2007)], which suggest that the superconducting gap in OP Bi2201 exists only in segments of the Fermi surface near the nodes. The remaining parts of the Fermi surface, which are strongly affected by the pseudogap state, do not contribute significantly to the superconducting condensate. C1 [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Khasanov, R.; Straessle, S.; Keller, H.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kondo, Takeshi; Takeuchi, Tsunehiro] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Heron, D. O. G.; Lee, S. L.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Takeuchi, Tsunehiro] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan. RP Khasanov, R (reprint author), Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. EM rustem.khasanov@psi.ch RI Lee, Stephen/G-9791-2016; Kondo, Takeshi/H-2680-2016; OI Lee, Stephen/0000-0002-2020-3310; Khasanov, Rustem/0000-0002-4768-5524 FU K. Alex Muller Foundation; Swiss National Science Foundation; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX This work was performed at the Swiss Muon Source ( S mu S), Paul Scherrer Institute ( PSI, Switzerland). The authors are grateful to Y. J. Uemura and R. Prozorov for stimulating discussions, and S. Weyeneth for performing torque experiments. This work was supported by the K. Alex Muller Foundation and in part by the Swiss National Science Foundation. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 26 TC 26 Z9 27 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 227002 DI 10.1103/PhysRevLett.101.227002 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400051 PM 19113513 ER PT J AU Man, KL Tringides, MC Loy, MMT Altman, MS AF Man, K. L. Tringides, M. C. Loy, M. M. T. Altman, M. S. TI Anomalous Mass Transport in the Pb Wetting Layer on the Si(111) Surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROWTH; ISLANDS; HEIGHT; FILMS AB The temporal evolution of nonequilibrium coverage profiles in the Pb wetting layer on the Si(111) surface is studied using low energy electron microscopy. The initial coverage step profile propagates rapidly at a constant velocity with an unperturbed shape. A model is proposed that attributes this nonclassical equilibration behavior to the diffusion of thermally generated adatoms on top of the wetting layer. This model can account for the observed convectionlike mass transport, as well as its dramatic dependence on Pb coverage. Such anomalous mass transport is believed to facilitate the remarkably efficient self-organization of uniform Pb quantum island height on the Si(111) surface that was observed previously. C1 [Man, K. L.; Loy, M. M. T.; Altman, M. S.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Tringides, M. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Tringides, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Man, KL (reprint author), Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. RI Man, Ka Lun, Michael /B-7639-2015 OI Man, Ka Lun, Michael /0000-0001-6043-3631 FU Hong Kong Research Grants Council [HKUST600104, HKUST600106]; Department of Energy-Basic Sciences [DE-AC02-07CH11358] FX This work was supported by the Hong Kong Research Grants Council under grants HKUST600104 and HKUST600106. Work at the Ames Laboratory was supported by the Department of Energy-Basic Sciences under Contract DE-AC02-07CH11358. NR 24 TC 28 Z9 28 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 226102 DI 10.1103/PhysRevLett.101.226102 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400029 PM 19113491 ER PT J AU McQueeney, RJ Diallo, SO Antropov, VP Samolyuk, GD Broholm, C Ni, N Nandi, S Yethiraj, M Zarestky, JL Pulikkotil, JJ Kreyssig, A Lumsden, MD Harmon, BN Canfield, PC Goldman, AI AF McQueeney, R. J. Diallo, S. O. Antropov, V. P. Samolyuk, G. D. Broholm, C. Ni, N. Nandi, S. Yethiraj, M. Zarestky, J. L. Pulikkotil, J. J. Kreyssig, A. Lumsden, M. D. Harmon, B. N. Canfield, P. C. Goldman, A. I. TI Anisotropic Three-Dimensional Magnetism in CaFe2As2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY; FE AB Inelastic neutron scattering measurements of the magnetic excitations in CaFe2As2 indicate that the spin wave velocity in the Fe layers is exceptionally large and similar in magnitude to the cuprates. However, the spin wave velocity perpendicular to the layers is at least half as large that in the layer, so that the magnetism is more appropriately categorized as anisotropic three-dimensional, in contrast to the two-dimensional cuprates. Exchange constants derived from band structure calculations predict spin wave velocities that are consistent with the experimental data. C1 [McQueeney, R. J.; Ni, N.; Nandi, S.; Kreyssig, A.; Harmon, B. N.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McQueeney, R. J.; Diallo, S. O.; Antropov, V. P.; Samolyuk, G. D.; Ni, N.; Nandi, S.; Zarestky, J. L.; Pulikkotil, J. J.; Kreyssig, A.; Harmon, B. N.; Canfield, P. C.; Goldman, A. I.] Ames Lab, Ames, IA 50011 USA. [Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Yethiraj, M.] ANSTO, Bragg Inst, Menai, NSW 2234, Australia. [Lumsden, M. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McQueeney, RJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Broholm, Collin/E-8228-2011; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Diallo, Souleymane/B-3111-2016; Lumsden, Mark/F-5366-2012 OI Broholm, Collin/0000-0002-1569-9892; McQueeney, Robert/0000-0003-0718-5602; Diallo, Souleymane/0000-0002-3369-8391; Lumsden, Mark/0000-0002-5472-9660 FU U. S. Department of Energy Office of Science [DE-AC02-07CH11358, DE-FG02-08ER46544]; Scientific User Facilities Division; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences FX The authors acknowledge useful discussions with J. Schmalian, D. Johnston, D. Argyriou, Z. Tesanovic, and A. Christianson. Work is supported by the U. S. Department of Energy Office of Science under the following contracts: at the Ames Laboratory under Contract No. DE-AC02-07CH11358 and at the Institute for Quantum Matter at Johns Hopkins University under Contract No. DE-FG02-08ER46544. Oak Ridge National Laboratory is supported by the Scientific User Facilities Division and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. NR 28 TC 81 Z9 81 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 227205 DI 10.1103/PhysRevLett.101.227205 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400058 PM 19113520 ER PT J AU Xu, XS Angst, M Brinzari, TV Hermann, RP Musfeldt, JL Christianson, AD Mandrus, D Sales, BC McGill, S Kim, JW Islam, Z AF Xu, X. S. Angst, M. Brinzari, T. V. Hermann, R. P. Musfeldt, J. L. Christianson, A. D. Mandrus, D. Sales, B. C. McGill, S. Kim, J. -W. Islam, Z. TI Charge Order, Dynamics, and Magnetostructural Transition in Multiferroic LuFe2O4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INDUCED SPIN TRANSITION; VERWEY TRANSITION; SYSTEM LUFE2O4; SUPERCONDUCTOR; MOSSBAUER AB We investigated the series of temperature and field-driven transitions in LuFe2O4 by optical and Mossbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in this multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the "order by fluctuation" mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low-temperature monoclinic distortion that can be driven by both temperature and magnetic field. C1 [Xu, X. S.; Brinzari, T. V.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Angst, M.; Christianson, A. D.; Mandrus, D.; Sales, B. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Angst, M.; Hermann, R. P.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. [Hermann, R. P.] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. [Mandrus, D.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [McGill, S.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Kim, J. -W.] Ames Lab, Ames, IA 50010 USA. [Islam, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Xu, XS (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Xu, Xiaoshan/B-1255-2009; Angst, Manuel/I-4380-2012; Hermann, Raphael/F-6257-2013; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016 OI Xu, Xiaoshan/0000-0002-4363-392X; Angst, Manuel/0000-0001-8892-7019; Hermann, Raphael/0000-0002-6138-5624; christianson, andrew/0000-0003-3369-5884 FU Division of Materials Sciences and Engineering; Scientific User Facilities Division; Office of Basic Energy Sciences; U. S. Department of Energy; NSF; DOE; State of Florida FX We thank the Division of Materials Sciences and Engineering and the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy for support of this work at UT, ORNL, and the APS. Work at the NHMFL is supported by NSF, DOE, and the State of Florida. Research at Liege is funded by the FNRS. We thank M. T. Sougrati for assistance with the Mossbauer and M.-H. Whangbo and H. Xiang for useful discussions. NR 25 TC 85 Z9 85 U1 5 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 28 PY 2008 VL 101 IS 22 AR 227602 DI 10.1103/PhysRevLett.101.227602 PG 4 WC Physics, Multidisciplinary SC Physics GA 376WT UT WOS:000261214400061 PM 19113523 ER PT J AU Kalas, P Graham, JR Chiang, E Fitzgerald, MP Clampin, M Kite, ES Stapelfeldt, K Marois, C Krist, J AF Kalas, Paul Graham, James R. Chiang, Eugene Fitzgerald, Michael P. Clampin, Mark Kite, Edwin S. Stapelfeldt, Karl Marois, Christian Krist, John TI Optical Images of an Exosolar Planet 25 Light-Years from Earth SO SCIENCE LA English DT Article ID FOMALHAUT; SPECTRA; DEBRIS; PROFILES; COLORS; DISKS; MODEL AB Fomalhaut, a bright star 7.7 parsecs ( 25 light- years) from Earth, harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. Fomalhaut b lies about 119 astronomical units ( AU) from the star and 18 AU of the dust belt, matching predictions of its location. Hubble Space Telescope observations separated by 1.73 years reveal counterclockwise orbital motion. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location. The flux detected at 0.8 mm is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 mm and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observe variability of unknown origin at 0.6 mm. C1 [Kalas, Paul; Graham, James R.; Chiang, Eugene] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Chiang, Eugene; Kite, Edwin S.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Fitzgerald, Michael P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Sci, Livermore, CA 94551 USA. [Clampin, Mark] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Stapelfeldt, Karl; Krist, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marois, Christian] Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. RP Kalas, P (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM kalas@astron.berkeley.edu RI Fitzgerald, Michael/C-2642-2009; Clampin, mark/D-2738-2012; Stapelfeldt, Karl/D-2721-2012 OI Fitzgerald, Michael/0000-0002-0176-8973; FU HST programs [GO-10598, GO- 10539]; NASA [NAS5-26555, AST-0507805]; Space Telescope Science Institute; Michelson Fellowship Program; Berkeley Fellowship; U.S. Department of Energy [DE-AC52- 07NA27344] FX Supported by HST programs GO-10598 (P.K.) and GO-10539 (K.S. and J.K.), provided by NASA through a grant from the Space Telescope Science Institute (STScI) under NASA contract NAS5-26555; NSF grant AST-0507805 ( E. C.); the Michelson Fellowship Program, under contract with JPL, funded by NASA ( M. P. F.); and a Berkeley Fellowship (E.S. K.). Work at LLNL was performed under the auspices of the U.S. Department of Energy under contract DE-AC52- 07NA27344. We thank the staff at STScI, Keck, and Gemini for supporting our observations. NR 21 TC 562 Z9 563 U1 3 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 28 PY 2008 VL 322 IS 5906 BP 1345 EP 1348 DI 10.1126/science.1166609 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 376FX UT WOS:000261170600029 PM 19008414 ER PT J AU Marois, C Macintosh, B Barman, T Zuckerman, B Song, IS Patience, J Lafreniere, D Doyon, R AF Marois, Christian Macintosh, Bruce Barman, Travis Zuckerman, B. Song, Inseok Patience, Jennifer Lafreniere, David Doyon, Rene TI Direct Imaging of Multiple Planets Orbiting the Star HR 8799 SO SCIENCE LA English DT Article ID DUSTY DEBRIS DISKS; A-TYPE STARS; CIRCUMSTELLAR DISKS; DETERMINISTIC MODEL; GIANT PLANETS; MASS STARS; DWARF; LUMINOSITY; PHOTOMETRY; SYSTEMS AB Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter- like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth- like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High- contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi- epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled- up version of the outer portion of our solar system. C1 [Marois, Christian] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Marois, Christian; Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Marois, Christian] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Barman, Travis] Lowell Observ, Flagstaff, AZ 86001 USA. [Zuckerman, B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Zuckerman, B.] Univ Calif Los Angeles, Ctr Astrobiol, Los Angeles, CA 90095 USA. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Patience, Jennifer] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Lafreniere, David] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Doyon, Rene] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Doyon, Rene] Univ Montreal, Observ Mont Megant, Montreal, PQ H3C 3J7, Canada. RP Marois, C (reprint author), Natl Res Council Canada, Herzberg Inst Astrophys, 5071 W Saanich Rd, Victoria, BC V9E 2E7, Canada. EM christian.marois@nrc-cnrc.gc.ca OI Lafreniere, David/0000-0002-6780-4252 FU Fonds Quebecois de la Recherche sur la Nature et les Technologies; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF Science and Technology CfAO; University of California-Santa Cruz [AST 98-76783]; NASA; UCLA; Lowell Observatory; Natural Sciences and Engineering Research Council of Canada FX We thank the Keck and Gemini staff, particularly T. Armandroff, B. Goodrich, and J.-R. Roy, for support with the follow-up observations. We thank the University of California- Los Angeles ( UCLA) galactic center team, especially J. Lu, for the NIRC2 plate scale and North orientation errors. We are indebted to E. Becklin and R. Racine for their contributions in the earliest stages of this research. C.M. and D.L. are supported in part through postdoctoral fellowships from the Fonds Quebecois de la Recherche sur la Nature et les Technologies. Portions of this research were performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and also supported in part by the NSF Science and Technology CfAO, managed by the University of California-Santa Cruz under cooperative agreement AST 98-76783. We acknowledge support by NASA grants to UCLA and Lowell Observatory. R. D. is supported through a grant from the Natural Sciences and Engineering Research Council of Canada. The data were obtained at the W. M. Keck and Gemini Observatories. This publication makes use of data products from the Two Micron All Sky Survey and the SIMBAD database (http://simbad. u-strasbg.fr/simbad). NR 41 TC 889 Z9 891 U1 5 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 28 PY 2008 VL 322 IS 5906 BP 1348 EP 1352 DI 10.1126/science.1166585 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 376FX UT WOS:000261170600030 PM 19008415 ER PT J AU Brohawn, SG Leksa, NC Spear, ED Rajashankar, KR Schwartz, TU AF Brohawn, Stephen G. Leksa, Nina C. Spear, Eric D. Rajashankar, Kanagalaghatta R. Schwartz, Thomas U. TI Structural Evidence for Common Ancestry of the Nuclear Pore Complex and Vesicle Coats SO SCIENCE LA English DT Article ID NUCLEOCYTOPLASMIC TRANSPORT; CRYOELECTRON TOMOGRAPHY; MOLECULAR ARCHITECTURE; CELL-CYCLE; NUCLEOPORINS; ORGANIZATION; FOLD; EVOLUTION; MEMBRANE; PROTEINS AB Nuclear pore complexes ( NPCs) facilitate nucleocytoplasmic transport. These massive assemblies comprise an eightfold symmetric scaffold of architectural proteins and central- channel phenylalanine- glycine- repeat proteins forming the transport barrier. We determined the nucleoporin 85 (Nup85).Seh1 structure, a module in the heptameric Nup84 complex, at 3.5 angstroms resolution. Structural, biochemical, and genetic analyses position the Nup84 complex in two peripheral NPC rings. We establish a conserved tripartite element, the ancestral coatomer element ACE1, that reoccurs in several nucleoporins and vesicle coat proteins, providing structural evidence of coevolution from a common ancestor. We identified interactions that define the organization of the Nup84 complex on the basis of comparison with vesicle coats and confirmed the sites by mutagenesis. We propose that the NPC scaffold, like vesicle coats, is composed of polygons with vertices and edges forming a membrane- proximal lattice that provides docking sites for additional nucleoporins. C1 [Brohawn, Stephen G.; Leksa, Nina C.; Spear, Eric D.; Schwartz, Thomas U.] MIT, Dept Biol, Cambridge, MA 02139 USA. [Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. RP Schwartz, TU (reprint author), MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM tus@mit.edu OI /0000-0001-8012-1512 FU NIH [GM77537]; Pew Scholar Award; Koch Fellowship Award; Vertex Scholarship FX We thank staff at beamlines 24-ID-C/-E at Argonne National Laboratory and X6A at National Synchrotron Light Source for excellent assistance with data collection, R. Sauer and T. Baker for critically reading the manuscript, G. Wink for contributions, members of the Schwartz laboratory for discussions, and the Biophysical Instrumentation Facility for the Study of Complex Macromolecular Systems (NSF-0070319 and NIH GM68762) for providing instrumentation. Supported by NIH grant GM77537 ( T. U. S.), a Pew Scholar Award ( T. U. S.), a Koch Fellowship Award ( S. G. B.), and a Vertex Scholarship ( S. G. B.). Coordinates and structure factors of the Nup85.Seh1 crystal structure have been deposited in the Protein Data Bank ( PDB) with accession code 3EWE. NR 38 TC 120 Z9 121 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 28 PY 2008 VL 322 IS 5906 BP 1369 EP 1373 DI 10.1126/science.1165886 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 376FX UT WOS:000261170600036 PM 18974315 ER PT J AU Wang, J Manivannan, A Wu, NQ AF Wang, Jin Manivannan, Ayyakkannu Wu, Nianqiang TI Sol-gel derived La0.6Sr0.4CoO3 nanoparticles, nanotubes, nanowires and thin films SO THIN SOLID FILMS LA English DT Article DE Sol-gel; Nanomaterial; Nanoparticles; Nanowires; Thin films ID NANOSTRUCTURES; NANOCRYSTALS; REDUCTION AB This work has demonstrated how to tailor the structure and form of the sol-gel derived La0.6Sr0.4CoO3 perovskite material from zero-dimension (nanoparticles) to one-dimension (nanotubes and nanowires) and two-dimension (thin films). The nanoparticles with a diameter of 50-100 mm are obtained by calcination of the pulverized gel powder. The nanotubes with a diameter of 100 run and the nanowires with a diameter of 40-60 nm are formed by shaping the sol with the cylinder pores in an anodic aluminum oxide (AAO) template. The 150 turn thick thin film with the grain size of around 40 nm is prepared by spin coating the sol on a silicon substrate. The effects of the sol recipe on the formation of final product have been studied. A relatively high pH value of the sol and the addition of appropriate amount of chelating agent are critical to ensure the formation of the monolithic La0.6Sr0.4CoO3 perovskite structure. When preparing a thin film, ethylene glycol is an essential component for enhancing the affinity between the sol and the silicon substrate. (c) 2008 Elsevier B.V. All rights reserved. C1 [Wang, Jin; Wu, Nianqiang] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Wang, Jin; Wu, Nianqiang] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Manivannan, Ayyakkannu] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. RP Wu, NQ (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM nick.wu@mail.wvu.edu RI Manivannan, Ayyakkannu/A-2227-2012; Wu, Nianqiang/B-9798-2015 OI Manivannan, Ayyakkannu/0000-0003-0676-7918; Wu, Nianqiang/0000-0002-8888-2444 FU Development Solutions, LLC (RDS) [DEAC26-04NT41817]; West Virginia State Research Challenge FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in fuel cells under the Research and Development Solutions, LLC (RDS) contract DEAC26-04NT41817 and West Virginia State Research Challenge Grant Energy Materials Program. Helpful discussions with Prof Harry O. Finklea (Chemistry, WVU) are acknowledged. NR 24 TC 25 Z9 25 U1 3 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 28 PY 2008 VL 517 IS 2 BP 582 EP 587 DI 10.1016/j.tsf.2008.06.095 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 383SO UT WOS:000261693900021 ER PT J AU Tuanyok, A Leadem, BR Auerbach, RK Beckstrom-Sternberg, SM Beckstrom-Sternberg, JS Mayo, M Wuthiekanun, V Brettin, TS Nierman, WC Peacock, SJ Currie, BJ Wagner, DM Keim, P AF Tuanyok, Apichai Leadem, Benjamin R. Auerbach, Raymond K. Beckstrom-Sternberg, Stephen M. Beckstrom-Sternberg, James S. Mayo, Mark Wuthiekanun, Vanaporn Brettin, Thomas S. Nierman, William C. Peacock, Sharon J. Currie, Bart J. Wagner, David M. Keim, Paul TI Genomic islands from five strains of Burkholderia pseudomallei SO BMC GENOMICS LA English DT Article ID PATHOGENICITY ISLANDS; NORTHEAST THAILAND; CAUSATIVE AGENT; MELIOIDOSIS; EVOLUTION; VIRULENCE; MALLEI; EPIDEMIOLOGY; PLASTICITY; DIVERSITY AB Background: Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. Results: We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3' end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. Conclusion: Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species. C1 [Tuanyok, Apichai; Leadem, Benjamin R.; Auerbach, Raymond K.; Beckstrom-Sternberg, Stephen M.; Beckstrom-Sternberg, James S.; Wagner, David M.; Keim, Paul] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Beckstrom-Sternberg, Stephen M.; Keim, Paul] Translat Genom Res Inst, Phoenix, AZ 85004 USA. [Mayo, Mark; Currie, Bart J.] Charles Darwin Univ, Menzies Sch Hlth Res, Darwin, NT 0909, Australia. [Wuthiekanun, Vanaporn; Peacock, Sharon J.] Mahidol Univ, Mahidol Oxford Res Unit, Bangkok 10700, Thailand. [Brettin, Thomas S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nierman, William C.] J Craig Venter Inst, Rockville, MD 20850 USA. [Nierman, William C.] George Washington Univ, Washington, DC 20037 USA. RP Keim, P (reprint author), No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. EM Apichai.Tuanyok@nau.edu; Benjamin.Leadem@nau.edu; Raymond.Auerbach@yale.edu; sbeckstrom@tgen.org; jamiebs45@yahoo.com; Mark.Mayo@menzie.edu.au; Lek@tropmedres.ac; brettin@lanl.gov; wnierman@tigr.org; sharon@tropmedres.ac; Bart.Currie@menzies.edu.au; Dave.Wagner@nau.edu; Paul.Keim@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010 FU NIH Pacific Southwest Regional Center of Excellence; NIH-NIAID [U54 AI-065359, U01AI-075568] FX AT holds a Career Development Award (May 2007-April 2009) from the NIH Pacific Southwest Regional Center of Excellence. This work was funded by NIH-NIAID grants U54 AI-065359 and U01AI-075568. NR 36 TC 45 Z9 46 U1 1 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 27 PY 2008 VL 9 AR 566 DI 10.1186/1471-2164-9-566 PG 14 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 390WP UT WOS:000262194700002 PM 19038032 ER PT J AU Zhang, JY Wang, WC Leung, LR AF Zhang, Jingyong Wang, Wei-Chyung Leung, L. Ruby TI Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AMERICAN REGIONAL REANALYSIS; SEVERE PRECIPITATION EVENT; MODELING SYSTEM RAMS; SOIL-MOISTURE; PART I; GLOBAL-MODELS; GREAT-PLAINS; SIMULATION; TEMPERATURE; PREDICTABILITY AB The Weather Research and Forecasting (WRF) model has been used to study the role of land-atmosphere coupling in influencing interannual summer climate variability over the contiguous United States. Two long-term climate simulations are performed: a control experiment (CTL) allows soil moisture to interact freely with the atmosphere, and an additional experiment uncouples the land surface from the atmosphere by replacing summer soil moisture at each time step with the climatology of CTL. The CTL simulation reproduces well the observed summer temperature and precipitation variability, despite some discrepancies in daily mean and maximum temperature variability in the midwest/Ohio Valley region and the adjacent areas, and precipitation variability in the Great Plains and some other areas. Strong coupling of soil moisture with daily mean temperature appears mainly over the zone from the southwest to the northern Great Plains to the southeast, contributing up to about 30-60% of the total interannual variance of temperature. There is a significantly different influence on daily maximum and minimum temperatures. Soil moisture plays a leading role in explaining the variability of maximum temperature over this zone whereas minimum temperature variability is highly constrained by external factors including atmospheric circulation and sea surface temperature almost everywhere over land. Soil moisture, mainly through its effects on convection, makes a dominant contribution to precipitation variability over about half of the northern United States. This result does not support the Global Land-Atmosphere Coupling Experiment (GLACE) hot spot hypothesis over the central United States, at least on the interannual timescale. The model's behavior agrees to a large extent with land-atmosphere relationships diagnosed using the observations. C1 [Zhang, Jingyong; Wang, Wei-Chyung] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, JY (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 25 Fuller Rd, Albany, NY 12203 USA. EM zjy@climate.cestm.albany.edu RI Zhang, Jingyong/B-8849-2011 FU U. S. Department of Energy's Office of Science Biological and Environmental Research and the Climate Dynamics Division; National Science Foundation; Battelle Memorial Institute [DE-AC06-76RLO1830] FX We thank two anonymous reviewers for helpful comments and suggestions. This work is supported by grants (to SUNY Albany) from the U. S. Department of Energy's Office of Science Biological and Environmental Research and the Climate Dynamics Division, National Science Foundation. Pacific Northwest National Laboratory is operated for the U. S. DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. NR 63 TC 43 Z9 47 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2008 VL 113 AR D22109 DI 10.1029/2008JD010136 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 377IM UT WOS:000261244900009 ER PT J AU Patterson, MJ Lightstone, JM White, MG AF Patterson, Melissa J. Lightstone, James M. White, Michael G. TI Structure of Molybdenum and Tungsten Sulfide M(x)S(y)(+) Clusters: Experiment and DFT Calculations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GAS-PHASE; AB-INITIO; CO ADSORPTION; MAGIC CLUSTERS; CHEVREL PHASES; MO6S8 CLUSTER; MOS2; REACTIVITY; NANOTUBES AB A combination of experiment and density functional theory was used to investigate the energetics of CO adsorption onto several small M(x)S(y)(+) (M = Mo, W; x/y = 2/6, 3/7, 5/7, 6/8) clusters as a probe of their atomic and electronic structure. Experimentally, tandem mass spectrometry was used to measure the relative yields of M(x)S(y)(+)(CO)(n) cluster adducts formed by collisions between a beam of mass-selected M(x)S(y)(+) cluster ions and CO molecules in a high-pressure collision cell (hexapole ion guide). The most probable M(x)S(y)(+)(CO)(n) adducts observed are those with n <= x, that is, only one CO molecule bound to each metal site. The notable exception is the M(5)S(7)(+) cluster, for which the n = 6 adduct is found to have nearly the same intensity as the n = x = 5 adduct. Density fuctional calculations were used to search for the lowest energy structures of the bare M(x)S(y)(+) clusters and to obtain their relative stability for sequential CO binding. The calculated trends in CO binding energies were then compared to the experimental adduct distributions for assigning the ground-state structures. In this way, it was possible to distinguish between two nearly isoenergetic ground-state isomers for the M(2)S(6)(+) and M(3)S(7)(+) clusters, as only one isomer gave a calculated CO stabilization energy trend that was consistent with the experimental data. Similar comparisons of predicted and observed CO adsorption trends also provide evidence for assigning the ground-state structures of the M(5)S(7)(+) and M(6)S(8)(+) clusters. The latter contain metallic cores with most of the sulfur atoms bonded along the edges or in the faces of the metal core structure. The n = 6 and 7 adducts of M(5)S(7)(+) are predicted to be more stable than the n = x = 5 adduct, but only the n = 6 adduct is observed experimentally. The DFT calculations show that the n = 7 adduct undergoes internal bond breaking whereas the n = 6 framework is stable, albeit highly distorted. For the M(6)S(8)(+) cluster, the calculations predict that the two lowest energy isomers can bind more than six CO molecules without fragmentation; however, the apparent binding energy drops significantly for adducts with n > 6. In general, the ability of these small M(x)S(y)(+) clusters to bind more CO molecules than the number of metal atoms is a balance between the gain in CO adsorption energy versus the strain introduced into the cluster structure caused by CO crowding, the consequences of which can be fragmentation of the M(x)S(y)(+)(CO)(n) cluster adduct (n > x). C1 [Patterson, Melissa J.; Lightstone, James M.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. [White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. EM mgwhite@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10086]; U.S. Department of Energy (Division FX Acknowledgment. We wish to thank Dr. Ping Liu and Dr. James Muckerman, Brookhaven National Laboratory, for helpful discussions and guidance with the DFT calculations. This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10086 with the U.S. Department of Energy (Division of Chemical Sciences). NR 50 TC 9 Z9 9 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 27 PY 2008 VL 112 IS 47 BP 12011 EP 12021 DI 10.1021/jp807318c PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 374PN UT WOS:000261056300008 PM 18980366 ER PT J AU Simeon, T Balasubramanian, K Leszczynski, J AF Simeon, Tomekia Balasubramanian, Krishnan Leszczynski, Jerzy TI New Insights into the Chemical and Electronic Properties of C(69)M [M = In(-), Tl(-), Sb(+), Bi(+)] Species SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RELATIVISTIC EFFECTIVE POTENTIALS; SPIN-ORBIT OPERATORS; MOLECULAR-STRUCTURES; DOPED FULLERENES; AB-INITIO; NITROGEN; BUCKMINSTERFULLERENE; STABILITY; ENERGIES; CLUSTERS AB The replacements of five unique carbons by metal ions within [5,6] fullerene C(70) D(5h) has been investigated by using B3LYP/6-31G(d) within 20 isomers of C(69)M [M = In(-), Tl(-), Sb(+), Bi(+)] systems. The equilibrium geometrical structures, relative energies, frontier orbitals, and energy gaps for the four considered series are presented. The obtained results indicate a decrease in effective nuclear charge by addition of an electron, and relativistic effects in C69Tl(-) systems causes substantially elongated Tl-C bonds. Variations in the redox characteristics within the four series and among all isomers are expected and also confirmed by Mulliken charges redistributed to neighboring carbon atoms. The vibrational spectra of C(69)In(-) and C(69)Sb(+) have been calculated, which could serve as a framework to interpret future experimental results. Our findings show that substitutional doping of C(70) with indium, thallium, antimony, and bismuth ions results in interesting properties which can be utilized in the design, synthesis, and growth of nanomaterials in the future. C1 [Simeon, Tomekia; Leszczynski, Jerzy] Jackson State Univ, Dept Chem, Computat Ctr Mol Struct & Interact, Jackson, MS 39217 USA. [Balasubramanian, Krishnan] Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA. [Balasubramanian, Krishnan] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. [Balasubramanian, Krishnan] Univ Calif Berkeley, Lawrence Berkeley Lab, T Seaborg Ctr, Berkeley, CA 94720 USA. RP Simeon, T (reprint author), Jackson State Univ, Dept Chem, Computat Ctr Mol Struct & Interact, 1400 JR Lynch St,POB 17910, Jackson, MS 39217 USA. EM tomekias@ccmsi.us FU U.S. Department of Energy under [DE-FG0204ERI 5546]; ONR [N000140810324]; Lawrence Livermore National Laboratory; U.S. Department of Energy [AC52-07NA27344] FX This research was supported in part by the U.S. Department of Energy under Grant No. DE-FG0204ERI 5546 and ONR Grant no. N000140810324. The work at Lawrence Livermore National Laboratory was performed under the auspices of U.S. Department of Energy under Contract No. AC52-07NA27344. NR 33 TC 0 Z9 0 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 27 PY 2008 VL 112 IS 47 BP 12179 EP 12186 DI 10.1021/jp804718s PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 374PN UT WOS:000261056300030 PM 18973318 ER PT J AU Dinescu, A Benson, MT AF Dinescu, Adriana Benson, Michael T. TI Electronic Structure Studies on Deprotonation of Dithiophosphinic Acids in Water Clusters SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HYDRATION FREE-ENERGY; GAUSSIAN-BASIS SETS; CORRELATED MOLECULAR CALCULATIONS; CONTINUUM MODEL; NONBONDED INTERACTIONS; TRANSITION-STATES; EXTRACTION; SEPARATION; CYANEX-301 AB We report herein a computational study of proton transfer reactions between dithiophosphinic acids (HAs) and water clusters using B3LYP and MP2 methods. The ground-state and transition-state structures of HA-(H(2)O)(n) (n = 1, 2, 3) cluster complexes have been calculated. The influence of water molecules on energy barrier heights of proton transfer reactions has been examined in the gas phase and solution for his[o-(tfifluoromethyl)phenyl]- and bis(2,4,4-trimethylpentyl)dithiophosphinic acids (HA1 and HA2, respectively). Gas-phase calculations indicate that electron-withdrawing substituents and trifluoromethyl groups in the ortho position favor deprotonation of HA1 when three water molecules are included in the cluster. This suggests that at least three water molecules are necessary to solvate the abstracted proton in the presence of the anion. In the case of HA2, the electron-donating groups favor the reverse proton transfer reaction, namely, protonation of dithiophosphinate anion. Bulk solvent effects have been modeled for aqueous and organic media with the CPCM model. The calculated results show that polar solvents can lower the activation energy for less energetically stable transition states that have more localized charges. C1 [Dinescu, Adriana; Benson, Michael T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Benson, MT (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Michael.Benson@inl.gov RI Benson, Michael/B-8855-2017 OI Benson, Michael/0000-0003-4927-614X FU U.S. Department of Energy (DOE); INL Laboratory Directed Research & Development Program; DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy (DOE), INL Laboratory Directed Research & Development Program, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 54 TC 5 Z9 5 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 27 PY 2008 VL 112 IS 47 BP 12270 EP 12280 DI 10.1021/jp806568k PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 374PN UT WOS:000261056300040 PM 18980364 ER PT J AU Bondar, AN Baudry, J Suhai, S Fischer, S Smith, JC AF Bondar, Ana-Nicoleta Baudry, Jerome Suhai, Sandor Fischer, Stefan Smith, Jeremy C. TI Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FREE-ENERGY CALCULATIONS; CYTOCHROME-C-OXIDASE; RETINAL SCHIFF-BASE; HISTOGRAM ANALYSIS METHOD; TRANSITION-STATE ANALOG; STRUCTURAL-CHANGES; L-INTERMEDIATE; TIGHT-BINDING; DYNAMICS SIMULATIONS; CRYSTALLOGRAPHIC STRUCTURE AB The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the protontransfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmicside water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier. C1 [Bondar, Ana-Nicoleta] Univ Calif Irvine, Dept Physiol & Biophys, Sch Med, Irvine, CA 92697 USA. [Bondar, Ana-Nicoleta; Suhai, Sandor] German Canc Res Ctr, Dept Mol Biophys, D-69120 Heidelberg, Germany. [Bondar, Ana-Nicoleta] Univ Calif Irvine, Ctr Biomembrane Syst, Irvine, CA 92697 USA. [Bondar, Ana-Nicoleta; Fischer, Stefan] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. [Baudry, Jerome; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Baudry, Jerome; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol Biol, Knoxville, TN 37996 USA. RP Bondar, AN (reprint author), Univ Calif Irvine, Dept Physiol & Biophys, Sch Med, D374, Irvine, CA 92697 USA. EM nicoleta.bondar@uci.edu; smithjc@ornl.gov RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU Deutsches Krebsforschungszentrum; Deutsches Forschungsgemeinshaft [SM 63/7]; United States Department of Energy Laboratory-Directed Research and Development; National Institutes of General Medical Sciences [GM74637] FX This work has been supported in part by the Deutsches Krebsforschungszentrum and by the Deutsches Forschungsgemeinshaft (SM 63/7). J.C.S. was supported by a United States Department of Energy Laboratory-Directed Research and Development grant. A.-N.B. is supported by grant GM74637 from the National Institutes of General Medical Sciences. A.-N.B. thanks Profs. Judith Herzfeld, Tsutomu Kouyama, and Akio Maeda for valuable discussions on the role of water molecules in bacteriorhodopsin function, and Dr. Haobo Guo for valuable advice on the PMF calculations. NR 100 TC 31 Z9 31 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 27 PY 2008 VL 112 IS 47 BP 14729 EP 14741 DI 10.1021/jp801916f PG 13 WC Chemistry, Physical SC Chemistry GA 374PO UT WOS:000261056400008 PM 18973373 ER PT J AU Porcar, L Liu, Y Verduzco, R Hong, KL Butler, PD Magid, LJ Smith, GS Chen, WR AF Porcar, Lionel Liu, Yun Verduzco, Rafael Hong, Kunlun Butler, Paul D. Magid, Linda J. Smith, Gregory S. Chen, Wei-Ren TI Structural Investigation of PAMAM Dendrimers in Aqueous Solutions Using Small-Angle Neutron Scattering: Effect of Generation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLY(AMIDOAMINE) DENDRIMERS; POLYELECTROLYTE DENDRIMERS; MOLECULAR-DYNAMICS; PH; SOLVENT AB We investigate a series of poly(amidoamine) starburst dendrimers (PAMAM) of different generations in acidic, aqueous solutions using small-angle neutron scattering (SANS). While the overall molecular size is found to be practically unaffected by a pD change, a strong generational dependence of counterion association is revealed. Upon increasing the dendrimer generation, the effective charge obtained from our SANS experiments only shows a small increase in contrast to the nearly exponential increase predicted by a recent atomic simulation. We also find that with the same degree of molecular protonation the specific counterion association, which is defined as the ratio of bound chloride anions to positively charged amines in solutions, is larger for higher-generation PAMAM dendrimer. The associated counterion density also increases upon increasing generation number. C1 [Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Porcar, Lionel] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Porcar, Lionel; Liu, Yun] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Porcar, Lionel; Liu, Yun; Butler, Paul D.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Verduzco, Rafael; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Butler, Paul D.; Magid, Linda J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Chen, WR (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM chenw@ornl.gov RI Liu, Yun/A-2478-2010; Butler, Paul/D-7368-2011; Liu, Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU Laboratory Directed Research and Development Program [ID 05125]; U.S. Department of Energy; National Institute of Standards and Technology; U.S. Department of Commerce,; NSF [DMR-0454672]; Scientific User Facilities Division; Office of Basic Energy Sciences FX We gratefully acknowledge the support from the Laboratory Directed Research and Development Program (Project ID 05125) of ORNL and the partial financial support by U.S. Department of Energy within the Center of Excellence on Carbon-based Hydrogen Storage Materials. The support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities supported under NSF Agreement DMR-0454672 is also acknowledged. Part of this research was done at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 31 TC 55 Z9 55 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 27 PY 2008 VL 112 IS 47 BP 14772 EP 14778 DI 10.1021/jp805297a PG 7 WC Chemistry, Physical SC Chemistry GA 374PO UT WOS:000261056400013 PM 18950222 ER PT J AU Sarkar, A Trivedi, S Baker, GA Pandey, S AF Sarkar, Abhra Trivedi, Shruti Baker, Gary A. Pandey, Siddharth TI Multiprobe Spectroscopic Evidence for "Hyperpolarity" within 1-Butyl-3-methylimidazolium Hexafluorophosphate Mixtures with Tetraethylene Glycol SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID TEMPERATURE IONIC LIQUID; SOLVATOCHROMIC PROBE BEHAVIOR; SODIUM DODECYL-SULFATE; MICROWAVE DIELECTRIC-SPECTROSCOPY; MICROSCOPIC SOLVENT PROPERTIES; DILUTE AQUEOUS-SOLUTIONS; PHENOLATE BETAINE DYES; KERR-EFFECT SPECTRA; NANOSTRUCTURAL ORGANIZATION; PREFERENTIAL SOLVATION AB A hybrid, potentially green solvent system composed of tetraethylene glycol (TEG) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) was investigated across all mole fractions with regard to the solvent properties of the mixture. For this purpose, a suite of absorbance- and fluorescence-based solvatochromic probes were utilized to explore solute-solvent and solvent-solvent interactions existing within the [bmim][PF6] + TEG system. These studies revealed an interesting and unusual synergistic solvent effect. In particular, a remarkable "hyperpolarity" was observed in which the E-T value, comprising dipolarity/polarizability and hydrogen bond donor (HBD) acidity contributions, at intermediate mole fractions of the binary mixture well exceeded that of the most polar pure component (i.e., [bmim][PF6]). Independently determined dipolarity/polarizability (,pi*) and HBD acidity (alpha) Kamlet-Taft values for the [bmim][PF6] + TEG mixtures were also observed to be anomalously high at intermediate mole fractions, whereas hydrogen bond acceptor (HBA) basicities (beta values) were much more in line with the ideal arithmetic values predicted on a mole fraction basis. Two well-established fluorescent polarity probes (pyrene and pyrene-1-carboxaldehyde) further illustrated notable hyperpolarity within [bmim][PF6] + TEG mixtures. Moreover, the steady-state fluorescence anisotropy of the molecular rotor rhodamine 6G and the excimer-to-monomer fluorescence ratio exhibited by the fluidity probe 1,3-bis-(1-pyrenyl)propane demonstrated that solute rotation and microfluidity within the [bmim][PF6] + TEG mixture were significantly reduced compared with expectations based on simple solvent mixing. A solvent ordering via formation of HBD/HBA complexes involving the C-2 proton of the [bmim(+)] cation and oxygen atoms of TEG, as well as interactions between [PF6-] and the terminal hydroxyl groups of TEG, is proposed to account for the observed behavior. Further spectroscopic evidence of strong intersolvent interactions occurring within the [bmim][PF6] + TEG mixture was provided, inter alia, by substantial frequency shifts in the [PF6-] asymmetric stretching mode observed in the infrared spectra as TEG was incrementally added to [bmim][PF6]. Overall, our observations contribute to a growing literature advocating the notion that ionic liquids and certain organic solvents form ordered, nanostructured, or microsegregated phases upon mixing. C1 [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Sarkar, Abhra; Trivedi, Shruti; Pandey, Siddharth] Indian Inst Technol, Dept Chem, New Delhi 110016, India. RP Baker, GA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bakerga1@ornl.gov; sipandey@chemistry.iitd.ac.in RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 FU Department of Science and Technology, India [SR/S1/PC-38/2004]; UGC, India; ORNL FX This work was generously supported by the Department of Science and Technology, India through Grant SR/S1/PC-38/2004 to S.P. S.T. would like to thank UGC, India for a fellowship and G.A.B. acknowledges ORNL for support via a Wigner Fellowship. The FTIR data were obtained with gracious assistance from Dr. Jamie Messman. We gratefully acknowledge helpful comments from the reviewers. NR 142 TC 71 Z9 71 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 27 PY 2008 VL 112 IS 47 BP 14927 EP 14936 DI 10.1021/jp804591q PG 10 WC Chemistry, Physical SC Chemistry GA 374PO UT WOS:000261056400031 PM 18954101 ER PT J AU Salafsky, JS Cohen, B AF Salafsky, Joshua S. Cohen, Bruce TI A Second-Harmonic-Active Unnatural Amino Acid as a Structural Probe of Biomolecules on Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID STREPTOCOCCAL PROTEIN-G; IMMUNOGLOBULIN-BINDING DOMAIN; CONFORMATIONAL-CHANGES; POTASSIUM CHANNEL; FLUORESCENT-PROBE; CRYSTAL-STRUCTURE; REAL-TIME; GENERATION; ADSORPTION; SPECTROSCOPY AB Second-harmonic generation (SHG) is highly sensitive to the net, average orientation of SH-active molecules on surfaces and has recently emerged as a technique for detecting biomolecules and their conformational changes. As most biomolecules are not intrinsically SH-active, they must be labeled with probes to render them detectable. To date, exogenous probes have been used to do this, but second-harmonic-active unnatural amino acids offer important advantages for the long-range goal of precisely and directly determining structural changes in real time and may be used for both buried and surface sites. Results of the first known SH-active unnatural amino acid, Aladan, are presented here. Aladan is found to be SH-active by detecting it at an interface, both alone and incorporated into the B1 domain of protein G (GB1), a globular immunoglobulin-binding protein, at both buried and exposed sites. The tilt angle of Aladan alone adsorbed on a mica surface is determined by polarization experiments, and its nonlinear polarizability alpha((2)) is found to be ca. 10(-30) esu. Aladan GB I mutants are detectable by SHG, either when coupled covalently to a derivatized glass surface or bound to IgG immobilized via protein A. Addition of an Fc domain to this GB1 complex causes a small but defined change in the SH signal when Aladan is incorporated at site Ala(24), but not at Leu(7), consistent with a local conformational change of GB1. This structural change is not apparent in either X-ray crystallography or fluorescence studies, demonstrating that SHG can detect subtle orientational changes, including protein-protein interactions in which no significant rearrangements occur. C1 [Salafsky, Joshua S.] Biodesy LLC, Burlingame, CA 94010 USA. [Cohen, Bruce] Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. RP Salafsky, JS (reprint author), Biodesy LLC, Burlingame, CA 94010 USA. EM salafsky@biodesy.com; becohen@lbl.gov FU U.S.Department of Energy [DE-AC02-05CH 11231] FX Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S.Department of Energy under Contract DE-AC02-05CH 11231. NR 32 TC 17 Z9 17 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 27 PY 2008 VL 112 IS 47 BP 15103 EP 15107 DI 10.1021/jp803703m PG 5 WC Chemistry, Physical SC Chemistry GA 374PO UT WOS:000261056400051 PM 18928314 ER PT J AU Brown, MA Liu, Z Ashby, PD Mehta, A Grimm, RL Hemminger, JC AF Brown, Matthew A. Liu, Zhi Ashby, Paul D. Mehta, Apurva Grimm, Ronald L. Hemminger, John C. TI Surface Structure of KIO(3) Grown by Heterogeneous Reaction of Ozone with KI (001) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LIQUID-VAPOR INTERFACE; SOLID POTASSIUM-IODIDE; HALIDES; SPECTROSCOPY AB The crystal structure of KIO(3) grown by heterogeneous surface oxidation of KI (001) with ozone is reported. Under ambient reaction conditions (RH similar to 35%, room temperature) a thick layer of KIO(3) grows at the gas-solid interface. Two doublets are present in the I(4d) X-ray photoelectron spectroscopy structure measurements, characteristic of unreacted KI (I(-)) from the substrate and the oxidized KIO(3) (I(5+)) reaction product. X-ray diffraction measurements confirm the presence at the interface of randomly oriented polycrystalline-triclinic KIO(3) with an average particle diameter of 15 nm. KIO(3) particle diameters determined from the X-ray diffraction peak widths are consistent with the results of atomic force microscopy. There is no X-ray powder diffraction evidence to suggest that the underlying KI substrate is altered in any manner during this heterogeneous interfacial reaction. C1 [Brown, Matthew A.; Grimm, Ronald L.; Hemminger, John C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ashby, Paul D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mehta, Apurva] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Hemminger, JC (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM jchemmin@uci.edu RI Brown, Matthew/D-9236-2012; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU National Science Foundation [CHE 0431312]; U.S. Department of Energy [AC0205CH11231, DE-AC0376SFOO0515]; ALS Doctoral Fellowship program FX The AirUCI Environmental Molecular Sciences Institute under grant no. CHE 0431312 from the National Science Foundation supported this work. Portions of this work were performed at the Molecular Foundry, LBNL, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC0205CH11231. XRD patterns were collected at SSRL, SLAC, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC0376SFOO0515. M.A.B. is grateful to Ron Hulme for machining the XRD sample holder, and acknowledges the ALS Doctoral Fellowship program. NR 22 TC 11 Z9 11 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 27 PY 2008 VL 112 IS 47 BP 18287 EP 18290 DI 10.1021/jp807113d PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 374PP UT WOS:000261056500001 ER PT J AU Au, M Jurgensen, AR Spencer, WA Anton, DL Pinkerton, FE Hwang, SJ Kim, C Bowman, RC AF Au, Ming Jurgensen, Arthur R. Spencer, William A. Anton, Donald L. Pinkerton, Frederick E. Hwang, Son-Jong Kim, Chul Bowman, Robert C., Jr. TI Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE; LIBH4; DESORPTION; NMR AB In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH(4) with various metal halides and hydrides has been conducted. Several metal halides such as TiCl(3), TiF(3), and ZnF(2) effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH(4) are partially reversible. The LiBH(4) + 0.1TiF(3) desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 degrees C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 degrees C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH(4). The existence of the (B(12)H(12))(-2) species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF(2), MgCl(2), CaCl(2), SrCl(2), and FeCl(3), did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl(3), TiF(3), and ZnCl(2) from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH(4) + 0.5TiCl(3), LiBH(4) + 0.5TiF(3), and LiBH(4) + 0.5ZnCl(2) release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides. C1 [Au, Ming; Jurgensen, Arthur R.; Spencer, William A.; Anton, Donald L.] Savannah River Natl Lab, Aiken, SC USA. [Pinkerton, Frederick E.] Gen Motors R&D Ctr, Warren, MI USA. [Hwang, Son-Jong; Kim, Chul] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Bowman, Robert C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Au, M (reprint author), Savannah River Natl Lab, Aiken, SC USA. OI Bowman, Robert/0000-0002-2114-1713 FU General Motors Corporation; DOE [DE-AI-01-05EE11105]; National Science Foundation (NSF) [9724240, DMR-0520565] FX This project is financially supported by General Motors Corporation. The authors also thank Dr. Scott Jorgensen for constructive discussions and suggestions on the research. Savannah River National Laboratory is operated by Savannah River Nuclear Solution for the U.S. Department of Energy under contract DE-AC09-08SR22470. This research was partially performed at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with the NASA. This work was also partially supported by DOE through Award Number DE-AI-01-05EE11105. The NMR facility at Caltech was supported by the National Science Foundation (NSF) under Grant Number 9724240 and partially supported by the MRSEC Program of the NSF under Award Number DMR-0520565. NR 32 TC 87 Z9 89 U1 5 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 27 PY 2008 VL 112 IS 47 BP 18661 EP 18671 DI 10.1021/jp8024304 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 374PP UT WOS:000261056500055 ER PT J AU Abazov, VM Abbott, B Abolins, M Achary, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, R Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evclokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JR Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrantn, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renket, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Achary, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, R. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evclokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -R Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrantn, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y. Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renket, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of differential Z/gamma* plus jet plus X cross sections in p(p)over-bar collisions at root S=1.96 TeV SO PHYSICS LETTERS B LA English DT Article AB We present new measurements of differential cross sections for Z/gamma* (-> mu mu) + jet + X production in a 1 fb(-1) data sample collected with the DO detector in p (p) over bar collisions at root s = 1.96 TeV. Results include the first measurements differential in the Z/gamma* transverse momentum and rapidity, as well as new measurements differential in the leading jet transverse momentum and rapidity. Next-to-leading order perturbative QCD predictions are compared to the measurements, and reasonable agreement is observed, except in the region of low Z/gamma* transverse momentum. Predictions from two event generators based on matrix elements and parton showers, and one pure parton shower event generator are also compared to the measurements. These show significant overall normalization differences to the data and have varied success in describing the shape of the distributions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69365 Lyon, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -R; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, R.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Achary, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evclokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrantn, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y. Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.; White, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.; Wagner, R.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renket, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Hesketh, G (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM ghesketh@fnal.gov RI Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE; NSF; CEA; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia): CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia): CONACyT (Mexico); KRF and KOSEF (Korea): CONICET and UBACyT (Argentina): FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany): SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China): and the Alexander von Humboldt Foundation (Germany). NR 19 TC 31 Z9 31 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 27 PY 2008 VL 669 IS 5 BP 278 EP 286 DI 10.1016/j.physletb.2008.09.060 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 382UV UT WOS:000261631800006 ER PT J AU Vitev, I Zhang, BW AF Vitev, Ivan Zhang, Ben-Wei TI A systematic study of direct photon production in heavy ion collisions SO PHYSICS LETTERS B LA English DT Article ID MULTIPLE PARTON SCATTERING; ENERGY-LOSS; PLUS AU; NUCLEI; JETS AB A theoretical derivation of photon bremsstrahlung, induced by the interactions of an energetic quark in a hot and dense quark-gluon plasma, is given in the framework of the reaction operator approach. For the physically relevant case of hard jet production, followed by few in-medium interactions. we find that the Landau-Pomeranchuk-Migdal suppression of the bremsstrahlung photon intensity is much stronger than in the previously discussed limit of on-shell quarks and a large number of soft scatterings. This result is incorporated in the first systematic study of direct photon production in minimum bias d + Cu and d + Au and central Cu + Cu and Au + Au heavy ion collisions at the Relativistic Heavy Ion Collider at center of mass energies root s = 62.4 GeV and 200 GeV. We find that the contribution of the photons created via final-state interactions is limited to 35% for 2 GeV < p(T) < 5 GeV and at high transverse momenta the modification of the direct photon cross section is dominated by initial-state cold nuclear matter effects. (C) 2008 Elsevier B.V. All rights reserved. C1 [Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Ben-Wei] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop B283, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov FU US Department of Energy, Office of Science [DE-AC52-06NA25396]; LANL; NNSF of China; MOE of China [IRT0624] FX We thank T. Goldman and T. Sakaguchi for useful discussions. This research is supported by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396 and in part by the LDRD program at LANL, the NNSF of China and the MOE of China under Project No. IRT0624. NR 37 TC 33 Z9 33 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 27 PY 2008 VL 669 IS 5 BP 337 EP 344 DI 10.1016/j.physletb.2008.10.019 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 382UV UT WOS:000261631800016 ER PT J AU Patra, PK Law, RM Peters, W Roedenbeck, C Takigawa, M Aulagnier, C Baker, I Bergmann, DJ Bousquet, P Brandt, J Bruhwiler, L Cameron-Smith, PJ Christensen, JH Delage, F Denning, AS Fan, S Geels, C Houweling, S Imasu, R Karstens, U Kawa, SR Kleist, J Krol, MC Lin, SJ Lokupitiya, R Maki, T Maksyutov, S Niwa, Y Onishi, R Parazoo, N Pieterse, G Rivier, L Satoh, M Serrar, S Taguchi, S Vautard, R Vermeulen, AT Zhu, Z AF Patra, P. K. Law, R. M. Peters, W. Roedenbeck, C. Takigawa, M. Aulagnier, C. Baker, I. Bergmann, D. J. Bousquet, P. Brandt, J. Bruhwiler, L. Cameron-Smith, P. J. Christensen, J. H. Delage, F. Denning, A. S. Fan, S. Geels, C. Houweling, S. Imasu, R. Karstens, U. Kawa, S. R. Kleist, J. Krol, M. C. Lin, S. -J. Lokupitiya, R. Maki, T. Maksyutov, S. Niwa, Y. Onishi, R. Parazoo, N. Pieterse, G. Rivier, L. Satoh, M. Serrar, S. Taguchi, S. Vautard, R. Vermeulen, A. T. Zhu, Z. TI TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002-2003 SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID CARBON-DIOXIDE; TRANSPORT MODELS; TALL TOWER; INVERSIONS; SINKS; VARIABILITY; DELTA-C-13; EUROPE; TRENDS; CYCLE AB The ability to reliably estimate CO2 fluxes from current in situ atmospheric CO2 measurements and future satellite CO2 measurements is dependent on transport model performance at synoptic and shorter timescales. The TransCom continuous experiment was designed to evaluate the performance of forward transport model simulations at hourly, daily, and synoptic timescales, and we focus on the latter two in this paper. Twenty-five transport models or model variants submitted hourly time series of nine predetermined tracers (seven for CO2) at 280 locations. We extracted synoptic-scale variability from daily averaged CO2 time series using a digital filter and analyzed the results by comparing them to atmospheric measurements at 35 locations. The correlations between modeled and observed synoptic CO2 variabilities were almost always largest with zero time lag and statistically significant for most models and most locations. Generally, the model results using diurnally varying land fluxes were closer to the observations compared to those obtained using monthly mean or daily average fluxes, and winter was often better simulated than summer. Model results at higher spatial resolution compared better with observations, mostly because these models were able to sample closer to the measurement site location. The amplitude and correlation of model-data variability is strongly model and season dependent. Overall similarity in modeled synoptic CO2 variability suggests that the first-order transport mechanisms are fairly well parameterized in the models, and no clear distinction was found between the meteorological analyses in capturing the synoptic-scale dynamics. C1 [Patra, P. K.; Takigawa, M.; Maksyutov, S.; Satoh, M.] JAMSTEC, Frontier Res Ctr Global Change, Yokohama, Kanagawa, Japan. [Law, R. M.] CSIRO, Marine & Atmospher Res, Aspendale, Vic, Australia. [Peters, W.; Bruhwiler, L.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Peters, W.; Krol, M. C.] Univ Wageningen & Res Ctr, Dept Meteorol & Air Qual, Wageningen, Netherlands. [Roedenbeck, C.; Karstens, U.] Max Planck Inst Biogeochem, Jena, Germany. [Aulagnier, C.; Bousquet, P.; Delage, F.; Rivier, L.; Vautard, R.] UVSQ, CNRS, CEA Saclay, Lab Sci Climat & Environm,IPSL, F-91191 Gif Sur Yvette, France. [Baker, I.; Denning, A. S.; Lokupitiya, R.; Parazoo, N.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Bergmann, D. J.; Cameron-Smith, P. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Brandt, J.; Christensen, J. H.; Geels, C.] Univ Aarhus, Dept Atmospher Environm, Natl Environm Res Inst, Roskilde, Denmark. [Fan, S.; Lin, S. -J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Houweling, S.; Pieterse, G.] Inst Marine & Atmospher Res, Utrecht, Netherlands. [Houweling, S.; Krol, M. C.] Univ Utrecht, Netherlands Inst Space Res, Utrecht, Netherlands. [Imasu, R.; Niwa, Y.; Satoh, M.] Univ Tokyo, Ctr Climate Syst Res, Chiba, Japan. [Karstens, U.] Max Planck Inst Meteorol, Hamburg, Germany. [Kawa, S. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kleist, J.] Privacy Networks, Ft Collins, CO USA. [Maki, T.] Japan Meteorol Agcy, Div Atmospher Environm, Tokyo, Japan. [Maksyutov, S.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Onishi, R.] JAMSTEC, Earth Simulator Ctr, Yokohama, Kanagawa, Japan. [Pieterse, G.; Vermeulen, A. T.] Energy Res Ctr Netherlands, Petten, Netherlands. [Serrar, S.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Taguchi, S.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Zhu, Z.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Patra, PK (reprint author), JAMSTEC, Frontier Res Ctr Global Change, Yokohama, Kanagawa, Japan. RI Peters, Wouter/B-8305-2008; Krol, Maarten/B-3597-2010; Bergmann, Daniel/F-9801-2011; Law, Rachel/A-1969-2012; Christensen, Jesper /E-9524-2011; Kawa, Stephan/E-9040-2012; Brandt, Jorgen/B-3733-2011; Cameron-Smith, Philip/E-2468-2011; Denning, Scott/F-4974-2011; Geels, Camilla/G-4757-2013; Krol, Maarten/E-3414-2013; onishi, ryo/D-1109-2014; Takigawa, Masayuki/M-2095-2014; Vermeulen, Alex/A-2867-2015; Maksyutov, Shamil/G-6494-2011; Karstens, Ute/P-7075-2014; Satoh, Masaki/G-3325-2015; Patra, Prabir/B-5206-2009 OI Peters, Wouter/0000-0001-8166-2070; Bergmann, Daniel/0000-0003-4357-6301; Law, Rachel/0000-0002-7346-0927; Christensen, Jesper /0000-0002-6741-5839; Cameron-Smith, Philip/0000-0002-8802-8627; Denning, Scott/0000-0003-3032-7875; Geels, Camilla/0000-0003-2549-1750; onishi, ryo/0000-0001-9250-0712; Takigawa, Masayuki/0000-0002-5666-6026; Vermeulen, Alex/0000-0002-8158-8787; Maksyutov, Shamil/0000-0002-1200-9577; Karstens, Ute/0000-0002-8985-7742; Satoh, Masaki/0000-0003-3580-8897; Patra, Prabir/0000-0001-5700-9389 FU CarboEurope; INSU; CEA; IPEV; Australian Greenhouse Office; European Commission; Laboratory Directed Research and Development Program [06-ERD-031]; EU [SIP4-CT-2004-516099]; French Environment and Energy Management Agency (ADEME); French Atomic Energy Commission (CEA); Ministry of Education, Science, Sports and Culture, Japan [2005/17GS0203]; FRCGC FX Maintaining continuous CO2 observation records requires dedicated principal investigators, research teams and support staff. We wish to thank those who made their data available for this study. CO2 measurements at many of the European locations including Hegyhatsal are sponsored by the CarboEurope project. Mace Head and Amsterdam Island CO2 data is part of the ORE-RAMCES monitoring network coordinated by LSCE/IPSL and supported by INSU, CEA and IPEV. An experiment such as this generates a large model data set. Many thanks to Kevin Gurney and the Department of Earth and Atmospheric Sciences at Purdue University for data handling and ftp site hosting. We thank Cathy Trudinger for helpful comments on the manuscript. Suggestion from Philippe Peylin on correlations versus model resolution is appreciated. Individual modeling groups acknowledge the following support. CCAM: Part of this work was supported through the Australian Greenhouse Office. We thank John McGregor and Eva Kowalczyk for their development of CCAM. DEHM:Part of the work has been carried out within the CarboEurope-IP project funded by the European Commission. LLNL: The project (06-ERD-031) was funded by the Laboratory Directed Research and Development Program at LLNL. IFS: The work has been funded by EU's GEMS project SIP4-CT-2004-516099. CHIMERE is a model developed by IPSL, INERIS and LISA. Part of the implementation of CHIMERE-CO2 has been supported through the French Environment and Energy Management Agency (ADEME) and the French Atomic Energy Commission (CEA). PKP is partly supported by the grants-in-aid for Creative Scientific Research (2005/17GS0203) of the Ministry of Education, Science, Sports and Culture, Japan; he wishes to thank Hajime Akimoto and Takakiyo Nakazawa for useful discussions and supporting this research at FRCGC. We sincerely thank the reviewers and associate editor James Randerson for providing critical comments to improve the quality of the article. NR 47 TC 54 Z9 55 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV 26 PY 2008 VL 22 IS 4 AR GB4013 DI 10.1029/2007GB003081 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 377IH UT WOS:000261244400001 ER PT J AU Ahilan, K Balasubramaniam, J Ning, FL Imai, T Sefat, AS Jin, R McGguire, MA Sales, BC Mandrus, D AF Ahilan, K. Balasubramaniam, J. Ning, F. L. Imai, T. Sefat, A. S. Jin, R. McGguire, M. A. Sales, B. C. Mandrus, D. TI Pressure effects on the electron-doped high T(c) superconductor BaFe(2-x)Co(x)As(2) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 4th International Workshop on Nanoscience and Nanotechnologies CY JUL 16-18, 2007 CL Thessaloniki, GREECE SP Italian Inst Nucl Phys, Univ Rome Tor Vergata, Tor Vergata Polyclin, Catholic Univ Rome AB Application of pressure or electron doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with T(c) exceeding 20 K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5 GPa, and elucidated the interplay between the effects of electron doping and pressure. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11 to 21 K. In contrast, the optimally doped x = 0.20 sample shows very little enhancement of Tc = 22 K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides. C1 [Ahilan, K.; Balasubramaniam, J.; Ning, F. L.; Imai, T.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Imai, T.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Sefat, A. S.; Jin, R.; McGguire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ahilan, K (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM imai@mcmaster.ca RI Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 24 TC 42 Z9 42 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 26 PY 2008 VL 20 IS 47 AR 472201 DI 10.1088/0953-8984/20/47/472201 PG 5 WC Physics, Condensed Matter SC Physics GA 370JO UT WOS:000260758700002 ER PT J AU Vannette, MD Prozorov, R AF Vannette, M. D. Prozorov, R. TI Field-dependent AC susceptibility of itinerant ferromagnets SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 4th International Workshop on Nanoscience and Nanotechnologies CY JUL 16-18, 2007 CL Thessaloniki, GREECE SP Italian Inst Nucl Phys, Univ Rome Tor Vergata, Tor Vergata Polyclin, Catholic Univ Rome ID TUNNEL-DIODE OSCILLATOR; MAGNETIC-SUSCEPTIBILITY; ELECTRON FERROMAGNETISM; SPIN FLUCTUATIONS; ZRZN2; STATE AB Whereas dc measurements of magnetic susceptibility, chi, fail to distinguish between local and weak itinerant ferromagnets, radio-frequency (rf) measurements of chi in the ferromagnetic state show dramatic differences between the two. We present sensitive tunnel-diode resonator measurements of chi in the weak itinerant ferromagnet ZrZn(2) at a frequency of 23 MHz. Below the Curie temperature, T(C) approximate to 26 K, the susceptibility is seen to increase and pass through a broad maximum at approximately 15 K in zero applied dc magnetic field. Application of a magnetic field reduces the amplitude of the maximum and shifts it to lower temperatures. The existence and evolution of this maximum with applied field is not predicted by either the Stoner or self-consistent renormalized (SCR) spin-fluctuation theories. For temperatures below T(C) both theories derive a zero-field limit expression for chi. We propose a semi-phenomenological model that considers the effect of the internal field from the polarized fraction of the conduction band on the remaining, unpolarized conduction band electrons. The developed model accurately describes the experimental data. C1 [Prozorov, R.] Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. EM vannette@iastate.edu; prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 25 TC 2 Z9 2 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 26 PY 2008 VL 20 IS 47 AR 475208 DI 10.1088/0953-8984/20/47/475208 PG 5 WC Physics, Condensed Matter SC Physics GA 370JO UT WOS:000260758700031 ER PT J AU Han, G Mokari, T Ajo-Franklin, C Cohen, BE AF Han, Gang Mokari, Taleb Ajo-Franklin, Caroline Cohen, Bruce E. TI Caged Quantum Dots SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CDSE; NANOCRYSTALS; CELLS; CDTE; COMPLEXES; MECHANISM; PROTEINS AB Photoactivatable organic fluorophores and fluorescent proteins have been widely adopted for cellular imaging and have been critical for increasing temporal and spatial resolution, as well as for the development of superresolution microscopy techniques. At the same time, semiconducting nanocrystat quantum dots (QDs) have shown superior brightness and photostability compared to both organic fluorophores and proteins. As part of our efforts to develop nanoparticles with novel optical properties, we have synthesized caged quantum dots, which are nonluminescent under typical microscopic illumination but can be activated with stronger pulses of UV light. We show that ortho-nitrobenzyl groups efficiently quench QDs of different compositions and emissions and can be released from the nanoparticle surface with UV light, both in solution and in live cells. This caging is dependent on the emission of the QD, but it is effective through the visible spectrum into the nIR, offering a large array of new colors for photoactivatable probes. Like organic and protein-based photoactivatable probes, caged QDs can confer increased spatial and temporal resolution, with the added brightness and photostability of QDs. C1 [Han, Gang; Ajo-Franklin, Caroline; Cohen, Bruce E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Han, Gang; Mokari, Taleb] Univ Calif Berkeley, Lawrence Berkeley Lab, Inorgan Nanostruct Facil, Berkeley, CA 94720 USA. RP Cohen, BE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. EM becohen@lbl.gov RI MOKARI, TALEB/F-1685-2012; han, gang/B-7274-2013 OI han, gang/0000-0002-2300-5862 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Tracy Mattox for technical support and Carolyn Bertozzi, Brett Helms, Jim Schuck, and Ron Zuckermann for comments on the manuscript. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 49 Z9 49 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 26 PY 2008 VL 130 IS 47 BP 15811 EP + DI 10.1021/ja804948s PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 406UE UT WOS:000263319600033 PM 18983148 ER PT J AU Esser-Kahn, AP Iavarone, AT Francis, MB AF Esser-Kahn, Aaron P. Iavarone, Anthony T. Francis, Matthew B. TI Metallothionein-Cross-Linked Hydrogels for the Selective Removal of Heavy Metals from Water SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BIOMIMETIC TRANSAMINATION REACTION; CHEMICAL-SENSING MATERIALS; EXPRESSED PROTEIN; AQUEOUS-MEDIA; BINDING; SENSOR; NANOPARTICLES; RECEPTOR; RELEASE; DOMAIN AB The diverse functional repertoire of proteins promises to yield new materials with unprecedented capabilities, so long as versatile chemical methods are available to integrate biomolecules with synthetic components. As a demonstration of this potential, we have used site-selective strategies to cross-link polymer chains using the N- and C-termini of a metallothionein derived from a pea plant. This arrangement directly relates the swelling volume of the polymer to the folded state of the protein. The material retains the protein's ability to remove heavy metal ions from contaminated water samples, and can be regenerated through the subsequent addition of inexpensive chelators. The change in hydrogel volume that occurs as metal ions are bound allows the detection of contaminants through simple visual inspection. The utility of this bulk property change is demonstrated in the construction of a low-cost device that can report heavy metal contamination with no external power requirements. Most importantly, the generality of the protein modification chemistry allows the immediate generation of new hybrid materials from a wide range of protein sequences. C1 [Esser-Kahn, Aaron P.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health [1S10RR022393-01] FX This work was supported by the Director, Office of Science, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Crystal Chan & the Berkeley Fermentation Facility, David Wilson for the original PMT-GST plasmid, and Carolyn Sparrey for helpful discussion. The LC-MS instrumentation used in these studies was acquired with support from the National Institutes of Health (Grant 1S10RR022393-01.). NR 32 TC 47 Z9 47 U1 10 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 26 PY 2008 VL 130 IS 47 BP 15820 EP + DI 10.1021/ja807095r PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 406UE UT WOS:000263319600036 PM 18980305 ER PT J AU Qu, J Blau, PJ Zhang, LG Xu, HB AF Qu, Jun Blau, Peter J. Zhang, Ligong Xu, Hanbing TI Effects of multiple treatments of low-temperature colossal supersaturation on tribological characteristics of austenitic stainless steels SO WEAR LA English DT Article DE Stainless steel; Low-temperature carburization; Multiple treatment; Wear-resistance ID CARBON SUPERSATURATION; CARBURIZATION; DIFFUSION AB An alternative carburization process, low-temperature colossal supersaturation (LTCSS), has demonstrated significant improvement on both wear- and corrosion-resistance for austenitic stainless steel surfaces in recent literature. This study explores the effects of multiple treatments of LTCSS on tribological characteristics for Type 316 stainless steel. Thicker carburized layers were produced by multiple LTCSS treatments, with 30, 45, and 55 mu m for one, two, and four treatments, respectively. Although the hardness remains unchanged at low-load microindentation, multiple treatments have showed higher values in both microindentation and scratch hardness tests when deeper penetrations occurred under heavier loads. The friction and wear characteristics of Type 316 stainless steel with multiple LTCSS treatments were evaluated in non-lubricated unidirectional sliding (pin-on-disk) against Type 440C stainless steel. While little change was observed on friction behavior, substantial further improvement on wear resistance has been achieved for the multiple treatments. In addition, the wear of the counterface was also largely reduced when rubbing against a multiply treated surface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Qu, Jun; Blau, Peter J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Ligong] Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China. [Xu, Hanbing] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS 6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov OI Qu, Jun/0000-0001-9466-3179 FU U.S. Department of Energy; Office of Advanced Industrial Materials [DE-AC05-00OR22725] FX The authors gratefully acknowledge the assistance of Peter Williams of Swagelok Co. for providing the treatments on test specimens. This effort was funded by the U.S. Department of Energy, Office of Advanced Industrial Materials, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 12 TC 3 Z9 4 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD NOV 26 PY 2008 VL 265 IS 11-12 BP 1909 EP 1913 DI 10.1016/j.wear.2008.03.011 PG 5 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 377WR UT WOS:000261283300043 ER PT J AU Fox, DT Hotta, K Kim, CY Koppisch, AT AF Fox, David T. Hotta, Kinya Kim, Chu-Young Koppisch, Andrew T. TI The Missing Link in Petrobactin Biosynthesis: asbF Encodes a (-)-3-Dehydroshikimate Dehydratase SO BIOCHEMISTRY LA English DT Article ID BACILLUS-ANTHRACIS; 3-DEHYDROSHIKIMATE DEHYDRATASE; SIDEROPHORE BIOSYNTHESIS; ACID; PATHWAY; THURINGIENSIS; CONDENSATION; SPERMIDINE; BACTERIA; CEREUS AB The siderophore petrobactin harbors unique 3,4-dihydroxybenzoyl iron-liganding groups. These moieties are known to be synthesized from shikimate pathway precursors, but no reports of the biosynthetic enzymes responsible for this conversion have been published. The gene encoding AsbF from Bacillus thuringiensis 97-27 was overexpressed in an Escherichia coli host. AsbF rapidly and efficiently transforms (-)-3-dehydroshikimate (DHS) into 3,4-dihydroxybenzoate (k(cat)(DHS) = 217 +/- 10 min(-1); K-m(DHS) = 125 +/- 14 mu M) at 37 degrees C and has an absolute requirement for divalent metal. Finally, the pH versus k(cat)(DHS) profile revealed two ionizable groups (pK(a1) = 7.9 +/- 0.1, and pK(a2) = 9.3 +/- 0.1). C1 [Fox, David T.; Koppisch, Andrew T.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hotta, Kinya; Kim, Chu-Young] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117543, Singapore. RP Koppisch, AT (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM koppisch@lanl.gov RI Hotta, Kinya/A-2574-2009; Kim, Chu-Young/D-8849-2012 OI Hotta, Kinya/0000-0002-9427-0081; Kim, Chu-Young/0000-0003-3744-7802 FU LDRD; Agnew National Security Postdoctoral Fellow FX This work was supported by LDRD funding. D.T.F. is an Agnew National Security Postdoctoral Fellow. NR 21 TC 23 Z9 23 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 25 PY 2008 VL 47 IS 47 BP 12251 EP 12253 DI 10.1021/bi801876q PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 373UX UT WOS:000261000100001 PM 18975921 ER PT J AU Chen, B Mahaney, JE Mayer, MU Bigelow, DJ Squier, TC AF Chen, Baowei Mahaney, James E. Mayer, M. Uljana Bigelow, Diana J. Squier, Thomas C. TI Concerted but Noncooperative Activation of Nucleotide and Actuator Domains of the Ca-ATPase upon Calcium Binding SO BIOCHEMISTRY LA English DT Article ID SARCOPLASMIC-RETICULUM VESICLES; STRUCTURAL BASIS; PHOSPHORYLATION DOMAIN; ROTATIONAL-DYNAMICS; CYSTEINE RESIDUES; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; LACTOSE PERMEASE; AMINO-ACIDS; PUMP AB Calcium-dependent domain movements of the actuator (A) and nucleotide (N) domains of the SERCA2a isoform. of the Ca-ATPase were assessed using constructs containing engineered tetracysteine binding motifs, which were expressed in insect High-Five cells and subsequently labeled with the biarsenical fluorophore 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH-EDT2). Maximum catalytic function is retained in microsomes isolated from High-Five cells and labeled with FlAsH-EDT2. Distance measurements using the nucleotide analog 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP), which acts as a fluorescence resonance energy transfer (FRET) acceptor from FlAsH, identify a 2.4 angstrom increase in the spatial separation between the N- and A-domains induced by high-affinity calcium binding; this structural change is comparable to that observed in crystal structures. No significant distance changes occur across the N-domain between FlAsH and TNP-ATP, indicating that calcium activation induces rigid body domain movements rather than intradomain conformational changes. Calcium-dependent decreases in the fluorescence of FlAsH bound, respectively, to either the N- or A-domains indicate coordinated and noncooperative domain movements, where both A- and N-domains display virtually identical calcium dependencies (i.e., K-d = 4.8 +/- 0.4 mu M). We suggest that occupancy of a single high-affinity calcium binding site induces the rearrangement of the A- and N-domains of the Ca-ATPase to form an intermediate state, which facilitates phosphoenzyme formation from ATP upon occupancy of the second high-affinity calcium site. C1 [Chen, Baowei; Mayer, M. Uljana; Bigelow, Diana J.; Squier, Thomas C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mahaney, James E.] Virginia Coll Osteopath Med, Blacksburg, VA 24060 USA. RP Squier, TC (reprint author), Pacific NW Natl Lab, POB 999,Mail Stop 97-53, Richland, WA 99352 USA. EM thomas.squier@pnl.gov FU National Institutes of Health [HL64031]; Genomics:GTL program [45701]; Office of Biological and Environmental Research; U.S. Department of Energy; Pacific Northwest National Laboratory; Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO 1830] FX This work was supported by the National Institutes of Health (Grant HL64031) and Genomics:GTL program (Grant 45701) within the Office of Biological and Environmental Research at the U.S. Department of Energy. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. NR 49 TC 8 Z9 8 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 25 PY 2008 VL 47 IS 47 BP 12448 EP 12456 DI 10.1021/bi8014289 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 373UX UT WOS:000261000100022 PM 18956892 ER PT J AU Germain, J Svec, F Frechet, JMJ AF Germain, Jonathan Svec, Frantisek Frechet, Jean M. J. TI Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents for Hydrogen Storage SO CHEMISTRY OF MATERIALS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; PALLADIUM-CATALYZED AMINATION; SINGLE-FILE DIFFUSION; HIGH-SURFACE-AREA; HYPERCROSSLINKED POLYSTYRENE; GAS SEPARATION; PORE-SIZE; INTRINSIC MICROPOROSITY; CARBON NANOSTRUCTURES; COPOLYMER NETWORKS AB The preparation of nanoporous size-selective hypercrosslinked polymer networks containing 37-92% of pores small enough for hydrogen adsorption but too small to allow penetration of nitrogen has been studied. Polyaniline and diaminobenzene were coupled with diiodobenzene and tribromobenzene using Ullman and Buchwald synthetic routes. The resulting porous polymer networks consist of aromatic rings linked through a trivalent nitrogen atom. The Buchwald reaction appears to be more effective than the Ullman synthesis for the production of such materials. The use of solvents with higher Hildebrand solubility coefficients during synthesis affords polymers with higher surface areas. The nanoporous polymers possess unusually high initial enthalpies of adsorption of hydrogen reaching values of up to - 18 kJ/mol. C1 [Svec, Frantisek; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Germain, Jonathan; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Svec, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fsvec@lbl.gov; frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support of this work, including characterization work done at the Molecular Foundry, was provided by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 NR 80 TC 125 Z9 126 U1 6 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 25 PY 2008 VL 20 IS 22 BP 7069 EP 7076 DI 10.1021/cm802157r PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 373VS UT WOS:000261002200024 ER PT J AU Chylek, P Lesins, G AF Chylek, Petr Lesins, Glen TI Multidecadal variability of Atlantic hurricane activity: 1851-2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL CYCLONE ACTIVITY; TRENDS; METEOROLOGY AB An analysis of Atlantic hurricane data (HURDAT), using a hurricane activity index that integrates over hurricane numbers, durations, and strengths during the years 1851-2007, suggests a quasi-periodic behavior with a period around 60 years superimposed upon a linearly increasing background. The linearly increasing background is significantly reduced or removed when various corrections were applied for hurricane undercounting in the early portion of the record. The periodic-like behavior is persistent in uncorrected HURDAT data as well as in data corrected for possible missing storms. The record contains two complete cycles: 1860-1920 and 1920-1980. The 2004 and 2005 hurricane seasons were unusual in that two intense hurricane seasons occurred in consecutive years. The probability for this happening in any given year is estimated to be less then 1%. Comparing the last 28 years (1980-2007) with the preceding 28 years (1953-1980), we find a modest increase in the number of minor hurricanes (category 1 and 2); however, we find no increase in the number of major hurricanes (category 3-5). The hurricane activity index is found to be highly correlated with the Atlantic Multidecadal Mode (AMM). If there is an increase in hurricane activity connected to a greenhouse gas induced global warming, it is currently obscured by the 60 year quasi-periodic cycle. C1 [Chylek, Petr] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87544 USA. EM chylek@lanl.gov FU Los Alamos National Laboratory's Directed Research and Development [LA-UR-08-0390] FX We thank John Molinari, Peter Webster, Greg Holland, Gabriel Vecchi, Tom Knutson, and Roger Pielke for reading an early version of the manuscript and for their valuable comments and suggestions, Jim Kossin for providing the monthly values of the AMM index, and anonymous reviewers for their careful reading of the manuscript and constructive criticism. The reported research (LA-UR-08-0390) was partially supported by Los Alamos National Laboratory's Directed Research and Development Project entitled "Flash Before the Storm''. NR 32 TC 14 Z9 15 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 25 PY 2008 VL 113 IS D22 AR D22106 DI 10.1029/2008JD010036 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 377II UT WOS:000261244500002 ER PT J AU Li, TF Hong, K Porcar, L Verduzco, R Butler, PD Smith, GS Liu, Y Chen, WR AF Li, Tianfu Hong, Kunlun Porcar, Lionel Verduzco, Rafael Butler, Paul D. Smith, Gregory S. Liu, Yun Chen, Wei-Ren TI Assess the Intramolecular Cavity of a PAMAM Dendrimer in Aqueous Solution by Small-Angle Neutron Scattering SO MACROMOLECULES LA English DT Article ID INCLUDING CONTRAST VARIATION; MOLECULAR-DYNAMICS; END-GROUPS; WATER; HYDRATION; SIMULATION; METHANOL; DENSITY; SOLVENT; SIZE AB We present a contrast variation small-angle neutron scattering (SANS) study of a series of neutral PAMAM dendrimers in aqueous solutions using three different generations (G4-6) at a concentration of about 10 mg/mL. Varying the solvent hydrogen-deuterium ratio, the scattering contributions from the water molecules and the constituent components of PAMAM dendrimer can be determined. Using an analytical model of the scattering cross section I(Q) incorporating the effect of water penetration, we have quantified the intramolecular space of PAMAM dendrimer by evaluating the number of guest water molecules, and we draw a direct comparison to computational predictions. As expected, the overall available internal cavity was seen to increase as a function of increasing dendrimer generation. However, the fraction of water accessible volume of a dendrimer was found to remain invariant for the three generation PAMAM dendrimers studied in this report. We have also estimated the average water density inside a dendrimer, which is found to be higher than that of bulk water. C1 [Li, Tianfu; Porcar, Lionel; Butler, Paul D.; Liu, Yun] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Tianfu] China Inst Atom Energy, Beijing 102413, Peoples R China. [Hong, Kunlun; Verduzco, Rafael] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Porcar, Lionel] Inst Max Von Laue Paul Langevin, F-38026 Grenoble 9, France. [Porcar, Lionel; Liu, Yun] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Smith, Gregory S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM yunliu@nist.gov; chenw@ornl.gov RI Liu, Yun/A-2478-2010; Butler, Paul/D-7368-2011; Liu, Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU Laboratory Directed Research and Development Program [05125]; U.S. Department of Energy; National Institute of Standards and Technology; U.S. Department of Commerce; NSF [DMR-0454672]; Scientific User Facilities Division; Office of Basic Energy Sciences FX We gratefully acknowledge the support from the Laboratory Directed Research and Development Program (Project ID 05125) of ORNL and the partial financial support by U.S. Department of Energy within the Hydrogen Sorption Center of Excellence. The support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities supported under NSF Agreement DMR-0454672 is also acknowledged. Part of this research was done at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 21 TC 36 Z9 36 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 25 PY 2008 VL 41 IS 22 BP 8916 EP 8920 DI 10.1021/ma801555j PG 5 WC Polymer Science SC Polymer Science GA 373WH UT WOS:000261003700086 ER PT J AU Conrad, H Yang, D Becher, P AF Conrad, H. Yang, Di Becher, P. TI Plastic deformation of ultrafine-grained 2.5Y-TZP exposed to a dc electric field with an air gap SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Electric field; Debye length; Grain growth; Plastic deformation; Zirconia ID SUPERPLASTIC DEFORMATION; 3Y-TZP; FLOW; GROWTH AB The influence on the tensile flow stress of ultrafine-grained 2.5Y-TZP at 1450 degrees C by a dc electric field with an air gap between the negative electrodes and the positive specimen was determined in two test procedures: Type a, in which the field is applied continuously from the very beginning up to a fixed strain epsilon approximate to 0.2 and Type b, in which the field is alternately applied and removed following the prestrain epsilon approximate to 0.2 without and with the field. A larger reduction in the flow stress by the field occurred in the Type a test compared to the Type b. Moreover, a larger reduction occurred in the Type b test when the prestrain was with a field applied compared to without. Both of these behaviors are attributed to a retardation of dynamic grain growth by the field. The reduction in the flow stress by the field in the Type b test was in accord with a decrease in the electrochemical potential for the formation of vacancies corresponding to the lattice diffusion of the rate-controlling Zr ions. The results in the present tests were in general accord with those obtained previously in which both the positive and negative electrodes made direct contact with the specimen. This indicates that neither the orientation of the field nor the presence of an air gap has significant influence on the electric field dependence of the flow stress. (C) 2008 Elsevier BY. All rights reserved. C1 [Conrad, H.; Yang, Di] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Becher, P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Conrad, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM hans_conrad@ncsu.edu FU U.S. Department of Energy; Office of Freedom Car and Transportation Technology; Office of Basic Energy Sciences, Division of Materials Science and Energy [DE-ACOOOR22725] FX This research was supported by the U.S. Department of Energy, Office of Freedom Car and Transportation Technology with partial support for P. Becher from the Office of Basic Energy Sciences, Division of Materials Science and Energy under Contract no. DE-ACOOOR22725 with UT. Battelle, LLC. The authors wish to thank Rachel Wolfe for typing the manuscript and Stephen Starnes for preparing the illustrations. NR 9 TC 2 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2008 VL 496 IS 1-2 BP 9 EP 13 DI 10.1016/j.msea.2008.07.012 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 368RE UT WOS:000260639400002 ER PT J AU Zhou, M Sandercock, AM Fraser, CS Ridlova, G Stephens, E Schenauer, MR Yokoi-Fong, T Barsky, D Leary, JA Hershey, JW Doudna, JA Robinson, CV AF Zhou, Min Sandercock, Alan M. Fraser, Christopher S. Ridlova, Gabriela Stephens, Elaine Schenauer, Matthew R. Yokoi-Fong, Theresa Barsky, Daniel Leary, Julie A. Hershey, John W. Doudna, Jennifer A. Robinson, Carol V. TI Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hepatitis C virus internal ribosome entry site; subunit organization model3; top-down analysis of macromolecular complexes; translation regulation; in-solution disruption ID 40S RIBOSOMAL-SUBUNIT; HEPATITIS-C VIRUS; MACROMOLECULAR ASSEMBLIES; INITIATION-FACTORS; PROTEIN COMPLEXES; RNA; PURIFICATION; ARCHITECTURE; RECRUITMENT; BINDING AB The eukaryotic initiation factor 3 (eIF3) plays an important role in translation initiation, acting as a docking site for several eIFs that assemble on the 40S ribosomal subunit. Here, we use mass spectrometry to probe the subunit interactions within the human eIF3 complex. Our results show that the 13-subunit complex can be maintained intact in the gas phase, enabling us to establish unambiguously its stoichiometry and its overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Dissociation takes place as a function of ionic strength to form three stable modules eIF3(c:d:e:l:k), eIF3(f:h:m), and eIF3(a:b:i:g). These modules are linked by interactions between subunits eIF3b:c and eIF3c:h. We confirmed our interaction map with the homologous yeast eIF3 complex that contains the five core subunits found in the human eIF3 and supplemented our data with results from immunoprecipitation. These results, together with the 27 subcomplexes identified with increasing ionic strength, enable us to define a comprehensive interaction map for this 800-kDa species. Our interaction map allows comparison of free eIF3 with that bound to the hepatitis C virus internal ribosome entry site (HCV-IRES) RNA. We also compare our eIF3 interaction map with related complexes, containing evolutionarily conserved protein domains, and reveal the location of subunits containing RNA recognition motifs proximal to the decoding center of the 40S subunit of the ribosome. C1 [Zhou, Min; Sandercock, Alan M.; Ridlova, Gabriela; Stephens, Elaine; Barsky, Daniel; Robinson, Carol V.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Fraser, Christopher S.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol, Berkeley, CA 94720 USA. [Fraser, Christopher S.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Cellular Biol, Berkeley, CA 94720 USA. [Schenauer, Matthew R.; Leary, Julie A.] Univ Calif Davis, Dept Mol, Davis, CA 95616 USA. [Schenauer, Matthew R.; Leary, Julie A.] Univ Calif Davis, Dept Cellular Biol, Davis, CA 95616 USA. [Yokoi-Fong, Theresa; Hershey, John W.] Univ Calif Davis, Sch Med, Dept Biochem & Mol Biol, Davis, CA 95616 USA. [Barsky, Daniel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zhou, M (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. EM cvr24@cam.ac.uk RI Fraser, Christopher/H-9186-2013 FU EU [LSHG-CT-2005-512028]; Waters Kundert Trust; Biotechnology and Biological Sciences Research Council; Royal Society; Lawrence Livermore National Laboratory; National Institutes of Health FX We acknowledge with thanks funding from EU 3D Repertoire LSHG-CT-2005-512028, the Waters Kundert Trust, the Biotechnology and Biological Sciences Research Council, and the Royal Society (to C.V.R.), sabbatical funding from Lawrence Livermore National Laboratory (to D.B.), and a National Institutes of Health program grant (to J.A.D., J.B.H., and I.A.L.). NR 30 TC 150 Z9 171 U1 0 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 25 PY 2008 VL 105 IS 47 BP 18139 EP 18144 DI 10.1073/pnas.0801313105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 380TY UT WOS:000261489300021 PM 18599441 ER PT J AU Thurber, RLV Barott, KL Hall, D Liu, H Rodriguez-Mueller, B Desnues, C Edwards, RA Haynes, M Angly, FE Wegley, L Rohwer, FL AF Thurber, Rebecca L. Vega Barott, Katie L. Hall, Dana Liu, Hong Rodriguez-Mueller, Beltran Desnues, Christelle Edwards, Robert A. Haynes, Matthew Angly, Florent E. Wegley, Linda Rohwer, Forest L. TI Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE coral reefs; disease; Herpesviridae; viral-like particles; virome ID MULTIPLE DISPLACEMENT AMPLIFICATION; HETEROTROPHIC BACTERIA; SURFACE MICROLAYER; COMPLETE SEQUENCE; GENOME SEQUENCE; CLIMATE-CHANGE; FLORIDA-KEYS; DISEASE; DIVERSITY; PARTICLES AB During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a suite of eukaryotic viruses, many related to the Herpesviridae. This coral-associated viral consortium was found to shift in response to abiotic stressors. In particular, when exposed to reduced pH, elevated nutrients, and thermal stress, the abundance of herpes-like viral sequences rapidly increased in 2 separate experiments. Herpes-like viral sequences were rarely detected in apparently healthy corals, but were abundant in a majority of stressed samples. In addition, surveys of the Nematostella and Hydra genomic projects demonstrate that even distantly related Cnidarians contain numerous herpes-like viral genes, likely as a result of latent or endogenous viral infection. These data support the hypotheses that corals experience viral infections, which are exacerbated by stress, and that herpes-like viruses are common in Cnidarians. C1 [Thurber, Rebecca L. Vega; Barott, Katie L.; Hall, Dana; Liu, Hong; Rodriguez-Mueller, Beltran; Desnues, Christelle; Edwards, Robert A.; Haynes, Matthew; Angly, Florent E.; Wegley, Linda; Rohwer, Forest L.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Edwards, Robert A.; Rohwer, Forest L.] San Diego State Univ, Ctr Microbial Sci, San Diego, CA 92182 USA. [Thurber, Rebecca L. Vega] Florida Int Univ, Dept Biol Sci, N Miami, FL 33181 USA. [Desnues, Christelle] Fac Med Timone, CNRS, UMR 6020, Unite Rickettsies, F-13385 Marseille, France. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Thurber, RLV (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM rvegathurber@gmail.com RI Angly, Florent/A-7717-2011; Desnues, Christelle/B-1383-2010; OI Angly, Florent/0000-0002-8999-0738; Desnues, Christelle/0000-0002-2178-0355; Barott, Katie/0000-0001-7371-4870 FU National Science Foundation Postdoctoral Fellowship [DBI-0511948]; Marine Microbial Initiative; Gordon and Betty Moore Foundation FX We thank the Rappe laboratory and all those at Hawai'i Institute of Marine Biology who sponsored RV.T. in Hawaii. E. Brown, A. Thurber, D. Drumm, and M. Hatay were also instrumental in the collections of the corals and viral particles. R. Schnniederalso provided bioinformatic assistance. This work was sponsored by National Science Foundation Postdoctoral Fellowship DBI-0511948 (to R.V.T.) and a Marine Microbial Initiative grant from the Gordon and Betty Moore Foundation (to F.L.R.). Corals were sampled under the auspices of an Hawai'i Institute of Marine Biology collection permit and on Department of Land and Natural Resources Special Activity Permit SAP 2007-72 (to R.V.T.). NR 65 TC 103 Z9 105 U1 4 U2 40 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 25 PY 2008 VL 105 IS 47 BP 18413 EP 18418 DI 10.1073/pnas.0808985105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 380TY UT WOS:000261489300068 PM 19017800 ER PT J AU Guisinger, MM Kuehl, JNV Boore, JL Jansen, RK AF Guisinger, Mary M. Kuehl, Je. Nnifer V. Boore, Jeffrey L. Jansen, Robert K. TI Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE comparative genomics; genome evolution; plastid genome ID PLANT GENUS CUSCUTA; CHLOROPLAST GENOME; MITOCHONDRIAL GENOMES; RNA-POLYMERASE; PHYLOGENETIC-RELATIONSHIPS; HOMOLOGOUS RECOMBINATION; POSITIVE SELECTION; ESCHERICHIA-COLI; FLOWERING PLANTS; PARASITIC PLANT AB Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum (Geraniaceae) reveals the largest and most rearranged plastid genome identified to date. Highly elevated rates of sequence evolution in Geraniaceae mitochondrial genomes have been reported, but rates in Geraniaceae plastid genomes have not been characterized. Analysis of nucleotide substitution rates for 72 plastid genes for 47 angiosperm taxa, including nine Geraniaceae, show that values of dN are highly accelerated in ribosomal protein and RNA polymerase genes throughout the family. Furthermore, dN/dS is significantly elevated in the same two classes of plastic! genes as well as in ATPase genes. A relatively high dN/dS ratio could be interpreted as evidence of two phenomena, namely positive or relaxed selection, neither of which is consistent with our current understanding of plastid genome evolution in photosynthetic plants. These analyses are the first to use protein-coding sequences from complete plastid genomes to characterize rates and patterns of sequence evolution for a broad sampling of photosynthetic angiosperms, and they reveal unprecedented accumulation of nucleotide substitutions in Geraniaceae. To explain these remarkable substitution patterns in the highly rearranged Geraniaceae plastid genomes, we propose a model of aberrant DNA repair coupled with altered gene expression. C1 [Guisinger, Mary M.; Jansen, Robert K.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. [Guisinger, Mary M.; Jansen, Robert K.] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA. [Kuehl, Je. Nnifer V.; Boore, Jeffrey L.] Lawrence Berkeley Lab, Walnut Creek, CA 94598 USA. [Kuehl, Je. Nnifer V.; Boore, Jeffrey L.] US Dept Energy Joint, Genome Inst, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Boore, Jeffrey L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Guisinger, MM (reprint author), Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. EM mary.guisinger@mail.utexas.edu RI Guisinger, Mary/E-9790-2010; Guisinger, Mary/B-8156-2008; Jansen, Robert/F-6272-2011 FU National Science Foundation [DEB-0717372]; Integrative Graduate Education and Research Traineeship [DGE-0114387] FX We thank Lauren Ancel Meyers and Claus Wilke for help with statistics; Chris Blazier, Stephen Downie, Cynthia Londeore, and Elizabeth Ruck for careful review of the manuscript; Robin Parer at Geraniaceae.com for supplying plant material; Zhengqui Cai for access to MSWAT and for help submitting sequences to GenBank. Support for this work was provided by National Science Foundation Grant DEB-0717372 (to R.K.J.) and Integrative Graduate Education and Research Traineeship Grant DGE-0114387 (to M.M.G.). NR 57 TC 68 Z9 68 U1 0 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 25 PY 2008 VL 105 IS 47 BP 18424 EP 18429 DI 10.1073/pnas.0806759105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 380TY UT WOS:000261489300070 PM 19011103 ER PT J AU Oda, Y Larimer, FW Chain, PSG Malfatti, S Shin, MV Vergez, LM Hauser, L Land, ML Braatsch, S Beatty, JT Pelletier, DA Schaefer, AL Harwood, CS AF Oda, Yasuhiro Larimer, Frank W. Chain, Patrick S. G. Malfatti, Stephanie Shin, Maria V. Vergez, Lisa M. Hauser, Loren Land, Miriam L. Braatsch, Stephan Beatty, J. Thomas Pelletier, Dale A. Schaefer, Amy L. Harwood, Caroline S. TI Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE alphaproteobacteria; ecotype; genomes; photosynthesis; rhodopseudomonas ID RHODOPSEUDOMONAS-PALUSTRIS; PROCHLOROCOCCUS; DIVERSITY; BACTERIOPHYTOCHROME; DEGRADATION; EXPRESSION; EVOLUTION; COMPLEX; OPERON; GENES AB The bacterial genus Rhodopseudomonas is comprised of photosynthetic bacteria found widely distributed in aquatic sediments. Members of the genus catalyze hydrogen gas production, carbon dioxide sequestration, and biomass turnover. The genome sequence of Rhodopseudomonas palustris CGA009 revealed a surprising richness of metabolic versatility that would seem to explain its ability to live in a heterogeneous environment like sediment. However, there is considerable genotypic diversity among Rhodopseudomonas isolates. Here we report the complete genome sequences of four additional members of the genus isolated from a restricted geographical area. The sequences confirm that the isolates belong to a coherent taxonomic unit, but they also have significant differences. Whole genome alignments show that the circular chromosomes of the isolates consist of a collinear backbone with a moderate number of genomic rearrangements that impact local gene order and orientation. There are 3,319 genes, 70% of the genes in each genome, shared by four or more strains. Between 10% and 18% of the genes in each genome are strain specific. Some of these genes suggest specialized physiological traits, which we verified experimentally, that include expanded light harvesting, oxygen respiration, and nitrogen fixation. capabilities, as well as anaerobic fermentation. Strain-specific adaptations include traits that may be useful in bioenergy applications. This work suggests that against a backdrop of metabolic versatility that is a defining characteristic of Rhodopseudomonas, different ecotypes have evolved to take advantage of physical and chemical conditions in sediment microenvironments that are too small for human observation. C1 [Oda, Yasuhiro; Schaefer, Amy L.; Harwood, Caroline S.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Larimer, Frank W.; Hauser, Loren; Land, Miriam L.; Pelletier, Dale A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chain, Patrick S. G.; Malfatti, Stephanie; Shin, Maria V.; Vergez, Lisa M.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Chain, Patrick S. G.; Malfatti, Stephanie; Shin, Maria V.; Vergez, Lisa M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chain, Patrick S. G.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Braatsch, Stephan; Beatty, J. Thomas] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada. RP Harwood, CS (reprint author), Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. EM csh5@u.washington.edu RI Land, Miriam/A-6200-2011; Pelletier, Dale/F-4154-2011; Hauser, Loren/H-3881-2012; chain, patrick/B-9777-2013 OI Land, Miriam/0000-0001-7102-0031; FU DOE Office of Science [DE-FG02-07ER64482]; Office of Basic Energy Sciences [DE-FG0205ER15707]; U.S. Army Research Office [W911NF-05-10176] FX The Biological and Environmental Research (BER) program of the U.S. Department of Energy's (DOE) Office of Science funded this research. The Joint Genome Institute managed the overall sequencing effort. Lawrence Livermore National Laboratory carried out genome finishing under the auspices of the DOE. Computational annotation was carried out at the Oak Ridge National Laboratory, managed by UT-BATTELLE for the Department of Energy. C.S.H. received support from the DOE Office of Science (BER Grant DE-FG02-07ER64482 and Office of Basic Energy Sciences Grant DE-FG0205ER15707) and from the U.S. Army Research Office (Grant W911NF-05-10176). NR 37 TC 62 Z9 68 U1 4 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 25 PY 2008 VL 105 IS 47 BP 18543 EP 18548 DI 10.1073/pnas.0809160105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 380TY UT WOS:000261489300090 PM 19020098 ER PT J AU Abbey, B Williams, GJ Pfeifer, MA Clark, JN Putkunz, CT Torrance, A McNulty, I Levin, TM Peele, AG Nugent, KA AF Abbey, Brian Williams, Garth J. Pfeifer, Mark A. Clark, Jesse N. Putkunz, Corey T. Torrance, Angela McNulty, Ian Levin, T. M. Peele, Andrew G. Nugent, Keith A. TI Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm SO APPLIED PHYSICS LETTERS LA English DT Article DE image resolution; integrated circuit testing; light coherence; refractive index; voids (solid) ID PHASE AB The complex transmission function of an integrated circuit is reconstructed at 20 nm spatial resolution using coherent diffractive imaging. A quantitative map is made of the exit surface wave emerging from void defects within the circuit interconnect. Assuming a known index of refraction for the substrate allows the volume of these voids to be estimated from the phase retardation in this region. Sample scanning and tomography of extended objects using coherent diffractive imaging is demonstrated. C1 [Abbey, Brian; Williams, Garth J.; Torrance, Angela; Nugent, Keith A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Pfeifer, Mark A.; Clark, Jesse N.; Putkunz, Corey T.; Peele, Andrew G.] La Trobe Univ, Dept Phys, Bundoora, Vic 3083, Australia. [McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Levin, T. M.] IBM Res Albany Nano Tech, Albany, NY 12203 USA. RP Abbey, B (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM babbey@unimelb.edu.au; garthw@unimelb.edu.au RI Pfeifer, Mark/C-4132-2011; Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Abbey, Brian/D-3274-2011; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Abbey, Brian/0000-0001-6504-0503; Nugent, Keith/0000-0002-4281-3478 FU Australian Research Council Centre of Excellence for Coherent X-ray Science; U. S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge the support of the Australian Research Council Centre of Excellence for Coherent X-ray Science and the Australian Synchrotron Research Program. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 16 TC 39 Z9 39 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 24 PY 2008 VL 93 IS 21 AR 214101 DI 10.1063/1.3025819 PG 3 WC Physics, Applied SC Physics GA 376WD UT WOS:000261212800052 ER PT J AU Freeland, JW Ma, JX Shi, J AF Freeland, J. W. Ma, J. X. Shi, J. TI Ferromagnetic spin-correlations in strained LaCoO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article DE doping; ferromagnetic materials; lanthanum compounds; magnetic moments; magnetic thin films; magnetomechanical effects; pulsed laser deposition; spin glasses; strontium compounds; X-ray absorption ID LA1-XSRXCOO3; TRANSITION AB We present an element-resolved study of the valence and magnetic properties of LaCoO3 thin films grown via pulsed laser deposition. The Co L edge x-ray absorption shows that ferromagnetic (FM) order arises from a slight hole doping of the system presumably due to nonstoichiometry, which in the bulk system disrupts the low-spin state. However, even though the films are hole doped, the magnetic moments under tensile strain are much larger than the bulk system indicating that the strain can greatly increase the FM fraction observed in the spin-glass regime at low doping. C1 [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ma, J. X.; Shi, J.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. RP Freeland, JW (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM freeland@anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; UCR [H94003-08-2-0803] FX J.W.F. acknowledges the scientific insight and highquality bulk samples of J.F. Mitchell and H. Zheng. Work at Argonne, including the Advanced Photon Source and Center for Nanoscale Materials, is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.X.M. and J.S. at UCR are supported by ONR/DMEA under Award No. H94003-08-2-0803. NR 19 TC 29 Z9 29 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 24 PY 2008 VL 93 IS 21 AR 212501 DI 10.1063/1.3027063 PG 3 WC Physics, Applied SC Physics GA 376WD UT WOS:000261212800021 ER PT J AU Talbayev, D Lee, S Cheong, SW Taylor, AJ AF Talbayev, D. Lee, Seongsu Cheong, S. -W. Taylor, A. J. TI Terahertz wave generation via optical rectification from multiferroic BiFeO(3) SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; dielectric polarisation; electric domains; ferroelectric storage; multiferroics; optical constants; submillimetre wave generation ID FILMS; BEAMS AB We detected broadband coherent terahertz emission from multiferroic BiFeO(3) after illuminating a high-quality bulk single ferroelectric domain crystal with an similar to 100 fs optical pulse. The dependence of the emitted terahertz waveform on the energy and polarization of the optical pulse is consistent with the optical rectification mechanism of terahertz emission. We also report room-temperature terahertz optical constants of BiFeO(3). C1 [Talbayev, D.; Taylor, A. J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Lee, Seongsu; Cheong, S. -W.] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. RP Talbayev, D (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM diyar@lanl.gov RI Talbayev, Diyar/C-5525-2009 OI Talbayev, Diyar/0000-0003-3537-1656 FU LDRD program; Center for Integrated Nanotechnologies; NSF [DMR-0520471] FX We would like to thank Kiyong Kim for useful discussions. The work at LANL was supported by the LDRD program and by the Center for Integrated Nanotechnologies. The work at Rutgers was supported by NSF under Grant No. DMR-0520471. NR 20 TC 15 Z9 16 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 24 PY 2008 VL 93 IS 21 AR 212906 DI 10.1063/1.3036526 PG 3 WC Physics, Applied SC Physics GA 376WD UT WOS:000261212800030 ER PT J AU Jiang, DE Dai, S AF Jiang, De-en Dai, Sheng TI Circumacenes versus periacenes: HOMO-LUMO gap and transition from nonmagnetic to magnetic ground state with size SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ZIGZAG GRAPHENE NANORIBBONS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HALF-METALLICITY; HIGHER ACENES; BASIS-SET; EDGE; SEMICONDUCTORS; TRANSISTORS AB Circumacenes and periacenes as zigzag-edged nanographenes differ only in that circumacenes have one extra benzene ring on each of the two armchair sides. Using first principles density functional theory, we show that this slight difference in the boundary shape dramatically affects the critical size at which the open-shell antiferromagnetic state supersedes the closed-shell nonmagnetic state as the ground state. We correlate this critical size to the decreasing HOMO-LUMO gap with the molecular size and discuss implications of the critical size for experimental syntheses of circumacenes and periacenes. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences; US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; National Energy Research Scientific Computing Center; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 54 Z9 54 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2008 VL 466 IS 1-3 BP 72 EP 75 DI 10.1016/j.cplett.2008.10.022 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 372MQ UT WOS:000260906100015 ER PT J AU Muzy, A Nutaro, JJ Zeigler, BP Coquillard, P AF Muzy, A. Nutaro, J. J. Zeigler, B. P. Coquillard, P. TI Modeling and simulation of fire spreading through the activity tracking paradigm SO ECOLOGICAL MODELLING LA English DT Article DE Fire spreading; Component-based modeling and simulation; Activity tracking paradigm ID CELLULAR-AUTOMATA; FOREST; SYSTEMS; GROWTH; TOOL; IMPLEMENTATION; LANDSCAPE; DESIGN; INDEX AB Modeling and simulation is essential for understanding complex ecological systems. However, knowledge of the structure and behavior of these systems is limited, and models must be revised frequently as our understanding of a system improves. Moreover, the dynamic, spatial distribution of activity in very large systems necessitates mapping natural mechanisms as logically as possible onto computer structures. This paper describes theoretical and algorithmic tools for building component-based models and simulations of dynamic spatial phenomena. These methods focus attention on and exploit the irregular distribution of activity in ecological processes. We use the DEVS formalism as the basis for a component-based approach to modeling spatially distributed systems. DEVS is a mathematical theory of discrete-event systems that is well suited for describing large systems that are described by small parts with irregular, short-range interactions. This event-based approach to modeling leads naturally to efficient simulations algorithms which focus on the active parts of a large model. Ecological modeling benefits from these efficient the simulation algorithms and the reusability of the model's basic components. Our event-based method is demonstrated with a physics-based model of fire spread. (C) 2008 Elsevier B.V. All rights reserved. C1 [Muzy, A.] Univ Corsica Pasquale Paoli, Lab UMR CNRS LISA, UFR Drittu, F-20250 Corte, France. [Nutaro, J. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Zeigler, B. P.] Univ Arizona, Dept Elect & Comp Engn, Arizona Ctr Integrat Modeling & Simulat, Tucson, AZ 85721 USA. [Coquillard, P.] AgroBiotech Ctr, Lab UMR Biot Interact & Plant Hlth, F-06903 Valbonne, France. RP Muzy, A (reprint author), Univ Corsica Pasquale Paoli, Lab UMR CNRS LISA, UFR Drittu, 22 Av Jean Nicoli,BP 52, F-20250 Corte, France. EM a.muzy@univ-corse.fr RI Coquillard, Patrick/D-6550-2012; OI Nutaro, James/0000-0001-7360-2836 NR 58 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD NOV 24 PY 2008 VL 219 IS 1-2 BP 212 EP 225 DI 10.1016/j.ecolmodel.2008.08.017 PG 14 WC Ecology SC Environmental Sciences & Ecology GA 377ZW UT WOS:000261291900018 ER PT J AU Wegener, M Garcia-Pomar, JL Soukoulis, CM Meinzer, N Ruther, M Linden, S AF Wegener, Martin Garcia-Pomar, Juan Luis Soukoulis, Costas M. Meinzer, Nina Ruther, Matthias Linden, Stefan TI Toy model for plasmonic metamaterial resonances coupled to two-level system gain SO OPTICS EXPRESS LA English DT Article ID NEGATIVE-INDEX METAMATERIALS; WAVELENGTHS AB We propose, solve, and discuss a simple model for a metamaterial incorporating optical gain: A single bosonic resonance is coupled to a fermionic (inverted) two-level-system resonance via local-field interactions. For given steady-state inversion, this model can be solved analytically, revealing a rich variety of (Fano) absorption/gain lineshapes. We also give an analytic expression for the fixed inversion resulting from gain pinning under steady-state conditions. Furthermore, the dynamic response of the "lasing SPASER", i.e., its relaxation oscillations, can be obtained by simple numerical calculations within the same model. As a result, this toy model can be viewed as the near-field-optical counterpart of the usual LASER rate equations. (c) 2008 Optical Society of America C1 [Wegener, Martin] Univ Karlsruhe, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany. [Wegener, Martin] Univ Karlsruhe TH, Inst Angew Phys, D-76128 Karlsruhe, Germany. [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] Res Ctr Crete, Iraklion 71110, Crete, Greece. [Soukoulis, Costas M.] Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Meinzer, Nina; Ruther, Matthias; Linden, Stefan] Forschungszentrum Karlsruhe Helmholtz Gemeinschaf, Inst Nanotechnol, D-76021 Karlsruhe, Germany. RP Wegener, M (reprint author), Univ Karlsruhe TH, Inst Angew Phys, Wolfgang Gaede Str 1, D-76128 Karlsruhe, Germany. EM Martin.Wegener@physik.uni-karlsruhe.de RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016; OI Meinzer, Nina/0000-0001-7418-8710 FU Helmholtz-Hochschul-Nachwuchsgruppe [VH-NG-232]; Karlsruhe School of Optics Photonics FX We thank Hyatt Gibbs, Galina Khitrova, and Wolfgang Stolz for discussions. We acknowledge financial support provided by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Wurttemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A1.5. The project PHOME acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 213390. Also, we acknowledge funding through the METAMAT project by the Bundesministerium fur Bildung und Forschung (BMBF). The research of S. L. is further supported through a "Helmholtz-Hochschul-Nachwuchsgruppe" (VH-NG-232), the PhD education of N.M. and M. R. through the Karlsruhe School of Optics & Photonics (KSOP). J.L. G.-P. acknowledges support by the 13P-CSIC grant program. NR 27 TC 60 Z9 60 U1 1 U2 28 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 24 PY 2008 VL 16 IS 24 BP 19785 EP 19798 DI 10.1364/OE.16.019785 PG 14 WC Optics SC Optics GA 381UR UT WOS:000261561900038 PM 19030064 ER PT J AU Kohli, P Chatterton, J Stieler, D Tuttle, G Li, M Hu, XH Ye, Z Ho, KM AF Kohli, Preeti Chatterton, Jacob Stieler, Daniel Tuttle, Gary Li, Ming Hu, Xinhua Ye, Zhuo Ho, Kai-Ming TI Fine tuning resonant frequencies for a single cavity defect in three-dimensional layer-by-layer photonic crystal SO OPTICS EXPRESS LA English DT Article ID MATRIX-METHOD; BAND-GAP; SIMULATION; EMISSION AB The resonant frequencies of a single cavity embedded in the three-dimensional layer-by-layer photonic crystal are studied with microwave experiments and transfer-scattering matrix method simulations. The effects of the number of cladding layers and the size of the embedded cavity on resonant frequencies and Q values are carefully examined. The fine increments of cavity size indicate a new pattern of relation between resonant frequencies and cavity sizes. (c) 2008 Optical Society of America C1 [Kohli, Preeti; Chatterton, Jacob; Stieler, Daniel; Tuttle, Gary] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Kohli, Preeti; Chatterton, Jacob; Stieler, Daniel; Tuttle, Gary] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Li, Ming; Hu, Xinhua; Ye, Zhuo; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, Ming; Hu, Xinhua; Ye, Zhuo; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Li, M (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM mli@iastate.edu RI Hu, Xinhua/A-5930-2010; Ye, Zhuo/H-4027-2011 OI Hu, Xinhua/0000-0003-3153-7612; FU Director for Energy Research, Office of Basic Energy Sciences; Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work is supported by the Director for Energy Research, Office of Basic Energy Sciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358. NR 18 TC 5 Z9 5 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 24 PY 2008 VL 16 IS 24 BP 19844 EP 19849 DI 10.1364/OE.16.019844 PG 6 WC Optics SC Optics GA 381UR UT WOS:000261561900045 PM 19030071 ER PT J AU Klein, RJ Cole, SM Belcher, ME Schroeder, JL Cole, PJ Lenhart, JL AF Klein, Robert J. Cole, Shannon M. Belcher, Michael E. Schroeder, John L. Cole, Phillip J. Lenhart, Joseph L. TI Radiation tolerance in polymeric dielectrics by small-molecule doping, Part I: Dopant uptake as a function of temperature, time, and chemistry SO POLYMER LA English DT Article DE Radiation; Polymer; Conductivity ID INDUCED CONDUCTIVITY; POLYETHYLENE TEREPHTHALATE; HETEROGENEOUS SYSTEMS; SORPTION-DIFFUSION; ELECTRON-TRANSPORT; AMORPHOUS POLYMERS; FILMS; ADSORPTION; BATTERIES; MEMBRANES AB The doping of Mylar (R) film (composed of semi-crystalline poly(ethylene terephthalate)) with small-molecule electron traps results in a high-quality dielectric film with excellent radiation tolerance. This paper, the first of two, investigates the doping process as small molecules are implanted into the film from a solution of ethylene glycol over time. A series of fluorenone-based dopants are investigated, functionalized by nitro or cyano groups. The concentration of dopant in the Mylar (R) is a strong function of time, temperature, and solution concentration. Doping is ineffective below the glass transition temperature of the polymer. The chemical functionality of the dopant had a strong effect on the doping process, with additional nitro or cyano groups leading to enhanced film concentrations. (C) 2008 Published by Elsevier Ltd. C1 [Cole, Phillip J.] Sandia Natl Labs, NNSA Satellite Programs 5732, Albuquerque, NM 87185 USA. [Klein, Robert J.; Schroeder, John L.; Lenhart, Joseph L.] Sandia Natl Labs, Organ Mat Dept 1821, Albuquerque, NM 87185 USA. [Cole, Shannon M.; Belcher, Michael E.] Sandia Natl Labs, Organ Mat Dept 2453, Albuquerque, NM 87185 USA. [Lenhart, Joseph L.] USA, Army Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA. RP Cole, PJ (reprint author), Sandia Natl Labs, NNSA Satellite Programs 5732, POB 5800, Albuquerque, NM 87185 USA. EM pjcole@sandia.gov; joseph.lenhart1@arl.army.mil FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Thanks to Mark Stavig for his assistance with the DSC and DMA. NR 44 TC 2 Z9 4 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD NOV 24 PY 2008 VL 49 IS 25 BP 5541 EP 5548 DI 10.1016/j.polymer.2008.08.067 PG 8 WC Polymer Science SC Polymer Science GA 380JU UT WOS:000261462800024 ER PT J AU Klein, RJ Cole, SM Belcher, ME Schroeder, JL Cole, PJ Lenhart, JL AF Klein, Robert J. Cole, Shannon M. Belcher, Michael E. Schroeder, John L. Cole, Phillip J. Lenhart, Joseph L. TI Radiation tolerance in polymeric dielectrics by small molecule doping, Part II: Thermodynamic and kinetic parameters SO POLYMER LA English DT Article DE Radiation; Polymer; Conductivity ID UNIFAC GROUP-CONTRIBUTION; POLYETHYLENE TEREPHTHALATE; DIFFUSION; COEFFICIENTS; POLYSTYRENE; EQUILIBRIA; EXTENSION; TRANSPORT; REVISION; OZONE AB The doping of Mylar (R) film (composed of semicrystalline poly(ethylene terephthalate)) with small molecule electron traps results in a high-quality dielectric him with excellent radiation tolerance. Fluorenones with electron-withdrawing substituents, doped from ethylene glycol, are excellent candidates to provide this radiation tolerance. Utilizing theories for diffusion and partitioning, this paper extracts kinetic and thermodynamic information from the doping process. Diffusion is significantly retarded, and partitioning significantly enhanced, upon the addition of polar substituents to the dopant molecule; dopant size has a minor impact. Diffusivity corrections due to tortuous paths around the crystallites are accounted for. Additionally, it was found that the solubility parameters, in combination with estimations for the local interaction volumes, provide an excellent method to predict trends in the equilibrium doping behavior via the chi parameter and hydrogen bonding-modified Flory-Huggins theory. Based on this method, estimations are given for the number of hydrogen bonds between ethylene glycol and dopant molecules. (C) 2008 Published by Elsevier Ltd. C1 [Klein, Robert J.; Schroeder, John L.; Lenhart, Joseph L.] Sandia Natl Labs, Organ Mat Dept 1821, Albuquerque, NM 87185 USA. [Cole, Shannon M.; Belcher, Michael E.] Sandia Natl Labs, Organ Mat Dept 2453, Albuquerque, NM 87185 USA. [Cole, Phillip J.] Sandia Natl Labs, NNSA Satellite Programs 5732, Albuquerque, NM 87185 USA. RP Klein, RJ (reprint author), Sandia Natl Labs, Organ Mat Dept 1821, POB 5800, Albuquerque, NM 87185 USA. EM kleinr@lunainnovations.com; joseph.lenhart1@arl.army.mil FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprograrn laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Thanks to Mark Stavig for assistance with the DMA and DSC. NR 48 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD NOV 24 PY 2008 VL 49 IS 25 BP 5549 EP 5563 DI 10.1016/j.polymer.2008.08.069 PG 15 WC Polymer Science SC Polymer Science GA 380JU UT WOS:000261462800025 ER PT J AU Berli, M Carminati, A Ghezzehei, TA Or, D AF Berli, M. Carminati, A. Ghezzehei, T. A. Or, D. TI Evolution of unsaturated hydraulic conductivity of aggregated soils due to compressive forces SO WATER RESOURCES RESEARCH LA English DT Article ID NEUTRON-RADIOGRAPHY; LOAM SOIL; COMPACTION; PORES; WATER; TRANSMISSION; BEHAVIOR; POROSITY; STRESS; MODEL AB Prediction of water flow and transport processes in soils susceptible to structural alteration such as compaction of tilled agricultural lands or newly constructed landfills rely on accurate description of changes in soil unsaturated hydraulic conductivity. Recent studies have documented the critical impact of aggregate contact characteristics on water flow rates and pathways in unsaturated aggregated soils. We developed an analytical model for aggregate contact size evolution as a basis for quantifying effects of compression on saturated and unsaturated hydraulic conductivity of aggregated soil. Relating confined one-dimensional sample strain with aggregate deformation facilitates prediction of the increase in interaggregate contact area and concurrent decrease in macropore size with degree of sample compression. The hydrologic component of the model predicts unsaturated hydraulic conductivity of a pack of idealized aggregates (spheres) on the basis of contact size and saturation conditions under prescribed sample deformation. Calculated contact areas and hydraulic conductivity for pairs of aggregates agreed surprisingly well with measured values, determined from compaction experiments employing neutron and X-ray-radiography and image analysis. Model calculations for a unit cell of uniform spherical aggregates in cubic packing were able to mimic some of the differences in saturated and unsaturated hydraulic conductivity observed for aggregates and bulk soil. C1 [Berli, M.] Desert Res Inst, Div Hydraul Sci, Las Vegas, NV 89119 USA. [Carminati, A.] UFZ Helmholtz Ctr Environm Res, Dept Hydrogeol, D-04318 Leipzig, Germany. [Ghezzehei, T. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Or, D.] Ecole Polytech Fed Lausanne, Lab Soil & Environm Phys, CH-1015 Lausanne, Switzerland. [Or, D.] Swiss Fed Inst Technol, Zurich, Switzerland. RP Berli, M (reprint author), Desert Res Inst, Div Hydraul Sci, 755 E Flamingo Rd, Las Vegas, NV 89119 USA. EM markus.berli@dri.edu; andrea.carminati@ufz.de; aghezzehei@lbl.gov; dani.or@epfl.ch RI Ghezzehei, Teamrat/G-7483-2011; Or, Dani/D-8768-2012 OI Ghezzehei, Teamrat/0000-0002-0287-6212; Or, Dani/0000-0002-3236-2933 FU U. S. Department of Agriculture [200335107-13598] FX The research underlying this paper has been sponsored by the U. S. Department of Agriculture (USDA-NRI, grant 200335107-13598). We are particularly grateful to R. Hassanein, P. Vontobel, and E. Lehmann of NEUTRA-PSI group for their advice and support in neutron radiography and to M. Stampanoni and A. Groso from SLS-PSI for the technical support during X-ray tomography. NR 47 TC 12 Z9 13 U1 4 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 22 PY 2008 VL 44 AR W00C09 DI 10.1029/2007WR006501 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 375XT UT WOS:000261147800001 ER PT J AU Tutt, A Wang, A Rowland, C Gillett, C Lau, K Chew, K Dai, HY Kwok, S Ryder, K Shu, H Springall, R Cane, P McCallie, B Kam-Morgan, L Anderson, S Buerger, H Gray, J Bennington, J Esserman, L Hastie, T Broder, S Sninsky, J Brandt, B Waldman, F AF Tutt, Andrew Wang, Alice Rowland, Charles Gillett, Cheryl Lau, Kit Chew, Karen Dai, Hongyue Kwok, Shirley Ryder, Kenneth Shu, Henry Springall, Robert Cane, Paul McCallie, Blair Kam-Morgan, Lauren Anderson, Steve Buerger, Horst Gray, Joe Bennington, James Esserman, Laura Hastie, Trevor Broder, Samuel Sninsky, John Brandt, Burkhard Waldman, Fred TI Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature SO BMC CANCER LA English DT Article ID GENE-EXPRESSION; SURVIVAL; PROLIFERATION; TAMOXIFEN; THERAPY; MARKERS; CHEMOTHERAPY; VALIDATION; RECURRENCE; WOMEN AB Background: Given the large number of genes purported to be prognostic for breast cancer, it would be optimal if the genes identified are not confounded by the continuously changing systemic therapies. The aim of this study was to discover and validate a breast cancer prognostic expression signature for distant metastasis in untreated, early stage, lymph node-negative (N-) estrogen receptor-positive (ER+) patients with extensive follow-up times. Methods: 197 genes previously associated with metastasis and ER status were profiled from 142 untreated breast cancer subjects. A "metastasis score" (MS) representing fourteen differentially expressed genes was developed and evaluated for its association with distant-metastasis-free survival (DMFS). Categorical risk classification was established from the continuous MS and further evaluated on an independent set of 279 untreated subjects. A third set of 45 subjects was tested to determine the prognostic performance of the MS in tamoxifen-treated women. Results: A 14-gene signature was found to be significantly associated (p < 0.05) with distant metastasis in a training set and subsequently in an independent validation set. In the validation set, the hazard ratios (HR) of the high risk compared to low risk groups were 4.02 (95% CI 1.91-8.44) for the endpoint of DMFS and 1.97 (95% CI 1.28 to 3.04) for overall survival after adjustment for age, tumor size and grade. The low and high MS risk groups had 10-year estimates (95% CI) of 96% (90-99%) and 72% (64-78%) respectively, for DMFS and 91% (84-95%) and 68% (61-75%), respectively for overall survival. Performance characteristics of the signature in the two sets were similar. Ki-67 labeling index (LI) was predictive for recurrent disease in the training set, but lost significance after adjustment for the expression signature. In a study of tamoxifen-treated patients, the HR for DMFS in high compared to low risk groups was 3.61 (95% CI 0.86-15.14). Conclusion: The 14-gene signature is significantly associated with risk of distant metastasis. The signature has a predominance of proliferation genes which have prognostic significance above that of Ki-67 LI and may aid in prioritizing future mechanistic studies and therapeutic interventions. C1 [Tutt, Andrew] Kings Coll London, Breakthrough Breast Canc Res Unit, London WC2R 2LS, England. [Tutt, Andrew; Ryder, Kenneth] Guys Hosp, London SE1 9RT, England. [Wang, Alice; Rowland, Charles; Lau, Kit; McCallie, Blair; Sninsky, John] Celera LLC, Alameda, CA USA. [Gillett, Cheryl] Guys & St Thomas Hosp, Breast Res Tissue & Data Bank, London SE1 9RT, England. [Chew, Karen; Waldman, Fred] Univ Calif San Francisco, Ctr Comprehens Canc, San Francisco, CA 94143 USA. [Dai, Hongyue] Rosetta Inpharmat, Seattle, WA USA. [Cane, Paul] St Thomas Hosp, Dept Cellular Pathol, London, England. [Kam-Morgan, Lauren; Anderson, Steve] Lab Corp Amer, Triangle Park, NC USA. [Buerger, Horst; Brandt, Burkhard] Univ Hamburg, Univ Med Ctr, Inst Tumor Biol, Hamburg, Germany. [Gray, Joe] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bennington, James; Waldman, Fred] Calif Pacific Med Ctr, Dept Pathol, San Francisco, CA USA. [Esserman, Laura] Univ Calif San Francisco, Carol Franc Buck Breast Canc, San Francisco, CA 94143 USA. [Hastie, Trevor] Stanford Univ, Dept Stat, Stanford, CA 94305 USA. [Hastie, Trevor] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA. RP Tutt, A (reprint author), Kings Coll London, Breakthrough Breast Canc Res Unit, London WC2R 2LS, England. EM andrew.tutt@icr.ac.uk; alice.wang@celera.com; Charles.Rowland@celera.com; cheryl.gillett@kcl.ac.uk; kitfunlau@hotmail.com; acanthurus@aol.com; hongyue_dai@merck.com; Shirley.Kwok@celera.com; kenneth.ryder@cancer.org.uk; henshu@aol.com; robert.springall@kcl.ac.uk; paul.cane@gstt.nhs.uk; blairrip@yahoo.com; kaml@labcorp.com; Steve.Anderson@viromed.com; burgerh@uni-muenster.de; jgray@cc.ucsf.edu; jlbenn@pacbell.net; laura.esserman@ucsfmedctr.org; hastie@stanford.edu; Samuel.Broder@celera.com; John.Sninsky@celera.com; bu.brandt@uke.uni-hamburg.de; waldman@cc.ucsf.edu OI Brandt, Burkhard/0000-0003-3681-3049 FU UC Discovery FX We recognize the outstanding support and contributions of C. Santini, C. Sigua, and J. Chan under the overall excellent guidance of S-Y. Chang who provided technical and HT Biomarker infrastructure support for the study. C. Christopherson, S. Tom and W. Kim provided valuable technical support in RNA preparation with thoughtful supervision by S. Kwok. We thank the UCSF Cancer Center Breast Oncology Program Tissue Core. We appreciate early study discussions and analysis by H. Li (University of Pennsylvania). Discussions of unpublished results with A. Sachs and Y. He at Rosetta Inpharmatics assisted markedly. We thank J. Devlin, J. Catanese and T. White for careful review of the manuscript. Most importantly, we are deeply indebted to the patients who made this study possible; breast cancer advocacy, in general, and UCSF's Breast Cancer Advocacy Core, specifically for facilitating focused translational breast cancer research. Supports for carrying out this study were provided by a UC Discovery grant and Celera. The studies described in this paper evolved as part of a collaboration through the Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI). NR 51 TC 26 Z9 28 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2407 J9 BMC CANCER JI BMC Cancer PD NOV 21 PY 2008 VL 8 AR 339 DI 10.1186/1471-2407-8-339 PG 15 WC Oncology SC Oncology GA 397ZE UT WOS:000262700100001 PM 19025599 ER PT J AU Grunwald, M Dellago, C Geissler, PL AF Gruenwald, Michael Dellago, Christoph Geissler, Phillip L. TI Precision shooting: Sampling long transition pathways SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE free energy; isomerisation; Monte Carlo methods; random processes; reaction kinetics theory ID EQUILIBRIUM AB The kinetics of collective rearrangements in solution, such as protein folding and nanocrystal phase transitions, often involve free energy barriers that are both long and rough. Applying methods of transition path sampling to harvest simulated trajectories that exemplify such processes is typically made difficult by a very low acceptance rate for newly generated trajectories. We address this problem by introducing a new generation algorithm based on the linear short time behavior of small disturbances in phase space. Using this "precision shooting" technique, arbitrarily small disturbances can be propagated in time, and any desired acceptance ratio of shooting moves can be obtained. We demonstrate the method for a simple but computationally problematic isomerization process in a dense liquid of soft spheres. We also discuss its applicability to barrier-crossing events involving metastable intermediate states. C1 [Gruenwald, Michael; Dellago, Christoph] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Gruenwald, Michael; Dellago, Christoph] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Grunwald, M (reprint author), Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. EM christoph.dellago@univie.ac.at RI Dellago, Christoph/E-1625-2011; Grunwald, Michael/L-5919-2013 FU Austrian Science Fund (FWF) [P20942-N16, W004]; Chemical Sciences, Geosciences, and Biosciences Division of the U. S. Department of Energy FX This work was supported by the Austrian Science Fund (FWF) under Grant No. P20942-N16, within the Science College "Computational Materials Science" under Grant No. W004 and by the Chemical Sciences, Geosciences, and Biosciences Division of the U. S. Department of Energy. NR 15 TC 20 Z9 20 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2008 VL 129 IS 19 AR 194101 DI 10.1063/1.2978000 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 375VG UT WOS:000261141300001 PM 19026039 ER PT J AU Rai, N Bhatt, D Siepmann, JI Fried, LE AF Rai, Neeraj Bhatt, Divesh Siepmann, J. Ilja Fried, Laurence E. TI Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE binding energy; explosives; liquid theory; liquid-vapour transformations; Monte Carlo methods; organic compounds; phase equilibrium; thermal expansion ID MOLECULAR-DYNAMICS SIMULATIONS; UNITED-ATOM DESCRIPTION; FORCE-FIELD; AB-INITIO; TRANSFERABLE POTENTIALS; ENERGETIC MATERIALS; CRYSTAL-STRUCTURE; CHAIN MOLECULES; 2ND-HARMONIC GENERATION; ELECTRONIC-STRUCTURE AB The transferable potentials for phase equilibria (TraPPE) force field was extended to nitro and amino substituents for aromatic rings via parametrization to the vapor-liquid coexistence curves of nitrobenzene and aniline, respectively. These groups were then transferred to model 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Without any further parametrization to solid state data, the TraPPE force field is able to predict TATB's unit cell lengths and angles at 295 K with mean unsigned percentage errors of 0.3% and 1.8% and the specific density within 0.5%. These predictions are comparable in accuracy to the GRBF model [Gee , J. Chem. Phys. 120, 7059 (2004)] that was parametrized directly to TATB's solid state properties. Both force fields are able to reproduce the pressure dependence of TATB's unit cell volume, but they underestimate its thermal expansion. Due to its energetic nature and unusually large cohesive energy, TATB is not chemically stable at temperature in its liquid range. Gibbs ensemble simulations allow one to determine TATB's vapor-liquid coexistence curve at elevated temperatures and the predicted critical temperature and density for the TraPPE and GRBF model are 937 +/- 8 and 1034 +/- 8 K, and 0.52 +/- 0.02 and 0.50 +/- 0.02 g/cm(3), respectively. C1 [Rai, Neeraj; Bhatt, Divesh; Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Rai, Neeraj; Bhatt, Divesh; Siepmann, J. Ilja] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Fried, Laurence E.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Siepmann, JI (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM siepmann@umn.edu RI Rai, Neeraj/D-5346-2012; Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU Department of Energy [W-7405-Eng-48]; Laboratory Directed Research and Development Program [06-SI-005, B559898]; National Science Foundation [CTS-0553911, CBET-0756641]; University of Minnesota Doctoral Dissertation Fellowship FX Financial support from the Department of Energy (Contract No. W-7405-Eng-48 to Lawrence Livermore National Laboratory, Laboratory Directed Research and Development Program Project No. 06-SI-005, Subcontract No. B559898), the National Science Foundation (CTS-0553911 and CBET-0756641), and a University of Minnesota Doctoral Dissertation Fellowship (N.R.) are gratefully acknowledged. Part of computer resources were provided by Minnesota Supercomputing Institute. NR 74 TC 27 Z9 27 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2008 VL 129 IS 19 AR 194510 DI 10.1063/1.3006054 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 375VG UT WOS:000261141300031 PM 19026069 ER PT J AU Wang, HW Long, S Ciferri, C Westermann, S Drubin, D Barnes, G Nogales, E AF Wang, Hong-Wei Long, Sydney Ciferri, Claudio Westermann, Stefan Drubin, David Barnes, Georjana Nogales, Eva TI Architecture and Flexibility of the Yeast Ndc80 Kinetochore Complex SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE Nuf2; Spc24; Spc25; Hec1; electron microscopy ID MICROTUBULE ATTACHMENT SITE; MOLECULAR ARCHITECTURE; BUDDING YEAST; STRUCTURAL-ANALYSIS; CHECKPOINT; CORE; CENTROMERES; INTERFACE; COMPONENT; PROTEINS AB Kinetochores mediate microtubule-chromosome attachment and ensure accurate segregation of sister chromatids. The highly conserved Ndc80 kinetochore complex makes direct contacts with the microtubule and is essential for spindle checkpoint signaling. It contains a long coiled-coil region with globular domains at each end involved in kinetochore localization and microtubule binding, respectively. We have directly visualized the architecture of the yeast Ndc80 complex and found a dramatic kink within the 560-angstrom coiled-coil rod located about 160 angstrom from the larger globular head. Comparison of our electron microscopy images to the structure of the human Ndc80 complex allowed us to position the kink proximal to the microtubule-binding end and to define the conformational range of the complex. The position of the kink coincides with a coiled-coil breaking region conserved across eukaryotes. We hypothesize that the kink in Ndc80 is essential for correct kinetochore geometry and could be part of a tension-sensing mechanism at the kinetochore. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Long, Sydney; Ciferri, Claudio; Drubin, David; Barnes, Georjana; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wang, Hong-Wei; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Westermann, Stefan] Res Inst Mol Pathol, A-1030 Vienna, Austria. [Nogales, Eva] Howard Hughes Med Inst, Chevy Chase, MD USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 708C Stanley Hall,QB3, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU National Institute of General Medical Sciences; U.S. Department of Energy; Philip Morris USA Inc.; Philip Morris International; Deutsche Forschungsgemeinschaft FX This work was supported by grants from the National Institute of General Medical Sciences (G.B. and E.N), the Office of Biological and Environmental Research for the U.S. Department of Energy (E.N.), Philip Morris USA Inc., and Philip Morris International (D.G.D.) and by a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (S.W.). E.N. is a Howard Hughes Medical Institute Investigator. NR 25 TC 53 Z9 54 U1 0 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD NOV 21 PY 2008 VL 383 IS 4 BP 894 EP 903 DI 10.1016/j.jmb.2008.08.077 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 367DX UT WOS:000260533800013 PM 18793650 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Choice of Bond Dissociation Enthalpies on Which To Base the Stabilization Energies of Simple Radicals: DH(R-H) Is Preferred Because DH(R-Me) and DH(R-R) Are Perturbed by Changes in Chain Branching SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; THERMOCHEMICAL PROPERTIES; G3MP2B3 CALCULATIONS; THEORETICAL BOND; C-H; HYPERCONJUGATION; DECOMPOSITION; ENERGETICS; STABILITY; MOLECULES AB The relative stabilization energies of radicals, SE(R center dot), along the simple series methyl/ethyl/isopropyl/tertbutyl are known to vary in spread and even direction dependent on which dissociation enthalpies, DH(R-X), are used for their definition. Using a highly electronegative X is recognized as unwise, but it is not clear that using X = Me or X = R itself might not be preferred over the almost universal use of X = H. The enthalpies of formal isomerization Of C-4 radical pairs that vary only in the substitution pattern at the radical center but not in carbon skeleton confirm that X = H is indeed the better choice. Comparisons in the context of recent predictive models for alkane and radical stability indicate that, while relative DH(R-H) values highlight the desired difference in substitution pattern at the radical center, relative DH(R-Me) values are perturbed by differences in skeletal branching or protobranching which are well-known to affect thermochemistry. As a result, SE(R center dot) values derived from relative DH(R-Me) values are consistently too small. The same pattern is illustrated for prim, sec, and tert allylic and benzylic radicals (larger SE(R center dot)) and for the parent vinyl, phenyl, and ethynyl radicals (negative SE(R center dot)). C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov FU Division of Chemical Sciences; Geosciences and Biosciences; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 48 TC 17 Z9 17 U1 3 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD NOV 21 PY 2008 VL 73 IS 22 BP 8921 EP 8928 DI 10.1021/jo801529y PG 8 WC Chemistry, Organic SC Chemistry GA 372SU UT WOS:000260923000026 PM 18956841 ER PT J AU Antal, T Ben-Avraham, D Ben-Naim, E Krapivsky, PL AF Antal, T. ben-Avraham, D. Ben-Naim, E. Krapivsky, P. L. TI Front propagation in flipping processes SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID DYNAMICS; CHAIN AB We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess Delta(k) increases logarithmically, Delta(k) similar or equal to 1n k, with the distance k from the front. Third, the front exhibits ageing-young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations. C1 [Antal, T.] Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA. [ben-Avraham, D.] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA. [Ben-Naim, E.; Krapivsky, P. L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.; Krapivsky, P. L.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Antal, T (reprint author), Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA. RI Antal, Tibor/A-4512-2008; Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; NR 16 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 21 PY 2008 VL 41 IS 46 AR 465002 DI 10.1088/1751-8113/41/46/465002 PG 18 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 361MO UT WOS:000260132000002 ER PT J AU Xiang, X Zu, XT Zhu, S Wang, LM Shutthanandan, V Nachimuthu, P Zhang, Y AF Xiang, X. Zu, X. T. Zhu, S. Wang, L. M. Shutthanandan, V. Nachimuthu, P. Zhang, Y. TI Photoluminescence of SnO2 nanoparticles embedded in Al2O3 SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; ION-IMPLANTATION; OPTICAL-PROPERTIES; OXIDATION; SILICA; SIO2; NANOCLUSTERS; NANOCRYSTALS; NANOWIRES; POWDERS AB Tetragonal Sn nanoparticles of similar to 15 nm diameter are produced in Al2O3 by direct Sn implantation at room temperature. After thermal annealing at 1000 degrees C in oxygen, the implantation-induced amorphous region recrystallized and the Sn nanoparticles turned into SnO2 nanoparticles with an average diameter of similar to 30 nm as revealed by transmission electron microscopy. While no absorption and photoluminescence (PL) are observed from the metallic Sn nanoparticles, SnO2 nanoparticles exhibit an absorption edge at similar to 280 nm and three emission bands at 410 nm, 520 nm and 700 nm, respectively. In addition to the previously reported blue and green emission from SnO2 nanostructures, a red PL band was observed due to the unique surface state of SnO2 nanoparticles embedded in Al2O3 substrate fabricated by ion implantation. C1 [Xiang, X.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Xiang, X.; Zhu, S.; Wang, L. M.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Shutthanandan, V.; Nachimuthu, P.; Zhang, Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiang, X (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaxiang@uestc.edu.cn RI 向, 霞/F-3107-2012 NR 29 TC 21 Z9 21 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 21 PY 2008 VL 41 IS 22 AR 225102 DI 10.1088/0022-3727/41/22/225102 PG 5 WC Physics, Applied SC Physics GA 370BQ UT WOS:000260738100018 ER PT J AU Georgakakis, A Gerke, BF Nandra, K Laird, ES Coil, AL Cooper, MC Newman, JA AF Georgakakis, A. Gerke, Brian F. Nandra, K. Laird, E. S. Coil, A. L. Cooper, M. C. Newman, J. A. TI X-ray selected AGN in groups at redshifts z approximate to 1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: active; galaxies: structure; large-scale structure of the Universe ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; LARGE-SCALE STRUCTURE; DIGITAL-SKY-SURVEY; WIDE-FIELD SURVEY; HOST GALAXIES; VELOCITY DISPERSION; COSMIC EVOLUTION; STAR-FORMATION; POINT SOURCES AB We explore the role of the group environment in the evolution of active galactic nuclei (AGN) at the redshift interval 0.7 < z < 1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEGIS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99 per cent confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91 per cent level only. Restricting the sample to 0.7 < z < 0.9 and M(B) < -20 mag in order to control systematics, we find that X-ray AGN represent (4.7 +/- 1.6) and (4.5 +/- 1.0) per cent of the optical galaxy population in groups and in the field, respectively. These numbers are consistent with the AGN fraction in low-redshift clusters, groups and the field. The above results, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98 per cent level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z approximate to 1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters). C1 [Georgakakis, A.; Nandra, K.; Laird, E. S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2BZ, England. [Georgakakis, A.] Natl Observ Athens, Athens 15236, Greece. [Gerke, Brian F.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94725 USA. [Coil, A. L.; Cooper, M. C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Newman, J. A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Georgakakis, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2BZ, England. EM age@ic.ac.uk RI Georgakakis, Antonis/K-4457-2013; OI Georgakakis, Antonis/0000-0002-3514-2442 FU MarieCurie Fellowship [MEIF-CT-2005-025108]; US Department of Energy [DE-AC02-76SF00515]; NASA [HF-01182.01-A, NAS 5-26555] FX The authors wish to thank the anonymous referee for providing constructive comments and suggestions that significantly improved this paper. This work has been supported by funding from the MarieCurie Fellowship grant MEIF-CT-2005-025108 (AG) and STFC (ESL). BFG is supported by the US Department of Energy under contract number DE-AC02-76SF00515. ALC is supported by NASA through Hubble Fellowship grant HF-01182.01-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. NR 64 TC 28 Z9 28 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2008 VL 391 IS 1 BP 183 EP 189 DI 10.1111/j.1365-2966.2008.13649.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 392JV UT WOS:000262299900015 ER PT J AU Kumar, P Panaitescu, A AF Kumar, P. Panaitescu, A. TI What did we learn from gamma-ray burst 080319B? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; shock waves; gamma-rays: bursts AB The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10(16.3) cm by an ultrarelativistic source moving at Lorentz factor of similar to 500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10(52.3) erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model. C1 [Kumar, P.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Panaitescu, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kumar, P (reprint author), Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. EM alin@lanl.gov FU US Department of Energy through the LANL/LDRD [20080039DR]; NSF [AST-0406878] FX The authors are grateful to the referee for his comments. AP acknowledges the support of the US Department of Energy through the LANL/LDRD 20080039DR program and of NSF grant AST-0406878 for this work. NR 39 TC 44 Z9 45 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2008 VL 391 IS 1 BP L19 EP L23 DI 10.1111/j.1745-3933.2008.00546.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA V11UU UT WOS:000207557300005 ER PT J AU Abbasi, R Abu-Zayyad, T Belov, K Belz, J Bergman, DR Cao, Z Chang, FY Chen, CC Chen, CW Chen, P Dalton, M Fedorova, Y Field, C Hast, C Huang, MA Huntemeyer, P Hwang, WYP Iverson, R Jones, BF Jui, CCH Lin, GL Loh, EC Manago, N Martens, K Matthews, JN Maestas, M Ng, JST Odian, A Reil, K Rodriguez, D Smith, J Sokolsky, R Springer, RW Thomas, J Thomas, S Thomson, G Walz, D Zech, A AF Abbasi, R. Abu-Zayyad, T. Belov, K. Belz, J. Bergman, D. R. Cao, Z. Chang, F. -Y. Chen, C. -C. Chen, C. -W. Chen, P. Dalton, M. Fedorova, Y. Field, C. Hast, C. Huang, M. A. Huentemeyer, P. Hwang, W. -Y. P. Iverson, R. Jones, B. F. Jui, C. C. H. Lin, G. -L. Loh, E. C. Manago, N. Martens, K. Matthews, J. N. Maestas, M. Ng, J. S. T. Odian, A. Reil, K. Rodriguez, D. Smith, J. Sokolsky, R. Springer, R. W. Thomas, J. Thomas, S. Thomson, G. Walz, D. Zech, A. TI Techniques of the FLASH thin target experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence; Fluorescence spectrum; Ultra-high energy cosmic rays ID FLUORESCENCE YIELD; AIR FLUORESCENCE; ELECTRON-BEAM; PHOTON YIELDS; NITROGEN; PROFILES; EMISSION; NM AB The fluorescence yield in air is reported for wavelength and pressure ranges of interest to ultra-high energy cosmic ray detectors. A 28.5 GeV electron beam was used to excite the fluorescence. Central to the approach was the system calibration, using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air, at 304 K, the yield is 20.8 +/- 1.6 photons per MeV. (C) 2008 Published by Elsevier B.V. C1 [Abbasi, R.; Abu-Zayyad, T.; Belov, K.; Belz, J.; Cao, Z.; Dalton, M.; Fedorova, Y.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Loh, E. C.; Manago, N.; Martens, K.; Matthews, J. N.; Maestas, M.; Rodriguez, D.; Smith, J.; Sokolsky, R.; Springer, R. W.; Thomas, J.; Thomas, S.] Univ Utah, Salt Lake City, UT 84112 USA. [Bergman, D. R.; Thomson, G.; Zech, A.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Chen, C. -C.; Chen, C. -W.; Huang, M. A.; Hwang, W. -Y. P.; Lin, G. -L.] CosPA, Taipei 10617, Taiwan. [Field, C.; Hast, C.; Iverson, R.; Ng, J. S. T.; Odian, A.; Reil, K.; Walz, D.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Huntemeyer, P (reprint author), Univ Utah, Salt Lake City, UT 84112 USA. RI Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI HWANG, W-Y/0000-0003-1563-8683 FU U.S. Department of Energy [DE-AC02-76SF00515]; National Science Foundation [NSF PHY-0245428]; NSF [PHY-0305516, PHY-0307098, PHY-0400053] FX We are indebted to the SLAC accelerator operations staff for their expertize in meeting the unusual beam requirements, and to personnel of the Experimental Facilities Department for very professional assistance in preparation and installation of the equipment. We also gratefully acknowledge the many contributions from the technical staffs of our home institutions. This work was supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515 as well as by the National Science Foundation under awards NSF PHY-0245428, NSF PHY-0305516, NSF PHY-0307098, and NSF PHY-0400053. NR 22 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 32 EP 36 DI 10.1016/j.nima.2008.08.054 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600003 ER PT J AU Abbasi, R Alu-Zayyad, T Belov, K Belz, J Bergman, DR Cao, Z Chang, FY Chen, CC Chen, CW Chen, P Dalton, M Fedorova, Y Field, C Hast, C Huang, MA Huntemeyer, P Hwang, WYP Iverson, R Jones, BF Jui, CCH Lin, GL Loh, EC Manago, N Martens, K Matthews, JN Maestas, M Ng, JST Odian, A Reil, K Rodriguez, D Smith, J Sokolsky, R Springer, RW Thomas, J Thornas, S Thomson, G Walz, D Zech, A AF Abbasi, R. Alu-Zayyad, T. Belov, K. Belz, J. Bergman, D. R. Cao, Z. Chang, F. Y. Chen, C. -C. Chen, C. W. Chen, P. Dalton, M. Fedorova, Y. Field, C. Hast, C. Huang, M. A. Huentemeyer, P. Hwang, W. -Y. P. Iverson, R. Jones, B. F. Jui, C. C. H. Lin, G. -L. Loh, E. C. Manago, N. Martens, K. Matthews, J. N. Maestas, M. Ng, J. S. T. Odian, A. Reil, K. Rodriguez, D. Smith, J. Sokolsky, R. Springer, R. W. Thomas, J. Thornas, S. Thomson, G. Walz, D. Zech, A. TI The FLASH thick-target experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence; Ultra high energy cosmic rays AB A key assumption in the reconstruction of extensive air Showers using the air fluorescence technique is that fluorescence is proportional to energy deposition at all deptlis in the shower. This ansatz, along with the supposition that particle distribution and energy loss can be well modeled by modern shower simulation software, must be thoroughly verified, We report here the results of the first direct measurement of air fluorescence yield as a function of shower depth, as performed in the thick-target phase of the FLASH (FLuorescence in Air from SHowers) experimental program at the SLAC Final-Focus Test Beam facility. We compare observed fluorescence light yields as a function of shower depth to concurrently measured charged particle yields, to the energy deposition predictions of the EGS and GEANT software packages, and to empirical energy-deposition models. We also examine the extent to which the relative yield Versus shower depth is independent of wavelength within the fluorescence spectrum. We find the proportionality hypothesis to be well supported by the data, validating the use of fluorescence profiles in the Study of ultra high energy cosmic rays. (C) 2008 Elsevier B.V. All rights reserved. C1 [Abbasi, R.; Alu-Zayyad, T.; Belov, K.; Belz, J.; Cao, Z.; Dalton, M.; Fedorova, Y.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Loh, E. C.; Manago, N.; Martens, K.; Matthews, J. N.; Maestas, M.; Rodriguez, D.; Smith, J.; Sokolsky, R.; Springer, R. W.; Thomas, J.; Thornas, S.] Univ Utah, Salt Lake City, UT 84112 USA. [Bergman, D. R.; Thomson, G.; Zech, A.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Chang, F. Y.; Chen, C. -C.; Chen, C. W.; Huang, M. A.; Hwang, W. -Y. P.; Lin, G. -L.] CosPA, Taipei 10617, Taiwan. [Chen, P.; Field, C.; Hast, C.; Iverson, R.; Ng, J. S. T.; Odian, A.; Reil, K.; Walz, D.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Belz, J (reprint author), Univ Utah, Salt Lake City, UT 84112 USA. RI Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI HWANG, W-Y/0000-0003-1563-8683 NR 4 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 37 EP 40 DI 10.1016/j.nima.2008.08.053 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600004 ER PT J AU Ave, M Bohacova, M Buonomo, B Busca, N Cazon, L Chemerisov, SD Conde, ME Crowell, RA Di Carlo, P Di Giulio, C Doubrava, M Esposito, A Facal, P Franchini, FJ Horandel, J Hrabovsky, M Iarlori, M Kasprzyk, TE Keilhauer, B Klages, H Kleifges, M Kuhlmann, S Mazzitelli, G Nozka, L Obermeier, A Palatka, M Petrera, S Privitera, P Ridky, J Rizi, V Rodriguez, G Salamida, F Schovanek, P Spinka, H Strazzeri, E Ulrich, A Yusof, ZM Vacek, V Valente, P Verzi, V Waldenmaier, T AF Ave, M. Bohacova, M. Buonomo, B. Busca, N. Cazon, L. Chemerisov, S. D. Conde, M. E. Crowell, R. A. Di Carlo, P. Di Giulio, C. Doubrava, M. Esposito, A. Facal, P. Franchini, F. J. Hoerandel, J. Hrabovsky, M. Iarlori, M. Kasprzyk, T. E. Keilhauer, B. Klages, H. Kleifges, M. Kuhlmann, S. Mazzitelli, G. Nozka, L. Obermeier, A. Palatka, M. Petrera, S. Privitera, P. Ridky, J. Rizi, V. Rodriguez, G. Salamida, F. Schovanek, P. Spinka, H. Strazzeri, E. Ulrich, A. Yusof, Z. M. Vacek, V. Valente, P. Verzi, V. Waldenmaier, T. CA AIRFLY Collaboration TI Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence detection; Ultra high energy cosmic rays; Nitrogen collisional quenching; Pressure dependence ID PHOTON YIELDS; ELECTRONS; NITROGEN; DETECTOR AB The knowledge of the fluorescence emission as a function of atmospheric parameters is essential for the detection of extensive air showers with the fluorescence technique. In this paper, we summarize AIRFLY published measurements of the pressure dependence of the fluorescence yield. The spectral distribution Of the fluorescent light between 280 and 429nm has been Measured with high resolution. Relative intensities of 34 spectral lines have been determined. The pressure dependence of 25 lines was measured in terms Of quenching reference pressures p(lambda)'. in air. This set of AIRFLY Measurements yields the most comprehensive parametrization of the pressure dependence of the fluorescent spectrum. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hoerandel, J.; Keilhauer, B.; Klages, H.; Obermeier, A.] Univ Karlsruhe TH, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Ave, M.; Busca, N.; Cazon, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bohacova, M.; Hrabovsky, M.; Nozka, L.; Palatka, M.; Ridky, J.; Schovanek, P.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague, Czech Republic. [Buonomo, B.; Esposito, A.; Mazzitelli, G.] Ist Nazl Fis Nucl, Sez Frascati, Nazl Frascati Lab, I-00044 Rome, Italy. [Chemerisov, S. D.; Conde, M. E.; Crowell, R. A.; Franchini, F. J.; Kasprzyk, T. E.; Kuhlmann, S.; Spinka, H.; Yusof, Z. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Aquila, Italy. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, I-67010 Coppito, Aquila, Italy. [Di Giulio, C.; Privitera, P.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Di Giulio, C.; Privitera, P.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Sezione Ist Nazl Fis Nucl, I-00133 Rome, Italy. [Doubrava, M.; Vacek, V.] Czech Tech Univ, Prague 16607, Czech Republic. [Facal, P.] Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain. [Klages, H.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Kleifges, M.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elek, D-76021 Karlsruhe, Germany. [Ulrich, A.] Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Valente, P.] Sez INFN Roma 1, I-00185 Rome, Italy. RP Obermeier, A (reprint author), Univ Karlsruhe TH, Inst Expt Kernphys, Postfach 6980, D-76128 Karlsruhe, Germany. EM andreas.obermeier@ik.fzk.de RI Rodriguez Fernandez, Gonzalo/C-1432-2014; valente, paolo/A-6640-2010; Buonomo, Bruno/F-6186-2010; Verzi, Valerio/B-1149-2012; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Ridky, Jan/H-6184-2014; Di Giulio, Claudio/B-3319-2015; Di Carlo, Piero/C-1657-2016; Di Carlo, Piero/Q-4450-2016 OI Petrera, Sergio/0000-0002-6029-1255; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Salamida, Francesco/0000-0002-9306-8447; valente, paolo/0000-0002-5413-0068; Buonomo, Bruno/0000-0002-3612-7308; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Di Giulio, Claudio/0000-0002-0597-4547; Di Carlo, Piero/0000-0003-4971-4509; Di Carlo, Piero/0000-0003-4971-4509 FU MSMT [CR LC 527, LM06002]; ASCR [AV0Z10100502, AV0Z10100522]; TARI [RII3-Cr-2004-506078] FX We thank the staff of Argonne National Laboratory for their Support. A. Obermeier and J.R. Horandel acknowledge the Support of VIHKOS, which made the participation at the measurement campaigns possible. This work was also Supported by the Grant of MSMT CR LC 527 and LM06002 and ASCR Grants AV0Z10100502 and AV0Z10100522. We acknowledge financial support by TARI project RII3-Cr-2004-506078 and the BMBF. NR 17 TC 10 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 41 EP 45 DI 10.1016/j.nima.2008.08.052 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600005 ER PT J AU Ave, M Bohacova, M Buonomo, B Busca, N Cazon, L Chemerisov, SD Conde, ME Crowell, RA Di Carlo, P Di Giulio, C Doubrava, M Esposito, A Facal, P Franchini, FJ Gebhardt, J Graber, T Horandel, J Hrabovsky, M Iarlori, M Kasprzyk, TE Keilhauer, B Klages, H Kleifges, M Kuhlmann, S Mazzitelli, G Meron, M Nozka, L Obermeier, A Palatka, M Petrera, S Privitera, P Ridky, J Rizi, V Rodriguez, G Salamida, F Schovanek, P Spinka, H Strazzeri, E Ulrich, A Yusof, ZM Vacek, V Valente, P Verzi, V Viccaro, J Waldenmaier, T AF Ave, M. Bohacova, M. Buonomo, B. Busca, N. Cazon, L. Chemerisov, S. D. Conde, M. E. Crowell, R. A. Di Carlo, P. Di Giulio, C. Doubrava, M. Esposito, A. Facal, P. Franchini, F. J. Gebhardt, J. Graber, T. Hoerandel, J. Hrabovsky, M. Iarlori, M. Kasprzyk, T. E. Keilhauer, B. Klages, H. Kleifges, M. Kuhlmann, S. Mazzitelli, G. Meron, M. Nozka, L. Obermeier, A. Palatka, M. Petrera, S. Privitera, P. Ridky, J. Rizi, V. Rodriguez, G. Salamida, F. Schovanek, P. Spinka, H. Strazzeri, E. Ulrich, A. Yusof, Z. M. Vacek, V. Valente, P. Verzi, V. Viccaro, J. Waldenmaier, T. CA AIRFLY Collaboration TI Energy dependence of air fluorescence yield measured by AIRFLY SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence detection; Ultra high energy cosmic rays; Energy deposit ID DETECTOR AB In the fluorescence detection of ultra high energy (greater than or similar to 10(18) eV) cosmic rays, the number of emitted fluorescence photons is assumed to be proportional to the energy deposited in air by shower particles. We have performed measurements of the fluorescence yield in atmospheric gases excited by electrons over energies ranging from keV to hundreds of MeV in several accelerators. We found that within the measured energy ranges the proportionality holds at the level of few %. (C) 2008 Elsevier B.V. All rights reserved. C1 [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Aquila, Italy. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, I-67010 Coppito, Italy. [Ave, M.; Busca, N.; Cazon, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bohacova, M.; Hrabovsky, M.; Nozka, L.; Palatka, M.; Ridky, J.; Schovanek, P.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Buonomo, B.; Mazzitelli, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Sez Frascati, I-00044 Rome, Italy. [Chemerisov, S. D.; Conde, M. E.; Crowell, R. A.; Franchini, F. J.; Gebhardt, J.; Graber, T.; Kasprzyk, T. E.; Kuhlmann, S.; Meron, M.; Spinka, H.; Yusof, Z. M.; Viccaro, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Di Giulio, C.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Di Giulio, C.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Sez INFN, I-00133 Rome, Italy. [Doubrava, M.; Vacek, V.] Czech Tech Univ, Prague 16607 6, Czech Republic. [Facal, P.] Dept Fis Particulas, E-15782 Santiago De Compostela, Spain. [Hoerandel, J.; Keilhauer, B.; Obermeier, A.] Univ Karlsruhe TH, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Klages, H.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Kleifges, M.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Ulrich, A.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Valente, P.] Sez INFN Roma 1, I-00185 Rome, Italy. RP Salamida, F (reprint author), Univ Aquila, Dipartimento Fis, Via Vetoio, I-67010 Coppito, Aquila, Italy. EM francesco.salamida@aquila.infn.it RI valente, paolo/A-6640-2010; Buonomo, Bruno/F-6186-2010; Verzi, Valerio/B-1149-2012; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Ridky, Jan/H-6184-2014; Di Giulio, Claudio/B-3319-2015; Di Carlo, Piero/C-1657-2016; Di Carlo, Piero/Q-4450-2016; Rodriguez Fernandez, Gonzalo/C-1432-2014; OI valente, paolo/0000-0002-5413-0068; Buonomo, Bruno/0000-0002-3612-7308; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Di Giulio, Claudio/0000-0002-0597-4547; Di Carlo, Piero/0000-0003-4971-4509; Di Carlo, Piero/0000-0003-4971-4509; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Salamida, Francesco/0000-0002-9306-8447; Petrera, Sergio/0000-0002-6029-1255; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X FU MSMT [CR LC 527, 1M06002]; ASCR [AV0Z10100502, AV0Z10100522]; TARI [RII3-CT-2004-506078] FX We thank the staff of Argonne National Laboratory for their Support. This work was also supported by the grant of MSMT CR LC 527 and 1M06002 and ASCR grants AV0Z10100502 and AV0Z10100522. A. Obermeier and J.R. Horandel acknowledge the Support of VIHKOS, which made the participation at the measurement campaigns possible. We acknowledge financial Support by TARI project RII3-CT-2004-506078 and the BMBF. NR 10 TC 18 Z9 18 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 46 EP 49 DI 10.1016/j.nima.2008.08.051 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600006 ER PT J AU Ave, M Bohacova, M Buonomo, B Busca, N Cazon, L Chemerisov, SD Conde, ME Crowell, RA Di Carlo, P Di Giulio, C Doubrava, M Esposito, A Facal, P Franchini, FJ Horandel, J Hrabovsky, M Iarlori, M Kasprzyk, TE Keilhauer, B Klages, H Kleifges, M Kuhlmann, S Mazzitelli, G Nozka, L Obermeier, A Palatka, M Petrera, S Privitera, P Ridky, J Rizi, V Rodriguezf, G Salamida, F Schovanek, P Spinka, H Strazzeri, E Ulrich, A Yusof, ZM Vacek, V Valente, P Verzi, V Waldenmaier, T AF Ave, M. Bohacova, M. Buonomo, B. Busca, N. Cazon, L. Chemerisov, S. D. Conde, M. E. Crowell, R. A. Di Carlo, P. Di Giulio, C. Doubrava, M. Esposito, A. Facal, P. Franchini, F. J. Hoerandel, J. Hrabovsky, M. Iarlori, M. Kasprzyk, T. E. Keilhauer, B. Klages, H. Kleifges, M. Kuhlmann, S. Mazzitelli, G. Nozka, L. Obermeier, A. Palatka, M. Petrera, S. Privitera, P. Ridky, J. Rizi, V. Rodriguezf, G. Salamida, F. Schovanek, P. Spinka, H. Strazzeri, E. Ulrich, A. Yusof, Z. M. Vacek, V. Valente, P. Verzi, V. Waldenmaier, T. CA AIRFLY Collaboration TI Temperature and humidity dependence of air fluorescence yield measured by AIRFLY SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence detection; Ultra high energy cosmic rays; Nitrogen collisional quenching ID PHOTON YIELDS; COSMIC-RAYS; ELECTRONS; NITROGEN; DETECTOR AB The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays. (C) 2008 Elsevier B.V. All rights reserved. C1 [Privitera, P.; Rodriguezf, G.; Strazzeri, E.; Verzi, V.] Univ Roma Tor Vergata, Dept Fis, I-00133 Rome, Italy. [Privitera, P.; Rodriguezf, G.; Strazzeri, E.; Verzi, V.] Sez INFN, I-00133 Rome, Italy. [Ave, M.; Busca, N.; Cazon, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bohacova, M.; Hrabovsky, M.; Palatka, M.; Ridky, J.; Schovanek, P.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Buonomo, B.; Mazzitelli, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Sez Frascati, I-00044 Frascati, Italy. [Chemerisov, S. D.; Conde, M. E.; Crowell, R. A.; Franchini, F. J.; Kasprzyk, T. E.; Kuhlmann, S.; Yusof, Z. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Aquila, Italy. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, I-67010 Coppito, Aquila, Italy. [Doubrava, M.; Vacek, V.] Czech Tech Univ, Prague 16607 6, Czech Republic. [Facal, P.] Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain. [Hoerandel, J.; Keilhauer, B.; Obermeier, A.] Univ Karlsruhe TH, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Klages, H.; Waldenmaier, T.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Kleifges, M.] Forschungszentrum Karlsruhe, Inst Prozessdatenverabeitung & Elek, D-76021 Karlsruhe, Germany. [Ulrich, A.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Valente, P.] Sez INFN Roma 1, I-00185 Rome, Italy. RP Privitera, P (reprint author), Univ Roma Tor Vergata, Dept Fis, Via Ric Sci, I-00133 Rome, Italy. EM priviter@roma2.infn.it RI valente, paolo/A-6640-2010; Buonomo, Bruno/F-6186-2010; Verzi, Valerio/B-1149-2012; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Ridky, Jan/H-6184-2014; Di Giulio, Claudio/B-3319-2015; Di Carlo, Piero/C-1657-2016; Di Carlo, Piero/Q-4450-2016; Rodriguez Fernandez, Gonzalo/C-1432-2014; OI Petrera, Sergio/0000-0002-6029-1255; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; valente, paolo/0000-0002-5413-0068; Buonomo, Bruno/0000-0002-3612-7308; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Di Giulio, Claudio/0000-0002-0597-4547; Di Carlo, Piero/0000-0003-4971-4509; Di Carlo, Piero/0000-0003-4971-4509; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Salamida, Francesco/0000-0002-9306-8447 FU MSMT [CR LC 527, 1M06002]; ASCR [AV0Z10100502, AV0Z10100522]; TARI [RII3-CT-2004-506078] FX We thank the staff of Argonne National Laboratory for their support. This work was also supported by the Grant of MSMT CR LC 527 and 1M06002 and ASCR Grants AV0Z10100502 and AV0Z10100522. A. Obermeier and J.R. Horandel acknowledge the support of VIHKOS, which made the participation at the measurement campaigns possible. We acknowledge financial support by TARI Project RII3-CT-2004-506078 and the BMBF. NR 17 TC 22 Z9 22 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 50 EP 54 DI 10.1016/j.nima.2008.08.050 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600007 ER PT J AU Ave, M Bohacova, M Buonomo, B Busca, N Cazon, L Chernerisov, SD Conde, ME Crowell, RA Di Carlo, P Di Giulio, C Doubrava, M Esposito, A Facal, R Franchini, FJ Horandel, JR Hrabovsky, M Iarlori, M Kasprzyk, TE Keilhauer, B Klages, H Kleifges, M Kuhlmann, S Mazzitelli, G Nozka, L Obermeier, A Palatka, M Petrera, S Privitera, P Ridky, J Rizi, V Rodriguez, G Salamida, F Schovanek, P Spinka, H Strazzeri, E Ulrich, A Yusof, ZM Vacek, V Valente, R Verzi, V Waldenmaier, T AF Ave, M. Bohacova, M. Buonomo, B. Busca, N. Cazon, L. Chernerisov, S. D. Conde, M. E. Crowell, R. A. Di Carlo, P. Di Giulio, C. Doubrava, M. Esposito, A. Facal, R. Franchini, F. J. Hoerandel, J. R. Hrabovsky, M. Iarlori, M. Kasprzyk, T. E. Keilhauer, B. Klages, H. Kleifges, M. Kuhlmann, S. Mazzitelli, G. Nozka, L. Obermeier, A. Palatka, M. Petrera, S. Privitera, P. Ridky, J. Rizi, V. Rodriguez, G. Salamida, F. Schovanek, P. Spinka, H. Strazzeri, E. Ulrich, A. Yusof, Z. M. Vacek, V. Valente, R. Verzi, V. Waldenmaier, T. TI A novel method for the absolute fluorescence yield measurement by AIRFLY SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Air fluorescence detection; Ultra high energy cosmic rays ID PRESSURE-DEPENDENCE; PHOTON YIELDS; ELECTRONS; NITROGEN; EMISSION AB One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for Measurement of the absolute fluorescence yield of the 337 run line that has the advantage of reducing the systematic Uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process-the Cherenkov emission. Preliminary Measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons hive also shown that this technique can be applied at lower energies. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bohacova, M.; Hrabovsky, M.; Nozka, L.; Palatka, M.; Ridky, J.; Schovanek, P.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Ave, M.; Busca, N.; Cazon, L.; Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Buonomo, B.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Sez Frascati, I-00044 Rome, Italy. [Chernerisov, S. D.; Conde, M. E.; Crowell, R. A.; Franchini, F. J.; Kasprzyk, T. E.; Kuhlmann, S.; Spinka, H.; Yusof, Z. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Dipartimento Fis, I-67010 Coppito, Aquila, Italy. [Di Carlo, P.; Iarlori, M.; Privitera, P.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, I-67010 Coppito, Aquila, Italy. [Di Giulio, C.; Privitera, P.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Di Giulio, C.; Privitera, P.; Rodriguez, G.; Strazzeri, E.; Verzi, V.] Sezione Ist Nazl Fis Nucl, I-00133 Rome, Italy. [Doubrava, M.; Vacek, V.] Czech Tech Univ, Prague 16607 6, Czech Republic. [Facal, R.] Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain. [Hoerandel, J. R.; Keilhauer, B.; Obermeier, A.] Univ Karlsruhe TH, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Klages, H.; Waldenmaier, T.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Kleifges, M.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Ulrich, A.] Tech Univ Munich, Phys Dept E12, D-85740 Garching, Germany. [Valente, R.] Sez INFN Roma 1, I-00185 Rome, Italy. RP Bohacova, M (reprint author), Acad Sci Czech Republic, Inst Phys, Slovance 2, CZ-18221 Prague 8, Czech Republic. EM bohacova@fz.cz RI Buonomo, Bruno/F-6186-2010; Verzi, Valerio/B-1149-2012; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Ridky, Jan/H-6184-2014; Di Giulio, Claudio/B-3319-2015; Di Carlo, Piero/C-1657-2016; Di Carlo, Piero/Q-4450-2016; OI Buonomo, Bruno/0000-0002-3612-7308; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Di Giulio, Claudio/0000-0002-0597-4547; Di Carlo, Piero/0000-0003-4971-4509; Di Carlo, Piero/0000-0003-4971-4509; Salamida, Francesco/0000-0002-9306-8447; Petrera, Sergio/0000-0002-6029-1255; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X FU MSMT [CR LC 527, 1M06002]; ASCR [AV0Z10100502, AV0Z10100522]; TARI [RII3-CT-2004-506078] FX We thank the staff of Argonne National Laboratory for their support. This work was also supported by the grant of MSMT CR LC 527 and 1M06002 and ASCR Grants AV0Z10100502 and AV0Z10100522. A. Cbermeier and J.R. Horandel acknowledge the support of VIHKOS, which made the participation at the measurement campaigns possible. We acknowledge financial support by TARI project RII3-CT-2004-506078 and the BMBF. NR 15 TC 15 Z9 15 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 55 EP 60 DI 10.1016/j.nima.2008.08.049 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600008 ER PT J AU Nelson, MA Triplett, LA Colman, JJ Roussel-Dupre, R AF Nelson, M. A. Triplett, L. A. Colman, J. J. Roussel-Dupre, R. TI Comparison of a model for air fluorescence via electron beam excitation with experimental data SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electrical discharge physics; Air fluorescence; Lightning ID COLLISIONAL DEACTIVATION; VIBRATIONAL POPULATIONS; RATE CONSTANTS; H2O MOLECULES; NITROGEN; N-2; STATES; N-2(C-3-PI(U); YIELD; O-2 AB Air fluorescence is a process that is important in a variety of subject areas including sprites, plasmas, cosmic ray showers, and Teller light from nuclear detonations. In 1968, Davidson and O'Neil published the results of an experiment that measured fluorescence efficiencies from about 300 to 1000 nm. In this paper, we model an electron beam from first principles and compare our air fluorescence efficiency results to these measurements. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nelson, M. A.; Triplett, L. A.; Colman, J. J.; Roussel-Dupre, R.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Nelson, MA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mnelson@lanl.gov FU United States Department of Energy, Nonproliferation Office FX This work was funded by the United States Department of Energy, Nonproliferation Office. NR 22 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2008 VL 597 IS 1 BP 110 EP 114 DI 10.1016/j.nima.2008.08.059 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 383UX UT WOS:000261700600017 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACS Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the Electron Charge Asymmetry in p(p)over-bar -> W plus X -> e nu plus X Events at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONS AB We present a measurement of the electron charge asymmetry in p (p) over bar -> W + X -> e nu + X events at a center of mass energy of 1.96 TeV using 0.75 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wang, L.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank P. Nadolsky for many useful discussions about the theoretical predictions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 15 TC 47 Z9 47 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 211801 DI 10.1103/PhysRevLett.101.211801 PG 7 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500011 ER PT J AU Abbott, B Abbott, R Adhikari, R Ajith, P Allen, B Allen, G Amin, R Anderson, SB Anderson, WG Arain, MA Araya, M Armandula, H Armor, P Aso, Y Aston, S Aufmuth, P Aulbert, C Babak, S Ballmer, S Bantilan, H Barish, BC Barker, C Barker, D Barr, B Barriga, P Barton, MA Bartos, I Bastarrika, M Bayer, K Betzwieser, J Beyersdorf, PT Bilenko, IA Billingsley, G Biswas, R Black, E Blackburn, K Blackburn, L Blair, D Bland, B Bodiya, TP Bogue, L Bork, R Boschi, V Bose, S Brady, PR Braginsky, VB Brau, JE Brinkmann, M Brooks, A Brown, DA Brunet, G Bullington, A Buonanno, A Burmeister, O Byer, RL Cadonati, L Cagnoli, G Camp, JB Cannizzo, J Cannon, K Cao, J Cardenas, L Casebolt, T Castaldi, G Cepeda, C Chalkley, E Charlton, P Chatterji, S Chelkowski, S Chen, Y Christensen, N Clark, D Clark, J Cokelaer, T Conte, R Cook, D Corbitt, T Coyne, D Creighton, JDE Cumming, A Cunningham, L Cutler, RM Dalrymple, J Danzmann, K Davies, G DeBra, D Degallaix, J Degree, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Diaz, M Dickson, J Dietz, A Donovan, F Dooley, KL Doomes, EE Drever, RWP Duke, I Dumas, JC Dupuis, RJ Dwyer, JG Echols, C Effler, A Ehrens, P Espinoza, E Etzel, T Evans, T Fairhurst, S Fan, Y Fazi, D Fehrmann, H Fejer, MM Finn, LS Flasch, K Fotopoulos, N Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Garofoli, J Gholami, I Giaime, JA Giampanis, S Giardina, KD Goda, K Goetz, E Goggin, L Gonzalez, G Gossler, S Gouaty, R Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hanna, C Hanson, J Harms, J Harry, G Harstad, E Hayama, K Hayler, T Heefner, J Heng, IS Hennessy, M Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hosken, D Hough, J Huttner, SH Ingram, D Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kamat, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalili, FY Khan, R Khazanov, E Kim, C King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, RK Kozak, D Kozhevatov, I Krishnan, B Kwee, P Lam, PK Landry, M Lang, MM Lantz, B Lazzarini, A Lei, M Leindecker, N Leonhardt, V Leonor, I Libbrecht, K Lin, H Lindquist, P Lockerbie, NA Lodhia, D Lormand, M Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mandic, V Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Martin, I Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, R Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McIvor, G McKechan, D McKenzie, K Meier, T Melissinos, A Mendell, G Mercer, RA Meshkov, S Messenger, CJ Meyers, D Miller, J Minelli, J Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohanty, S Moreno, G Mossavi, K MowLowry, C Mueller, G Mukherjee, S Mukhopadhyay, H Muller-Ebhardt, H Munch, J Murray, P Myers, E Myers, J Nash, T Nelson, J Newton, G Nishizawa, A Numata, K O'Dell, J Ogin, G O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pan, Y Pankow, C Papa, MA Parameshwaraiah, V Patel, P Pedraza, M Penn, S Perreca, A Petrie, T Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Principe, M Prix, R Quetschke, V Raab, F Rabeling, DS Radkins, H Rainer, N Rakhmanov, M Ramsunder, M Rehbein, H Reid, S Reitze, DH Riesen, R Riles, K Rivera, B Robertson, NA Robinson, C Robinson, EL Roddy, S Rodriguez, A Rogan, AM Rollins, J Romano, JD Romie, J Route, R Rowan, S Rudiger, A Ruet, L Russell, P Ryan, K Sakata, S Samidi, M de la Jordana, LS Sandberg, V Sannibale, V Saraf, S Sarin, P Sathyaprakash, BS Sato, S Saulson, PR Savage, R Savov, P Schediwy, SW Schilling, R Schnabel, R Schofield, R Schutz, BF Schwinberg, P Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, LC Stochino, A Stone, R Strain, KA Strom, DM Stuver, A Summerscales, TZ Sun, KX Sung, M Sutton, PJ Takahashi, H Tanner, DB Taylor, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Torres, C Torrie, C Traylor, G Trias, M Tyler, W Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Van Den Broeck, C van der Sluys, M Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, P Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, H Ward, R Weinert, M Weinstein, A Weiss, R Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, M Zweizig, J Barthelmy, S Gehrels, N Hurley, KC Palmer, D AF Abbott, B. Abbott, R. Adhikari, R. Ajith, P. Allen, B. Allen, G. Amin, R. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Armandula, H. Armor, P. Aso, Y. Aston, S. Aufmuth, P. Aulbert, C. Babak, S. Ballmer, S. Bantilan, H. Barish, B. C. Barker, C. Barker, D. Barr, B. Barriga, P. Barton, M. A. Bartos, I. Bastarrika, M. Bayer, K. Betzwieser, J. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Biswas, R. Black, E. Blackburn, K. Blackburn, L. Blair, D. Bland, B. Bodiya, T. P. Bogue, L. Bork, R. Boschi, V. Bose, S. Brady, P. R. Braginsky, V. B. Brau, J. E. Brinkmann, M. Brooks, A. Brown, D. A. Brunet, G. Bullington, A. Buonanno, A. Burmeister, O. Byer, R. L. Cadonati, L. Cagnoli, G. Camp, J. B. Cannizzo, J. Cannon, K. Cao, J. Cardenas, L. Casebolt, T. Castaldi, G. Cepeda, C. Chalkley, E. Charlton, P. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Clark, D. Clark, J. Cokelaer, T. Conte, R. Cook, D. Corbitt, T. Coyne, D. Creighton, J. D. E. Cumming, A. Cunningham, L. Cutler, R. M. Dalrymple, J. Danzmann, K. Davies, G. DeBra, D. Degallaix, J. Degree, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Diaz, M. Dickson, J. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drever, R. W. P. Duke, I. Dumas, J. -C. Dupuis, R. J. Dwyer, J. G. Echols, C. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, T. Fairhurst, S. Fan, Y. Fazi, D. Fehrmann, H. Fejer, M. M. Finn, L. S. Flasch, K. Fotopoulos, N. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Garofoli, J. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Goda, K. Goetz, E. Goggin, L. Gonzalez, G. Gossler, S. Gouaty, R. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hanna, C. Hanson, J. Harms, J. Harry, G. Harstad, E. Hayama, K. Hayler, T. Heefner, J. Heng, I. S. Hennessy, M. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hosken, D. Hough, J. Huttner, S. H. Ingram, D. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kamat, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalili, F. Ya. Khan, R. Khazanov, E. Kim, C. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. K. Kozak, D. Kozhevatov, I. Krishnan, B. Kwee, P. Lam, P. K. Landry, M. Lang, M. M. Lantz, B. Lazzarini, A. Lei, M. Leindecker, N. Leonhardt, V. Leonor, I. Libbrecht, K. Lin, H. Lindquist, P. Lockerbie, N. A. Lodhia, D. Lormand, M. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mandic, V. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Martin, I. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McIvor, G. McKechan, D. McKenzie, K. Meier, T. Melissinos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. J. Meyers, D. Miller, J. Minelli, J. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohanty, S. Moreno, G. Mossavi, K. MowLowry, C. Mueller, G. Mukherjee, S. Mukhopadhyay, H. Mueller-Ebhardt, H. Munch, J. Murray, P. Myers, E. Myers, J. Nash, T. Nelson, J. Newton, G. Nishizawa, A. Numata, K. O'Dell, J. Ogin, G. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pan, Y. Pankow, C. Papa, M. A. Parameshwaraiah, V. Patel, P. Pedraza, M. Penn, S. Perreca, A. Petrie, T. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Principe, M. Prix, R. Quetschke, V. Raab, F. Rabeling, D. S. Radkins, H. Rainer, N. Rakhmanov, M. Ramsunder, M. Rehbein, H. Reid, S. Reitze, D. H. Riesen, R. Riles, K. Rivera, B. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Rodriguez, A. Rogan, A. M. Rollins, J. Romano, J. D. Romie, J. Route, R. Rowan, S. Ruediger, A. Ruet, L. Russell, P. Ryan, K. Sakata, S. Samidi, M. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Saraf, S. Sarin, P. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. Savov, P. Schediwy, S. W. Schilling, R. Schnabel, R. Schofield, R. Schutz, B. F. Schwinberg, P. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, L. C. Stochino, A. Stone, R. Strain, K. A. Strom, D. M. Stuver, A. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Takahashi, H. Tanner, D. B. Taylor, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Torres, C. Torrie, C. Traylor, G. Trias, M. Tyler, W. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Van Den Broeck, C. van der Sluys, M. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, H. Ward, R. Weinert, M. Weinstein, A. Weiss, R. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. Zweizig, J. Barthelmy, S. Gehrels, N. Hurley, K. C. Palmer, D. CA LIGO Sci Collaboration TI Search for Gravitational-Wave Bursts from Soft Gamma Repeaters SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIZED NEUTRON-STARS; RAY REPEATERS; FLARE; SGR-1806-20 AB We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10(45) and 9x10(52) erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models. C1 [Abbott, B.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Brooks, A.; Cannon, K.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D.; DeSalvo, R.; Dupuis, R. J.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Fricke, T.; Goggin, L.; Gustafson, E. K.; Heefner, J.; Ivanov, A.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Libbrecht, K.; Lindquist, P.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Meyers, D.; Miller, J.; Miyakawa, O.; Nash, T.; Ogin, G.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Samidi, M.; Sannibale, V.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Tyler, W.; Vass, S.; Villar, A.; Waldman, S. J.; Wallace, L.; Ward, R.; Weinstein, A.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Fehrmann, H.; Gossler, S.; Grote, H.; Harms, J.; Hewitson, M.; Lueck, H.; Machenschalk, B.; Messenger, C. J.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Rainer, N.; Rehbein, H.; Ruediger, A.; Schilling, R.; Schnabel, R.; Somiya, K.; Weinert, M.; Willke, B.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Dickson, J.; Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Rabeling, D. S.; Scott, S. M.; Searle, A. C.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chen, Y.; Savov, P.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Jones, G.; McKechan, D.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Van Den Broeck, C.] Cardi Univ, Cardiff CF24 3AA, S Glam, Wales. [Bantilan, H.; Christensen, N.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Aso, Y.; Bartos, I.; Dwyer, J. G.; Kalmus, P.; Kamat, S.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E.; Kozhevatov, I.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.; Mitra, S.; Mukhopadhyay, H.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Bayer, K.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T.; Donovan, F.; Duke, I.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Ottaway, D. J.; Ruet, L.; Sarin, P.; Shoemaker, D. H.; Smith, N. D.; Stein, L. C.; Weiss, R.; Wipf, C. C.; Zucker, M.] MIT, LIGO, Cambridge, MA 02139 USA. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Garofoli, J.; Gray, C.; Guenther, M.; Ingram, D.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F.; Radkins, H.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Bogue, L.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Lormand, M.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J.; Sellers, D.; Sibley, A.; Stuver, A.; Thacker, J.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Amin, R.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Hanna, C.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Rodriguez, A.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Bilenko, I. A.; Braginsky, V. B.; Khalili, F. Ya.; Mitrofanov, V. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Numata, K.; Barthelmy, S.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kawamura, S.; Kawazoe, F.; Kokeyama, K.; Leonhardt, V.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ, Tokyo 1818588, Japan. [Kalogera, V.; Kim, C.; van der Sluys, M.] Northwestern Univ, Evanston, IL 60208 USA. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Rakhmanov, M.; Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Casebolt, T.; Clark, D.; DeBra, D.; Degree, M.; Fejer, M. M.; Hennessy, M.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Route, R.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Dalrymple, J.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Desai, S.; Finn, L. S.; Kopparapu, R. K.; Lang, M. M.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Petrie, T.; Ramsunder, M.; Thorne, K. A.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Matzner, R.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Diaz, M.; Grosso, R.; Hayama, K.; Mohanty, S.; Mukherjee, S.; Romano, J. D.; Stone, R.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D.; Munch, J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cutler, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Robinson, E. L.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Dooley, K. L.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mercer, R. A.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Barr, B.; Barton, M. A.; Bastarrika, M.; Cagnoli, G.; Chalkley, E.; Clark, J.; Cumming, A.; Cunningham, L.; Grant, A.; Heng, I. S.; Heptonstall, A.; Hough, J.; Huttner, S. H.; Jones, R.; Martin, I.; Miller, J.; Murray, P.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Sorazu, B.; Strain, K. A.; Taylor, R.; Tokmakov, K. V.; Torrie, C.; Ward, H.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.] Univ Massachusetts, Amherst, MA 01003 USA. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E.; Ito, M.; Leonor, I.; Schofield, R.; Strom, D. M.] Univ Oregon, Eugene, OR 97403 USA. [Fricke, T.; Giampanis, S.; Melissinos, A.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Castaldi, G.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Ju, L.; Schediwy, S. W.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Hammer, D.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Rogan, A. M.] Washington State Univ, Pullman, WA 99164 USA. [Hurley, K. C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Palmer, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Babak, S.; Chen, Y.; Degallaix, J.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Schutz, B. F.; Sintes, A. M.; Somiya, K.; Takahashi, H.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. RP Abbott, B (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Bartos, Imre/A-2592-2017; Frey, Raymond/E-2830-2016; Ward, Robert/I-8032-2014; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Fricke, Thomas/B-6885-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Pitkin, Matthew/I-3802-2013; Martin, Iain/A-2445-2010; Lam, Ping Koy/A-5276-2008; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Kawabe, Keita/G-9840-2011; Finn, Lee Samuel/A-3452-2009; Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Schutz, Bernard/B-1504-2010; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Lucianetti, Antonio/G-7383-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; OI Sigg, Daniel/0000-0003-4606-6526; Frey, Raymond/0000-0003-0341-2636; Stein, Leo/0000-0001-7559-9597; Cokelaer, Thomas/0000-0001-6286-1138; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Pitkin, Matthew/0000-0003-4548-526X; Lam, Ping Koy/0000-0002-4421-601X; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Finn, Lee Samuel/0000-0002-3937-0688; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Minelli, Jeff/0000-0002-5330-912X; Sorazu, Borja/0000-0002-6178-3198; Hallam, Jonathan Mark/0000-0002-7087-0461; Nishizawa, Atsushi/0000-0003-3562-0990; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Aulbert, Carsten/0000-0002-1481-8319; Freise, Andreas/0000-0001-6586-9901; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; JPL [1282043, 1268385]; NASA [NAG5-11451, NNG04GM50G] FX The authors are grateful to the Konus-Wind team and to S. Mereghetti for information used in the S5 burst list, and to G. Lichti and D. Smith for information on the giant flare event time. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/ Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. K. C. H. is grateful for support under JPL contracts 1282043 and 1268385, and NASA grants NAG5-11451 and NNG04GM50G. NR 39 TC 58 Z9 58 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 211102 DI 10.1103/PhysRevLett.101.211102 PG 6 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500009 PM 19113401 ER PT J AU Bedwani, S Wegner, D Crommie, MF Rochefort, A AF Bedwani, Stephane Wegner, Daniel Crommie, Michael F. Rochefort, Alain TI Strongly Reshaped Organic-Metal Interfaces: Tetracyanoethylene on Cu(100) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ROOM-TEMPERATURE; AB-INITIO; SURFACES; MOLECULES; C-60; SIMULATION; CU(111); MAGNETS AB The interaction of the strong electron-acceptor tetracyanoethylene with the Cu(100) surface is studied with scanning tunneling microscopy experiments and first-principles density functional theory calculations. We compare two different adsorption models with the experimental results and show that the molecular self-assembly is caused by a strong structural modification of the Cu(100) surface rather than the formation of a coordination network by diffusing Cu adatoms. Surface atoms become highly buckled, and the chemisorption of tetracyanoethylene is accompanied by a partial charge transfer. C1 [Bedwani, Stephane; Rochefort, Alain] Ecole Polytech, Dept Genie Phys, Montreal, PQ H3C 3A7, Canada. [Bedwani, Stephane; Rochefort, Alain] Ecole Polytech, RQMP, Montreal, PQ H3C 3A7, Canada. [Wegner, Daniel; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wegner, Daniel; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bedwani, S (reprint author), Ecole Polytech, Dept Genie Phys, Montreal, PQ H3C 3A7, Canada. EM stephane.bedwani@polymtl.ca; crommie@berkeley.edu; alain.rochefort@polymtl.ca RI Rochefort, Alain/A-5124-2010; Wegner, Daniel/G-3545-2011; Wegner, Daniel/F-9700-2015 FU Natural Sciences and Engineering Research Council of Canada (NSERC); U. S. National Science Foundation through NSF NIRT [ECS-0609469]; Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT); Alexander von Humboldt Foundation FX This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the U. S. National Science Foundation through NSF NIRT Grant No. ECS-0609469. We are also grateful to the RQCHP for providing computational facilities. S. B. is grateful to the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) for financial support. D. W. thanks the Alexander von Humboldt Foundation for financial support. We also thank Ryan Yamachika for technical assistance and stimulating discussions. NR 30 TC 36 Z9 36 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 216105 DI 10.1103/PhysRevLett.101.216105 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500038 PM 19113430 ER PT J AU Chi, S Adroja, DT Guidi, T Bewley, R Li, S Zhao, J Lynn, JW Brown, CM Qiu, Y Chen, GF Lou, JL Wang, NL Dai, P AF Chi, Songxue Adroja, D. T. Guidi, T. Bewley, R. Li, Shiliang Zhao, Jun Lynn, J. W. Brown, C. M. Qiu, Y. Chen, G. F. Lou, J. L. Wang, N. L. Dai, Pengcheng TI Crystalline Electric Field as a Probe for Long-Range Antiferromagnetic Order and Superconducting State of CeFeAsO(1-x)F(x) SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCITATIONS; SYSTEMS AB We use inelastic neutron scattering to study the crystalline electric field (CEF) excitations of Ce(3+) in CeFeAsO(1-x)F(x) (x=0, 0.16). For nonsuperconducting CeFeAsO, the Ce CEF levels have three magnetic doublets in the paramagnetic state, but these doublets split into six singlets when the Fe ions order antiferromagnetically. For superconducting CeFeAsO(0.84)F(0.16) (T(c)=41 K), where the static antiferromagnetic order is suppressed, the Ce CEF levels have three magnetic doublets at h omega=0, 18.7, 58.4 meV at all temperatures. Careful measurements of the intrinsic linewidth Gamma and the peak position of the 18.7 meV mode reveal a clear anomaly at T(c), consistent with a strong enhancement of local magnetic susceptibility chi('')(h omega) below T(c). These results suggest that CEF excitations in the rare-earth oxypnictides can be used as a probe of spin dynamics in the nearby FeAs planes. C1 [Chi, Songxue; Li, Shiliang; Zhao, Jun; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lynn, J. W.; Brown, C. M.; Qiu, Y.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Adroja, D. T.; Guidi, T.; Bewley, R.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Chen, G. F.; Lou, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Chi, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; Brown, Craig/B-5430-2009; Chi, Songxue/A-6713-2013 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; Brown, Craig/0000-0002-9637-9355; Chi, Songxue/0000-0002-3851-9153 FU US DOE BES [DE-FG02-05ER46202]; US DOE; DCS [DMR-0454672]; CAS; Ministry of Science and Technology of China FX We thank B. D. Rainford, T. Yildirim for discussions and E. Goremychkin and R. Osborn for providing the CEF program. This work is supported by the US DOE BES through No. DE-FG02-05ER46202, and in part by the US DOE, Division of Scientific User Facilities. DCS is supported by NSF No. DMR-0454672. The work at the IOP, CAS, is supported by the NSF of China, the CAS, and the Ministry of Science and Technology of China. NR 16 TC 47 Z9 50 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 217002 DI 10.1103/PhysRevLett.101.217002 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500053 PM 19113445 ER PT J AU Coldea, AI Fletcher, JD Carrington, A Analytis, JG Bangura, AF Chu, JH Erickson, AS Fisher, IR Hussey, NE McDonald, RD AF Coldea, A. I. Fletcher, J. D. Carrington, A. Analytis, J. G. Bangura, A. F. Chu, J. -H. Erickson, A. S. Fisher, I. R. Hussey, N. E. McDonald, R. D. TI Fermi Surface of Superconducting LaFePO Determined from Quantum Oscillations SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (T(c)similar to 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surface is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor similar to 2. The quasi-two-dimensional Fermi surface consists of nearly nested electron and hole pockets, suggesting proximity to a spin or charge density wave instability. C1 [Coldea, A. I.; Fletcher, J. D.; Carrington, A.; Bangura, A. F.; Hussey, N. E.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Coldea, AI (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. RI Fletcher, Jonathan/J-9023-2012; Coldea, Amalia/C-1106-2013; McDonald, Ross/H-3783-2013; Hussey, Nigel/F-9699-2015 OI Mcdonald, Ross/0000-0002-5819-4739; Fletcher, Jonathan/0000-0002-2386-9361; McDonald, Ross/0000-0002-0188-1087; FU EPSRC (U. K.); Royal Society; U. S. DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF [DMR-0654118]; State of Florida FX We thank E. A. Yelland, N. Fox, and M. F. Haddow for technical help and I. Mazin for helpful comments. This work was supported financially by EPSRC (U. K.) and the Royal Society. A. I. C. is grateful to the Royal Society for financial support. Work at Stanford was supported by the U. S. DOE, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. Work performed at the NHMFL in Tallahassee, Florida, was supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the U. S. DOE. NR 20 TC 160 Z9 162 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 216402 DI 10.1103/PhysRevLett.101.216402 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500040 PM 19113432 ER PT J AU Evans-Lutterodt, K Stein, A Bozovic, N Taylor, A Tennant, DM AF Evans-Lutterodt, K. Stein, A. Bozovic, N. Taylor, A. Tennant, D. M. TI Evans-Lutterodt et al. Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Evans-Lutterodt, K.; Stein, A.; Bozovic, N.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Taylor, A.; Tennant, D. M.] Lucent Technol, Murray Hill, NJ 07974 USA. RP Evans-Lutterodt, K (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 3 TC 1 Z9 1 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 219502 DI 10.1103/PhysRevLett.101.219502 PG 1 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500070 ER PT J AU Guttenfelder, W Lore, J Anderson, DT Anderson, FSB Canik, JM Dorland, W Likin, KM Talmadge, JN AF Guttenfelder, W. Lore, J. Anderson, D. T. Anderson, F. S. B. Canik, J. M. Dorland, W. Likin, K. M. Talmadge, J. N. TI Effect of Quasihelical Symmetry on Trapped-Electron Mode Transport in the HSX Stellarator SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY CONFINEMENT; PLASMAS; STABILITY; COEFFICIENTS; TEMPERATURE; TURBULENCE; TOKAMAKS; FIELD AB This Letter presents theory-based predictions of anomalous electron thermal transport in the Helically Symmetric eXperiment stellarator, using an axisymmetric trapped-electron mode drift wave model. The model relies on modifications to a tokamak geometry that approximate the quasihelical symmetry in the Helically Symmetric eXperiment (particle trapping and local curvature) and is supported by linear 3D gyrokinetic calculations. Transport simulations predict temperature profiles that agree with experimental profiles outside a normalized minor radius of rho > 0.3 and energy confinement times that agree within 10% of measurements. The simulations can reproduce the large measured electron temperatures inside rho < 0.3 if an approximation for turbulent transport suppression due to shear in the radial electric field is included. C1 [Guttenfelder, W.; Lore, J.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Dorland, W.] Univ Maryland, Dept Phys, CSCAMM, IREAP, College Pk, MD 20742 USA. RP Guttenfelder, W (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM w.guttenfelder@warwick.ac.uk RI Dorland, William/B-4403-2009; OI Dorland, William/0000-0003-2915-724X; Canik, John/0000-0001-6934-6681; Lore, Jeremy/0000-0002-9192-465X FU U. S. Department of Energy [DE-FG02-93ER54222, DE-FC02-04ER54784] FX The authors thank W. A. Cooper for providing the TERPSICHORE and VVBAL codes, G. Rewoldt for providing FULL calculations for benchmarking, M. Barnes and D. Mikkelsen for assistance with the 3D GS2 calculations, and D. A. Spong for providing the PENTA code. This work was supported by the U. S. Department of Energy Contracts No. DE-FG02-93ER54222 and No. DE-FC02-04ER54784. Calculations were performed on the NERSC IBM SP3 supercomputer. NR 31 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 215002 DI 10.1103/PhysRevLett.101.215002 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500026 PM 19113418 ER PT J AU Ma, YZ Graham, MW Fleming, GR Green, AA Hersam, MC AF Ma, Ying-Zhong Graham, Matthew W. Fleming, Graham R. Green, Alexander A. Hersam, Mark C. TI Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM WIRES; WELLS AB Femtosecond two-pulse degenerate four-wave mixing spectroscopy was applied to study the exciton dephasing in a broad range of excitation intensities and lattice temperatures. We find that both exciton-exciton and exciton-phonon scattering have profound effects on the dephasing process. The dominant phonon mode involved in the dephasing is identified as the out-of-plane, transverse optical mode with a frequency of 847 cm(-1). The extracted homogeneous linewidths at all measured temperatures are in excellent agreement with the results of a single-tube photoluminescence experiment. C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Green, Alexander A.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Green, Alexander/B-6512-2008; Hersam, Mark/B-6739-2009; Graham, Michael/B-7518-2009; Ma, Yingzhong/L-6261-2016 OI Green, Alexander/0000-0003-2058-1204; Ma, Yingzhong/0000-0002-8154-1006 FU NSF FX This research was supported by the NSF. We thank L. Valkunas and Y.- C. Cheng for helpful discussion. NR 25 TC 40 Z9 40 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 217402 DI 10.1103/PhysRevLett.101.217402 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500058 PM 19113450 ER PT J AU Mckay, MR Venables, JA Drucker, J AF Mckay, Michael R. Venables, J. A. Drucker, Jeff TI Kinetically Suppressed Ostwald Ripening of Ge/Si(100) Hut Clusters SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-LIMITING GROWTH; MICROSTRUCTURAL EVOLUTION; GE; ISLANDS; SI(001); SI(100); SURFACE; GE(105) AB Low area density Ge/Si(100) hut cluster ensembles are stable during days-long growth temperature anneals. Real-time scanning tunneling microscopy shows that all islands grow slowly at a decreasing rate throughout the anneal. Island growth depletes the Ge supersaturation that, in turn, reduces the island growth rate. A mean-field facet nucleation and growth model quantitatively predicts the observed growth rate. It shows that Ostwald ripening is kinetically suppressed for Ge supersaturations high enough to support a critical nucleus size less than the smallest facet. C1 [Mckay, Michael R.] Arizona State Univ, Tempe, AZ 85287 USA. [Venables, J. A.; Drucker, Jeff] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Venables, J. A.] Univ Coll, London Ctr Nanotechnol, London WC1H 0AH, England. [Drucker, Jeff] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Mckay, MR (reprint author), Lawrence Semicond Res Lab, 2300 W Huntington Dr, Tempe, AZ 85282 USA. FU National Science Foundation; DOE FX This work was supported by the National Science Foundation. M. R. M. was supported by the DOE through Sandia National Laboratories. NR 29 TC 25 Z9 25 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 216104 DI 10.1103/PhysRevLett.101.216104 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500037 PM 19113429 ER PT J AU Mo, YN Zhu, WG Kaxiras, E Zhang, ZY AF Mo, Yina Zhu, Wenguang Kaxiras, Efthimios Zhang, Zhenyu TI Electronic Nature of Step-Edge Barriers against Adatom Descent on Transition-Metal Surfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILM GROWTH; EPITAXIAL-GROWTH; SELF-DIFFUSION; PSEUDOPOTENTIALS; MAGNETISM; ISLANDS; VIEW AB By studying a series of adatoms on representative transition-metal surfaces through first-principles calculations, we establish a clear correlation between the preferred mechanism and activation energy for adatom descent at a step and the relative degree of electronic shell filling of the adatom and the substrate. We also find an approximate linear relation between the adatom step-edge hopping barriers and the adatom-surface bonding strength with slope roughly proportional to the number of the adatom's nearest neighbors initially. These results may serve as simple guiding rules for predicting precise atomic surface morphologies in heteroepitaxial growth, as in formation of nanowires. C1 [Mo, Yina; Kaxiras, Efthimios] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Mo, Yina; Kaxiras, Efthimios] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Zhu, Wenguang; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhu, Wenguang; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mo, YN (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM wzhu3@utk.edu RI Zhu, Wenguang/F-4224-2011 OI Zhu, Wenguang/0000-0003-0819-595X FU DOE [DE-FG02-05ER46226, DE-FG0205ER46209]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE [DE-AC05-00OR22725]; NSF [DMR-0606485] FX This work was supported in part by DOE (CMSN Grant No. DE-FG02-05ER46226 and No. DE-FG0205ER46209, and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC), and by NSF (Grant No. DMR-0606485). The calculations were performed at NCCS of ORNL and NERSC of DOE. NR 23 TC 22 Z9 22 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 216101 DI 10.1103/PhysRevLett.101.216101 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500034 PM 19113426 ER PT J AU Pietryga, JM Zhuravlev, KK Whitehead, M Klimov, VI Schaller, RD AF Pietryga, Jeffrey M. Zhuravlev, Kirill K. Whitehead, Michael Klimov, Victor I. Schaller, Richard D. TI Evidence for Barrierless Auger Recombination in PbSe Nanocrystals: A Pressure-Dependent Study of Transient Optical Absorption SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; COLLOIDAL QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; RELAXATION; CONFINEMENT; IONIZATION; LIMIT AB We report rates of Auger recombination (AR) in zero-dimensional (0D) PbSe nanocrystals as a function of energy gap (E(g)) by using applied hydrostatic pressure to controllably shift E(g) according to the bulk deformation potential. Our studies reveal that the rate of AR in nanocrystals is insensitive to energy gap, which is in contrast with bulk semiconductors where this rate shows exponential dependence on E(g). These measurements represent the first direct experimental evidence that AR in 0D nanomaterials is barrierless, in distinction from bulk semiconductors. C1 [Pietryga, Jeffrey M.; Zhuravlev, Kirill K.; Whitehead, Michael; Klimov, Victor I.; Schaller, Richard D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Pietryga, JM (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov; rdsx@lanl.gov OI Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences, and Geosciences Division; DOE; National Science Foundation; W. M. Keck Foundation; DOE-BES [DE-AC02-06CH11357]; Intelligence Community Postdoctoral Research Program; DOE Center for Integrated Nanotechnologies FX This work was supported by the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, U. S. Department of Energy (DOE). XRD was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE, National Science Foundation, and the W. M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. J. M. P. was supported by the Intelligence Community Postdoctoral Research Program. V. I. K. acknowledges partial support from the DOE Center for Integrated Nanotechnologies. NR 30 TC 39 Z9 39 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 217401 DI 10.1103/PhysRevLett.101.217401 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500057 PM 19113449 ER PT J AU Wehling, TO Grigorenko, I Lichtenstein, AI Balatsky, AV AF Wehling, T. O. Grigorenko, I. Lichtenstein, A. I. Balatsky, A. V. TI Phonon-Mediated Tunneling into Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID ULTRASOFT PSEUDOPOTENTIALS; SPECTROSCOPY AB Recent scanning tunneling spectroscopy experiments on graphene reported an unexpected gap of about +/- 60 meV around the Fermi level [V. W. Brar , Appl. Phys. Lett. 91, 122102 (2007); Y. Zhang , Nature Phys. 4, 627 (2008)]. Here we give a theoretical investigation explaining the experimentally observed spectra and confirming the phonon-mediated tunneling as the reason for the gap: We study the real space properties of the wave functions involved in the tunneling process by means of ab initio theory and present a model for the electron-phonon interaction, which couples the graphene's Dirac electrons with quasifree-electron states at the Brillouin zone center. The self-energy associated with this electron-phonon interaction is calculated, and its effects on tunneling into graphene are discussed. Good agreement of the tunneling density of states within our model and the experimental dI/dU spectra is found. C1 [Wehling, T. O.; Lichtenstein, A. I.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Grigorenko, I.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wehling, TO (reprint author), Univ Hamburg, Inst Theoret Phys, Jungiusstr 9, D-20355 Hamburg, Germany. EM avb@lanl.gov RI Grigorenko, Ilya/B-5616-2009; Wehling, Tim/O-4642-2014; Lichtenstein, Alexander/K-8730-2012 OI Wehling, Tim/0000-0002-5579-2231; Lichtenstein, Alexander/0000-0003-0152-7122 FU U. S. DOE; SFB 668 (Germany) FX The authors thank E. Andrei, F. Binder, V. Brar, M. F. Crommie, H. Dahal, M. Galperin, J. Stroscio, Y. Zhang, and J. X. Zhu for useful discussions. This work was supported by the U. S. DOE at Los Alamos and SFB 668 (Germany). T. O. W. is grateful to LANL and the T11 group for hospitality during the visit, when the ideas presented in this work were conceived. NR 22 TC 46 Z9 47 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 21 PY 2008 VL 101 IS 21 AR 216803 DI 10.1103/PhysRevLett.101.216803 PG 4 WC Physics, Multidisciplinary SC Physics GA 375VI UT WOS:000261141500045 PM 19113437 ER PT J AU Kronfeld, AS AF Kronfeld, Andreas S. TI PHYSICS The Weight of the World Is Quantum Chromodynamics SO SCIENCE LA English DT Editorial Material ID LATTICE QCD; MASS C1 [Kronfeld, Andreas S.] Fermilab Natl Accelerator Lab, Theoret Phys Grp, Batavia, IL 60510 USA. RP Kronfeld, AS (reprint author), Fermilab Natl Accelerator Lab, Theoret Phys Grp, POB 500, Batavia, IL 60510 USA. EM ask@fnal.gov NR 19 TC 3 Z9 3 U1 0 U2 1 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 21 PY 2008 VL 322 IS 5905 BP 1198 EP 1199 DI 10.1126/science.1166844 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374HC UT WOS:000261033400027 PM 19023072 ER PT J AU Abdo, AA Ackermann, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bogaert, G Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Carlson, P Casandjian, JM Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S Davis, DS Dermer, CD de Angelis, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Focke, WB Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Harding, AK Hartman, RC Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Kanai, Y Kanbach, G Katagiri, H Kawai, N Kerr, M Kishishita, T Kiziltan, B Knodlseder, J Kocian, ML Komin, N Kuehn, F Kuss, M Latronico, L Lemoine-Goumard, M Longo, F Lonjou, V Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Marelli, M Mazziotta, MN McEnery, JE McGlynn, S Meurer, C Michelson, PF Mineo, T Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piano, G Pieri, L Piron, F Porter, TA Raino, S Rando, R Ray, PS Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Schalk, TL Sellerholm, A Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vilchez, N Vitale, V Wang, P Watters, K Winer, BL Wood, KS Yasuda, H Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bogaert, G. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carlson, P. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. Davis, D. S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Focke, W. B. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Harding, A. K. Hartman, R. C. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Kanai, Y. Kanbach, G. Katagiri, H. Kawai, N. Kerr, M. Kishishita, T. Kiziltan, B. Knodlseder, J. Kocian, M. L. Komin, N. Kuehn, F. Kuss, M. Latronico, L. Lemoine-Goumard, M. Longo, F. Lonjou, V. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mineo, T. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piano, G. Pieri, L. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Schalk, T. L. Sellerholm, A. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vilchez, N. Vitale, V. Wang, P. Watters, K. Winer, B. L. Wood, K. S. Yasuda, H. Ylinen, T. Ziegler, M. TI The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1 SO SCIENCE LA English DT Article ID X-RAY; EMISSION; RADIO; RADIATION AB Energetic young pulsars and expanding blast waves [ supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma- Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma- ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma- ray sources associated with star- forming regions and SNRs are such young pulsars. C1 [Kanbach, G.; Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kishishita, T.; Ohno, M.; Ozaki, M.; Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Kiziltan, B.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Knodlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Mineo, T.] Ist Astrofis Spaziale & Fis Cosmica Palermo, I-90146 Palermo, Italy. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Morselli, A.; Piano, G.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Morselli, A.; Piano, G.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Okumura, A.] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, Inst Estud Espacials Catalunya, Barcelona 08193, Spain. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estud Avancats, Barcelona, Spain. [Tramacere, A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Abdo, A. A.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Abdo, A. A.; Chekhtman, A.; Davis, D. S.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Wang, P.; Watters, K.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Starck, J. -L.] Univ Paris Diderot, Serv Astrophys, Lab Astrophys Interact Multiechelles, CEA Saclay,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Pieri, L.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bogaert, G.; Bruel, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, CNRS,IN2P3, F-91128 Palaiseau, France. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosmica, Ist Nazl Astrofis, I-20133 Milan, Italy. [Carlson, P.; Conrad, J.; McGlynn, S.; Ryde, F.; Ylinen, T.] AlbaNova, Dept Phys, Royal Inst Technol Kungliga Tekn Hogskolan, SE-10691 Stockholm, Sweden. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hartman, R. C.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Ritz, S.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cohen-Tanugi, J.; Farnier, C.; Guiriec, S.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agcy Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Italy. [Davis, D. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lonjou, V.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Brez, A.; Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lonjou, V.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Yasuda, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Yasuda, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; Ritz, S.] Univ Maryland, College Pk, MD 20742 USA. [Kanai, Y.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. RP Kanbach, G (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. EM gok@mpe.mpg.de; kent.wood@nrl.navy.mil; ziegler@scipp.ucsc.edu RI Komin, Nukri/J-6781-2015; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Nolan, Patrick/A-5582-2009; De Angelis, Alessandro/B-5372-2009; Saz Parkinson, Pablo Miguel/I-7980-2013; OI Sgro', Carmelo/0000-0001-5676-6214; Thorsett, Stephen/0000-0002-2025-9613; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Mineo, Teresa/0000-0002-4931-8445; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278 FU NASA; U. S. Department of Energy in the United States; Commissariat l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nuclaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology, the High Energy Accelerator Research Organization,; JAXA in Japan; K.A. Wallenberg Foundation; Swedish National Space Board in Sweden FX The Fermi LAT Collaboration acknowledges the generous support of a number of agencies and institutes, including NASA and the U. S. Department of Energy in the United States; the Commissariat l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nuclaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology, the High Energy Accelerator Research Organization, and JAXA in Japan, and the K.A. Wallenberg Foundation and the Swedish National Space Board in Sweden. NR 28 TC 74 Z9 74 U1 0 U2 3 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 21 PY 2008 VL 322 IS 5905 BP 1218 EP 1221 DI 10.1126/science.1165572 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374HC UT WOS:000261033400033 PM 18927355 ER PT J AU McFarland, BK Farrell, JP Bucksbaum, PH Guhr, M AF McFarland, Brian K. Farrell, Joseph P. Bucksbaum, Philip H. Guhr, Markus TI High Harmonic Generation from Multiple Orbitals in N(2) SO SCIENCE LA English DT Article ID FIELD; MOLECULES; IONIZATION AB Molecular electronic states energetically below the highest occupied molecular orbital ( HOMO) should contribute to laser- driven high harmonic generation (HHG), but this behavior has not been observed previously. Our measurements of the HHG spectrum of N(2) molecules aligned perpendicular to the laser polarization showed a maximum at the rotational half- revival. This feature indicates the influence of electrons occupying the orbital just below the N(2) HOMO, referred to as the HOMO-1. Such observations of lower- lying orbitals are essential to understanding subfemtosecond/subangstrom electronic motion in laser- excited molecules. C1 [McFarland, Brian K.; Farrell, Joseph P.; Bucksbaum, Philip H.; Guhr, Markus] SLAC, PULSE Inst, Menlo Pk, CA 94025 USA. [McFarland, Brian K.; Farrell, Joseph P.; Bucksbaum, Philip H.; Guhr, Markus] Stanford Univ, Dept Phys & Appl Phys, Stanford, CA 94305 USA. RP Guhr, M (reprint author), SLAC, PULSE Inst, Menlo Pk, CA 94025 USA. EM mguehr@stanford.edu RI Guehr, Markus/B-7446-2015 OI Guehr, Markus/0000-0002-9111-8981 FU U.S. Department of Energy Division of Basic Energy Sciences; Stanford Linear Accelerator Center; Humboldt Foundation fellowship FX We thank H. Merdji and O. Smirnova for insightful discussions. Supported by the U.S. Department of Energy Division of Basic Energy Sciences through the Stanford Linear Accelerator Center, and by a Humboldt Foundation fellowship (M.G.) NR 25 TC 264 Z9 269 U1 5 U2 54 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 21 PY 2008 VL 322 IS 5905 BP 1232 EP 1235 DI 10.1126/science.1162780 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374HC UT WOS:000261033400037 PM 18974318 ER PT J AU Kazantzidis, S Bullock, JS Zentner, AR Kravtsov, AV Moustakas, LA AF Kazantzidis, Stelios Bullock, James S. Zentner, Andrew R. Kravtsov, Andrey V. Moustakas, Leonidas A. TI COLD DARK MATTER SUBSTRUCTURE AND GALACTIC DISKS. I. MORPHOLOGICAL SIGNATURES OF HIERARCHICAL SATELLITE ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmology: theory; dark matter; galaxies: formation; galaxies: kinematics and dynamics; galaxies: structure; methods: numerical ID DIGITAL SKY SURVEY; SAGITTARIUS DWARF GALAXY; EXPLORING HALO SUBSTRUCTURE; SURVEY COMMISSIONING DATA; ANGULAR-MOMENTUM PROBLEM; MILKY-WAY TOMOGRAPHY; EDGE-ON GALAXIES; CANIS-MAJOR; STELLAR HALO; TIDAL STREAM AB We conduct dissipationless N-body simulations to investigate the cumulative effect of substructure impacts onto thin disk galaxies in the context of the Lambda CDM paradigm. Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. Substructure properties are culled from cosmological simulations of galaxy-sized CDM halos. We demonstrate that accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z similar to 1 should be common occurrences. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. One host halo merger history is subsequently used to seed controlled N-body experiments of repeated satellite encounters with an initially thin Milky-Way (MW) type disk galaxy. These simulations track the effects of six dark matter substructures, with initial masses in the range similar to(0.7-2) x 10(10) M-circle dot (similar to 20%-60% of the disk mass), crossing the disk in the past similar to 8 Gyr. We demonstrate that these accretion events produce several distinctive morphological signatures in the disk, including long-lived, low surface brightness, ringlike features in the outskirts; significant flares; bars; and faint filamentary structures above the disk plane. The final distribution of disk stars exhibits a complex vertical structure that is well described by a standard "thin-thick'' disk decomposition. We compare one of the resulting ringlike features in our simulations to the Monoceros Ring stellar structure in the MW. The comparison shows quantitative agreement in spatial distribution and kinematics, suggesting that such observed complex stellar components may arise naturally as disk stars are excited by encounters with CDM substructure. We conclude that satellite-disk interactions of the kind expected in Lambda CDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm. C1 [Kazantzidis, Stelios] Stanford Univ, Dept Phys, Menlo Pk, CA 94025 USA. [Kazantzidis, Stelios] Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Kazantzidis, Stelios] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Bullock, James S.] Univ Calif Irvine, Ctr Cosmol, Irvine, CA 92697 USA. [Bullock, James S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Zentner, Andrew R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Kravtsov, Andrey V.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kazantzidis, S (reprint author), Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. EM stelios@slac.stanford.edu; bullock@uci.edu; zentner@pitt.edu; andrey@oddjob.uchicago.edu; leonidas@jpl.nasa.gov RI Moustakas, Leonidas/F-3052-2014; Bullock, James/K-1928-2015 OI Moustakas, Leonidas/0000-0003-3030-2360; Bullock, James/0000-0003-4298-5082 FU Kavli Institute for Particle Astrophysics and Cosmology (KIPAC); NSF [AST 05-07916, AST 06-07377, AST 02-39759, AST 05-07596]; University of Pittsburgh; KICP FX The authors are grateful to Andrew Benson, Jeffrey Crane, Annette Ferguson, Andreea Font, Zeljko Ivezic, Kathryn Johnston, Lucio Mayer, Ben Moore, Jorge Penarrubia, Tom Quinn, Helio Rocha-Pinto, Steven Snell, Joachim Stadel, and Octavio Valenzuela for many stimulating discussions and Jeffrey Crane for making available in electronic format data from his sample of M giants in the Monoceros stream. S. K. would like to thank Frank van den Bosch for communicating unpublished results and John Dubinski and Larry Widrow for kindly making available the software used to set up the primary galaxy model. S. K., J. S. B., and A. V. K. acknowledge the Aspen Center for Physics for hosting the summer workshop "Deconstructing the Local Group-Dissecting Galaxy Formation in our Own Background'' where some of this work was completed. S. K. is also grateful to the Research Center for Astronomy and Applied Mathematics at the Academy of Athens for their hospitality during a visit when the final stages of this work were completed. S. K. is supported by a Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Postdoctoral Fellowship at Stanford University. J. S. B. is supported by NSF grants AST 05-07916 and AST 06-07377. A. R. Z. is funded by the University of Pittsburgh. A. V. K. is supported by the NSF grants AST 02-39759 and AST 05-07596 and by KICP. The work of L. A. M. was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The numerical simulations were performed on the zBox supercomputer at The University of Zurich and on the Cosmos cluster at the Jet Propulsion Laboratory. This research made use of the NASA Astrophysics Data System. NR 173 TC 173 Z9 173 U1 0 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2008 VL 688 IS 1 BP 254 EP 276 DI 10.1086/591958 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 370NU UT WOS:000260769700024 ER PT J AU Yoon, SC Iocco, F Akiyama, S AF Yoon, Sung-Chul Iocco, Fabio Akiyama, Shizuka TI EVOLUTION OF THE FIRST STARS WITH DARK MATTER BURNING SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dark matter; early universe; stars: evolution; stars: rotation ID GAMMA-RAY BURSTS; CAPTURE; WINDS AB Recent theoretical studies have revealed the possibly important role of the capture and annihilation process of weakly interacting massive particles (WIMPs) for the first stars. Using new evolutionary models of metal-free massive stars, we investigate the impact of such "dark matter burning" for the first stars in different environments of dark matter (DM) halos, in terms of the ambient WIMP density (rho(chi)). We find that, in agreement with existing literature, stellar lifetimes can be significantly prolonged for a certain range of rho(chi) (i.e., 10(10) less than or similar to rho(chi)[Gev cm(-3)] less than or similar to 10(11) with the current upper limit for the spin-dependent elastic scattering cross section sigma(SD)(0) = 5 x 10(-39) cm(2)). This greatly enhances the role of rotationally induced chemical mixing in rotating stars, in favor of abundant production of primary nitrogen, massive helium stars, and long gamma-ray bursts, from the first stars. We also find that stars with rho(chi) > x 10(11) Gev cm(-3) may not undergo nuclear burning stages, confirming the previous work, and that ionizing photon fluxes from such DM supported stars are very weak. Delayed metal enrichment and slow reionization in the early universe would have resulted if most of the first stars had been born in DM halos with such high rho(chi), unless it had been lowered significantly below the threshold for efficient DM burning on a short timescale. C1 [Yoon, Sung-Chul] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Iocco, Fabio] Observ Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Akiyama, Shizuka] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Akiyama, Shizuka] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Yoon, SC (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM scyoon@ucolick.org; iocco@arcetri.astro.it; shizuka@slac.stanford.edu FU Department of Energy; SLAC [DE-AC3-76SF00515]; MIUR; DOE SciDAC Program [DE-FC0206ER41438] FX As a note added in proof, we wish to acknowledge that Taoso et al. ( 2008) independently report similar results about the effect of DM burning on the MS lifetime and some stellar properties, using a different numerical code. S. A. is supported by a Department of Energy contract to SLAC DE-AC3-76SF00515. F. I. is supported by MIUR through grant PRIN-2006. S. C. Y. is supported by the DOE SciDAC Program ( DOE DE-FC0206ER41438). NR 27 TC 31 Z9 31 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2008 VL 688 IS 1 BP L1 EP L4 DI 10.1086/593976 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398LD UT WOS:000262732700001 ER PT J AU Alwall, J Le, MP Lisanti, M Wacker, JG AF Alwall, Johan Le, My-Phuong Lisanti, Mariangela Wacker, Jay G. TI SEARCHING FOR GLUINOS AT THE TEVATRON AND BEYOND SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review ID ALGORITHMS; COLLISIONS AB This paper describes how to perform model-independent searches for new pair-produced color octet particles that each subsequently decay into two jets plus missing energy. The details of this analysis are focussed on the Tevatron, however, all of the lessons can be carried over to the LHC. Current searches are not sensitive to all regions of parameter space because they employ CMSSM-motivated cuts. Optimizing the H-T and is not an element of(T) cuts expands the sensitivity of searches for all kinematically allowed decays. C1 [Alwall, Johan] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Alwall, J (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. FU DOE [DE-AC03-76SF00515]; NSF [PHY-0244728]; NDSEG; Soros FX We would like to thank Andy Haas, Greg Landsberg, Jean-Francois Grivaz, Tilman Plehn, Steffen Schumann and Patrice Verdier for helpful discussions. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker are supported under the DOE under contract DE-AC03-76SF00515 and partially by the NSF under grant PHY-0244728. M. Lisanti is supported by an NDSEG and Soros fellowship. NR 16 TC 5 Z9 5 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 20 PY 2008 VL 23 IS 29 BP 4637 EP 4646 DI 10.1142/S0217751X0804281X PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 379FS UT WOS:000261382700001 ER PT J AU Yang, J Toffoletto, FR Wolf, RA Sazykin, S Spiro, RW Brandt, PC Henderson, MG Frey, HU AF Yang, J. Toffoletto, F. R. Wolf, R. A. Sazykin, S. Spiro, R. W. Brandt, P. C. Henderson, M. G. Frey, H. U. TI Rice Convection Model simulation of the 18 April 2002 sawtooth event and evidence for interchange instability SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PERIODIC MAGNETOSPHERIC SUBSTORMS; NEAR-EARTH MAGNETOTAIL; DAWN-DUSK ASYMMETRY; PLASMA SHEET; INNER MAGNETOSPHERE; TAIL AB We present the results of a Rice Convection Model (RCM) simulation of the 18 April 2002 sawtooth event. This event occurred as a series of quasi-periodic substorms during fairly stable solar wind conditions. It is modeled by (1) prescribing a solar-wind-driven magnetic field model (T01_s) augmented by additional current loops representing the magnetic effects of the substorm current wedge and (2) by carefully specifying a substorm-phase-dependent plasma distribution at the RCM outer boundary at 8 Re such that a hot and attenuated plasma distribution is used after every substorm onset. The set of input parameters was adjusted to make the simulation results agree with the primary signatures of the sawtooth event, specifically the sequence of magnetic field stretching and dipolarization observed by the GOES spacecraft and the associated sharp increases and gradual decreases in the flux of energetic protons measured by the LANL/Synchronous Orbit Plasma Analyzer (SOPA) instruments on other geosynchronous spacecrafts. The results suggest the important role that higher temperature and lower density plasma-sheet plasma plays in producing flux enhancements at geosynchronous orbit. The results also confirm that induction electric fields associated with magnetic field collapse after substorm onsets can serve as a likely mechanism for the energization of particles up to 25 keV. Synthetic high-energy neutral atom images are compared with IMAGE/HENA measurements for 10-60 keV hydrogen atoms. Magnetic field dipolarization over a large range of local time resulted in a dramatic reduction in the plasma entropy parameter PV5/3 on the boundary. The simulation indicates that the ring current intensified 10-20 minutes after every onset, associated with the injection of low PV5/3 flux tubes through the boundary. The low PV5/3 plasma also produced an interchange convection in the inner magnetosphere, which drives Birkeland currents in a quasi-periodic upward-downward pattern with a lifetime of 40-60 minutes and spatial extent of 1.5-2.0 hours. The results suggest that the spatial quasi-periodic and nearly north-south-aligned auroral arcs observed by an IMAGE/FUV WIC detector might be caused by interchange instability. C1 [Yang, J.; Toffoletto, F. R.; Wolf, R. A.; Sazykin, S.; Spiro, R. W.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Brandt, P. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Frey, H. U.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yang, J (reprint author), Rice Univ, Dept Phys & Astron, 6100 Main St,MS-108, Houston, TX 77005 USA. EM jianyang@rice.edu RI Sazykin, Stanislav/C-3775-2008; Henderson, Michael/A-3948-2011; Brandt, Pontus/N-1218-2016; Yang, Jian/F-1903-2017; OI Sazykin, Stanislav/0000-0002-9401-4248; Henderson, Michael/0000-0003-4975-9029; Brandt, Pontus/0000-0002-4644-0306; Yang, Jian/0000-0002-4788-8823; Frey, Harald/0000-0001-8955-3282 FU NASA [NNG05GE36G, NNX06AC29G]; NSF [ATM-0720309]; NASA Heliospheric Theory Program [NNG05GH93G] FX We thank N. A. Tsyganenko for providing the substorm current wedge model source code. We are also grateful to C.-S. Huang, G. D. Reeves, and M. F. Thomsen for helpful discussions. The Dst indices and Kp indices were provided by the World Data Center for Geomagnetism, Kyoto. The Wind, GOES 8 and GOES 10 data were obtained through SPIDR. This work was supported by NASA Guest Investigator grant NNG05GE36G, by the National Space Weather Program under NSF grant ATM-0720309, and by the NASA Heliospheric Theory Program under grant NNG05GH93G. Work by P. C. Brandt at the Applied Physics Laboratory was supported by NASA grant NNX06AC29G. NR 44 TC 12 Z9 12 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 20 PY 2008 VL 113 IS A11 AR A11214 DI 10.1029/2008JA013635 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 375XN UT WOS:000261147200003 ER PT J AU Mei, DH Ge, QF Kwak, JH Kim, DH Szanyi, J Peden, CHF AF Mei, Donghai Ge, Qingfeng Kwak, Ja Hun Kim, Do Heui Szanyi, Janos Peden, Charles H. F. TI Adsorption and Formation of BaO Overlayers on gamma-Al2O3 Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NOX STORAGE MATERIALS; INDUCED MORPHOLOGY CHANGES; TOTAL-ENERGY CALCULATIONS; GAMMA-ALUMINA SURFACES; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; BASIS-SET; CATALYSTS; BAO/AL2O3; METALS AB First-principles density functional theory slab calculations were used to investigate adsorption, clustering, and overlayer formation of BaO on gamma-Al2O3 surfaces. Multiple stable adsorption configurations were identified for adsorbed BaO monomers and (BaO)(2) dimers on both (100) and (110) surfaces of gamma-Al2O3. Adsorption of BaO and (BaO)(2) induces significant relaxation of these gamma-Al2O3 surfaces. At high BaO coverage, up to a 1:1 ratio of BaO units to surface Al atoms, the adsorbed BaO monomers condensed, organizing to form a buckled monolayer-like overlayer on the surface. An "aggregation energy" was used to characterize this clustering of adsorbed BaO on the surface. Our results show that the initial BaO adsorption configuration has a strong effect on clustering and overlayer formation. A weakly adsorbed BaO monomer will thermodynamically favor clustering over being isolated. On the fully dehydrated gamma-Al2O3(100) surface, the clustering of BaO was thermodynamically unfavorable until 4.26 BaO/nm(2) if the additional BaO was from the most stable monomer adsorption sites; that is, those present at low BaO loadings. In contrast, aggregation became favorable if the additional BaO was from less stable sites occupied by BaO at high loadings. On the fully dehydrated gamma-Al2O3(110) surface, the formation of a BaO dimer was found to have the highest energy cost. On the other hand, the presence of hydroxyls on the surface enhances the stability of the adsorbed BaO monomers. As such, isolated BaO islands, rather than a complete BaO overlayer, are expected on the hydroxylated gamma-Al2O3 surfaces, consistent with recent experimental observations. C1 [Mei, Donghai; Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Ge, Qingfeng/A-8498-2009; Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU Inititute for Interfacial Catalysis at Pacific Northwest National Laboratory (PNNL); Laboratory Directed Research and Development (LDRD); National Energy Research Scientific Computing Center (NERSC); Molecular Science Computing Facility [GC3568]; William R. Wiley Environmental Molecular Sciences Laboratory (EMSL); U.S. Department of Energy national scientific; DOE Office of Biological and Environmental Research; Battelle Memorial Institute [DE-AC06-76RLO-1830] FX This work, performed at the Inititute for Interfacial Catalysis at Pacific Northwest National Laboratory (PNNL), was supported by a PNNL Laboratory Directed Research and Development (LDRD) project. The computing time was granted by the National Energy Research Scientific Computing Center (NERSC) and by a Computational Grand Challenge "Computational Catalysis" (GC3568) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. and is sponsored by the DOE Office of Biological and Environmental Research. PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. NR 29 TC 21 Z9 21 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 20 PY 2008 VL 112 IS 46 BP 18050 EP 18060 DI 10.1021/jp806212z PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 372TD UT WOS:000260923900050 ER PT J AU Dai, B Rankin, RB Johnson, JK Allendorf, MD Sholl, DS Zarkevich, NA Johnson, DD AF Dai, Bing Rankin, Rees B. Johnson, J. Karl Allendorf, Mark D. Sholl, David S. Zarkevich, Nikolai A. Johnson, Duane D. TI Influence of Surface Reactions on Complex Hydride Reversibility SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DESTABILIZED METAL-HYDRIDES; HYDROGEN STORAGE MATERIALS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; LITHIUM ALUMINUM-HYDRIDE; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; X-RAY-DIFFRACTION; 1ST-PRINCIPLES CALCULATIONS; ELECTRONIC-STRUCTURE AB Alkali metal hexahydride alanates, M3AlH6, are known to exist for M = Li, Na, and K. All three release hydrogen, forming MH and Al as the solid phase products. The reverse of this reaction, 6MH + 2Al + 3H(2) -> 2M(3)AlH(6), occurs without a catalyst for M = K, occurs only with a catalyst for M = Na, and has not been observed, even with a catalyst, for M = Li. Differences in the reactivities of the LiH, NaH, and KH surfaces may contribute to the observed differences in rehydriding. We have examined the reactivities of the low-energy NIH(100) surfaces with respect to gas phase H-2 H, O, O-2, and H2O in order to test this hypothesis. We have found that H, weakly physisorbs and that H is unbound to all three MH surfaces, relative to gas phase H, Atomic oxygen is very strongly bound to all three surfaces and O-2 dissociates without a barrier at low coverage on the LiH and NaH surfaces. The KH surface is more resistant to O-2 dissociation, but molecular O-2 strongly binds to the surface. We have identified dissociation pathways for H2O on all three MH surfaces, which results in the formation of surface metal hydroxide and gas phase H, The zero-point energy corrected dissociation activation energies for H2O are 23.0, 13.8, and 18.4 kJ/mol for LiH, NaH, and KH, respectively. We have performed kinetic modeling of the H2O dissociation process resulting from MH surfaces exposed to vapor phase water at room temperature and partial pressures of 0.03 bar (100% relative humidity) and 10(-6) bar (1 ppm). In both cases, our modeling predicts that all three MH surfaces will be essentially completely covered with a monolayer of OH groups in less than 10 ms. We therefore conclude that there are no substantial differences in the reactivities of the MH surfaces that can account for the observed differences in their abilities to form the hexahydride alanate phase. C1 [Dai, Bing] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Rankin, Rees B.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Rankin, Rees B.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Zarkevich, Nikolai A.; Johnson, Duane D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Zarkevich, Nikolai A.; Johnson, Duane D.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zarkevich, Nikolai A.; Johnson, Duane D.] Univ Illinois, Frederich Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Dai, B (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RI Zarkevich, Nikolai/A-3261-2013; Johnson, Karl/E-9733-2013; OI Zarkevich, Nikolai/0000-0003-1919-0177; Johnson, Karl/0000-0002-3608-8003; Johnson, Duane/0000-0003-0794-7283 FU US DOE [DE-FC3605G015066, DEFC3605GO15064]; NSF [DMR06-0017N] FX This work was supported by the US DOE through the Sandia Metal Hydride Center of Excellence, with grants DE-FC3605G015066 (Pittsburgh) and DEFC3605GO15064 (Illinois), and by the NSF through a computational grant, DMR06-0017N at NCSA. Calculations were performed at the University of Pittsburgh Center for Molecular and Materials Simulations. NR 63 TC 3 Z9 3 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 20 PY 2008 VL 112 IS 46 BP 18270 EP 18279 DI 10.1021/jp807162k PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 372TD UT WOS:000260923900079 ER PT J AU Burt, DM Knauth, LP Wohletz, KH Sheridan, MF AF Burt, D. M. Knauth, L. P. Wohletz, K. H. Sheridan, M. F. TI Surge deposit misidentification at Spor Mountain, Utah and elsewhere: A cautionary message for Mars SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE surge deposit; history; Mars; impact; volcanic ID CHICXULUB IMPACT STRUCTURE; MERIDIANI-PLANUM; SEDIMENTARY-ROCKS; BURNS FORMATION; ST-HELENS; BED FORMS; ORIGIN; ENVIRONMENT; YAXCOPOIL-1; DIAGENESIS AB Before base surges were described in association with nuclear blasts and explosive volcanic eruptions (especially, the 1980 eruption of Mount St. Helens, Washington), laminar and cross-bedded volcanogenic surge deposits were commonly misinterpreted as being of fluvial or aeolian origin. One well-documented example involves the "water-laid tuffs" in and near the Spor Mountain beryllium mine, Utah: other examples abound. In light of how frequently volcanogenic surge deposits have been misinterpreted on Earth, extreme caution is urged for Mars studies. Contrary to what has been claimed, the markedly cross-bedded, salty deposits at Meridiani Planum on Mars need not have been formed by a combination of aeolian and aqueous processes, and their contained hematitic spherules need not have formed as aqueous concretions. Given the lack of indications of volcanism in the vicinity, and the planet-wide abundance of impact craters, deposition by surges associated with distant impact targets consisting of brine-soaked, locally sulfidic regolith is a reasonable explanation for all features observed, especially if diagenesis and weathering are considered. The uniformly sized and shaped, Ni-enriched blue-gray hematitic spherules would then be some type of vapor condensation spherules (including accretionary lapilli). A similar interpretation is possible for deposits in the Home Plate area, Gusev Crater. Unlike on the dry and atmosphereless Moon, salty impact surge deposits containing spherules should be common, and well-preserved, on Mars. (c) 2008 Elsevier B.V. All rights reserved. C1 [Burt, D. M.; Knauth, L. P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wohletz, K. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sheridan, M. F.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. RP Burt, DM (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Box 871404, Tempe, AZ 85287 USA. EM dmburt@asu.edu; knauth@asu.edu; wohletz@lanl.gov; mfs@geology.buffalo.edu NR 51 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 20 PY 2008 VL 177 IS 4 BP 755 EP 759 DI 10.1016/j.jvolgeores.2008.01.044 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 384GH UT WOS:000261732800002 ER PT J AU Park, T Sidorov, VA Ronning, F Zhu, JX Tokiwa, Y Lee, H Bauer, ED Movshovich, R Sarrao, JL Thompson, JD AF Park, T. Sidorov, V. A. Ronning, F. Zhu, J. -X. Tokiwa, Y. Lee, H. Bauer, E. D. Movshovich, R. Sarrao, J. L. Thompson, J. D. TI Isotropic quantum scattering and unconventional superconductivity SO NATURE LA English DT Article ID PHASE-TRANSITIONS; CRITICAL-POINT; HEAVY; METALS; CRITICALITY; DISORDER; CERHIN5; SPIN AB Superconductivity without phonons has been proposed for strongly correlated electron materials that are tuned close to a zero- temperature magnetic instability of itinerant charge carriers(1). Near this boundary, quantum fluctuations of magnetic degrees of freedom assume the role of phonons in conventional superconductors, creating an attractive interaction that 'glues' electrons into superconducting pairs. Here we show that superconductivity can arise from a very different spectrum of fluctuations associated with a local (or Kondo-breakdown) quantum critical point(2-5) that is revealed in isotropic scattering of charge carriers and a sublinear, temperature-dependent electrical resistivity. At this critical point, accessed by applying pressure to the strongly correlated, local- moment antiferromagnet CeRhIn(5), magnetic and charge fluctuations coexist and produce electronic scattering that is maximal at the optimal pressure for superconductivity. This previously unanticipated source of pairing glue(6) opens possibilities for understanding and discovering new unconventional forms of superconductivity. C1 [Park, T.; Sidorov, V. A.; Ronning, F.; Zhu, J. -X.; Tokiwa, Y.; Lee, H.; Bauer, E. D.; Movshovich, R.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Sidorov, V. A.] RAS, Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. RP Park, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tuson@lanl.gov; jdt@lanl.gov RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Tokiwa, Yoshifumi/P-6593-2015; OI Tokiwa, Yoshifumi/0000-0002-6294-7879; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937; Zhu, Jianxin/0000-0001-7991-3918 FU Los Alamos Directed Research and Developmental; Russian Foundation for Basic Research [06-02-16590]; Program of the Presidium of RAS on Physics of Strongly Compressed Matter FX The authors thank Q. Si, C.D. Batista, A.V. Balatsky, C. Varma, Z. Nussivnov, D. Pines and N.J. Curro for discussions. Work at LosAlamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Science, with support from the Los Alamos Directed Research and Developmental programme. V.A.S. appreciates the support of the Russian Foundation for Basic Research (grant no. 06-02-16590) and the Program of the Presidium of RAS on Physics of Strongly Compressed Matter. NR 24 TC 58 Z9 58 U1 4 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 20 PY 2008 VL 456 IS 7220 BP 366 EP 368 DI 10.1038/nature07431 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374JM UT WOS:000261039600038 PM 19020616 ER PT J AU Hu, J Dagle, RA Johnson, BR Kreuzer, HW Gaspar, DJ Roberts, BQ Alexander, ML AF Hu, Jianli Dagle, Robert A. Johnson, Bradley R. Kreuzer, Helen W. Gaspar, Daniel J. Roberts, Benjamin Q. Alexander, M. Lizabeth TI Development of a Micropyrolyzer for Enhanced Isotope Ratio Measurement SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID PHASE ESCHERICHIA-COLI; STABLE-ISOTOPE; MASS-SPECTROMETRY; OXYGEN ISOTOPES; INTRACELLULAR WATER; HYDROGEN ISOTOPES; BONE PHOSPHATE; DRINKING-WATER; N-ALKANES; FOOD WEBS AB This paper presents design, fabrication, and testing of a microscale ceramic reactor for the pyrolysis of organic compounds. One application for this pyrolysis reactor is to convert the oxygen and hydrogen atoms in organic compounds to CO and H-2 for isotope ratio measurements in a continuous flow mode. Existing commercial pyrolyzers use high carrier gas flow rates (typically 80-100 mL/min) such that >95% of the CO and H-2 produced from a given sample is vented before introduction into the mass spectrometer. We describe here the fabrication and testing of a microscale pyrolysis reactor designed to be compatible with existing isotope ratio mass spectrometers. The microreactor uses carrier gas flow rates of 3-5 mL/min, decreasing the proportion of the CO and H-2 lost in venting and permitting analysis of samples 20-50 times smaller than can be analyzed with conventional pyrolysis reactors. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanolamine, can be fully decomposed to desired products CO and H-2, at a temperature of 1200 degrees C, which is 200 degrees C lower than conventionally reported. Furthermore, we are able to eliminate undesired products such as methane and CO2 in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micropyrolyzer quantitatively converts organic compounds to gases suitable for isotope ratio analysis. C1 [Hu, Jianli; Dagle, Robert A.; Johnson, Bradley R.; Kreuzer, Helen W.; Gaspar, Daniel J.; Roberts, Benjamin Q.; Alexander, M. Lizabeth] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Dagle, RA (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM robert.dagle@pnl.gov RI Gaspar, Dan/H-6166-2011; OI Gaspar, Daniel/0000-0002-8089-810X FU Laboratory Directed Research and Development program at Pacific Northwest National Laboratory FX A portion of this work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory in Richland, WA. We greatly acknowledge funding provided under the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. NR 54 TC 1 Z9 1 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 19 PY 2008 VL 47 IS 22 BP 8625 EP 8630 DI 10.1021/ie8009236 PG 6 WC Engineering, Chemical SC Engineering GA 372GB UT WOS:000260889000016 ER PT J AU Benyahia, S AF Benyahia, Sofiane TI Validation Study of Two Continuum Granular Frictional Flow Theories SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID COUETTE-FLOW; PARTICLES; MIXTURES; SPHERES; SOLIDS; MODEL; SLOW AB Granular kinetic theories are valid in both kinetic (dilute) flow regime and dense collisional (intermediate) flow regime. This is true as long as contacts between two colliding particles are instantaneous. Empirical theories derived from soil mechanics have been traditionally used in continuum modeling for dense granular flows dominated by enduring contact between particles. This study focuses on validating two continuum theories commonly used to model dense frictional granular flows. The first validation example is conducted for a granular bin discharge, and model predictions are compared with a well-known empirical correlation for the discharge rate. The second example involves a more detailed comparison of flow variables with predictions obtained using a discrete technique for granular flow in a simple shear cell. The frictional flow theory that is only activated at the quasi-static flow regime above maximum packing does not show accurate predictions. Better predictions are obtained using a frictional theory that extends in the intermediate flow regime below packing where both collisional and enduring contact between particles occur. C1 Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Benyahia, S (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM sofiane.benyahia@netl.doe.gov NR 22 TC 33 Z9 33 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 19 PY 2008 VL 47 IS 22 BP 8926 EP 8932 DI 10.1021/ie8003557 PG 7 WC Engineering, Chemical SC Engineering GA 372GB UT WOS:000260889000048 ER PT J AU Jackman, CM Arridge, CS Krupp, N Bunce, EJ Mitchell, DG McAndrews, HJ Dougherty, MK Russell, CT Achilleos, N Jones, GH Coates, AJ AF Jackman, C. M. Arridge, C. S. Krupp, N. Bunce, E. J. Mitchell, D. G. McAndrews, H. J. Dougherty, M. K. Russell, C. T. Achilleos, N. Jones, G. H. Coates, A. J. TI A multi-instrument view of tail reconnection at Saturn SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SUBSTORM; MAGNETOSPHERES; MAGNETOTAIL AB Three instances of tail reconnection events at Saturn involving the ejection of plasmoids downtail have been reported by Jackman et al. (2007) using data from Cassini's magnetometer (MAG). Here we show two newly discovered events, as identified in the MAG data by northward/southward turnings and intensifications of the field. We discuss these events along with the original three, with the added benefit of plasma and energetic particle data. The northward/southward turnings of the field elucidate the position of the spacecraft relative to the reconnection point and passing plasmoids, while the variability of the azimuthal and radial field components during these events indicates corresponding changes in the angular momentum of the magnetotail plasma following reconnection. Other observable effects include a reversal in flow direction of energetic particles, and the apparent evacuation of the plasma sheet following the passage of plasmoids. C1 [Jackman, C. M.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2BW, England. [Arridge, C. S.; Jones, G. H.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Achilleos, N.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bunce, E. J.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Krupp, N.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Arridge, C. S.; Achilleos, N.; Jones, G. H.; Coates, A. J.] UCL, Ctr Planetary Sci, London, England. RP Jackman, CM (reprint author), Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Prince Consort Rd, London SW7 2BW, England. EM c.jackman@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Achilleos, Nicholas/C-1647-2008; Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; Bunce, Emma/I-9067-2016; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Bunce, Emma/0000-0002-9456-0345; Jackman, Caitriona/0000-0003-0635-7361; Jones, Geraint/0000-0002-5859-1136; Achilleos, Nicholas/0000-0002-5886-3509 FU STFC FX The authors would like to acknowledge Lin Gilbert and Gethyn Lewis for CAPS-ELS data processing work at MSSL and Steve Kellock and the team at Imperial College London for MAG data processing. The authors would also like to acknowledge the financial support of the STFC for work at Imperial College London, MSSL, and Leicester. C. S. A. and A.J.C. were supported by the STFC rolling grant to MSSL/UCL. C.M.J. would like to thank Matt Taylor and Cesar Bertucci for useful discussions. NR 42 TC 38 Z9 38 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 19 PY 2008 VL 113 IS A11 AR A11213 DI 10.1029/2008JA013592 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 375XM UT WOS:000261147100003 ER PT J AU Moore, JD Perkins, GK Morrison, K Ghivelder, L Chattopadhyay, MK Roy, SB Chaddah, P Gschneidner, KA Pecharsky, VK Cohen, LF AF Moore, J. D. Perkins, G. K. Morrison, K. Ghivelder, L. Chattopadhyay, M. K. Roy, S. B. Chaddah, P. Gschneidner, K. A., Jr. Pecharsky, V. K. Cohen, L. F. TI Local probing of arrested kinetics in Gd(5)Ge(4) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID GLASS-TRANSITION; TEMPERATURE AB We present spatially localized magnetic relaxation measurements of the first-order magnetostructural transition in Gd(5)Ge(4) using a scanning Hall probe imaging technique. Relaxation measurements were performed at 6, 10 and 35 K to probe the field-increasing antiferromagnetic (AFM) to ferromagnetic (FM) transition and, when it can occur, the field-decreasing FM to AFM transition. We demonstrate that localized regions relax with time towards the ground state for a given field and temperature and observe different magnetic behaviours at the three measurement temperatures. In particular, the observed magnetic relaxation at 6 K is consistent with the idea of an arrested state at this temperature. Our scanning Hall probe imaging data give an insight into the phase nucleation and growth process of the martensitic-like magnetostructural first-order transition in Gd5Ge4. C1 [Moore, J. D.; Perkins, G. K.; Morrison, K.; Cohen, L. F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Ghivelder, L.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Chattopadhyay, M. K.; Roy, S. B.; Chaddah, P.] Raja Ramanna Ctr Adv Technol, Magnet Superconducting Mat Sect, Indore 452013, India. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Moore, JD (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. RI morrison, kelly/G-5249-2013; GHIVELDER, LUIS/L-1820-2015 OI morrison, kelly/0000-0001-5672-3310; GHIVELDER, LUIS/0000-0002-5667-6531 FU EPSRC [EP/E016243/1]; Leverhulme Trust; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division [DE-AC02-07CH11358] FX Work at Imperial College is supported by EPSRC EP/E016243/1 and the Leverhulme Trust. Work at the Ames Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division under contract No. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 27 TC 10 Z9 10 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 19 PY 2008 VL 20 IS 46 AR 465212 DI 10.1088/0953-8984/20/46/465212 PG 6 WC Physics, Condensed Matter SC Physics GA 366GW UT WOS:000260469700019 ER PT J AU Ruzmetov, D Zawilski, KT Senanayake, SD Narayanamurti, V Ramanathan, S AF Ruzmetov, Dmitry Zawilski, Kevin T. Senanayake, Sanjaya D. Narayanamurti, Venkatesh Ramanathan, Shriram TI Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID METAL TRANSITION; MOTT TRANSITION; X-RAY; VO2; TEMPERATURE; OXIDES AB Optical properties and valence band density of states near the Fermi level of high-quality VO(2) thin films have been investigated by mid-infrared reflectometry and hard-UV (h nu = 150 eV) photoemission spectroscopy. An exceptionally large change in reflectance from 2 to 94% is found upon the thermally driven metal-insulator transition (MIT). The infrared dispersion spectra of the reflectance across the MIT are presented and evidence for the percolative nature of the MIT is pointed out. The discrepancy between the MIT temperatures defined from the electrical and optical properties is found and its origin is discussed. The manifestation of the MIT is observed in the photoemission spectra of the V 3d levels. The analysis of the changes of the V 3d density of states is done and the top valence band shift upon the MIT is measured to be 0.6 eV. C1 [Ruzmetov, Dmitry; Narayanamurti, Venkatesh; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Zawilski, Kevin T.] BAE Syst Adv Syst & Technol, Nashua, NH 03061 USA. [Senanayake, Sanjaya D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ruzmetov, D (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 FU NSF-SIA; NSF [PHY-0601184]; Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725] FX The authors acknowledge the anonymous reviewers for pointing out a technical detail in the analysis of the photoemission spectra. This work was supported primarily by the NSF-SIA Supplement to the Nanoscale Science and Engineering Initiative under NSF Award no. PHY-0601184. Beamlines U12a and SDS acknowledge research sponsored by the Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725. NR 29 TC 31 Z9 31 U1 1 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 19 PY 2008 VL 20 IS 46 AR 465204 DI 10.1088/0953-8984/20/46/465204 PG 5 WC Physics, Condensed Matter SC Physics GA 366GW UT WOS:000260469700011 PM 21693844 ER PT J AU Sanati, M West, D Albers, RC AF Sanati, M. West, D. Albers, R. C. TI Calculations for displacive omega-phase transformations in Ti-Al alloys with Nb additions at finite temperature SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID GROUP-IV METALS; MOLECULAR-DYNAMICS; PHONON-DISPERSION; TITANIUM-ALLOYS; BCC PHASE; V ALLOYS; STABILITY; PSEUDOPOTENTIALS; AT.PERCENT; FORMALISM AB We examine by means of first-principles calculations the bcc-like (bcc: body centered cubic) to omega-like phase transformations in Ti-Al alloys with Nb additions at finite temperature. To simulate the alloy we use different discrete atomic configurations in a six atom unit cell of the stoichiometry Ti3Al2Nb. Calculated ground state energies show an instability in the ternary Ti3Al2Nb alloy against the omega structure type atomic displacement. To better understand the role of entropy in the stability/instability of these systems, the first-principles calculations are extended to finite temperature by including various contributions to the free energy. In particular, the vibrational free energy is calculated within a quasiharmonic approximation. It is shown that the bcc structure is stabilized by the contribution of the low energy modes to the lattice entropy against omega type atomic displacements. We find that configurational entropy plays a major role in the omega to B8(2) transformation. Calculated lattice parameters and transition temperatures are found to be in excellent agreement with experiment. C1 [Sanati, M.; West, D.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Sanati, M.; Albers, R. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanati, M (reprint author), Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. EM m.sanati@ttu.edu RI West, Damien/F-8616-2012 OI West, Damien/0000-0002-4970-3968 FU Advanced Research Program of the State of Texas; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the Advanced Research Program of the State of Texas and the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The generous amounts of computer time provided by Texas Tech's High Performance Computer Center was much appreciated. NR 50 TC 7 Z9 7 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 19 PY 2008 VL 20 IS 46 AR 465206 DI 10.1088/0953-8984/20/46/465206 PG 8 WC Physics, Condensed Matter SC Physics GA 366GW UT WOS:000260469700013 PM 21693846 ER PT J AU Luo, HM Wang, HY Bi, ZX Feldmann, DM Wang, YQ Burrell, AK McCleskey, TM Bauer, E Hawley, ME Jia, QX AF Luo, Hongmei Wang, Haiyan Bi, Zhenxing Feldmann, David M. Wang, Yongqiang Burrell, Anthony K. McCleskey, T. Mark Bauer, Eve Hawley, Marilyn E. Jia, Quanxi TI Epitaxial Ternary Nitride Thin Films Prepared by a Chemical Solution Method SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLYMER-ASSISTED DEPOSITION; SOLID-STATE CHEMISTRY; METAL NITRIDES; ELECTRONIC-STRUCTURE; CRYSTAL-CHEMISTRY; GROWING CLASS; SRTIN2; OXIDE AB It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN(2) films. Epitaxial. tetragonal SrTiN(2) films have been successfutly prepared by a chemical solution approach, polymer-assisted deposition. The structural, etectrical, and optical properties of the films are also investigated. C1 [Luo, Hongmei; Feldmann, David M.; Wang, Yongqiang; Burrell, Anthony K.; McCleskey, T. Mark; Bauer, Eve; Hawley, Marilyn E.; Jia, Quanxi] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, Haiyan; Bi, Zhenxing] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Luo, HM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM hluo@lani.gov; qxjia@lanl.gov RI McCleskey, Thomas/J-4772-2012; Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Mccleskey, Thomas/0000-0003-3750-3245 FU U.S. Department of Energy (DOE); DOE EE-RE Solid State Lighting Program; NSF/DMR Ceramic Program [NSF 0709831] FX We gratefully acknowledge the support of the U.S. Department of Energy (DOE) through the LANL/LDRD Program, DOE EE-RE Solid State Lighting Program, and NSF/DMR Ceramic Program (NSF 0709831). NR 23 TC 10 Z9 10 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 19 PY 2008 VL 130 IS 46 BP 15224 EP + DI 10.1021/ja803544c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 406QZ UT WOS:000263311300002 PM 18939844 ER PT J AU Hu, DH Tian, ZY Wu, WW Wan, W Li, ADQ AF Hu, Dehong Tian, Zhiyuan Wu, Wuwei Wan, Wei Li, Alexander D. Q. TI Photoswitchable Nanoparticles Enable High-Resolution Cell Imaging: PULSAR Microscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LOCALIZATION; SPIROPYRAN; DYNAMICS; ACID) AB Beyond-diffraction-limit optical imaging of cells will reveal biological mechanisms, cellular structures, and physiological processes in nanometer scale. Harnessing the photoswitching properties of spiropyran fluorophores, we achieved nanoresolution fluorescence imaging using photoactuated unimolecular logical switching attained reconstruction (PULSAR) microscopy. The PULSAR microscope successfully resolved nanostructures and subcellular organelles when the photoswitchable nanoparticles containing spiropyran dyes were used as fluorescent probes. C1 [Tian, Zhiyuan; Wu, Wuwei; Wan, Wei; Li, Alexander D. Q.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Hu, Dehong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, ADQ (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM dequan@wsu.edu RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 FU National Institute of General Medicine Sciences [GM065306]; National Science Foundation [CHE-0805547] FX A portion of the work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A.D.Q.L. acknowledges the support of the National Institute of General Medicine Sciences (GM065306) and National Science Foundation (CHE-0805547). NR 21 TC 60 Z9 62 U1 8 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 19 PY 2008 VL 130 IS 46 BP 15279 EP + DI 10.1021/ja805948u PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 406QZ UT WOS:000263311300029 PM 18939833 ER PT J AU Praneeth, VKK Paulat, F Berto, TC George, SD Nather, C Sulok, CD Lehnert, N AF Praneeth, V. K. K. Paulat, Florian Berto, Timothy C. George, Serena DeBeer Naether, Christian Sulok, Corinne D. Lehnert, Nicolai TI Electronic Structure of Six-Coordinate Iron(III)-Porphyrin NO Adducts: The Elusive Iron(III)-NO(radical) State and Its Influence on the Properties of These Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID NITRIC-OXIDE REDUCTASE; SOLUBLE GUANYLATE-CYCLASE; EFFECTIVE CORE POTENTIALS; RESONANCE VIBRATIONAL SPECTROSCOPY; BINDING HEME PROTEIN; NITROSYL COMPLEXES; MOLECULAR CALCULATIONS; CYTOCHROME-C; NITROSYL(OCTAETHYLPORPHINATO)IRON(III) PERCHLORATE; GROUP-8 METALLOPORPHYRINS AB This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO+ ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/angstrom, respectively. This is related to two strong pi back-bonds between Fe(II) and NO+. The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only similar to 1-3 kcal/mol above the Fe(II)-NO+ ground state. In addition, the Fe(II)-NO+ potential energy surface (PES) crosses the low-spin Fe(Ill)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 angstrom) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO+ state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/angstrom, respectively. The PIES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal (III) nitrosyls in general. C1 [Praneeth, V. K. K.; Paulat, Florian; Berto, Timothy C.; Sulok, Corinne D.; Lehnert, Nicolai] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [George, Serena DeBeer] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Naether, Christian] Univ Kiel, Inst Anorgan Chem, D-24098 Kiel, Germany. RP Lehnert, N (reprint author), Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. EM lehnertn@umich.edu RI Nather, Christian/E-4575-2011; DeBeer, Serena/G-6718-2012 FU DOE, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; SSRL; National Institutes of Health; National Center for Research Resources; Deutsche Forschungsgemeinschaft (DFG) [LE 1393/1-2]; Fonds der Chemischen Industrie (FCI) FX The Advanced Photon Source is supported by the DOE, Basic Energy Sciences, Office of Science, under Contract DE-AC02-06CH11357. S. D.G. acknowledges SSRL for funding. SSRL operations are funded by the Department of Energy, Office of Basic Energy Sciences. The Structural Molecular Biology program is Supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (Grant LE 1393/1-2). F.P. acknowledges the Fonds der Chemischen Industrie (FCI) for a Chemiefonds fellowship. NR 117 TC 79 Z9 79 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 19 PY 2008 VL 130 IS 46 BP 15288 EP 15303 DI 10.1021/ja801860u PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 406QZ UT WOS:000263311300032 PM 18942830 ER PT J AU Strmcnik, DS Tripkovic, DV van der Vliet, D Chang, KC Komanicky, V You, H Karapetrov, G Greeley, J Stamenkovic, VR Markovic, NM AF Strmcnik, Dusan S. Tripkovic, Dusan V. van der Vliet, Dennis Chang, Kee-Chul Komanicky, Vladimir You, Hoydoo Karapetrov, Goran Greeley, Jeffrey Stamenkovic, Vojislav R. Markovic, Nenad M. TI Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; SINGLE-CRYSTAL ELECTRODES; CARBON-MONOXIDE; INFRARED-SPECTROSCOPY; H-2/CO MIXTURES; SURFACE PROCESSES; STEPPED SURFACES; OXYGEN REDUCTION; ALLOY SURFACES; ACID-SOLUTIONS AB The development of electrocatalytic materials of enhanced activity and efficiency through careful manipulation, at the atomic scale, of the catalyst surface structure has long been a goal of electrochemists. To accomplish this ambitious objective, it would be necessary both to obtain a thorough understanding of the relationship between the atomic-level surface structure and the catalytic properties and to develop techniques to synthesize and stabilize desired active sites. In this contribution, we present a combined experimental and theoretical study in which we demonstrate how this approach can be used to develop novel, platinum-based electrocatalysts for the CO electrooxidation reaction in CO(g)-saturated solution; the Catalysts show activities superior to any pure-metal catalysts previously known. We use a broad spectrum of electrochemical surface science techniques to synthesize and rigorously characterize the catalysts, which are composed of adisland-covered platinum surfaces, and we show that highly undercoordinated atoms on the adislands themselves are responsible for the remarkable activity of these materials. C1 [Strmcnik, Dusan S.; Tripkovic, Dusan V.; van der Vliet, Dennis; Chang, Kee-Chul; Komanicky, Vladimir; You, Hoydoo; Karapetrov, Goran; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Greeley, Jeffrey] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov RI Chang, Kee-Chul/O-9938-2014; van der Vliet, Dennis/P-2983-2015; You, Hoydoo/A-6201-2011; Karapetrov, Goran/C-2840-2008 OI Chang, Kee-Chul/0000-0003-1775-2148; van der Vliet, Dennis/0000-0002-2524-527X; You, Hoydoo/0000-0003-2996-9483; Karapetrov, Goran/0000-0003-1113-0137 FU University of Chicago and Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the U.S. Department of Energy. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We acknowledge computer time at the Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory, The National Energy Research Scientific Computing Center (NERSC), and the Molecular Science Computing Facility (MCSF) at Pacific Northwest National Laboratory. NR 60 TC 92 Z9 93 U1 1 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 19 PY 2008 VL 130 IS 46 BP 15332 EP 15339 DI 10.1021/ja8032185 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 406QZ UT WOS:000263311300037 PM 18942789 ER PT J AU Varma, S Rempe, SB AF Varma, Sameer Rempe, Susan B. TI Structural Transitions in Ion Coordination Driven by Changes in Competition for Ligand Binding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INITIO MOLECULAR-DYNAMICS; QUASI-CHEMICAL THEORY; CRYSTAL-STRUCTURE; AB-INITIO; AQUEOUS-SOLUTIONS; POTASSIUM CHANNEL; FREE-ENERGY; X-RAY; DIELECTRIC-RELAXATION; BIOLOGICAL STRUCTURE AB Transferring Na(+) and K(+) ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations, and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into overcoordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry, and temperature, on the stabilities of ion coordination structures are also explored. C1 [Varma, Sameer; Rempe, Susan B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Varma, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM svarma@sandia.gov; slrempe@sandia.gov RI Rempe, Susan/H-1979-2011 FU Sandia's LDRD, program; National Institutes of Health; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL8500] FX We thank Dr. Eric Jakobsson and the NCSA at the University of Illinois Urbana-Champaign for providing us compute time on its SGI Altix shared-memory cluster. This work was supported, in part, by Sandia's LDRD, program and, in part, by the National Institutes of Health through the NIH Road Map for Medical Research. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500. NR 99 TC 39 Z9 39 U1 3 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 19 PY 2008 VL 130 IS 46 BP 15405 EP 15419 DI 10.1021/ja803575y PG 15 WC Chemistry, Multidisciplinary SC Chemistry GA 406QZ UT WOS:000263311300044 PM 18954053 ER PT J AU Rastogi, V Melle, S Calderon, OG Garcia, AA Marquez, M Velev, OD AF Rastogi, Vinayak Melle, Sonia Calderon, Oscar G. Garcia, Antonio A. Marquez, Manuel Velev, Orlin D. TI Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface SO ADVANCED MATERIALS LA English DT Article ID 3-DIMENSIONAL PHOTONIC CRYSTALS; COLLOIDAL CRYSTALS; EMULSION DROPLETS; LATEX-PARTICLES; TEMPLATES; OPALS; BANDGAP; SPHERES; ARRAYS AB Aqueous suspension droplets of monodisperse latex or latex and gold nanoparticles mixtures assume a spherical shape on superhydrophobic substrates. The drying sessile droplets serve as macroscopic templates for assembling microspheres into closed-packed structures. Upon illumination, the supraparticles display discrete colored rings because of the periodic arrangement of latex particles in the surface layer. The physical origin of the colored patterns is explained in detail. C1 [Rastogi, Vinayak; Velev, Orlin D.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Calderon, Oscar G.] Univ Complutense Madrid, Sch Opt, Dept Opt, Madrid 28037, Spain. [Garcia, Antonio A.; Marquez, Manuel] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. [Marquez, Manuel] NIST Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Velev, OD (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM odvelev@unity.ncsu.edu OI Gomez Calderon, Oscar/0000-0002-6193-0717; Melle, Sonia/0000-0002-9802-6908 FU Interdisciplinary Network of Emerging Science and Technology (INEST) FX This research was supported by the Interdisciplinary Network of Emerging Science and Technology (INEST). We gratefully acknowledge John Schneider (ASU) for preparing superhydrophobic substrates and Dr. Chuck Mooney (AIF, NCSU) for SEM imaging. NR 45 TC 63 Z9 63 U1 8 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 18 PY 2008 VL 20 IS 22 BP 4263 EP 4268 DI 10.1002/adma.200703008 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 381ME UT WOS:000261539500007 ER PT J AU Dukovic, G Merkle, MG Nelson, JH Hughes, SM Alivisatos, AP AF Dukovic, Gordana Merkle, Maxivell G. Nelson, Jaines H. Hughes, Steven M. Alivisatos, A. Paul TI Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures SO ADVANCED MATERIALS LA English DT Article ID FERMI-LEVEL EQUILIBRATION; SOLAR-ENERGY CONVERSION; PLATINUM NANOPARTICLES; CADMIUM-SULFIDE; PHOTOCATALYSIS; WATER; PHOTOELECTROLYSIS; PHOTOREDUCTION; NANOCRYSTALS; GROWTH AB Pt nanoparticles are deposited photochemically oil the surfaces of colloidal US nanorods and CdSe/CdS nanoheterostructures. While Pt deposits Lit varying positions along US nanorods, the deposition on CdSe/CdS occurs, preferentially near the CdSe core. C1 [Dukovic, Gordana; Merkle, Maxivell G.; Nelson, Jaines H.; Hughes, Steven M.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU AFOSR [FA9550-06-1-0488]; US Department of Energy [DE-AC02-05CH11231] FX We thank B. F. Sadtler, J. S. Owen, M. Steigerwald, and L. E. Brus for fruitful discussions. This work was supported in part by AFOSR Grant No. FA9550-06-1-0488 and by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 108 Z9 109 U1 10 U2 122 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 18 PY 2008 VL 20 IS 22 BP 4306 EP 4311 DI 10.1002/adma.200800384 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 381ME UT WOS:000261539500014 ER PT J AU Shevchenko, EV Bodnarchuk, MI Kovalenko, MV Talapin, DV Smith, RK Aloni, S Heiss, W Alivisatos, AP AF Shevchenko, Elena V. Bodnarchuk, Maryna I. Kovalenko, Maksym V. Talapin, Dmitri V. Smith, Rachel K. Aloni, Shaul Heiss, Wolfgang Alivisatos, A. Paul TI Gold/Iron Oxide Core/Hollow-Shell Nanoparticles SO ADVANCED MATERIALS LA English DT Article ID ONE-POT SYNTHESIS; GOLD NANOPARTICLES; QUANTUM-DOT; NANOCRYSTAL HETEROSTRUCTURES; ELECTROPHORETIC DEPOSITION; GAMMA-FE2O3 NANOPARTICLES; IRON NANOPARTICLES; CDSE NANOCRYSTALS; AU NANOCRYSTALS; BINARY AB Gold/iron oxide core/hollow-shell composite nanoparticles (NPs) with controllable shell thicknesses are synthesized (see figure). The gap between the Au core and iron oxide shell is formed as a result of different outward and inward diffusion rates of Fe and 0, respectively. Control over interparticle interactions allows encapsulation of several Au cores inside one iron oxide shell. Superparamagnetic measurements of the NPs at room temperature demonstrate the plasmon resonance at 565 nm. C1 [Shevchenko, Elena V.; Talapin, Dmitri V.; Smith, Rachel K.; Aloni, Shaul; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Heiss, Wolfgang] Univ Linz, Inst Solid State Phys & Semicond, A-4040 Linz, Austria. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM eshevchenko@anl.gov; apalivisatos@Ibl.gov RI Kovalenko, Maksym/B-6844-2008; Heiss, Wolfgang/F-1200-2011; Alivisatos , Paul /N-8863-2015 OI Kovalenko, Maksym/0000-0002-6396-8938; Heiss, Wolfgang/0000-0003-0430-9550; Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; Austrian Science Foundation FWF; Austrian Nanoinitiative; Wiley InterScience FX The work at the Molecular Foundry, Lawrence Berkeley National Laboratory, and at the Center for Nanoscale Materials was supported by the Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively. We acknowledge Dr. Jeffrey B. Kortright for helpful discussions. M.I.B., M.V.K., and W.H. acknowledge financial support from the Austrian Science Foundation FWF (Project start Y179) and from the Austrian Nanoinitiative (Project NSI). Supporting Information is available online from Wiley InterScience or from the author. NR 53 TC 202 Z9 202 U1 15 U2 174 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 18 PY 2008 VL 20 IS 22 BP 4323 EP 4329 DI 10.1002/adma.200702994 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 381ME UT WOS:000261539500017 ER PT J AU Chen, Y Jakoncic, J Wang, J Zheng, X Carpino, N Nassar, N AF Chen, Yunting Jakoncic, Jean Wang, Jin Zheng, Xiliang Carpino, Nick Nassar, Nicolas TI Structural and Functional Characterization of the C-Terminal Domain of the Ecdysteroid Phosphate Phosphatase from Bombyx mori Reveals a New Enzymatic Activity SO BIOCHEMISTRY LA English DT Article ID PROSTATIC ACID-PHOSPHATASE; HIS-ASP PHOSPHORELAY; EMBRYONIC-DEVELOPMENT; PROTEIN STRUCTURES; PROTHORACIC GLAND; CRYSTAL-STRUCTURE; BODY-SIZE; DROSOPHILA; ECDYSONE; INSECTS AB Here, we present the crystal structure of the ecdysone phosphate phosphatase (EPPase) phosphoglycerate mutase (PGM) homology domain, the first structure of a steroid phosphate phosphatase. The structure reveals an alpha/beta-fold common to members of the two histidine (2H)-phosphatase superfamily with strong homology to the Suppressor of T-cell receptor signaling-1 (StS-1(PGM)) protein. The putative EPPase(PGM) active site contains signature residues shared by 2H-phosphatase enzymes, including a conserved histidine (His80) that acts as a nucleophile during catalysis. The physiological substrate ecdysone 22-phosphate was modeled in a hydrophobic cavity close to the phosphate-binding site. EPPase(PGM) shows limited substrate specificity with an ability to hydrolyze steroid phosphates, the phospho-tyrosine (pTyr) substrate analogue para-nitrophenylphosphate (pNPP) and pTyr-containing peptides and proteins. Altogether, our data demonstrate a new protein tyrosine phosphatase (PTP) activity for EPPase. They suggest that EPPase and its closest homologues can be grouped into a distinct subfamily in the large 2H-phosphatase superfamily of proteins. C1 [Chen, Yunting; Nassar, Nicolas] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. [Jakoncic, Jean] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Wang, Jin] SUNY Stony Brook, Dept Chem Phys & Appl Math, Stony Brook, NY 11794 USA. [Wang, Jin; Zheng, Xiliang] Chinese Acad Sci, State Key Lab Electroanalyt Chem, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China. [Carpino, Nick] SUNY Stony Brook, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA. RP Nassar, N (reprint author), SUNY Stony Brook, Dept Physiol & Biophys, Basic Sci Tower, Stony Brook, NY 11794 USA. EM nicolas.nassar@sunysb.edu FU NTH [CA-115611]; DOD [NF060060]; Arthritis Foundation [LI07]; NIH-NIAID [R21AI075176]; National Multiple Sclerosis Society [CA1044A1]; U.S. Department of Energy [DE-AC02-98CH10886]; NIH/NIGMS [Y1 GM-0080-03] FX Research in N.N.'s laboratory is supported in part by grants from the NTH (No. CA-115611) and DOD (No. NF060060). Research in N.C.'s laboratory is supported by grants from The Arthritis Foundation (No. LI07), NIH-NIAID (No. R21AI075176), and The National Multiple Sclerosis Society through a Collaborative MS Research Center Award (No. CA1044A1). Research carried out at X6A beam line, National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. X6A is funded by NIH/NIGMS under agreement Y1 GM-0080-03. NR 39 TC 7 Z9 7 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 18 PY 2008 VL 47 IS 46 BP 12135 EP 12145 DI 10.1021/bi801318w PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 370VG UT WOS:000260790600024 PM 18937503 ER PT J AU Rodrigues, DF Ivanova, N He, ZL Huebner, M Zhou, JZ Tiedje, JM AF Rodrigues, Debora F. Ivanova, Natalia He, Zhili Huebner, Marianne Zhou, Jizhong Tiedje, James M. TI Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach SO BMC GENOMICS LA English DT Article ID HEAT-SHOCK RESPONSE; ANCIENT SIBERIAN PERMAFROST; ESCHERICHIA-COLI K-12; BACILLUS-SUBTILIS; LOW-TEMPERATURE; LISTERIA-MONOCYTOGENES; GENE-EXPRESSION; PROTEOMIC ANALYSIS; STRESS-RESPONSE; SP-NOV AB Background: Many microorganisms have a wide temperature growth range and versatility to tolerate large thermal fluctuations in diverse environments, however not many have been fully explored over their entire growth temperature range through a holistic view of its physiology, genome, and transcriptome. We used Exiguobacterium sibiricum strain 255-15, a psychrotrophic bacterium from 3 million year old Siberian permafrost that grows from -5 degrees C to 39 degrees C to study its thermal adaptation. Results: The E. sibiricum genome has one chromosome and two small plasmids with a total of 3,015 protein-encoding genes (CDS), and a GC content of 47.7%. The genome and transcriptome analysis along with the organism's known physiology was used to better understand its thermal adaptation. A total of 27%, 3.2%, and 5.2% of E. sibiricum CDS spotted on the DNA microarray detected differentially expressed genes in cells grown at -2.5 degrees C, 10 degrees C, and 39 degrees C, respectively, when compared to cells grown at 28 degrees C. The hypothetical and unknown genes represented 10.6%, 0.89%, and 2.3% of the CDS differentially expressed when grown at -2.5 degrees C, 10 degrees C, and 39 degrees C versus 28 degrees C, respectively. Conclusion: The results show that E. sibiricum is constitutively adapted to cold temperatures stressful to mesophiles since little differential gene expression was observed between 4 degrees C and 28 degrees C, but at the extremities of its Arrhenius growth profile, namely -2.5 degrees C and 39 degrees C, several physiological and metabolic adaptations associated with stress responses were observed. C1 [Rodrigues, Debora F.; Tiedje, James M.] Michigan State Univ, NASA, Astrobiol Inst, E Lansing, MI 48824 USA. [Rodrigues, Debora F.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Ivanova, Natalia] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Huebner, Marianne] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA. RP Rodrigues, DF (reprint author), Michigan State Univ, NASA, Astrobiol Inst, E Lansing, MI 48824 USA. EM rodri257@msu.edu; NNIvanova@lbl.gov; zhili.he@ou.edu; huebner@msu.edu; jzhou@ou.edu; tiedjej@msu.edu RI Rodrigues, Debora/H-4375-2012; He, Zhili/C-2879-2012; OI Rodrigues, Debora/0000-0002-3124-1443 FU NASA [NCC2-1274]; The United States Department of Energy FX This research was supported by a cooperative agreement with NASA Astrobiology Institute number NCC2-1274. The microarray synthesis was also supported by The United States Department of Energy under Genomics: GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov) of the Office of Biological and Environmental Research, Office of Science. Thanks to Alla Lapidus, Lynne Goodwin, Sam Pitluck, Linda Peters, Duncan Scott and Thanos Lykidis for their contributions to the Exiguobacterium sibiricum genome. Thanks to Miriam L. Land for providing the locus tag mapping tables. NR 69 TC 39 Z9 40 U1 2 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 18 PY 2008 VL 9 AR 547 DI 10.1186/1471-2164-9-547 PG 17 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 403UN UT WOS:000263107600002 PM 19019206 ER PT J AU Lee, DH Johnson, JR Kim, K Kim, KS AF Lee, D. -H. Johnson, J. R. Kim, K. Kim, K. -S. TI Effects of heavy ions on ULF wave resonances near the equatorial region SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INVARIANT IMBEDDING THEORY; 1-2 MAGNETIC PULSATIONS; 2-ION HYBRID-RESONANCE; PLASMA DEPLETION LAYER; CYCLOTRON WAVES; MODE CONVERSION; INHOMOGENEOUS PLASMAS; EARTHS MAGNETOSPHERE; GROUND-SATELLITE; PARTICLE INTERACTIONS AB Pc1-2 ULF waves are strongly associated with the presence of various ions in the magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas near the equatorial region. By adopting the invariant imbedding method, the coupled plasma wave equations are solved in an exact manner to calculate the resonant absorption at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs at the resonance, which absorbs the fast wave energy. It is found that waves near the resonances appear with linear polarization, and their amplitude and frequency are sensitive to the properties of the heavy ion plasma composition. We examine how these resonances occur for various H+-He+ populations in detail by performing an accurate calculation of the mode conversion efficiency. Because the multi-ion hybrid resonance locations in cold plasmas are determined by simple parameters, such as the fraction of the ion number density of each species and the magnetic field, we suggest that it is possible to monitor heavy ion composition by examining the peak frequencies of linearly polarized wave events in either electric field or magnetic field spectral data. C1 [Lee, D. -H.; Kim, K. -S.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 449701, Kyunggi, South Korea. [Johnson, J. R.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Kim, K.] Ajou Univ, Div Energy Syst Res, Suwon 441749, Kyunggi, South Korea. RP Lee, DH (reprint author), Kyung Hee Univ, Dept Astron & Space Sci, Yongin 449701, Kyunggi, South Korea. EM dhlee@khu.ac.kr OI Kim, Kihong/0000-0001-9965-3535 FU Korean Government [KRF2005-070-C00059]; NASA [NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, NNH07AF37I]; NSF [ATM 0411392]; DOE [DE-AC02-76CH03073]; [R0A-2007-000-20113-0] FX Korea Research Foundation grant KRF2005-070-C00059 funded by the Korean Government, Korea Science and Engineering Foundation grant R0A-2007-000-20113-0 (K. Kim) funded by the Korean Government, and NASA grants NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, and NNH07AF37I, NSF grant ATM 0411392, and DOE contract DE-AC02-76CH03073 (Princeton Plasma Physics Laboratory). [79] Amitava Bhattacharjee thanks Richard Denton and another reviewer for their assistance in evaluating this paper. NR 60 TC 18 Z9 18 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 18 PY 2008 VL 113 IS A11 AR A11212 DI 10.1029/2008JA013088 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 375XL UT WOS:000261147000001 ER PT J AU Treger, JS Ma, VY Gao, Y Wang, CC Jeon, S Robinson, JM Wang, HL Johal, MS AF Treger, Jeremy S. Ma, Vincent Y. Gao, Yuan Wang, Chun-Chih Jeon, Seaho Robinson, Jeanne M. Wang, Hsing-Lin Johal, Malkiat S. TI Controlling Layer Thickness and Photostability of Water-Soluble Cationic.Poly(p-phenylenevinylene) in Multilayer Thin Films by Surfactant Complexation SO LANGMUIR LA English DT Article ID LIGHT-EMITTING-DIODES; SODIUM DODECYL-SULFATE; CONJUGATED POLYMERS; OPTICAL-PROPERTIES; SOLAR-CELLS; POLYELECTROLYTE; PHOTOOXIDATION; DEGRADATION AB In this work we build on prior studies of the novel water-soluble cationic conjugated polymer known as "P2" (poly {2,5-bis[3-(N,N,N-triethylammonium bromide)-1-oxapropyl]-1,4-phenylenevinylene}) with a focus on its incorporation into thin films for such applications as photovoltaics or electroluminescent devices. Multi layer assemblies were constructed using P2, the anionic surfactant sodium dodecyl sulfate (SDS), and the polyanion poly(sodium 4-styrene-sulfonate) (PSS) using the technique of layer-by-layer electrostatic self-assembly (LBL-ESA). SDS was observed to affect the layer thicknesses and absorbance characteristics of the films. We show that the optical properties and photo-oxidative resistance can be improved by varying the SDS content in the assemblies. Specifically, the surfactant-complexed poly(p-phenylenevinylene) (PPV) shows an enhanced absorption at longer wavelengths as well as improved photostability. Therefore, our work may have broad implications on the development of stable PPV-based materials in general and their efficient integration into thin films technologies. C1 [Treger, Jeremy S.; Ma, Vincent Y.; Johal, Malkiat S.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. [Gao, Yuan; Wang, Chun-Chih; Jeon, Seaho; Robinson, Jeanne M.; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Johal, MS (reprint author), Pomona Coll, Dept Chem, 645 N Coll Ave, Claremont, CA 91711 USA. EM malkiat.johal@pomona.edu OI Robinson, Jeanne/0000-0002-4251-7169 FU Basic Energy Science (BES) Biomaterials Program; LANL Laboratory Directed Research and Development (LDRD); Arnold and Mabel Beckman Foundation FX We thank Lewis Johnson (Pomona College) for useful discussions. We are grateful for funding from the Pomona College SURP program. H.-L.W. acknowledges support from the Basic Energy Science (BES) Biomaterials Program and the LANL Laboratory Directed Research and Development (LDRD) Fund. J.S.T. acknowledges support from the Arnold and Mabel Beckman Foundation. NR 23 TC 9 Z9 9 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 18 PY 2008 VL 24 IS 22 BP 13127 EP 13131 DI 10.1021/la802080t PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 372AW UT WOS:000260874800057 PM 18942865 ER PT J AU Nocek, B Kochinyan, S Proudfoot, M Brown, G Evcokimova, E Osipiuk, J Edwards, AM Savchenko, A Joachimiak, A Yakunin, AF AF Nocek, Boguslaw Kochinyan, Samvel Proudfoot, Michael Brown, Greg Evcokimova, Elena Osipiuk, Jerzy Edwards, Aled M. Savchenko, Alexei Joachimiak, Andrzej Yakunin, Alexander F. TI Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystal structure; mutagenesis; Walker motif; AMP phosphorylation; ADP phosphorylation ID ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; INORGANIC POLYPHOSPHATE; THYMIDYLATE KINASE; SURVIVAL; PURIFICATION; EXOPOLYPHOSPHATASE; MONOPHOSPHATE; PROTEINS; MODEL AB Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an a-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival. C1 [Nocek, Boguslaw; Evcokimova, Elena; Osipiuk, Jerzy; Edwards, Aled M.; Savchenko, Alexei; Joachimiak, Andrzej] Argonne Natl Lab, Dept Biosci, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Nocek, Boguslaw; Evcokimova, Elena; Osipiuk, Jerzy; Edwards, Aled M.; Savchenko, Alexei; Joachimiak, Andrzej] Argonne Natl Lab, Dept Biosci, Struct Biol Ctr, Argonne, IL 60439 USA. [Kochinyan, Samvel; Proudfoot, Michael; Brown, Greg; Evcokimova, Elena; Edwards, Aled M.; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada. [Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Dept Biosci, Midwest Ctr Struct Genom, 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM andrzejj@anl.gov RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU Genome Canada; National Institutes of Health [GM074942]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We thank all members of the Structural Proteomics in Toronto Center and Structural Biology Center at Argonne National Laboratory for help in conducting these experiments. This work was supported by Genome Canada (through the Ontario Genomics Institute), National Institutes of Health Grant GM074942, and the U.S. Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. NR 32 TC 23 Z9 26 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 18 PY 2008 VL 105 IS 46 BP 17730 EP 17735 DI 10.1073/pnas.0807563105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 377BB UT WOS:000261225600031 PM 19001261 ER PT J AU Marriott, G Mao, S Sakata, T Ran, J Jackson, DK Petchprayoon, C Gomez, TJ Warp, E Tulyathan, O Aaron, HL Isacoff, EY Yan, YL AF Marriott, Gerard Mao, Shu Sakata, Tomoyo Ran, Jing Jackson, David K. Petchprayoon, Chutima Gomez, Timothy J. Warp, Erica Tulyathan, Orapim Aaron, Holly L. Isacoff, Ehud Y. Yan, Yuling TI Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high-contrast; optical switches; "ac"-imaging; fluorescence microscopy ID FLUORESCENCE MICROSCOPY; PROTEIN; RESOLUTION; DYNAMICS; BIOLOGY; PROBES; DRONPA AB One of the limitations on imaging fluorescent proteins within living cells is that they are usually present in small numbers and need to be detected over a large background. We have developed the means to isolate specific fluorescence signals from background by using lock-in detection of the modulated fluorescence of a class of optical probe termed "optical switches." This optical lock-in detection (OLID) approach involves modulating the fluorescence emission of the probe through deterministic, optical control of its fluorescent and nonfluorescent states, and subsequently applying a lock-in detection method to isolate the modulated signal of interest from nonmodulated background signals. Cross-correlation analysis provides a measure of correlation between the total fluorescence emission within single pixels of an image detected over several cycles of optical switching and a reference waveform detected within the same image over the same switching cycles. This approach to imaging provides a means to selectively detect the emission from optical switch probes among a larger population of conventional fluorescent probes and is compatible with conventional microscopes. OLID using nitrospirobenzopyran-based probes and the genetically encoded Dronpa fluorescent protein are shown to generate high-contrast images of specific structures and proteins in labeled cells in cultured and explanted neurons and in live Xenopus embryos and zebrafish larvae. C1 [Marriott, Gerard; Mao, Shu; Sakata, Tomoyo; Ran, Jing; Jackson, David K.; Petchprayoon, Chutima] Univ Wisconsin, Dept Physiol, Madison, WI 53705 USA. [Gomez, Timothy J.] Univ Wisconsin, Dept Anat, Madison, WI 53705 USA. [Warp, Erica; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Aaron, Holly L.] Univ Calif Berkeley, Mol Imaging Ctr, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Yan, Yuling] Santa Clara Univ, Sch Engn, Santa Clara, CA 95053 USA. [Yan, Yuling] Stanford Univ, Dept Otolaryngol, Stanford, CA 94305 USA. RP Marriott, G (reprint author), Univ Wisconsin, Dept Physiol, 1300 Univ Ave, Madison, WI 53705 USA. EM marriott@physiology.wisc.edu FU National Institutes of Health (NIH) [R01 EB005217, R01 NS050833]; Defense Advanced Research Projects Agency (DARPA) [19182-52]; Human Frontier Science Program Organization [RGP0045]; NIH Nanomedicine Development Center forthe Optical Control of Biological Function [5PN2EY018241] FX We thank A. Miyawaki (RIKEN, Saitama, Japan) for sharing the Dronpa clone and E. Scott, L. Mason, F. Del Bene, and H. Baler (University of California, San Francisco) for the GAL4 zebrafish lines.Thiswork was supported by National Institutes of Health (NIH) Grants R01 EB005217 (to G.M.) and R01 NS050833 (to E.Y.I.), Defense Advanced Research Projects Agency (DARPA)-SPARTAN Grant 19182-52 and Human Frontier Science Program Organization Grant RGP0045 (to G.M.), and NIH Nanomedicine Development Center forthe Optical Control of Biological Function Grant 5PN2EY018241 (to E.Y.I.). NR 26 TC 102 Z9 102 U1 1 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 18 PY 2008 VL 105 IS 46 BP 17789 EP 17794 DI 10.1073/pnas.0808882105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 377BB UT WOS:000261225600041 PM 19004775 ER PT J AU Dai, W Soukoulis, CM AF Dai, W. Soukoulis, C. M. TI Converging and wave guiding of Gaussian beam by two-layer dielectric rods SO APPLIED PHYSICS LETTERS LA English DT Article DE laser beams; optical waveguide theory; surface states ID SUBWAVELENGTH APERTURE; PHOTONIC CRYSTAL; SURFACE; LIGHT AB We have shown that a two-layer dielectric structure can give excellent beaming and enhanced transmission simultaneously of a Gaussian source. The front surface of the layer of dielectric rods supports surface states and the rear grading layer couples the surface states to radiation modes. By repeating periodically this two-layer structure, one can obtain excellent beaming and enhanced transmission for very long distances. C1 [Dai, W.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Dai, W.; Soukoulis, C. M.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Soukoulis, C. M.] Univ Crete, IESL, Iraklion 71110, Crete, Greece. RP Dai, W (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; DAPRA [MDA-9Z2-01-2-0016]; Office of Naval Research [N00014-07-1-0359]; AFOSR; MURI [FA9550-06-1-0337] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by DAPRA (Contract No. MDA-9Z2-01-2-0016), Office of Naval Research (Award No. N00014-07-1-0359), and AFOSR under MURI Grant No. FA9550-06-1-0337. NR 18 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 17 PY 2008 VL 93 IS 20 AR 201101 DI 10.1063/1.3025818 PG 3 WC Physics, Applied SC Physics GA 375VH UT WOS:000261141400001 ER PT J AU Hau-Riege, SP London, RA Bionta, RM Soufli, R Ryutov, D Shirk, M Baker, SL Smith, PM Nataraj, P AF Hau-Riege, Stefan P. London, Richard A. Bionta, Richard M. Soufli, Regina Ryutov, Dmitri Shirk, Michael Baker, Sherry L. Smith, Patrick M. Nataraj, Pradeep TI Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser SO APPLIED PHYSICS LETTERS LA English DT Article DE boron compounds; elemental semiconductors; free electron lasers; laser beam effects; silicon; ultraviolet radiation effects; X-ray optics ID COHERENT-LIGHT SOURCE; DIFFRACTION; FILMS AB Optical elements to be used for x-ray free electron lasers (XFELs) must withstand multiple high-fluence pulses. We have used an ultraviolet laser to study the damage of two candidate materials, crystalline Si and B(4)C-coated Si, emulating the temperature profile expected to occur in optics exposed to XFEL pulses. We found that the damage threshold for 10(5) pulses is similar to 20% to 70% lower than the melting threshold. C1 [Hau-Riege, Stefan P.; London, Richard A.; Bionta, Richard M.; Soufli, Regina; Ryutov, Dmitri; Shirk, Michael; Baker, Sherry L.] Lawrence Livermore Natl Lab, Livermore, CA 94539 USA. [Smith, Patrick M.; Nataraj, Pradeep] Kovio Inc, Sunnyvale, CA 94086 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94539 USA. EM hauriegel@llnl.gov FU U. S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was performed for the LCLS project at SLAC. NR 21 TC 7 Z9 7 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 17 PY 2008 VL 93 IS 20 AR 201105 DI 10.1063/1.3021081 PG 3 WC Physics, Applied SC Physics GA 375VH UT WOS:000261141400005 ER PT J AU Zhang, Y Lee, SH Mascarenhas, A Deb, SK AF Zhang, Yong Lee, S. -H. Mascarenhas, A. Deb, S. K. TI An UV photochromic memory effect in proton-based WO(3) electrochromic devices SO APPLIED PHYSICS LETTERS LA English DT Article DE electrochromic devices; photochromism; tungsten compounds; ultraviolet radiation effects ID A-WO3-Y THIN-FILMS; COLORATION; MECHANISM AB We report an UV photochromic memory effect on a standard proton-based WO(3) electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices. C1 [Mascarenhas, A.; Deb, S. K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Lee, S. -H.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM yong_zhang@nrel.gov RI Lee, Sehee/A-5989-2011 FU DOE-OS-BES [DE-AC36-99GO10337] FX This project was supported by the DOE-OS-BES under Contract No. DE-AC36-99GO10337 to NREL. NR 13 TC 29 Z9 31 U1 3 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 17 PY 2008 VL 93 IS 20 AR 203508 DI 10.1063/1.3029775 PG 2 WC Physics, Applied SC Physics GA 375VH UT WOS:000261141400078 ER PT J AU Baird, B Pawlikowski, AV Su, J Wiench, JW Pruski, M Sadow, AD AF Baird, Benjamin Pawlikowski, Andrew V. Su, Jiachun Wiench, Jerzy W. Pruski, Marek Sadow, Aaron D. TI Easily Prepared Chiral Scorpionates: Tris(2-oxazolinyl)boratoiridium(I) Compounds and Their Interactions with MeOTf SO INORGANIC CHEMISTRY LA English DT Article ID C-H ACTIVATION; ASYMMETRIC CATALYSIS; COORDINATION CHEMISTRY; METAL COMPLEXATION; LIGANDS; IRIDIUM; TRISOX; PROTONATION; EFFICIENT; HAPTICITY AB Optically active C(3)-symmetric monoanionic ligands are uncommon in organometallic chemistry. Here we describe the synthesis of readily prepared tris(4S-isopropyl-2-oxazolinyl)phenylborate [To(P)] and fluxional, zwitterionic four- and five-coordinate iridium(I) compounds [Ir(To(P))-(eta(4)-C(8)H(12))] (4) and [Ir(To(P))(CO)(2)] (5). The highly fluxional nature of 4 and 5 makes structural assignment difficult, and the interaction between the iridium(I) center and the [To(P)] ligand is established by solid-state and solution (15)N NMR methods that permit the direct comparison between solution and solid-state structures. Although iridium cyclooctadiene 4 is a mixture of four- and five-coordinate species, the dicarbonyl 5 is only the five-coordinate isomer. The addition of electrophiles MeOTf and Mel provides the oxazoline N-methylated product rather than the iridium methyl oxidative addition product. N-Methylation was unequivocally proven by through-bond coupling observed in (1)H-(15)N HMBC experiments. C1 [Sadow, Aaron D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM sadow@iastate.edu FU U.S. DOE Office of Basic Energy Sciences [AL-03-380-011]; Roy J. Carver Charitable Trust FX We thank the U.S. DOE Office of Basic Energy Sciences, through the Catalysis Science Grant AL-03-380-011. and the Roy J. Carver Charitable Trust for financial support. We thank Robert Angelici and Louis A. Silks for valuable discussions and Dr. Bruce Fulton for solution two-dimensional 15N NMR measurements. NR 45 TC 18 Z9 18 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 17 PY 2008 VL 47 IS 22 BP 10208 EP 10210 DI 10.1021/ic801637s PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 370VL UT WOS:000260791100009 PM 18921996 ER PT J AU Farha, OK Mulfort, KL Hupp, JT AF Farha, Omar K. Mulfort, Karen L. Hupp, Joseph T. TI An Example of Node-Based Postassembly Elaboration of a Hydrogen-Sorbing, Metal-Organic Framework Material SO INORGANIC CHEMISTRY LA English DT Article ID H-2 STORAGE; CATALYSIS; ADSORPTION; BINDING; DESIGN; MOFS; NETWORK; SOLIDS; SITES AB A robust, noncatenated, and permanently microporous metal-organic framework (MOF) material has been synthesized by combining a new nonplanar ligand, 4,4',4 '',4'''-benzene-1,2,4,5-tetrayltetrabenzoic acid, with a zinc(II) source under solvothermal conditions. The new material features cavities that are readily modified via activation and functionalization of framework nodes (as opposed to struts). A preliminary investigation of the "empty cavity" version of the material and six cavity-modified versions reveals that modification can substantially modulate the MOF's internal surface area, pore volume, and ability to sorb molecular hydrogen. C1 [Farha, Omar K.; Mulfort, Karen L.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mulfort, Karen L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestem.edu RI Hupp, Joseph/K-8844-2012; Farha, Omar/B-5512-2014 OI Hupp, Joseph/0000-0003-3982-9812; Farha, Omar/0000-0002-9904-9845 FU U.S. Department of Energy's Office of Science [DE-FG02-01ER15244]; Argonne National Laboratory; Northwestern Nanoscale Science and Engineering Center FX We thank Alexander M. Spokoyny for valuable discussions. We gratefully acknowledge the U.S. Department of Energy's Office of Science (Grant DE-FG02-01ER15244), Argonne National Laboratory (fellowship for K.L.M.), and the Northwestern Nanoscale Science and Engineering Center for financial support. NR 41 TC 80 Z9 80 U1 4 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 17 PY 2008 VL 47 IS 22 BP 10223 EP 10225 DI 10.1021/ic8018452 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 370VL UT WOS:000260791100014 PM 18928272 ER PT J AU Boyle, TJ Ottley, LAM Rodriguez, MA Sewell, RM Alam, TM McIntyre, SK AF Boyle, Timothy J. Ottley, Leigh Anna M. Rodriguez, Mark A. Sewell, Robin M. Alam, Todd M. McIntyre, Sarah K. TI Stepwise Modification of Titanium Alkoxy Chloride Compounds by Pyridine Carbinol SO INORGANIC CHEMISTRY LA English DT Article ID SINGLE-MOLECULE MAGNETS; CRYSTAL-STRUCTURES; STRUCTURAL-CHARACTERIZATION; LEWIS-ACIDS; THIN-FILMS; COMPLEXES; POLYMERIZATION; FAMILY; NANOPARTICLES; PRECURSORS AB The stepwise modifications of stoichiometric mixtures of titanium chloride (TiCl(4)) and titanium iso-propoxide (Ti(OPr(i))(4)) by 2-pyridine methanol (H-OPy) led to the isolation of a systematically varied, novel family of compounds. The 3:1 reaction mixture of Ti(OPr(i))(4):TiCl(4) yielded [Cl(OPr(i))(2)Ti(mu-OPr(i))](2) (1). Modification of 1 with 1 and 2 equiv of H-OPy produced [Cl(OPr(i))(2)Ti(mu(c)-OPy)](2) (2, where mu(c) = chelating bridge) and "(OPy)(2)TiCl(OPr(i))" (3, not crystallographically characterized), respectively. Altering the Ti(OPr(i))(4) to TiCl(4) stoichiometry to 1:1 led to isolation and identification of another dimeric species [Cl(2)(OPr(i))Ti(mu-OPr(i))](2) (4). Upon modification with 1 equiv of H-OPy, [Cl(2)(OPr(i))Ti(mu(c)-OPy)](2) (5) was isolated from toluene and (OPy)TiCl(2)(OPr(i))(py) (6) from py. An additional equivalent of H-OPy led to the monomeric species (OPy)(2)TiCl(2) (7). Because of the low solubility and similarity in constructs of these compounds, additional analytical data, such as the beryllium dome or BeD-XRD powder analyses, were used to verify the bulk samples, which were found to be in agreement with the single crystal structures. C1 [Boyle, Timothy J.; Ottley, Leigh Anna M.; Rodriguez, Mark A.; Sewell, Robin M.; Alam, Todd M.; McIntyre, Sarah K.] Adv Mat Lab, Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Adv Mat Lab, Sandia Natl Labs, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU Office of Basic Energy Science of the U.S. Department of Energy [DE-AC04-94AL85000] FX The authors thank Dr. C. Stewart (SNL) for helpful discussions and for support of this research, the Office of Basic Energy Science of the U.S. Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 47 TC 9 Z9 9 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 17 PY 2008 VL 47 IS 22 BP 10708 EP 10717 DI 10.1021/ic801249b PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 370VL UT WOS:000260791100067 PM 18937448 ER PT J AU Vazquez, GJ Dodge, CJ Francis, AJ AF Vazquez, Gustavo J. Dodge, Cleveland J. Francis, Arokiasamy J. TI Interaction of Uranium(VI) with Phthalic Acid SO INORGANIC CHEMISTRY LA English DT Article ID ABSORPTION FINE-STRUCTURE; CRYSTAL-STRUCTURES; CARBOXYLIC-ACIDS; COMPLEXES AB Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form, These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility. C1 [Vazquez, Gustavo J.; Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Dodge, CJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. EM dodge1@bnl.gov FU Environmental Remediation Sciences Program; Environmental Remediation Sciences Division; Office of Biological and Environmental Research; Office of Science; U.S. Department of Energy [DE-AC02-98CH10886] FX This research was funded by Environmental Remediation Sciences Program, Environmental Remediation Sciences Division, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy, under contract No. DE-AC02-98CH10886. NR 28 TC 9 Z9 9 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 17 PY 2008 VL 47 IS 22 BP 10739 EP 10743 DI 10.1021/ic801230s PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 370VL UT WOS:000260791100071 PM 18847255 ER PT J AU Eichten, E Lane, K AF Eichten, Estia Lane, Kenneth TI Low-scale technicolor at the Tevatron and LHC SO PHYSICS LETTERS B LA English DT Article ID ELECTROWEAK PARAMETERS; MODEL; BREAKING AB The Tevatron experiments CDF and DO are close to making definitive statements about the technicolor discovery mode rho(T) -> W pi(T) for M(rho T) less than or similar to 250 GeV and M(pi T) less than or similar to 150 GeV. We propose new incisive tests for this mode and searches for others that may be feasible at the Tevatron and certainly are at the LHC. The other searches include two long discussed, namely, omega(T) -> gamma(pi T) and l(+)l(-), and a new one-for the I(G) J(PC) - 1(-)1(++) partner, a(T), of the rho(T). Adopting the argument that the technicolor contribution to S is reduced if M(aT) similar or equal to M(rho T), we enumerate important a(T) decays and estimate production rates at the colliders. (C) 2008 Elsevier B.V. All rights reserved. C1 [Eichten, Estia] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Lane, Kenneth] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Eichten, E (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM eichten@fnal.gov; lane@physics.bu.edu FU Laboratoire d'Annecy-le-Vieux de Physique Theorique; Fermi Research Alliance, LLC; US Department of Energy [DE-AC02-07CH11359]; Department of Energy [DE-FG02-91ER40676] FX We are especially grateful to Meenakshi Narain and Weiming Yao for discussions about the search for technihadrons and to Steve Mrenna for including the new aT processes in PYTHIA. We thank Adam Martin and Veronica Sanz for many valuable conversations. We also thank Michael Barnett, Ken Hayes, and Colin Morningstar for helpful input on a technical point. K.L. also thanks Laboratoire d'Annecy-le-Vieux de Physique Theorique for its hospitality and support. FNAL is operated by Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the US Department of Energy. K.L.'s research is supported by the Department of Energy under Grant No. DE-FG02-91ER40676. NR 31 TC 46 Z9 46 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 17 PY 2008 VL 669 IS 3-4 BP 235 EP 238 DI 10.1016/j.physletb.2008.09.047 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 382KR UT WOS:000261605200008 ER PT J AU Gee, S Villalobos, J Yamamoto, M Clark, TA Kang, JA Wickrema, A Chasis, JA Conboy, JG AF Gee, Sherry Villalobos, Jonathan Yamamoto, Miki Clark, Tyson A. Kang, Jeong-Ah Wickrema, Amittha Chasis, Joel Anne Conboy, John G. TI Stage-Specific Switches in Alternative Pre-mRNA Splicing during Late Erythropoiesis Are Conserved from Mouse to Human SO BLOOD LA English DT Meeting Abstract CT 50th Annual Meeting of the American-Society-of-Hematology CY DEC 06-09, 2008 CL San Francisco, CA SP Amer Soc Hematol C1 [Gee, Sherry; Villalobos, Jonathan; Yamamoto, Miki; Chasis, Joel Anne; Conboy, John G.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Clark, Tyson A.] Affymetrix Inc, Santa Clara, CA USA. [Kang, Jeong-Ah; Wickrema, Amittha] Univ Chicago, Chicago, IL 60637 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2008 VL 112 IS 11 BP 200 EP 200 PG 1 WC Hematology SC Hematology GA 389OP UT WOS:000262104700532 ER PT J AU Nakamae, H Wilbur, DS Hamlin, DK Thakar, MS Santos, EB Fisher, DR Kenoyer, AL Pagel, JM Press, OW Storb, R Sandmaier, BM AF Nakamae, Hirohisa Wilbur, D. Scott Hamlin, Donald K. Thakar, Monica S. Santos, Erlinda B. Fisher, Darrell R. Kenoyer, Amiee L. Pagel, John M. Press, Oliver W. Storb, RainerF. Sandmaier, Brenda M. TI Evaluation of Toxicity and Tissue Radiation Doses Obtained in Mice with An Anti-CD45 Monoclonal Antibody (mAb) Labeled with the Alpha-Emitting Radionuclides, Astatine-211 or Bismuth-213 SO BLOOD LA English DT Meeting Abstract CT 50th Annual Meeting of the American-Society-of-Hematology CY DEC 06-09, 2008 CL San Francisco, CA SP Amer Soc Hematol C1 [Nakamae, Hirohisa; Thakar, Monica S.; Santos, Erlinda B.; Kenoyer, Amiee L.; Pagel, John M.; Press, Oliver W.; Storb, RainerF.; Sandmaier, Brenda M.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Wilbur, D. Scott; Hamlin, Donald K.] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2008 VL 112 IS 11 BP 1123 EP 1123 PG 1 WC Hematology SC Hematology GA 389OP UT WOS:000262104703706 ER PT J AU Reuge, N Cadoret, L Coufort-Saudejaud, C Pannala, S Syamlal, M Caussat, B AF Reuge, N. Cadoret, L. Coufort-Saudejaud, C. Pannala, S. Syamlal, M. Caussat, B. TI Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics: Influence of the dissipation parameters SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Fluidization; Powders; Mathematical modeling; Hydrodynamics; CFD; Validation ID DISCRETE PARTICLE; GRANULAR-MATERIALS; CFD MODELS; FLOW; SIMULATION; VALIDATION; DYNAMICS; BUBBLE; MOTION AB Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with confidence for designing fluidized bed reactors. In this study, validation data were collected from a fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations and frequency of fluctuations were measured from videos of the fluidized bed. The Eulerian-Eulerian two fluid model MFIX was used to simulate the experiments. Two different models for the particle stresses-Schaeffer [Syamlal, M., Rogers, W., O'Brien, T.J., 1993. MFIX documentation: theory guide. Technical Report DOE/METC-94/1004 (DE9400087). Morgantown Energy Technology Centre. Morgantown, West Virginia (can be downloaded from Multiphase Flow with Interphase eXchanges (MFIX) website (http://www.mfix.org)); Schaeffer, D.G., 1987. Instability in the evolution equations describing incompressible granular flow. journal of Differential Equations 66, 61-74.] and Princeton [Srivastava, A., Sundaresan, S., 2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129(1-3), 72-85.] models-and different values of the restitution coefficient and internal angle of friction were evaluated. 3-D simulations are required for getting quantitative and qualitative agreement with experimental data. The results from the Princeton model are in better agreement with data than that from the Schaeffer model. Both free slip and Johnson-Jackson boundary conditions give nearly identical results. An increase in coefficient of restitution (e) from 0.8 to 1 leads to larger bed expansions and lower heights of fluctuations in the bubbling regime, whereas it leads to unchanged bed expansion and to a massive reduction in the height of fluctuations in the slugging regime. The angle of internal friction (phi) in the range 10-40 degrees does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Reuge, N.; Cadoret, L.; Coufort-Saudejaud, C.; Caussat, B.] ENSIACET INPT, CNRS, UMR 5503, Lab Genie Chim, F-31106 Toulouse 1, France. [Pannala, S.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Syamlal, M.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Reuge, N (reprint author), ENSIACET INPT, CNRS, UMR 5503, Lab Genie Chim, 5 Rue Paulin Talabot,BP 1301, F-31106 Toulouse 1, France. EM reuge@free.fr; pannalas@ornl.gov; Madhava.Syamlal@NETL.DOE.GOV; Brigitte.Caussat@ensiacet.fr RI Pannala, Sreekanth/F-9507-2010 FU French ANR-Reseau National Materiaux et Procedes; US DOE's Fossil Energy program FX Simulations presented in this paper were carried out with the help of I. Touche from LGC, using (i) the Grid'5000 experimental test, an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RENATER and other contributing partners (see https://www.grid5000.fr) and (ii) the French supercomputing centers CalMip and CINES. This project has been supported by the French ANR-Reseau National Materiaux et Procedes. Sreekanth Pannala and Madhava Syamlal acknowledge the support of US DOE's Fossil Energy program. NR 47 TC 72 Z9 74 U1 2 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2008 VL 63 IS 22 BP 5540 EP 5551 DI 10.1016/j.ces.2008.07.028 PG 12 WC Engineering, Chemical SC Engineering GA 381VS UT WOS:000261564600016 ER PT J AU Kwon, Y Hara, CA Knize, MG Hwang, MH Venkateswaran, KS Wheeler, EK Bell, PM Renzi, RF Fruetel, JA Bailey, CG AF Kwon, Youngeun Hara, Christine A. Knize, Mark G. Hwang, Mona H. Venkateswaran, Kodumudi S. Wheeler, Elizabeth K. Bell, Perry M. Renzi, Ronald F. Fruetel, Julie A. Bailey, Christopher G. TI Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins SO ANALYTICAL CHEMISTRY LA English DT Article ID BOTULINUM NEUROTOXIN-A; ARRAY BIOSENSOR; RAPID DETECTION; SYSTEMS; SAMPLES; AGENTS; BUFFER; ASSAYS; FOOD AB We are developing an automated system for the simultaneous, rapid detection of a group of select agents and toxins in the environment. To detect toxins, we modified and automated an antibody-based approach previously developed for manual medical diagnostics that uses fluorescent eTag reporter molecules and is suitable for highly multiplexed assays. Detection is based on two antibodies binding simultaneously to a single antigen, one of which is labeled with biotin while the other is conjugated to a fluorescent eTag through a cleavable linkage. Aqueous samples are incubated with the mixture of antibodies along with streptavidin-coated magnetic beads and a photoactive porphyrin complex. In the presence of antigen, a molecular complex is formed where the cleavable linkage is held in proximity to the photoactive group. Upon excitation at 680 run, free radicals are generated, which diffuse and cleave the linkage, releasing the eTags. Released eTags are analyzed using capillary gel electrophoresis with laser-induced fluorescence detection. limits of detection for ovalbumin and botulinum toxoid individually were 4 (or 80 pg) and 16 ng/mL (or 320 pg), respectively, using the manual assay. In addition, we demonstrated the use of pairs of antibodies from different sources in a single assay to decrease the rate of false positives. Automation of the assay was demonstrated in a flow-through format with higher LODs of 32 ng/mL (or 640 ng) each of a mixture of ovalbumin and botulinum toxoid. This versatile assay can. be easily modified with the appropriate antibodies to detect a wide range of toxins and other proteins. C1 [Kwon, Youngeun; Hara, Christine A.; Knize, Mark G.; Hwang, Mona H.; Venkateswaran, Kodumudi S.; Wheeler, Elizabeth K.; Bell, Perry M.; Bailey, Christopher G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Renzi, Ronald F.; Fruetel, Julie A.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Bailey, CG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bailey38@llnl.gov FU U.S. Department of Energy [AC52-07NA27344, DE-AC04-94AL85000] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding from the Department of Homeland Security. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. Y.K and C.A.H. contributed equally to this work. NR 22 TC 26 Z9 27 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2008 VL 80 IS 22 BP 8416 EP 8423 DI 10.1021/ac8010044 PG 8 WC Chemistry, Analytical SC Chemistry GA 372OM UT WOS:000260910900008 PM 18847280 ER PT J AU Jung, B Fisher, K Ness, KD Rose, KA Mariella, RP AF Jung, Byoungsok Fisher, Karl Ness, Kevin D. Rose, Klint A. Mariella, Raymond P., Jr. TI Acoustic Particle Filter with Adjustable Effective Pore Size for Automated Sample Preparation SO ANALYTICAL CHEMISTRY LA English DT Article ID TOTAL ANALYSIS SYSTEMS; STANDING WAVES; ULTRASOUND; DEVICE; AMPLIFICATION; SEPARATION; DESIGN; FORCE; CELLS; YEAST AB This article presents analysis and, optimization of a microfluidic particle filter that uses acoustic radiation forces to remove particles larger than a selected size by adjusting the driving conditions of the piezoelectric transducer (PZT). Operationally, the acoustic filter concentrates microparticles to the center of the microchannel, minimizing undesirable particle adsorption to the microchannel walls. Finite element models predict the complex two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. We compare these results with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes (0.5-5.0 mu m in diameter). These results provide insight into the optimal operating conditions and show the efficacy of our device as a filter with an adjustable effective pore size. We demonstrate the separation of Saccharomyces cerevisiae from MS2 bacteriophage using our acoustic device. With optimized design of our microfluidic flow system, we achieved yields of greater than 90% for the MS2 with greater than 80% removal of the S. cerevisiae in this continuous-flow sample preparation device. C1 [Jung, Byoungsok; Fisher, Karl; Ness, Kevin D.; Rose, Klint A.; Mariella, Raymond P., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jung, B (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94551 USA. EM jung7@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors thank Brian Harrel and Shanavaz Nasarabadi for the preparation of S. cerevisiae and MS2 virus, Julie Hamilton for the fabrication of the microchip, and William Benett for the design of the microfluidic packaging. R.P.M. thanks Drs. Martin Groschl and Greg Kaduchak for kindly providing information and advice on this topic. NR 29 TC 7 Z9 7 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2008 VL 80 IS 22 BP 8447 EP 8452 DI 10.1021/ac8011768 PG 6 WC Chemistry, Analytical SC Chemistry GA 372OM UT WOS:000260910900012 PM 18847218 ER PT J AU Wang, H Wang, J Timchalk, C Lin, YH AF Wang, Hua Wang, Jun Timchalk, Charles Lin, Yuehe TI Magnetic Electrochemical Immunoassays with Quantum Dot Labels for Detection of Phosphorylated Acetylcholinesterase in Plasma SO ANALYTICAL CHEMISTRY LA English DT Article ID CHEMICAL WARFARE AGENTS; POLY(ETHYLENE GLYCOL); ORGANOPHOSPHATE PESTICIDES; HUMAN BUTYRYLCHOLINESTERASE; IMMUNOAGGLUTINATION ASSAY; RETROSPECTIVE DETECTION; GOLD NANOPARTICLES; DISULFIDE BONDS; EXPOSURE; ANTIBODIES AB A new magnetic electrochemical immunoassay has been developed as a tool for biomonitoring exposures to organophosphate (OP) compounds, e.g., insecticides and chemical nerve agents, by directly detecting organophosphorylated acetylcholinesterase (OP-AChE). This immunoassay uniquely incorporates highly efficient magnetic separation with ultrasensitive square wave voltammetry (SWT) analysis with quantum dots (QDs) as labels. A pair of antibodies was used to achieve the specific recognition of OP-AChE that was prepared with paraoxon as an OP model agent. Antiphosphoserine polyclonal antibodies were anchored on amorphous magnetic particles preferably chosen to capture OP-AChE from the sample matrixes by binding their phosphoserine moieties that were exposed through unfolding the protein adducts. Ibis was validated by electrochemical examinations and enzyme-linked inummosorbent assays. Furthermore, antihuman AChE monoclonal antibodies were labeled with cadmium-source QDsto selectively recognize the captured OP-AChE, as characterized by transmission electron microscopy. The subsequent electrochemical SWV analysis of the cadmium component released by acid from the coupled QDs was conducted on disposable screen-printed electrodes. Experimental results indicated that the SWV-based immunoassays could yield a linear response over a broad concentration range of 0.3-300 ng/mL OP-AChE in human plasma with a detection limit of 0.15 ng/mL Such a novel electrochemical immunoassay holds great promise as a simple, selective, sensitive, and field-deployable tool for the effective biomonitoring and diagnosis of potential exposures to nerve agents and pesticides. C1 [Wang, Hua; Wang, Jun; Timchalk, Charles; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Hua] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU National Institutes of Health Counter ACT Program through the National Institute of Neurological Disorders and Stroke [U01 NS058161]; CDC/NIOSH [R01 OH008173]; DOE [DE-AC05-76RL01830] FX This work is supported by the National Institutes of Health Counter ACT Program through the National Institute of Neurological Disorders and Stroke (award U01 NS058161) and partially by CDC/NIOSH Grant R01 OH008173. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal govemment. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 47 TC 94 Z9 97 U1 6 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2008 VL 80 IS 22 BP 8477 EP 8484 DI 10.1021/ac801211s PG 8 WC Chemistry, Analytical SC Chemistry GA 372OM UT WOS:000260910900016 PM 18855408 ER PT J AU Tolmachev, AV Monroe, ME Purvine, SO Moore, RJ Jaitly, N Adkins, JN Anderson, GA Smith, RD AF Tolmachev, Aleksey V. Monroe, Matthew E. Purvine, Samuel O. Moore, Ronald J. Jaitly, Navdeep Adkins, Joshua N. Anderson, Gordon A. Smith, Richard D. TI Characterization of Strategies for Obtaining Confident Identifications in Bottom-Up Proteomics Measurements Using Hybrid FTMS Instruments SO ANALYTICAL CHEMISTRY LA English DT Article ID CHROMATOGRAPHY-MASS SPECTROMETRY; SHEWANELLA-ONEIDENSIS MR-1; TIME TAG APPROACH; ACCURATE MASS; HIGH-THROUGHPUT; PEPTIDE IDENTIFICATION; SHOTGUN PROTEOMICS; PROTEIN IDENTIFICATIONS; HYPOTHETICAL PROTEINS; STATISTICAL-MODEL AB Hybrid FTMS instruments, such as the LTQ-FT and LTQ-Orbitrap, are capable of generating high duty cycle linear ion trap MS/MS data along with high resolution information without compromising the overall throughput of measurements. Combined with online LC separations, these instruments provide powerful capabilities for proteomics research. In the present work, we explore three alternative strategies for high throughput proteomics measurements using hybrid FTMS instruments. Our accurate mass and time tag (AMT tag) strategy enables identification of thousands of peptides in a single LC-FTMS analysis by comparing accurate molecular mass and LC elution time information from the analysis to a reference database. An alternative strategy considered here, termed accurate precursor mass filter (APMF), employs linear ion trap (low resolution) MS/MS identifications generated by an appropriate search engine, such as SEQUEST, refined with high resolution precursor ion data obtained from FTMS mass spectra. The APMF results can be additionally filtered using the LC elution time information from the AMT tag database, which constitutes a precursor mass and time filter (PMTF), the third approach implemented in this study. Both the APMF and the PMTF approaches are evaluated for coverage and confidence of peptide identifications and contrasted with the AMT tag strategy. The commonly used decoy database method and an alternative method based on mass accuracy histograms were used to reliably quantify identification confidence, revealing that both methods yielded similar results. Comparison of the AMT, APMF and PMTF approaches indicates that the AMT tag approach is preferential for studies desiring a highest achievable number of identified peptides. In contrast, the APMF approach does not require an AMT tag database and provides a moderate level of peptide coverage combined with acceptable confidence values of similar to 99%. The PMTF approach yielded a significantly better peptide identification confidence, > 99.9%, that essentially excluded any false peptide identifications. Since AMT tag databases that exclude incorrect identifications are desirable, this study points to the value of a multipass APMF approach to generate AMT tag databases, which are then validated using the PMTF approach. The resulting compact, high quality databases can then be used for subsequent high-throughput, high peptide coverage AMT tag studies. C1 [Tolmachev, Aleksey V.; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Jaitly, Navdeep; Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU National Center for Research Resources [RR 018522]; National Institute of Allergy and Infectious Diseases (NIH/DHHS) [Y1-AI-4894-01]; National Institute of General Medical Sciences (NIGMS) [R01 GM063883]; Environmental Molecular Science Laboratory; DOE [DE-AC05-76RLO 1830] FX Portions of this work were supported by the National Center for Research Resources (RR 018522), the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01), and the National Institute of General Medical Sciences (NIGMS, R01 GM063883). Work was performed in the Environmental Molecular Science Laboratory, a DOE Office of Biological and Environmental Research national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 51 TC 20 Z9 20 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2008 VL 80 IS 22 BP 8514 EP 8525 DI 10.1021/ac801376g PG 12 WC Chemistry, Analytical SC Chemistry GA 372OM UT WOS:000260910900021 PM 18855412 ER PT J AU Temirov, JP Bradbury, ARM Werner, JH AF Temirov, Jamshid P. Bradbury, Andrew R. M. Werner, James H. TI Measuring an Antibody Affinity Distribution Molecule by Molecule SO ANALYTICAL CHEMISTRY LA English DT Article ID QUANTUM DOTS; FLUORESCENCE SPECTROSCOPY; ANTIGEN RECOGNITION; BLINKING; DIVERSITY; BIOSENSOR; MECHANISM; KINETICS AB Single molecule fluorescence microscopy was used to observe the binding and unbinding of hapten decorated quantum dots to individual surface immobilized antibodies. The fluorescence time history from an individual antibody site can be used to calculate its binding affinity. While quantum dot blinking occurs during these measurements, we describe a simple empirical method to correct the apparent/observed affinity to account for the blinking contribution. The combination of many single molecule affinity measurements from different antibodies yields not only the average affinity, it directly measures the full shape and character of the surface affinity distribution function. C1 [Temirov, Jamshid P.; Werner, James H.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Werner, JH (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM jwerner@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172; Werner, James/0000-0002-7616-8913 FU Los Alamos National Laboratory LDRD program; Center for Integrated Nanotechnologies FX This work was supported by the Los Alamos National Laboratory LDRD program and the DOE-BES sponsored Center for Integrated Nanotechnologies. We thank Andy Shreve, Peter Goodwin, and Andrew Dattelbaum forvaluable technical discussions. NR 24 TC 7 Z9 7 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2008 VL 80 IS 22 BP 8642 EP 8648 DI 10.1021/ac8015592 PG 7 WC Chemistry, Analytical SC Chemistry GA 372OM UT WOS:000260910900038 PM 18847284 ER PT J AU Schopf, E Fischer, NO Chen, Y Tok, JBH AF Schopf, Eric Fischer, Nicholas O. Chen, Yong Tok, Jeffrey B. -H. TI Sensitive and selective viral DNA detection assay via microbead-based rolling circle amplification SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Rolling circle amplification; Magnetic beads; Viral DNA; Real-time detection ID BIOBARCODED NANOPARTICLE PROBES; PROTEIN-DETECTION; APTAMERS AB We report a sensitive and efficient magnetic bead-based assay for viral DNA identification using isothermal amplification of a reporting probe. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Schopf, Eric; Fischer, Nicholas O.; Tok, Jeffrey B. -H.] Lawrence Livermore Natl Lab, BioSecur & NanoSci Lab, Livermore, CA 94551 USA. [Schopf, Eric; Chen, Yong] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. RP Tok, JBH (reprint author), Micropoint Biosci Inc, 1250 Oakmead Pkwy,Suite 107, Sunnyvale, CA 94085 USA. EM jeff.tok@micropointbio.com FU NIH Pacific Southwest Center for Biodefense and Emerging Infectious Diseases Research [AI 065359]; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX J. B. T. and Y. C. acknowledge the support by the NIH Pacific Southwest Center for Biodefense and Emerging Infectious Diseases Research (NIH Grant AI 065359). The authors thank Aaron Rowe for critical reading of the manuscript. LLNL is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 13 TC 17 Z9 17 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD NOV 15 PY 2008 VL 18 IS 22 BP 5871 EP 5874 DI 10.1016/j.bmcl.2008.07.064 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 373JB UT WOS:000260966800010 PM 18694640 ER PT J AU Holcomb, VB Rodier, F Choi, YJ Busuttil, RA Vogel, H Vijg, J Campisi, J Hasty, P AF Holcomb, Valerie B. Rodier, Francis Choi, YongJun Busuttil, Rita A. Vogel, Hannes Vijg, Jan Campisi, Judith Hasty, Paul TI Ku80 Deletion Suppresses Spontaneous Tumors and Induces a p53-Mediated DNA Damage Response SO CANCER RESEARCH LA English DT Article ID MULTIPLE INTESTINAL NEOPLASIA; RAG-1-INDUCED DSBS; CANCER; MICE; P53; GENOME; GENES; MOUSE; TUMORIGENESIS; FIBROBLASTS AB Ku80 facilitates DNA repair and therefore should suppress cancer. However, ku80(-/-) mice exhibit reduced cancer, although they age prematurely and have a shortened life span. We tested the hypothesis that Ku80 deletion suppresses cancer by enhancing cellular tumor-suppressive responses to inefficiently repaired DNA damage. In support of this hypothesis, Ku80 deletion ameliorated tumor burden in APC(MIN) mice and increased a p53-mediated DNA damage response, DNA lesions, and chromosomal rearrangements. Thus, contrary to its assumed role as a caretaker tumor suppressor, Ku80 facilitates tumor growth most likely by dampening baseline cellular DNA damage responses. [Cancer Res 2008;68(22):9497-502] C1 [Holcomb, Valerie B.; Choi, YongJun; Hasty, Paul] Univ Texas Hlth Sci Ctr San Antonio, Inst Biotechnol, Dept Mol Med, San Antonio, TX 78245 USA. [Rodier, Francis; Campisi, Judith] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Rodier, Francis; Busuttil, Rita A.; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. [Vogel, Hannes] Stanford Univ, Med Ctr, Dept Pathol, Palo Alto, CA 94304 USA. [Vijg, Jan] Albert Einstein Coll Med, Bronx, NY 10467 USA. RP Hasty, P (reprint author), Univ Texas Hlth Sci Ctr San Antonio, Inst Biotechnol, Dept Mol Med, 15355 Lambda Dr, San Antonio, TX 78245 USA. EM hastye@uthscsa.edu OI Vogel, Otto Hannes/0000-0002-0960-3508 FU NIH [R01 CA76317-05A1, 3P30 CA054174-16S2, UO1 ES11044, P01 AG17242]; DOD [W81XWH-04-1-0325] FX Grant support: Grants R01 CA76317-05A1 and 3P30 CA054174-16S2 (P. Hasty), NIH UO1 ES11044 (P. Hasty and J. Vijg), P01 AG17242 (P. Hasty, J. Campisi, and J. Vijg), and DOD W81XWH-04-1-0325 (V.B. Holcomb). NR 29 TC 18 Z9 18 U1 0 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD NOV 15 PY 2008 VL 68 IS 22 BP 9497 EP 9502 DI 10.1158/0008-5472.CAN-08-2085 PG 6 WC Oncology SC Oncology GA 375TQ UT WOS:000261136600048 PM 19010925 ER PT J AU Mayneris, J Gonzalez, M Gray, SK AF Mayneris, Jordi Gonzalez, Miguel Gray, Stephen K. TI Real wavepacket code for ABC plus D -> AB plus CD reactive scattering SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Atom plus triatom reactions; Time-dependent quantum mechanics; Wavepackets; Reactive scattering; Reaction dynamics; Helicity decoupling approximation; Centrifugal sudden approximation; Reaction probabilities; Reaction cross sections; Reaction rate constants ID N-ATOM PROBLEM; DISCRETE-VARIABLE REPRESENTATIONS; QUANTUM DYNAMICS; CROSS-SECTIONS; RATE CONSTANTS; VECTOR PARAMETRIZATION; REACTION PROBABILITIES; ABSTRACTION REACTION; WAVE-PACKETS; MECHANICS AB We discuss a six-dimensional, time-dependent real wavepacket (RWP) code designed to obtain reaction probabilities for ABC(v(l))+ D -> AB+CD four-atom reactions, where v(l) is a collective index for the initial quantum state of the triatomic molecule. The code provides exact results for total angular momentum J = 0, and invokes the helicity decoupling (or centrifugal sudden) approximation for J > 0. Our new RWP code has been extensively checked by considering the benchmark H + H2O -> H-2 + OH abstraction reaction. C1 [Gray, Stephen K.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Mayneris, Jordi; Gonzalez, Miguel] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Mayneris, Jordi; Gonzalez, Miguel] Univ Barcelona, IQTC, E-08028 Barcelona, Spain. RP Gray, SK (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM miguel.gonzalez@ub.edu; gray@tcg.anl.gov FU Spanish Ministry of Education and Science [CTQ2005-09334-C02-01]; "Generalitat de Catalunya" (Autonomous Government of Catalonia [2005SGR 00175]; CESCA (Supercomputing Center of Catalonia); Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC02-06CH11357] FX The work at Barcelona was supported by the Spanish Ministry of Education and Science (Project No. CTQ2005-09334-C02-01), by the "Generalitat de Catalunya" (Autonomous Government of Catalonia, Grant No. 2005SGR 00175), and by CESCA (Supercomputing Center of Catalonia). The work at Argonne National Laboratory was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. One of the authors (J.M.) is also grateful to the Spanish Ministry of Education and Science for a predoctoral research grant. NR 42 TC 13 Z9 13 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV 15 PY 2008 VL 179 IS 10 BP 741 EP 747 DI 10.1016/j.cpc.2008.09.005 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 369ZR UT WOS:000260732900005 ER PT J AU Yeh, S Farrell, A Plevin, R Sanstad, A Weyant, J AF Yeh, Sonia Farrell, Alex Plevin, Richard Sanstad, Alan Weyant, John TI Optimizing US Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROGEN ECONOMY; EMISSIONS; GAS AB Few integrated analysis models examine significant U.S. transportation greenhouse gas emission reductions within an integrated energy system. Our analysis, using a bottom-up MARKet ALocation (MARKAL) model, found that stringent system-wide CO2 reduction targets will be required to achieve significant CO2 reductions from the transportation sector. Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. We analyze policy-oriented mitigation strategies and suggest that mitigation policies should be informed by the transitional nature of technology adoptions and the interactions between the mitigation strategies, and the robustness of mitigation strategies to long-term reduction goals, input assumptions, and policy and social factors. More research is needed to help identify robust policies that will achieve the best outcome in the face of uncertainties. C1 [Yeh, Sonia] Univ Calif Davis, Inst Transport Studies, Davis, CA 95616 USA. [Farrell, Alex; Plevin, Richard] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Sanstad, Alan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Weyant, John] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA. RP Yeh, S (reprint author), Univ Calif Davis, Inst Transport Studies, Davis, CA 95616 USA. EM slyeh@ucdavis.edu OI Yeh, Sonia/0000-0002-4852-1177 FU Lawrence Livermore National Laboratory; UC Davis Institute of Transportation Studies (ITSDavis); National Science Foundation Graduate Research Fellowship FX We acknowledge the financial support provided by the Lawrence Livermore National Laboratory and the Sustainable Transportation Energy Pathways (STEPS) Program at the UC Davis Institute of Transportation Studies (ITSDavis). R.P. acknowledges the support of a National Science Foundation Graduate Research Fellowship. We are grateful for the comments provided by Joan Ogden, Dan Sperling, Mark Delucchi, and three anonymous referees, and the collaboration of Pat Delaquil in updating the database. We alone, however, remain responsible for the content. NR 31 TC 25 Z9 25 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8202 EP 8210 DI 10.1021/es8005805 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400008 PM 19068795 ER PT J AU Xu, C Santschi, PH Zhong, JY Hatcher, PG Francis, AJ Dodge, CJ Roberts, KA Hung, CC Honeyman, BD AF Xu, C. Santschi, P. H. Zhong, J. Y. Hatcher, P. G. Francis, A. J. Dodge, C. J. Roberts, K. A. Hung, C. -C Honeyman, B. D. TI Colloidal Cutin-Like Substances Cross-Linked to Siderophore Decomposition Products Mobilizing Plutonium from Contaminated Soils SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; ORGANIC-MATTER; DESFERRIOXAMINE B; HUMIC SUBSTANCES; NMR-SPECTROSCOPY; URONIC-ACIDS; ROCKY FLATS; SURFACE; SITE; DISSOLUTION AB Relatively recently, inorganic colloids have been invoked to reconcile the apparent contradictions between expectations based on classical dissolved-phase Pu transport and field observations of "enhanced" Pu mobility (Kersting et al. Nature 1999, 397, 56-59). A new paradigm for Pu transport is mobilization and transport via biologically produced ligands. This study for the first time reports a new finding of Pu being transported, at sub-pM concentrations, by a cutin-like natural substance containing siderophore-like moieties and virtually all mobile Pu. Most likely, Pu is complexed by chelating groups derived from siderophores that are covalently bound to a backbone of cutin-derived soil degradation products, thus revealing the history of initial exposure to Pu. Features such as amphiphilicity and small size make this macromolecule an ideal collector for actinides and other metals and a vector for their dispersal. Cross-linking to the hydrophobic domains (e.g., by polysaccharides) gives this macromolecule high mobility and a means of enhancing Pu transport. This finding provides a new mechanism for Pu transport through environmental systems that would not have been predicted by Pu transport models. C1 [Xu, C.; Santschi, P. H.; Roberts, K. A.] Texas A&M Univ, Dept Oceanog, LOER, Galveston, TX 77551 USA. [Zhong, J. Y.; Hatcher, P. G.] Old Dominion Univ, COSMIC Lab, Coll Sci, Norfolk, VA 23529 USA. [Francis, A. J.; Dodge, C. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Hung, C. -C] Natl Taiwan Ocean Univ, Inst Marine Environm Chem & Ecol, Chilung 202, Taiwan. [Honeyman, B. D.] Colorado Sch Mines, Environm Sci & Engn Div, Lab Appl & Environm Radiochem, Golden, CO 80401 USA. Texas A&M Univ, Dept Marine Sci, LOER, Galveston, TX 77551 USA. RP Santschi, PH (reprint author), Texas A&M Univ, Dept Oceanog, LOER, Galveston, TX 77551 USA. EM santschi@tamtig.edu RI Zhong, Junyan/A-4252-2011; Santschi, Peter/D-5712-2012 FU Environmental Remediation Sciences Program; Environmental Remediation Sciences Division; Office of Biological and Environmental Research; Office of Science; Department of Energy; U.S. Department of Energy [DE-FG02-04ER63899, DE-AC02-98CH10886]; Texas Institute of Oceanography FX This work was supported by the Environmental Remediation Sciences Program, Environmental Remediation Sciences Division, Office of Biological and Environmental Research, Office of Science, Department of Energy, U.S. Department of Energy, Grant DE-FG02-04ER63899 and under Contract DE-AC02-98CH10886, and in part by the Texas Institute of Oceanography. We thank I.D. Ruhl (ODU) for help with NMR analysis and Dr. Aijun Miao (TAMUG) for help with GFAAS. NR 38 TC 33 Z9 33 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8211 EP 8217 DI 10.1021/es801348t PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400009 PM 19068796 ER PT J AU Francis, AJ Dodge, CJ AF Francis, A. J. Dodge, C. J. TI Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects Its Structure and Solubility SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ABSORPTION FINE-STRUCTURE; METAL-CITRATE COMPLEXES; RADIOACTIVE-WASTES; X-RAY; BIOTRANSFORMATION; SPECIATION; MIGRATION; BIODEGRADATION; REDUCTION; PLUTONIUM AB Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Will, U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI): citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes. C1 [Francis, A. J.; Dodge, C. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Francis, AJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. EM francis1@bnl.gov FU Environmental Remediation Sciences Program (ERSP); Environmental Remediation Sciences Division; Office of Biological and Environmental Research (OBER) Office of Science; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank A. D. Woodhead for the editorial help and comments. This research was funded by the Environmental Remediation Sciences Program (ERSP), Environmental Remediation Sciences Division, Office of Biological and Environmental Research (OBER) Office of Science, U.S. Department of Energy, under Contract DE-AC02-98CH10886. NR 39 TC 33 Z9 35 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8277 EP 8282 DI 10.1021/es801045m PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400019 PM 19068806 ER PT J AU Graydon, JA Louis, VLS Hintelmann, H Lindberg, SE Sandilands, KA Rudd, JWM Kelly, CA Hall, BD Mowat, LD AF Graydon, Jennifer A. Louis, Vincent L. St. Hintelmann, Holger Lindberg, Steve E. Sandilands, Ken A. Rudd, John W. M. Kelly, Carol A. Hall, Britt D. Mowat, Linnea D. TI Long-Term Wet and Dry Deposition of Total and Methyl Mercury in the Remote Boreal Ecoregion of Canada SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FOREST CANOPY; METHYLMERCURY; WATER; CATCHMENTS; FLUXES; THROUGHFALL; ECOSYSTEMS; SEDIMENTS; EXCHANGE; LAKES AB Although a positive relationship between atmospheric loadings of inorganic mercury (Hg(II)) to watersheds and concentrations of methyl mercury (MeHg) in fish has now been established, net wet and dry deposition of Hg(II) and MeHg to watersheds remains challenging to quantify. In this study, concentrations and loadings of total mercury (THg; all forms of Hg in a sample) and MeHg in open area wet deposition, throughfall, and litterfall were quantified at the remote Experimental Lakes Area in the boreal ecoregion, NW Ontario, Canada. Between 1992 and 2006, mean annual THg and MeHg loadings in the open were 36 +/- 17 and 0.5 +/- 0.2 mg ha(-1), respectively. Throughfall THg and MeHg loadings were generally 2-4 times and 0.8-2 times higher, respectively, than loadings in the open. Loadings of both THg and MeHg were highest under an old growth spruce/fir canopy and lowest under a deciduous maple canopy, whereas loadings under young jack pine and wetland spruce/pine/alder canopies were intermediate. Litterfall generally represented the largest input of THg (86-105 mg ha(-1)) and MeHg (0.7-0.8 mg ha(-1)) to the landscape on an annual basis. Using the "direct" method of estimating dry deposition (thoughfall + littarfall - open loadings), we calculated that annual dry deposition of THg and MeHg under forest canopies ranged from 105 to 201 mg ha(-1), whereas dry deposition of MeHg ranged from 0.7 to 1.2 mg ha(-1). Photoreduction andemission of wet-deposited Hg(II) from canopy foliage were accounted for, resulting in 3-5% (5-6 mg ha(-1)) higher annual estimates of dry deposition than via the direct method alone. Net THg and MeHg loadings to this remote landscape were lower than at any other previously studied forested site globally. This study shows that THg and MeHg loading can be extremely variable within a heterogeneous boreal landscape and that processes such as Hg photoreduction and emission from foliage should be considered when estimating dry deposition of Hg. C1 [Graydon, Jennifer A.; Louis, Vincent L. St.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. [Hintelmann, Holger] Trent Univ, Dept Chem, Peterborough, ON K9J 7B8, Canada. [Lindberg, Steve E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sandilands, Ken A.] Fisheries & Oceans Canada, Inst Freshwater, Winnipeg, MB R3T 2N6, Canada. [Rudd, John W. M.; Kelly, Carol A.; Mowat, Linnea D.] R&K Res Inc, Salt Spring Isl, BC V8K 2J3, Canada. [Hall, Britt D.] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. RP Graydon, JA (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. EM jgraydon@ualberta.ca RI St. Louis, Vincent/G-6842-2011; St. Louis, Vincent/A-3757-2014; Graydon, Jennifer/G-6853-2011; OI Hintelmann, Holger/0000-0002-5287-483X FU Natural Sciences and Engineering Research Council of Canada; Collaborative Mercury Research Network; Canadian Circumpolar Institute; Electric Power Research Institute; U. S. Environmental Protection Agency; Department of Fisheries and Oceans Canada; Alberta Heritage Fund; EPA STAR [RD833378010] FX Contribution No. 35 of the Mercury Experiment to Assess Atmospheric Loading in Canada and the United States (METAALICUS). We greatly appreciate help in the field and laboratory from Shawn Harriman, Jasmin Finch, Joanna Januszkiewicz, Eric Ong, Sarah Downey, Justin Shead, Z. McLatcher, Sara Berkel, Po Yee Chan, April Zembal, Brian Dimock, and Joy Zhu. Tarmo Remmel provided hemispherical photographs, and Hamish Asmath provided LAI data. This study was funded by the Natural Sciences and Engineering Research Council of Canada, Collaborative Mercury Research Network, Canadian Circumpolar Institute, Electric Power Research Institute, U. S. Environmental Protection Agency, Department of Fisheries and Oceans Canada, the Alberta Heritage Fund, and the University of Alberta. S.L. is supported in part by EPA STAR Grant #RD833378010. NR 27 TC 73 Z9 75 U1 6 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8345 EP 8351 DI 10.1021/es801056j PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400029 PM 19068816 ER PT J AU Hadley, OL Corrigan, CE Kirchstetter, TW AF Hadley, Odelle L. Corrigan, Craig E. Kirchstetter, Thomas W. TI Modified Thermal-Optical Analysis Using Spectral Absorption Selectivity To Distinguish Black Carbon from Pyrolized Organic Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LIGHT-ABSORPTION; ELEMENTAL CARBON; AEROSOL; PARTICLES; SOOT; AETHALOMETER AB This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and bare used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 mu g of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 mu g of BC. C1 [Hadley, Odelle L.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hadley, OL (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, MC 0221, La Jolla, CA 92093 USA. EM ohadley@ucsd.edu FU Guido Franco and the California Energy Commission [MR-06-0113] FX We thank Guido Franco and the California Energy Commission for their support (CEC Award No. MR-06-0113). We also thank Prof. T. Novakov and Jefferey Aguiar for advice and assistance during the laboratory phase of this study. NR 27 TC 15 Z9 16 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8459 EP 8464 DI 10.1021/es800448n PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400046 PM 19068832 ER PT J AU Faybishenko, B Hazen, TC Long, PE Brodie, EL Conrad, ME Hubbard, SS Christensen, JN Joyner, D Borglin, SE Chakraborty, R Williams, KH Peterson, JE Chen, JS Brown, ST Tokunaga, TK Wan, JM Firestone, M Newcomer, DR Resch, CT Cantrell, KJ Willett, A Koenigsberg, S AF Faybishenko, Boris Hazen, Terry C. Long, Philip E. Brodie, Eoin L. Conrad, Mark E. Hubbard, Susan S. Christensen, John N. Joyner, Dominique Borglin, Sharon E. Chakraborty, Romy Williams, Kenneth H. Peterson, John E. Chen, Jinsong Brown, Shaun T. Tokunaga, Tetsu K. Wan, Jiamin Firestone, Mary Newcomer, Darrell R. Resch, Charles T. Cantrell, Kirk J. Willett, Anna Koenigsberg, Stephen TI In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater Using Hydrogen Release Compound SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HEXAVALENT CHROMIUM; CHROMATE REDUCTION; ANAEROBIC CONDITIONS; SOIL; SULFIDE; ENVIRONMENT; FATE; IRON; BIOREMEDIATION; KINETICS AB The results of a field experiment designed to test the effectiveness of a novel approach for long-term, in situ bioimmobilization of toxic and soluble Cr(VI) in groundwater using a hydrogen release compound (HRC)-a slow release glycerol polylactate-are described. The field experiment was conducted at the Hanford Site (Washington), a U.S. Department of Energy nuclear production facility, using a combination of hydrogeological, geophysical, geochemical, and microbiological measurements and analyses of water samples and sediments. The results of this experiment show that a single HRC injection into groundwater stimulates an increase in biomass, a depletion of terminal electron acceptors O-2, NO3-, and So(4)(2-,) and an increase in Fe2+, resulting in a significant decrease in soluble Cr(VI). The Cr(VI) concentration has remained belowthe background concentration in the downgradient pumping/ monitoring well, and below the detection limit in the injection well for more than 3 years after the HRC injection. The degree of sustainability of Cr(VI) reductive biclimmobilization under different redox conditions at this and other contaminated sites is currently under study. C1 [Faybishenko, Boris; Hazen, Terry C.; Brodie, Eoin L.; Conrad, Mark E.; Hubbard, Susan S.; Christensen, John N.; Joyner, Dominique; Borglin, Sharon E.; Chakraborty, Romy; Williams, Kenneth H.; Peterson, John E.; Chen, Jinsong; Brown, Shaun T.; Tokunaga, Tetsu K.; Wan, Jiamin; Firestone, Mary] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Long, Philip E.; Newcomer, Darrell R.; Resch, Charles T.; Cantrell, Kirk J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Willett, Anna; Koenigsberg, Stephen] Regenesis Ltd, San Clemente, CA USA. RP Hazen, TC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM TCHazen@lbl.gov RI Brodie, Eoin/A-7853-2008; Christensen, John/D-1475-2015; Chakraborty, Romy/D-9230-2015; Brown, Shaun/E-9398-2015; Borglin, Sharon/I-1013-2016; Hazen, Terry/C-1076-2012; Chen, Jinsong/A-1374-2009; Conrad, Mark/G-2767-2010; Long, Philip/F-5728-2013; Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Hubbard, Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Faybishenko, Boris/G-3363-2015 OI Brodie, Eoin/0000-0002-8453-8435; Chakraborty, Romy/0000-0001-9326-554X; Brown, Shaun/0000-0002-2159-6718; Hazen, Terry/0000-0002-2536-9993; Long, Philip/0000-0003-4152-5682; Tokunaga, Tetsu/0000-0003-0861-6128; Williams, Kenneth/0000-0002-3568-1155; Faybishenko, Boris/0000-0003-0085-8499 FU U.S. Department of Energy [DE-AC02-05CH11231]; Battelle for the United States Department of Energy [DE-AC06-76RL01830]; Environmental Remediation Science Program; Office of Science; Office of Environmental Management of DOE; DOE Genomics: GTL Program FX This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under Contract DE-AC06-76RL01830. The project was also funded in part by the Environmental Remediation Science Program, Office of Science, and the Office of Environmental Management of DOE. This project was also funded in part by the DOE Genomics: GTL Program. This project is part of the Virtual Institute for Microbial Stress and Survival (VIMSS), http:// vimss.lbl.gov. The authors appreciate very much constructive comments given by the anonymous reviewers. Using the trade names or commercial products in this manuscript is exclusively for the purpose of providing specific information related to the experiments and does not imply recommendation or endorsement by authors of this publication. NR 53 TC 52 Z9 54 U1 9 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2008 VL 42 IS 22 BP 8478 EP 8485 DI 10.1021/es801383r PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 372SF UT WOS:000260921400049 PM 19068835 ER PT J AU Jaisi, DP Liu, CX Dong, HL Blake, RE Fein, JB AF Jaisi, Deb P. Liu, Chongxuan Dong, Hailiang Blake, Ruth E. Fein, Jeremy B. TI Fe2+ sorption onto nontronite (NAu-2) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ABSORPTION FINE-STRUCTURE; CLAY-MINERALS; SMECTITE DISSOLUTION; MICROBIAL REDUCTION; MECHANISTIC DESCRIPTION; COMPETITIVE SORPTION; SUBSURFACE SEDIMENTS; NA-MONTMORILLONITE; SURFACE CATALYSIS; ZN PHYLLOSILICATE AB The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)(+) was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Jaisi, Deb P.; Blake, Ruth E.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Jaisi, Deb P.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fein, Jeremy B.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN USA. RP Jaisi, DP (reprint author), Yale Univ, Dept Geol & Geophys, POB 208109, New Haven, CT 06520 USA. EM deb.jaisi@yale.edu RI Liu, Chongxuan/C-5580-2009; OI Liu, Chongxuan/0000-0002-2180-6770 FU National Science Foundation [EAR-0345307]; US Department of Energy [DE-FG02-07ER64369]; DOE Environmental Remediation Science Program (ERSP); Clay Mineral Society [CMS, 2006]; Geological Society of America [GSA, 2005]; International Association of Mathematical Geology [IAMG, 2006]; Yale University FX We thank Jennifer Szymanowski from the University of Notre Dame and Wei Seng Ang from Yale University for their help, with the potentiometric titration experiments. This research was supported by grants from National Science Foundation (EAR-0345307) and US Department of Energy (DE-FG02-07ER64369) to H.D. and by DOE Environmental Remediation Science Program (ERSP) for C.L. The research was also supported by small research grants from the Clay Mineral Society (CMS, 2006), Geological Society of America (GSA, 2005), International Association of Mathematical Geology (IAMG, 2006) and Interdepartmental Bateman Postdoctoral Fellowship from Yale University to D.P.J. We thank the AE and anonymous reviewers for their constructive comments which greatly improved the quality of the revised manuscript. NR 72 TC 24 Z9 24 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2008 VL 72 IS 22 BP 5361 EP 5371 DI 10.1016/j.gca.2008.08.022 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 367PB UT WOS:000260562900002 ER PT J AU Foustoukos, DI Savov, IP Janecky, DR AF Foustoukos, Dionysis I. Savov, Ivan P. Janecky, David R. TI Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30 degrees N Mid-Atlantic Ridge SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Review ID EAST PACIFIC RISE; MARIANA FORE-ARC; MOLAL THERMODYNAMIC PROPERTIES; OCEANIC-CRUST; VENT FLUIDS; ABYSSAL PERIDOTITES; MIDOCEAN RIDGES; ULTRAMAFIC ROCKS; SEA-FLOOR; ELEVATED-TEMPERATURES AB Low temperature vent fluids (<91 degrees C) issuing from the ultramafic-hosted hydrothermal system at Lost City, 30 degrees N Mid-Atlantic Ridge, are enriched in dissolved volatiles (H-2,CH4) while attaining elevated pH values, indicative of the serpentization processes that govern water/rock interactions deep in the oceanic crust. Here, we present a series of theoretical models to evaluate the extent of hydrothermal alteration and assess the effect of cooling on the systematics of pH-controlled B aqueous species. Peridotite-seawater equilibria calculations indicate that the mineral assemblage composed of diopside, brucite and chrysotile likely dictates fluid pH at moderate temperature serpentinization processes (<300 degrees C), by imposing constraints on the aCa(++)/a(2)H(+) ratios and the activity of dissolved SiO2. Based on Sr abundances and the Sr-87/Sr-86 isotope ratios of vent fluids reported from Lost City, estimated water/rock mass ratios (w/r = 2-4) are consistent with published models involving dissolved CO2 and alkane concentrations. Combining the reported delta O-18 values of vent fluids (0.77 parts per thousand) with such w/r mass ratios, allows us to bracket subseafloor reaction temperatures in the vicinity of 250 degrees C. These estimates are in agreement with previous theoretical studies supporting extensive conductive heat loss within the upflow zones. Experimental studies on peridotite-seawater alteration suggest that fluid pH increases during cooling which then rapidly enhances boron removal from solution and incorporation into secondary phases, providing an explanation for the highly depleted dissolved boron concentrations measured in the low temperature but alkaline Lost City vent fluids. Finally, to account for the depleted B-11 composition (delta B-11 similar to 25-30 parts per thousand) of vent fluids relative to seawater, isotopic fractionation between tetrahedrally coordinated aqueous boron species with BO3-bearing mineral sites (e.g. in calcite, brucite) is proposed. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Foustoukos, Dionysis I.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Savov, Ivan P.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Savov, Ivan P.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Janecky, David R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Foustoukos, DI (reprint author), Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM dfoustoukos@ciw.edu FU Carnegie Institution of Washington FX The authors thank Wolfgang Bach, Fouad Tera, Nabil Boctor, Jennifer Stern and Andrew McCaig for valuable discussions and constructive suggestions. Special thanks to Fu Qi for deriving the thermodynamic data of the Fe-bearing brucite (Mg0.70-0.75Fe0.25-0.3OH(2)). The manuscript was greatly improved by thoughtful comments provided by Associate Editor Jeff Alt, and three anonymous reviewers. This study has been supported by postdoctoral fellowships (DIF, IS) from the Carnegie Institution of Washington. NR 121 TC 45 Z9 46 U1 2 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2008 VL 72 IS 22 BP 5457 EP 5474 DI 10.1016/j.gca.2008.07.035 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 367PB UT WOS:000260562900009 ER PT J AU Fantauzzo, KA Tadin-Strapps, M You, Y Mentzer, SE Baumeister, FAM Cianfarani, S Van Maldergem, L Warburton, D Sundberg, JP Christiano, AM AF Fantauzzo, Katherine A. Tadin-Strapps, Marija You, Yun Mentzer, Sarah E. Baumeister, Friedrich A. M. Cianfarani, Stefano Van Maldergem, Lionel Warburton, Dorothy Sundberg, John P. Christiano, Angela M. TI A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice SO HUMAN MOLECULAR GENETICS LA English DT Article ID COMPLEX CYTOGENETIC REARRANGEMENT; RHINO-PHALANGEAL-SYNDROME; TRANSCRIPTION FACTOR SP1; EARS EH MUTATION; SYNDROME TYPE-I; TRICHORHINOPHALANGEAL SYNDROME; HYPERTRICHOSIS UNIVERSALIS; CANDIDATE GENE; SONIC-HEDGEHOG; INTERSTITIAL DELETION AB Ambras syndrome (AS) is a rare form of congenital hypertrichosis with excessive hair on the shoulders, face and ears. Cytogenetic studies have previously implicated an association with rearrangements of chromosome 8. Here we define an 11.5 Mb candidate interval for AS on chromosome 8q based on cytogenetic breakpoints in three patients. TRPS1, a gene within this interval, was deleted in a patient with an 8q23 chromosomal rearrangement, while its expression was significantly downregulated in another patient with an inversion breakpoint 7.3 Mb downstream of TRPS1. Here, we describe the first potential long-range position effect on the expression of TRPS1. To gain insight into the mechanisms by which Trps1 affects the hair follicle, we performed a detailed analysis of the hair abnormalities in Koa mice, a mouse model of hypertrichosis. We found that the proximal breakpoint of the Koa inversion is located 791 kb upstream of Trps1. Quantitative real-time polymerase chain reaction, in situ hybridization and immunofluorescence analysis revealed that Trps1 expression levels are reduced in Koa mutant mice at the sites of pathology for the phenotype. We determined that the Koa inversion creates a new Sp1 binding site and translocates additional Sp1 binding sites within a highly conserved stretch spanning the proximal breakpoint, providing a potential mechanism for the position effect. Collectively, these results describe a position effect that downregulates TRPS1 expression as the probable cause of hypertrichosis in AS in humans and the Koa phenotype in mice. C1 [Christiano, Angela M.] Columbia Univ, Dept Dermatol, Coll Phys & Surg, New York, NY 10032 USA. [Fantauzzo, Katherine A.; Tadin-Strapps, Marija; Warburton, Dorothy; Christiano, Angela M.] Columbia Univ, Dept Genet & Dev, New York, NY 10032 USA. [You, Yun; Mentzer, Sarah E.] Oak Ridge Natl Lab, Div Life Sci, Mammalian Genet & Genom Grp, Oak Ridge, TN 37831 USA. [Baumeister, Friedrich A. M.] Univ Munich, Kinderklin & Poliklin Tech, D-80804 Munich, Germany. [Cianfarani, Stefano] Univ Roma Tor Vergata, Ctr Pediat Endocrinol, Dept Publ Hlth & Cell Biol, I-00133 Rome, Italy. [Van Maldergem, Lionel] Univ Liege, Ctr Genet Humaine, B-4000 Liege, Belgium. [Sundberg, John P.] Jackson Lab, Bar Harbor, ME 04609 USA. RP Christiano, AM (reprint author), Columbia Univ, Dept Dermatol, Coll Phys & Surg, 630 W 168th St VC15-204A, New York, NY 10032 USA. EM amc65@columbia.edu RI cianfarani, stefano/K-2079-2016 OI cianfarani, stefano/0000-0002-2580-8781 FU New York State Foundation for Science, Technology and Innovation [CO40072]; Kirsch Foundation [2002-0359]; Office of Biological and Environmental Research; United States Department of Energy [DE-AC05-00OR22725]; North American Hair Research Society Mentorship Award; National Institutes of Health [1T32HD055165-01] FX New York State Foundation for Science, Technology and Innovation (no. CO40072 to A.M.C.); the Kirsch Foundation (no. 2002-0359 to A.M.C.); Office of Biological and Environmental Research, United States Department of Energy (no. DE-AC05-00OR22725 to Y.Y.); North American Hair Research Society Mentorship Award (to Y.Y. and J.S.); National Institutes of Health (1T32HD055165-01 to K.A.F.). NR 67 TC 34 Z9 34 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0964-6906 J9 HUM MOL GENET JI Hum. Mol. Genet. PD NOV 15 PY 2008 VL 17 IS 22 BP 3539 EP 3551 DI 10.1093/hmg/ddn247 PG 13 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 365BV UT WOS:000260381800010 PM 18713754 ER PT J AU Santer, BD Thorne, PW Haimberger, L Taylor, KE Wigley, TML Lanzante, JR Solomon, S Free, M Gleckler, PJ Jones, PD Karl, TR Klein, SA Mears, C Nychka, D Schmidt, GA Sherwood, SC Wentz, FJ AF Santer, B. D. Thorne, P. W. Haimberger, L. Taylor, K. E. Wigley, T. M. L. Lanzante, J. R. Solomon, S. Free, M. Gleckler, P. J. Jones, P. D. Karl, T. R. Klein, S. A. Mears, C. Nychka, D. Schmidt, G. A. Sherwood, S. C. Wentz, F. J. TI Consistency of modelled and observed temperature trends in the tropical troposphere SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE tropospheric temperature changes; climate model evaluation; statistical significance of trend differences; tropical lapse rates; differential warming of surface and temperature ID SEA-SURFACE-TEMPERATURE; AIR-TEMPERATURE; CLIMATE MODEL; TIME-SERIES; RADIOSONDE; HOMOGENIZATION; UNCERTAINTIES; ATMOSPHERE; BIASES; SENSITIVITIES AB A recent report of the U.S. Climate Change Science Program (CCSP) identified a 'potentially serious inconsistency' between modelled and observed trends in tropical lapse rates (Karl et al., 2006). Early versions of Satellite and radiosonde datasets suggested that the tropical surface had warmed more than the troposphere, while climate models consistently showed tropospheric amplification of surface warming in response to human-caused increases in well-mixed greenhouse gases (GHGs). We revisit such comparisons here using new observational estimates of surface and tropospheric temperature changes. We find that there is no longer a serious discrepancy between modelled and observed trends in tropical lapse rates. This emerging reconciliation of models and observations has two primary explanations. First, because of changes in the treatment of buoy and satellite information, new surface temperature datasets yield slightly reduced tropical warming relative to earlier versions. Second, recently developed satellite and radiosonde datasets show larger warming of the tropical lower troposphere. In the case of a new satellite dataset from Remote Sensing Systems (RSS), enhanced warming is due to an improved procedure of adjusting for inter-satellite biases. When the RSS-derived tropospheric temperature trend is compared with four different observed estimates of surface temperature change, the surface warming is invariably amplified in the tropical troposphere, consistent with model results. Even if we use data from a second satellite dataset with smaller tropospheric warming than in RSS, observed tropical lapse rate trends are not significantly different from those in all other model simulations. Our results contradict a recent claim that all simulated temperature trends in the tropical troposphere and in tropical lapse rates are inconsistent with observations. This claim was based on use of older radiosonde and satellite datasets, and on two methodological errors: the neglect of observational trend uncertainties introduced by interannual climate variability, and application of an inappropriate statistical 'consistency test'. Copyright (c) 2008 Royal Meteorological Society C1 [Santer, B. D.; Taylor, K. E.; Gleckler, P. J.; Klein, S. A.] Lawrence Livermore Natl Lab, PCMDI, Livermore, CA 94550 USA. [Thorne, P. W.] Hadley Ctr, UK Meteorol Off, Exeter EX1 3PB, Devon, England. [Haimberger, L.] Univ Vienna, Dept Meteorol & Geophys, A-1090 Vienna, Austria. [Wigley, T. M. L.; Nychka, D.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lanzante, J. R.] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Solomon, S.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Free, M.] NOAA, Air Resources Lab, Silver Spring, MD 20910 USA. [Jones, P. D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Karl, T. R.] Natl Ocean & Atmospher Adm, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Mears, C.; Wentz, F. J.] Remote Sensing Syst, Santa Rosa, CA 95401 USA. [Schmidt, G. A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Sherwood, S. C.] Yale Univ, New Haven, CT 06520 USA. RP Santer, BD (reprint author), Lawrence Livermore Natl Lab, PCMDI, Livermore, CA 94550 USA. EM santer1@llnl.gov RI Thorne, Peter/F-2225-2014; Sherwood, Steven/B-5673-2008; Jones, Philip/C-8718-2009; Klein, Stephen/H-4337-2016; Manager, CSD Publications/B-2789-2015; Taylor, Karl/F-7290-2011; Santer, Benjamin/F-9781-2011; Schmidt, Gavin/D-4427-2012 OI Thorne, Peter/0000-0003-0485-9798; Sherwood, Steven/0000-0001-7420-8216; Jones, Philip/0000-0001-5032-5493; Klein, Stephen/0000-0002-5476-858X; Taylor, Karl/0000-0002-6491-2135; Schmidt, Gavin/0000-0002-2258-0486 NR 71 TC 119 Z9 122 U1 2 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD NOV 15 PY 2008 VL 28 IS 13 BP 1703 EP 1722 DI 10.1002/joc.1756 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 373WE UT WOS:000261003400002 ER PT J AU DeMange, P Carr, CW Negres, RA Radousky, HB Demos, SG AF DeMange, Paul Carr, Christopher W. Negres, Raluca A. Radousky, Harry B. Demos, Stavros G. TI Laser annealing characteristics of multiple bulk defect populations within DKDP crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE crystal defects; deuterium compounds; hydrogen compounds; laser beam annealing; laser beam effects; optical materials; potassium compounds; stoichiometry ID POTASSIUM DIHYDROGEN PHOSPHATE; INDUCED DAMAGE; KDP CRYSTALS; PERFORMANCE; KH2PO4; CLUSTERS AB Laser annealing by pre-exposure to subdamage threshold laser pulses is a well-established method to increase the damage performance of bulk KH(2)PO(4) and KD(x)H(2-x)PO(4) nonlinear optical materials. The origin of laser-induced damage is believed to be localized absorption by a defect structure, either a light-absorbing foreign nanoparticle or a cluster of stoichiometric defects. It has been recently shown that there are at least three populations of such defect structures in these materials in which pre-exposure to laser pulses of specific fluence and wavelength results in a measurable reduction in their number density or decrease in their susceptibility to damage. In this work, we investigate the annealing characteristics of these three populations of defect structures in DKDP under variable irradiation conditions. The aim is to understand the similarities and differences between these populations in the way they interact with laser light. The results depict distinct behaviors that reveal information on the relationship between the defect populations and their modifications responsible for annealing. C1 [DeMange, Paul; Carr, Christopher W.; Negres, Raluca A.; Radousky, Harry B.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM demange1@llnl.gov RI Carr, Chris/F-7163-2013 FU Lawrence Livermore National Security, LLC, for the (U.S.) Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the (U.S.) Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. NR 29 TC 11 Z9 11 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103103 DI 10.1063/1.3000460 PG 7 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800003 ER PT J AU Giubertoni, D Pepponi, G Gennaro, S Bersani, M Sahiner, MA Kelty, SP Doherty, R Foad, MA Kah, M Kirkby, KJ Woicik, JC Pianetta, P AF Giubertoni, Damiano Pepponi, Giancarlo Gennaro, Salvatore Bersani, Massimo Sahiner, Mehmet Alper Kelty, Stephen P. Doherty, Roisin Foad, Majeed A. Kah, Max Kirkby, Karen J. Woicik, Joseph C. Pianetta, Piero TI Correlation of local structure and electrical activation in arsenic ultrashallow junctions in silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE arsenic; carrier density; density functional theory; elemental semiconductors; Hall effect; rapid thermal annealing; secondary ion mass spectra; semiconductor doping; semiconductor thin films; silicon; vacancies (crystal); X-ray absorption spectra ID ABSORPTION FINE-STRUCTURE; DOPED SILICON; SI CRYSTALS; CRYSTALLOGRAPHIC POSITION; ENHANCED DIFFUSION; SOLID SOLUBILITY; DEACTIVATION; IMPURITIES; DEFECTS; LASER AB The understanding of the behavior of arsenic in highly doped near surface silicon layers is of crucial importance for the formation of N-type ultrashallow junctions in current and future very large scale integrated technology. This is of particular relevance when studying recently developed implantation and annealing methods. Past theoretical as well as experimental investigations have suggested that the increase in As concentration, and therefore the reciprocal proximity of several As atoms, leads to a drastic increase in electrically inactive defects giving only marginal reduction in sheet resistance. Monoclinic SiAs aggregates as well as various arsenic-vacancy clusters contribute to the deactivation of arsenic. This study aims to correlate between the results of electrical activation measurements and x-ray absorption fine structure measurements. Samples were doped with a nominal fluence of 1x10(15)-3x10(15) atoms/cm(2), implanted at 2 keV, and annealed by rapid thermal treatments, laser submelt treatments, and a combination of both. Hall effect and sheet resistance measurements have been performed to obtain the density of charge carriers. Secondary ion mass spectrometry has been employed to measure the depth profile and the total retained fluences. The percentage of substitutional arsenic has been obtained by least-squares fits of the measured x-ray absorption spectra with simulated spectra of relaxed structures of the defects obtained by density functional theory. A good agreement with the Hall effect measured electrically active dose fraction has been obtained and a quantification of the population of the different defects involved has been attempted. C1 [Giubertoni, Damiano; Pepponi, Giancarlo; Gennaro, Salvatore; Bersani, Massimo] Ctr Mat & Microsyst Fdn Bruno Kessler, I-38050 Trento, Italy. [Sahiner, Mehmet Alper] Seton Hall Univ, Dept Phys, S Orange, NJ 07079 USA. [Kelty, Stephen P.] Seton Hall Univ, Ctr Computat Res, Dept Chem & Biochem, S Orange, NJ 07079 USA. [Doherty, Roisin; Foad, Majeed A.] Appl Mat Inc, Front End Prod, Sunnyvale, CA 94085 USA. [Kah, Max; Kirkby, Karen J.] Univ Surrey, Fac Engn & Phys Sci, Adv Technol Inst, Surrey Ion Beam Ctr, Guildford GU2 7XH, Surrey, England. [Woicik, Joseph C.] NIST, Gaithersburg, MD 20899 USA. [Pianetta, Piero] SSRL, Menlo Pk, CA 94025 USA. RP Giubertoni, D (reprint author), Ctr Mat & Microsyst Fdn Bruno Kessler, Via Sommarive 18, I-38050 Trento, Italy. EM giuberto@fbk.cu RI Kirkby, Karen/M-4725-2015; OI Kirkby, Karen/0000-0002-0901-210X; Giubertoni, Damiano/0000-0001-8197-8729; Pepponi, Giancarlo/0000-0002-7397-1946 FU Francesco d' Acapito; INFM; ESRF Grenoble; Corporation Award [CC6405]; NSF [DMI 0420952]; European Commission FX The authors would like to acknowledge Francesco d' Acapito, INFM, and ESRF Grenoble for support and discussion during EXAFS analysis session, Silvia Milita, CNR-IMM Bologna for providing reference sample and helping during EXAFS analysis, and Justin Hamilton and Jim Sharp, University of Surrey for characterizing some samples by Hall Effect measurements. The work of M.A.S. is supported by Research Corporation Award No. CC6405 and NSF Grant No. DMI 0420952. We acknowledge the support of the European Commission under the action 'Structuring the European Research Area'. NIST disclaimer: Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose. NR 48 TC 12 Z9 12 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103716 DI 10.1063/1.3026706 PG 8 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800082 ER PT J AU Granstedt, EM Raitses, Y Fisch, NJ AF Granstedt, E. M. Raitses, Y. Fisch, N. J. TI Cathode effects in cylindrical Hall thrusters SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE glow discharges; plasma devices; plasma heating ID CROSS-SECTIONS; MODELS AB Stable operation of a cylindrical Hall thruster has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field. C1 [Granstedt, E. M.; Raitses, Y.; Fisch, N. J.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Granstedt, EM (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM erikg@princeton.edu; yraitses@pppl.gov; fisch@pppl.gov FU AFOSR; U.S. DOE [AC02-76CH0-3073] FX This work was supported by grants from AFOSR and U.S. DOE Contract No. AC02-76CH0-3073. One of us (E.M.G.) wishes to acknowledge the support of a DOE Fusion Energy Sciences Graduate Fellowship. NR 30 TC 12 Z9 12 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103302 DI 10.1063/1.2999343 PG 5 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800020 ER PT J AU Jiang, CS Moutinho, HR Reedy, R Al-Jassim, MM Blosse, A AF Jiang, C.-S. Moutinho, H. R. Reedy, R. Al-Jassim, M. M. Blosse, A. TI Two-dimensional junction identification in multicrystalline silicon solar cells by scanning Kelvin probe force microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE atomic force microscopy; Fermi level; p-n junctions; solar cells; surface topography AB We report on a two-dimensional investigation of the p-n junction in multicrystalline silicon solar cells using scanning Kelvin probe force microscopy (SKPFM). The junction location and depth were identified by SKPFM potential measurement and subsequent data analysis, where a procedure taking bias-voltage-induced changes in the potential and electric field was developed to avoid the effects of surface Fermi level pinning. Device simulation supported the junction identification procedure and showed a possible deviation of similar to 40 nm in the junction identification. The two-dimensional electric-field images show that the shape of the junction follows the surface topography of the device, or, in other words, the junction depth is identical over the device. C1 [Jiang, C.-S.; Moutinho, H. R.; Reedy, R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Blosse, A.] CaliSolar Inc, Menlo Pk, CA 94025 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun_sheng_jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy [DE-AC36-99GO10337] FX This work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337. NR 29 TC 16 Z9 16 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 104501 DI 10.1063/1.3003131 PG 4 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800138 ER PT J AU Krstic, PS Reinhold, CO Stuart, SJ AF Krstic, P. S. Reinhold, C. O. Stuart, S. J. TI Energy and angle spectra of sputtered particles for low-energy deuterium impact of deuterated amorphous carbon SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE amorphous state; carbon; deuterium; molecule-surface impact; rotational states; rotational-vibrational states; translational states; vibrational states ID PLASMA RECOMBINATION; MOLECULAR PROCESSES; BOMBARDMENT; SURFACES AB We study the translational, vibrational, and rotational energy spectra of atoms and molecules reflected or sputtered from deuterated amorphous carbon surfaces by impact of low-energy (1-30 eV) deuterium atoms. Both the rovibrational and translational energies of sputtered deuterium molecules are found to be close to 1 eV over the whole impact energy range, with approximate equipartition between rotational and vibrational modes, particularly at the higher impact energies. Sputtered carbon-containing molecules are vibrationally energetic, with rovibrational energies in the range of 1.5-2.5 eV; translational and rotational motions are less energetic, close to 0.5 eV, but hotter, with more energy per degree of freedom. The energy distributions of ejected molecules confirm the partial thermalization of the impact cascade. We also study the angular spectrum of the velocity of the outgoing particles as well as their angular momentum. While the velocity vectors are described well by a cosine distribution, a preferred direction of rotation is found at the lowest energies, with the angular momenta preferentially oriented parallel to the surface. C1 [Krstic, P. S.; Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stuart, S. J.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Krstic, PS (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM krsticp@ornl.gov RI Stuart, Steven/H-1111-2012; OI Reinhold, Carlos/0000-0003-0100-4962 FU U.S. Department of Energy [DE-AC05-00OR22725]; SciDAC; Department of Energy [DEFG0201ER45889]; National Science Foundation [CHE0239448]; DOD [47539-CHMUR] FX We acknowledge support by the Office of Fusion Energy Sciences (P.S.K.) and the Office of Basic Energy Sciences (C.O.R. ) of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and partial support through SciDAC. S.J.S. acknowledges financial support for this work by the Department of Energy (Contract No. DEFG0201ER45889 ), the National Science Foundation (Contract No. CHE0239448 ) and the DOD (47539-CHMUR ). This research was performed in great part using 512-1024 processors of the Cray X1E computer located at ORNL, through DoE INCITE under Project No. SC18392. NR 29 TC 12 Z9 12 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103308 DI 10.1063/1.3028205 PG 10 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800026 ER PT J AU Li, YL Hu, SY Choudhury, S Baskes, MI Saxena, A Lookman, T Jia, QX Schlom, DG Chen, LQ AF Li, Y. L. Hu, S. Y. Choudhury, S. Baskes, M. I. Saxena, A. Lookman, T. Jia, Q. X. Schlom, D. G. Chen, L. Q. TI Influence of interfacial dislocations on hysteresis loops of ferroelectric films SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE barium compounds; coercive force; dielectric hysteresis; dielectric polarisation; dislocation density; electric domains; ferroelectric thin films ID CHEMICAL-VAPOR-DEPOSITION; BATIO3 THIN-FILMS; PULSED-LASER DEPOSITION; ELECTRICAL-PROPERTIES; PBZR0.2TI0.8O3 FILMS; DOMAIN-STRUCTURES; PHASE-TRANSITION; BARIUM-TITANATE; DECOMPOSITION; ORIENTATION AB We investigated the influence of dislocations, located at the interface of a ferroelectric film and its underlying substrate, on the ferroelectric hysteresis loop including the remanent polarization and coercive field using phase-field simulations. We considered epitaxial ferroelectric BaTiO3 films and found that the hysteresis loop is strongly dependent on the type and density of interfacial dislocations. The dislocations that stabilize multiple ferroelectric variants and domains reduce the coercive field, and consequently, the corresponding remanent polarization also decreases. C1 [Li, Y. L.; Choudhury, S.; Schlom, D. G.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Jia, Q. X.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP Li, YL (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yil1@psu.edu RI Choudhury, Samrat/B-4115-2009; Jia, Q. X./C-5194-2008; Schlom, Darrell/J-2412-2013; Chen, LongQing/I-7536-2012; OI Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082; Lookman, Turab/0000-0001-8122-5671 FU Laboratory-Directed Research and Development Program under DOE; NSF [DMR0507146, DMR-0820404]; Department of Energy [DE-FG02-07ER46417] FX This work was supported by the Laboratory-Directed Research and Development Program under DOE at Los Alamos National Laboratory, NSF under Grant Nos. DMR0507146 and DMR-0820404, and the Department of Energy under Grant No. DE-FG02-07ER46417. NR 44 TC 19 Z9 19 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 104110 DI 10.1063/1.3021354 PG 6 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800113 ER PT J AU Miyagi, L Kunz, M Knight, J Nasiatka, J Voltolini, M Wenk, HR AF Miyagi, Lowell Kunz, Martin Knight, Jason Nasiatka, James Voltolini, Marco Wenk, Hans-Rudolf TI In situ phase transformation and deformation of iron at high pressure and temperature SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EARTHS INNER-CORE; DIAMOND-ANVIL CELL; ADVANCED-LIGHT-SOURCE; BCC-HCP TRANSITION; PKIKP TRAVEL-TIMES; MARTENSITIC TRANSITION; NEUTRON-DIFFRACTION; ELASTIC-ANISOTROPY; MAXWELL STRESSES; TEXTURE CHANGES AB With a membrane based mechanism to allow for pressure change in a sample in a radial diffraction diamond anvil cell and simultaneous infrared laser heating, it is now possible to investigate texture changes during deformation and phase transformations over a wide range of temperature-pressure conditions. The device is used to study bcc (alpha), fcc (gamma), and hcp (epsilon) iron. In bcc iron, room temperature compression generates a texture characterized by (100) and (111) poles parallel to the compression direction. During the deformation induced phase transformation to hcp iron, a subset of orientations is favored to transform to the hcp structure first and generate a texture of (01 (1) over bar0) at high angles to the compression direction. Upon further deformation, the remaining grains transform, resulting in a texture that obeys the Burgers relationship of (110)(bcc)/ /(0001)(hcp). Contrary to these results for low temperature, at high temperature texture is developed through dominant pyramidal < a + c > {2 (1) over bar(1) over bar2} < 2 (1) over bar(1) over bar3 > and basal (0001)< 2 (1) over bar(1) over bar0 > slip based on polycrystal plasticity modeling. We also observe that the high temperature fcc phase develops a 110 texture typical for fcc metals deformed in compression. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3008035] C1 [Miyagi, Lowell; Voltolini, Marco; Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kunz, Martin; Knight, Jason; Nasiatka, James] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Miyagi, L (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Kunz, Martin/K-4491-2012; Voltolini, Marco/G-2781-2015 OI Kunz, Martin/0000-0001-9769-9900; FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF [EAR 06-49658, EAR 0836402]; CDAC FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES under NSF Cooperative Agreement EAR 06-49658. H. R. W and L. M. acknowledge support from CDAC and NSF (Grant No. EAR 0836402). We appreciate the help of S. Clark at the ALS. We also thank the anonymous reviewer whose input improved this manuscript. NR 61 TC 22 Z9 22 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103510 DI 10.1063/1.3008035 PG 9 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800037 ER PT J AU Nie, ZH Peng, RL Johansson, S Oliver, EC Ren, Y Wang, YD Liu, YD Deng, JN Zuo, L Brown, DE AF Nie, Z. H. Peng, R. Lin Johansson, S. Oliver, E. C. Ren, Y. Wang, Y. D. Liu, Y. D. Deng, J. N. Zuo, L. Brown, D. E. TI Direct evidence of detwinning in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys during deformation SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE ferromagnetic materials; gallium alloys; manganese alloys; martensitic structure; neutron diffraction; nickel alloys; shape memory effects; X-ray diffraction ID NEUTRON-DIFFRACTION; MARTENSITIC-TRANSFORMATION; FE-PD; STRESS; PHASE AB In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys. C1 [Nie, Z. H.; Wang, Y. D.; Liu, Y. D.; Deng, J. N.; Zuo, L.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. [Peng, R. Lin; Johansson, S.] Linkoping Univ, Dept Mech Engn, S-58183 Linkoping, Sweden. [Oliver, E. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Nie, ZH (reprint author), Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn RI Nie, Zhihua/G-9459-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50725102, 50531020]; 111 Project [B07015]; Ministry of Education of China [707017]; Swedish Research Council [348-2004-3475]; European Commission [CT-2003-505]; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX This work is supported by the National Natural Science Foundation of China (Contract Nos. 50725102 and 50531020), the 111 Project (Contract No. B07015), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Ministry of Education of China) (Contract No. 707017), and the Swedish Research Council in the frame of the SIDA project (Contract No. 348-2004-3475). The authors are also grateful for the support provided by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures (Contract No. HII3-CT-2003-505). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 23 TC 4 Z9 4 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 103519 DI 10.1063/1.3020534 PG 5 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800045 ER PT J AU Pivi, M King, FK Kirby, RE Raubenheimer, TO Stupakov, G Le Pimpec, F AF Pivi, M. King, F. K. Kirby, R. E. Raubenheimer, T. O. Stupakov, G. Le Pimpec, F. TI Sharp reduction of the secondary electron emission yield from grooved surfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium; copper; Monte Carlo methods; rough surfaces; secondary electron emission; titanium alloys; titanium compounds; vanadium alloys; zirconium alloys ID FILMS AB The effect of an artificially enhanced rough surface on the secondary electron yield (SEY) was investigated both theoretically and experimentally. Analytical studies on triangular and rectangular grooved surfaces show the connection between the characteristic parameters of a given geometry to the SEY reduction. The effect of a strong magnetic field is also discussed. SEY of grooved samples have been measured and the results agree with particle simulations using a Monte Carlo approach. C1 [Pivi, M.; King, F. K.; Kirby, R. E.; Raubenheimer, T. O.; Stupakov, G.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Le Pimpec, F.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Pivi, M (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM mpivi@slac.stanford.edu FU U.S. DOE [DE-AC03-76SF00515, DE-AC03-76SF00098] FX The authors are thankful to S. Heifets, L. Wang, and M. Venturini for very useful discussions. We gratefully thank D. Lee and A. Wolski of LBNL for providing the samples. This work is supported by the U.S. DOE under Contract Nos. DE-AC03-76SF00515 and DE-AC03-76SF00098. NR 23 TC 45 Z9 47 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2008 VL 104 IS 10 AR 104904 DI 10.1063/1.3021149 PG 10 WC Physics, Applied SC Physics GA 396QI UT WOS:000262605800151 ER PT J AU Zhu, BL Lazar, M Trewyn, BG Angelici, RJ AF Zhu, Bolin Lazar, Mihaela Trewyn, Brian G. Angelici, Robert J. TI Aerobic oxidation of amines to imines catalyzed by bulk gold powder and by alumina-supported gold SO JOURNAL OF CATALYSIS LA English DT Article DE Amine; Gold; Heterogeneous catalysis; Imine; Oxidation; Oxygen ID NON-NANOGOLD CATALYSIS; SECONDARY-AMINES; CO OXIDATION; MOLECULAR-OXYGEN; CARBON-MONOXIDE; ISOCYANIDES; NANOPARTICLES; DIMERIZATION; TEMPERATURE; MOLYBDENUM AB Both bulk gold powder (similar to 50 mu m particle size) and alumina-supported gold (50-150 nm) are highly active catalysts for the aerobic oxidative dehydrogenation of amines (CH-NH) to imines (C=N) under the mild conditions of 1 atm O-2 and 100 degrees C. Reactions using the 5% Au/Al2O3 catalyst make efficient use of the gold metal and offer a practical synthesis of imines from amines. These studies add to the growing list of reactions that are catalyzed by bulk gold metal. (C) 2008 Elsevier Inc. All rights reserved. C1 [Zhu, Bolin; Trewyn, Brian G.; Angelici, Robert J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhu, Bolin; Trewyn, Brian G.; Angelici, Robert J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Lazar, Mihaela] Natl Inst Res & Dev Isotop & Mol Technol, Cluj Napoca 400293, Romania. RP Angelici, RJ (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM angelici@iastate.edu RI Lazar, Mihaela/B-7578-2011 OI Lazar, Mihaela/0000-0002-1679-1324 FU U.S. Department of Energy [DE-AC02-07CH11358] FX This research was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University. M.L. thanks P Marginean and V. Almasan for useful discussions. NR 34 TC 123 Z9 124 U1 2 U2 35 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD NOV 15 PY 2008 VL 260 IS 1 BP 1 EP 6 DI 10.1016/j.jcat.2008.08.012 PG 6 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 377MJ UT WOS:000261255000001 ER PT J AU Vines, F Rodriguez, JA Liu, P Illas, F AF Vines, Francesc Rodriguez, Jose A. Liu, Ping Illas, Francesc TI Catalyst size matters: Tuning the molecular mechanism of the water-gas shift reaction on titanium carbide based compounds SO JOURNAL OF CATALYSIS LA English DT Article DE Water-gas shift reactions; TiC; H(2) production; Density functional calculations ID TRANSITION-METAL CARBIDES; TOTAL-ENERGY CALCULATIONS; FUEL-CELL APPLICATIONS; WAVE BASIS-SET; LOW-TEMPERATURE; MOLYBDENUM CARBIDE; GOLD CATALYSTS; 001 SURFACE; M8C12 M=TI; NANOPARTICLES AB The molecular mechanism of the water-gas shift reaction catalyzed by titanium carbide compounds was studied using a density functional approach. Three different catalyst models have been considered: the extended TiC(001) surface, the Ti(8)C(12) MetCar, and a Ti(14)C(13) nanoparticle. Adsorption of reactants, intermediates, and products occurs on different sites, demonstrating the chemical versatility of the TiC substrates. Thus, adsorption energies depend not only on the existence of low-coordinated sites, but also on the nature of atoms involved in the adsorption site. The two most likely molecular mechanisms, redox and associative, were considered. The first of these mechanisms involves complete water dissociation, whereas the second involves formation of the carboxyl (OCOH) intermediate The catalytic activity was. found to be highest for the TiC(001) surface, due to the overly strong adsorption of reactants and products on either Ti(14)C(13) or Ti(8)C(12). This has important consequences for the underlying chemistry, as evidenced by the corresponding reaction energy profiles, which show that the redox mechanism is the preferred route for the reaction occurring on the nanoparticles, whereas the carboxyl formation route is preferred for the reaction occurring above the TiC(001) surface. However, the calculated reaction rate constants indicate that the reaction will hardly occur on the former, whereas it is quite feasible on the latter. The present study suggests that TiC and similar transition metal carbides can be good catalysts for the water-gas shift reaction and can be potential substitutes for current low-temperature catalysts. In addition, the results point to a possible tuning to control the particle size or rate of steps. (C) 2008 Elsevier Inc. All rights reserved. C1 [Vines, Francesc; Liu, Ping; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Vines, Francesc; Liu, Ping; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Vines, Francesc/0000-0001-9987-8654 FU Spanish Ministry of Education and Science (MEC) [CTQ2005-08459-C02-01, UNBA05-33-001]; Universitat de Barcelona; Generalitat de Catalunya [2005SGR00697, 2005 PEIR 0051/69] FX F.V. thanks the Spanish Ministry of Education and Science (MEC) and Universitat de Barcelona for supporting his predoctoral research. Financial support has been provided by the MEC (grants CTQ2005-08459-C02-01, UNBA05-33-001) and the Generalitat de Catalunya (2005SGR00697, 2005 PEIR 0051/69). Generous allocation of computational time on the MARENOSTRUM supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 89 TC 38 Z9 38 U1 5 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD NOV 15 PY 2008 VL 260 IS 1 BP 103 EP 112 DI 10.1016/j.jcat.2008.09.011 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 377MJ UT WOS:000261255000011 ER PT J AU Pandrea, I Gaufin, T Brenchley, JM Gautam, R Moniure, C Gautam, A Coleman, C Lackner, AA Ribeiro, RM Douek, DC Apetrei, C AF Pandrea, Ivona Gaufin, Thaidra Brenchley, Jason M. Gautam, Rajeev Moniure, Christopher Gautam, Aarti Coleman, Clint Lackner, Andrew A. Ribeiro, Ruy M. Douek, Daniel C. Apetrei, Cristian TI Cutting Edge: Experimentally Induced Immune Activation in Natural Hosts of Simian Immunodeficiency Virus Induces Significant Increases in Viral Replication and CD4(+) T Cell Depletion SO JOURNAL OF IMMUNOLOGY LA English DT Article ID AFRICAN-GREEN MONKEYS; INFECTED SOOTY MANGABEYS; PATHOGENESIS; PROFILES; AIDS AB Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable nonpathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and with stable viral loads for long periods of time. In vivo administration of LPS or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4(+) T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell proliferation are key factors in AIDS pathogenesis. The Journal of Immunology, 2008, 181: 6687-6691. C1 [Pandrea, Ivona; Gaufin, Thaidra; Gautam, Rajeev; Moniure, Christopher; Gautam, Aarti; Coleman, Clint; Lackner, Andrew A.; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA. [Pandrea, Ivona; Gaufin, Thaidra; Gautam, Rajeev; Moniure, Christopher; Gautam, Aarti; Coleman, Clint; Lackner, Andrew A.; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Microbiol, Covington, LA 70433 USA. [Pandrea, Ivona] Tulane Univ, Sch Med, Dept Pathol, New Orleans, LA 70112 USA. [Gaufin, Thaidra; Coleman, Clint; Lackner, Andrew A.] Tulane Univ, Sch Med, Dept Microbiol & Immunol, New Orleans, LA 70112 USA. [Brenchley, Jason M.] NIAID, Immunopathogenesis Unit, Mol Microbiol Lab, NIH, Bethesda, MD 20892 USA. [Douek, Daniel C.] NIAID, Human Immunol Sect, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Apetrei, Cristian] Tulane Univ, Sch Publ Hlth, Dept Trop Med, New Orleans, LA 70112 USA. RP Pandrea, I (reprint author), Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA. EM ipandrea@tulane.edu FU National Institutes of Health/National Institute of Allergy and Infectious Diseases/National Center [R01 AI064066, R21 AI069935, R01 AI065325, RR-00168] FX This work was supported by National Institutes of Health/National Institute of Allergy and Infectious Diseases/National Center for Research Resources Grants R01 AI064066 and R21 AI069935 (to I.P.), R01 AI065325 (to C.A.), and RR-00168 (to Tulane National Primate Research Center). NR 12 TC 80 Z9 81 U1 0 U2 3 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD NOV 15 PY 2008 VL 181 IS 10 BP 6687 EP 6691 PG 5 WC Immunology SC Immunology GA 372PQ UT WOS:000260913900002 PM 18981083 ER PT J AU Hosemann, P Hawley, ME Koury, D Welch, J Johnson, AL Mori, G Li, N Maloy, SA AF Hosemann, P. Hawley, M. E. Koury, D. Welch, J. Johnson, A. L. Mori, G. Li, N. Maloy, S. A. TI Nanoscale characterization of HT-9 exposed to lead bismuth eutectic at 550 degrees C for 3000 h SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CORROSION; STEELS AB Fast reactors and targets in spallation neutron sources may use lead bismuth eutectic (LBE) as a coolant. Its physical and chemical properties and irradiation properties make it a safe and high performance coolant in radiation environments. However, LBE is a corrosive medium for most steels. In the present study, the atomic force microscopy, magnetic force microscopy, conductive atomic force microscopy, surface potential microscopy, and scanning electron analysis with energy dispersive X-ray spectroscopy were performed to get a better understanding of the corrosion and oxidation mechanism of the HT-9 stainless steel in an LBE environment. What was believed in the past to be simply a double oxide layer structure was revealed here to be more complicated. It is found that the inner most oxide layer maintains the grain structure of what used to be the bulk steel material while the outer oxide layer possessed a columnar structure. The EDS line scans and the conductive and magnetic properties measured using the scanning probe techniques give us the local properties of the formed oxide layers. This leads to a more detailed view of the oxide layers formed on HT-9 in LBE. C 2008 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Hawley, M. E.; Li, N.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hosemann, P.; Mori, G.] Univ Leoben, CD Lab Localized Corros, A-8700 Leoben, Austria. [Koury, D.; Welch, J.; Johnson, A. L.] Univ Nevada Las Vegas, Las Vegas, NV 89154 USA. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM peterh@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 13 TC 8 Z9 10 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV 15 PY 2008 VL 381 IS 3 BP 211 EP 215 DI 10.1016/j.jnucmat.2008.03.018 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TV UT WOS:000261347800001 ER PT J AU Valdez, JA Chi, ZH Sickafus, KE AF Valdez, James A. Chi, Zhenhuan Sickafus, Kurt E. TI Light ion irradiation-induced phase transformation in the monoclinic polymorph of zirconia SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID POWDER DIFFRACTION; PURE ZIRCONIA; HIGH-PRESSURE; SPECTRUM; ZRO2; TEMPERATURE; TRANSITION AB Ion irradiation damage experiments were performed at similar to 80 K on polycrystalline samples of monoclinic, slightly sub-stoichiometric zirconia (ZrO1.98). Following irradiation with 150 keV Ne+ ions, the monodinic phase was gradually replaced by a new phase. Transmission electron microscopy (TEM) observations in cross-sectional geometry and electron microdiffraction (mu D) measurements revealed that the irradiated layer in a sample irradiated to a fluence of 5 x 10(20) Ne/m(2) is partially transformed to a higher symmetry phase of high crystallinity. This phase transformation is accompanied by reduction of the initial micronsized, highly-twinned grain distribution, to a nano-phased grain structure. Grazing incidence X-ray diffraction (GIXRD) measurements revealed that the radiation-induced phase is a tetragonal polymorph of zirconia. This was verified by the existence of strong (10 1) diffraction maxima and weak (10 2) reflections (body-centered cell). Raman spectroscopy (RS) measurements were also performed in an attempt to corroborate GIXRD results obtained from the irradiated material. RS measurements in the confocal geometry agreed with GIXRD measurements, although RS was not as definitive as GIXRD. In addition to RS showing the existence of a band corresponding to a tetragonal structure at 262 cm(-1), a new mystery band appeared at 702 cm(-1) that increased in intensity as a function of irradiation fluence. (C) 2008 Elsevier B.V. All rights reserved C1 [Valdez, James A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Chi, Zhenhuan] Renishaw Inc, Hoffman Estates, IL 60192 USA. RP Valdez, JA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Mail Stop G755, Los Alamos, NM 87545 USA. EM javaldez@lanl.gov FU US Department of Energy; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was sponsored by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 30 TC 22 Z9 23 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV 15 PY 2008 VL 381 IS 3 BP 259 EP 266 DI 10.1016/j.jnucmat.2008.07.045 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TV UT WOS:000261347800007 ER PT J AU Sanchez, SA Narciso, J Louis, E Rodriguez-Reinoso, F Saiz, E Tomsia, A AF Sanchez, S. A. Narciso, J. Louis, E. Rodriguez-Reinoso, F. Saiz, E. Tomsia, A. TI Wetting and capillarity in the Sn/graphite system SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 5th International Conference on High Temperature Capillarity CY MAR 21-24, 2007 CL Alicante, SPAIN SP Insr Univ Mat Alicante, Mat Res Soc, Univ Alicante, Aluminum Co Amer, Generalitat Valenciana, Joining & Welding Res Inst, Minist Educ Cienc DE Wetting; Pressure infiltration; Metal/graphite composites ID SURFACE-TENSION MEASUREMENTS; PRESSURE INFILTRATION; MOLTEN TIN; TEMPERATURE-COEFFICIENT; SI; WETTABILITY; COMPACTS; BEHAVIOR; ALLOYS; METALS AB Aiming to investigate the role of wettability in the infiltration of tin into graphite particle compacts, sessile drop and infiltration experiments have been carried out at temperatures in the range of 300-700 degrees C. The surface tension of liquid tin and the contact angle at the tin/graphite interface have been measured in an argon atmosphere by means of the sessile drop technique, while pressure infiltration of Sn into compacts of graphite particles (27.2 mu m of average diameter) has been carried out in air. The results indicate that the threshold pressure for infiltration is proportional to the work of immersion, as predicted by the capillary law. The particle geometric factor derived from the slope of the straight line is similar to that obtained previously from infiltration of aluminum. Although these results may indicate that the oxide layer that covers the tin surface plays a minor role in the infiltration process, a definitive conclusion may require a more detailed analysis of this interesting system. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sanchez, S. A.; Narciso, J.; Rodriguez-Reinoso, F.] Univ Alicante, Dept Quim Inorgan, E-03080 Alicante, Spain. [Sanchez, S. A.; Narciso, J.; Louis, E.; Rodriguez-Reinoso, F.] Univ Alicante, IUMA, E-03080 Alicante, Spain. [Louis, E.] Univ Alicante, Dept Fis Aplicada, E-03080 Alicante, Spain. [Louis, E.] Univ Alicante, CSIC, Unidad Asociada, E-03080 Alicante, Spain. [Saiz, E.; Tomsia, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sanchez, SA (reprint author), Univ Alicante, Dept Quim Inorgan, Apartado 99, E-03080 Alicante, Spain. EM segundo.sanchez@ua.es RI Laboratory, Advanced Materials/I-7298-2015; Rodriguez-Reinoso, Francisco/G-7941-2016 OI Rodriguez-Reinoso, Francisco/0000-0002-4212-9860 NR 20 TC 5 Z9 5 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2008 VL 495 IS 1-2 SI SI BP 187 EP 191 DI 10.1016/j.msea.2007.09.090 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 367IO UT WOS:000260545900033 ER PT J AU Hidaka, Y Fukushima, K AF Hidaka, Yoshimasa Fukushima, Kenji TI Two-gluon production and longitudinal correlations in the Color Glass Condensate SO NUCLEAR PHYSICS A LA English DT Article DE Color Glass Condensate; Gluon production; Heavy ion collision; Rapidity correlation ID ENERGY PA-COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; STRONG EXTERNAL SOURCES; AZIMUTHAL CORRELATIONS; TRANSVERSE-MOMENTUM; FIELD; QUARK; SATURATION; FORMALISM AB We derive an analytical expression for the two-gluon production in the pA (light-heavy) collisions. and focus specifically on the rapidity dependent part. We approximate the gauge field from the heavy target as the Color Glass Condensate which interacts with the light projectile whose Source density allows for a perturbative expansion. We discuss the longitudinal correlations of produced particles. Our calculation goes in part beyond the eikonal limit for the emitted gluons so that we can retain the exponential terms with respect to the rapidity difference. Our expression can thus describe the short-range correlations as well as the long-range ones for which our Formula is reduced to the known expression. In a special case of two high-p(t) gluons in the back-to-back kinematics we find that dependence on the rapidity separation is only moderate even in the diagrammatically connected part. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hidaka, Yoshimasa] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Fukushima, Kenji] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. RP Hidaka, Y (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM hidaka@quark.phy.bnl.gov OI Fukushima, Kenji/0000-0003-0899-740X FU Japanese MEXT [20740134]; Yukawa International Program for Quark Hadron Sciences (YIPQS); RIKEN BNL Research Center; US Department of Energy [DE-AC02-98CH10886] FX We thank Larry McLerran for encouraging us to initiate this problem. We thank Francois Gelis and Raju Venutgopalan for discussions. We also thank Francois Fillion-Gourdeau for useful comments. K.F. is supported by Japanese MEXT grant No. 20740134 and also supported in part by Yukawa International Program for Quark Hadron Sciences (YIPQS). This research is supported in part by RIKEN BNL Research Center and the US Department of Energy under cooperative research agreement #DE-AC02-98CH10886. NR 60 TC 13 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 15 PY 2008 VL 813 IS 1-2 BP 171 EP 197 DI 10.1016/j.nuclphysa.2008.09.001 PG 27 WC Physics, Nuclear SC Physics GA 373ON UT WOS:000260981500004 ER PT J AU Reibelt, M Schilling, A Canfield, PC Ravikumar, G Berger, H AF Reibelt, M. Schilling, A. Canfield, P. C. Ravikumar, G. Berger, H. TI Differential-thermal analysis around and below the critical temperature T-c of various low-T-c superconductors: A comparative study SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Heat capacity; Thermodynamic properties; Superconductivity phase diagrams; Metals, alloys and binary compounds (including A15, MgB2 etc.); Ternary, quaternary and multinary compounds (including Chevrel phases, borocarbides, etc.); Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.) ID UPPER CRITICAL-FIELD; DENSITY-OF-STATES; TRANSITION-METAL BOROCARBIDES; DEPENDENT SPECIFIC-HEAT; HIGH MAGNETIC-FIELDS; V3SI; FLUCTUATIONS; ANISOTROPY; LUNI2B2C; VORTEX AB We present specific-heat data on the type-II superconductors V3Si, LuNi2B2C and NbSe2 which were acquired with a low-temperature thermal analysis (DTA) technique. We compare our data with available literature data on these superconductors. In the first part we show that the DTA technique allows for fast measurements while providing a very high resolution on the temperature scale. Sharp features in the specific heat such as at the one at the transition to superconductivity are resolved virtually without instrumental broadening. In the second part we investigate the magnetic-field dependence of the specific heats of V3Si and LuNi2B2C at a fixed temperature T=7.5 K to demonstrate that DTA techniques also allow for sufficiently precise measurements of absolute values of c(p) even in the absence of a sharp phase transition. The corresponding data for V3Si and LuNi2B2C are briefly discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Reibelt, M.; Schilling, A.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Ravikumar, G.] Bhabha Atom Res Ctr, Tech Phys & Prototype Engn Div, Bombay 400085, Maharashtra, India. [Berger, H.] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. RP Reibelt, M (reprint author), Univ Zurich, Inst Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM reibelt@physik.unizh.ch; schilling@physik.uzh.ch RI Canfield, Paul/H-2698-2014 FU Schweizerische Nationalfonds zur Forderung der Wissenschaftlichen Forschung [20-111653]; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We thank to G. Krauss for technical assistance. This work was supported by the Schweizerische Nationalfonds zur Forderung der Wissenschaftlichen Forschung, Grant No. 20-111653. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 38 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD NOV 15 PY 2008 VL 468 IS 22 BP 2254 EP 2266 DI 10.1016/j.physc.2008.07.005 PG 13 WC Physics, Applied SC Physics GA 366KU UT WOS:000260480600003 ER PT J AU Holm, DD Putkaradze, V Tronci, C AF Holm, Darryl D. Putkaradze, Vakhtang Tronci, Cesare TI Geometric gradient-flow dynamics with singular solutions SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Characteristic equations; Euler flow; Dissipation; Gradient flows; Singular solutions ID EULER-POINCARE EQUATIONS; BRACKET FORMULATION; MAGNETIC-FIELDS; AGGREGATION; INSTABILITY; VORTICES; MODEL AB The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcy's Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We identify singular solutions of these equations corresponding to collapsed (clumped) states and discuss their evolution. (C) 2008 Elsevier B.V. All rights reserved. C1 [Holm, Darryl D.; Tronci, Cesare] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Putkaradze, Vakhtang] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. [Putkaradze, Vakhtang] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Tronci, Cesare] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy. RP Tronci, C (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London SW7 2AZ, England. EM cesare.tronci@imperial.ac.uk RI Tronci, Cesare/B-7542-2016; OI Tronci, Cesare/0000-0002-8868-8027; Holm, Darryl D/0000-0001-6362-9912 FU NSF [NSF-DMS-05377891]; US Department of Energy, Office of Science, Applied Mathematical Research; Royal Society of London Wolfson Research Merit Award; A.v. Humboldt foundation; European Science Foundation FX We are grateful to A.M. Bloch, A.N. Kaufman, J.E. Marsden, F. Otto, T.S. Ratiu and S. Reich for thoughtful remarks and discussions of double brackets in the geometric formulation of dissipation. The first two authors were partially supported by NSF grant NSF-DMS-05377891. The work of DDH was also partially supported by the US Department of Energy, Office of Science, Applied Mathematical Research, and the Royal Society of London Wolfson Research Merit Award. VP acknowledges the support of A.v. Humboldt foundation, the hospitality of Department for Theoretical Physics, University of Cologne, and the European Science Foundation for partial support through the MISGAM program. NR 38 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD NOV 15 PY 2008 VL 237 IS 22 BP 2952 EP 2965 DI 10.1016/j.physd.2008.04.010 PG 14 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 370AZ UT WOS:000260736400011 ER PT J AU Al Marzooqi, Y Abou Elenean, KM Megahed, AS El-Hussain, I Rodgers, AJ Al Khatibi, E AF Al Marzooqi, Y. Abou Elenean, K. M. Megahed, A. S. El-Hussain, I. Rodgers, A. J. Al Khatibi, E. TI Source parameters of March 10 and September 13, 2007, United Arab Emirates earthquakes SO TECTONOPHYSICS LA English DT Article DE United Arab Emirates; Arabian-Eurasian collision; Regional waveform inversion; Source parameters ID SEISMIC-SOURCE PARAMETERS; MOMENT TENSOR INVERSION; NORTHERN OMAN MOUNTAINS; STRUCTURAL EVOLUTION; CONTINENTAL-MARGIN; NE OMAN; ORIGIN; METAMORPHISM; TECTONICS; OPHIOLITE AB On March 10 and September 13, 2007 two earthquakes with moment magnitudes 3.66 and 3.94, respectively, occurred in the eastern part of the United Arab Emirates (UAE). The two events were widely felt in the northern Emirates and Oman and were accompanied by a few aftershocks. Ground motions from these events were well recorded by the broadband stations of Dubai (UAE) and Oman seismological networks and provide an excellent opportunity to study the tectonic process and present day stress field acting in this area. In this study, we report the focal mechanisms of the two main shocks by two methods: first motion polarities and regional waveform moment tensor inversion. Our results indicate nearly pure normal faulting mechanisms with a slight strike slip component. We associated the fault plane trending NNE-SSW with a suggested fault along the extension of the faults bounded Bani Hamid area. The seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated from displacement spectra. The moment magnitudes were very consistent with waveform inversion. The recent deployment of seismic networks in Dubai and Oman reveals tectonic activity in the northern Oman Mountains that was previously unknown. Continued observation and analysis will allow for characterization of seismicity and assessment of seismic hazard in the region. (c) 2008 Elsevier B.V. All rights reserved. C1 [Abou Elenean, K. M.; Megahed, A. S.] NRIAG, Seismol Dept, Helwan, Egypt. [Al Marzooqi, Y.; Al Khatibi, E.] Dubai Municipal, Survey Dept, Dubai, U Arab Emirates. [El-Hussain, I.] Sultan Qaboos Univ, Earthquake Monitoring Ctr, Muscat, Oman. [Rodgers, A. J.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Abou Elenean, KM (reprint author), NRIAG, Seismol Dept, Helwan, Egypt. EM yamarzooqi@dm.gov.ae; kamal_atiya@yahoo.com; megahed_ali@yahoo.com; elhussain@squ.edu.om; rodgers7@llnl.gov; eakhatib@dm.gov.ac RI Rodgers, Arthur/E-2443-2011 NR 54 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 15 PY 2008 VL 460 IS 1-4 BP 237 EP 247 DI 10.1016/j.tecto.2008.08.017 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 377WP UT WOS:000261283100020 ER PT J AU Rice, G MacDonell, M Hertzberg, RC Teuschler, L Picel, K Butler, J Chang, YS Hartmann, H AF Rice, Glenn MacDonell, Margaret Hertzberg, Richard C. Teuschler, Linda Picel, Kurt Butler, Jim Chang, Young-Soo Hartmann, Heidi TI An approach for assessing human exposures to chemical mixtures in the environment SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Chemical mixtures; Exposure assessment; Human health risk assessment; Environmental transport ID CUMULATIVE RISK-ASSESSMENT; DISINFECTION BY-PRODUCTS; DIOXIN-LIKE COMPOUNDS; DRINKING-WATER; TOXICOLOGY; STRATEGY AB Humans are exposed daily to multiple chemicals, including incidental exposures to complex chemical mixtures released into the environment and to combinations of chemicals that already co-exist in the environment because of previous releases from various sources. Exposures to chemical mixtures can occur through multiple pathways and across multiple routes. In this paper, we propose an iterative approach for assessing exposures to environmental chemical mixtures; it is similar to single-chemical approaches. Our approach encompasses two elements of the Risk Assessment Paradigm: Problem Formulation and Exposure Assessment. Multiple phases of the assessment occur in each element of the paradigm. During Problem Formulation, analysts identify and characterize the sources) of the chemical mixture, ensure that close-response and exposure assessment and develop a preliminary evaluation of the mixture's fate. During Exposure measures are concordant, Assessment, analysts evaluate the fate of the chemicals comprising the mixture using appropriate models and measurement data, characterize the exposure scenario, and estimate human exposure to the mixture. We also describe the utility of grouping the chemicals to be analyzed based on both physical-chemical properties and an understanding of environmental fate. In the article, we also highlight the need for understanding of changes in the mixture composition in the environment due to differential transport, differential degradation, and differential partitioning to other media. The Results section describes the application of the method to various chemical mixtures, highlighting issues associated with assessing exposures to chemical mixtures in the environment. Published by Elsevier Inc. C1 [Rice, Glenn; Teuschler, Linda] US EPA, Natl Ctr Environm Assessment, Cincinnati, OH 45268 USA. [MacDonell, Margaret; Picel, Kurt; Butler, Jim; Chang, Young-Soo; Hartmann, Heidi] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Hertzberg, Richard C.] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. RP Rice, G (reprint author), US EPA, Natl Ctr Environm Assessment, 26 W Martin Luther King Dr, Cincinnati, OH 45268 USA. EM rice.glenn@epa.gov FU U.S. Environmental Protection Agency; Office of Research and Development, National Center for Environmental Assessment; U.S. Department of Energy, Chicago and Richland Operations Offices FX The authors greatly appreciate the funding provided by the U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, with collaborative support from the U.S. Department of Energy, Chicago and Richland Operations Offices. The authors also appreciate the helpful comments of Jeff Swartout (US, EPA) and two anonymous reviewers on a previous draft of the manuscript. NR 53 TC 9 Z9 9 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD NOV 15 PY 2008 VL 233 IS 1 BP 126 EP 136 DI 10.1016/j.taap.2008.05.004 PG 11 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 380PO UT WOS:000261477800022 PM 18589469 ER PT J AU Gu, LH Hanson, PJ Mac Post, W Liu, Q AF Gu, Lianhong Hanson, Paul J. Mac Post, W. Liu, Qing TI A novel approach for identifying the true temperature sensitivity from soil respiration measurements SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID CARBON-CYCLE FEEDBACKS; ORGANIC-CARBON; CLIMATE-CHANGE; CO2 EFFLUX; FOREST; DECOMPOSITION; Q(10); ALLOCATION; WORLD; ROOT AB We propose a novel approach, called the ''localized ratio fitting'' (LRF), to estimating the true temperature sensitivity from soil respiration measurements, a task crucial to modeling terrestrial carbon cycle and climate but so far hindered by the inadequate conventional regression approach. LRF takes advantage of the different timescales of the pool dynamics - induced and environmental variation - induced changes in soil CO(2) efflux. It first transforms the expression for soil respiration into a form suppressing the influence of soil carbon pool dynamics and then uses the transformed expression to infer the parameters of environmental sensitivities. LRF works best for high-frequency soil respiration measurements and thus is particularly suitable for analyzing time series produced by automated soil chambers and from soil incubation experiments. We evaluated the validity of LRF with both simulated (with a multipool soil organic carbon model driven by realistic plant litter input scenarios) and measured (with automated soil chambers) time series of soil respiration. LRF accurately retrieved the true temperature sensitivity from the simulated heterotrophic soil respiration while the conventional approach failed to do so. The simulation also revealed that LRF performed better than the conventional approach when a direct photosynthetic signal existed in the time series of soil respiration although even LRF could not completely eliminate the interference of photosynthetic contribution for estimating the true temperature sensitivity. Importantly, the simulation on the photosynthetic influence reproduced a typical seasonal pattern of apparent temperature sensitivity reported in the literature: higher sensitivity in winter (dormant season) and lower sensitivity in summer (growing season). Such pattern has been interpreted as an indication of temperature acclimation of soil respiration by previous studies. Our simulation now indicated that that interpretation may be incorrect. The validation with actual soil chamber data showed that the use of LRF led to more consistent estimates of temperature and moisture sensitivities from observations, indicating its better robustness against compounding effects of parallel processes on soil respiration. It was demonstrated that once the true environmental controls were properly accounted for, soil respiration measurements could be used to infer effects of biological processes on soil respiration. C1 [Gu, Lianhong; Hanson, Paul J.; Mac Post, W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Liu, Qing] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Gu, LH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bldg 1509, Oak Ridge, TN 37831 USA. EM lianhong-gu@ornl.gov RI Hanson, Paul J./D-8069-2011; Post, Wilfred/B-8959-2012; Gu, Lianhong/H-8241-2014 OI Hanson, Paul J./0000-0001-7293-3561; Gu, Lianhong/0000-0001-5756-8738 FU Missouri Ozark AmeriFlux (MOFLUX); U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science; Biological and Environmental Research Program; Environmental Science Division FX This study draws from work on the Missouri Ozark AmeriFlux (MOFLUX) project, a joint effort among ORNL, University of Missouri, and NOAA/ATDD, and the Integrated Terrestrial Carbon Model (ITCM) project. Both projects are supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Environmental Science Division. Steve Pallardy, Jeff Riggs, Kevin Hosman, Dan Sluss, and Bai Yang are thanked for contributing to the gathering of soil respiration data used in this paper. We are grateful to two anonymous reviewers for their constructive comments and insightful suggestions. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under the contract DE-AC05-00OR22725. NR 38 TC 19 Z9 19 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV 14 PY 2008 VL 22 IS 4 AR GB4009 DI 10.1029/2007GB003164 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 373SC UT WOS:000260991800001 ER PT J AU Rodland, KD Bollinger, N Ippolito, D Opresko, LK Coffey, RJ Zangar, R Wiley, HS AF Rodland, Karin D. Bollinger, Nikki Ippolito, Danielle Opresko, Lee K. Coffey, Robert J. Zangar, Richard Wiley, H. Steven TI Multiple Mechanisms Are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NECROSIS-FACTOR-ALPHA; MATRIX-METALLOPROTEINASE INHIBITOR; EGFR SIGNAL TRANSACTIVATION; PROTEIN-COUPLED RECEPTORS; CANCER-CELLS; CARCINOMA CELLS; ACTIVATION; LIGANDS; PROLIFERATION; MIGRATION AB The number of distinct signaling pathways that can transactivate the epidermal growth factor receptor (EGFR) in a single cell type is unclear. Using a single strain of human mammary epithelial cells, we found that a wide variety of agonists, such as lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factor-alpha, require EGFR activity to induce ERK phosphorylation. In contrast, hepatocyte growth factor can stimulate ERK phosphorylation independent of the EGFR. EGFR transactivation also correlated with an increase in cell proliferation and could be inhibited with metalloprotease inhibitors. However, there were significant differences with respect to transactivation kinetics and sensitivity to different inhibitors. In particular, IGF-1 displayed relatively slow transactivation kinetics and was resistant to inhibition by the selective ADAM-17 inhibitor WAY-022 compared with LPA-induced transactivation. Studies using anti-ligand antibodies showed that IGF-1 transactivation required amphiregulin production, whereas LPA was dependent on multiple ligands. Direct measurement of ligand shedding confirmed that LPA treatment stimulated shedding of multiple EGFR ligands, but paradoxically, IGF-1 had little effect on the shedding rate of any ligand, including amphiregulin. Instead, IGF-1 appeared to work by enhancing EGFR activation of Ras in response to constitutively produced amphiregulin. This enhancement of EGFR signaling was independent of both receptor phosphorylation and PI-3-kinase activity, suggestive of a novel mechanism. Our studies demonstrate that within a single cell type, the EGFR autocrine system can couple multiple signaling pathways to ERK activation and that this modulation of EGFR autocrine signaling can be accomplished at multiple regulatory steps. C1 [Coffey, Robert J.] Vanderbilt Univ, Med Ctr, Nashville, TN 37232 USA. [Wiley, H. Steven] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle; Opresko, Lee K.; Zangar, Richard] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle; Opresko, Lee K.; Zangar, Richard; Wiley, H. Steven] Pacific NW Natl Lab, Syst Biol Program, Richland, WA 99354 USA. RP Rodland, KD (reprint author), Pacific NW Natl Lab, P7-56,POB 999, Richland, WA 99352 USA. EM karin.rodland@pnl.gov OI Wiley, Steven/0000-0003-0232-6867 FU National Institutes of Health, NCI, [CA 46413]; Biomolecular Systems Initiative Laboratory Directed Research; Pacific Northwest National Laboratory; Department of Energy [DE-AC05-76RL01830]; Gastrointestinal Special Program of Research Excellence [P50 95103] FX This work was supported, in whole or in part, by National Institutes of Health, NCI, Grant CA 46413 (to R. J. C.). This work was also supported by the Biomolecular Systems Initiative Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830 and by Gastrointestinal Special Program of Research Excellence Grant P50 95103 (to R. J. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. NR 54 TC 39 Z9 39 U1 1 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 14 PY 2008 VL 283 IS 46 BP 31477 EP 31487 DI 10.1074/jbc.M800456200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 370KJ UT WOS:000260760800027 PM 18782770 ER PT J AU Villareal, VA Pilpa, RM Robson, SA Fadeev, EA Clubb, RT AF Villareal, Valerie A. Pilpa, Rosemarie M. Robson, Scott A. Fadeev, Evgeny A. Clubb, Robert T. TI The IsdC Protein from Staphylococcus aureus Uses a Flexible Binding Pocket to Capture Heme SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID MAGNETIC-RESONANCE RELAXATION; NMR STRUCTURE DETERMINATION; MODEL-FREE APPROACH; SURFACE PROTEIN; SORTASE-B; HEMOGLOBIN RECEPTOR; C-13 MAGNETIZATION; TRANSPORTER DOMAIN; BACKBONE DYNAMICS; DEGRADING ENZYMES AB Staphylococcus aureus scavenges heme-iron from host hemoproteins using iron-regulated surface determinant (Isd) proteins. IsdC is the central conduit through which heme is passed across the cell wall and binds this molecule using a NEAr Transporter (NEAT) domain. NMR spectroscopy was used to determine the structure of IsdC in complex with a heme analog, zinc-substituted protoporphyrin IX (ZnPPIX). The backbone coordinates of the ensemble of conformers representing the structure exhibit a root mean square deviation to the mean structure of 0.53 +/- 0.11 angstrom. IsdC partially buries protoporphyrin within a large hydrophobic pocket that is located at the end of its beta-barrel structure. The central metal ion of the analog adopts a pentacoordinate geometry in which a highly conserved tyrosine residue serves as a proximal ligand. Consistent with the structure and its role in heme transfer across the cell wall, we show that IsdC weakly binds heme (KD = 0.34 +/- 0.12 mu M) and that ZnPPIX rapidly dissociates from the protein at a rate of 126 +/- 30 s(-1). NMR studies of the apo-form of IsdC reveal that a 310 helix within the binding pocket undergoes a flexible to rigid transition as heme is captured. This structural plasticity may increase the efficiency of heme transfer across the cell wall by facilitating protein-protein interactions between apoIsdC and upstream hemoproteins. C1 Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. RP Clubb, RT (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. EM rclubb@mbi.ucla.edu FU National Institutes of Health [R01-AI5221701]; United States Department of Energy [DE-FC-03-87ER60615]; National Institutes of Health NIGMS [F31GM075564]; UCLA FX This work was supported, in whole or in part, by National Institutes of Health Grant R01-AI5221701 (to R. T. C.). This work was also supported by United States Department of Energy Grant DE-FC-03-87ER60615 (to R. T. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact.; Supported by National Institutes of Health NIGMS Grant F31GM075564.; Supported by a UCLA Dissertation Year Fellowship. Present address: The Salk Institute for Biological Studies, La Jolla, CA 92037. NR 74 TC 54 Z9 54 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 14 PY 2008 VL 283 IS 46 BP 31591 EP 31600 DI 10.1074/jbc.M801126200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 370KJ UT WOS:000260760800039 PM 18715872 ER PT J AU Mace, PD Linke, K Feltham, R Schumacher, FR Smith, CA Vaux, DL Silke, J Day, CL AF Mace, Peter D. Linke, Katrin Feltham, Rebecca Schumacher, Frances-Rose Smith, Clyde A. Vaux, David L. Silke, John Day, Catherine L. TI Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ALPHA-DEPENDENT APOPTOSIS; KAPPA-B ACTIVATION; PROTEIN LIGASE; IAP PROTEINS; COMPLEX; INHIBITOR; UBIQUITYLATION; CASPASES; BINDING; SMAC AB Inhibitor of apoptosis (IAP) proteins are key negative regulators of cell death that are highly expressed in many cancers. Cell death caused by antagonists that bind to IAP proteins is associated with their ubiquitylation and degradation. The RING domain at the C terminus of IAP proteins is pivotal. Here we report the crystal structures of the cIAP2 RING domain homodimer alone, and bound to the ubiquitin-conjugating (E2) enzyme UbcH5b. These structures show that small changes in the RING domain accompany E2 binding. By mutating residues at the E2-binding surface, we show that autoubiquitylation is required for regulation of IAP abundance. Dimer formation is also critical, and mutation of a single C-terminal residue abrogated dimer formation and E3 ligase activity was diminished. We further demonstrate that disruption of E2 binding, or dimerization, stabilizes IAP proteins against IAP antagonists in vivo. C1 [Mace, Peter D.; Linke, Katrin; Schumacher, Frances-Rose; Day, Catherine L.] Univ Otago, Dept Biochem, Dunedin 9054, New Zealand. [Feltham, Rebecca; Vaux, David L.; Silke, John] La Trobe Univ, Dept Biochem, Bundoora, Vic 3086, Australia. [Smith, Clyde A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Day, CL (reprint author), Univ Otago, Dept Biochem, Dunedin 9054, New Zealand. EM catherine.day@stonebow.otago.ac.nz RI Vaux, David/C-7249-2013; Silke, John/B-7622-2008; OI Vaux, David/0000-0003-2703-1651; Silke, John/0000-0002-7611-5774; Mace, Peter/0000-0003-2175-9537; Day, Catherine/0000-0003-1571-4367 FU Marsden Fund (New Zealand); National Health and Medical Research Council (Australia); Leukemia and Lymphoma Society; University of Otago FX This work was supported by the Marsden Fund (New Zealand), the National Health and Medical Research Council (Australia), and the Leukemia and Lymphoma Society. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact.; A recipient of a Health Sciences Career Development Award (University of Otago). NR 31 TC 100 Z9 100 U1 0 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 14 PY 2008 VL 283 IS 46 BP 31633 EP 31640 DI 10.1074/jbc.M804753200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 370KJ UT WOS:000260760800044 PM 18784070 ER PT J AU Albro, MB Chahine, NO Li, R Yeager, K Hung, CT Ateshian, GA AF Albro, Michael B. Chahine, Nadeen O. Li, Roland Yeager, Keith Hung, Clark T. Ateshian, Gerard A. TI Dynamic loading of deformable porous media can induce active solute transport SO JOURNAL OF BIOMECHANICS LA English DT Article DE Solute uptake; Dynamic loading; Active transport; Agarose; Dextran; Tissue engineering; Drug delivery ID ARTICULAR-CARTILAGE; AGAROSE GELS; COMPRESSION; MACROMOLECULES; CONSTRUCTS; CONVECTION; DIFFUSION; BEHAVIORS; NUTRITION; MIXTURES AB Active solute transport mediated by molecular motors across porous membranes is a well-recognized mechanism for transport across the cell membrane. In contrast, active transport mediated by mechanical loading of porous media is a non-intuitive mechanism that has only been predicted recently from theory, but not yet observed experimentally. This study uses agarose hydrogel and dextran molecules as a model experimental system to explore this mechanism. Results show that dynamic loading can enhance the uptake of dextran by a factor greater than 15 over passive diffusion, for certain combinations of gel concentration and dextran molecular weight. Upon cessation of loading, the concentration reverts back to that achieved under passive diffusion. Thus, active solute transport in porous media can indeed be mediated by cyclical mechanical loading. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Albro, Michael B.; Li, Roland; Yeager, Keith; Hung, Clark T.; Ateshian, Gerard A.] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA. [Ateshian, Gerard A.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Chahine, Nadeen O.] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Livermore, CA 94550 USA. RP Ateshian, GA (reprint author), Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA. EM ateshian@columbia.edu RI Chahine, Nadeen/O-5496-2015; OI Chahine, Nadeen/0000-0002-0478-6042 FU National Institutes of Health [AR46532] FX This study was supported by the National Institutes of Health (NIAMS AR46532). The authors are grateful for the advice and support of Dr. Helen H. Lu with measurements of solute concentration, and the assistance of Mr. Vikram Rajan with some of the experiments. NR 24 TC 39 Z9 39 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD NOV 14 PY 2008 VL 41 IS 15 BP 3152 EP 3157 DI 10.1016/j.jbiomech.2008.08.023 PG 6 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 383EN UT WOS:000261657000008 PM 18922531 ER PT J AU Parker, JC Park, E Tang, GP AF Parker, Jack C. Park, Eungyu Tang, Guoping TI Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization - Analytical solution, model calibration and prediction uncertainty SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE DNAPL source zone model; Inverse solution; Error analysis; Prediction uncertainty; Prior information; Penalty function ID SOURCE STRENGTH FUNCTIONS; NONAQUEOUS PHASE LIQUIDS; PARTIAL MASS DEPLETION; UNIFORM-FLOW FIELDS; SOURCE ZONES; TRANSPORT; GROUNDWATER; DISSOLUTION; IMPACTS AB A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay. partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances; and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario. which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues. (C) 2008 Elsevier B.V. All rights reserved. C1 [Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Park, Eungyu] Kyungpook Natl Univ, Dept Geol, Taegu, South Korea. [Tang, Guoping] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Parker, JC (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM jparker@utk.edu RI Tang, Guoping/A-5141-2010 OI Tang, Guoping/0000-0003-1090-3564 FU SERDP [CU-1349, ER-1611] FX This research was conducted with funding from the U.S. Department of Defense Strategic Environmental Research and Development Program (SERDP) under projects CU-1349 and ER-1611. NR 28 TC 14 Z9 14 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD NOV 14 PY 2008 VL 102 IS 1-2 BP 61 EP 71 DI 10.1016/j.jconhyd.2008.03.009 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 381IK UT WOS:000261529100007 PM 18502537 ER PT J AU Makowski, L Rodi, DJ Mandava, S Devarapalli, S Fischetti, RF AF Makowski, Lee Rodi, Diane J. Mandava, Suneeta Devarapalli, Satish Fischetti, Robert F. TI Characterization of Protein Fold by Wide-Angle X-ray Solution Scattering SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE WAXS; protein fold; secondary structure; tertiary structure ID CONTINUOUS DIFFRACTION DATA; PHASE CONSTRAINT; PATTERN; STATE AB Wide-angle X-ray solution scattering (WAXS) patterns contain substantial information about the three-dimensional structure of a protein. Although WAXS data have far less information than is required for determination of a full three-dimensional structure, the actual amount of information contained in a WAXS pattern has not been carefully quantified. Here we carry out an analysis of the amount of information that can be extracted from a WAXS pattern and demonstrate that it is adequate to estimate the secondary-structure content of a protein and to strongly limit its possible tertiary structures. WAXS patterns computed from the atomic coordinates of a set of 498 protein domains representing all of known fold space were used as the basis for constructing a multidimensional space of all corresponding WAXS patterns ('WAXS space'). Within WAXS space, each scattering pattern is represented by a single vector. A principal components analysis was carried out to identify those directions in WAXS space that provide the greatest discrimination among patterns. The number of dimensions that provide significant discrimination among protein folds agrees well with the number of independent parameters estimated from a naive Shannon sampling theorem approach. Estimates of the relative abundances of secondary structures were made using training/test sets derived from this data set. The average error in the estimate of a-helical content was 11%, and of beta-sheet content was 9%. The distribution of proteins that are members of the four structure classes, alpha, beta, alpha/beta and alpha+beta, are well separated in WAXS space when data extending to a spacing of 2.2 angstrom are used. Quantification of the information embedded within a WAXS pattern indicates that these data can be used as a powerful constraint in homology modeling of protein structures. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Makowski, Lee; Rodi, Diane J.; Mandava, Suneeta; Devarapalli, Satish; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Makowski, L (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lmakowski@anl.gov RI ID, BioCAT/D-2459-2012 FU U.S. Department of Energy [DE-AC-02-06CH11357] FX We thank Dr. Sung Ho Kim for the list of PDB files used in this analysis, Dr. Sanghyun Park for carrying out the calculations presented in Fig. 1, and Drs. Park and Jay Bardhan for enlightening discussions. This work was supported by the U.S. Department of Energy under contract DE-AC-02-06CH11357. NR 23 TC 22 Z9 23 U1 2 U2 8 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD NOV 14 PY 2008 VL 383 IS 3 BP 731 EP 744 DI 10.1016/j.jmb.2008.08.038 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 366TL UT WOS:000260506200024 PM 18786543 ER PT J AU Prumper, G Rolles, D Fukuzawa, H Liu, XJ Pesic, Z Dumitriu, I Lucchese, RR Ueda, K Berrah, N AF Pruemper, G. Rolles, D. Fukuzawa, H. Liu, X. J. Pesic, Z. Dumitriu, I. Lucchese, R. R. Ueda, K. Berrah, N. TI Measurements of molecular-frame Auger electron angular distributions at the CO C 1s(-1) 2 pi* resonance with high energy resolution SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID ION COINCIDENCE EXPERIMENTS; SHAPE RESONANCE; CARBON-MONOXIDE; DECAY SPECTRA; N-2; PHOTOIONIZATION; PHOTOELECTRON; STATES; RATES; HF AB The molecular-frame Auger electron angular distributions (MFAEADs) of resonantly excited CO 1s -> pi molecules in the gas phase were determined with high energy resolution using a novel experimental approach. We investigated the process of excitation, Auger decay and fragmentation in unprecedented detail. We confirmed theoretical predictions for the different MFAEADs of close lying Auger final states. By examining the dependence of the MFAEADs on the vibrational state of the excitation and on the fragmentation energy we found that the measured MFAEADs can be considered independent of the vibrational excitation and the fragmentation process. The method used to obtain molecular-frame angular distributions of Auger electrons is based on electron-ion coincidence measurements using two high-resolution electron spectrometers with limited acceptance angles mounted at fixed positions. C1 [Pruemper, G.; Fukuzawa, H.; Liu, X. J.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Rolles, D.; Pesic, Z.; Dumitriu, I.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Rolles, D.; Pesic, Z.; Dumitriu, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lucchese, R. R.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. RP Prumper, G (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. RI Liu, XJ/G-4152-2010 NR 42 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2008 VL 41 IS 21 AR 215101 DI 10.1088/0953-4075/41/21/215101 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 366GU UT WOS:000260469500008 ER PT J AU Vrinceanu, D Dalgarno, A AF Vrinceanu, D. Dalgarno, A. TI Long-range interaction between ground and excited state hydrogen atoms SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID TRANSITION MOMENTS; MOLECULE AB The asymptotic expansion at large distances is obtained for the interaction between a ground state hydrogen atom and an excited hydrogen atom with principal quantum number n = 2, . . ., 10. A degenerate perturbation theory up to the second order is employed to obtain accurate results. The asymptotic representation for several special cases is found in the limit of large quantum number n. C1 [Vrinceanu, D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dalgarno, A.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP Vrinceanu, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 10 TC 0 Z9 0 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2008 VL 41 IS 21 AR 215202 DI 10.1088/0953-4075/41/21/215202 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 366GU UT WOS:000260469500013 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T Barbaro, P Cecco, S Deisher, A Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Giovanni, GP Dionisi, C Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, Th. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, Th. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Forward-Backward Asymmetry in Top-Quark Production in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY QUARKS AB We present measurements of the forward-backward charge asymmetry in top pair production using 1: 9 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded with the Collider Detector at Fermilab II. Correcting for acceptance and measurement dilutions we obtain parton-level asymmetries of A(FB)(p (p) over bar) = 0.17 +/- 0.08 in the p (p) over bar frame and A(FB)(t (t) over bar) = 0.24 +/- 0.14 in the t (t) over bar frame. The values are consistent with the standard model expectation and disfavor exotic production mechanisms with significant negative values. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, Th.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Peiffer, Th.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Heinrich, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.; Yang, U. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; manca, giulia/I-9264-2012; Ruiz, Alberto/E-4473-2011; Ivanov, Andrew/A-7982-2013; Robson, Aidan/G-1087-2011; Amerio, Silvia/J-4605-2012; De Cecco, Sandro/B-1016-2012; Annovi, Alberto/G-6028-2012; Punzi, Giovanni/J-4947-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014 OI Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Ivanov, Andrew/0000-0002-9270-5643; Annovi, Alberto/0000-0002-4649-4398; Punzi, Giovanni/0000-0002-8346-9052; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330 FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U. K; Institut National de Physique Nucleaire et Physique des Particules; CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 38 TC 175 Z9 175 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 202001 DI 10.1103/PhysRevLett.101.202001 PG 8 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100013 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, J Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, W Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, J Grosdidier, G Hocker, A Lepeltier, V Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, D Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Panduro Vazquez, W. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Firmino da Costa, J. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Lopes Pegna, D. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Searches for B Meson Decays to phi phi, phi rho, phi f(0)(980), and f(0)(980) f(0)(980) Final States SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present the results of searches for B decays to charmless final states involving phi, f(0)(980) and charged or neutral rho mesons. The data sample corresponds to 384 x 10(6) B (B) over bar pairs collected with the BABAR detector operating at the PEP- II asymmetric-energy e(+)e(-) collider at SLAC. We find no significant signals and determine the following 90% confidence level upper limits on the branching fractions, including systematic uncertainties: B(B(0) -> phi phi) < 2.0 x 10(-7), B(B(+) -> phi rho(+)) < 30 x 10(-7), B(B(0) -> phi rho(0)) < 3.3 x 10(-7), B[B(0) -> phi f(0)(980)] x B[f(0)(980) -> pi(+) pi(-)] < 3.8 x 10(-7), and B[B(0) -> f(0)(980)f(0)(980)] x B[f(0)(980) -> pi(+) pi(-)] x B[f(0)(980) -> K(+) K(-)] < 2.3 x 10(-7). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Onuchin, A. P.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Panduro Vazquez, W.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Firmino da Costa, J.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Firmino da Costa, J.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Raven, Gerhard/0000-0002-2897-5323; Ebert, Marcus/0000-0002-3014-1512; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 21 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 201801 DI 10.1103/PhysRevLett.101.201801 PG 7 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100012 ER PT J AU Frankfurt, L Strikman, M Treleani, D Weiss, C AF Frankfurt, L. Strikman, M. Treleani, D. Weiss, C. TI Color Fluctuations in the Nucleon in High-Energy Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE PARTON SCATTERING; (P)OVER-BAR-P COLLISIONS; DIFFRACTION; TEV; QCD AB We study quantum fluctuations of the nucleon's parton densities by combining QCD factorization for hard processes with the notion of cross section fluctuations in soft diffraction. The fluctuations of the small-x gluon density are related to the ratio of inelastic and elastic vector meson production in ep scattering. A simple dynamical model explains the HERA data and predicts the x and Q(2) dependence of the ratio. In pp/(p) over barp scattering, fluctuations enhance multiple hard processes ( but cannot explain the Tevatron CDF data), and reduce gap survival in central exclusive diffraction. C1 [Frankfurt, L.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Treleani, D.] Univ Trieste, Ist Nazl Fis Nucl, Dept Phys, I-34014 Trieste, Italy. [Treleani, D.] ICTP Trieste, I-34014 Trieste, Italy. [Weiss, C.] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. RP Frankfurt, L (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. FU DOE [DEAC05-06OR23177]; Jefferson Science Associates; LLC; Binational Science Foundation (BSF) FX This work was supported by DOE Contract No. DEAC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab; by other DOE grants, and the Binational Science Foundation (BSF). NR 19 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 202003 DI 10.1103/PhysRevLett.101.202003 PG 4 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100015 PM 19113331 ER PT J AU Noaki, J Aoki, S Chiu, TW Fukaya, H Hashimoto, S Hsieh, TH Kaneko, T Matsufuru, H Onogi, T Shintani, E Yamada, N AF Noaki, J. Aoki, S. Chiu, T. W. Fukaya, H. Hashimoto, S. Hsieh, T. H. Kaneko, T. Matsufuru, H. Onogi, T. Shintani, E. Yamada, N. CA JLQCD & TWQCD Collaborations TI Convergence of the Chiral Expansion in Two-Flavor Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXACTLY MASSLESS QUARKS; FINITE-VOLUME AB We test the convergence property of the chiral perturbation theory using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, which realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order for pions lighter than similar to 450 MeV. Better convergence behavior is found, in particular, for a resummed expansion parameter xi, with which the lattice data in the pion mass region 290-750 MeV can be fitted well with the next-to-next-to-leading order formulas. We obtain the results in two-flavor QCD for the low energy constants (l) over bar (3) and (l) over bar (4) as well as the pion decay constant, the chiral condensate, and the average up and down quark mass. C1 [Noaki, J.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Matsufuru, H.; Shintani, E.; Yamada, N.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. [Chiu, T. W.] Natl Taiwan Univ, Dept Phys, Ctr Theoret Sci, Taipei 10617, Taiwan. [Chiu, T. W.] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. [Fukaya, H.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hsieh, T. H.] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Noaki, J (reprint author), High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. RI Hsieh, Tung-Han/E-1740-2011; Shintani, Eigo/C-8623-2016; OI Chiu, Ting-Wai/0000-0002-7371-1132 FU Nishina Foundation; Ministry of Education [17740171, 18034011, 18340075, 18740167, 18840045, 19540286, 19740121, 19740160, 20025010, 20039005, 20340047, 20740156]; National Science Council of Taiwan [NSC96-2112M-002-020-MY3, NSC96-2112-M-001-017-MY3]; NTU-CQSE [97R0066-65/69] FX Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program (Nos. 07 16). H. F. was supported by Nishina Foundation. This work is supported in part by the Grant-in-Aid of the Ministry of Education (Nos. 17740171, 18034011, 18340075, 18740167, 18840045, 19540286, 19740121, 19740160, 20025010, 20039005, 20340047, 20740156), the National Science Council of Taiwan (Nos. NSC96-2112M-002-020-MY3, NSC96-2112-M-001-017-MY3), and NTU-CQSE (97R0066-65/69). NR 18 TC 44 Z9 44 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 202004 DI 10.1103/PhysRevLett.101.202004 PG 5 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100016 PM 19113332 ER PT J AU Page, K Kolodiazhnyi, T Proffen, T Cheetham, AK Seshadri, R AF Page, Katharine Kolodiazhnyi, Taras Proffen, Thomas Cheetham, Anthony K. Seshadri, Ram TI Local Structural Origins of the Distinct Electronic Properties of Nb-Substituted SrTiO(3) and BaTiO(3) SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONTIUM-TITANATE; TOTAL SCATTERING; TEMPERATURE; DEPENDENCE; TRANSITION AB The perovskite SrTiO(3) becomes metallic with 0.03% to 0.1% Nb substitution on the Ti site, while BaTiO(3) remains insulating above 10% Nb substitution. Given the nearly identical structure and electron counts of the two materials, the distinct ground states for low substitution have been a long-standing puzzle. Here we find from neutron studies of average and local structure the subtle yet critical difference that we believe underpins the distinct electronic properties in these fascinating materials. While SrTi(0.875)Nb(0.125)O(3) possesses a distorted noncubic structure at 15 K, (Nb/Ti)O(6) octahedra in the structure are regular. BaTi(0.875)Nb(0.125)O(3), on the other hand, shows evidence for local cation off centering while retaining a cubic structure. C1 [Page, Katharine; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Kolodiazhnyi, Taras] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Page, K (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RI Page, Katharine/C-9726-2009; KOLODIAZHNYI, Taras/H-2860-2011; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Proffen, Thomas/B-3585-2009; OI Page, Katharine/0000-0002-9071-3383; Seshadri, Ram/0000-0001-5858-4027; Proffen, Thomas/0000-0002-1408-6031; Kolodiazhnyi, Taras/0000-0002-9630-9461 FU U. S. DOE Office of Basic Energy Sciences [DE-AC52-06NA25396]; National Science Foundation [DMR04-49354, DMR00-76488]; MEXT FX We acknowledge helpful discussions with P. A. Pincus, P. B. Littlewood, Tanusri Saha Dasgupta, and Chris Van de Walle. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by the U. S. DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under U. S. DOE contract DE-AC52-06NA25396. The National Science Foundation is acknowledged for support from the Graduate Student program for K. P., a Career grant to R. S. ( Grant No. DMR04-49354), and for an upgrade of the NPDF instrument at Los Alamos ( Grant No. DMR00-76488). T. K. acknowledges MEXT for financial support. NR 21 TC 33 Z9 33 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 205502 DI 10.1103/PhysRevLett.101.205502 PG 4 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100036 PM 19113352 ER PT J AU Sanchez, R Newman, DE Leboeuf, JN Decyk, VK Carreras, BA AF Sanchez, R. Newman, D. E. Leboeuf, J. -N. Decyk, V. K. Carreras, B. A. TI Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOKAMAK; CONFINEMENT; SIMULATIONS; DIFFUSION; MODEL AB It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified. C1 [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Leboeuf, J. -N.] JNL Sci Inc, Casa Grande, AZ 85294 USA. [Decyk, V. K.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. RP Sanchez, R (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. EM sanchezferlr@ornl.gov FU DOE Office of Science [DE-AC05-00OR22725, DE-FG02-04ER54741, DE-FG02-04ER54740] FX Research carried out at ORNL, managed by UT-Battelle LLC, for US DOE under Contract No. DE-AC05-00OR22725. Research funded by DOE Office of Science Grants No. DE-FG02-04ER54741 at University of Alaska and No. DE-FG02-04ER54740 at UCLA. Simulations run at DOE's NERSC and University of Alaska's Arctic Region Supercomputing Center. NR 21 TC 32 Z9 32 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2008 VL 101 IS 20 AR 205002 DI 10.1103/PhysRevLett.101.205002 PG 4 WC Physics, Multidisciplinary SC Physics GA 372XR UT WOS:000260936100030 PM 19113346 ER PT J AU Sandhu, AS Gagnon, E Santra, R Sharma, V Li, W Ho, P Ranitovic, P Cocke, CL Murnane, MM Kapteyn, HC AF Sandhu, Arvinder S. Gagnon, Etienne Santra, Robin Sharma, Vandana Li, Wen Ho, Phay Ranitovic, Predrag Cocke, C. Lewis Murnane, Margaret M. Kapteyn, Henry C. TI Observing the Creation of Electronic Feshbach Resonances in Soft X-ray-Induced O-2 Dissociation SO SCIENCE LA English DT Article ID PROGRAM SYSTEM; EXCITED-STATES; SPECTROSCOPY; MOLECULES; ENERGY; DYNAMICS; COLUMBUS; O-2(2+); ATOMS; DECAY AB When an atom or molecule is ionized by an x- ray, highly excited states can be created that then decay, or autoionize, by ejecting a second electron from the ion. We found that autoionization after soft x- ray photoionization of molecular oxygen follows a complex multistep process. By interrupting the autoionization process with a short laser pulse, we showed that autoionization cannot occur until the internuclear separation of the fragments is greater than approximately 30 angstroms. As the ion and excited neutral atom separated, we directly observed the transformation of electronically bound states of the molecular ion into Feshbach resonances of the neutral oxygen atom that are characterized by both positive and negative binding energies. States with negative binding energies have not previously been predicted or observed in neutral atoms. C1 [Sandhu, Arvinder S.; Gagnon, Etienne; Sharma, Vandana; Li, Wen; Murnane, Margaret M.; Kapteyn, Henry C.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Santra, Robin; Ho, Phay] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Ranitovic, Predrag; Cocke, C. Lewis] Kansas State Univ, JR Macdonald Lab, Dept Phys, Manhattan, KS 66506 USA. RP Murnane, MM (reprint author), Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. EM margaret.murnane@colorado.edu RI Kapteyn, Henry/H-6559-2011; ranitovic, predrag/A-2282-2014; Santra, Robin/E-8332-2014 OI Kapteyn, Henry/0000-0001-8386-6317; Santra, Robin/0000-0002-1442-9815 FU NSF; Physics Frontiers Centers Program; Office of Basic Energy Sciences; Office of Science; U.S. Department of Energy [DOE DE-FG02-99ER14982]; [DE-AC02-06CH11357] FX We thank J.H.D. Eland and B. Krassig for helpful discussions. We acknowledge support for this work from NSF through the Physics Frontiers Centers Program and from the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) (H.C.K. and M.M.M. under grant DOE DE-FG02-99ER14982; R.S. and P.H. under contract DE-AC02-06CH11357). NR 28 TC 67 Z9 67 U1 2 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 14 PY 2008 VL 322 IS 5904 BP 1081 EP 1085 DI 10.1126/science.1164498 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 371YD UT WOS:000260867700032 PM 19008441 ER PT J AU Shkrob, IA Marin, TW AF Shkrob, Ilya A. Marin, Timothy W. TI Electron solvation by clustered H-bond complexes of water with tri-n-butylphosphate SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; HYDRATED ELECTRON; TRIBUTYL-PHOSPHATE; EXCESS ELECTRON; AB-INITIO; RADIOLYSIS; MIXTURES; SURFACE AB We report the occurrence of electron trapping by HOH center dot center dot center dot O=P(OR)(3) complexes in tri-n-butylphosphate (TBP) containing <0.4 mole fraction of water. This trapping shifts the absorption band of the electron to the blue with respect to neat TBP solvent, as the prevalent mode of electron solvation changes from that by aliphatic chains of TBP to that by dangling hydroxyl groups of the water-TBP complexes. In parallel, the rates of dissociative electron attachment to TBP and added scavenger both decrease. The structure of the trapping site is similar to that of the small, internally trapping water cluster anions in the gas phase. (C) 2008 Elsevier B.V. All rights reserved. C1 [Shkrob, Ilya A.; Marin, Timothy W.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Marin, Timothy/E-3446-2010 FU Office of Science; Division of Chemical Sciences; US-DOE [DE-AC-02-06CH11357] FX This work was supported by the Office of Science, Division of Chemical Sciences, US-DOE under contract No. DE-AC-02-06CH11357. NR 30 TC 7 Z9 7 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 13 PY 2008 VL 465 IS 4-6 BP 234 EP 237 DI 10.1016/j.cplett.2008.10.004 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 370JG UT WOS:000260757900014 ER PT J AU Gibson, JK Haire, RG Santos, M de Matos, AP Marcalo, J AF Gibson, John K. Haire, Richard G. Santos, Marta de Matos, Antonio Pires Marcalo, Joaquim TI Gas-Phase Oxidation of Cm+ and Cm2+ - Thermodynamics of Neutral and Ionized CmO SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ROOM-TEMPERATURE KINETICS; ATOMIC LANTHANIDE CATIONS; ACTINIDE ION CHEMISTRY; CHARGE-TRANSFER; IONIZATION ENERGIES; MOLECULE REACTIONS; REACTIVITY; OXIDES; CURIUM; PU AB Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O] (M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+] (M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO] = 6.4 +/- 0.2 eV; IE[CmO+] 15.8 +/- 0.4 eV; D[Cm-O] = 710 +/- 45 kJ mol(-1); D[Cm+-O] = 670 +/- 40 kJ mol(-1); and D[Cm2+-O] = 342 +/- 55 kJ mol(-1). Estimates for the M2+-O bond energies for M = Cm, La, Gd, and Lu are all intermediate between D[N-2-O] and D[OC-O] - that is, 167 kJ mol(-1) < D[M2+-O] < 532 kJ mol(-1) - such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic oxygen-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+, and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O-2 when the intermediate, CmO+, was not collisionally cooled - although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species. C1 [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Haire, Richard G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Santos, Marta; de Matos, Antonio Pires; Marcalo, Joaquim] Inst Tecnol & Nucl, Dept Quim, P-2686953 Sacavem, Portugal. RP Gibson, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM JKGibson@lbl.gov; jmarcalo@itn.pt RI Marcalo, Joaquim/J-5476-2013; PTMS, RNEM/C-1589-2014; Santos, Marta/A-2411-2012; OI Marcalo, Joaquim/0000-0001-7580-057X; Santos, Marta/0000-0002-8755-9442; Pires de Matos, Antonio/0000-0003-2674-6938 FU Fundacao para a Ciencia e a Tecnologia (FCT); POCI 2010; FEDER [POCI/QUI/58222/2004]; Director, Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences and Biosciences; U.S. Department of Energy [DE-AC0500OR22725]; ORNL; LBNL [DE-AC02-05CHI1231] FX This work was sponsored by Fundacao para a Ciencia e a Tecnologia (FCT) and POCI 2010 (cofinanced by FEDER) under contract POCI/QUI/58222/2004; and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy under Contracts DE-AC0500OR22725 at ORNL, and DE-AC02-05CHI1231 at LBNL. M.S. is grateful to FCT for a Ph.D. grant. NR 52 TC 11 Z9 11 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 13 PY 2008 VL 112 IS 45 BP 11373 EP 11381 DI 10.1021/jp8047899 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 369DY UT WOS:000260675700010 PM 18921989 ER PT J AU Larentzos, JP Criscenti, LJ AF Larentzos, James P. Criscenti, Louise J. TI A Molecular Dynamics Study of Alkaline Earth Metal-Chloride Complexation in Aqueous Solution SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ION-PAIR ASSOCIATION; X-RAY-DIFFRACTION; MEAN FORCE; SUPERCRITICAL WATER; POLARIZABLE WATER; EXAFS SPECTRA; CALCIUM-ION; INTERACTION POTENTIALS; ELECTROLYTE-SOLUTIONS; SOLVATION STRUCTURE AB The relative stability of alkaline earth metals (M2+ = Mg2+, Ca2+, Sr2+, and Ba2+) and their chloride complexes in aqueous solution is examined through molecular dynamics simulations using a flexible SPC water model with an internally consistent set of metal ion force field parameters. For each metal-chloride ion pair in aqueous solution, the free energy profile was calculated via potential of mean force simulations. The simulations provide detailed thermodynamic information regarding the relative stability of the different types of metal-chloride pairs. The free energy profiles indicate that the preference for contact ion pair formation increases with ionic radius and is closely related to the metal hydration free energies. The water residence times within the first hydration shells are in agreement with residence times reported in other computational studies. Calculated association constants suggest an increase in metal-chloride complexation with increasing cation radii that is inconsistent with experimentally observed trends. Possible explanations for this discrepancy are discussed. C1 [Larentzos, James P.; Criscenti, Louise J.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. RP Criscenti, LJ (reprint author), Sandia Natl Labs, Dept Geochem, POB 5800, Albuquerque, NM 87185 USA. EM ljcrisc@sandia.gov NR 72 TC 48 Z9 48 U1 7 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 13 PY 2008 VL 112 IS 45 BP 14243 EP 14250 DI 10.1021/jp802771w PG 8 WC Chemistry, Physical SC Chemistry GA 369DZ UT WOS:000260675800020 PM 18942876 ER PT J AU Lee, J Sorescu, DC Jordan, KD Yates, JT AF Lee, Junseok Sorescu, Dan C. Jordan, Kenneth D. Yates, John T., Jr. TI Hydroxyl Chain Formation on the Cu(110) Surface: Watching Water Dissociation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN-COVERED CU(110); AUGMENTED-WAVE METHOD; TRANSITION-METALS; ADSORPTION; H2O; MOLECULES; NI(110); AG(110); ENERGY; ATOMS AB The formation of hydroxyl chains from water dissociation on the Cu(110) surface has been studied by using a combination of scanning tunneling microscopy (STM), electron stimulated desorption ion angular distribution (ESDIAD), temperature programmed desorption (TPD), and density functional theory (DFT) calculations. Annealing the D2O-covered surface to a temperature of similar to 200 K leads to desorption of D2O molecules and produces a zigzag structure due to adsorbed OD groups with a periodicity of 5 angstrom along the '1 (1) over bar0' direction in the STM image. Coadsorption of O-2 promotes the water dissociation reaction and produces hydroxyl chains with much higher coverage. ESDIAD measurements show a two-beam pattern consistent with OD(a) species inclined similar to 40 degrees with respect to the surface normal and orientated along the '001' azimuth. The calculations reveal the existence of stable chain structures comprised solely of hydroxyl groups as well as of interacting water and hydroxyl groups that are consistent with the observed STM image. C1 [Lee, Junseok; Jordan, Kenneth D.; Yates, John T., Jr.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Sorescu, Dan C.] Natl Energy Technol Lab, US Dept Energy, Pittsburgh, PA 15236 USA. [Lee, Junseok; Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM johnt@virginia.edu FU Department of Energy; National Science Foundation; Office of Basic Energy Sciences FX The authors (J.L. and J.T.Y.) thank the Department of Energy, Office of Basic Energy Sciences and the National Science Foundation (K.D.J.) for supporting this work. We also thank H. Liu for useful discussions about structures of hydroxyl on Cu(110). A grant of computer time at the Pittsburgh Supercomputer Center is gratefully acknowledged. NR 42 TC 38 Z9 38 U1 7 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 13 PY 2008 VL 112 IS 45 BP 17672 EP 17677 DI 10.1021/jp807467x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 369EA UT WOS:000260675900029 ER PT J AU de Smit, E Swart, I Creemer, JF Hoveling, GH Gilles, MK Tyliszczak, T Kooyman, PJ Zandbergen, HW Morin, C Weckhuysen, BM de Groot, FMF AF de Smit, Emiel Swart, Ingmar Creemer, J. Fredrik Hoveling, Gerard H. Gilles, Mary K. Tyliszczak, Tolek Kooyman, Patricia J. Zandbergen, Henny W. Morin, Cynthia Weckhuysen, Bert M. de Groot, Frank M. F. TI Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy SO NATURE LA English DT Article ID FISCHER-TROPSCH SYNTHESIS; ADVANCED LIGHT-SOURCE; ELECTRON-MICROSCOPY; REDUCTION BEHAVIOR; ZEOLITE CRYSTALS; TEM-EELS; ABSORPTION; SILICA; OXYGEN; MICROSPECTROSCOPY AB The modern chemical industryuses heterogeneous catalysts in almost every production process(1). They commonly consist of nanometre- size active components ( typically metals or metal oxides) dispersed on a high- surface- area solid support, with performance depending on the catalysts' nanometre- size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale(1,2). Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution(3-6), but detailed chemical information of the materials in their working state is often difficult to obtain(5-7). By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution(8-11). A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X- ray microscopy(4,12,13), which has been used in a proof- of- principle study to characterize a solid catalyst(14). Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy(7), scanning transmission X- ray microscopy can be used at atmospheric pressure and up to 350 degrees C to monitor in situ phase changes in a complex iron- based Fisher-Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 degrees C, will open new opportunities for nanometre- resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments. C1 [de Smit, Emiel; Swart, Ingmar; Morin, Cynthia; Weckhuysen, Bert M.; de Groot, Frank M. F.] Univ Utrecht, Debye Inst, NL-3584 CA Utrecht, Netherlands. [Creemer, J. Fredrik] Delft Univ Technol, DIMES ECTM, NL-2600 GB Delft, Netherlands. [Hoveling, Gerard H.] Delft Univ Technol, NL-2600 GA Delft, Netherlands. [Gilles, Mary K.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kooyman, Patricia J.] Delft Univ Technol, DelftChemTech, NL-2628 BL Delft, Netherlands. [Kooyman, Patricia J.] Delft Univ Technol, Natl Ctr High Resolut Elect Microscopy, NL-2628 BL Delft, Netherlands. [Zandbergen, Henny W.] Delft Univ Technol, Kavli Inst Nanosci, Natl Ctr High Resolut Elect Microscopy, NL-2600 GA Delft, Netherlands. RP de Groot, FMF (reprint author), Univ Utrecht, Debye Inst, Sorbonnelaan 16, NL-3584 CA Utrecht, Netherlands. EM b.m.weckhuysen@uu.nl; f.m.f.degroot@uu.nl RI de Smit, Emiel/C-4936-2009; Group, CE/C-3853-2009; Swart, Ingmar/E-6977-2012; Kooyman, Patricia/G-9416-2012; de Groot, Frank/A-1918-2009; Institute (DINS), Debye/G-7730-2014; Weckhuysen, Bert/D-3742-2009; OI Swart, Ingmar/0000-0003-3201-7301; Weckhuysen, Bert/0000-0001-5245-1426; Kooyman, Patricia/0000-0003-1252-5296 FU Dutch National Science Foundation; VICI; Netherlands Research School Combination on Catalysis; Shell Global Solutions; Office of Science; Office of Basic Energy Sciences; US Department of Energy FX We acknowledge financial support for this research work from the Dutch National Science Foundation in the form of two VICI grants (to F.M.F.d.G. and B.M.W.), a grant from the Netherlands Research School Combination on Catalysis (to B.M.W. and F.M.F.d.G.) and a grant from Shell Global Solutions (to B.M.W.). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy. The nanoreactors were fabricated with the assistance of the DIMES ICP-group and the Nanofacility of TU Delft. NR 30 TC 184 Z9 184 U1 21 U2 269 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 13 PY 2008 VL 456 IS 7219 BP 222 EP U39 DI 10.1038/nature07516 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374JJ UT WOS:000261039300036 PM 19005551 ER PT J AU Bowler, C Allen, AE Badger, JH Grimwood, J Jabbari, K Kuo, A Maheswari, U Martens, C Maumus, F Otillar, RP Rayko, E Salamov, A Vandepoele, K Beszteri, B Gruber, A Heijde, M Katinka, M Mock, T Valentin, K Verret, F Berges, JA Brownlee, C Cadoret, JP Chiovitti, A Choi, CJ Coesel, S De Martino, A Detter, JC Durkin, C Falciatore, A Fournet, J Haruta, M Huysman, MJJ Jenkins, BD Jiroutova, K Jorgensen, RE Joubert, Y Kaplan, A Kroger, N Kroth, PG La Roche, J Lindquist, E Lommer, M Martin-Jezequel, V Lopez, PJ Lucas, S Mangogna, M McGinnis, K Medlin, LK Montsant, A Oudot-Le Secq, MP Napoli, C Obornik, M Parker, MS Petit, JL Porcel, BM Poulsen, N Robison, M Rychlewski, L Rynearson, TA Schmutz, J Shapiro, H Siaut, M Stanley, M Sussman, MR Taylor, AR Vardi, A von Dassow, P Vyverman, W Willis, A Wyrwicz, LS Rokhsar, DS Weissenbach, J Armbrust, EV Green, BR Van De Peer, Y Grigoriev, IV AF Bowler, Chris Allen, Andrew E. Badger, Jonathan H. Grimwood, Jane Jabbari, Kamel Kuo, Alan Maheswari, Uma Martens, Cindy Maumus, Florian Otillar, Robert P. Rayko, Edda Salamov, Asaf Vandepoele, Klaas Beszteri, Bank Gruber, Ansgar Heijde, Marc Katinka, Michael Mock, Thomas Valentin, Klaus Verret, Frederic Berges, John A. Brownlee, Colin Cadoret, Jean-Paul Chiovitti, Anthony Choi, Chang Jae Coesel, Sacha De Martino, Alessandra Detter, J. Chris Durkin, Colleen Falciatore, Angela Fournet, Jerome Haruta, Miyoshi Huysman, Marie J. J. Jenkins, Bethany D. Jiroutova, Katerina Jorgensen, Richard E. Joubert, Yolaine Kaplan, Aaron Kroger, Nils Kroth, Peter G. La Roche, Julie Lindquist, Erica Lommer, Markus Martin-Jezequel, Veronique Lopez, Pascal J. Lucas, Susan Mangogna, Manuela McGinnis, Karen Medlin, Linda K. Montsant, Anton Oudot-Le Secq, Marie-Pierre Napoli, Carolyn Obornik, Miroslav Parker, Micaela Schnitzler Petit, Jean-Louis Porcel, Betina M. Poulsen, Nicole Robison, Matthew Rychlewski, Leszek Rynearson, Tatiana A. Schmutz, Jeremy Shapiro, Harris Siaut, Magali Stanley, Michele Sussman, Michael R. Taylor, Alison R. Vardi, Assaf von Dassow, Peter Vyverman, Wim Willis, Anusuya Wyrwicz, Lucjan S. Rokhsar, Daniel S. Weissenbach, Jean Armbrust, E. Virginia Green, Beverley R. Van de Peer, Yves Grigoriev, Igor V. TI The Phaeodactylum genome reveals the evolutionary history of diatom genomes SO NATURE LA English DT Article ID RECIPROCAL GENE LOSS; THALASSIOSIRA-PSEUDONANA; BACILLARIOPHYCEAE; METABOLISM; MECHANISMS; COMPONENTS; BACTERIA; YEASTS AB Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans. C1 [Bowler, Chris; Allen, Andrew E.; Jabbari, Kamel; Maheswari, Uma; Maumus, Florian; Rayko, Edda; Heijde, Marc; De Martino, Alessandra; Lopez, Pascal J.; Montsant, Anton; Vardi, Assaf] Ecole Normale Super, CNRS, Dept Biol, UMR8186, F-75005 Paris, France. [Bowler, Chris; Coesel, Sacha; Falciatore, Angela; Mangogna, Manuela; Montsant, Anton; Siaut, Magali] Stn Zool A Dohrn, I-80121 Naples, Italy. [Allen, Andrew E.; Badger, Jonathan H.] J Craig Venter Inst, San Diego, CA 92121 USA. [Grimwood, Jane; Schmutz, Jeremy] Stanford Human Genome Ctr, Joint Genome Inst Stanford, Palo Alto, CA 94304 USA. [Kuo, Alan; Otillar, Robert P.; Salamov, Asaf; Detter, J. Chris; Lindquist, Erica; Lucas, Susan; Shapiro, Harris; Rokhsar, Daniel S.; Grigoriev, Igor V.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Martens, Cindy; Vandepoele, Klaas; Huysman, Marie J. J.; Van de Peer, Yves] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Beszteri, Bank; Valentin, Klaus; Medlin, Linda K.] Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany. [Gruber, Ansgar; Kroth, Peter G.] Univ Konstanz, Fachbereich Biol, D-78457 Constance, Germany. [Katinka, Michael; Petit, Jean-Louis; Porcel, Betina M.; Weissenbach, Jean] CNRS, CEA Inst Genom, UMR 8030, F-91057 Evry, France. [Mock, Thomas; Durkin, Colleen; Parker, Micaela Schnitzler; Armbrust, E. Virginia] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Verret, Frederic; Brownlee, Colin; Medlin, Linda K.; Taylor, Alison R.] Marine Biol Assoc United Kingdom Lab, Plymouth PL1 2PB, Devon, England. [Berges, John A.; Choi, Chang Jae] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. [Cadoret, Jean-Paul] IFREMER, PBA, F-44311 Nantes 03, France. [Chiovitti, Anthony; Willis, Anusuya] Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia. [Fournet, Jerome; Joubert, Yolaine; Martin-Jezequel, Veronique] Univ Nantes, Lab Mer Mol Sante, Fac Tech Sci, EA 2160, F-44322 Nantes 3, France. [Haruta, Miyoshi; Robison, Matthew; Sussman, Michael R.] Univ Wisconsin, Ctr Biotechnol, Madison, WI 53706 USA. [Huysman, Marie J. J.; Vyverman, Wim] Univ Ghent, Lab Protistol & Aquat Ecol, B-9000 Ghent, Belgium. [Jenkins, Bethany D.] Univ Rhode Isl, Dept Cell & Mol Biol, Kingston, RI 02881 USA. [Jenkins, Bethany D.] Univ Rhode Isl, Grad Sch Oceanog, Kingston, RI 02881 USA. [Jiroutova, Katerina; Obornik, Miroslav] Acad Sci Czech Republic, Inst Parasitol, Ctr Biol, CR-37005 Ceske Budejovice, Czech Republic. [Jiroutova, Katerina; Obornik, Miroslav] Univ S Bohemia, Fac Sci, CR-37005 Ceske Budejovice, Czech Republic. [Jorgensen, Richard E.; McGinnis, Karen; Napoli, Carolyn] Univ Arizona, Bio5 Inst, Tucson, AZ 85719 USA. [Jorgensen, Richard E.; McGinnis, Karen; Napoli, Carolyn] Univ Arizona, Dept Plant Sci, Tucson, AZ 85719 USA. [Kaplan, Aaron] Hebrew Univ Jerusalem, Dept Plant & Environm Sci, IL-91904 Jerusalem, Israel. [Kroger, Nils] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Kroger, Nils] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Kroger, Nils] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [La Roche, Julie; Lommer, Markus] Leibniz Inst Marine Sci, D-24105 Kiel, Germany. [Oudot-Le Secq, Marie-Pierre; Green, Beverley R.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Poulsen, Nicole] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Rychlewski, Leszek; Wyrwicz, Lucjan S.] BioInfoBank Inst, PL-60744 Poznan, Poland. [Rynearson, Tatiana A.] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Stanley, Michele] Dunstaffnage Marine Res Lab, Scottish Assoc Marine Sci, Oban PA37 1QA, Argyll, Scotland. [Taylor, Alison R.] Univ N Carolina, Dept Biol & Marine Biol, Wilmington, NC 28403 USA. [Vardi, Assaf] Rutgers State Univ, Inst Marine & Coastal Sci, Environm Biophys & Mol Ecol Grp, New Brunswick, NJ 08901 USA. [von Dassow, Peter] CNRS, Biol Stn, UMR7144, F-29682 Roscoff, France. RP Bowler, C (reprint author), Ecole Normale Super, CNRS, Dept Biol, UMR8186, 46 Rue Ulm, F-75005 Paris, France. EM cbowler@biologie.ens.fr RI Valentin, Klaus/G-5862-2014; Heijde, Marc/O-8958-2014; Gruber, Ansgar/B-9587-2008; Obornik, Miroslav/G-9350-2014; Maumus, Florian/O-5426-2016; Berges, John /D-9520-2012; Kroth, Peter/A-9728-2008; Beszteri, Bank/D-1961-2010; Vandepoele, Klaas/E-7514-2010; Mock, Thomas/A-3127-2008; medlin, linda/G-4820-2010; Lopez, Pascal Jean/A-7427-2011; Van de Peer, Yves/D-4388-2009; Dasseville, Renaat /B-3561-2010; von Dassow, Peter/A-5399-2012; LaRoche, Julie/A-1109-2010; Willis, Anusuya/B-6712-2013; MNHN/CNRS/UPMC/IRD, UMR BOREA/B-2312-2012; Schmutz, Jeremy/N-3173-2013 OI Fournet, jerome/0000-0001-8595-9971; martin-jezequel, veronique/0000-0002-6633-1334; Valentin, Klaus/0000-0001-7401-9423; Gruber, Ansgar/0000-0002-5876-4391; Maumus, Florian/0000-0001-7325-0527; Shunmugam, Uma/0000-0001-7007-9234; Kaplan, Aaron/0000-0002-0815-5731; Parker, Micaela/0000-0003-1007-4612; von Dassow, Peter/0000-0002-1858-1953; Berges, John /0000-0002-3124-4783; Kroth, Peter/0000-0003-4734-8955; Beszteri, Bank/0000-0002-6852-1588; Vandepoele, Klaas/0000-0003-4790-2725; Mock, Thomas/0000-0001-9604-0362; Van de Peer, Yves/0000-0003-4327-3730; Schmutz, Jeremy/0000-0001-8062-9172 FU EU-funded FP6 Diatomics [LSHG-CT-2004-512035]; EU-FP6 Marine Genomics Network of Excellence [GOCE-CT-2004-505403]; ATIP 'Blanche'; CNRS (France); Agence Nationale de la Recherche (France) FX Diatom genome sequencing at the JGI (USA) was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory, under contract no. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344 and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. P. tricornutum ESTs were generated at Genoscope (France). Funding for this work was also obtained from the EU-funded FP6 Diatomics project (LSHG-CT-2004-512035), the EU-FP6 Marine Genomics Network of Excellence (GOCE-CT-2004-505403), an ATIP 'Blanche' grant from the CNRS (France) and the Agence Nationale de la Recherche (France). We are grateful to M. Muffato and H.-R. Crollius for the analysis reported in Supplementary Fig. 3a. NR 30 TC 638 Z9 691 U1 34 U2 252 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 13 PY 2008 VL 456 IS 7219 BP 239 EP 244 DI 10.1038/nature07410 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 374JJ UT WOS:000261039300040 PM 18923393 ER PT J AU Kwok, R Hunke, EC Maslowski, W Menemenlis, D Zhang, J AF Kwok, R. Hunke, E. C. Maslowski, W. Menemenlis, D. Zhang, J. TI Variability of sea ice simulations assessed with RGPS kinematics SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID THICKNESS DISTRIBUTION; FLUX MEASUREMENTS; ARCTIC-OCEAN; PACK ICE; MODEL; DEFORMATION; MOTION; ASSIMILATION; DYNAMICS; SYSTEM AB Sea ice drift and deformation from coupled ice-ocean models are compared with high-resolution ice motion from the RADARSAT Geophysical Processor System (RGPS). In contrast to buoy drift, the density and extent of the RGPS coverage allows a more extensive assessment and understanding of model simulations at spatial scales from similar to 10 km to near basin scales and from days to seasonal timescales. This work illustrates the strengths of the RGPS data set as a basis for examining model ice drift and its gradients. As it is not our intent to assess relative performance, we have selected four models with a range of attributes and grid resolution. Model fields are examined in terms of ice drift, export, deformation, deformation-related ice production, and spatial deformation patterns. Even though the models are capable of reproducing large-scale drift patterns, variability among model behavior is high. When compared to the RGPS kinematics, the characteristics shared by the models are (1) ice drift along coastal Alaska and Siberia is slower, (2) the skill in explaining the time series of regional divergence of the ice cover is poor, and (3) the deformation-related volume production is consistently lower. Attribution of some of these features to specific causes is beyond our current scope because of the complex interplay between model processes, parameters, and forcing. The present work suggests that high-resolution ice drift observations, like those from the RGPS, would be essential for future model developments, improvements, intercomparisons, and especially for evaluation of the small-scale behavior of models with finer grid spacing. C1 [Kwok, R.; Menemenlis, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hunke, E. C.] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Program, Los Alamos, NM USA. [Maslowski, W.] USN, Postgrad Sch, Grad Sch Engn & Appl Sci, Dept Oceanog, Monterey, CA USA. [Zhang, J.] Univ Washington, Coll Ocean & Fishery Sci, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM ron.kwok@jpl.nasa.gov RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU Climate Change Prediction Program of the Department of Energy's Office of Biological and Environmental Research; NSF [ARC0629326, ARC0629312, ARC0611967]; NASA [NNG04GB03G, NNG04GH52G]; National Aeronautics and Space Administration; Department of Energy; National Science Foundation FX We wish to thank S. S. Pang for her software support during the preparation of this paper. The RGPS data are provided by the Jet Propulsion Laboratory and the Alaska Satellite Facility through a project sponsored by the NASA Earth Science REASoN Program (data are available at http://www-radar.jpl.nasa.gov/rgps/radarsat.html). E. Hunke is supported by the Climate Change Prediction Program of the Department of Energy's Office of Biological and Environmental Research. J. Zhang is supported by NSF (grants ARC0629326, ARC0629312, and ARC0611967) and NASA (grants NNG04GB03G and NNG04GH52G). The NPS contribution has been funded through grants from the National Aeronautics and Space Administration, Department of Energy, and National Science Foundation. Computer resources for the NPS work are provided by the Arctic Region Supercomputing Center under the Department of Defense High Performance Computer Modernization Program. The ECCO2 products are provided by the consortium for Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2 data are available at http://ecco2.org/). The ECCO2 project is sponsored by the NASA Modeling Analysis and Prediction (MAP) program. R. Kwok and D. Menemenlis carried out this work at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. NR 62 TC 31 Z9 32 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD NOV 12 PY 2008 VL 113 IS C11 AR C11012 DI 10.1029/2008JC004783 PG 20 WC Oceanography SC Oceanography GA 373TH UT WOS:000260995700001 ER PT J AU Kim, EH Johnson, JR Lee, DH AF Kim, Eun-Hwa Johnson, Jay R. Lee, Dong-Hun TI Resonant absorption of ULF waves at Mercury's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FIELD LINE RESONANCES; ION-CYCLOTRON WAVES; MAGNETIC-FIELD; ALFVEN RESONANCE; MODE CONVERSION; PLASMA; FREQUENCY; EXOSPHERE; MAGNETOPAUSE; PULSATIONS AB Ultra low frequency (ULF) waves, which are assumed to be standing waves on the field, are observed by the Mariner 10 spacecraft at Mercury. These waves are oscillating at 38% of the proton gyrofrequency. It is well known that heavy ions, such as Na(+), are abundant in Mercury's magnetosphere. Because the presence of different ion species has an influence on plasma dispersion characteristics near the ion gyrofrequencies, magnetospheric eigenoscillations observed at Mercury with frequency in the gyrofrequency range require a multi-fluid treatment for the plasma. Thus ULF waves at Mercury may have a distinct difference from typical ULF oscillations at Earth, which are often described in terms of magnetohydrodynamics. By adopting a multi-fluid numerical wave model, we examine how magnetic eigenoscillations occur in Mercury's magnetosphere. Because protons and sodium ions are the main constituents at Mercury, we assume an electron-proton-sodium plasma in our model. Our results show: (1) the observed ULF waves are likely compressional waves rather than standing oscillations such as field line resonances (FLRs), (2) FLRs at Mercury are expected to occur when the ion-ion hybrid and/or Alfven resonance conditions are satisfied, (3) the magnetic field of FLRs at Mercury's magnetosphere oscillates linearly in the east-west (azimuthal) meridian when the frequency is located between two ion gyrofrequencies, and (4) the resonance frequency enables us to estimate the local heavy ion concentration ratio. C1 [Kim, Eun-Hwa; Johnson, Jay R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lee, Dong-Hun] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 449701, Kyunggi, South Korea. RP Kim, EH (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ehkim@pppl.gov FU NASA [NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, NNH07AF37I]; NSF [ATM0411392]; DOE [DE-AC0276CH03073]; Korean Government [KRF-2005- 070-C00059] FX This work was supported by NASA grants (NNH04AB23I, NNH04AA73I, NNH04AA16I, NNG07EK69I, and NNH07AF37I), NSF grant (ATM0411392), DOE contract DE-AC0276CH03073, and the Korea Research Foundation grant funded by the Korean Government (KRF-2005- 070-C00059). NR 41 TC 14 Z9 14 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 12 PY 2008 VL 113 IS A11 AR A11207 DI 10.1029/2008JA013310 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 373TX UT WOS:000260997500002 ER PT J AU Piccoli, PMB Cowan, JA Schultz, AJ Koetzle, TF Yap, GPA Trofimenko, S AF Piccoli, Paula M. B. Cowan, John A. Schultz, Arthur J. Koetzle, Thomas F. Yap, Glenn P. A. Trofimenko, Swiatoslaw TI Low-temperature neutron structure determinations of a series of scorpionate complexes of molybdenum containing B-H-Mo agostic bonds SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article DE Pyrazolylborate complexes; Neutron diffraction; Agostic bonds ID MOLECULAR-STRUCTURE; DIFFRACTION; METAL; HYDROGEN; CRYSTAL; CONFIGURATION AB The structures of four dihydrobis(pyrazol-1-yl)borate (Bp) complexes of molybdenum have been determined at low temperature by single crystal neutron diffraction in order to accurately characterize the three-center B-H-Mo agostic bonding. The B-H1A (agostic) distance is found to be elongated by about 0.05-0.08 angstrom compared to the B-H1B distance (not agostically bound to the metal center). This systematic study of a series of molecules with different substituents on the Bp ligand permits us to examine the effects of electronic and steric factors on the overall structure and bonding, and particularly on the agostic bond. It is observed that a closer approach of H1A to Mo leads to a longer trans-Mo-Co bond distance, analogous to the trans hydride structural effect in hydride complexes. In addition Fenske-Hall calculations were performed on these complexes, and the results are reported herein. (C) 2008 Elsevier B.V. All rights reserved. C1 [Piccoli, Paula M. B.; Cowan, John A.; Schultz, Arthur J.; Koetzle, Thomas F.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yap, Glenn P. A.; Trofimenko, Swiatoslaw] Univ Delaware, Dept Chem, Newark, DE 19716 USA. RP Schultz, AJ (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM ajschultz2@gmail.com FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 38 TC 2 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 J9 J MOL STRUCT JI J. Mol. Struct. PD NOV 12 PY 2008 VL 890 IS 1-3 SI SI BP 63 EP 69 DI 10.1016/j.molstruc.2008.03.056 PG 7 WC Chemistry, Physical SC Chemistry GA 375NR UT WOS:000261121100010 ER PT J AU Cahoon, JF Kling, MF Sawyer, KR Andersen, LK Harris, CB AF Cahoon, James F. Kling, Matthias F. Sawyer, Karma R. Andersen, Lars K. Harris, Charles B. TI DFT and time-resolved IR investigation of electron transfer between photogenerated 17-and 19-electron organometallic radicals SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article DE 19-Electron intermediates; Transition-metal dimers; Metal-centered radicals; Electron transfer; Cage effects; Step-scan FTIR spectroscopy ID PHOTOCHEMICAL DISPROPORTIONATION REACTIONS; ELECTROCATALYTIC CO SUBSTITUTION; LIGAND SUBSTITUTION; INFRARED-SPECTROSCOPY; LEWIS-BASES; MECHANISM; DENSITY; 17-ELECTRON; ABSORPTION; COMPLEXES AB The photochemical disproportionation mechanism of [CpW(CO)(3)](2) in the presence of Lewis bases PR(3) was investigated on the nano- and microsecond time-scales with step-scan FTIR time-resolved infrared spectroscopy. Laser excitation (532 nm) was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO)(3) and initiating the reaction. With the Lewis base PPh(3), disproportionation to form the ionic products CpW(CO)(3)PPh(3)(+) and CpW(CO)(3)(-) was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO)(3)PPh(3) to the 17-electron species CPW(CO)(3). This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CPW(CO)(3)](2). With the Lewis base P(OMe)(3) on the other hand, ligand substitution to form the product [CpW(CO)(2)P(CMe)(3)](2) is the primary reaction on the microsecond time-scale. Density functional theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe)(3) and PPh(3) are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO)(3)](2) and may also be applicable to the entire class of organometallic dinners containing a single metal-metal bond. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cahoon, James F.; Kling, Matthias F.; Sawyer, Karma R.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cahoon, James F.; Kling, Matthias F.; Sawyer, Karma R.; Harris, Charles B.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Andersen, Lars K.] Lawrence Berkeley Natl Lab, MS Calvin Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Kling, Matthias/D-3742-2014 FU NSF's Division of Physical Chemistry; US Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231]; Alexander von Humboldt foundation FX We thank Heinz Frei for the generous use of his step-scan FTIR apparatus and a reviewer for his valuable comments on our manuscript. This work was supported by the NSF's Division of Physical Chemistry. We also acknowledge some specialized equipment supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division, under Contract DE-AC02-05CH11231 and contractor supported research. J.F.C. acknowledges an NSF graduate research fellowship and M.F.K. is grateful for support by the Alexander von Humboldt foundation through a Feodor-Lynen Fellowship. NR 34 TC 9 Z9 9 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 J9 J MOL STRUCT JI J. Mol. Struct. PD NOV 12 PY 2008 VL 890 IS 1-3 SI SI BP 328 EP 338 DI 10.1016/j.molstruc.2008.05.047 PG 11 WC Chemistry, Physical SC Chemistry GA 375NR UT WOS:000261121100052 ER PT J AU Berman, AM Lewis, JC Bergman, RG Ellman, JA AF Berman, Ashley M. Lewis, Jared C. Bergman, Robert G. Ellman, Jonathan A. TI Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID H BOND ACTIVATION; N-OXIDES; SELECTIVE ALKENYLATION; FUNCTIONALIZATION; CHLORIDES AB A Rh(I)-catalyzed direct arylation of pyridine and quinoline heterocycles has been developed. The method provides rapid entry into an important class of substituted heterocycles employing inexpensive and readily available starting materials. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC03-76SF00098]; NRSA [GM082080] FX This work was supported by NIH Grant GM069559 to J.A.E. and the Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy, under Contract DE-AC03-76SF00098 to R.G.B. A.M.B. was supported by a NRSA postdoctoral fellowship (GM082080). NR 14 TC 196 Z9 196 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 12 PY 2008 VL 130 IS 45 BP 14926 EP + DI 10.1021/ja8059396 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 369GK UT WOS:000260682300012 PM 18855360 ER PT J AU Lee, CH Wang, JS Kayatsha, VK Huang, JY Yap, YK AF Lee, Chee Huei Wang, Jiesheng Kayatsha, Vijaya K. Huang, Jian Y. Yap, Yoke Khin TI Effective growth of boron nitride nanotubes by thermal chemical vapor deposition SO NANOTECHNOLOGY LA English DT Article ID CARBON NANOTUBES; PURE; TEMPERATURE; PRECURSOR AB Effective growth of multiwalled boron nitride nanotubes (BNNTs) has been obtained by thermal chemical vapor deposition (CVD). This is achieved by a growth vapor trapping approach as guided by the theory of nucleation. Our results enable the growth of BNNTs in a conventional horizontal tube furnace within an hour at 1200 degrees C. We found that these BNNTs have an absorption band edge of 5.9 eV, approaching that of single h-BN crystals, which are promising for future nanoscale deep-UV light emitting devices. C1 [Lee, Chee Huei; Wang, Jiesheng; Kayatsha, Vijaya K.; Yap, Yoke Khin] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Huang, Jian Y.] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Yap, YK (reprint author), Michigan Technol Univ, Dept Phys, 1400 Townsend Dr, Houghton, MI 49931 USA. EM ykyap@mtu.edu RI Huang, Jianyu/C-5183-2008; Lee, Chee Huei/C-3718-2014; OI Yap, Yoke Khin/0000-0002-1224-4120 FU National Science Foundation CAREER award [0447555]; US Department of Energy, the Office of Basic Energy Sciences [DE-FG02-06ER46294]; US Department of Energy [DE-AC04-94AL85000] FX This project is supported by National Science Foundation CAREER award (award number 0447555). VKK is supported by the US Department of Energy, the Office of Basic Energy Sciences (Grant No. DE-FG02-06ER46294). This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No DE-AC04-94AL85000. NR 26 TC 97 Z9 97 U1 2 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 12 PY 2008 VL 19 IS 45 AR 455605 DI 10.1088/0957-4484/19/45/455605 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 358MT UT WOS:000259922000023 PM 21832782 ER PT J AU Jaroszewski, L Slabinski, L Wooley, J Deacon, AM Lesley, SA Wilson, IA Godzik, A AF Jaroszewski, Lukasz Slabinski, Lukasz Wooley, John Deacon, Ashley M. Lesley, Scott A. Wilson, Ian A. Godzik, Adam TI Genome Pool Strategy for Structural Coverage of Protein Families SO STRUCTURE LA English DT Article ID PREDICTION; SEQUENCE; DATABASE AB Even closely homologous proteins often have different crystallization properties and propensities. This observation can be used to introduce an additional dimension into crystallization trials by simultaneous targeting multiple homologs in what we call a "genome pool" strategy. We show that this strategy works because protein physicochemical properties correlated with crystallization success have a surprisingly broad distribution within most protein families. There are also "easy" and "difficult" families where this distribution is tilted in one direction. This leads to uneven structural coverage of protein families, with more "easy" ones solved. Increasing the size of the "genome pool" can improve chances of solving the "difficult" ones. In contrast, our analysis does not indicate that any specific genomes are "easy" or "difficult". Finally, we show that the group of proteins with known 3D structures is systematically different from the general pool of known proteins and we assess the structural consequences of these differences. C1 [Jaroszewski, Lukasz; Godzik, Adam] Burnham Inst Med Res, Joint Ctr Struct Genom, La Jolla, CA 92037 USA. [Slabinski, Lukasz; Godzik, Adam] Burnham Inst Med Res, Joint Ctr Mol Modeling, La Jolla, CA 92037 USA. [Slabinski, Lukasz] BioInfoBank Inst, PL-60744 Poznan, Poland. [Wooley, John] Univ Calif San Diego, Joint Ctr Struct Genom, La Jolla, CA 92093 USA. [Deacon, Ashley M.] SSRL, Joint Ctr Struct Genom, Menlo Pk, CA 94025 USA. [Lesley, Scott A.; Wilson, Ian A.] Scripps Res Inst, Joint Ctr Struct Genom, La Jolla, CA 92037 USA. [Lesley, Scott A.] Novartis Res Fdn, Genom Inst, Joint Ctr Struct Genom, San Diego, CA 92121 USA. RP Godzik, A (reprint author), Burnham Inst Med Res, Joint Ctr Struct Genom, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM adam@burnham-inst.org RI Godzik, Adam/A-7279-2009 OI Godzik, Adam/0000-0002-2425-852X FU NIH [U54 GM074898, P20 GM076221]; National Institute of General Medical Sciences FX This work is supported by the NIH Protein Structure Initiative grants U54 GM074898 (JCSG) and P20 GM076221 (JCMM) from the National Institute of General Medical Sciences (www.nigms.nih.gov). NR 19 TC 9 Z9 10 U1 0 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 12 PY 2008 VL 16 IS 11 BP 1659 EP 1667 DI 10.1016/j.str.2008.08.018 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 374GQ UT WOS:000261032200009 PM 19000818 ER PT J AU Becker, V Sengupta, D Ketteler, R Ullmann, GM Smith, JC Klingmuller, U AF Becker, Verena Sengupta, Durba Ketteler, Robin Ullmann, G. Matthias Smith, Jeremy C. Klingmueller, Ursula TI Packing Density of the Erythropoietin Receptor Transmembrane Domain Correlates with Amplification of Biological Responses SO BIOCHEMISTRY LA English DT Article ID PRIMARY FAMILIAL POLYCYTHEMIA; SIGNAL-TRANSDUCTION; MEMBRANE-PROTEINS; PROGENITOR CELLS; POINT MUTATION; DIMERIZATION; ACTIVATION; OLIGOMERIZATION; GENE; ERYTHROCYTOSIS AB The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TM dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions. C1 [Becker, Verena; Klingmueller, Ursula] German Canc Res Ctr, DKFZ ZMBH Alliance, Div Syst Biol Signal Transduct, D-6900 Heidelberg, Germany. [Sengupta, Durba; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. [Ketteler, Robin] Massachusetts Gen Hosp, Ctr Computat & Integrat Biol, Boston, MA 02114 USA. [Ullmann, G. Matthias] Univ Bayreuth, Bayreuth, Germany. [Smith, Jeremy C.] Univ Tennessee, ORNL Ctr Mol Biophys, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Klingmuller, U (reprint author), German Canc Res Ctr, DKFZ ZMBH Alliance, Div Syst Biol Signal Transduct, D-6900 Heidelberg, Germany. EM u.klingmueller@dkfz-heidelberg.de RI smith, jeremy/B-7287-2012; Klingmuller, Ursula/G-8477-2013; Ullmann, Matthias/H-1361-2014; OI smith, jeremy/0000-0002-2978-3227; Klingmuller, Ursula/0000-0001-9845-3099; Ullmann, Matthias/0000-0002-6350-798X; Ketteler, Robin/0000-0002-2786-7291 FU European Commission Sixth Framework Programme COSBICS [LSHG-CT-2004-512060]; Deutsche Forschungsgemeinschaft [DFG/Ke904] FX This work was supported by the European Commission Sixth Framework Programme COSBICS project (LSHG-CT-2004-512060) (to V.B.) and by the Deutsche Forschungsgemeinschaft (DFG/Ke904) (to R. K.). NR 49 TC 11 Z9 11 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 11 PY 2008 VL 47 IS 45 BP 11771 EP 11782 DI 10.1021/bi801425e PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 368JH UT WOS:000260616900009 PM 18855427 ER PT J AU Shiju, NR Rondinone, AJ Mullins, DR Schwartz, V Overbury, SH Guliants, VV AF Shiju, N. Raveendran Rondinone, Adam J. Mullins, David R. Schwartz, Viviane Overbury, Steven H. Guliants, Vadim V. TI XANES Study of Hydrothermal Mo-V-Based Mixed Oxide. M1-Phase Catalysts for the (Amm)oxidation of Propane SO CHEMISTRY OF MATERIALS LA English DT Article ID TE-NB-O; ACRYLIC-ACID; ACTIVE-CENTERS; SELECTIVE OXIDATION; MOVTENBO CATALYSTS; M1 PHASE; AMMOXIDATION; SURFACE; STATE; ACRYLONITRILE AB The hydrothermal Mo-V-based mixed oxide catalysts possessing the M1-phase structure were investigated by XANES and in situ X-ray diffraction under ambient and dynamic redox conditions in the presence of O-2 and H-2 at 693 K. Under ambient conditions, XANES, with the use of model compounds, suggested oxidation states of Nb, Te, Mo, and V close to 5+, 4+, 6+, and 4+, respectively, in the bulk M I phase. The oxidation state changes of Nb, Te, and Mo were not detected under the dynamic redox conditions employed, while the pre-edge peak of vanadium in the M I phase exhibited small, reproducible shifts, suggesting that VOx is the active catalytic species in the bulk M1-phase catalysts for selective (amin)oxidation of propane. C1 [Shiju, N. Raveendran; Rondinone, Adam J.; Guliants, Vadim V.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Mullins, David R.; Schwartz, Viviane; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guliants, VV (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM vguliant@alpha.che.uc.edu RI Rondinone, Adam/F-6489-2013; Overbury, Steven/C-5108-2016; OI Rondinone, Adam/0000-0003-0020-4612; Overbury, Steven/0000-0002-5137-3961; Raveendran, Shiju/0000-0001-7943-5864 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S Department of Energy [DE-FG02-04ER15604]; Brookhaven National Laboratory FX This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S Department of Energy, under Grant No. DE-FG02-04ER15604 Portions of this research were carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The NSLS is supported by the Divisions of Materials and Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of the work were also conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 32 TC 9 Z9 9 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2008 VL 20 IS 21 BP 6611 EP 6616 DI 10.1021/cm800546h PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 368YA UT WOS:000260658100011 ER PT J AU Hernandez-Sanchez, BA Boyle, TJ Pratt, HD Rodriguez, MA Brewer, LN Dunphy, DR AF Hernandez-Sanchez, Bernadette A. Boyle, Timothy J. Pratt, Harry D., III Rodriguez, Mark A. Brewer, Luke N. Dunphy, Darren R. TI Morphological and Phase Controlled Tungsten Based Nanoparticles: Synthesis and Characterization of Scheelite, Wolframite, and Oxide Nanomaterials SO CHEMISTRY OF MATERIALS LA English DT Article ID PENNIFORM BAWO4 NANOSTRUCTURES; LOW-TEMPERATURE SYNTHESIS; X-RAY STRUCTURES; MAGNESIUM TUNGSTATE; PBWO4 CRYSTALS; STRUCTURAL-CHARACTERIZATION; SOLVOTHERMAL SYNTHESIS; CAWO4 NANOPARTICLES; REVERSE MICELLES; THIN-FILMS AB For the first time tungsten based nanoparticles (WNPs) of scheelite (MWO4: M = Ca, Sr, Ba, Pb), wolframite (MWO4: M = Mn, Fe; Zn and (Mg0.60Mn0.17Fe0.26)WO4), and the oxide (WO3 and W18O49) were synthesized from solution precipitation (i.e., trioctylamine or oleic acid) and solvothermal (i.e., benzyl alcohol) routes. The resultant WNPs were prepared directly from tungsten(VI) ethoxide (W(OCH2CH3)(6), 1) and stoichiometeric mixtures of the following precursors: [Ca(N(SiMe3)(2))(2)](2) (2), Pb(N(SiMe3)(2))(2) (3), Mn[(mu-Mes)(2)Mn(MeS)](2) (4), [Fe(mu-Mes)(Mes)](2) (5), Fe(CO)(5) (6), [Ba-2(mu(3)-ONep) (mu-ONeP)(2)(ONep)(HONeP)(3)(py)](2) (7), Sr-5(mu(4)-O)(mu(3)-ONeP)(4)(mu-ONep)(4)(HONep)(py)(4) (8), and [Zn(Et)-(ONep)(py)](2) (9) where Mes = C6H2(CH3)(3)-2,4,6, ONep = OCH2C(CH3)(3), Et = CH2CH3, and py = pyridine. Through these routes, the WNP morphologies were found to be manipulated by the processing conditions, while precursor selection influenced the final phase observed. For the solution precipitation route, 1 yielded (5 x 100 nm) W18O49 rods while stoichiometric reactions between 1 and 2-9 generated homogeneous sub-30 nm nanodots, -diamonds, -rods, and -wires for the MWO4 systems. For the solvothermal route, 1 was found to produce wires of WO3 with aspect ratios of 20 while (1 and 2) formed 10-60 nm CaWO4 nanodots. Room temperature photoluminescent (PL) emission properties of select WNPs were also examined with fluorescence spectroscopy (lambda(ex) = 320 nm). Broad PL emissions = 430, 420,395, 420 nm were noted for 5 x 100 nm W18O49 rods, 5 x 15 nm, CaWO4 rods, 10-30 nm CaWO4 dots, and 10 nm BaWO4 diamonds, respectively. C1 [Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.; Pratt, Harry D., III; Rodriguez, Mark A.; Brewer, Luke N.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Dunphy, Darren R.] Univ New Mexico, Dept Chem Engn, Albuquerque, NM 87131 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@sandia.gov FU NSF [DGE-0549500]; National Institutes of Health through the NIH Roadmap for Medical Research [1 R21 EB005365-01]; Office of Basic Energy Sciences at the Department of Energy; U.S. Department of Energy [DE-AC04-94AL85000]; Sandia Corporation.; Lockheed Martin Company FX The authors thank Dr. G. Smolyakov (Center of High Technology Materials) for use of a fluorimeter purchased in part from the NSF IGERT Program on Integrating Nanotechnology with Cell Biology and Neuroscience (NSF Grant DGE-0549500) and Ms. B. McKenzie (Sandia) and Mr. T. Borek (Sandia) for technical assistance. This work was Supported in part by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant 1 R21 EB005365-01. Information on this RFA (Innovation in Molecular Imaging Probes) can be found at http://grants.nih.gov/araiits/guide/rfafiles/RFA-RM-04-021.html. This work was also supported by the Office of Basic Energy Sciences at the Department of Energy and in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation. a Lockheed Martin Company, for the U.S. Department of Energy, under Contract DE-AC04-94AL85000. NR 64 TC 34 Z9 35 U1 11 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 11 PY 2008 VL 20 IS 21 BP 6643 EP 6656 DI 10.1021/cm801387z PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 368YA UT WOS:000260658100017 PM 19911034 ER PT J AU Tirumala, VR Daga, V Bosse, AW Romang, A Ilavsky, J Lin, EK Watkins, JJ AF Tirumala, Vijay R. Daga, Vikram Bosse, August W. Romang, Alvin Ilavsky, Jan Lin, Eric K. Watkins, James J. TI Well-Ordered Polymer Melts with 5 nm Lamellar Domains from Blends of a Disordered Block Copolymer and a Selectively Associating Homopolymer of Low or High Molar Mass SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMER/HOMOPOLYMER BLENDS; X-RAY-SCATTERING; PHASE-BEHAVIOR; MICROPHASE SEPARATION; TRIBLOCK COPOLYMERS; MOLECULAR-WEIGHT; FIELD-THEORY; MIXTURES; LITHOGRAPHY; MICROSTRUCTURES AB The use of short chain block copolymer melts as nanostructured templates with sub-10 nm domains is often limited by their low segregation strength (chi N). Since increasing molar mass to strengthen segregation also increases the interdomain spacing of block copolymer melts, it is more desirable to increase the Hory-Huggins segment-segment interaction parameter, chi, to produce strong segregation. We have recently shown that poly(oxyethylene-oxypropylene-oxyethylene) block copolymer melts can undergo disorder-to-order transition when blended with a selectively associating homopolymer that can hydrogen bond with one of the blocks. Here, we study the effect of the molar mass of poly(acrylic acid) in the range 1-13 times that of the copolymer on the segregation of a 6.5 kg/mol poly(oxyethylene-oxypropylene-oxyethylene) copolymer melt. The neat copolymer is disordered, and the addition of poly(acrylic acid) resulted in a well-ordered lamellar morphology with an interdomain spacing of 10 +/- 1.0 nm. Using small-angle and ultrasmall-angle X-ray scattering, we found that the blends remain well ordered at 80 degrees C over the entire range of homopolymer chain lengths. A small increase in the interdomain spacing of the lamellae and an order-order transition from lamellae-to-cylindrical morphology was observed in all blends as a function of increasing homopolymer concentration. The trends observed in experiments were validated by self-consistent field theoretical simulations. C1 [Tirumala, Vijay R.; Daga, Vikram; Romang, Alvin; Watkins, James J.] Univ Massachusetts, Amherst, MA 01003 USA. [Tirumala, Vijay R.; Bosse, August W.; Lin, Eric K.] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60559 USA. RP Watkins, JJ (reprint author), Univ Massachusetts, Amherst, MA 01003 USA. EM watkins@polysci.umass.edu RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; FU National Science Foundation; Center for Hierarchical Manufacturing (CHM-NSEC) [CMMI 0531171, CBET 0422543]; National Research Council FX This work was supported by the National Science Foundation through the Center for Hierarchical Manufacturing (CHM-NSEC) under Contracts CMMI 0531171 and CBET 0422543. Facilities supported by the NSF Materials Research Science and Engineering Center and the CHM at UMass were used in the course of this work. Use of neutron scattering facilities was supported in part by the National Science Foundation under Agreement DMR-0454672. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract DE-AC02-06CH11357. A.W.B. gratefully acknowledges support from the National Research Council Postdoctoral Research Associate program. We thank an anonymous referee for suggesting that microphase separation maximizes favorable PEO/PAA interactions and contributes to the driving force for disorder-to-order transition in blends of Pluronic copolymers with PAA. NR 58 TC 43 Z9 43 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 11 PY 2008 VL 41 IS 21 BP 7978 EP 7985 DI 10.1021/ma801124n PG 8 WC Polymer Science SC Polymer Science GA 368HR UT WOS:000260612700033 ER PT J AU Arlen, MJ Wang, D Jacobs, JD Justice, R Trionfi, A Hsu, JWP Schaffer, D Tan, LS Vaia, RA AF Arlen, Michael J. Wang, David Jacobs, J. David Justice, Ryan Trionfi, Aaron Hsu, Julia W. P. Schaffer, Dale Tan, Loon-Seng Vaia, Richard A. TI Thermal-Electrical Character of in Situ Synthesized Polyimide-Grafted Carbon Nanofiber Composites SO MACROMOLECULES LA English DT Article ID POSITIVE TEMPERATURE-COEFFICIENT; POLYMER COMPOSITES; PERCOLATION-THRESHOLD; AC CONDUCTIVITY; FIBER COMPOSITES; THIN-FILMS; NANOTUBES; NANOCOMPOSITES; RESISTIVITY; BEHAVIOR AB Notwithstanding the success of polymer-carbon nanotube (CNT) nanocomposites, a solid understanding of the impact of external perturbations, including temperature and stress, on the electrical response, its reproducibility, and the subsequent relationship to the topology of the percolative morphology and molecular details of the CNT-CNT contact junction is not complete. Using an in situ synthesis approach, two series of polymide (CP2)-carbon nanofiber (CNF) composites are prepared with quantitatively (small-angle X-ray scattering) comparable CNF dispersions, but differing in the structure of the CNF-polymer interface. Amino-functionalized CNFs (FCNFs) enable direct formation of CP2 grafts onto the CNFs, whereas pristine CNFs (PCNFs) result in a relatively weak interface between the carbon nanofiber and CP2 matrix. In general, low-frequency ac impedance measurements are well described by the percolation bond model, yielding a percolation threshold below 1 vol % (0.24 and 0.68 vol % for PCNF-CP2 and FCNF-CP2, respectively). However, the design of the interface is determined to be crucial for controlling the electrical behavior in four substantial ways: magnitude of the limiting conductivity, linearity of the I-V response, magnitude and direction of temperature-dependent resistivity, and reproducibility of the absolute value of the resistivity with thermal cycling. These observations are consistent with a direct CNF-CNF contact limiting transport in the PCNF-CP2 system, where the CP2 grafts onto the FCNF from a dielectric layer, limiting transport within the FCNF-CP2 system. Furthermore, the grafted CP2 chains on the FCNF reduce local polymer dewetting at the CNF surfaces when the temperature exceeds the CP2 glass transition. This appears to stabilize the structure of the percolation network and associated conductivity. The general behavior of these interfacial extremes (pristine and fully functionalized CNFs) set important bounds on the design of interface modification for CNFs when the intended use is for electrical performance at elevated temperatures or under extreme current loads. C1 [Arlen, Michael J.; Wang, David; Jacobs, J. David; Justice, Ryan; Tan, Loon-Seng; Vaia, Richard A.] USAF, Res Lab, Mat & Mfg Directorate, RXBN, Wright Patterson AFB, OH 45433 USA. [Wang, David] Univ Dayton, Res Inst, Dayton, OH 45469 USA. [Arlen, Michael J.] Univ Akron, Dept Polymers Sci & Engn, Akron, OH 44325 USA. [Jacobs, J. David; Justice, Ryan; Schaffer, Dale] Univ Cincinnati, Sch Engn, Cincinnati, OH 45221 USA. [Trionfi, Aaron; Hsu, Julia W. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Arlen, MJ (reprint author), USAF, Res Lab, Mat & Mfg Directorate, RXBN, Wright Patterson AFB, OH 45433 USA. RI Wang, David/F-7492-2013; Tan, Loon-Seng/F-6985-2012 OI Wang, David/0000-0001-6710-7265; Tan, Loon-Seng/0000-0002-2134-9290 FU Intelligence Community; Air Force Office of Scientific Research; Materials & Manufacturing Directorate; Air Force Research Laboratory FX We are grateful for the assistance of M. Houtz for thermal analysis, G. Price for SEM, and S. Z. D. Cheng and E. Tuncer for insightful discussions. M.J.A. was supported by the Intelligence Community Postdoctoral Fellowship Program. Additionally funding was provided by the Air Force Office of Scientific Research and the Materials & Manufacturing Directorate, Air Force Research Laboratory. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, nanoscale science research center operated jointly by Los Alamos and Sandia National Laboratories. Sandia National Laboratory is a multiprogram laboratory operated by Sandia Corp., a Lockheed-Marfin company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 67 TC 41 Z9 42 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 11 PY 2008 VL 41 IS 21 BP 8053 EP 8062 DI 10.1021/ma801525f PG 10 WC Polymer Science SC Polymer Science GA 368HR UT WOS:000260612700042 ER PT J AU Parris, MD MacKay, BA Rathke, JW Klingler, RJ Gerald, RE AF Parris, Michael D. MacKay, Bruce A. Rathke, Jerome W. Klingler, Robert J. Gerald, Rex E., II TI Influence of Pressure on Boron Cross-Linked Polymer Gels SO MACROMOLECULES LA English DT Article ID SODIUM-BORATE; NMR; COMPLEXATION AB Using steady-shear rheometry in combination with high-pressure B-11 nuclear magnetic resonance spectroscopy (B-11 NMR), we have found that gels formed from water-soluble polymers containing vicinal hydroxyl groups cross-linked with various boron-containing compounds undergo significant structural changes that result in a pronounced loss of viscosity when placed under pressure. Importantly, gels from other cross-linking agents tested, including Ti(IV) and Zr(IV), did not show this loss in viscosity. The experimental study probed pressure-induced changes to both galactomannan and polyvinyl alcohol (PVA) gets cross-linked with either aryl boronic acids or alkali metal boron-containing salts using pressure conditions that ranged from atmospheric to 680 bar and temperatures that ranged from 20 to 65 degrees C. Significantly, the pressure-induced losses in viscosity and, to a somewhat lesser extent, the concomitant pressure-induced B-11 NMR spectral changes were found to be reversed upon lowering the pressure. C1 [Rathke, Jerome W.; Klingler, Robert J.; Gerald, Rex E., II] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Parris, Michael D.; MacKay, Bruce A.] Schlumberger Technol Corp, Stimulat Fluids Engn, Sugar Land, TX 77478 USA. RP Rathke, JW (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rathke@anl.gov FU Office of Basic Energy Sciences; Division of Chemical Sciences; U.S. Department of Energy [W-31-109-ENG-38] FX The coauthors at Argonne National Laboratory acknowledge the Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy, under contract W-31-109-ENG-38, for support of research advancing the toroid cavity NMR detector used in this study. We would also like to acknowledge that we have benefited from discussions with Tim Jones of Schlumberger Cambridge Research. NR 19 TC 12 Z9 13 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 11 PY 2008 VL 41 IS 21 BP 8181 EP 8186 DI 10.1021/ma801187q PG 6 WC Polymer Science SC Polymer Science GA 368HR UT WOS:000260612700058 ER PT J AU Sternberg, M Savard, G AF Sternberg, M. Savard, G. TI A study of the cyclotron gas-stopping concept for the production of rare isotope beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Heavy-ions; Gas stopping; Angular straggling; Gas collisions; Charge-exchange ID CROSS-SECTIONS; PROJECTILE FRAGMENTS; HEAVY-IONS; SEPARATION AB The proposed cyclotron gas-stopping scheme for the efficient thermalization of intense rare isotope beams is examined. Simulations expand on previous studies and expose many complications of such an apparatus arising from physical effects not accounted for properly in previous work. The previously proposed cyclotron gas-stopper geometry is found to have a near null efficiency, but extended simulations suggest that a device with a much larger pole gap could achieve a stopping efficiency approaching roughly 90% and at least a 10 times larger acceptance. However, some of the advantages that were incorrectly predicted in previous simulations for high intensity operation of this device are compromised. Published by Elsevier B.V. C1 [Sternberg, M.; Savard, G.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sternberg, M.; Savard, G.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Savard, G (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM savard@anl.gov FU U.S. Department of Energy, Nuclear Physics Division [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Nuclear Physics Division, under contract no. DE-AC02-06CH11357. NR 24 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 257 EP 268 DI 10.1016/j.nima.2008.08.038 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000001 ER PT J AU Berg, JS AF Berg, J. Scott TI The EMMA main ring lattice SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Linear non-scaling fixed-field alternating gradient accelerator ID ELECTRON MODEL; ACCELERATION; FFAGS AB The EMMA experiment will study beam dynamics in a linear non-scaling fixed-field alternating gradient (FFAG) accelerator. I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the main EMMA ring. 1 then describe the mathematical model that is used to describe the EMMA lattice. Finally, l show how the different lattice configurations were obtained and list their parameters. (C) 2008 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Berg, JS (reprint author), Brookhaven Natl Lab, Bldg 901A,POB 5000, Upton, NY 11973 USA. EM jsberg@bnl.gov RI Berg, Joseph/E-8371-2014 OI Berg, Joseph/0000-0002-5955-6973 NR 53 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 276 EP 284 DI 10.1016/j.nima.2008.08.068 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000003 ER PT J AU Pelaia, T Cousineau, S AF Pelaia, Thomas Cousineau, Sarah TI A method for probing machine optics by constructing transverse real space beam distributions using Beam Position Monitors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Accelerator; Beam distribution; Profile AB At the Spallation Neutron Source (SNS) in Oak Ridge, we sought to measure the transverse tilt and profile of the beam at several locations in our Ring to Target Beam Transport (RTBT) line where we did not have wire scanners. A new method was proposed and used to construct the transverse real space beam distributions from Beam Position Monitor (BPM) signals to probe the machine optics. In this paper, we outline this method and present an experiment demonstrating this technique, and we qualitatively compare the results with profiles taken using wire scanners. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pelaia, Thomas; Cousineau, Sarah] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pelaia, T (reprint author), Oak Ridge Natl Lab, Bldg 8600,MS 6461,1 Bethel Valley RD, Oak Ridge, TN 37831 USA. EM pelaiata@ornl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 295 EP 299 DI 10.1016/j.nima.2008.08.139 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000006 ER PT J AU Leverington, BD Lolos, GJ Papandreou, Z Hakobyan, R Huber, GM Janzen, KL Semenov, A Scott, EB Shepherd, MR Carman, DS Lawrence, DW Smith, ES Taylor, S Wolin, EJ Klein, FJ Santoro, JP Sober, DI Kourkoumeli, C AF Leverington, B. D. Lolos, G. J. Papandreou, Z. Hakobyan, R. Huber, G. M. Janzen, K. L. Semenov, A. Scott, E. B. Shepherd, M. R. Carman, D. S. Lawrence, D. W. Smith, E. S. Taylor, S. Wolin, E. J. Klein, F. J. Santoro, J. P. Sober, D. I. Kourkoumeli, C. TI Performance of the prototype module of the GlueX electromagnetic barrel calorimeter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electromagnetic calorimeter; Scintillating fibres AB A photon beam test of the 4 m long prototype lead/scintillating-fibre module for the GlueX electromagnetic barrel calorimeter was carried out in Hall B at the Thomas Jefferson National Accelerator Facility with the objective of measuring the energy and timing resolutions of the module as well as the number of photoelectrons generated. Data were collected over an energy range of 150-650 MeV at multiple positions and angles along the module. Details of the analysis at the centre of and perpendicular to the module are shown herein; the results are sigma(E)/E = 5.4%/root E(GeV) circle plus 2.3%, sigma(Delta T/2) = 70/root E ps, and 660 photoelectrons for 1 GeV at each end of the module. (C) 2008 Elsevier B.V. All rights reserved. C1 [Leverington, B. D.; Lolos, G. J.; Papandreou, Z.; Hakobyan, R.; Huber, G. M.; Janzen, K. L.; Semenov, A.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Scott, E. B.; Shepherd, M. R.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Carman, D. S.; Lawrence, D. W.; Smith, E. S.; Taylor, S.; Wolin, E. J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Kourkoumeli, C.] Univ Athens, Dept Phys, Athens 15784, Greece. RP Papandreou, Z (reprint author), Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. EM zisis@uregina.ca FU NSERC [SAPPJ-326516]; DOE [DE-FG02-05ER41374]; Jefferson Science Associates; LLC [DE-AC05-060823177] FX This work is supported by NSERC Grant SAPPJ-326516 and DOE Grant DE-FG02-05ER41374 as well as Jefferson Science Associates, LLC under U.S. DOE Contract no. DE-AC05-060823177. The authors wish to thank the Hall-B physicists and technical staff, including Doug Tilles and Dave Kashy, for their invaluable assistance in setting up and running of the beam tests and their excellent hospitality to all the GIueX personnel that occupied their Hall and counting room for nearly two weeks. Also, the authors wish to thank Tim Whitlatch and Suresh Chandra as they reviewed the safety of the beam test and made valuable suggestions. The efforts of the Accelerator and Physics Divisions at JLab were very much appreciated and contributed to the success of the experiment. As well, the assistance, transfer of knowledge, loan of equipment and hospitality of KLOE physicists and staff towards the construction of prototype modules was both invaluable and greatly appreciated. Finally, many thanks must be given to Alex Dzierba who contributed immensely to the analysis and writing of this paper. NR 16 TC 10 Z9 10 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 327 EP 337 DI 10.1016/j.nima.2008.08.137 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000011 ER PT J AU Llope, WJ Nussbaum, T Eppley, G Velkovska, J Chujo, T Huang, S Love, B Valle, H Ruan, L Xu, Z Bonner, B AF Llope, W. J. Nussbaum, T. Eppley, G. Velkovska, J. Chujo, T. Huang, S. Love, B. Valle, H. Ruan, L. Xu, Z. Bonner, B. TI Simple front-end electronics for multigap resistive plate chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electronics; Multi-gap resistive plate chamber ID DETECTOR AB A simple circuit for the presentation of the signals from Multi-gap Resistive Plate Chambers (MRPCs) to standard existing digitization electronics is described. The circuit is based on "off-the-shelf" discrete components. An optimization of the values of specific components is required to match the aspects of the MRPCs for the given application. This simple circuit is an attractive option for the initial signal processing for MRPC prototyping and bench- or beam-testing efforts, as well as for final implementations of small-area Time-of-Flight systems with existing data acquisition systems. Published by Elsevier B.V. C1 [Llope, W. J.; Nussbaum, T.; Eppley, G.; Bonner, B.] Rice Univ, TW Bonner Nucl Lab, Houston, TX 77005 USA. [Velkovska, J.; Chujo, T.; Huang, S.; Love, B.; Valle, H.] Vanderbilt Univ, Nashville, TN 37235 USA. [Ruan, L.; Xu, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Llope, WJ (reprint author), Rice Univ, TW Bonner Nucl Lab, Houston, TX 77005 USA. EM llope@physics.rice.edu FU US Department of Energy [DE-FG03-96ER40772, DE-FG02-04ER41333, BNL LDRD-07-007] FX We gratefully acknowledge funding from the US Department of Energy under Grant numbers DE-FG03-96ER40772 (Rice), DE-FG02-04ER41333 (Vanderbilt), and BNL LDRD-07-007 (MTD). NR 9 TC 10 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 430 EP 433 DI 10.1016/j.nima.2008.08.070 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000023 ER PT J AU Belyakov-Bodin, VI Katinov, YV Nozdrachev, VN Sherstnev, VA Azhgirey, IL Degtyarev, II Lu, W Ferguson, PD Gallmeier, FX AF Belyakov-Bodin, V. I. Katinov, Yu. V. Nozdrachev, V. N. Sherstnev, V. A. Azhgirey, I. L. Degtyarev, I. I. Lu, W. Ferguson, P. D. Gallmeier, F. X. TI The CTOF measurements and Monte Carlo analyses of neutron spectra for backward direction from tungsten target irradiated by protons with energies from 200 to 1200 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Measurement of neutron spectrum; Tungsten target; Initial proton beam; The MARS and the MCNPX code systems; A comparison of experiments with predictions AB A calorimetric-time-of-flight (CTOF) technique was used for real-time, high-precision measurement of neutron spectrum at the angle of 175 degrees from the initial proton beam direction, which hits a face plane of a cylindrical tungsten target 20 cm in diameter and 25 cm thick. A comparison was performed between the neutron spectra predicted by the MARS and the MCNPX code systems and measured by experiments for 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 GeV protons. (C) 2008 Elsevier B.V. All rights reserved. C1 [Belyakov-Bodin, V. I.; Katinov, Yu. V.; Nozdrachev, V. N.; Sherstnev, V. A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Azhgirey, I. L.; Degtyarev, I. I.] Inst High Energy Phys, Protvino, Russia. [Lu, W.; Ferguson, P. D.; Gallmeier, F. X.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Belyakov-Bodin, VI (reprint author), Inst Theoret & Expt Phys, Moscow 117259, Russia. EM VI.I.Belyakov-B@mail.ru OI Ferguson, Phillip/0000-0002-7661-4223 NR 7 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2008 VL 596 IS 3 BP 434 EP 438 DI 10.1016/j.nima.2008.08.067 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 379BH UT WOS:000261369000024 ER PT J AU Fornasiero, F Park, HG Holt, JK Stadermann, M Grigoropoulos, CP Noy, A Bakajin, O AF Fornasiero, Francesco Park, Hyung Gyu Holt, Jason K. Stadermann, Michael Grigoropoulos, Costas P. Noy, Aleksandr Bakajin, Olgica TI Ion exclusion by sub-2-nm carbon nanotube pores SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomimetic platform; ion channel; ion transport; nanofiltration ID CHEMICAL FORCE MICROSCOPY; INORGANIC METAL-CATIONS; POTASSIUM CHANNEL; CRYSTAL-STRUCTURE; PROTON TRANSLOCATION; MEMBRANE EQUILIBRIA; EXTRACELLULAR LOOP; TRANSPORT; WATER; PERMEATION AB Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes-exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. C1 [Fornasiero, Francesco; Holt, Jason K.; Stadermann, Michael; Noy, Aleksandr; Bakajin, Olgica] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. [Park, Hyung Gyu] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA. [Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Noy, Aleksandr] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. [Bakajin, Olgica] Univ Calif Davis, Natl Sci Fdn, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. RP Bakajin, O (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. EM bakajin1@llnl.gov RI Han, Kyuhee/B-6201-2009; Stadermann, Michael /A-5936-2012; Fornasiero, Francesco/I-3802-2012; Park, Hyung Gyu/F-3056-2013 OI Stadermann, Michael /0000-0001-8920-3581; Park, Hyung Gyu/0000-0001-8121-2344 FU Defense Advanced Research Planning Agency Defense Sciences Office; Lawrence Livermore National Laboratory; U.S. Department of Energy; National Nuclear Security Administration [DE-AC52-07NA27344]; National Science Foundation NER [0608964]; National Science Foundation NIRT [CBET-0709090]; Center for Biophotonics; National Science Foundation Science and Technology Center [PHY 0120999] FX We thank Gregory L. Klunder for advice regarding the capillary electrophoresis analysis and Matthew D. Hamtak for help in the experimental work. This work was partially supported by the Defense Advanced Research Planning Agency Defense Sciences Office and Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. C.P.G. and O.B. were partially supported by National Science Foundation NER Grant 0608964. A.N., C.P.G., and O.B. acknowledge support through National Science Foundation NIRT Grant CBET-0709090. O.B. also acknowledges support from the Center for Biophotonics, a National Science Foundation Science and Technology Center managed by the University of California, Davis, under Cooperative Agreement PHY 0120999. NR 53 TC 271 Z9 274 U1 19 U2 152 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2008 VL 105 IS 45 BP 17250 EP 17255 DI 10.1073/pnas.0710437105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 373OP UT WOS:000260981800017 PM 18539773 ER PT J AU Politi, Y Metzler, RA Abrecht, M Gilbert, B Wilt, FH Sagi, I Addadi, L Weiner, S Gilbert, PUPA AF Politi, Yael Metzler, Rebecca A. Abrecht, Mike Gilbert, Benjamin Wilt, Fred H. Sagi, Irit Addadi, Lia Weiner, Steve Gilbert, P. U. P. A. TI Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomineralization; Ca L-edge X-ray absorption near-edge structure; XANES; X-PEEM; X-ray photoelectron emission spectromicroscopy ID PRECURSOR PHASE; STRONGYLOCENTROTUS-PURPURATUS; SKELETON FORMATION; TRANSIENT PHASE; CRYSTALLIZATION; SHELL; BIOMINERALIZATION; MINERALIZATION; ARAGONITE; CRYSTALS AB Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. C1 [Politi, Yael; Sagi, Irit; Addadi, Lia; Weiner, Steve] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel. [Metzler, Rebecca A.; Gilbert, P. U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abrecht, Mike] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wilt, Fred H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Addadi, L (reprint author), Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel. EM lia.addadi@weizmann.ac.il; steve.weiner@weizmann.ac.il; pupa@physics.wisc.edu RI Gilbert, Benjamin/E-3182-2010; Gilbert, Pupa/A-6299-2010 OI Gilbert, Pupa/0000-0002-0139-2099 FU National Science Foundation [CHEDMR-0613972, DMR-0537588]; Department of Energy [DE-FG02-07ER15899]; Israel Ministry of Science [777]; National Institutes of Health FX We thank Prof. Peter Rez for fruitful discussions. This work was supported by National Science Foundation Award CHE&DMR-0613972 (to P.G.), Department of Energy Award DE-FG02-07ER15899 (to P.G. ;and S.W.), and Israel Ministry of Science Project 777. The experiments were performed at the University of Wisconsin-Synchrotron Radiation Center, which was supported by National Science Foundation Award DMR-0537588. F.H.W. is supported by the National Institutes of Health and National Science Foundation. L.A. is the incumbent of the Dorothy and Patrick Gorman Professorial Chair of Biological Ultrastructure, and S.W. is the incumbent of the Dr. Walter and Dr. Trude Burchardt Professorial Chair of Structural Biology. I.S. is the incumbent of the Pontecorvo Professorial Chair of Cancer Research. NR 41 TC 181 Z9 183 U1 8 U2 81 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2008 VL 105 IS 45 BP 17362 EP 17366 DI 10.1073/pnas.0806604105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 373OP UT WOS:000260981800037 PM 18987314 ER PT J AU Qian, S Wang, WC Yang, L Huang, HW AF Qian, Shuo Wang, Wangchen Yang, Lin Huang, Huey W. TI Structure of transmembrane pore induced by Bax-derived peptide: Evidence for lipidic pores SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antimicrobial peptides; colicins; proapoptotic Bax; the barrel-stave model; the toroidal model ID FUSION INTERMEDIATE STRUCTURE; RAY ANOMALOUS DIFFRACTION; OFF-PLANE SCATTERING; ANTIMICROBIAL PEPTIDES; CRYSTAL-STRUCTURE; MEMBRANES; PROTEINS; ALAMETHICIN; CURVATURE; MECHANISM AB The structures of transmembrane pores formed by a large family of pore-forming proteins and peptides are unknown. These proteins, whose secondary structures are predominantly alpha-helical segments, and many peptides form pores in membranes without a crystallizable protein assembly, contrary to the family of beta-pore-forming proteins, which form crystallizable beta-barrel pores. Nevertheless, a protein-induced pore in membranes is commonly assumed to be a protein channel. Here, we show a type of peptide-induced pore that is not framed by a peptide structure. Peptide-induced pores in multiple bilayers were long-range correlated into a periodically ordered lattice and analyzed by X-ray diffraction. We found the pores induced by Bax-derived helical peptides were at least partially framed by a lipid monolayer. Evidence suggests that the formation of such lipidic pores is a major mechanism for alpha-pore-forming proteins, including apoptosis-regulator Bax. C1 [Qian, Shuo; Wang, Wangchen; Huang, Huey W.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Yang, Lin] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Huang, HW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. EM hwhuang@rice.edu RI Yang, Lin/D-5872-2013; OI Yang, Lin/0000-0003-1057-9194; Qian, Shuo/0000-0002-4842-828X FU National Institutes of Health [GM55203]; Robert A. Welch Foundation [C-0991]; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by National Institutes of Health Grant GM55203 and Robert A. Welch Foundation Grant C-0991. The experiment was carried out, in part, at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 45 TC 110 Z9 113 U1 0 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 11 PY 2008 VL 105 IS 45 BP 17379 EP 17383 DI 10.1073/pnas.0807764105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 373OP UT WOS:000260981800040 PM 18987313 ER PT J AU Bolme, CA McGrane, SD Moore, DS Whitley, VH Funk, DJ AF Bolme, C. A. McGrane, S. D. Moore, D. S. Whitley, V. H. Funk, D. J. TI Single shot Hugoniot of cyclohexane using a spatially resolved laser driven shock wave SO APPLIED PHYSICS LETTERS LA English DT Article DE ellipsometry; equations of state; high-speed optical techniques; laser beam effects; organic compounds; refractive index; shock wave effects AB To develop a more efficient method of determining pressure dependent material response to shock loading, we used the spatial energy distribution of a shock generating laser beam to create a range of nearly one-dimensional stresses in a single laser shot. Ultrafast dynamic ellipsometry was used to measure the Hugoniot and shocked refractive index of cyclohexane subject to this shock loading. C1 [Bolme, C. A.; McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Funk, D. J.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Bolme, CA (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. EM cbolme@lanl.gov RI Moore, David/C-8692-2013; OI Mcgrane, Shawn/0000-0002-2978-3980; Bolme, Cynthia/0000-0002-1880-271X NR 12 TC 12 Z9 12 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 191903 DI 10.1063/1.3025848 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100029 ER PT J AU Choi, Y Tseng, YC Haskel, D Brown, DE Danaher, D Chmaissem, O AF Choi, Y. Tseng, Y. C. Haskel, D. Brown, D. E. Danaher, D. Chmaissem, O. TI Competing interactions and complex magnetism at SrRuO(3)/SrMnO(3) interfaces SO APPLIED PHYSICS LETTERS LA English DT Article DE antiferromagnetic materials; Curie temperature; magnetic anisotropy; magnetic moments; magnetic multilayers; strontium compounds ID LASER DEPOSITION; SCATTERING AB The coupled interfacial Mn and Ru spin configurations in a SrRuO(3)(SRO)/SrMnO(3)(SMO) superlattice are investigated with x-ray resonant techniques. With an out-of-plane applied field H, a net Mn moment is induced opposite to (along) H below (above) SRO Curie temperature T(C), due to changes in interfacial antiferromagnetic Ru-Mn coupling. In comparison with the Mn moment induced along an out-of-plane field below T(C), the Mn moment induced along an in-plane field is five (three) times smaller below (above) T(C), due to frustration in the Ru-Mn coupling. Despite its in-plane anisotropy, the G-type antiferromagnetic SMO favors out-of-plane over in-plane canting of Mn moments. C1 [Choi, Y.; Tseng, Y. C.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tseng, Y. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60439 USA. [Brown, D. E.; Danaher, D.; Chmaissem, O.] No Illinois Univ, Dept Phys, Inst NanoSci Engn & Technol, De Kalb, IL 60115 USA. [Chmaissem, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Choi, Y (reprint author), Univ Chicago, GSECARS, Chicago, IL 60637 USA. EM choi@cars.uchicago.edu FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX The work at Argonne National Laboratory was supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 18 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 192509 DI 10.1063/1.3013333 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100067 ER PT J AU Feng, JF Kim, TH Han, XF Zhang, XG Wang, Y Zou, J Yu, DB Yan, H Li, AP AF Feng, J. F. Kim, T. -H. Han, X. F. Zhang, X. -G. Wang, Y. Zou, J. Yu, D. B. Yan, H. Li, A. P. TI Space-charge trap mediated conductance blockade in tunnel junctions with half-metallic electrodes SO APPLIED PHYSICS LETTERS LA English DT Article DE Coulomb blockade; lanthanum compounds; localised states; space charge; spin polarised transport; strontium compounds; tunnelling magnetoresistance ID COULOMB-BLOCKADE; MAGNETORESISTANCE; REGIME; SRTIO3 AB A conductance blockade effect has been observed in the magnetic tunnel junction consisting of La(0.7)Sr(0.3)MnO(3) electrodes and a SrTiO(3) barrier. The blockade effect is correlated with the space-charge trap states in the barrier. The blockade threshold eV(B)=128 meV is significantly greater than Coulomb charging energy E(C)=11 meV. The blockade can be lifted with a magnetic field, accompanied by a very large magnetoresistance up to 10 000%. The intriging blockade behavior is distinctly different from the conventional Coulomb blockade effect, showing a unique spin-dependent tunneling process mediated by the localized charge trap states. C1 [Kim, T. -H.; Zhang, X. -G.; Li, A. P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Feng, J. F.; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Wang, Y.; Zou, J.] Univ Queensland, Sch Engn, St Lucia, Qld 4072, Australia. [Wang, Y.; Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, St Lucia, Qld 4072, Australia. [Yu, D. B.] Gen Res Inst NonFerrous Met, Grirem Adv Mat Co Ltd, Beijing 100088, Peoples R China. [Yan, H.] Beijing Univ Technol, Lab Thin Film Mat, Beijing 100022, Peoples R China. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI Zou, Jin/B-3183-2009; Feng, Jiafeng/C-4772-2009; Kim, Tae-Hwan/A-5636-2010; Wang, Yong/A-7766-2010; Li, An-Ping/B-3191-2012 OI Zou, Jin/0000-0001-9435-8043; Feng, Jiafeng/0000-0001-9535-6912; Kim, Tae-Hwan/0000-0001-5328-0913; Wang, Yong/0000-0002-9893-8296; Li, An-Ping/0000-0003-4400-7493 FU Center for Nanophase Materials Sciences; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; State Key Project of Fundamental Research, Ministry of Science and Technology [2006CB932200]; Chinese National Natural Science Foundation [10574156, 50528101, 50721001] FX T.-H.K., X.-G.Z., and A P.L. acknowledge the support from the Center for Nanophase Materials Sciences, which is sponsored at the Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. X.F.H. thanks the partial support of the State Key Project of Fundamental Research, Ministry of Science and Technology (MOST, Grant No. 2006CB932200), and the Chinese National Natural Science Foundation (NSFC, Grant Nos. 10574156, 50528101, and 50721001). NR 14 TC 5 Z9 5 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 192507 DI 10.1063/1.3025851 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100065 ER PT J AU Kang, SH Kumar, CK Lee, Z Kim, KH Huh, C Kim, ET AF Kang, Seung-Hee Kumar, Ch. Kiran Lee, Zonghoon Kim, Kyung-Hyun Huh, Chul Kim, Eui-Tae TI Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO(2) thin film SO APPLIED PHYSICS LETTERS LA English DT Article DE cadmium compounds; electroluminescent devices; elemental semiconductors; II-VI semiconductors; light emitting diodes; MOCVD; nanostructured materials; plasma CVD; p-n junctions; quantum well devices; semiconductor materials; semiconductor quantum dots; semiconductor thin films; silicon; titanium compounds; wide band gap semiconductors; zinc compounds ID SEMICONDUCTOR NANOCRYSTAL; ELECTROLUMINESCENCE; POLYMER AB Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe/ZnS nanocrystals in TiO(2) thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO(2)/QDs/p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO(2)/QDs/Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry. C1 [Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. [Lee, Zonghoon] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kim, Kyung-Hyun; Huh, Chul] Elect & Telecommun Res Inst, Taejon 305350, South Korea. RP Kim, ET (reprint author), Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. EM etkim@cnu.ac.kr RI Lee, Zonghoon/G-1474-2011 OI Lee, Zonghoon/0000-0003-3246-4072 FU Korean Government (MOEHRD) [KRF-2006-331-D00260]; KOCI [08ZB1410]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-331-D00260) and partially supported by the KOCI (08ZB1410, Basic research for the ubiquitous lifecare module development). The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 20 Z9 20 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 191116 DI 10.1063/1.3028070 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100016 ER PT J AU Liu, YZ Wu, YQ Kramer, MJ Choi, Y Jiang, JS Wang, ZL Liu, JP AF Liu, Yuzi Wu, Y. Q. Kramer, M. J. Choi, Y. Jiang, J. S. Wang, Z. L. Liu, J. P. TI Microstructure analysis of a SmCo/Fe exchange spring bilayer SO APPLIED PHYSICS LETTERS LA English DT Article DE chromium; cobalt alloys; diffusion; iron; magnets; samarium alloys; sputtering; stoichiometry; transmission electron microscopy ID PERMANENT-MAGNETS; ENERGY PRODUCT AB The microstructure of a magnetron sputtered Cr(20 nm)/Sm-Co(20 nm)/Fe(20 nm)/Cr(5 nm) exchange spring magnet was studied using an advanced analytical transmission electron microscopy to better understand the relationship between its chemistry and structure to enhance the energy product. It is shown that the Fe atoms diffuse into the well textured Sm-Co layer, causing a transition from the stoichiometric Sm(2)Co(7) near the Sm-Co/Cr interface to a defected Sm(Co,Fe)(5) in the Sm-Co-Fe intermixed area. The graded intermixed layer between Sm-Co and pure Fe gives rise to a compositionally enhanced energy product. C1 [Liu, Yuzi; Wu, Y. Q.; Kramer, M. J.] US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Liu, Yuzi; Choi, Y.; Liu, J. P.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Wang, Z. L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Choi, Y.; Jiang, J. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kramer, MJ (reprint author), US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM mjkramer@ameslab.gov RI Wang, Zhong Lin/E-2176-2011; Liu, Yuzi/C-6849-2011 OI Wang, Zhong Lin/0000-0002-5530-0380; FU ONR/MURI [N00014-05-1-049]; U.S. Department of Energy, Office of Science [DE-AC02-07CH11358] FX This work is supported by ONR/MURI under Grant No. N00014-05-1-0497. Work at Ames Laboratory was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-07CH11358. NR 18 TC 20 Z9 21 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 192502 DI 10.1063/1.2978325 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100060 ER PT J AU Naganawa, M Shimizu, Y Uematsu, M Itoh, KM Sawano, K Shiraki, Y Haller, EE AF Naganawa, Miki Shimizu, Yasuo Uematsu, Masashi Itoh, Kohei M. Sawano, Kentarou Shiraki, Yasuhiro Haller, Eugene E. TI Charge states of vacancies in germanium investigated by simultaneous observation of germanium self-diffusion and arsenic diffusion SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier density; Fermi level; germanium; ion implantation; point defects; self-diffusion; vacancies (crystal) ID TEMPERATURE; GROWTH AB Diffusion of germanium (Ge) and arsenic (As) has been investigated simultaneously using As-implanted Ge isotope superlattices. No transient enhanced diffusion of As that could have arisen by the implantation damage is observed. A quadratic dependence of the Ge self-diffusion on the carrier concentration due to the Fermi level effect is observed. A precise reproduction of the Ge and As diffusion profiles by a numerical simulator lets us conclude that doubly negatively charged vacancies are the dominant point defects responsible for more than 95% of the self-diffusion in intrinsic Ge and this fraction increases even further in n-type Ge. C1 [Naganawa, Miki; Shimizu, Yasuo; Uematsu, Masashi; Itoh, Kohei M.] Keio Univ, Dept Appl Phys & Physicoinformat, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Sawano, Kentarou; Shiraki, Yasuhiro] Musashi Inst Technol, Adv Res Labs, Res Ctr Silicon Nanosci, Setagaya Ku, Tokyo 1580082, Japan. [Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Naganawa, M (reprint author), Keio Univ, Dept Appl Phys & Physicoinformat, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM naganawa@a8.keio.jp; kitoh@appi.keio.ac.jp RI Shimizu, Yasuo/A-8116-2011; Itoh, Kohei/C-5738-2014 OI Shimizu, Yasuo/0000-0002-6844-8165; FU JST; Special Coordination Funds for Promoting Science and Technology for INQIE; Keio Global COE Program FX This work has been supported in part by the Research Program on Collaborative Development of Innovative Seeds by JST, in part by Special Coordination Funds for Promoting Science and Technology for INQIE, and in part by Keio Global COE Program. NR 15 TC 46 Z9 46 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 191905 DI 10.1063/1.3025892 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100031 ER PT J AU Patel, AP Levy, MR Grimes, RW Gaume, RM Feigelson, RS McClellan, KJ Stanek, CR AF Patel, A. P. Levy, M. R. Grimes, R. W. Gaume, R. M. Feigelson, R. S. McClellan, K. J. Stanek, C. R. TI Mechanisms of nonstoichiometry in Y(3)Al(5)O(12) SO APPLIED PHYSICS LETTERS LA English DT Article DE antisite defects; lattice constants; phase diagrams; stoichiometry; yttrium compounds ID GARNET CRYSTALS; DEFECTS; LUMINESCENCE; SIMULATION; DISORDER AB Currently, Y(2)O(3)-Al(2)O(3) phase diagrams do not show the technologically significant yttrium aluminum garnet (Y(3)Al(5)O(12),YAG) phase as deviating from the stoichiometric ratio, i.e., YAG is always expressed as a line compound. In this paper, we not only report the synthesis of nonstoichiometric YAG, but also the use of atomistic simulation to predict the defect structure associated with the deviation. By comparing the experimental variation in the lattice parameter as a function of deviation from stoichiometry with the defect volume changes predicted by atomistic simulation, we predict that nonstoichiometry in YAG proceeds via cation antisite defects. C1 [Patel, A. P.; Levy, M. R.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Gaume, R. M.; Feigelson, R. S.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [McClellan, K. J.; Stanek, C. R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Patel, AP (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM stanek@lanl.gov RI Patel, Ankoor/K-6595-2012 OI Patel, Ankoor/0000-0002-8524-7314 NR 18 TC 36 Z9 36 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 191902 DI 10.1063/1.3002303 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100028 ER PT J AU Proslier, T Zasadzinski, J Moore, J Pellin, M Elam, J Cooley, L Antoine, C Norem, J Gray, KE AF Proslier, T. Zasadzinski, J. Moore, J. Pellin, M. Elam, J. Cooley, L. Antoine, C. Norem, J. Gray, K. E. TI Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment SO APPLIED PHYSICS LETTERS LA English DT Article DE alumina; atomic layer deposition; electronic density of states; heat treatment; niobium; superconducting materials; superconducting thin films; superconductive tunnelling; tunnelling; X-ray photoelectron spectra ID THIN-FILM GROWTH AB A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces. C1 [Proslier, T.; Zasadzinski, J.] IIT, Dept Phys, Chicago, IL 60616 USA. [Proslier, T.; Pellin, M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60493 USA. [Moore, J.; Norem, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60493 USA. Argonne Natl Lab, Div Energy Syst, Argonne, IL 60493 USA. [Cooley, L.] Fermilab Natl Accelerator Lab, Techn Div, Batavia, IL 60510 USA. [Antoine, C.] Ctr Etud Saclay, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. RP Proslier, T (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM prolier@anl.gov RI Pellin, Michael/B-5897-2008; Cooley, Lance/E-7377-2015 OI Pellin, Michael/0000-0002-8149-9768; Cooley, Lance/0000-0003-3488-2980 FU U.S. DOE [DE-AC02-06CH11357] FX This work was supported by U.S. DOE under Contract No. DE-AC02-06CH11357. NR 16 TC 11 Z9 11 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 192504 DI 10.1063/1.2995996 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100062 ER PT J AU Steinke, L Cantwell, P Zakharov, D Stach, E Zaluzec, NJ Fontcuberta i Morral, A Bichler, M Abstreiter, G Grayson, M AF Steinke, L. Cantwell, P. Zakharov, D. Stach, E. Zaluzec, N. J. Fontcuberta i Morral, A. Bichler, M. Abstreiter, G. Grayson, M. TI Nanometer-scale sharpness in corner-overgrown heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; gallium arsenide; III-V semiconductors; molecular beam epitaxial growth; nanostructured materials; nanotechnology; scanning-transmission electron microscopy; semiconductor growth; semiconductor heterojunctions; semiconductor thin films; X-ray spectra ID MOLECULAR-BEAM EPITAXY; ELECTRON-MICROSCOPE; SURFACE-DIFFUSION; GAAS; LENGTH AB A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile 3.5 nm wide. In the AlGaAs layers, we observe self-ordered diagonal stripes, precipitating exactly at the corner, which show increased Al content measured with x-ray spectroscopy. A quantitative model for self-limited growth is adapted to the present case of faceted molecular beam epitaxial growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that corner overgrowth maintains nanometer sharpness after microns of growth, allowing corner-shaped nanostructures. C1 [Steinke, L.; Fontcuberta i Morral, A.; Bichler, M.; Abstreiter, G.; Grayson, M.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Cantwell, P.; Zakharov, D.; Stach, E.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Zaluzec, N. J.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Grayson, M.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. RP Grayson, M (reprint author), Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. EM m-grayson@northwestern.edu RI Grayson, Matthew/B-7159-2009; Fontcuberta i Morral, Anna/B-9884-2008; Stach, Eric/D-8545-2011; Zakharov, Dmitri/F-4493-2014 OI Stach, Eric/0000-0002-3366-2153; FU Deutsche Forschungsgemeinschaft (DFG) [GR 2618/1-1]; Electron Microscopy Center of Argonne National Laboratory; U. S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne, LLC FX This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through contract No. GR 2618/1-1. Work was performed at the Electron Microscopy Center of Argonne National Laboratory, a U. S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 15 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 193117 DI 10.1063/1.2988526 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100100 ER PT J AU Sun, Y Pianetta, P Chen, PT Kobayashi, M Nishi, Y Goel, N Garner, M Tsai, W AF Sun, Yun Pianetta, Piero Chen, Po-Ta Kobayashi, Masaharu Nishi, Yoshio Goel, Niti Garner, Michael Tsai, Wilman TI Arsenic-dominated chemistry in the acid cleaning of InGaAs and InAlAs surfaces SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; annealing; gallium arsenide; III-V semiconductors; indium compounds; photoelectron spectra; surface chemistry; surface cleaning; surface structure ID PHOTOEMISSION AB The surface cleaning of InGaAs and InAlAs is studied using synchrotron radiation photoelectron spectroscopy. Thermal annealing at 400 degrees C cannot completely remove the native oxides from those surfaces. Elemental arsenic buildup is observed on both surfaces after acid treatment using HCl, HF, or H(2)SO(4) solution, which is similar to acid-cleaned GaAs surface. Cleaned InGaAs surface is oxide-free but small amount of aluminum oxide remains on cleaned InAlAs surface. The common chemical reactions between III-As semiconductors and acid solutions are identified and are found to be dominated by arsenic chemistry. C1 [Sun, Yun; Pianetta, Piero] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Chen, Po-Ta; Kobayashi, Masaharu; Nishi, Yoshio] Stanford Univ, Dept Elect Engn, Santa Clara, CA 95052 USA. [Goel, Niti; Garner, Michael; Tsai, Wilman] Intel Corp, Santa Clara, CA 95052 USA. RP Sun, Y (reprint author), Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM ssun@slac.stanford.edu NR 10 TC 27 Z9 27 U1 3 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 194103 DI 10.1063/1.3025852 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100134 ER PT J AU Yuan, CW Shin, SJ Liao, CY Guzman, J Stone, PR Watanabe, M Ager, JW Haller, EE Chrzan, DC AF Yuan, C. W. Shin, S. J. Liao, C. Y. Guzman, J. Stone, P. R. Watanabe, M. Ager, J. W., III Haller, E. E. Chrzan, D. C. TI Structure map for embedded binary alloy nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article DE nanostructured materials; surface energy ID INTERFACE AB The equilibrium structure of embedded nanocrystals formed from strongly segregating binary alloys is considered within a simple thermodynamic model. The model identifies two dimensionless interface energies that dictate the structure and allows prediction of the stable structure for any choice of these parameters. The resulting structure map includes three distinct nanocrystal morphologies: core/shell, lobe/lobe, and completely separated spheres. C1 [Yuan, C. W.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Stone, P. R.; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yuan, C. W.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Stone, P. R.; Ager, J. W., III; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Watanabe, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Yuan, CW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM dcchrzan@berkeley.edu OI Ager, Joel/0000-0001-9334-9751 FU Directorate, Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering, of the U. S. Department of Energy [DE-AC02-05CH11231]; U. S. NSF [DMR-0405472] FX This work is supported in part by the Directorate, Office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and in part by the U. S. NSF Grant No. DMR-0405472. NR 13 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 193114 DI 10.1063/1.3027066 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100097 ER PT J AU Zhang, ZW Chen, G Bei, H Ye, F Chen, GL Liu, CT AF Zhang, Z. W. Chen, G. Bei, H. Ye, F. Chen, G. L. Liu, C. T. TI Improvement of magnetic properties of an Fe-6.5 wt. % Si alloy by directional recrystallization SO APPLIED PHYSICS LETTERS LA English DT Article DE coercive force; grain boundaries; iron alloys; recrystallisation; silicon alloys; texture ID COLUMNAR GRAIN-GROWTH; COMMERCIAL PURE IRON; SILICON STEEL; TEXTURE; NICKEL AB We report that magnetic properties of an Fe-6.5 wt. % Si alloy can be improved through texture control by using directional recrystallization. Columnar grain structures with column sizes of similar to 0.38x1.2 mm(2) were developed during directional recrystallization. It was found that there are low energy boundaries between columns and main textures of the specimen were {110}< 111 > and {111}< 110 >. As a result, the coercivity of a directionally recrystallized specimen is reduced by a factor of 5 when measured along 60 degrees away from the growth direction, as compared to a specimen consisting of similar to 77 mu m equiaxed grains. C1 [Zhang, Z. W.; Chen, G.; Chen, G. L.] Nanjing Univ Sci & Technol, Minist Educ, Engn Res Ctr Mat Behavior & Design, Nanjing 210094, Peoples R China. [Chen, G.; Bei, H.; Liu, C. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ye, F.; Chen, G. L.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Liu, C. T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zhang, ZW (reprint author), Nanjing Univ Sci & Technol, Minist Educ, Engn Res Ctr Mat Behavior & Design, Nanjing 210094, Peoples R China. EM gchen@mail.njust.edu.cn; beih@ornl.gov RI Ye, Feng/G-8236-2014; zhang, zhongwu/G-1875-2012; OI Ye, Feng/0000-0002-8808-9075; zhang, zhongwu/0000-0002-2874-2976; Bei, Hongbin/0000-0003-0283-7990 FU Creative Research Foundation for Ph.D. candidates of Jiangsu province; National Natural Science Foundation of China [50431030, 50871054]; Division of Materials Sciences and Engineering, U. S. Department of Energy FX This work was supported by the Creative Research Foundation for Ph.D. candidates of Jiangsu province and the National Natural Science Foundation of China (Contract Nos. 50431030 and 50871054). Work at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, U. S. Department of Energy. NR 16 TC 11 Z9 16 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 10 PY 2008 VL 93 IS 19 AR 191908 DI 10.1063/1.3026742 PG 3 WC Physics, Applied SC Physics GA 373AT UT WOS:000260944100034 ER PT J AU Diehl, S Statler, TS AF Diehl, Steven Statler, Thomas S. TI THE HOT INTERSTELLAR MEDIUM IN NORMAL ELLIPTICAL GALAXIES. III. THE THERMAL STRUCTURE OF THE GAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cooling flows; galaxies: elliptical and lenticular, cD; galaxies: ISM; X-rays: galaxies; X-rays: ISM ID ACTIVE GALACTIC NUCLEI; X-RAY BINARIES; XMM-NEWTON; STAR-FORMATION; DARK-MATTER; MASS; CHANDRA; NEARBY; CLUSTERS; FEEDBACK AB This is the third paper in a series analyzing X-ray emission from the hot interstellarmediumin a sample of 54 normal elliptical galaxies observed by Chandra. We focus on a subset of 36 galaxies with sufficient signal to compute radial temperature profiles. We distinguish four qualitatively different types of profile: positive gradient (outwardly rising), negative gradients (falling), quasi-isothermal (flat), and hybrid (falling at small radii and rising at larger radii). We measure the mean logarithmic temperature gradients in two radial regions: from 0 to 2 J-band effective radii RJ (excluding the central point source), and from 2 to 4 RJ. We find the outer gradient to be uncorrelated with intrinsic host galaxy properties, but strongly influenced by the environment: galaxies in low-density environments tend to show negative outer gradients, while those in high- density environments show positive outer gradients, suggesting the influence of circumgalactic hot gas. The inner temperature gradient, however, is largely unaffected by the environment, but strongly correlated with intrinsic host galaxy characteristics: negative inner gradients are more common for smaller, optically faint, low radio luminosity galaxies, whereas positive gradients are found in bright galaxies with stronger radio sources. There is no evidence for bimodality in the distribution of inner or outer gradients. We propose three scenarios to explain the inner temperature gradients: (1) weak AGNs heat the ISM locally, while higher luminosity AGNs heat the system globally through jets inflating cavities at larger radii; (2) the onset of negative inner gradients indicates a declining importance of AGN heating relative to other sources, such as compressional heating or supernovae; or (3) the variety of temperature profiles are snapshots of different stages of a time-dependent flow, cyclically reversing the temperature gradient over time. C1 [Diehl, Steven; Statler, Thomas S.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. RP Diehl, S (reprint author), Los Alamos Natl Lab, Theoret Astrophys Grp T6, Computat Methods Grp CCS 2, MS B227,POB 1663, Los Alamos, NM 87545 USA. EM diehl@lanl.gov; statler@ohio.edu FU HyperLEDA; National Aeronautics and Space Administration (NASA) [G01-2094X, AR3-4011X]; Chandra X-Ray Observatory Center; Smithsonian Astrophysical Observatory; NASA [NAS8-39073]; National Science Foundation [AST0407152, AST0708284] FX We have made use of the HyperLEDA database (http://leda.univ-lyon1.fr). Support for this work was provided by the National Aeronautics and Space Administration (NASA) through Chandra awards G01-2094X and AR3-4011X, issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-39073, and by National Science Foundation grants AST0407152 and AST0708284. NR 37 TC 35 Z9 35 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2008 VL 687 IS 2 BP 986 EP 996 DI 10.1086/592179 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 367QG UT WOS:000260566700018 ER PT J AU Malavasi, L Kim, H Proffen, T AF Malavasi, Lorenzo Kim, Hyunjeong Proffen, Thomas TI New Insight into the Properties of Proton-Conducting Oxides from Neutron Total Scattering SO CHEMPHYSCHEM LA English DT Article DE inorganic chemistry; materials science; neutron diffraction; oxides; solid-state structures ID SINTERED OXIDES; HYDROGEN; BACEO3; DEFECT C1 [Malavasi, Lorenzo] Univ Pavia, CNR, IENI, I-27100 Pavia, Italy. [Malavasi, Lorenzo] Univ Pavia, INSTM, Dept Phys Chem M Rolla, I-27100 Pavia, Italy. [Kim, Hyunjeong; Proffen, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. RP Malavasi, L (reprint author), Univ Pavia, CNR, IENI, Viale Taramelli 16, I-27100 Pavia, Italy. EM Lorenzo.malavasi@unipv.it RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009; Malavasi, Lorenzo/P-1966-2016; OI Proffen, Thomas/0000-0002-1408-6031; Malavasi, Lorenzo/0000-0003-4724-2376 FU Italian MIUR; UNIPV-Regione Lombardia Project on Material Science and Biomedicine; DOE Office of Basic Energy Sciences [DE-AC52-06A25396]; NSF [DMR 0076488] FX This work was supported by the 'Celle a combustibile ad elettroliti polimerici e ceramici: dimostrazione di sistemi e sviluppo di nuovi materiali" FISR Project of the Italian MIUR. We acknowledge support from the UNIPV-Regione Lombardia Project on Material Science and Biomedicine. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos Notional Laboratory is operated by Los Alamos Notional Security LLC under DOE Contract DE-AC52-06A25396. The upgrade of NPDF was funded by NSF through grant No. DMR 0076488. NR 15 TC 3 Z9 3 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD NOV 10 PY 2008 VL 9 IS 16 BP 2309 EP 2312 DI 10.1002/cphc.200800514 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 375TB UT WOS:000261135100005 PM 18814161 ER PT J AU Perl, ML AF Perl, Martin L. TI DEVELOPING CREATIVITY AND INNOVATION IN ENGINEERING AND SCIENCE SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review AB In this talk I discuss a range of topics on developing creativity and innovation in engineering and science: the constraints on creativity and innovation such as the necessity of a fitting into the realities of the physical world; necessary personal qualities; getting a good idea in engineering and science; the art of obsession; the technology you use; and the technology of the future. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Perl, ML (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. NR 4 TC 2 Z9 2 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2008 VL 23 IS 27-28 BP 4401 EP 4413 DI 10.1142/S0217751X08042754 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 379FP UT WOS:000261382400001 ER PT J AU Dibble, RR Kyle, PR Rowe, CA AF Dibble, R. R. Kyle, P. R. Rowe, C. A. TI Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Erebus volcano; Antarctica; seismology; video surveillance; Strombolian eruptions ID MOUNT EREBUS; ROSS ISLAND AB Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to similar to 20cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, "unified magnitudes" (m(u)), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak. Changes in eruptive activity occurred in 1987 when the lava lake was buried by a landslide from the crater wall Two new vents formed and seismic activity peaked as the landslide was ingested. Lava flows from a vent on the eastern side of the crater formed small lakes and a vent on the north began to flow in 1990. By December 1990 the entire floor of the Inner Crater was buried by up to 20 000 m(3) of new lava. Different families of nearly identical eruption earthquakes occurred each year whose foci were contained within small, shallow volumes. Immediately after several bubble-bursting eruptions, clear views of the empty vent were recorded. The vent was seen to taper downwards to about half its diameter at the bottom. Our observations confirm models of Strombolian eruptions suggesting they arise from gas slugs rising through a conduit into a flared vent. (c) 2008 Elsevier B.V. All rights reserved. C1 [Kyle, P. R.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Dibble, R. R.] Victoria Univ Wellington, Res Sch Earth Sci, Wellington, New Zealand. [Rowe, C. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kyle, PR (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA. EM kyle@nmt.edu OI Rowe, Charlotte/0000-0001-5803-0147 FU Office of Polar Program, National Science Foundation [ANT-0538414]; [LA-UR-07-1730] FX This project could not have happened without the help of Katsu Kaminuma at the National Institute of Polar Research (NIPR), Japan. We are grateful to NIPR for providing the seismic data tapes and playback equipment The expertise of Kazuo Shibuya and Kanao Masaki of NIPR facilitated repairs. Students Simon Barrett, Susan Ellis, Kevin MacKay, and Brent O'Brian, and technician Terry Ball are acknowledged for their help. This work was made possible by VUW and the University Grants Committee for the video equipment and the digital seismic recording equipment Preparation of this manuscript was partially supported by Office of Polar Program, National Science Foundation grant ANT-0538414. This is Los Alamos publication LA-UR-07-1730. Thanks to Jeff Johnson, Richard Herd, and Clive Oppenheimer for their useful and constructive comments and suggestions for improvement on the manuscript. NR 39 TC 21 Z9 22 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 10 PY 2008 VL 177 IS 3 SI SI BP 619 EP 634 DI 10.1016/j.jvolgeores.2008.07.020 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 383YT UT WOS:000261711100008 ER PT J AU Wardell, LJ Kyle, PR Counce, D AF Wardell, L. J. Kyle, P. R. Counce, D. TI Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Erebus; metals; halogens; Antarctica; White Island; volcanic emissions ID MOUNT EREBUS; AUGUSTINE VOLCANO; SULFUR-DIOXIDE; CARBON-DIOXIDE; TRACE-ELEMENTS; GAS EMISSIONS; ACID GAS; ATMOSPHERE; VOLATILES; MERCURY AB Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO(2) emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Ph and Hg were 2.0 x 10(-4) and 8.1 x 10(-6) kg s(-11), respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5x10(-4),1.2 x 10(-5), and 4.5 x 10-6 kg s(-1), respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D,, Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. journal of Geophysical Research, 102(B7): 15039-15055.]. demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 x 10(-4) in 1997/1999 to 3 x 10-4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 x 10(-4), Hg= 1.1 X 10(-5), As = 1.3 X 10(-4), Sb = 1.9 x 10-5 and Se= 1.5 x 10(-5) kg s(-1). Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent. (c) 2007 Elsevier B.V. All rights reserved. C1 [Wardell, L. J.; Kyle, P. R.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Counce, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wardell, LJ (reprint author), Adv Ceram Res Inc, 3292 E Hemisphere Loop, Tucson, AZ 85706 USA. EM wardell@acrtucson.com FU NSF Office of Polar Programs; DOE Global Change Education Program FX This work was supported by grants from the NSF Office of Polar Programs and fellowship support from the DOE Global Change Education Program. Special thanks go to IGNS-Wairakei Research Centre, Volcan Helicopters, and White Island Tours for their kind assistance. Rich Esser, Jessie Crain, joy Giffin and jean Pennycook were helpful with field sampling. Our appreciation also goes to Clive Oppenheimer and the anonymous reviewers who improved this manuscript. NR 58 TC 16 Z9 17 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 10 PY 2008 VL 177 IS 3 BP 734 EP 742 DI 10.1016/j.jvolgeores.2007.07.007 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 383YT UT WOS:000261711100017 ER PT J AU Acuna, G Heucke, SF Kuchler, F Chen, HT Taylor, AJ Kersting, R AF Acuna, G. Heucke, S. F. Kuchler, F. Chen, H. -T. Taylor, A. J. Kersting, R. TI Surface plasmons in terahertz metamaterials SO OPTICS EXPRESS LA English DT Article AB We characterize terahertz metamaterials by applying apertureless near-field microscopy with a bandwidth that covers the entire spectral response of the structures. The observations agree with the interpretation of the fundamental mode of the metamaterial. But the high frequency resonance shows properties that deviate from the common interpretation. We show that the high frequency response is governed by surface plasmon excitations, which have a comparable oscillator strength as the fundamental mode. (c) 2008 Optical Society of America C1 [Acuna, G.; Heucke, S. F.; Kuchler, F.; Kersting, R.] Univ Munich, Photon & Optoelect Grp, D-80799 Munich, Germany. [Acuna, G.; Heucke, S. F.; Kuchler, F.; Kersting, R.] Univ Munich, Ctr NanoSci, D-80799 Munich, Germany. [Chen, H. -T.; Taylor, A. J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Acuna, G (reprint author), Univ Munich, Photon & Optoelect Grp, D-80799 Munich, Germany. EM guillermo.acuna@physik.uni-muenchen.de RI Chen, Hou-Tong/C-6860-2009; Acuna, Guillermo/L-8169-2016 OI Chen, Hou-Tong/0000-0003-2014-7571; Acuna, Guillermo/0000-0001-8066-2677 FU Nanosystems Initiative Munich (NIM); International Doctorate Program Nano-Bio-Technology (IDK-NBT); Deutsche Forschungsgemeinschaft (DFG) [KE516/1-1]; Los Alamos National Laboratory; Center for Integrated Nanotechnologies; U.S. Department of Energy; Office of Basic Energy Sciences Nanoscale Science Research Center FX This work is partially supported by the Nanosystems Initiative Munich (NIM), the International Doctorate Program Nano-Bio-Technology (IDK-NBT) of the Elite Network of Bavaria, and by the Deutsche Forschungsgemeinschaft (DFG), contract KE516/1-1. H.T.C and A.J.T acknowledge support from the Los Alamos National Laboratory LDRD Program and the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. The authors acknowledge technical support by F. Buersgens, W.H. Nitsche, and S. Schloegl, and material growth by J.M.O. Zide and A.C. Gossard at UCSB. NR 18 TC 27 Z9 27 U1 1 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 10 PY 2008 VL 16 IS 23 BP 18745 EP 18751 DI 10.1364/OE.16.018745 PG 7 WC Optics SC Optics GA 371XM UT WOS:000260866000021 PM 19581961 ER PT J AU Chavez, LL Davenport, MP Shiver, JW Tussey, LG Cox, KS Bachinsky, M Wang, F Huang, L Schleif, WA Davies, ME Tang, A Casimiro, DR Perelson, AS Ribeiro, RM AF Chavez, Leslie L. Davenport, Miles P. Shiver, John W. Tussey, Lynda G. Cox, Kara S. Bachinsky, Margaret Wang, Fubao Huang, Lingyi Schleif, William A. Davies, Mary-Ellen Tang, Aimin Casimiro, Danilo R. Perelson, Alan S. Ribeiro, Ruy M. TI The effect of early versus delayed challenge after vaccination in controlling SHIV 89.6P infection SO VIROLOGY LA English DT Article DE CD8; Challenge time; Vaccine; HIV; Delayed response; Modeling ID SIMIAN IMMUNODEFICIENCY VIRUS; IMMUNE-RESPONSE; T-LYMPHOCYTES; HIV; IMMUNIZATION; COMBINATION; EXPANSION; MACAQUES; KINETICS; PROTEIN AB We Sought to determine how effectively a CD8(+) T cell inducing vaccine controls SHIV-89.6P infection in rhesus macaques at a range of challenge times post-vaccination. To this end, twenty eight Mamu-A*01(+) rhesus macaques were given replication incompetent human serotype 5 adenovirus vector expressing SlVmac239 gag DNA and boosted 24 weeks later. Groups of 4 monkeys were then challenged with SHIV-89.6P at 1, 3, 6, 12, and 24 weeks after the boost. We compared the kinetics of vital load, CD4(+) and virus-specific CD8(+) T cells in these macaques. Measurements of CD8(+) T cells taken before challenge show at) exponential decay between 1 and 12 weeks following vaccination (p<0.0001). After week 12, no further decay was observed. Twenty of 24 vaccinated animals maintained more CD4(+) T cells and kept their vital load at least one order of magnitude lower than the control animals throughout the chronic phase of the study. All 24 vaccinated animals Survived the duration of the study. The vital and T cell kinetics over the first two weeks differed between the vaccinated groups, With more recent vaccination improving the early control Of Virus (p-value = 0.027). The rates of virus specific CD8(+) T cell expansion were greater in annuals having higher vital loads at one week (r = 0.45, p = 0.029), Suggesting that the kinetics of early vital load may have a role in virus specific CD8(+) T cell generation, although these early differences did not lead to different clinical Outcomes within the vaccinated animals. Published by Elsevier Inc. C1 [Chavez, Leslie L.; Perelson, Alan S.; Ribeiro, Ruy M.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Davenport, Miles P.] Univ New S Wales, Ctr Vasc Res, Complex Syst Biol Grp, Kensington, NSW 2033, Australia. [Shiver, John W.; Tussey, Lynda G.; Cox, Kara S.; Bachinsky, Margaret; Wang, Fubao; Huang, Lingyi; Schleif, William A.; Davies, Mary-Ellen; Tang, Aimin; Casimiro, Danilo R.] Merck Res Labs, West Point, PA 19486 USA. RP Ribeiro, RM (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM ruy@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU U. S. Department of Energy [DE-AC52-06NA25396]; NIH [A128433-17, RR06555-16, P20-RR18754]; James S. McDonnell Foundation; NHMRC [350841]; Sylvia and Charles Viertel Charitable Foundation FX Portions of this work was done under the auspices of the U. S. Department of Energy Under contract DE-AC52-06NA25396 and supported by NIH grants A128433-17, RR06555-16, and P20-RR18754 (RMR), as well as by the James S. McDonnell Foundation 21st Century Research Award/Studying Complex Systems (MPD) and NHMRC project grant 350841 (MPD). MPD is a Sylvia and Charles Viertel Charitable Foundation Senior Medical Research Fellow. We thank Jane Fontenot and the staff at the New Iberia Research Center for assistance ill conducting the rhesus study. NR 23 TC 1 Z9 1 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD NOV 10 PY 2008 VL 381 IS 1 BP 75 EP 80 DI 10.1016/j.virol.2008.07.042 PG 6 WC Virology SC Virology GA 368BB UT WOS:000260595200011 PM 18793788 ER PT J AU Mun, BS Rossi, M Ross, PN AF Mun, Bongjin S. Rossi, Massimiliano Ross, Philip N., Jr. TI The study of surface segregation of Re(3)Pt polycrystalline alloy with photoelectron spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE annealing; electronic density of states; platinum alloys; rhenium alloys; surface segregation; surface states; ultraviolet photoelectron spectra; valence bands; X-ray photoelectron spectra ID BIMETALLIC SURFACES; CATALYSTS AB The surface segregation and electronic structure of Re(3)Pt polycrystalline alloy were investigated via x-ray photoelectron spectroscopy (XPS). The results from angle-resolved core-level XPS show the enrichment of Pt at the top surface layer upon annealing at T=1200 K. The experimental results show excellent agreement with a theoretical model calculation, providing the element-specific depth profiles upon the high temperature annealing process. The presence of strong electron hybridization between Re and Pt is evident in the valence-band density-of-states ultraviolet photoemission spectra. C1 [Mun, Bongjin S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, Gyeonggi, South Korea. [Mun, Bongjin S.; Rossi, Massimiliano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ross, Philip N., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Mun, BS (reprint author), Hanyang Univ, Dept Appl Phys, Ansan 426791, Gyeonggi, South Korea. EM bsmun@hanyang.ac.kr RI Mun, Bongjin /G-1701-2013 FU Hanyang University [HY-2007-N]; Office of Basic Energy Sciences, Materials Sciences Division, U. S. Department of Energy FX This work was supported by the research fund of Hanyang University (No. HY-2007-N). P. N. R. acknowledges funding for this study from the Office of Basic Energy Sciences, Materials Sciences Division, U. S. Department of Energy. NR 18 TC 3 Z9 3 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2008 VL 129 IS 17 AR 174707 DI 10.1063/1.2987704 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 370QK UT WOS:000260777400048 PM 19045370 ER PT J AU Wu, C Malinin, SV Tretiak, S Chernyak, VY AF Wu, Chao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE conducting polymers; electronic structure; excited states; excitons; quasiparticles ID ENERGY-LOSS SPECTROSCOPY; OPTICAL-EXCITATIONS; ELECTRONIC EXCITATIONS; 2-PHOTON ABSORPTION; ORGANIC DENDRIMERS; NANOSCALE SYSTEMS; CARBON NANOTUBES; BINDING-ENERGY; POLYMERS; OPTOELECTRONICS AB We develop a formalism for the exciton scattering (ES) approach to calculation of the excited state electronic structure of branched conjugated polymers with insignificant numerical expense. The ES approach attributes electronic excitations in quasi-one-dimensional molecules to standing waves formed by the scattering of quantum quasiparticles. We derive the phenomenology from the microscopic description in terms of many-electron excitations. The presented model can be used to compute both excited state frequencies and transition dipoles in large molecules after the ES ingredients are extracted from smaller molecular fragments. C1 [Wu, Chao; Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wu, C (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI wu, chao/A-1303-2011; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI wu, chao/0000-0002-8573-7196; Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 NR 50 TC 12 Z9 12 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2008 VL 129 IS 17 AR 174111 DI 10.1063/1.3005647 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 370QK UT WOS:000260777400015 PM 19045337 ER PT J AU Wu, C Malinin, SV Tretiak, S Chernyak, VY AF Wu, Chao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Exciton scattering approach for branched conjugated molecules and complexes. III. Applications SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE conducting polymers; excited states; excitons; macromolecules ID OPTICAL-EXCITATIONS; ELECTRONIC EXCITATIONS; 2-PHOTON ABSORPTION; ORGANIC DENDRIMERS; LOCALIZATION; SPECTROSCOPY; COHERENCE; SUPERRADIANCE; CHROMOPHORES; CAROTENOIDS AB The exciton scattering (ES) approach is an efficient tool to calculate the excited states electronic structure in large branched polymeric molecules. Using the previously extracted parameters, we apply the ES approach to a number of phenylacetylene-based test molecules. Comparison of ES predictions with direct quantum chemistry results for the excitation energies shows an agreement within several meV. The ES framework provides powerful insights into photophysics of macromolecules by revealing the connections between the molecular structure and the properties of the collective electronic states, including spatial localization of excitations controlled by the energy. C1 [Wu, Chao; Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wu, C (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI wu, chao/A-1303-2011; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI wu, chao/0000-0002-8573-7196; Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 FU National Science Foundation [CHE-0808910]; National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX This material was based upon work supported by the National Science Foundation under Grant No. CHE-0808910. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. We acknowledge support of the Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). NR 33 TC 9 Z9 9 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2008 VL 129 IS 17 AR 174113 DI 10.1063/1.3005649 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 370QK UT WOS:000260777400017 PM 19045339 ER PT J AU Wu, C Malinin, SV Tretiak, S Chernyak, VY AF Wu, Chao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE conducting polymers; electronic structure; excitons; quantum chemistry ID ELECTRONIC EXCITATIONS; 2-PHOTON ABSORPTION; DENDRIMERS; LOCALIZATION AB We obtain the parameters of the exciton scattering (ES) model from the quantum-chemical calculations of the electronic excitations in simple phenylacetylene-based molecules. We determine the exciton dispersion and the frequency-dependent scattering matrices which describe scattering properties of the molecular ends as well as of meta- and orthoconjugated links. The extracted functions are smooth, which confirms the validity of the ES picture. We find a good agreement between the ES and quantum-chemical results for the excitation energies in simple test molecules. C1 [Wu, Chao; Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wu, C (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI wu, chao/A-1303-2011; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI wu, chao/0000-0002-8573-7196; Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 FU National Science Foundation [CHE-0808910]; National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX This material was based upon work supported by the National Science Foundation under Grant No. CHE-0808910. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. We acknowledge support of the Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS) NR 24 TC 11 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2008 VL 129 IS 17 AR 174112 DI 10.1063/1.3005648 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 370QK UT WOS:000260777400016 PM 19045338 ER PT J AU Lee, CH Guo, H Chen, LX Mandal, BK AF Lee, Chi-Hang Guo, Hangchang Chen, Lin X. Mandal, Braja K. TI Novel Zinc Phthalocyanine-Benzoquinone Rigid Dyad and Its Photoinduced Electron Transfer Properties SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Review ID PORPHYRIN-QUINONE TRIADS; PHOTOSYNTHETIC REACTION-CENTER; TIME-RESOLVED EPR; MIMICKING PRIMARY PROCESSES; PUSH-PULL PHTHALOCYANINES; DARK CHARGE RECOMBINATION; LANGMUIR-BLODGETT-FILMS; RADICAL PAIR FORMATION; DIELS-ALDER ADDUCTS; UNSYMMETRICAL PHTHALOCYANINES AB While preparing the first structurally rigid zinc phthalocyanine-benzoquinone (ZnPc-BQ) dyad as a model for photoinduced charge separation mimicking natural photosynthesis, a convenient method is developed for in situ generation of a benzoquinone chromophore in the dyad using an iso-butyryl mask. The dyad has no rotamers and possesses a fixed distance between ZnPc and BQ moieties (center-to-center and edge-to-edge distances are 9.40 and 2.14 angstrom, respectively). The dyad displays unusual electronic perturbation in the ground state, resulting from the interactions between Pc and BQ, and exhibits photoinduced electron transfer with a lifetime of 40 ps of the charged separated states. The steady-state fluorescence and electrochemical behavior of the dyad are evaluated. This study opens a route to subsequent dyads, triads, and complex architectures of electron donor-acceptor arrays with rigid structures and long charge separation states. C1 [Guo, Hangchang; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Chi-Hang; Mandal, Braja K.] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Chen, LX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lchen@anl.gov; mandal@iit.edu FU National Science Foundation [CHE-0203245] FX This research was supported in part by a grant from the National Science Foundation (CHE-0203245.) NR 124 TC 15 Z9 15 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD NOV 7 PY 2008 VL 73 IS 21 BP 8219 EP 8227 DI 10.1021/jo801293s PG 9 WC Chemistry, Organic SC Chemistry GA 367DS UT WOS:000260533300011 PM 18844420 ER PT J AU Da Silva, JLF Dalpian, GM Wei, SH AF Da Silva, Juarez L. F. Dalpian, Gustavo M. Wei, Su-Huai TI Carrier-induced enhancement and suppression of ferromagnetism in Zn1-xCrxTe and Ga1-xCrxAs: origin of the spinodal decomposition SO NEW JOURNAL OF PHYSICS LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; DILUTE-MAGNETIC-SEMICONDUCTORS; HIGH CURIE-TEMPERATURE; AUGMENTED-WAVE METHOD; 1ST PRINCIPLES; AB-INITIO; TRANSITION-METALS; SPINTRONICS; DESIGN; GROWTH AB Ferromagnetism in Zn1-xCrxTe shows some interesting but puzzling dependence on p-type (nitrogen) and n-type (iodine) dopings that seems to contradict the current understanding of carrier-induced ferromagnetism based on the d-d double exchange mechanism. Using first-principles calculations combined with a phenomenological band coupling model to describe the magnetic interactions, we show that the formation of Cr-rich regions (spinodal decomposition) is driven mainly by the energy gain due to the magnetic interaction between Cr atoms. Thus, the previously proposed Coulomb repulsion between the magnetic Cr ions does not play a major role in the formation of Cr-rich aggregates. Similar results are predicted for Ga1-xCrxAs. C1 [Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dalpian, Gustavo M.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil. RP Wei, SH (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Suhai_Wei@nrel.gov RI Dalpian, Gustavo/B-9746-2008; Da Silva, Juarez L. F./D-1779-2011 OI Dalpian, Gustavo/0000-0001-5561-354X; Da Silva, Juarez L. F./0000-0003-0645-8760 NR 36 TC 3 Z9 3 U1 3 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 7 PY 2008 VL 10 AR 113007 DI 10.1088/1367-2630/10/11/113007 PG 10 WC Physics, Multidisciplinary SC Physics GA 370JZ UT WOS:000260759800007 ER PT J AU Winkelmann, A Fadley, CS de Abajo, FJG AF Winkelmann, Aimo Fadley, Charles S. Javier Garcia de Abajo, F. TI High-energy photoelectron diffraction: model calculations and future possibilities SO NEW JOURNAL OF PHYSICS LA English DT Article ID X-RAY PHOTOELECTRON; AUGER-ELECTRON DIFFRACTION; VALENCE-BAND; SCATTERING; CRYSTALS; PHOTOEMISSION; EMISSION; SPECTROSCOPY; IONIZATION; SIMULATION AB We discuss the theoretical modeling of x-ray photoelectron diffraction (XPD) with hard x-ray excitation at up to 20 keV, using the dynamical theory of electron diffraction to illustrate the characteristic aspects of the diffraction patterns resulting from such localized emission sources in a multilayer crystal. We show via dynamical calculations for diamond, Si and Fe that the dynamical theory predicts well the available current data for lower energies around 1 keV, and that the patterns for energies above about 1 keV are dominated by Kikuchi bands, which are created by the dynamical scattering of electrons from lattice planes. The origin of the fine structure in such bands is discussed from the point of view of atomic positions in the unit cell. The profiles and positions of the element-specific photoelectron Kikuchi bands are found to be sensitive to lattice distortions (e.g. a 1% tetragonal distortion) and the position of impurities or dopants with respect to lattice sites. We also compare the dynamical calculations with results from a cluster model that is more often used to describe lower energy XPD. We conclude that hard XPD (HXPD) should be capable of providing unique bulk-sensitive structural information for a wide variety of complex materials in future experiments. C1 [Winkelmann, Aimo] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Javier Garcia de Abajo, F.] CSIC, Inst Opt, E-28006 Madrid, Spain. RP Winkelmann, A (reprint author), Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Saale, Germany. EM winkelm@mpi-halle.mpg.de RI Winkelmann, Aimo/E-8606-2010; Garcia de Abajo, Javier/A-6095-2009; MSD, Nanomag/F-6438-2012 OI Winkelmann, Aimo/0000-0002-6534-693X; Garcia de Abajo, Javier/0000-0002-4970-4565; FU Director, Office of Science; Office of Basic Energy Sciences; Materials Science and Engineering Division; US Department of Energy [DE-AC03-76SF00098]; Alexander von Humboldt Foundation; Helmholtz Association; Julich Research Center; University of Hamburg FX CSF acknowledges support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, US Department of Energy under contract no DE-AC03-76SF00098, the Alexander von Humboldt Foundation, the Helmholtz Association, the Julich Research Center and the University of Hamburg for part of this work. NR 45 TC 29 Z9 29 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 7 PY 2008 VL 10 AR 113002 DI 10.1088/1367-2630/10/11/113002 PG 22 WC Physics, Multidisciplinary SC Physics GA 370JZ UT WOS:000260759800002 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T Barbaro, P Cecco, S Deisher, A Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Giovanni, GP Dionisi, C Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Saltzberg, D Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sutherland, M Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wirthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Saltzberg, D. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sutherland, M. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wirthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Flavor-Changing Neutral-Current Decay t -> Zq in pp Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID P(P)OVER-BAR COLLISIONS; TOP-QUARK; DETECTOR; PHYSICS AB We report a search for the flavor-changing neutral-current decay of the top quark t -> Zq (q=u, c) in pp= 4 jet final state candidate events, with and without an identified bottom quark jet, we obtain an upper limit of B(t -> Zq)< 3.7% at 95% C.L. C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Carlsmith, D.; Chertok, M.; Conway, J.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Saltzberg, D.; Stelzer, B.; Sutherland, M.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wirthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Rossi, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, A. B.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Plager, C.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Chokheli, D.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Yao, W. M.] Ernest Orlando Lawrence Berkely Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snider, F. D.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Oksuzian, I.; Seidel, S.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Brigliadori, L.; Compostella, G.; Donini, J.; Dorigo, T.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Giordani, M.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Pagliarone, C.; Ristori, L.; Sartori, L.; Scuri, F.; Sidoti, A.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Gallinaro, M.; Mastrandrea, P.; Rescigno, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hara, K.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Scodellaro, Luca/K-9091-2014 OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Scodellaro, Luca/0000-0002-4974-8330 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's Human Potential Programme; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 18 TC 42 Z9 42 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 192002 DI 10.1103/PhysRevLett.101.192002 PG 7 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300019 PM 19113262 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I BesanOon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Motta, H Das, A Davies, G De, K Jong, SJ La Cruz-Burelo, E Martins, CO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJ Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. BesanOon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the Forward-Backward Charge Asymmetry and Extraction of sin(2)theta(eff)(W) in pp -> Z/gamma(*)+X -> e(+)e(-)+X Events Produced at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON COLLIDERS; LEPTON PAIRS; PHYSICS AB We present a measurement of the forward-backward charge asymmetry (A(FB)) in pp -> Z/gamma(*)+X -> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV using 1.1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. A(FB) is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the A(FB) measurement to extract the effective weak mixing angle sin(2)theta(eff)(W)=0.2326 +/- 0.0018(stat)+/- 0.0006(syst). C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; BesanOon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, Serv Phys Particules, DAPNIA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, F-69365 Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Inst NIKHEF, FOM, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, D.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; bu, xuebing/D-1121-2012; Gutierrez, Phillip/C-1161-2011; Perfilov, Maxim/E-1064-2012; Dudko, Lev/D-7127-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Yip, Kin/D-6860-2013; Mercadante, Pedro/K-1918-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Leflat, Alexander/D-7284-2012 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; NR 37 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 191801 DI 10.1103/PhysRevLett.101.191801 PG 7 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300016 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Ives, J Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Wang, Z Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, A. V. Bassalleck, B. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I-H. Christidi, I. -A. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Hu, J. Ives, J. Jaffe, D. E. Kabe, S. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kozhevnikov, A. P. Kudenko, Yu. G. Kushnirenko, A. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Mukhin, V. A. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Petrenko, S. V. Poutissou, R. Ramberg, E. J. Redlinger, G. Sato, T. Sekiguchi, T. Shinkawa, T. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Wang, Zhe Yershov, N. V. Yoshimura, Y. Yoshioka, T. CA E949 Collaboration TI New Measurement of the K+->pi(+)nu nu Branching Ratio SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENDCAP PHOTON DETECTOR; 500 MHZ AB Three events for the decay K+->pi(+)nu have been observed in the pion momentum region below the K+->pi(+)pi(0) peak, 140 < P-pi < 199 MeV/c, with an estimated background of 0.93 +/- 0.17(stat.)(-0.24)(+0.32)(syst.) events. Combining this observation with previously reported results yields a branching ratio of B(K+->pi(+)nu nu)=(1.73(-1.05)(+1.15))x10(-10) consistent with the standard model prediction. C1 [Artamonov, A. V.; Kozhevnikov, A. P.; Landsberg, L. G.; Mukhin, V. A.; Obraztsov, V. F.; Patalakha, D. I.; Petrenko, S. V.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Kushnirenko, A.; Ramberg, E. J.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kabe, S.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Yershov, N. V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kitching, P.] Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. [Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Khabibullin, Marat/O-1076-2013; OI Bryman, Douglas/0000-0002-9691-0775 FU U.S. Department of Energy; Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics; Natural Sciences and Engineering Research Council; National Research Council of Canada; Chinese Ministry of Education; Russian Federation State Scientific Center Institute for High Energy Physics; Ministry of Industry, Science and New Technologies of the Russian Federation FX This research was supported in part by the U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under Grant-in-Aids for Scientific Research, the Natural Sciences and Engineering Research Council and the National Research Council of Canada, the program for New Century Excellent Talents in University from the Chinese Ministry of Education, the Russian Federation State Scientific Center Institute for High Energy Physics, and the Ministry of Industry, Science and New Technologies of the Russian Federation. NR 18 TC 96 Z9 96 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 191802 DI 10.1103/PhysRevLett.101.191802 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300017 PM 19113260 ER PT J AU Curcic, M Van Waeyenberge, B Vansteenkiste, A Weigand, M Sackmann, V Stoll, H Fahnle, M Tyliszczak, T Woltersdorf, G Back, CH Schutz, G AF Curcic, Michael Van Waeyenberge, Bartel Vansteenkiste, Arne Weigand, Markus Sackmann, Vitalij Stoll, Hermann Faehnle, Manfred Tyliszczak, Tolek Woltersdorf, Georg Back, Christian H. Schuetz, Gisela TI Polarization Selective Magnetic Vortex Dynamics and Core Reversal in Rotating Magnetic Fields SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOTION AB We report on the observation of magnetic vortex dynamics in response to rotating magnetic fields in submicron platelets. Unlike linear fields or spin polarized currents, which excite both vortex core polarization states, an in-plane rotating field can selectively excite one of the polarization states. We demonstrate by direct imaging with time-resolved scanning x-ray microscopy that the rotating field only excites the gyrotropic mode if the rotation sense of the field coincides with the vortex gyration sense and that such a field can selectively reverse the vortex polarization. C1 [Curcic, Michael; Van Waeyenberge, Bartel; Weigand, Markus; Sackmann, Vitalij; Stoll, Hermann; Faehnle, Manfred; Schuetz, Gisela] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Van Waeyenberge, Bartel; Vansteenkiste, Arne] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Woltersdorf, Georg; Back, Christian H.] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany. RP Curcic, M (reprint author), Max Planck Inst Met Res, D-70569 Stuttgart, Germany. EM curcic@mf.mpg.de; Bartel.VanWaeyenberge@UGent.be; stoll@mf.mpg.de RI Back, Christian/A-8969-2012; Woltersdorf, Georg/C-7431-2014 OI Back, Christian/0000-0003-3840-0993; Woltersdorf, Georg/0000-0001-9299-8880 FU The Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders); Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy FX Cooperation with Aleksandar Puzic, Kang Wei Chou, and Michael Hirscher is gratefully acknowledged. We would also like to thank Sabine Seiffert and Christian Wolter for the mechanical construction of the sample holder. A.V. acknowledges the financial support by The Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy. NR 20 TC 98 Z9 101 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 197204 DI 10.1103/PhysRevLett.101.197204 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300059 PM 19113302 ER PT J AU Garofalo, AM Burrell, KH Deboo, JC deGrassie, JS Jackson, GL Lanctot, M Reimerdes, H Schaffer, MJ Solomon, WM Strait, EJ AF Garofalo, A. M. Burrell, K. H. DeBoo, J. C. deGrassie, J. S. Jackson, G. L. Lanctot, M. Reimerdes, H. Schaffer, M. J. Solomon, W. M. Strait, E. J. TI Observation of Plasma Rotation Driven by Static Nonaxisymmetric Magnetic Fields in a Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; NEOCLASSICAL TRANSPORT; ASPECT RATIO; HIGH-BETA; DIII-D; MODES; FLOW AB We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions [A. J. Cole , Phys. Rev. Lett. 99, 065001 (2007)]. C1 [Garofalo, A. M.; Burrell, K. H.; DeBoo, J. C.; deGrassie, J. S.; Jackson, G. L.; Schaffer, M. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Lanctot, M.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Garofalo, AM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FC02-04ER54698, DE-FG0289ER53297, DE-AC02-76CH03073] FX This work was supported by the U.S. Department of Energy under No. DE-FC02-04ER54698, No. DE-FG0289ER53297, and No. DE-AC02-76CH03073. The authors thank J. Callen for inspiring this research and A. Cole for helpful discussions. NR 23 TC 95 Z9 96 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 195005 DI 10.1103/PhysRevLett.101.195005 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300037 PM 19113280 ER PT J AU Grinenko, A Gericke, DO Glenzer, SH Vorberger, J AF Grinenko, A. Gericke, D. O. Glenzer, S. H. Vorberger, J. TI Probing the Hydrogen Melting Line at High Pressures by Dynamic Compression SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA PHASE-TRANSITION; EQUATION-OF-STATE; MOLECULAR-HYDROGEN; SOLID HYDROGEN; FLUID HYDROGEN; HIGH-DENSITY; METALLIC HYDROGEN; GIANT PLANETS; GPA; DEUTERIUM AB We investigate the capabilities of dynamic compression by intense heavy ion beams to yield information about the high pressure phases of hydrogen. Employing ab initio simulations and experimental data, a new wide range equation of state for hydrogen is constructed. The results show that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested with the beam parameters soon to be available. We demonstrate that x-ray scattering can distinguish between phases and dissociation states. C1 [Grinenko, A.; Gericke, D. O.; Vorberger, J.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Grinenko, A (reprint author), Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. RI Vorberger, Jan/D-9162-2015 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Support from the EPSRC of the United Kingdom is gratefully acknowledged. The work of S. H. G. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 42 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 194801 DI 10.1103/PhysRevLett.101.194801 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300032 PM 19113275 ER PT J AU Mak, KF Sfeir, MY Wu, Y Lui, CH Misewich, JA Heinz, TF AF Mak, Kin Fai Sfeir, Matthew Y. Wu, Yang Lui, Chun Hung Misewich, James A. Heinz, Tony F. TI Measurement of the Optical Conductivity of Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID CARBON NANOTUBES; EXCITONS; DYNAMICS AB Optical reflectivity and transmission measurements over photon energies between 0.2 and 1.2 eV were performed on single-crystal graphene samples on a SiO2 substrate. For photon energies above 0.5 eV, graphene yielded a spectrally flat optical absorbance of (2.3 +/- 0.2)%. This result is in agreement with a constant absorbance of pi alpha, or a sheet conductivity of pi e(2)/2h, predicted within a model of noninteracting massless Dirac fermions. This simple result breaks down at lower photon energies, where both spectral and sample-to-sample variations were observed. This "nonuniversal" behavior is explained by including the effects of doping and finite temperature, as well as contributions from intraband transitions. C1 [Mak, Kin Fai; Wu, Yang; Lui, Chun Hung; Heinz, Tony F.] Columbia Univ, Dept Phys & Elect Engn, New York, NY 10027 USA. [Sfeir, Matthew Y.; Misewich, James A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Heinz, TF (reprint author), Columbia Univ, Dept Phys & Elect Engn, 538 W 120th St, New York, NY 10027 USA. EM tony.heinz@columbia.edu RI bartelsdoe, ludwig/F-8008-2011; Heinz, Tony/K-7797-2015; OI Heinz, Tony/0000-0003-1365-9464; Sfeir, Matthew/0000-0001-5619-5722 FU NSF [CHE-0117752]; Nanoelectronics Research Initiative (NRI); Semiconductor Research Corporation (SRC); New York State Office of Science, Technology, and Academic Research (NYSTAR); US Department of Energy (DOE) [DE-FG02-03ER15463]; US DOE [DE-AC02-98CH10886]; National Synchrotron Light Source at Brookhaven and the Center for Synchrotron Biosciences; Case Western Reserve University [P41EB-01979]; National Institute for Biomedical Imaging and Bioengineering FX The authors at Columbia University acknowledge support from the Nanoscale Science and Engineering Initiative of the NSF under Grant No. CHE-0117752, the Nanoelectronics Research Initiative (NRI) of the Semiconductor Research Corporation (SRC), the New York State Office of Science, Technology, and Academic Research (NYSTAR), and the US Department of Energy (DOE) under Grant No. DE-FG02-03ER15463; the authors at Brookhaven were supported under US DOE Contract No. DE-AC02-98CH10886. The synchrotron studies were supported by the National Synchrotron Light Source at Brookhaven and the Center for Synchrotron Biosciences, Case Western Reserve University under Grant No. P41EB-01979 with the National Institute for Biomedical Imaging and Bioengineering. The authors would like to thank Dr. Mikito Koshino for useful discussions. NR 29 TC 653 Z9 658 U1 23 U2 264 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 196405 DI 10.1103/PhysRevLett.101.196405 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300048 PM 19113291 ER PT J AU Matsuda, M Fujita, M Wakimoto, S Fernandez-Baca, JA Tranquada, JM Yamada, K AF Matsuda, M. Fujita, M. Wakimoto, S. Fernandez-Baca, J. A. Tranquada, J. M. Yamada, K. TI Magnetic Dispersion of the Diagonal Incommensurate Phase in Lightly Doped La2-xSrxCuO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; SPIN EXCITATIONS; LIQUID; DYNAMICS; STATE AB We present inelastic neutron scattering experiments on a single-domain crystal of lightly doped La1.96Sr0.04CuO4. We find that the magnetic excitation spectrum in this insulating phase with a diagonal incommensurate spin modulation is remarkably similar to that in the superconducting regime, where the spin modulation is bond parallel. In particular, we find that the dispersion slope at low energy is essentially independent of doping and temperature over a significant range. The energy at which the excitations cross the commensurate antiferromagnetic wave vector increases roughly linearly with doping through the underdoped regime. C1 [Matsuda, M.; Wakimoto, S.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Fujita, M.; Yamada, K.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Fernandez-Baca, J. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Tranquada, J. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Matsuda, M (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. RI Tranquada, John/A-9832-2009; Yamada, Kazuyoshi/C-2728-2009; Fernandez-Baca, Jaime/C-3984-2014; Fujita, Masaki/D-8430-2013; Matsuda, Masaaki/A-6902-2016 OI Tranquada, John/0000-0003-4984-8857; Fernandez-Baca, Jaime/0000-0001-9080-5096; Matsuda, Masaaki/0000-0003-2209-9526 FU U.S.-Japan Cooperative Program on Neutron Scattering; MEXT of Japan; U.S. Department of Energy's Office of Science [DE-AC05-00OR22725A, DE-AC02-98CH10886] FX We would like to thank T. Tohyama and Y. Koike for stimulating discussions. This study was supported in part by the U.S.-Japan Cooperative Program on Neutron Scattering and by a Grant-in-Aid for Scientific Research from the MEXT of Japan. Work at Oak Ridge National Laboratory and Brookhaven National Laboratory was supported by the U.S. Department of Energy's Office of Science under Contract Nos. DE-AC05-00OR22725A and DE-AC02-98CH10886, respectively. NR 37 TC 38 Z9 38 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 197001 DI 10.1103/PhysRevLett.101.197001 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300054 PM 19113297 ER PT J AU Rodriguez, AW Munday, JN Joannopoulos, JD Capasso, F Dalvit, DAR Johnson, SG AF Rodriguez, Alejandro W. Munday, J. N. Joannopoulos, J. D. Capasso, Federico Dalvit, Diego A. R. Johnson, Steven G. TI Stable Suspension and Dispersion-Induced Transitions from Repulsive Casimir Forces Between Fluid-Separated Eccentric Cylinders SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVERTED POPULATIONS; EARNSHAWS THEOREM; TORQUE; MEDIA; SUPERLUMINALITY; PARELECTRICITY AB We numerically demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, via a method to compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder undergoes a 45 degrees transition as the separation length scale is varied, which is explained as a consequence of material dispersion. C1 [Rodriguez, Alejandro W.; Joannopoulos, J. D.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Munday, J. N.] Harvard Univ, Dept Phys, Cambridge, MA 02139 USA. [Capasso, Federico] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02139 USA. [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Johnson, Steven G.] MIT, Dept Math, Cambridge, MA 02139 USA. RP Rodriguez, AW (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. RI Munday, Jeremy/E-6512-2016 OI Munday, Jeremy/0000-0002-0881-9876 FU U. S. Department of Energy [DE-FG02-97ER25308]; NSF MRSEC [DMR-0213282]; MIT Ferry Fund FX This work was supported in part by U. S. Department of Energy Grant No. DE-FG02-97ER25308, the NSF MRSEC program under Grant No. DMR-0213282, and by the MIT Ferry Fund. NR 26 TC 27 Z9 27 U1 3 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 190404 DI 10.1103/PhysRevLett.101.190404 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300004 PM 19113247 ER PT J AU Thom, AJW Head-Gordon, M AF Thom, Alex J. W. Head-Gordon, Martin TI Locating Multiple Self-Consistent Field Solutions: An Approach Inspired by Metadynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID COUPLED-CLUSTER THEORY; ELECTRONIC-STRUCTURE; GSA METHOD; STABILITY; EQUATIONS; SYSTEMS; MODEL AB We propose a method to locate the solutions to the self-consistent field (SCF) equations, using an approach based upon metadynamics. We define a distance function between density matrices. Within an SCF calculation, when a solution is found, a biasing potential based on distance from the solution is added to the energy to avoid reconvergence to the same solution. Multiple solutions can therefore be relatively easily found. Using this method we locate all known solutions and one unknown solution of the H4 model. The set of restricted Hartree-Fock (RHF) solutions for the nitrogen molecule is located, and a broken-symmetry solution lower in energy than the symmetric RHF solution is found corresponding to dissociation into doublet fragments. C1 [Thom, Alex J. W.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Thom, AJW (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alex.thom@berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, with additional support from the Helios program. NR 21 TC 39 Z9 39 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 7 PY 2008 VL 101 IS 19 AR 193001 DI 10.1103/PhysRevLett.101.193001 PG 4 WC Physics, Multidisciplinary SC Physics GA 370PZ UT WOS:000260776300020 PM 19113263 ER PT J AU Tao, F Grass, ME Zhang, YW Butcher, DR Renzas, JR Liu, Z Chung, JY Mun, BS Salmeron, M Somorjai, GA AF Tao, Feng Grass, Michael E. Zhang, Yawen Butcher, Derek R. Renzas, James R. Liu, Zhi Chung, Jen Y. Mun, Bongjin S. Salmeron, Miquel Somorjai, Gabor A. TI Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles SO SCIENCE LA English DT Article ID SURFACE; CATALYSTS; CHEMISTRY; METALS AB Heterogeneous catalysts that contain bimetallic nanoparticles may undergo segregation of the metals, driven by oxidizing and reducing environments. The structure and composition of core- shell Rh(0.5)Pd(0.5) and Pt(0.5)Pd(0.5) nanoparticle catalysts were studied in situ, during oxidizing, reducing, and catalytic reactions involving NO, O(2), CO, and H(2) by x- ray photoelectron spectroscopy at near-ambient pressure. The Rh(0.5)Pd(0.5) nanoparticles underwent dramatic and reversible changes in composition and chemical state in response to oxidizing or reducing conditions. In contrast, no substantial segregation of Pd or Pt atoms was found in Pt(0.5)Pd(0.5) nanoparticles. The different behaviors in restructuring and chemical response of Rh(0.5)Pd(0.5) and Pt(0.5)Pd(0.5) nanoparticle catalysts under the same reaction conditions illustrates the flexibility and tunability of the structure of bimetallic nanoparticle catalysts during catalytic reactions. C1 [Tao, Feng; Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Renzas, James R.; Liu, Zhi; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci & Chem Sci Div, Berkeley, CA 94720 USA. [Tao, Feng; Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Renzas, James R.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Liu, Zhi; Chung, Jen Y.; Mun, Bongjin S.] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci & Chem Sci Div, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu; mbsalmeron@lbl.gov RI Mun, Bongjin /G-1701-2013; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Science; Office of Advanced Scientific Computing Research; Office of Basic Energy Sciences; Materials Sciences and Engineering; Chemical Sciences; Geosciences; Biosciences Division of the U. S. Department of Energy [DE-AC-02-05CH11231] FX Supported by the director of the Office of Science; Office of Advanced Scientific Computing Research; Office of Basic Energy Sciences, Materials Sciences and Engineering; and Chemical Sciences, Geosciences, and Biosciences Division of the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 15 TC 573 Z9 580 U1 75 U2 606 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 7 PY 2008 VL 322 IS 5903 BP 932 EP 934 DI 10.1126/science.1164170 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 369DI UT WOS:000260674100043 PM 18845713 ER PT J AU Cappa, F Guglielmi, Y Rutqvist, J Tsang, CF Thoraval, A AF Cappa, Frederic Guglielmi, Yves Rutqvist, Jonny Tsang, Chin-Fu Thoraval, Alain TI Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses SO WATER RESOURCES RESEARCH LA English DT Article ID SINGLE FRACTURES; SOLUTE TRANSPORT; TRACER TRANSPORT; CHANNEL MODEL; ROCK JOINTS; HARD ROCKS; FLUID-FLOW; CONDUCTIVITY; DISPLACEMENT; RESERVOIR AB The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow-fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric in that the pulse traveled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity, and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity and, consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially C1 [Cappa, Frederic] Univ Nice Sophia Antipolis, F-06560 Valbonne, France. [Guglielmi, Yves] Univ Provence Aix Marseille, F-13331 Marseille, France. [Rutqvist, Jonny; Tsang, Chin-Fu] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Thoraval, Alain] Ecole Natl Super Mines, Inst Natl EnviRonnement Ind & rISques, F-54042 Nancy, France. RP Cappa, F (reprint author), Univ Nice Sophia Antipolis, 250 Rue A Einstein, F-06560 Valbonne, France. EM cappa@geoazur.unice.fr RI Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017 OI Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024 FU INERIS through the BCRD-DRS03; French government [ANR-07-PCO2-002] FX We are grateful for the constructive comments and recommendations of the associate editor, Frederick Day-Lewis, and the technical review by Roger Morin (US Geological Survey) and two anonymous reviewers, who helped us to substantially improve our manuscript. The work presented in this paper was financed by contributions from the INERIS through the BCRD-DRS03 research program and the French government through the project ANR HPPP-CO2 (ref: ANR-07-PCO2-002). NR 63 TC 9 Z9 9 U1 3 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 7 PY 2008 VL 44 IS 11 AR W11408 DI 10.1029/2008WR007015 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 370TD UT WOS:000260785100002 ER PT J AU Dinescu, A Clark, AE AF Dinescu, Adriana Clark, Aurora E. TI Thermodynamic and Structural Features of Aqueous Ce(III) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDRATION FREE-ENERGY; ELECTRONIC-STRUCTURE CALCULATIONS; RARE-EARTH-ELEMENTS; M = LA; TRIVALENT LANTHANIDE; WATER EXCHANGE; BASIS-SETS; IONS; SOLVATION; PSEUDOPOTENTIALS AB With a single f-electron, Ce(III) is the simplest test case for benchmarking the thermodynamic and structural properties of hydrated Ln(III) against varying density functionals and reaction field models, in addition to determining the importance of multiconfigurational character in their wave functions. Here, the electronic structure of Ce(H2O)(x)(H2O)(y)(3+) (x = 8, 9; y = 0, 12-14) has been examined using DFT and CASSCF calculations. The latter confirmed that the wave function of octa- and nona-aqua Ce(III) is well-described by a single configuration. Benchmarking was performed for density functionals, reaction field cavity types, and solvation reactions against the experimental free energy of hydration, Delta G(hyd)(Ce3+). The UA0, UAKS, Pauling, and UFF polarized continuum model cavities displayed different performance, depending on whether one or two hydration shells were examined, and as a function of the size of the metal basis set. These results were essentially independent of the density functional employed. Using these benchmarks, the free energy for water exchange between CN = 8 and CN = 9, for which no experimental data are available, was estimated to be approximately -4 kcal/mol. C1 [Clark, Aurora E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Clark, AE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM auclark@wsu.edu FU U.S. Department of Energy; INL Laboratory Directed Research & Development Program; DOE Idaho Operations Office [DE-AC07-05ID14517]; Office of Nuclear Energy, Science and Technology [DE-FG07-051D 14692/IDNE006] FX Work by A.D. was supported by the U.S. Department of Energy, INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. A.E.C. recognizes support from the U.S. Department of Energy, Office of Nuclear Energy, Science and Technology, Junior Faculty Award Program award #DE-FG07-051D 14692/IDNE006. This research was performed in part using (1) the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for the Department of Energy by Battelle; (2) the National Energy Research Scientific Computing Center (NERSC) a DOE Office of Science user facility at Lawrence Berkely National Laboratory. NR 53 TC 29 Z9 31 U1 6 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 6 PY 2008 VL 112 IS 44 BP 11198 EP 11206 DI 10.1021/jp8076408 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 367DP UT WOS:000260533000021 PM 18844331 ER PT J AU Tao, JM Tretiak, S Zhu, JX AF Tao, Jianmin Tretiak, Sergei Zhu, Jian-Xin TI Absorption Spectra of Blue-Light-Emitting Oligoquinolines from Time- Dependent Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; EXCITATION-ENERGIES; ELECTRONIC EXCITATIONS; CONJUGATED POLYMERS; ORGANIC-MOLECULES; LINEAR-RESPONSE; TD-DFT; MODEL; SYSTEMS; DIODES AB Recently, it has been discovered that a series of four conjugated oligomers, oligoquinolines, exhibits many desirable properties of organic materials for developing high-performance light-emitting diodes: good blue color purity, high brightness, high efficiency, and high glass-transition temperatures. In this work, we investigate the optical absorption of oligoquinolines in the gas phase and chloroform (CHCl3) solution, respectively, using time-dependent density functional theory with the adiabatic approximation for the dynamical exchange-correlation potential. Our calculations show that the first peak of optical absorption corresponds to the lowest singlet excited state, whereas several quasi-degenerate excited states contribute to the experimentally observed higher-frequency peak. We find that, compared with the gas phase, there is a moderate red shift in excitation energy in solution due to the solute-solvent interaction simulated using the polarizable continuum model. Our results show that the lowest singlet excitation energies of oligoquinolines in chloroform solution calculated with the adiabatic hybrid functional PBE0 are in a good agreement with experiments. Our simulated optical, absorption agrees well with the experimental data. Finally, analysis of the natural transition orbitals corresponding to the excited states in question underscores the underlying electronic delocalization properties. C1 [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Zhu, Jianxin/0000-0001-7991-3918 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396, LDRD-PRD X9KU] FX We thank Ekaterina Badaeva for technical help and Svetlana Kilina for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and under the Grant No. LDRD-PRD X9KU. NR 65 TC 8 Z9 8 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 6 PY 2008 VL 112 IS 44 BP 13701 EP 13710 DI 10.1021/jp804687j PG 10 WC Chemistry, Physical SC Chemistry GA 367DQ UT WOS:000260533100006 PM 18844398 ER PT J AU Hanson, JA Yang, H AF Hanson, Jeffery A. Yang, Haw TI Quantitative Evaluation of Cross Correlation Between Two Finite-Length Time Series with Applications to Single-Molecule FRET SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ENZYME CONFORMATIONAL DYNAMICS; ENERGY-TRANSFER; FLUORESCENCE SPECTROSCOPY; POLYPROLINE; RULER; CY5 AB The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants. C1 [Hanson, Jeffery A.; Yang, Haw] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yang, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. OI Yang, Haw/0000-0003-0268-6352 FU NIGMS NIH HHS [R01 GM069937, R01 GM069937-01A3, R01 GM069937-03] NR 23 TC 8 Z9 8 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 6 PY 2008 VL 112 IS 44 BP 13962 EP 13970 DI 10.1021/jp804440y PG 9 WC Chemistry, Physical SC Chemistry GA 367DQ UT WOS:000260533100033 PM 18847232 ER PT J AU Yang, HB Rameau, JD Johnson, PD Valla, T Tsvelik, A Gu, GD AF Yang, H. -B. Rameau, J. D. Johnson, P. D. Valla, T. Tsvelik, A. Gu, G. D. TI Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi(2)Sr(2)CaCu(2)O(8+delta) SO NATURE LA English DT Article ID CUPRATE SUPERCONDUCTORS; UNDERDOPED BI2212; ENERGY-GAP; PSEUDOGAP; TRANSITION; SPIN; PHOTOEMISSION; SURFACE; ONSET AB Superconductors are characterized by an energy gap that represents the energy needed to break the pairs of electrons (Cooper pairs) apart. At temperatures considerably above those associated with superconductivity, the high- transition- temperature copper oxides have an additional 'pseudogap'. It has been unclear whether this represents preformed pairs of electrons that have not achieved the coherence necessary for superconductivity, or whether it reflects some alternative ground state that competes with superconductivity(1). Paired electrons should display particle - hole symmetry with respect to the Fermi level (the energy of the highest occupied level in the electronic system), but competing states(2-4) need not show such symmetry. Here we report a photoemission study of the underdoped copper oxide Bi(2)Sr(2)CaCu(2)O(8+delta) that shows the opening of a symmetric gap only in the anti-nodal region, contrary to the expectation that pairing would take place in the nodal region. It is therefore evident that the pseudogap does reflect the formation of preformed pairs of electrons and that the pairing occurs only in well- defined directions of the underlying lattice. C1 [Yang, H. -B.; Rameau, J. D.; Johnson, P. D.; Valla, T.; Tsvelik, A.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Johnson, PD (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM pdj@bnl.gov RI Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 FU US Department of Energy FX We thank S. Chakravarty, A. Chubukov, P. Lee, M. Norman, M. Rice, D. Scalapino and J. Tranquada for discussions. The assistance of J. Wen and Z. Xu with the preparation of underdoped crystals is also acknowledged. This work was supported by the US Department of Energy. NR 25 TC 141 Z9 142 U1 2 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 6 PY 2008 VL 456 IS 7218 BP 77 EP 80 DI 10.1038/nature07400 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 369DH UT WOS:000260674000043 PM 18987738 ER PT J AU Kitano, R Murayama, H Ratz, M AF Kitano, Ryuichiro Murayama, Hitoshi Ratz, Michael TI Unified origin of baryons and dark matter SO PHYSICS LETTERS B LA English DT Article ID SUPERSYMMETRY BREAKING; POLONYI PROBLEM; BARYOGENESIS; LEPTOGENESIS; GRAVITINO; DECAY; SUPERGRAVITY; UNIFICATION; COSMOLOGY AB We investigate the possibility that both the baryon asymmetry of the universe and the observed cold dark matter density are generated by decays of a heavy scalar field which dominates the universe before nucleosynthesis. Since baryons and cold dark matter have common origin, this mechanism yields a natural explanation of the similarity of the corresponding energy densities. The cosmological moduli and gravitino problems are avoided. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kitano, Ryuichiro] Los Alamos Natl Lab, Theoret Div T8, Los Alamos, NM 87545 USA. [Murayama, Hitoshi] Univ Tokyo, Inst Phys & Math Univ, Chiba 2778568, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ratz, Michael] Tech Univ Munich, Phys Dept T30, D-85748 Garching, Germany. RP Kitano, R (reprint author), Los Alamos Natl Lab, Theoret Div T8, Los Alamos, NM 87545 USA. EM kitano@lan1.gov RI Murayama, Hitoshi/A-4286-2011 FU DFG cluster of excellence Origin and Structure of the Universe; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; US Department of Energy [DE-AC03-76SF00098]; National Science Foundation [PHY-04-57315] FX We would like to thank K. Choi, K. Hamaguchi, O. Lebedev and H.P. Nilles for useful discussions. We acknowledge support from the Aspen Center for Physics where this work has been started. The research of M.R. is supported by the DFG cluster of excellence Origin and Structure of the Universe, the Grad uiertenkolleg "Particle Physics at the Energy Frontier of New Phenomena" and the SFB-Transregios 27 "Neutrinos and Beyond" by the Deutsche Forschungsgemeinschaft (DFG). The research of H.M. is supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, in part by the US Department of Energy under Contract DE-AC03-76SF00098, and in part by the National Science Foundation under grant PHY-04-57315. NR 42 TC 77 Z9 77 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 6 PY 2008 VL 669 IS 2 BP 145 EP 149 DI 10.1016/j.physletb.2008.09.049 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 372VL UT WOS:000260930000004 ER PT J AU Tintle, NL Best, AA DeJongh, M Van Bruggen, D Heffron, F Porwollik, S Taylor, RC AF Tintle, Nathan L. Best, Aaron A. DeJongh, Matthew Van Bruggen, Dirk Heffron, Fred Porwollik, Steffen Taylor, Ronald C. TI Gene set analyses for interpreting microarray experiments on prokaryotic organisms SO BMC BIOINFORMATICS LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; EXPRESSION DATA; ESCHERICHIA-COLI; SALMONELLA-TYPHIMURIUM; TESTING ASSOCIATION; ENRICHMENT ANALYSIS; GLOBAL TEST; GENOME; PATHWAY; TOOL AB Background: Despite the widespread usage of DNA microarrays, questions remain about how best to interpret the wealth of gene-by-gene transcriptional levels that they measure. Recently, methods have been proposed which use biologically defined sets of genes in interpretation, instead of examining results gene-by-gene. Despite a serious limitation, a method based on Fisher's exact test remains one of the few plausible options for gene set analysis when an experiment has few replicates, as is typically the case for prokaryotes. Results: We extend five methods of gene set analysis from use on experiments with multiple replicates, for use on experiments with few replicates. We then use simulated and real data to compare these methods with each other and with the Fisher's exact test (FET) method. As a result of the simulation we find that a method named MAXMEAN-NR, maintains the nominal rate of false positive findings ( type I error rate) while offering good statistical power and robustness to a variety of gene set distributions for set sizes of at least 10. Other methods (ABSSUM-NR or SUM-NR) are shown to be powerful for set sizes less than 10. Analysis of three sets of experimental data shows similar results. Furthermore, the MAXMEAN-NR method is shown to be able to detect biologically relevant sets as significant, when other methods (including FET) cannot. We also find that the popular GSEA-NR method performs poorly when compared to MAXMEAN-NR. Conclusion: MAXMEAN-NR is a method of gene set analysis for experiments with few replicates, as is common for prokaryotes. Results of simulation and real data analysis suggest that the MAXMEAN-NR method offers increased robustness and biological relevance of findings as compared to FET and other methods, while maintaining the nominal type I error rate. C1 [Tintle, Nathan L.; Van Bruggen, Dirk] Hope Coll, Dept Math, Holland, MI 49423 USA. [Best, Aaron A.] Hope Coll, Dept Biol, Holland, MI 49423 USA. [DeJongh, Matthew; Van Bruggen, Dirk] Hope Coll, Dept Comp Sci, Holland, MI 49423 USA. [Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. [Porwollik, Steffen] Sidney Kimmel Canc Ctr, San Diego, CA USA. [Taylor, Ronald C.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. RP Tintle, NL (reprint author), Hope Coll, Dept Math, Holland, MI 49423 USA. EM tintle@hope.edu; best@hope.edu; dejongh@hope.edu; dirk.vanbruggen@hope.edu; heffronf@ohsu.edu; sporwollik@skcc.org; ronald.taylor@pnl.gov OI Taylor, Ronald/0000-0001-9777-9767 FU Howard Hughes Medical Institute; National Human Genome Research Institute [R15HG004543]; Howard Hughes Medical Institute through the Undergraduate Science Education Program; NIH [R0IAI022933] FX We acknowledge the helpful feedback from two anonymous reviewers. We thank Paul Van Allsburg for his assistance in running simulations on Hope College's Computational Science and Modelling parallel computing cluster through funding from the Howard Hughes Medical Institute. This project was funded in part by the National Human Genome Research Institute, grant number R15HG004543 to Tintle. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Human Genome Research Institute or the National Institutes of Health. Further, this research was supported in part by a grant to Hope College from the Howard Hughes Medical Institute through the Undergraduate Science Education Program. Dirk Van Bruggen received partial support from a computational science and modelling scholar award from the Hope College Howard Hughes Medical Institute program, a fellowship from the Michigan Space Grant Consortium and support from the Tanis Fund for Statistics Research. Salmonella microarray experiments were run using funding from grant NIH-R0IAI022933 to Fred Heffron. Data on E Coli was generously provided by Tyrrell Conway and Joseph Grissom. We also acknowledge the support of Ross Overbeek and Rick Stevens for providing access to the SEED. NR 50 TC 11 Z9 11 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD NOV 5 PY 2008 VL 9 AR 469 DI 10.1186/1471-2105-9-469 PG 14 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 381KO UT WOS:000261535100001 PM 18986519 ER PT J AU Alcaraz, J Xu, R Mori, H Nelson, CM Mroue, R Spencer, VA Brownfield, D Radisky, DC Bustamante, C Bissell, MJ AF Alcaraz, Jordi Xu, Ren Mori, Hidetoshi Nelson, Celeste M. Mroue, Rana Spencer, Virginia A. Brownfield, Doug Radisky, Derek C. Bustamante, Carlos Bissell, Mina J. TI Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia SO EMBO JOURNAL LA English DT Article DE atomic force microscopy; beta 1-integrin; laminin; microenvironment; tissue elasticity ID BETA-CASEIN EXPRESSION; BASEMENT-MEMBRANE; GENE-EXPRESSION; CELL-SHAPE; GLAND DEVELOPMENT; MATRIX; BREAST; INTEGRIN; MORPHOGENESIS; MECHANICS AB In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for beta-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of beta-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of beta-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues' unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis. C1 [Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Alcaraz, Jordi; Bustamante, Carlos] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Alcaraz, J (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd MS 977R225A, Berkeley, CA 94720 USA. EM jalcaraz@ub.edu; mjbissell@lbl.gov RI Alcaraz, Jordi/F-5513-2016 OI Alcaraz, Jordi/0000-0001-7898-1599 FU Department of Energy [DE-AC03-76SF00098]; National Institutes of Health [CA64786, CA57621, GM-071552]; Department of Defense (Innovator Award to MJB); Catalonian Ministry of Universities, Research and Information Society; Canadian Institute for Health Research; Susan G Komen Breast Cancer Foundation; American Cancer Society FX We thank D Fletcher and S Kumar from UC Berkeley (UCB) for critical reading of the manuscript, J Inman, C Ghajar and other members of the Bissell lab for helpful discussions and P Roca and D Navajas from the University of Barcelona, J Pollock (Healy lab, UCB), S Parekh, M Rosenbluth and Ailey Crow ( Fletcher lab, UCB) and S Smith (Bustamante lab, UCB) for technical support. This work was supported by grants from the Department of Energy (DE-AC03-76SF00098 and a Distinguished Fellow Award to MJB, and DE-AC03-76DF00098 to CB), the National Institutes of Health (CA64786 and CA57621 to MJB, GM-071552 to CB), the Department of Defense (Innovator Award to MJB) and post-doctoral fellowships from the Catalonian Ministry of Universities, Research and Information Society ( to JA), the Department of Defense ( to RX, VAS and CMN), the Canadian Institute for Health Research ( to VAS), the Susan G Komen Breast Cancer Foundation ( to HM) and the American Cancer Society ( to DCR). NR 45 TC 100 Z9 101 U1 3 U2 19 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD NOV 5 PY 2008 VL 27 IS 21 BP 2829 EP 2838 DI 10.1038/emboj.2008.206 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 368QT UT WOS:000260638300003 PM 18843297 ER PT J AU Monazam, ER Shadle, LJ AF Monazam, Esmail R. Shadle, Lawrence J. TI Analysis of the Acceleration Region in a Circulating Fluidized Bed Riser Operating above Fast Fluidization Velocities SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DYNAMIC SIMILARITY; PHASE; FLOW AB In commercial circulating fluidized bed (CFB) processes the acceleration zone greatly contributes to solids mixing, gas and solids dispersion, and particle residence times. A new analysis was developed to describe the relative gas-solids concentration in the acceleration region of a transport system with air as the fluidizing agent for Geldart-type B particles. A theoretical expression was derived from a drag relationship and momentum and continuity equations to describe the evolution of the gas-solids profile along the axial direction. The acceleration zone was characterized using nondimensional analysis of the continuum equations (balances of masses and momenta) that described multiphase flows. In addition to acceleration length, the boundary condition for the solids fraction at the bottom of the riser and the fully developed regions were measured Using an industrial scale CFB of 0.3 m diameter and 15 m tall. The operating factors affecting the flow development in the acceleration region were determined for three materials of various sizes and densities in core annular and dilute regimes of the riser. Performance data were taken front statistically designed experiments over a wide range of Fr (0.5-39), Re (8-600), Ar (29-3600), load ratio (0.2-28), riser to particle diameter ratio (375-5000), and gas to solids density ratio (138-1381). In this one-dimensional system of equations, velocities and solid fractions were assumed to be constant over any cross section. The model and engineering correlations were compared with literature expressions to assess their validity and range of applicability. These expressions can be used as tools for simulation and design of a CFB riser and call also be easily coupled to a kinetics model for process simulation. C1 [Shadle, Lawrence J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] REM Engn Serv, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 FU Department of Energy FX The authors acknowledge the Department of Energy for funding the research through the Fossil Energy's Gasification Technology and Advanced Research funding programs. NR 31 TC 13 Z9 14 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 5 PY 2008 VL 47 IS 21 BP 8423 EP 8429 DI 10.1021/ie8009445 PG 7 WC Engineering, Chemical SC Engineering GA 367EF UT WOS:000260534600058 ER PT J AU Hase, KR Graham, AL AF Hase, Kevin R. Graham, Alan L. TI The performance coupling of nonlinear materials and nonlinear geometries SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE mechanical properties; modeling; polysiloxanes; structure-property relations; viscoelastic properties ID CELLULAR MATERIALS; FOAMS; BEHAVIOR AB The nonlinear properties of materials can couple with nonlinear geometries in component applications producing surprising overall system responses. Hence materials must be designed for particular, component level, applications, taking into account the component geometry, to achieve optimal performance. Here we focus on the compressive stress-strain and load-deflection characteristics of soft, polymeric foams in nonlinear geometries. The model system for these coupled nonlinearities is the thin layer of foam contained between two initially concentric spheres. We find that a nonlinear component-level response is exhibited with nonlinear geometries, even with a material whose compressive stress-strain response is linear. Polymeric foams exhibit a modified system-level response that is not apparent from standard viscometric testing results. The spherical geometries tend to concentrate the force in a more localized area of the foam, as opposed to the force distribution seen in linear materials, and this gives greater importance to the higher strain regions of the foam stress-strain response. In addition the geometry diminishes the contribution to the mechanical response in the low to middle range of the stress-strain response curve. These findings have provided critical insights to material designers who are engineering new generations of materials with enhanced component-level performance. (C) 2008 Wiley Periodicals, Inc. C1 [Hase, Kevin R.] Los Alamos Natl Lab, Nucl Non Proliferat Div, Los Alamos, NM 87545 USA. [Graham, Alan L.] Los Alamos Natl Lab, Inst Div, Los Alamos, NM 87545 USA. RP Hase, KR (reprint author), Los Alamos Natl Lab, Nucl Non Proliferat Div, N-4,MS E541, Los Alamos, NM 87545 USA. EM hase@lanl.gov FU Los Alamos National Laboratory FX The authors gratefully acknowledge the partial funding for this project that was provided by the Los Alamos National Laboratory Directed Research and Development Program. This financial support does not constitute an endorsement by the DOE of the views expressed in this article. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DL-AC52-06NA25396. NR 8 TC 0 Z9 0 U1 1 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0021-8995 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD NOV 5 PY 2008 VL 110 IS 3 BP 1704 EP 1713 DI 10.1002/app.28722 PG 10 WC Polymer Science SC Polymer Science GA 347VA UT WOS:000259168100054 ER PT J AU Nie, JL Xiao, HY Zu, XT Gao, F AF Nie, J. L. Xiao, H. Y. Zu, X. T. Gao, Fei TI Hydrogen adsorption, dissociation and diffusion on the alpha-U(001) surface SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; GAMMA-URANIUM; SADDLE-POINTS; KINETICS AB First-principles pseudopotential plane-wave calculations based on density functional theory and the generalized-gradient approximation have been used to study the adsorption, dissociation, and diffusion of hydrogen on the alpha-U(001) surface. Weak molecular chemisorption was observed for H(2) approaching with its molecular axis parallel to the surface. The optimization of the adsorption geometries on the threefold hollow sites yields final configurations with H(2) molecules moving towards the top site at both coverages considered, 0.25 and 0.5 monolayers. A low dissociation barrier of 0.081 eV was determined for H(2) dissociated from the onefold top site with the H atoms falling into the two adjacent threefold hollow sites. The analysis of the density of states along the dissociation paths shows that the hybridization of U 5f and H 1s states only occurs when the H(2) molecule is dissociated. C1 [Nie, J. L.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 FU National Science Foundation of China [10647111]; US Department of Energy [DE-AC05-76RL01830]; [W040632]; [JX05019] FX This research was supported by the National Science Foundation of China (10647111), the program for W040632 and JX05019. One of the authors (Fei Gao) was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy, under Contract DE-AC05-76RL01830. NR 27 TC 15 Z9 17 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 5 PY 2008 VL 20 IS 44 AR 445001 DI 10.1088/0953-8984/20/44/445001 PG 10 WC Physics, Condensed Matter SC Physics GA 360AD UT WOS:000260028500002 ER PT J AU Strempfer, J Hupfeld, D Voigt, J Bihlmayer, G Goldman, AI Bruckel, T AF Strempfer, J. Hupfeld, D. Voigt, J. Bihlmayer, G. Goldman, A. I. Brueckel, Th TI Resonant magnetic x-ray scattering from terbium SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID EXCHANGE-SCATTERING; POLARIZATION; HOLMIUM; DIFFRACTION; TB AB Resonant magnetic x-ray scattering from Tb in the spiral phase is studied in great detail. Polarization analysis in the sigma-sigma' and sigma-pi' channels has been performed for magnetic (0, 0, l +/- tau) satellite reflections over the accessible wavevector range Q = 1.9-6.5 angstrom(-1). A characteristic splitting of the resonance signal as a function of energy has been observed at the L(II) as well as at the L(III) absorption edge. The shape of the resonance depends on Q and is different for the two edges. Up to three components were observed with a separation in energy between 3.3 and 4.9 eV, compared to a core hole lifetime broadening of 2.5 eV, which is in agreement with the density of states in Tb metal. C1 [Strempfer, J.] DESY, Hamburger Synchrontronstschlungslab HASYLAB, D-22503 Hamburg, Germany. [Hupfeld, D.; Voigt, J.; Bihlmayer, G.; Brueckel, Th] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. [Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Strempfer, J (reprint author), DESY, Hamburger Synchrontronstschlungslab HASYLAB, D-22503 Hamburg, Germany. EM joerg.strempfer@desy.de RI Bihlmayer, Gustav/G-5279-2013; Bruckel, Thomas/J-2968-2013 OI Bihlmayer, Gustav/0000-0002-6615-1122; Bruckel, Thomas/0000-0003-1378-0416 FU US Department of Energy, Basic Energy Sciences, Office of Science, Division of Materials Sciences [W-31-109-Eng-38, W-7405-Eng-82]; State of Illinois; BMBF [05 NA8CJA 8] FX We would like to thank K Attenkofer for fruitful discussions. Work at BESSRC-CAT and use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, Division of Materials Sciences, under contract no. W-31-109-Eng-38 and the State of Illinois under HECA. The Midwest Universities Collaborative Access Team ( MUCAT) sector at the APS is supported by the US Department of Energy, Basic Energy Sciences, Office of Science, through the Ames Laboratory under contract no. W7405-Eng-82. This work has been supported by the BMBF (German Federal Ministry for Education and Research) under contract 05 NA8CJA 8. NR 27 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 5 PY 2008 VL 20 IS 44 AR 445208 DI 10.1088/0953-8984/20/44/445208 PG 7 WC Physics, Condensed Matter SC Physics GA 360AD UT WOS:000260028500016 ER PT J AU Terentyev, D Bacon, DJ Osetsky, YN AF Terentyev, D. Bacon, D. J. Osetsky, Yu N. TI Interaction of an edge dislocation with voids in alpha-iron modelled with different interatomic potentials SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CORE STRUCTURE; ANISOTROPIC CRYSTALS; COMPUTER-SIMULATION; SCREW DISLOCATIONS; BCC CRYSTALS; 110 PLANES; METALS; DYNAMICS; CLUSTERS; DEFECTS AB Atomic processes and strengthening effects due to interaction between edge dislocations and voids in alpha-iron have been investigated by means of molecular dynamics with a recently developed interatomic potential (Ackland et al 2004 J. Phys.: Condens. Matter 16 S2629) and compared with those obtained earlier with an older potential (Ackland et al 1997 Phil. Mag. A 75 713). Differences between the interactions for the two models are insignificant at temperature T >= 100 K, thereby confirming the validity of the previous results. In particular, voids are relatively strong obstacles because for large voids and/or low temperature, the initially straight edge dislocation is pulled into screw orientation before it breaks away at the critical shear stress, tau(c). Differences between the core structures and glide planes of the 1/2 < 111 > screw dislocation for the two potentials do not affect tc in this temperature range. The only significant difference between the dislocation-void interactions in the two models occurs at low temperature in static or pseudo-static conditions (T <= 1 K). It arises from the influence of the dislocation segment in the 70 degrees-mixed orientation with the (Ackland et al 2004 J. Phys.: Condens. Matter 16 S2629) potential and is seen in the critical line shape at which the dislocation breaks from the void. It affects tc for some combinations of void size and spacing. The effect on the line shape does not arise from anisotropy of the elastic line tension: it is due to the high Peierls stress of the 70 degrees dislocation. When this effect does not control breakaway, the dependence of tau(c) on void size and spacing follows an equation first found by modelling the Orowan process in the approximation of linear elasticity. C1 [Terentyev, D.] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Osetsky, Yu N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Terentyev, D (reprint author), CEN SCK, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium. EM dterenty@sckcen.be FU UK Engineering and Physical Sciences Research Council [GR/S81162/01]; European Commission [F160-CT-2003-508840]; US Department of Energy [DE-AC05-00OR22725] FX This work was carried out within the framework of the European Fusion Development Agreement (EFDA). It was also supported by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council; grant F160-CT-2003-508840 (`PERFECT') under programme EURATOM FP-6 of the European Commission; and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. DT thanks EDF for use of high performance computing facilities, and the authors acknowledge the provision of unpublished results by Mr Panos Grammatikopoulos. NR 35 TC 51 Z9 51 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 5 PY 2008 VL 20 IS 44 AR 445007 DI 10.1088/0953-8984/20/44/445007 PG 11 WC Physics, Condensed Matter SC Physics GA 360AD UT WOS:000260028500008 ER PT J AU Fowler, CJ Haverlock, TJ Moyer, BA Shriver, JA Gross, DE Marquez, M Sessler, JL Hossain, MA Bowman-James, K AF Fowler, Christopher J. Haverlock, Tamara J. Moyer, Bruce A. Shriver, James A. Gross, Dustin E. Marquez, Manuel Sessler, Jonathan L. Hossain, Md. Alamgir Bowman-James, Kristin TI Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORGANIC FRAMEWORKS; BINDING; RECEPTOR; CALIXPYRROLES; OLD AB In this communication, a new approach to enhancing the efficacy of liquid - liquid anion exchange is demonstrated. It involves the concurrent use of appropriately chosen hydrogen-bond-donating (HBD) anion receptors in combination with a traditional quaternary ammonium extractant. The fluorinated calixpyrroles 1 and 2 and the tetraamide macrocycle 4 were found to be particularly effective receptors. Specifically, their use allowed the extraction of sulfate by tricaprylmethylammonium nitrate to be effected in the presence of excess nitrate. As such, the present work provides a rare demonstration of overcoming the Hofmeister bias in a competitive environment and the first to the authors' knowledge wherein this difficult-to-achieve objective is attained using a neutral HBD-based anion binding agent under conditions of solvent extraction. C1 [Moyer, Bruce A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. Univ Texas Austin, Inst Cellular & Mol Biol, Dept Chem & Biochem, Austin, TX 78712 USA. Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. RP Moyer, BA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. EM moyerba@ornl.gov; sessler@mail.utexas.edu; kbjames@ku.edu RI Gross, Dustin/B-4249-2011; Moyer, Bruce/L-2744-2016 OI Gross, Dustin/0000-0001-8668-3380; Moyer, Bruce/0000-0001-7484-6277 FU Environmental Management Science Program of the Offices of Science and Environmental Management; U.S. DOE [DE-AC05-00OR22725]; Oak Ridge National Laboratory [DE-FG-96ER62307, DE-FG-02-04ER63741]; The Univ. of Kansas; The Univ. of Texas; NIH [GM 58907]; INEST Group (PMUSA) FX This work was sponsored by the Environmental Management Science Program of the Offices of Science and Environmental Management, U.S. DOE, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC, and under Grant Nos. DE-FG-96ER62307 and DE-FG-02-04ER63741 to The Univ. of Kansas and The Univ. of Texas, respectively. Support was also provided by the NIH (Grant GM 58907 to J.L.S.) and the INEST Group (PMUSA). NR 25 TC 59 Z9 60 U1 3 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 5 PY 2008 VL 130 IS 44 BP 14386 EP + DI 10.1021/ja806511b PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 367DT UT WOS:000260533400017 PM 18841965 ER PT J AU Allendorf, MD Houk, RJT Andruszkiewicz, L Talin, AA Pikarsky, J Choudhury, A Gall, KA Hesketh, PJ AF Allendorf, Mark D. Houk, Ronald J. T. Andruszkiewicz, Leanne Talin, A. Alec Pikarsky, Joel Choudhury, Arnab Gall, Kenneth A. Hesketh, Peter J. TI Stress-induced Chemical Detection Using Flexible Metal-Organic Frameworks SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; HKUST-1; GROWTH AB In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, ehich causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N(2) of O(2). The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthemore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO(2). Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds. C1 [Allendorf, Mark D.; Houk, Ronald J. T.; Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Andruszkiewicz, Leanne; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A.; Hesketh, Peter J.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30331 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov; ph87@mail.gatech.edu NR 13 TC 298 Z9 300 U1 45 U2 295 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 5 PY 2008 VL 130 IS 44 BP 14404 EP + DI 10.1021/ja805235k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 367DT UT WOS:000260533400026 PM 18841964 ER PT J AU Huang, LB Wiederrecht, GP Utschig, LM Schlesselman, SL Xydis, C Laible, PD Hanson, DK Tiede, DM AF Huang, Libai Wiederrecht, Gary P. Utschig, Lisa M. Schlesselman, Sandra L. Xydis, Christina Laible, Philip D. Hanson, Deborah K. Tiede, David M. TI Correlating Ultrafast Function with Structure in Single Crystals of the Photosynthetic Reaction Center SO BIOCHEMISTRY LA English DT Article ID BACTERIAL REACTION CENTERS; RHODOBACTER-SPHAEROIDES R-26; VIRIDIS REACTION CENTERS; RHODOPSEUDOMONAS-VIRIDIS; SPECTROSCOPIC PROPERTIES; ABSORPTION-SPECTROSCOPY; WAVELENGTH DEPENDENCE; ELECTRON-TRANSFER; OPTICAL-SPECTRA; LOW-TEMPERATURE AB Femtosecond transient absorbance spectroscopy was applied to the study of primary electron transfer in single reaction center crystals from Rhodobacter sphaeroides. Polarized transient absorption spectra of individual crystals are shown to correlate with polarized ground-state absorption spectra and to track cofactor transition moment directions calculated from the crystallographic structure. Electron transfer from the bacteriochlorophyll dimer to the bacteriopheophytin acceptor was found to be multiphasic in crystals and similar to 2-fold slower than in solution. This work demonstrates the ability to resolve ultrafast photosynthetic function in single crystals and allows ultrafast function to be directly correlated with structure. C1 [Huang, Libai; Utschig, Lisa M.; Schlesselman, Sandra L.; Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Huang, Libai; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Xydis, Christina; Laible, Philip D.; Hanson, Deborah K.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Tiede, DM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tiede@anl.gov FU U.S. DOE Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Supported by the U.S. DOE Office of Basic Energy Sciences under Contract DE-AC02-06CH11357. NR 33 TC 4 Z9 4 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 4 PY 2008 VL 47 IS 44 BP 11387 EP 11389 DI 10.1021/bi801026g PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 366TU UT WOS:000260507100001 PM 18847224 ER PT J AU Edwards, RA Lee, MS Tsutakawa, SE Williams, RS Tainer, JA Glover, JNM AF Edwards, Ross A. Lee, Megan S. Tsutakawa, Susan E. Williams, R. Scott Tainer, John A. Glover, J. N. Mark TI The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50 SO BIOCHEMISTRY LA English DT Article ID DNA-DAMAGE RESPONSE; X-RAY-SCATTERING; RNA-POLYMERASE-II; SMALL-ANGLE SCATTERING; BRCT REPEATS; CRYSTAL-STRUCTURE; ANKYRIN REPEAT; MACROMOLECULAR STRUCTURES; FLEXIBLE PROTEINS; IN-VIVO AB The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD] BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD[ deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase. C1 [Edwards, Ross A.; Lee, Megan S.; Glover, J. N. Mark] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. [Tsutakawa, Susan E.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Stabil, Div Life Sci, Berkeley, CA 94720 USA. [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Glover, JNM (reprint author), Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. EM mark.glover@ualberta.ca RI Williams, Robert/A-6059-2015 FU National Cancer Institute of Canada (NCIC); Alberta Heritage Foundation; NIH [CA92584]; U.S. Department of Energy [DE-AC02-05CH11231]; Alberta Synchrotron Institute FX This research was funded by grants from the National Cancer Institute of Canada (NCIC). M.S.L. gratefully acknowledges the support of an Alberta Heritage Foundation for Medical Research Studentship. Efforts involving the SIBLYS beamline at the Advanced Light Source and the SAXS studies were supported by the NIH Structural Cell Biology of DNA Repair Machines P01 Grant CA92584 and by the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy, under Contract DE-AC02-05CH11231. Synchrotron access was funded by the Alberta Synchrotron Institute. NR 74 TC 16 Z9 17 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 4 PY 2008 VL 47 IS 44 BP 11446 EP 11456 DI 10.1021/bi801115g PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 366TU UT WOS:000260507100009 PM 18842000 ER PT J AU Ro, DK Ouellet, M Paradise, EM Burd, H Eng, D Paddon, CJ Newman, JD Keasling, JD AF Ro, Dae-Kyun Ouellet, Mario Paradise, Eric M. Burd, Helcio Eng, Diana Paddon, Chris J. Newman, Jack D. Keasling, Jay D. TI Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid SO BMC BIOTECHNOLOGY LA English DT Article ID SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; OXIDATIVE STRESS; PATHWAY; TERPENOIDS; MALARIA; SOLUBILITY; METABOLISM; ACTIVATION; LONGEVITY AB Background: Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results: Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 mu g mL(-1) in shake-flask cultures and 1 g L(-1) in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast microarray further demonstrated that the induction of drug-resistant genes such as ABC transporters and major facilitator superfamily (MSF) genes is the primary cellular stress-response; in addition, oxidative and osmotic stress responses were observed in the engineered yeast. Conclusion: The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses. The use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisinic acid production in the engineered yeast. C1 [Ouellet, Mario; Burd, Helcio; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. [Ro, Dae-Kyun] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. [Paradise, Eric M.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Eng, Diana; Paddon, Chris J.; Newman, Jack D.] Amyris Biotechnol, Emeryville, CA USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. EM daekyun.ro@ucalgary.ca; mouellet@lbl.gov; paradise.eric@gmail.com; hburd@lbl.gov; Eng@amyris.com; paddon@amyris.com; newman@amyris.com; keasling@berkeley.edu RI Keasling, Jay/J-9162-2012; Ro, Dae-Kyun/G-9289-2012 OI Keasling, Jay/0000-0003-4170-6088; Ro, Dae-Kyun/0000-0003-1288-5347 FU Institute for OneWorld Health FX This research was conducted under the sponsorship of the Institute for OneWorld Health, through the generous support of The Bill and Melinda Gates Foundation. NR 46 TC 80 Z9 95 U1 2 U2 39 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6750 J9 BMC BIOTECHNOL JI BMC Biotechnol. PD NOV 4 PY 2008 VL 8 AR 83 DI 10.1186/1472-6750-8-83 PG 14 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 381LD UT WOS:000261536600001 PM 18983675 ER PT J AU Bluhm, BH Dhillon, B Lindquist, EA Kema, GHJ Goodwin, SB Dunkle, LD AF Bluhm, Burton H. Dhillon, Braham Lindquist, Erika A. Kema, Gert H. J. Goodwin, Stephen B. Dunkle, Larry D. TI Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth SO BMC GENOMICS LA English DT Article ID GRAY LEAF-SPOT; NITROGEN METABOLITE REPRESSION; MAP KINASE PATHWAYS; ASPERGILLUS-NIDULANS; SEXUAL DEVELOPMENT; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; MAGNAPORTHE-GRISEA; NEUROSPORA-CRASSA; FUNGAL VIRULENCE AB Background: The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results: A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value <= 10(-05)) to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO) classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion: Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary C1 [Bluhm, Burton H.] Univ Arkansas, Dept Plant Pathol, Fayetteville, AR 72701 USA. [Dhillon, Braham] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Lindquist, Erika A.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kema, Gert H. J.] Plant Res Int BV, NL-6700 AA Wageningen, Netherlands. [Goodwin, Stephen B.; Dunkle, Larry D.] Purdue Univ, Crop Prod & Pest Control Res Unit, USDA, ARS, W Lafayette, IN 47907 USA. RP Bluhm, BH (reprint author), Univ Arkansas, Dept Plant Pathol, Fayetteville, AR 72701 USA. EM bbluhm@uark.edu; bdhillon@purdue.edu; EALindquist@lbl.gov; gert.kema@wur.nl; Steve.Goodwin@ars.usda.gov; Larry.Dunkle@ars.usda.gov OI Goodwin, Stephen/0000-0001-5708-9729 FU USDA CRIS [3602-22000-013-00D]; Joint Genome Institute; US Department of Energy's Office of Science; Biological and Environmental Research Program; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; Lawrence Berkeley National Laboratory [DE-AC03-76SF00098]; Los Alamos National Laboratory [W-7405-ENG-36] FX We thank Corie Shaner and Kaila Zink for technical assistance and Charles Crane for assistance with bioinformatic analyses. This report constitutes ARP 2008-18287 of the Purdue University Agriculture Experiment Station. This research was supported by USDA CRIS project 3602-22000-013-00D and the Community Sequencing Program of the Joint Genome Institute. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract No. DE-AC03-76SF00098 and Los Alamos National Laboratory under contract No. W-7405-ENG-36. NR 61 TC 4 Z9 6 U1 2 U2 12 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 4 PY 2008 VL 9 AR 523 DI 10.1186/1471-2164-9-523 PG 17 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 382MA UT WOS:000261608900001 PM 18983654 ER PT J AU Machesky, ML Predota, M Wesolowski, DJ Vlcek, L Cummings, PT Rosenqvist, J Ridley, MK Kubicki, JD Bandura, AV Kumar, N Sofo, JO AF Machesky, Michael L. Predota, Milan Wesolowski, David J. Vlcek, Lukas Cummings, Peter T. Rosenqvist, Joergen Ridley, Moira K. Kubicki, James D. Bandura, Andrei V. Kumar, Nitin Sofo, Jorge O. TI Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework SO LANGMUIR LA English DT Article ID ELECTRIC DOUBLE-LAYER; MOLECULAR-DYNAMICS SIMULATION; TOTAL-ENERGY CALCULATIONS; SOLID-SOLUTION INTERFACE; AUGMENTED-WAVE METHOD; BOND-VALENCE METHODS; WATER INTERFACE; SUPERCRITICAL WATER; PK(A) PREDICTION; ZERO-POINT AB The detailed solvation structure at the (110) surface of rutile (alpha-TiO2) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 angstrom of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pH(znpc)) at 25 degrees C that agrees quantitatively with the experimentally determined value (5.4 +/- 0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pH,,, values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 degrees C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pH,,,value of the rutile (110) surface at 25 degrees C into quantitative agreement with the experimental value (4.8 +/- 0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H-bond interactions between protolyzable surface oxygen groups and water were found to be stronger than those between bulk water molecules at all temperatures investigated in our CMD simulations (25, 150 and 250 degrees C). Comparison with the protonation scheme previously determined for the (110) surface of isostructural cassiterite (alpha-SnO2) reveals that the greater extent of H-bonding on the latter surface, and in particular between water and the terminal hydroxyl group (Sn-OH) results in the predicted protonation constant for that group being lower than for the bridged oxygen (Sn-O-Sn), while the reverse is true for the rutile (110) surface. These results demonstrate the importance of H-bond structure in dictating surface protonation behavior, and that explicit use of this solvation structure within the refined MUSIC model framework results in predicted surface protonation constants that are also consistent with a variety of other experimental and computational data. C1 [Machesky, Michael L.] Illinois State Water Survey, Champaign, IL 61820 USA. [Predota, Milan] Univ S Bohemia, Inst Phys & Biophys, Fac Sci, Ceske Budejovice 37005, Czech Republic. [Predota, Milan; Vlcek, Lukas] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, CR-16502 Prague, Czech Republic. [Wesolowski, David J.; Rosenqvist, Joergen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Vlcek, Lukas; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ridley, Moira K.] Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 USA. [Kubicki, James D.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Kubicki, James D.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Bandura, Andrei V.] St Petersburg State Univ, St Petersburg, Russia. [Kumar, Nitin; Sofo, Jorge O.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Machesky, ML (reprint author), Illinois State Water Survey, 2204 Griffith Dr, Champaign, IL 61820 USA. EM machesky@uiuc.edu RI Predota, Milan/A-2256-2009; Kubicki, James/I-1843-2012; Sofo, Jorge/J-4415-2012; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013; Sofo, Jorge/B-4344-2014; Bandura, Andrei/I-2702-2013; Kumar, Nitin/M-5778-2014 OI Predota, Milan/0000-0003-3902-0992; Kubicki, James/0000-0002-9277-9044; Sofo, Jorge/0000-0003-4513-3694; Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702; Sofo, Jorge/0000-0003-4513-3694; Bandura, Andrei/0000-0003-2816-0578; Kumar, Nitin/0000-0002-1064-1659 FU U.S. Department of Energy [ERKCC41]; Office of Basic Energy Sciences; Illinois State Water Survey; Illinois Department of Natural Resources; Czech Science Foundation [203/08/0094]; Research Program "Information Society" [IET400720507]; National Science Foundation [EAR-0124001] FX This work was supported by a grant (ERKCC41) from the U.S. Department of Energy, Office of Basic Energy Sciences, Geoscience Research Program to Oak Ridge National Laboratory, which is operated by UT Battelle, LLC under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. M.L.M. also acknowledges the support of the Illinois State Water Survey and the Illinois Department of Natural Resources. M.P. acknowledges the support of the Czech Science Foundation (No. 203/08/0094) and Research Program "Information Society" (No. IET400720507). M.K.R. acknowledges the support of the National Science Foundation (EAR-0124001). The comments and criticisms of three anonymous reviewers, as well as the Senior Editor, greatly improved, the focus and clarity of the final manuscript. NR 59 TC 53 Z9 53 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 4 PY 2008 VL 24 IS 21 BP 12331 EP 12339 DI 10.1021/la801356m PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 366UL UT WOS:000260508800037 PM 18842061 ER PT J AU Shui, WQ Sheu, L Liu, J Smart, B Petzold, CJ Hsieh, TY Pitcher, A Keasling, JD Bertozzi, CR AF Shui, Wenqing Sheu, Leslie Liu, Jun Smart, Brian Petzold, Christopher J. Hsieh, Tsung-yen Pitcher, Austin Keasling, Jay D. Bertozzi, Carolyn R. TI Membrane proteomics of phagosomes suggests a connection to autophagy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE LC3; phagocytosis ID TRANS-GOLGI NETWORK; MYCOBACTERIUM-TUBERCULOSIS; ENDOPLASMIC-RETICULUM; ADAPTIVE IMMUNITY; SELF-DIGESTION; PHAGOCYTOSIS; MATURATION; ENDOSOMES; MACROPHAGES; FUSION AB Phagocytosis is the central process by which macrophage cells internalize and eliminate infectious microbes as well as apoptotic cells. During maturation, phagosomes containing engulfed particles fuse with various endosomal compartments through the action of regulatory molecules on the phagosomal membrane. In this study, we performed a proteomic analysis of the membrane fraction from latex bead-containing (LBC) phagosomes isolated from macrophages. The profile, which comprised 546 proteins, suggests diverse functions of the phagosome and potential connections to secretory processes, toll-like receptor signaling, and autophagy. Many identified proteins were not previously known to reside in the phagosome. We characterized several proteins in LBC phagosomes that change in abundance on induction of autophagy, a process that has been previously implicated in the host defense against microbial pathogens. These observations suggest crosstalk between autophagy and phagocytosis that may be relevant to the innate immune response of macrophages. C1 [Petzold, Christopher J.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shui, Wenqing; Smart, Brian; Pitcher, Austin; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sheu, Leslie; Hsieh, Tsung-yen; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn & Bioengn, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Liu, Jun] Bayer HealthCare LLC, Biol Prod Div, Berkeley, CA 94701 USA. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM keasling@berkeley.edu; crb@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU National Institutes of Health [A151622]; US Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Gregory Barton and Sarah Ewald for the kind gift of RAW cells that stably express the TLR9-HA fusion protein,.Dr. Patrick Fitzgerald for the generous offer of LC3-GFP-expressing RAW cells, Dr. Hu Cang for assistance with proteomic data analysis, and Dr. Qing Zhong for helpful discussions. This work was supported by a grant from the National Institutes of Health (A151622) and a grant from the Genomics:GTL program of the US Department of Energy (DE-AC02-05CH11231). NR 39 TC 59 Z9 59 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 4 PY 2008 VL 105 IS 44 BP 16952 EP 16957 DI 10.1073/pnas.0809218105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 372PP UT WOS:000260913800030 PM 18971338 ER PT J AU Pfleger, BF Kim, YC Nusca, TD Maltseva, N Lee, JY Rath, CM Scaglione, JB Janes, BK Anderson, EC Bergman, NH Hanna, PC Joachimiak, A Sherman, DH AF Pfleger, Brian F. Kim, Youngchang Nusca, Tyler D. Maltseva, Natalia Lee, Jung Yeop Rath, Christopher M. Scaglione, Jamie B. Janes, Brian K. Anderson, Erica C. Bergman, Nicholas H. Hanna, Philip C. Joachimiak, Andrzej Sherman, David H. TI Structural and functional analysis of AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE AsbF structure; dehydratase; siderophore; virulence factor ID LIGATION-INDEPENDENT CLONING; BACILLUS-ANTHRACIS; MARINOBACTER-HYDROCARBONOCLASTICUS; PATHOGENIC BACTERIA; SIDEROPHORE; IRON; PATHWAY; MODEL; DEHYDROQUINASE; VIRULENCE AB Petrobactin, a virulence-associated siderophore produced by Bacillus anthracis, chelates ferric iron through the rare 3,4-isomer of dihydroxybenzoic acid (3,4-DHBA). Most catechol siderophores, including bacillibactin and enterobactin, use 2,3-DHBA as a bio-synthetic subunit. Significantly, siderocalin, a factor involved in human innate immunity, sequesters ferric siderophores bearing the more typical 2,3-DHBA moiety, thereby impeding uptake of iron by the pathogenic bacterial cell. In contrast, the unusual 3,4-DHBA component of petrobactin renders the siderocalin system incapable of obstructing bacterial iron uptake. Although recent genetic and biochemical studies have revealed selected early steps in petrobactin biosynthesis, the origin of 3,4-DHBA as well as the function of the protein encoded by the final gene in the B. anthracis siderophore biosynthetic (asb) operon, asbF (BA1986), has remained unclear. In this study we demonstrate that 3,4-DHBA is produced through conversion of the common bacterial metabolite 3-dehydroshikimate (3-DHS) by AsbF-a 3-DHS dehydratase. Elucidation of the cocrystal structure of AsbF with 3,4-DHBA, in conjunction with a series of biochemical studies, supports a mechanism in which an enolate intermediate is formed through the action of this 3-DHS dehydratase metalloenzyme. Structural and functional parallels are evident between AsbF and other enzymes within the xylose isomerase TIM-barrel family. overall, these data indicate that microbial species shown to possess homologs of AsbF may, like B. anthracis, also rely on production of the unique 3,4-DHBA metabolite to achieve full viability in the environment or virulence within the host. C1 [Pfleger, Brian F.; Nusca, Tyler D.; Lee, Jung Yeop; Rath, Christopher M.; Scaglione, Jamie B.; Sherman, David H.] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA. [Pfleger, Brian F.; Nusca, Tyler D.; Lee, Jung Yeop; Rath, Christopher M.; Scaglione, Jamie B.; Sherman, David H.] Univ Michigan, Dept Med Chem, Ann Arbor, MI 48109 USA. [Pfleger, Brian F.; Nusca, Tyler D.; Lee, Jung Yeop; Rath, Christopher M.; Scaglione, Jamie B.; Sherman, David H.] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Kim, Youngchang; Maltseva, Natalia; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Kim, Youngchang; Maltseva, Natalia; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Nusca, Tyler D.; Janes, Brian K.; Anderson, Erica C.; Hanna, Philip C.; Sherman, David H.] Univ Michigan, Dept Microbiol & Immunol, Sch Med, Ann Arbor, MI 48109 USA. [Bergman, Nicholas H.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Bergman, Nicholas H.] Georgia Tech Res Inst, Electroopt Syst Lab, Atlanta, GA 30332 USA. RP Sherman, DH (reprint author), Univ Michigan, Inst Life Sci, 210 Washtenaw Ave, Ann Arbor, MI 48109 USA. EM davidhs@umich.edu FU Great Lakes Regional Center of Excellence for Bio-defense; Emerging Infectious Diseases Research [U54AI57153]; National Institutes of Health [HHSN266200400059C/N01-AI-40059, GM074942]; U.S. Department of Energy; Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We are grateful to Prof, John Frost for providing 3-DHS for assays; Prof. Carol Fierke for discussions; William Eschenfeldt and Lucy Stols for creating the vectors for this project; and Prof. Jason Gestwicki, Liangcai Gu, Nicole B. Lopanik, Tom McQuade, Zach A. Beck, Doug A. Burr, Ellen Swenson, and Robin Guo for their contributions. We thank members of the Structural Biology Center at Argonne National Laboratory for their help with data collection at the 19ID beamline. This work was supported by a development grant from the Great Lakes Regional Center of Excellence for Bio-defense and Emerging Infectious Diseases Research (Grant U54AI57153), by the Hans W. Vahlteich Professorship (to D.H.S.), and by National Institutes of Health Grant HHSN266200400059C/N01-AI-40059 (to P.C.H.). B.F.P. and J.B.S. are recipients of a Great Lakes Regional Center of Excellence postdoctoral training fellowship. Y.K. and N.M. were supported by National Institutes of Health Grant GM074942 and the U.S. Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. NR 43 TC 30 Z9 33 U1 1 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 4 PY 2008 VL 105 IS 44 BP 17133 EP 17138 DI 10.1073/pnas.0808118105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 372PP UT WOS:000260913800061 PM 18955706 ER PT J AU Carroll, MS Childs, K Jarecki, R Bauer, T Saiz, K AF Carroll, M. S. Childs, K. Jarecki, R. Bauer, T. Saiz, K. TI Ge-Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection SO APPLIED PHYSICS LETTERS LA English DT Article DE avalanche photodiodes; current density; dark conductivity; dislocation density; gallium arsenide; Ge-Si alloys; indium compounds ID LOW-TEMPERATURE; LAYERS; PHOTODETECTORS AB A Ge-Si separate absorption and multiplication avalanche photodiode (SAM-APD) is reported. The structure is grown using a low temperature in situ clean and epitaxy process, T(in situ) and T(epitaxy)150 eV is critical for this approach. (C) 2008 Published by Elsevier B.V. C1 [Lee, S.; Long, J. P.; Lucovsky, G.] N Carolina State Univ, Raleigh, NC 27695 USA. [Luening, J.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM lucovsky@ncsu.edu NR 5 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 3 PY 2008 VL 517 IS 1 BP 155 EP 158 DI 10.1016/j.tsf.2008.08.099 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 381BV UT WOS:000261510700044 ER PT J AU Olea, C Boon, EM Pellicena, P Kuriyan, J Marletta, MA AF Olea, Charles, Jr. Boon, Elizabeth M. Pellicena, Patricia Kuriyan, John Marletta, Michael A. TI Probing the Function of Heme Distortion in the H-NOX Family SO ACS CHEMICAL BIOLOGY LA English DT Article ID SOLUBLE GUANYLATE-CYCLASE; REDOX POTENTIALS; NITRIC-OXIDE; RESOLUTION STRUCTURES; REDUCTION POTENTIALS; NONPLANAR PORPHYRINS; PROTEINS; COMPLEXES; SOFTWARE; BINDING AB Hemoproteins carry out diverse functions utilizing a wide range of chemical reactivity while employing the same heme prosthetic group. It is clear from high-resolution crystal structures and biochemical studies that protein-bound hemes are, not planar and adopt diverse conformations. The crystal structure of an H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) contains the most distorted heme reported. to date. In this study, Tt H-NOX was engineered to adopt a flatter heme by mutating proline 115, a conserved residue in the H-NOX family, to alanine.-Decreasing heme distortion in Tt H-NOX increases affinity for oxygen and decreases the reduction potential of the heme iron. Additionally, flattening the heme associated with significant shifts in the N-terminus of the protein. These results show a clear link between the heme conformation and Tt H-NOX structure and demonstrate that heme distortion is an important determinant for maintaining biochemical properties in H-NOX proteins. C1 [Olea, Charles, Jr.; Pellicena, Patricia; Kuriyan, John; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Boon, Elizabeth M.; Kuriyan, John; Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John; Marletta, Michael A.] Lawrence Berkeley Natl Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM marietta@berkeley.edu OI Boon, Elizabeth/0000-0003-1891-839X FU National Institutes of Health [GM070671]; Eugene Cota-Robles Fellowship FX This work was supported by the National Institutes of Health grant GM070671 and a Eugene Cota-Robles Fellowship to C.O. We are grateful to Debora Makino, Meindert Lamers, Xeuwu Zhang, Nick Levinson, and members of the Kuriyan laboratory for assistance and advice during structure refinement. We thank Wendy Belliston-Bittner, Jay Winkler, and Harry Gray at the Beckman Institute Laser Resource Center at the California Institute of Technology for their essential help in measuring oxygen association rates. We thank Katelyn Connell and Matthew Volgraf for initial studies with the P115A mutant. We thank members of the M.A.M. and J.K. laboratories for helpful discussions and review of the manuscript. We also thank Mark Hargrove (University of lowa) for instruction on redox potential measurements. NR 41 TC 68 Z9 68 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD NOV PY 2008 VL 3 IS 11 BP 703 EP 710 DI 10.1021/cb800185h PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 375NL UT WOS:000261120500005 PM 19032091 ER PT J AU Satishkumar, BC Doorn, SK Baker, GA Dattellbaum, AM AF Satishkumar, B. C. Doorn, Stephen K. Baker, Gary A. Dattellbaum, Andrew M. TI Fluorescent Single Walled Carbon Nanotube/Silica Composite Materials SO ACS NANO LA English DT Article DE carbon nanotubes; fluorescence; sol-gel; silica; dsensing; DGS; NIR ID NEAR-INFRARED FLUORESCENCE; LUMINESCENCE; PROTONATION; DISPERSION; SEPARATION; OXIDATION AB We present a new approach for the preparation of single walled carbon nanotube silica composite materials that retain the intrinsic fluorescence characteristics of the encapsulated nanotubes. Incorporation of isolated nanotubes into optically transparent matrices, such as sol-gel prepared silica, to take advantage of their near-infrared emission properties for applications like sensing has been a challenging task. In general, the alcohol solvents and acidic conditions required for typical sol-gel preparations disrupt the nanotube/surfactant assembly and cause the isolated nanotubes to aggregate leading to degradation of their fluorescence properties. To overcome these issues, we have used a sugar alcohol modified silica precursor molecule, diglycerylsilane, for encapsulation of nanotubes in silica under aqueous conditions and at neutral pH. The silica/nanotube composite materials have been prepared as monoliths, at least 5 mm thick, or as films (< 1 mm) and were characterized using fluorescence and Raman spectroscopy. In the present work we have investigated the fluorescence characteristics of the silica encapsulated carbon nanotubes by means of redox doping studies as well as demonstrated their potential for biosensing applications. Such nanotube/silica composite systems may allow for new sensing and imaging applications that are not currently achievable. C1 [Satishkumar, B. C.; Dattellbaum, Andrew M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Doorn, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dattellbaum, AM (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM amdattel@lanl.gov RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 FU Department of Energy, Basic Energy Sciences FX The authors would like to thank H.-L. Wang for the biotinylated-anthracene and the Department of Energy, Basic Energy Sciences, for providing funding for this work. NR 38 TC 34 Z9 35 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2008 VL 2 IS 11 BP 2283 EP 2290 DI 10.1021/nn8003839 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 376QZ UT WOS:000261199400014 PM 19206394 ER PT J AU Zhang, XH Berry, BC Yager, KG Kim, S Jones, RL Satija, S Pickel, DL Douglas, JF Karim, A AF Zhang, Xiaohua Berry, Brian C. Yager, Kevin G. Kim, Sangcheol Jones, Ronald L. Satija, Sushil Pickel, Deanna L. Douglas, Jack F. Karim, Alamgir TI Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films SO ACS NANO LA English DT Article DE block copolymer films; surface morphology diagram; residual solvent ID POLYMER-FILMS; SOLVENT EVAPORATION; ARRAYS; ORIENTATION; SCATTERING; GROWTH; DOMAIN AB We investigate the effect of the ordering temperature (T) and film thickness (h(f)) on the surface Morphology of flow-coated block copolymer (BCP) films of asymmetric poly(styrene-block-methyl methacrylate). Morphology transitions observed on the ordered film surface by atomic force microscopy (AFM) are associated with a perpendicular to a parallel cylinder BCP microphase orientation transition with respect to the substrate with increasing h(f). "Hybrid" surface patterns for intermediate h, between these limiting morphologies are correspondingly interpreted by a coexistence of these two BCP microphase orientations so that two "transitional" h(f) exist for each T. This explanation of our surface patterns is supported by both neutron reflectivity and rotational SANS measurements. The transitional h(f) values as a function of T define upper and lower surface morphology transition lines, h(fu) (T) and h(fl) (T) respectively, and a surface morphology diagram that should be useful in materials fabrication. Surprisingly, the BCP film surface morphology depends on the method of film formation (flow-coated versus spun-cast films) so that nonequilibrium effects are evidently operative. This morphological variability is attributed primarily to the trapping of residual solvent (toluene) within the film (quantified by neutron reflectivity) due to film vitrification while drying. This effect has significant implications for controlling film structure in nanomanufacturing applications based on BCP templates. C1 [Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Douglas, Jack F.; Karim, Alamgir] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Satija, Sushil] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Pickel, Deanna L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Douglas, JF (reprint author), NIST, Div Polymers, Gaithersburg, MD 20899 USA. EM jack.douglas@nist.gov; alamgir.karim@nist.gov RI Pickel, Deanna/E-4778-2010; Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU NIST-National Research Council Fellowship; National Institute of Standards and Technology; U.S. Department of Commerce; Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX B. C. Berry acknowledges the support of a NIST-National Research Council Fellowship. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (CNMS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We also thank David Uhrig at CNMS for help with the synthesis of the deuterated block-copolymers. NR 37 TC 52 Z9 52 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2008 VL 2 IS 11 BP 2331 EP 2341 DI 10.1021/nn800643x PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 376QZ UT WOS:000261199400020 PM 19206400 ER PT J AU Akhtar, R Daymond, MR Almer, JD Mummery, PM AF Akhtar, R. Daymond, M. R. Almer, J. D. Mummery, P. M. TI Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction SO ACTA BIOMATERIALIA LA English DT Article DE Antler; Trabecular bone; Synchrotron X-ray diffraction; Apatite strains; Compression ID NEUTRON-DIFFRACTION; CANCELLOUS BONE; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION; LOAD-TRANSFER; MICRODAMAGE; STRESSES; DEFORMATION; ORIENTATION; COMPOSITES AB The microstructure and associated mechanical properties of antler trabecular bone have been studied using a variety of techniques. The local trabeculae properties, as well as the three-dimensional architecture were characterized using nanoindentation and X-ray microtomography, respectively. An elastic modulus of 10.9 +/- 1.1 GPa is reported for dry bone, compared with 5.4 +/- 0.9 GPa for fully hydrated bone. Trabeculae thickness and separation were found to be comparable to those of bovine trabecular bone. Uniaxial compression conducted in situ during X-ray microtomography showed that antler can undergo significant architectural rearrangement, dominated by trabeculae bending and buckling, due to its low mineral content. High-energy synchrotron X-ray diffraction was used to measure elastic strains in the apatite crystals of the trabeculae, also under in situ uniaxial compression. During elastic loading, strain was found to be accommodated largely by trabeculae aligned parallel to the loading direction. Prior to the macroscopic yield point, internal strains increased as trabeculae deformed by bending, and load was also found to be redistributed to trabeculae aligned non-parallel to the loading direction. Significant bending of trabecular walls resulted in tensile strains developing in trabeculae aligned along the loading direction. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Akhtar, R.; Mummery, P. M.] Univ Manchester, Sch Mat, Manchester M1 7HS, Lancs, England. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. RP Akhtar, R (reprint author), Univ Manchester, Sch Mat, Grosvenor St, Manchester M1 7HS, Lancs, England. EM riaz.akhtar@manchester.ac.uk RI Akhtar, Riaz/D-3139-2012; OI Akhtar, Riaz/0000-0002-7963-6874; Daymond, Mark/0000-0001-6242-7489 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX One of the authors (R.A) would like to thank EPSRC for funding and Professor R.J. Cernik for useful discussions. Use of the Advanced Photon Source was Supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 42 TC 28 Z9 28 U1 2 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD NOV PY 2008 VL 4 IS 6 BP 1677 EP 1687 DI 10.1016/j.actbio.2008.05.008 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 377LT UT WOS:000261253400011 PM 18555757 ER PT J AU Yeates, TO Yu, F AF Yeates, Todd O. Yu, Feng TI Equations for determining tetartohedral twin fractions SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID INTENSITY STATISTICS; MACROMOLECULAR CRYSTALS; MEROHEDRY; REFINEMENT AB In most cases of merohedral twinning, two different twin-domain orientations are present. A rarer type of merohedral twinning exists in which there are four different twin-domain orientations. The former case is referred to as hemihedral twinning, while the latter more complex type is referred to as tetartohedral twinning. In tetartohedral twinning, each observed reflection is the weighted sum of four twin-related but otherwise independent reflection intensities. The weights that determine how the true crystallographic intensities combine to give the observed intensities are described by four twin fractions representing the fractional volumes of the four different domain orientations within the specimen. Here, equations are developed to determine values for the four tetartohedral twin fractions based on a statistical comparison of quadruplets of twin-related reflections. Knowledge of the twin fractions is important in working backwards to obtain values for the true crystallographic intensities. Use of the equations is demonstrated with synthetic intensity data simulated according to given values of the twin fractions. C1 [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. [Yeates, Todd O.] Univ Calif Los Angeles, US DOE, Inst Genom & Prote, Los Angeles, CA USA. [Yu, Feng] Chinese Acad Sci, Shanghai Inst Appl Phys, Beijing 100864, Peoples R China. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU BER program of the DOE Office of Science FX The authors thank Jian-Hua He, Doug Rees, Yingssu Tsai and George Sheldrick for critical readings of the manuscript, and the BER program of the DOE Office of Science for support. NR 21 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2008 VL 64 BP 1158 EP 1164 DI 10.1107/S0907444908028928 PN 11 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 362KZ UT WOS:000260197900008 PM 19020354 ER PT J AU Boro, BJ Dickie, DA Duesler, EN Goldberg, KI Kemp, RA AF Boro, Brian J. Dickie, Diane A. Duesler, Eileen N. Goldberg, Karen I. Kemp, Richard A. TI [2,6-Bis(di-tert-butylphosphinomethyl)phenyl-kappa(3)P,C(1),P '](nitrato-kappa O)nickel(II) SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID MOLECULAR-OXYGEN; INSERTION; BOND AB The Ni(II) atom in the title compound, [Ni(C(24)H(43)P(2))(NO(3))], adopts a distorted square-planar geometry with the P atoms in a trans arrangement. The compound contains a twofold rotational axis with the nitrate group offset from this axis, except for an O atom of the nitrate group, generating two positions of 50% occupancy for the other atoms of the nitrate group. C1 [Boro, Brian J.; Dickie, Diane A.; Duesler, Eileen N.; Kemp, Richard A.] 1 Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Goldberg, Karen I.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), 1 Univ New Mexico, Dept Chem & Chem Biol, MSC03 2060, Albuquerque, NM 87131 USA. EM rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD) and the Department of Energy [DE-FG02-06ER15765]; National Science Foundation CRIF: MU award t [CHE-0443580]; Sandia Corporation, a Lockheed Martin Company [DE-AC04-94AL85000] FX Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD) and the Department of Energy (DE-FG02-06ER15765). The diffractometer was purchased via a National Science Foundation CRIF: MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract No. DE-AC04-94AL85000. NR 12 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD NOV PY 2008 VL 64 BP M1402 EP U498 DI 10.1107/S1600536808032376 PN 11 PG 10 WC Crystallography SC Crystallography GA 368FU UT WOS:000260607800044 PM 21580852 ER PT J AU Derry, PJ Wang, XP Smucker, BW AF Derry, Paul J. Wang, Xiaoping Smucker, Bradley W. TI Tetrapyrazineplatinum(II) bis(tetra-fluoroborate) acetonitrile hemisolvate SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID PLATINUM(II); EXCHANGE; PYRAZINE AB The improved synthesis and characterization of tetrapyrazine-platinum(II) bis(tetrafluoroborate) acetonitrile hemisolvate, [Pt(C(4)H(4)N(2))(4)](BF(4))(2)center dot 0.5CH(3)CN, is reported. The unit cell contains a half equivalent of an acetonitrile solvent molecule per tetrapyrazineplatinum(II) ion. The coordination geometry of the Pt II ion is almost square-planar, with the Pt atom residing on an inversion center. The BF(4)(-) counter-anion, located at a general position, has an idealized tetrahedral geometry and an acetonitrile solvent molecule, the methyl group of which is disordered over two equal positions, sits on a twofold rotation axis. C1 [Derry, Paul J.; Smucker, Bradley W.] Austin Coll, Dept Chem, Sherman, TX 75090 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Smucker, BW (reprint author), Austin Coll, Dept Chem, 900 N Grand, Sherman, TX 75090 USA. EM bsmucker@austincollege.edu RI Wang, Xiaoping/E-8050-2012; OI Wang, Xiaoping/0000-0001-7143-8112; Derry, Paul/0000-0001-6791-8586 FU Welch Foundation [AD-0007] FX This research was funded by a chemistry department grant from the Welch Foundation (grant No. AD-0007). X-ray data were collected at the University of North Texas. We are grateful to Guido F. Verbeck at UNT for the MS measurements. NR 12 TC 2 Z9 2 U1 1 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD NOV PY 2008 VL 64 BP M1449 EP U954 DI 10.1107/S1600536808033679 PN 11 PG 9 WC Crystallography SC Crystallography GA 368FU UT WOS:000260607800080 PM 21580888 ER PT J AU Jude, H White, PS Dattelbaum, DM Rocha, RC AF Jude, Hershel White, Peter S. Dattelbaum, Dana M. Rocha, Reginaldo C. TI trans-Diaquabis(2,2 '-bipyridine-kappa(2)N,N ')ruthenium(II) bis(trifluoromethanesulfonate) SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID COMPLEXES AB The title compound, trans-[Ru(bpy)(2)(H(2)O)(2)](CF(3)SO(3))(2) (bpy = 2,2'-bipyridine, C(10)H(8)N(2)), crystallized from the decomposition of an aged aqueous solution of a dimeric complex of cis-Ru(bpy)(2) in 0.1 M triflic acid. The Ru(II) ion is located on a crystallographic inversion center and exhibits a distorted octahedral coordination with equivalent ligands trans to each other. The Ru-O distance is 2.1053 (16) angstrom and the Ru-N distances are 2.0727 (17) and 2.0739 (17) angstrom. The bpy ligands are bent, due to inter-ligand steric interactions between H atoms of opposite pyridyl units across the Ru center. The crystal structure exhibits an extensive hydrogen-bonding network involving the water ligands and the trifluoromethanesulfonate counter-ions within two-dimensional layers, although no close hydrogen-bond interactions exist between different layers. C1 [Jude, Hershel; Rocha, Reginaldo C.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [White, Peter S.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Dattelbaum, Dana M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jude, H (reprint author), Los Alamos Natl Lab, MPA CINT, Mail Stop G755, Los Alamos, NM 87545 USA. EM judeh3@lanl.gov FU US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL FX Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged. NR 8 TC 3 Z9 3 U1 2 U2 9 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD NOV PY 2008 VL 64 BP M1388 EP U377 DI 10.1107/S1600536808028195 PN 11 PG 11 WC Crystallography SC Crystallography GA 368FU UT WOS:000260607800033 PM 21580841 ER PT J AU Ottley, LAM Rodriguez, MA Boyle, TJ AF Ottley, Leigh Anna M. Rodriguez, Mark A. Boyle, Timothy J. TI 2-(Hydroxymethyl)pyridinium chloride SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article AB In the title molecular salt, C(6)H(8)NO(+)center dot Cl(-), the packing is consolidated by N-H center dot center dot center dot Cl and O-H center dot center dot center dot Cl hydrogen bonds, resulting in the formation of [010] chains of alternating cations and anions. C1 [Ottley, Leigh Anna M.; Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Labs, Albuquerque, NM 87106 USA. [Rodriguez, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ottley, LAM (reprint author), Sandia Natl Labs, Adv Mat Labs, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM laottle@sandia.gov FU Office of Basic Energy Science; US Department of Energy [DE-AC04-94 A L85000] FX For support of this research, the authors thank the Office of Basic Energy Science and the US Department of Energy under Contract DE-AC04-94 A L85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 7 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD NOV PY 2008 VL 64 BP O2233 EP U3026 DI 10.1107/S1600536808034922 PN 11 PG 8 WC Crystallography SC Crystallography GA 368FU UT WOS:000260607800280 PM 21581087 ER PT J AU Groger, R Bailey, AG Vitek, V AF Groeger, R. Bailey, A. G. Vitek, V. TI Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2 < 111 > screw dislocations at 0 K SO ACTA MATERIALIA LA English DT Review DE Atomistic modeling; Dislocations; Peierls stress; Schmid law; Bond Order Potential ID CENTERED-CUBIC METALS; NIOBIUM SINGLE-CRYSTALS; BOND-ORDER POTENTIALS; PURITY VANADIUM CRYSTALS; BCC TRANSITION-METALS; TO-DUCTILE TRANSITION; FLOW-STRESS; ANOMALOUS SLIP; MOLECULAR-DYNAMICS; AB-INITIO AB Owing to their non-planar cores, 1/2 < 111 > screw dislocations govern the plastic deformation of body-centered cubic (bee) metals. Atomistic studies of the glide of these dislocations at 0 K have been performed using Bond Order Potentials for molybdenum and tungsten that account for the mixed metallic and covalent bonding in transition metals. When applying pure shear stress in the slip direction significant twinning-antitwinning asymmetry is displayed for molybdenum but not for tungsten. However, for tensile/compressive loading the Schmid law breaks down in both metals, principally due to the effect of shear stresses perpendicular to the slip direction that after the dislocation core. Recognition of this phenomenon forms a basis for the development of physically based yield criteria that capture the breakdown of the Schmid law in bee metals. Moreover, dislocation glide may be preferred on {110} planes other than the most highly stressed one, which is reminiscent of the anomalous slip observed in many bee metals. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Groeger, R.; Bailey, A. G.; Vitek, V.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Groeger, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bailey, A. G.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Groger, R (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM groger@lanl.gov RI Groger, Roman/G-3608-2010 FU Department of Energy, BES [DE-PG02-98ER45702] FX This research was supported by the Department of Energy, BES Grant No. DE-PG02-98ER45702. During the course of this research we have benefited from extensive discussions with Prof. John Bassani and Dr. Vikranth Racherla (University of Pennsylvania). We also gratefully acknowledge the collaboration on development and use of Bond Order Potentials with Dr. Duc Nguyen-Manh (UKAEA, Culham Research Center) and Dr. Matous Mrovec (Fraunhofer Institut fur Werkstoffmechanik, Germany). NR 116 TC 89 Z9 90 U1 7 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5401 EP 5411 DI 10.1016/j.actamat.2008.07.018 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500006 ER PT J AU Groger, R Racherla, V Bassani, JL Vitek, V AF Groeger, R. Racherla, V. Bassani, J. L. Vitek, V. TI Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2 < 111 > screw dislocations SO ACTA MATERIALIA LA English DT Article DE Non-glide stresses; Yield criterion; Non-associated flow; Yield surface; Strength differential ID CENTERED-CUBIC METALS; PURITY VANADIUM CRYSTALS; ANOMALOUS SLIP; FLOW-STRESS; CONSTITUTIVE RELATIONS; NONASSOCIATED FLOW; CORE STRUCTURE; BEHAVIOR; STRAIN; LOCALIZATION AB Based on the atomistic studies presented in Part 1, we develop analytical yield criteria for single crystals that capture the effect of shear stresses other than the Schmid stress (non-glide stresses) on the shear stress needed for dislocation glide (Peierls stress). These yield criteria characterize a non-associated plastic flow that originates owing to the complex response of 1/2 < 111 > screw dislocations to an applied stress tensor. Employing these criteria, we identify the operative slip systems for tensile/compressive loading along various axes within the standard stereographic triangle and determine the ensuing tension-compression asymmetry. This result is in an excellent qualitative agreement with available experimental data. Moreover, using the constructed yield criteria within the Taylor homogenization procedure, we demonstrate that effects associated with non-planar cores of screw dislocations persist in random polycrystals. This affects significantly critical phenomena such as shear localization, which is demonstrated by analyzing the cavitation in a ductile plastic solid. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Groeger, R.; Vitek, V.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Groeger, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Racherla, V.; Bassani, J. L.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. [Racherla, V.] Ecole Polytech, Dept Mecan, F-91128 Palaiseau, France. RP Groger, R (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM groger@lanl.gov RI Groger, Roman/G-3608-2010 FU Department of Energy, BES [DE-PG02-98ER45702]; NSF; DMR [02-19243]; DOE/ASCI through Lawrence Livermore National Laboratory FX This research was supported by the Department of Energy, BES Grant No. DE-PG02-98ER45702 (R.G. and V.V.), the NSF Grant No. DMR 02-19243, and by DOE/ASCI through Lawrence Livermore National Laboratory (N.R. and J.L.B.). NR 64 TC 61 Z9 61 U1 5 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5412 EP 5425 DI 10.1016/j.actamat.2008.07.037 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500007 ER PT J AU Groger, R Vitek, V AF Groeger, R. Vitek, V. TI Multiscale modeling of plastic deformation of molybdenum and tungsten. III. Effects of temperature and plastic strain rate SO ACTA MATERIALIA LA English DT Article DE Peierls potential; Peierls barrier; Temperature; Strain rate; Transition path ID CENTERED-CUBIC METALS; HIGH-PURITY MOLYBDENUM; KINKED SCREW DISLOCATIONS; NIOBIUM SINGLE-CRYSTALS; BOND-ORDER POTENTIALS; BCC TRANSITION-METALS; ANOMALOUS SLIP; FLOW-STRESS; ATOMISTIC SIMULATION; ORIENTATION DEPENDENCE AB In this paper, we develop a link between the atomic-level modeling of the glide of 1/2 < 111 > screw dislocations at 0 K and the thermally activated motion of these dislocations via nucleation of pairs of kinks. For this purpose, we introduce the concept of a hypothetical Peierls barrier, which reproduces all the aspects of the dislocation glide at 0 K resulting from the complex response to non-glide stresses expressed in a compact form by the yield criteria advanced in Part II. To achieve this, the barrier is dependent not only on the crystal symmetry and interatomic bonding but also on the applied stress tensor. Standard models are then employed to evaluate the activation enthalpy of kink-pair formation, which is now also a function of the full applied stress tensor. The transition state theory then links this mechanism with the temperature and strain rate dependence of the yield stress. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Groeger, R.; Vitek, V.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Groeger, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Groger, R (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM groger@lanl.gov RI Groger, Roman/G-3608-2010 NR 70 TC 51 Z9 51 U1 7 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5426 EP 5439 DI 10.1016/j.actamat.2008.07.027 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500008 ER PT J AU Ott, RT Heggen, M Feuerbacher, M Park, ES Kim, DH Kramer, MJ Besser, MF Sordelet, DJ AF Ott, R. T. Heggen, M. Feuerbacher, M. Park, E. S. Kim, D. H. Kramer, M. J. Besser, M. F. Sordelet, D. J. TI Anelastic strain and structural anisotropy in homogeneously deformed Cu64.5Zr35.5 metallic glass SO ACTA MATERIALIA LA English DT Article DE Metallic glasses; Compression test; Synchrotron radiation; X-ray diffraction (XRD) ID EXCESS FREE-VOLUME; X-RAY-DIFFRACTION; PLASTIC-DEFORMATION; MOLECULAR-DYNAMICS; FLOW; ALLOY AB Using plastic deformation tests and high-energy X-ray scattering, we examined the anelastic strain and Structural anisotropy in a binary Cu64.5Zr35.5 metallic glass deformed homogeneously under uniaxial compression at 425 degrees C, which is approximately 60 degrees C below the glass transition temperature. For a sample quenched immediately after deformation, we find that the atomic Structure observed by X-ray scattering is anisotropic with the average bond length parallel to the loading axis being smaller than that of an undeformed, structurally relaxed reference sample, while the average bond length normal to the loading axis is dilated relative to the same reference sample. For it different sample annealed at 425 degrees C for 500 s immediately following deformation, the magnitude of the structural anisotropy decreases as anelastic strain is recovered. The relationship between the atomic-scale Structural rearrangements that occur during annealing and the macroscopic anelastic strain recovery is discussed. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ott, R. T.; Kramer, M. J.; Besser, M. F.; Sordelet, D. J.] US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Heggen, M.; Feuerbacher, M.] Forschungszentrum Julich GmbH, Inst Mikrostrukturforsch, Julich, Germany. [Park, E. S.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kim, D. H.] Yonsei Univ, Dept Met Engn, Ctr Noncrystalline Mat, Seoul 120749, South Korea. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Ott, RT (reprint author), US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM rtott@ameslab.gov RI Park, Eun Soo/A-4443-2008; Kim, Do Hyang/J-6575-2012; bang, changwook/J-7922-2012; Feuerbacher, Michael/K-3768-2013; Heggen, Marc/K-5099-2013; Park, Eun Soo/A-9860-2014 OI Feuerbacher, Michael/0000-0003-2882-4960; Heggen, Marc/0000-0002-2646-0078; FU United States Department of Energy; Office of Basic Energy Sciences; Ames Laboratory [DE-AC02-07CH11358]; Advanced Photon Source [DE-AC02-06CH11357] FX The authors gratefully acknowledge Frans Spaepen for helpful discussions. This work was supported by the United States Department of Energy, Office of Basic Energy Sciences as follows: efforts at the Ames Laboratory were supported tinder Contract No. DE-AC02-07CH11358 and use of the Advanced Photon Source was supported under Contract No. DE-AC02-06CH11357. NR 33 TC 8 Z9 8 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5575 EP 5583 DI 10.1016/j.actamat.2008.07.028 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500022 ER PT J AU Jarmakani, HN Bringa, EM Erhart, P Remington, BA Wang, YM Vo, NQ Meyers, MA AF Jarmakani, H. N. Bringa, E. M. Erhart, P. Remington, B. A. Wang, Y. M. Vo, N. Q. Meyers, M. A. TI Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals SO ACTA MATERIALIA LA English DT Article DE Shock compression; Molecular dynamics; Nickel; Nanocrystalline metals; Twinning ID COPPER-ALUMINUM ALLOYS; GRAIN-SIZE; PLASTIC-DEFORMATION; PERFECT CRYSTALS; SINGLE-CRYSTALS; INTERATOMIC POTENTIALS; WAVE DEFORMATION; NANOPHASE METALS; RATE SENSITIVITY; CELL-SIZE AB Shock compression of mono- and nanocrystalline (nc) nickel is simulated over a range of pressures (10-80 GPa) and compared with experimental results. Contributions to the strain from the various mechanisms of plastic deformation such as partial dislocations, perfect dislocations and twins are quantified in the nc samples. The effect of stress unloading, a phenomenon often neglected in MD simulations, on dislocation behavior is computed. It is shown that a large fraction of the dislocations generated during compression is annihilated upon unloading. The present analysis resolves a disagreement consistently observed between MD computations and experimental results. Analytical models are applied to predict the critical pressures for the cell-to-stacking-fault transition and the onset of twinning as a function of grain-size and stacking-fault energy (through the addition of tungsten). These predictions are successfully compared with experimental results. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jarmakani, H. N.; Meyers, M. A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, Mat Sci & Engn Program, La Jolla, CA 92093 USA. [Bringa, E. M.; Erhart, P.; Remington, B. A.; Wang, Y. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vo, N. Q.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Jarmakani, H. N.; Meyers, M. A.] Univ Calif San Diego, Dept Nanoengn, Mat Sci & Engn Program, La Jolla, CA 92093 USA. RP Meyers, MA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM mameyers@mae.ucsd.edu RI Vo, Nhon/E-4599-2010; Bringa, Eduardo/F-8918-2011; Erhart, Paul/G-6260-2011; Meyers, Marc/A-2970-2016; Wang, Yinmin (Morris)/F-2249-2010 OI Erhart, Paul/0000-0002-2516-6061; Meyers, Marc/0000-0003-1698-5396; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU UCOP through the Institute for Laser Science; ILSA [W-7405-Eng-48]; US DOE-BES [DEFG02-91ER45439] FX This work was funded by the UCOP through the Institute for Laser Science and Applications, Under ILSA Contract No. W-7405-Eng-48. The Ni-W specimens were kindly provided by Prof. C. Schuh, MIT. The help provided by Dr. D. Correll is gratefully acknowledged. Parts of this work were also Supported by US DOE-BES, Under Grant No. DEFG02-91ER45439. NR 90 TC 48 Z9 49 U1 3 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5584 EP 5604 DI 10.1016/j.actamat.2008.07.052 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500023 ER PT J AU Wang, J Hoagland, RG Hirth, JP Misra, A AF Wang, J. Hoagland, R. G. Hirth, J. P. Misra, A. TI Atomistic modeling of the interaction of glide dislocations with "weak" interfaces SO ACTA MATERIALIA LA English DT Article DE Molecular dynamics; Dislocation; Interfaces; Multilayers; Slip transmission ID NANOSCALE CU/NB MULTILAYERS; METALLIC MULTILAYERS; LAYERED COMPOSITES; SCREW DISLOCATION; CU; STRENGTH; SIMULATIONS; MECHANISMS; SLIP; NI AB Using atomistic modeling and anisotropic elastic theory, the interaction of glide dislocations with interfaces in a Model Cu-Nb system was explored. The incoherent Cu-Nb interfaces have relatively low shear strength and are referred to as "weak" interfaces. This work shows that Such interfaces are very strong traps for glide dislocations and, thus, effective barriers for slip transmission. The key aspects of the glide dislocation-interface interactions are as follows. (i) The weak interface is readily sheared under the stress field of an impinging glide dislocation. (ii) The sheared interface generates an attractive force oil the glide dislocation, leading to the absorption of dislocation in the interface. (iii) Upon entering the interface, the glide dislocation core readily spreads into an intricate pattern within the interface. Consequently, the glide dislocations in both Cu and Nb crystals are energetically favored to enter the interface when the), are located within 1.5 nm from the interface. In addition to the trapping of dislocations in weak interfaces, this paper also discusses geometric factors Such as the crystallographic discontinuity of slip systems across the Cu/Nb interfaces, which contribute to the difficulty of dislocation transmission across all interface. The implications of these findings to the unusually high strengths experimentally measured in CU/Nb nanolayered composites are discussed. Published by Elsevier Ltd oil behalf of Acta Materialia Inc. C1 [Wang, J.; Hoagland, R. G.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Hirth, J. P.; Misra, A.] Los Alamos Natl Lab, Mat Phys & Appl Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Office of Basic Sciences FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Sciences. NR 37 TC 126 Z9 129 U1 5 U2 68 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5685 EP 5693 DI 10.1016/j.actamat.2008.07.041 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500031 ER PT J AU Hirth, JP Mitchell, TE AF Hirth, J. P. Mitchell, T. E. TI The role of interface structure in oxidation reactions SO ACTA MATERIALIA LA English DT Article DE Oxidation; Sulfidation; Metal-scale interface; Disconnections; Scale fracture ID HIGH-TEMPERATURE OXIDATION; GROWTH-KINETICS; SCALE GROWTH; PHASE-TRANSFORMATIONS; LATERAL GROWTH; IONIC-CRYSTALS; PURE NICKEL; DISLOCATIONS; DEFECTS; LEDGES AB The dynamics of the scale-metal interface exhibits an asymmetry in behavior in oxidation and other sealing reactions depending on whether the mechanism is one of cation or anion-diffusion. For the cation case, the growth step is at the free surface and line defects at the metal-scale interface serve to annihilate vacancies in the scaling mechanism. For the anion case, the growth step is at the scale-metal interface. Disconnections and dislocations provide the growth sites for the reaction and both their topological and elastic properties influence the mechanism. Scaling reactions to form nickel oxide and molybdenum disulfide are considered as examples. Conditions favoring scale fracture are discussed. The results are related to the reactive element effect and to the significance of the Pilling-Bedworth ratio. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Hirth, J. P.; Mitchell, T. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mitchell, TE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM temitchell@lanl.gov FU Department of Energy, Office of Science, Office of Basic Energy Sciences FX This research was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors are grateful to R.A. Rapp and B. Pieraggi for helpful comments on the manuscript and for many useful discussions of scaling reactions. NR 36 TC 7 Z9 7 U1 3 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5701 EP 5707 DI 10.1016/j.actamat.2008.07.058 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500033 ER PT J AU Shekhar, S King, AH AF Shekhar, Shashank King, Alexander H. TI Strain fields and energies of grain boundary triple junctions SO ACTA MATERIALIA LA English DT Article DE Grain boundaries; Triple junctions; Dislocations; Disclinations; Nanocrystalline materials ID GEOMETRY; COPPER; FILMS; AL AB We compute the strain fields and the interactions between dislocations at the junctions of classical small-angle grain boundaries. It is shown that, in contrast with the results for infinite small-angle boundaries, there are always forces acting on the dislocations in the arrays that define the grain boundaries, and that there is also a long-range strain field and consequently an excess elastically stored energy associated with the triple junction (TJ). We explore the variations of the forces on the dislocations, and the excess stored energy of the TJ, with the dihedral angles formed by the grain boundaries and also with their misorientations. We find that the "equilibrium" dihedral angle based upon the Herring equation and the energies of the individual grain boundaries does not generally correspond to any kind of force or energy minimum. This relates to an unwarranted assumption in Herring's original derivation, that no interactions occur between the grain boundaries that make up a TJ. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shekhar, Shashank; King, Alexander H.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP King, AH (reprint author), Ames Lab, Ames, IA 50011 USA. EM alexking@ameslab.gov RI King, Alexander/B-3148-2012; King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-9677-3769; King, Alexander/0000-0001-7101-6585 FU National Science Foundation's Division of Materials Research [0504813] FX This work was performed with support provided by the National Science Foundation's Division of Materials Research, Grant No. 0504813. NR 23 TC 16 Z9 16 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5728 EP 5736 DI 10.1016/j.actamat.2008.07.053 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500036 ER PT J AU Al-Fadhalah, KJH Li, CM Beaudoin, AJ Korzekwa, DA Robertson, IM AF Al-Fadhalah, Khaled Jabr Hasan Li, Chun-Ming Beaudoin, A. J. Korzekwa, D. A. Robertson, I. M. TI Microplastic processes developed in pure Ag with mesoscale annealing twins SO ACTA MATERIALIA LA English DT Article DE Tension test; Transmission electron microscopy; Silver; Plastic deformation ID SLIP TRANSFER MECHANISMS; GRAIN-BOUNDARIES; PLASTIC-DEFORMATION; FCC METALS; HCP METALS; DISLOCATION EMISSION; POLYCRYSTALS; INTERFACES; COPPER; SIZE AB The impact of annealing twin boundaries with a high residual defect content on the mechanical response of polycrystalline fine- and coarse-grained (2 and 20 mu m) silver was investigated through transmission electron microscopy and modeling. Besides an increase in the yield strength, the fine-grained material exhibited an inflection in the stress-strain curve after initial yield. Static and dynamic TEM studies revealed that the annealing twin boundaries acted as sources of perfect dislocations, partial dislocations and deformation twins; as barriers to the propagation of these dislocations; and as annihilation sites for dislocations. With increasing strain and as the twin boundaries were penetrated by dislocations, they contributed less to the overall mechanical properties. Based on these observations, equations for the evolution of mobile and forest dislocation densities are posed, depicting boundary sources and dislocation-dislocation interactions, respectively. The deformation response is modeled by computing the aggregate response of matrix-twin composite grains in the viscoplastic self-consistent scheme, which permits consideration of compatibility and equilibrium requirements across the twin boundaries. This work highlights the significant role boundaries play in generating the dislocations that control the macroscopic mechanical response. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Robertson, I. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Al-Fadhalah, Khaled Jabr Hasan] Kuwait Univ, Coll Engn & Petr, Dept Mech Engn, Safat 13060, Kuwait. [Li, Chun-Ming] Alcan Rolled Prod Ravenswood LLC, Ravenswood, WV 26164 USA. [Beaudoin, A. J.] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. [Korzekwa, D. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Robertson, IM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM fadhalah@kuc01.kuniv.edu.kw; chun-ming.li@alcan.com; abeaudoi@uiuc.edu; ianr@uiuc.edu RI Al-Fadhalah, Khaled/O-3049-2013 NR 39 TC 13 Z9 13 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5764 EP 5774 DI 10.1016/j.actamat.2008.07.050 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500039 ER PT J AU Cao, F Cerreta, EK Trujillo, CP Gray, GT AF Cao, F. Cerreta, E. K. Trujillo, C. P. Gray, G. T., III TI Dynamic tensile extrusion response of tantalum SO ACTA MATERIALIA LA English DT Article DE Tantalum; Dynamic tensile extrusion; Texture; Dislocation structure; Microstructure ID STRAIN-RATE DEFORMATION; SHEAR LOCALIZATION; FLOW-STRESS; GRAIN-SIZE; RECRYSTALLIZATION; METALS; IRON; TEMPERATURE; BEHAVIOR; ALLOYS AB The effects of the original rolling texture and impact velocity on the large-strain dynamic tensile extrusion process in a high-purity Ta have been investigated in a gas gun facility. A continuous increasing of the total elongation of the extruded Ta spheres with increasing impact velocities has been observed. The starting texture was found to influence the development of instabilities with little effect on the total elongation. Regardless of the starting textures and impact velocities, a strong < 110 > fiber texture was developed along the extrusion direction and similar hardness increments were recorded in the recovered Ta segments. Dislocation analysis revealed a continuous evolution of the dislocation substructures from loose planar arrays, to microbands, to elongated cells structures, and to equiaxed subgrains as a function of deformation. The evolution process of the dislocation substructures is discussed in detail in correlation with the development of the microstructure as well as the texture. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Cao, F.; Cerreta, E. K.; Trujillo, C. P.; Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cao, F (reprint author), Los Alamos Natl Lab, MST-8,Mailstop G755, Los Alamos, NM 87545 USA. EM fcao@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; DoD/DOE Munitions Technology Development Program FX The authors acknowledge P.J. Maudlin and S.A. Maloy for assistance in the die design and R. Dickerson and V. Livescu for technical assistance for this research. Valuable discussions with R.J. MaCabe and J.F. Bingert are also gratefully acknowledged. Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the US Department of Energy under contract DE-AC52-06NA25396. This work was supported by the joint DoD/DOE Munitions Technology Development Program. NR 42 TC 27 Z9 27 U1 3 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2008 VL 56 IS 19 BP 5804 EP 5817 DI 10.1016/j.actamat.2008.07.054 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 378TT UT WOS:000261347500043 ER PT J AU Dmowski, W Egami, T AF Dmowski, Wojtek Egami, Takeshi TI Structural Anisotropy in Metallic Glasses Induced by Mechanical Deformation SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID SUPERCOOLED LIQUID REGION; BULK AMORPHOUS-ALLOYS; PLASTICITY C1 [Dmowski, Wojtek] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu FU Office of Basic Energy Sciences (LLH), U.S. Department of Energy [DE-AC05-00OR-22725]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX We would like to thank D. Robinson (APS, ID-6) and Y. Ren (ID-11) for the help With experimental setup. Research sponsored by Office of Basic Energy Sciences (LLH), U.S. Department of Energy under contract DE-AC05-00OR-22725 with UT-Batelle, LLC. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. NR 19 TC 4 Z9 4 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD NOV PY 2008 VL 10 IS 11 BP 1003 EP 1007 DI 10.1002/adem.200800121 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 387EB UT WOS:000261933400003 ER PT J AU Jiang, WH Liu, FX Qiao, DC Choo, H Liaw, PK Li, R Zhang, T AF Jiang, W. H. Liu, F. X. Qiao, D. C. Choo, H. Liaw, P. K. Li, R. Zhang, T. TI Effects of Temperatures on Inhomogeneous Plastic Flows of a Bulk-Metallic Glass SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID SHEAR-CRACK PROPAGATION; NOTCH BENDING TESTS; CU-SI ALLOY; SERRATED FLOW; AMORPHOUS METALS; RATE DEPENDENCE; COMPRESSIVE BEHAVIOR; NANOINDENTATION; DEFORMATION; MECHANICS C1 [Jiang, W. H.; Liu, F. X.; Qiao, D. C.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Choo, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Li, R.; Zhang, T.] Beihang Univ, Beijing 100871, Peoples R China. RP Jiang, WH (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM whjiangf@hotmail.com RI Li, Ran/B-4618-2010; Choo, Hahn/A-5494-2009; Zhang, Tao/O-4911-2014 OI Choo, Hahn/0000-0002-8006-8907; FU National Science Foundation [NSF] [DMR-0231320] FX This work was supported by the National Science Foundation [NSF] International Materials Institutes [IMI] Program [DMR-0231320], with Dr. C. Huber as the Program Director. NR 30 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD NOV PY 2008 VL 10 IS 11 BP 1016 EP 1019 DI 10.1002/adem.200800118 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 387EB UT WOS:000261933400005 ER PT J AU Yang, L Wang, XL Porter, WD Lu, ZP Stoica, AD Payzant, EA Almer, J Shi, DL AF Yang, Ling Wang, Xun-Li Porter, Wallace D. Lu, Zhaoping Stoica, Alexandru D. Payzant, E. Andrew Almer, Jonathan Shi, Donglu TI Consecutive Nucleation Events During Divetrification of Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Metallic Glass SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID AMORPHOUS-ALLOYS; CRYSTALLIZATION; KINETICS C1 [Yang, Ling; Wang, Xun-Li; Stoica, Alexandru D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Yang, Ling; Shi, Donglu] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Porter, Wallace D.; Lu, Zhaoping; Payzant, E. Andrew] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Lu, Zhaoping] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, XL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangxl@ornl.gov RI Payzant, Edward/B-5449-2009; Wang, Xun-Li/C-9636-2010; Lu, Zhao-Ping/A-2718-2009; Stoica, Alexandru/K-3614-2013 OI Payzant, Edward/0000-0002-3447-2060; Wang, Xun-Li/0000-0003-4060-8777; Stoica, Alexandru/0000-0001-5118-0134 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC05-00OR22725, DE-AC02-06CH11357] FX This research was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC05-00OR22725 With UT-Battelle, LLC. The DSC and XRD characterization Was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 16 TC 2 Z9 2 U1 3 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD NOV PY 2008 VL 10 IS 11 BP 1043 EP 1047 DI 10.1002/adem.200800129 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 387EB UT WOS:000261933400011 ER PT J AU Bernstein, MA AF Bernstein, Michael A. TI A Brief History of the American Economic Association SO AMERICAN JOURNAL OF ECONOMICS AND SOCIOLOGY LA English DT Article AB The 20(th)-century American economics profession and its leading professional organization-the American Economic Association (AEA)-were privileged and shaped by the federal government's need to direct resources and to call on experts. Bureaucratic tendencies to classify and count had an impact on the discipline's self-concept, the articulation of subdisciplines, and the establishment of multiple research agendas. They also powerfully framed the strategies for growth and development formulated and deployed by the AEA itself. A consensus of professional opinion and the standardization of curriculums emerged out of the involvement of economists and the AEA with governmental affairs. At the same time, such public engagement was fraught with risks and contradictions-posing challenges and difficulties with which the AEA and the profession would have to contend for decades to come. C1 [Bernstein, Michael A.] US DOE, Washington, DC USA. [Bernstein, Michael A.] Univ Cambridge, Christs Coll, Cambridge CB2 1TN, England. RP Bernstein, MA (reprint author), US DOE, Washington, DC USA. NR 9 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-9246 J9 AM J ECON SOCIOL JI Am. J. Econ. Sociol. PD NOV PY 2008 VL 67 IS 5 BP 1007 EP 1023 DI 10.1111/j.1536-7150.2008.00608.x PG 17 WC Economics; Sociology SC Business & Economics; Sociology GA 380CJ UT WOS:000261443100012 ER PT J AU Csanak, G Collins, LA Kilcrease, DP AF Csanak, George Collins, L. A. Kilcrease, D. P. TI Putting things on the energy shell SO AMERICAN JOURNAL OF PHYSICS LA English DT Editorial Material C1 [Csanak, George; Collins, L. A.; Kilcrease, D. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Csanak, G (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Kilcrease, David/0000-0002-2319-5934 NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD NOV PY 2008 VL 76 IS 11 BP 1070 EP 1071 DI 10.1119/1.2968865 PG 2 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 359KF UT WOS:000259984900018 ER PT J AU Svec, F AF Svec, Frantisek TI What is "Hot" in Column Technologies for Liquid Chromatography? SO AMERICAN LABORATORY LA English DT Article ID PRACTICAL ASPECTS; PARTICLES C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Svec, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mailstop 67R6110, Berkeley, CA 94720 USA. EM fsvec@lbl.gov NR 14 TC 1 Z9 1 U1 0 U2 2 PU AMER LABORATORY-LABCOMPARE PI SOUTHPORT PA 3530 POST ROAD, STE 206A, SOUTHPORT, CT 06890 USA SN 0044-7749 J9 AM LAB JI Am. Lab. PD NOV-DEC PY 2008 VL 40 IS 20 BP 13 EP 17 PG 5 WC Chemistry, Analytical; Instruments & Instrumentation SC Chemistry; Instruments & Instrumentation GA 384QO UT WOS:000261759500002 ER PT J AU Castro, JM Beck, P Tuffen, H Nichols, ARL Dingwell, DB Martin, MC AF Castro, Jonathan M. Beck, Pierre Tuffen, Hugh Nichols, Alexander R. L. Dingwell, Donald B. Martin, Michael C. TI Timescales of spherulite crystallization in obsidian inferred from water concentration profiles SO AMERICAN MINERALOGIST LA English DT Article DE Spherulite; diffusion; obsidian; crystallization ID RHYOLITIC GLASSES; DIFFUSION; GROWTH; CALIBRATION; TEXTURES; ASCENT; FLOWS; MAGMA; MELTS; DOME AB We determined the kinetics of spherulite growth in obsidians from Krafla volcano, Iceland. We measured water concentration profiles around spherulites in obsidian by synchrotron Fourier transform infrared spectroscopy. The distribution of OH- groups surrounding spherulites decreases exponentially away from the spherulite-glass border, reflecting expulsion of water during crystallization of an anhydrous paragenesis (plagioclase + SiO2+ clinopyroxene + magnetite). This pattern is controlled by a balance between the growth rate of the spherulites and the diffusivity of hydrous solute in the rhyolitic melt. We modeled advective and diffusive transport of the water away from the growing spherulites by numerically solving the diffusion equation with a moving boundary. Numerical models fit the natural data best when a small amount of post-growth diffusion is incorporated in the model. Comparisons between models and data constrain the average spherulite growth rates for different temperatures and highlight size-dependent growth among a small population of spherulites. C1 [Castro, Jonathan M.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20013 USA. [Beck, Pierre] Lab Planetol Grenoble, F-38041 Grenoble, France. [Tuffen, Hugh] Univ Lancaster, Dept Environm Sci, Lancaster LA1 4YW, England. [Nichols, Alexander R. L.] JAMSTEC, Inst Res Earth Evolut IFREE, Kanagawa 2370061, Japan. [Dingwell, Donald B.] LMU Univ Munich, D-80333 Munich, Germany. [Martin, Michael C.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Castro, JM (reprint author), Smithsonian Inst, Dept Mineral Sci, MRC-119, Washington, DC 20013 USA. EM castroj@si.edu RI Tuffen, Hugh/A-5388-2009; Wallace Auerbach, Leslie/A-4606-2011; Beck, Pierre/F-3149-2011; Dingwell, Donald/A-4724-2011; OI Dingwell, Donald/0000-0002-3332-789X; Nichols, Alexander/0000-0002-8298-2882 FU Alexander von Humboldt Foundation FX This research was supported by the Alexander von Humboldt Foundation. The comments of Yan Liang, Samuel E. Swanson, and Don Baker are wholeheartedly appreciated. NR 30 TC 43 Z9 43 U1 6 U2 20 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2008 VL 93 IS 11-12 BP 1816 EP 1822 DI 10.2138/am.2008.2904 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 374VT UT WOS:000261072500009 ER PT J AU Gleason, AE Jeanloz, R Kunz, M AF Gleason, A. E. Jeanloz, R. Kunz, M. TI Pressure-temperature stability studies of FeOOH using X-ray diffraction SO AMERICAN MINERALOGIST LA English DT Article DE Goethite; XRD data; diamond-anvil cell; compressibility measuresments ID LEPIDOCROCITE GAMMA-FEOOH; GOETHITE ALPHA-FEOOH; PHASE DELTA-ALOOH; MAGHEMITE GAMMA-FE2O3; SINGLE-CRYSTAL; FE OXIDES; IN-SITU; EQUATION; STATE; THERMODYNAMICS AB The Mie-Gruneisen formalism is used to fit a Birch-Murnaghan equation of state to high-temperature (T), high-pressure (P) X-ray diffraction unit-cell volume (V) measurements on synthetic goethite (alpha-FeOOH) to combined conditions of T = 23-250 degrees C and P = 0-29.4 GPa. We find the zero-pressure thermal expansion coefficient of goethite to be alpha(0) = 2.3 (+/- 0.6) x 10(-5)K(-1) over this temperature range. Our data yield zero-pressure compressional parameters: V-0 = 138.75 (+/- 0.02) angstrom(3), bulk modulus K-0 = 140.3 (+/- 3.7) GPa, pressure derivative K-0(') = 4.6 (+/- 0.4), Gruneisen parameter gamma(0) = 0.91 (+/- 0.07), and Debye temperature Theta(0) = 740 (+/- 5) K. We identify decomposition conditions for 2 alpha-FeOOH -> alpha-Fe2O3 + H2O at 1-8 GPa and 100-400 degrees C, and the polymorphic transition from alpha-FeOOH (Pbnm) to epsilon-FeOOH (P2(1)mn). The non-quenchable, high-pressure epsilon-FeOOH phase P-V data are fitted to a second-order (Birch) equation of state yielding, K-0 = 158 (+/- 5) GPa and V-0 = 66.3 (+/- 0.5) angstrom(3). C1 [Gleason, A. E.; Jeanloz, R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kunz, M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gleason, AE (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, McCone Hall 4767, Berkeley, CA 94720 USA. EM aegleason@lbl.gov RI Kunz, Martin/K-4491-2012 OI Kunz, Martin/0000-0001-9769-9900 FU National Science Foundation Graduate Research Fellowship [2004016305]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support for this study was provided by the National Science Foundation Graduate Research Fellowship 2004016305 to A.E. Gleason; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. We are grateful for the help and assistance of W Caldwell and S. Fakra. And we thank the anonymous reviewers and Associate Editor George Morgan for their constructive comments to improve the manuscript. NR 26 TC 24 Z9 24 U1 4 U2 36 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2008 VL 93 IS 11-12 BP 1882 EP 1885 DI 10.2138/am.2008.2942 PG 4 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 374VT UT WOS:000261072500018 ER PT J AU Grundler, PV Brugger, J Meisser, N Ansermet, S Borg, S Etschmann, B Testemale, D Bolin, T AF Grundler, Pascal V. Brugger, Joel Meisser, Nicolas Ansermet, Stefan Borg, Stacey Etschmann, Barbara Testemale, Denis Bolin, Trudy TI Xocolatlite, Ca(2)Mn(2)(4+)Te(2)O(12)center dot H(2)O, a new tellurate related to kuranakhite: Description and measurement of Te oxidation state by XANES spectroscopy SO AMERICAN MINERALOGIST LA English DT Article DE Xocolatlite; Kuranakhite; new mineral; XANES spectroscopy; tellurium oxidation state; Moctezuma; Sonora; Mexico ID CENTENNIAL-EUREKA-MINE; X-RAY-ABSORPTION; CRYSTAL-STRUCTURE; JUAB COUNTY; WESTERN-AUSTRALIA; FRAMEWORK STRUCTURE; CUPRIC TELLURATE; CHEMICAL FORMULA; TINTIC DISTRICT; YILGARN-CRATON AB Xocolatlite, Ca(2)Mn(2)(4+)Te(2)(6+)O(12)center dot H(2)O, is a rare new mineral from the Moctezuma deposit in Sonora, 2 2 Mexico. It occurs as chocolate-brown crystalline crusts on a quartz matrix. Xocolatlite has a copper-brown streak, vitreous luster, and is transparent. Individual crystals show a micaceous habit. Refractive indices were found to be higher than 2.0. Density calculated from the empirical formula is 4.97 g/cm(3), and immersion in Clerici solution indicated a density higher than 4.1 g/cm(3). The mineral is named after the word used by the Aztecs for chocolate, in reference to its brown color and provenance. The crystallographic characteristics of this monoclinic mineral are space group P2, P2/m, or Pm, with the following unit-cell parameters refined from synchrotron X-ray powder diffraction data: a = 10.757(3) angstrom, b = 4.928(3) angstrom, c = 8.942(2) angstrom, beta = 102.39(3)degrees, V = 463.0(3) angstrom(3), and Z = 2. The unavailability of a suitable crystal prevented single-crystal X-ray studies. The strongest 10 lines of the X-ray powder diffraction pattern are [d in angstrom (I) (hkl)]: 3.267(100)(012), 2.52(71)(30 (3) over bar), 4.361(51) (002), 1.762(39)(32 (3) over bar), 4.924 (34)(010), 2.244(32)(31 (3) over bar), 1.455(24)(006), 1.996(21)(014), 1.565(20) (611), and 2.353(18)(41 (1) over bar). XANES Te L(m)-edge spectra of a selection of Te minerals (including xocolatlite) and inorganic compounds showed that the position of the absorption edge can be reliably related to the oxidation state of Te. XANES demonstrated that xocolatlite contains Te(6+) as a tellurate group. Water has been tentatively included in the formula based on IR spectroscopy that indicated the presence of a small amount of water. Raman, IR, XANES, and X-ray diffraction data together with the chemical composition show a similarity of xocolatlite to kuranakhite. A possible series may exist between these two species, xocolatlite being the Ca-rich end-member and kuranakhite the Pb-rich one. C1 [Grundler, Pascal V.; Brugger, Joel] Univ Adelaide, Dept Geol & Geophys, Adelaide, SA 5005, Australia. [Grundler, Pascal V.; Brugger, Joel] S Australian Museum, Adelaide, SA 5000, Australia. [Meisser, Nicolas; Ansermet, Stefan] UNIL Anthropole, Inst Mineral & Geochim, Musee Cantonal Geol & Lab Reyones X, CH-1015 Lausanne, Switzerland. [Borg, Stacey; Etschmann, Barbara] CSIRO Explorat & Min, Clayton, Vic 3800, Australia. [Testemale, Denis] European Synchrotron Radiat Facil, SNBL, F-38043 Grenoble, France. [Testemale, Denis] CNRS, Inst Neel, Dept MCMF, F-38042 Grenoble 9, France. [Bolin, Trudy] Adv Photon Source, Argonne, IL 60439 USA. RP Grundler, PV (reprint author), Univ Adelaide, Dept Geol & Geophys, N Terrace, Adelaide, SA 5005, Australia. EM pascal.grundler@adelaide.edu.au RI Grundler, Pascal/A-4687-2009; Borg, Stacey/A-6509-2011; Etschmann, Barbara/H-7731-2012; Brugger, Joel/C-7113-2008 OI Borg, Stacey/0000-0003-3625-4013; Brugger, Joel/0000-0003-1510-5764 FU Australian Research Council [LP0454976]; Anglo-Gold Ashanti; South Australian Museum; Primary Industry and Resources South Australia (PIRSA); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX P.G. thanks D. Baumann from the Institut des sciences et ingenierie chimiques, Ecole Polytechnique Federale de Lausanne (Switzerland) for his assistance during the recording of the IR spectra. This work has been funded in part by grant LP0454976, financed by the Australian Research Council, Anglo-Gold Ashanti, The South Australian Museum, and Primary Industry and Resources South Australia (PIRSA). Synchrotron work was supported by the Access to Major Research Facilities Program, which is a component of the International Science Linkages Program established under the Australian Government's innovation statement, Backing Australia's Ability. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We thank the Swiss-Norwegian Beamline (H. Emerich and W. van Beek) for providing beam time. Thanks to Sergey Krivovichev for attempting to measure a single crystal at the ESRF. Helpful comments from S. Mills, an anonymous referee and the editor, I. Swainson, are acknowledged. NR 40 TC 14 Z9 14 U1 0 U2 13 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2008 VL 93 IS 11-12 BP 1911 EP 1920 DI 10.2138/am.2008.2870 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 374VT UT WOS:000261072500022 ER PT J AU Shearer, CK Burger, PV Neal, CR Sharp, Z Borg, LE Spivak-Birndorf, L Wadhwa, M Papike, JJ Karnera, JM Gaffney, AM Shafer, J Weiss, BP Geissman, J Fernandes, VA AF Shearer, C. K. Burger, P. V. Neal, C. R. Sharp, Z. Borg, L. E. Spivak-Birndorf, L. Wadhwa, M. Papike, J. J. Karnera, J. M. Gaffney, A. M. Shafer, J. Weiss, B. P. Geissman, J. Fernandes, V. A. TI A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites SO AMERICAN MINERALOGIST LA English DT Article DE Achondrites; brachinites; planetesimal melting; asteroids; Al-Mg chronometer ID INCLUSIONS; AGES; RICH AB The recently recovered Antarctic achondrites Graves Nunatak 06128 and 06129 are unique meteorites that represent high-temperature asteroidal processes in the early solar system never before identified in any other meteorite. They represent products of early planetesimal melting (4564.25 +/- 0.21 Ma) and subsequent metamorphism of an unsampled geochemical reservoir from an asteroid that has characteristics similar to the brachinite parent body. This melting event is unlike those predicted by previous experimental or geochemical studies, and indicates either disequilibrium melting of chondritic material or melting of chondritic material under volatile-rich conditions. C1 [Shearer, C. K.; Burger, P. V.; Papike, J. J.; Karnera, J. M.] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Neal, C. R.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Sharp, Z.; Geissman, J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Borg, L. E.; Gaffney, A. M.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Spivak-Birndorf, L.; Wadhwa, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Weiss, B. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Fernandes, V. A.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. RP Shearer, CK (reprint author), Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM cshearer@unm.edu RI Fernandes, Vera/B-4653-2013; Gaffney, Amy/F-8423-2014 OI Fernandes, Vera/0000-0003-0848-9229; Gaffney, Amy/0000-0001-5714-0029 FU NASA; NASA Cosmochemistry Program FX The authors acknowledge that this research was supported by NASA and the NASA Cosmochemistry Program. We also thank K. Keil and G. Benedix for insightful reviews. As always, Bryan Chakoumakos handled this manuscript with professionalism and quickness. NR 23 TC 13 Z9 13 U1 0 U2 5 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2008 VL 93 IS 11-12 BP 1937 EP 1940 DI 10.2138/am.2008.3056 PG 4 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 374VT UT WOS:000261072500026 ER PT J AU Olson, GL AF Olson, Gordon L. TI Chord length distributions between hard disks and spheres in regular, semi-regular, and quasi-random structures SO ANNALS OF NUCLEAR ENERGY LA English DT Article ID MEDIA AB In binary stochastic media in two- and three-dimensions consisting of randomly placed impenetrable disks or spheres, the chord lengths in the background material between disks and spheres closely follow exponential distributions if the disks and spheres occupy less than 10% of the medium. This work demonstrates that for regular spatial structures of disks and spheres, the tails of the chord length distributions (CLDs) follow power laws rather than exponentials. In dilute media, when the disks and spheres are widely spaced, the slope of the power law seems to be independent of the details of the structure. When approaching a close-packed arrangement, the exact placement of the spheres can make a significant difference. When regular structures are perturbed by small random displacements, the CLDs become power laws with steeper slopes. An example CLD from a quasi-random distribution of spheres in clusters shows a modified exponential distribution. Published by Elsevier Ltd. C1 Los Alamos Natl Lab, Comp & Computat Sci Div CCS 2, Madison, WI 53717 USA. RP Olson, GL (reprint author), Los Alamos Natl Lab, Comp & Computat Sci Div CCS 2, 5 Foxglove Circle, Madison, WI 53717 USA. EM olson99@tds.net NR 10 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD NOV PY 2008 VL 35 IS 11 BP 2150 EP 2155 DI 10.1016/j.anucene.2008.06.005 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 363TM UT WOS:000260289700019 ER PT J AU Kuang, XY Shankar, TJ Bi, XTT Sokhansanj, S Lim, CJ Melin, S AF Kuang, Xingya Shankar, Tumuluru Jaya Bi, Xiaotao T. Sokhansanj, Shahab Lim, C. Jim Melin, Staffan TI Characterization and Kinetics Study of Off-Gas Emissions from Stored Wood Pellets SO ANNALS OF OCCUPATIONAL HYGIENE LA English DT Article DE biomass; decomposition kinetics; emission factors; off-gassing emission; storage; temperature effect; wood pellets ID CARBON-MONOXIDE; STORAGE AB The full potential health impact from the emissions of biomass fuels, including wood pellets, during storage and transportation has not been documented in the open literature. The purpose of this study is to provide data on the concentration of CO(2), CO and CH(4) from wood pellets stored in sealed vessels and to develop a kinetic model for predicting the transient emission rate factors at different storage temperatures. Five 45-l metal containers (305 mm diameter by 610 mm long) equipped with heating and temperature control devices were used to study the temperature effect on the off-gas emissions from wood pellets. Concurrently, ten 2-l aluminum canisters (100 mm diameter by 250 mm long) were used to study the off-gas emissions from different types of biomass materials. Concentrations of CO(2), CO and CH(4) were measured by a gas chromatograph as a function of storage time and storage temperature. The results showed that the concentrations of CO, CO(2) and CH(4) in the sealed space of the reactor increased over time, fast at the beginning but leveling off after a few days. A first-order reaction kinetics fitted the data well. The maximum concentration and the time it takes for the buildup of gas concentrations can be predicted using kinetic equations C1 [Kuang, Xingya; Shankar, Tumuluru Jaya; Bi, Xiaotao T.; Sokhansanj, Shahab; Lim, C. Jim] Univ British Columbia, Dept Biol & Chem Engn, Vancouver, BC V6T 1Z3, Canada. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. [Kuang, Xingya] Yangpu Dist Cent Hosp, Dept Occupat Med, Shanghai 200090, Peoples R China. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Lim, CJ (reprint author), Univ British Columbia, Dept Biol & Chem Engn, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada. EM cjlim@chml.ubc.ca FU Natural Sciences and Engineering Research Council of Canada [NSERC-CRDPJ342219-06]; Wood Pellet Association of Canada [11R42500] FX Natural Sciences and Engineering Research Council of Canada (NSERC-CRDPJ342219-06); Wood Pellet Association of Canada (Grant11R42500). NR 7 TC 30 Z9 31 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0003-4878 J9 ANN OCCUP HYG JI Ann. Occup. Hyg. PD NOV PY 2008 VL 52 IS 8 BP 675 EP 683 DI 10.1093/annhyg/men053 PG 9 WC Public, Environmental & Occupational Health; Toxicology SC Public, Environmental & Occupational Health; Toxicology GA 394UF UT WOS:000262474100002 PM 18714087 ER PT J AU Schmidt, R Battaglia, V Scow, K Kane, S Hristova, KR AF Schmidt, Radomir Battaglia, Vince Scow, Kate Kane, Staci Hristova, Krassimira R. TI Involvement of a Novel Enzyme, MdpA, in Methyl tert-Butyl Ether Degradation in Methylibium petroleiphilum PM1 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MYCOBACTERIUM-VACCAE JOB5; ALKANE HYDROXYLASES; AEROBIC BIODEGRADATION; DEGRADING BACTERIA; CLONING VECTORS; STRAIN PM1; MTBE; SUBSTRATE; MONOOXYGENASE; COMETABOLISM AB Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum. C1 [Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Hristova, Krassimira R.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Kane, Staci] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Schmidt, R (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, 1 Shields Ave, Davis, CA 95616 USA. EM radschmidt@ucdavis.edu FU National Institute of Environmental Health Sciences (NIEHS), NIH [5 P42 ES004699] FX This publication was made possible by grant 5 P42 ES004699 from the National Institute of Environmental Health Sciences (NIEHS), NIH. NR 38 TC 19 Z9 19 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2008 VL 74 IS 21 BP 6631 EP 6638 DI 10.1128/AEM.01192-08 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 365TB UT WOS:000260429600018 PM 18791002 ER PT J AU Wang, ZM Liu, CX Wang, XL Marshall, MJ Zachara, JM Rosso, KM Dupuis, M Fredrickson, JK Heald, S Shi, L AF Wang, Zheming Liu, Chongxuan Wang, Xuelin Marshall, Matthew J. Zachara, John M. Rosso, Kevin M. Dupuis, Michel Fredrickson, James K. Heald, Steve Shi, Liang TI Kinetics of Reduction of Fe(III) Complexes by Outer Membrane Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID C-TYPE CYTOCHROMES; ELECTRON-TRANSFER KINETICS; METAL-REDUCING BACTERIUM; DECAHEME CYTOCHROMES; MICROBIAL REDUCTION; URANIUM REDUCTION; IRON REDUCTION; MECHANISMS; CHEMISTRY; U(VI) AB Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 mu M-1 s(-1) for the reaction between MtrC and the Fe-EDTA complex to 0.012 mu M-1 s(-1) for the reaction between OmcA and Fe- citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature. C1 [Wang, Zheming; Liu, Chongxuan; Wang, Xuelin; Marshall, Matthew J.; Zachara, John M.; Rosso, Kevin M.; Dupuis, Michel; Fredrickson, James K.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA. [Heald, Steve] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, ZM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,Mail Stop K8-96, Richland, WA 99352 USA. EM Zheming.wang@pnl.gov; liang.shi@pnl.gov RI Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 FU Pacific Northwest National Laboratory [DE-AC05-76RLO1830] FX This work was supported by the U. S. Department of Energy Office of Biological and Environmental Sciences Program under the W. R. Wiley Environmental Molecular Sciences Laboratory Biogeochemistry Grand Challenge Project. A portion of the work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U. S. Department of Energy Office of Biological and Environmental Sciences Program and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RLO1830. NR 64 TC 52 Z9 54 U1 1 U2 36 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2008 VL 74 IS 21 BP 6746 EP 6755 DI 10.1128/AEM.01454-08 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 365TB UT WOS:000260429600032 PM 18791025 ER PT J AU Labbe, N Swamidoss, IM Andre, N Martin, MZ Young, TM Rials, TG AF Labbe, Nicole Swamidoss, Isabel Maya Andre, Nicolas Martin, Madhavi Z. Young, Timothy M. Rials, Timothy G. TI Extraction of information from laser-induced breakdown spectroscopy spectral data by multivariate analysis SO APPLIED OPTICS LA English DT Article; Proceedings Paper CT 1st North American Symposium, on Laser Induced Breakdown Spectroscopy CY OCT 08-10, 2007 CL New Orleans, LA SP Mississippi State Univ ID NEAR-INFRARED SPECTROSCOPY; NIR SPECTROSCOPY; REFLECTANCE SPECTRA; COMPONENT ANALYSIS; WOOD; IDENTIFICATION; FERMENTATIONS; TIME AB Laser-induced breakdown spectroscopy (LIBS) is being proposed more and more as a high-throughput technology to assess the elemental composition of materials. When a specific element is of interest, semi-quantification is possible by building a calibration model using the emission line intensity of this element for known samples. However, a unique element has usually more than one emission line, and there are many examples where several emission lines used in combination give dramatically better results than any of the individual variables used alone. With a multivariate approach, models can be constructed that take into account all the emission lines related to a specific element; therefore more robust models can be developed. In this work, chemometric methods such as principal component analysis and partial least squares are proposed to resolve and extract useful information from the LIBS spectral data collected on biological materials. (C) 2008 Optical Society of America C1 [Labbe, Nicole; Swamidoss, Isabel Maya; Andre, Nicolas; Young, Timothy M.; Rials, Timothy G.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Forest Prod Ctr, Knoxville, TN 37996 USA. [Martin, Madhavi Z.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Swamidoss, IM (reprint author), Univ Tennessee, Dept Forestry Wildlife & Fisheries, Forest Prod Ctr, 2506 Jacob Dr, Knoxville, TN 37996 USA. EM iswamido@utk.edu RI Martin, Madhavi/A-5268-2011; Young, Timothy/D-9949-2011; OI Young, Timothy/0000-0001-9564-6506; Martin, Madhavi/0000-0002-6677-2180 NR 43 TC 21 Z9 22 U1 1 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 1 PY 2008 VL 47 IS 31 BP G158 EP G165 DI 10.1364/AO.47.00G158 PG 8 WC Optics SC Optics GA 374AD UT WOS:000261013700021 PM 19122698 ER PT J AU Singh, JP Martin, MZ Miziolek, AW AF Singh, Jagdish P. Martin, Madhavi Z. Miziolek, Andrzej W. TI North American Symposium on Laser-Induced Breakdown Spectroscopy: introduction to the feature issue SO APPLIED OPTICS LA English DT Editorial Material AB This feature issue highlights the topics of the 2007 North American Symposium oil Laser-Induced Breakdown Spectroscopy (LIBS), which includes LIBS application to security and forensics, biomedical and environmental, liquid analysis, and fundamentals of LIBS, instrumentation and commercialization, fusion with LIBS, and new frontiers. (C) 2008 Optical Society of America C1 [Singh, Jagdish P.] Mississippi State Univ, Inst Clean Energy Technol, Starkville, MS 39759 USA. [Martin, Madhavi Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Miziolek, Andrzej W.] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Singh, JP (reprint author), Mississippi State Univ, Inst Clean Energy Technol, 205 Res Blvd, Starkville, MS 39759 USA. EM singh@icet.msstate.edu RI Martin, Madhavi/A-5268-2011 NR 0 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 1 PY 2008 VL 47 IS 31 BP LIBS1 EP LIBS1 DI 10.1364/AO.47.0LIBS1 PG 1 WC Optics SC Optics GA 374AD UT WOS:000261013700001 ER PT J AU Christen, HM Kim, DH Rouleau, CM AF Christen, Hans M. Kim, Dae Ho Rouleau, Christopher M. TI Interfaces in perovskite heterostructures SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID POLARIZATION ENHANCEMENT; X-RAY; SUPERLATTICES; OXIDES; STRAIN; FILMS; SIZE AB Recent advances in film synthesis have made it possible to investigate the properties of well-controlled interfaces in perovskite metal-oxides. A review of published experimental data and computational results indicate that so far most interfaces that have been analyzed in ferroelectric materials-while necessary to impose large lattice strain on the polar material-contribute little to the ferroelectricity and may instead be detrimental to the desired properties. In contrast, a very different situation arises at interfaces that show changes in the electronic configuration as a consequence of a compositional discontinuity. Data is shown for LaMnO3/SrTiO3 superlattices as an example of electronic effects that produce enhanced properties, further illustrating the richness of interfacial properties that can be obtained at interfaces (as shown in numerous published results for different but related interfaces). C1 [Christen, Hans M.; Kim, Dae Ho; Rouleau, Christopher M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Kim, Dae Ho/B-4670-2012; Christen, Hans/H-6551-2013; Rouleau, Christopher/Q-2737-2015 OI Christen, Hans/0000-0001-8187-7469; Rouleau, Christopher/0000-0002-5488-3537 FU Division of Materials Sciences and Engineering; US Department of Energy FX This research was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy. NR 27 TC 8 Z9 8 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD NOV PY 2008 VL 93 IS 3 BP 807 EP 811 DI 10.1007/s00339-008-4769-7 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 362SW UT WOS:000260218400039 ER PT J AU Habs, D Hegelich, M Schreiber, J Gross, M Henig, A Kiefer, D Jung, D AF Habs, D. Hegelich, M. Schreiber, J. Gross, M. Henig, A. Kiefer, D. Jung, D. TI Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and gamma-ray beams SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID PLASMA AB Several techniques exist to obtain brilliant X-ray beams by coherent reflection from relativistic electrons (E (e)=gamma mc 2) with Doppler frequency upshift of 4 gamma ultra-thin solid target. Larger 'driver'-laser intensities with high contrast are required to produce dense electron sheets. Their acceleration in vacuum results in a transverse momentum component besides the dominant longitudinal momentum component. The counter-propagating 'production' laser for optimum Doppler boost in X-ray production by reflection has to be injected opposite to the electron direction and not opposite to the driver laser. Different measures to increase the reflectivity of the electron sheet via laser trapping or free-electron-laser-like micro-bunching are discussed, extending the photon energy into the MeV range. Here, first-order estimates are given. C1 Alamos Natl Labs Alamos NM 87545 USA, Los Alamos, NM USA. [Habs, D.; Schreiber, J.; Gross, M.; Henig, A.; Kiefer, D.; Jung, D.] Univ Munich, Fac Phys, D-85748 Garching, Germany. [Habs, D.; Schreiber, J.; Henig, A.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Hegelich, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Habs, D (reprint author), Univ Munich, Fac Phys, D-85748 Garching, Germany. EM Dietrich.Habs@physik.uni-muenchen.de RI Hegelich, Bjorn/J-2689-2013 FU Deutsche Forschungsgemeinschaft through the DFG Cluster of Excellence 'Munich Centre for Advanced Photonics' (MAP) FX We acknowledge many useful discussions with J. Meyer-ter-Vehn, H. C. Wu, H. Ruhl, F. Gruner, R. Horlein, B. J. Albright, and L. Yin.; The work was supported by the Deutsche Forschungsgemeinschaft through the DFG Cluster of Excellence 'Munich Centre for Advanced Photonics' (MAP) and Transregio TR18. NR 19 TC 43 Z9 43 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD NOV PY 2008 VL 93 IS 2-3 SI SI BP 349 EP 354 DI 10.1007/s00340-008-3239-4 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA 368IA UT WOS:000260613600009 ER PT J AU Jullien, A Pfeifer, T Abel, MJ Nagel, PM Bell, MJ Neumark, DM Leone, SR AF Jullien, A. Pfeifer, T. Abel, M. J. Nagel, P. M. Bell, M. J. Neumark, D. M. Leone, S. R. TI Ionization phase-match gating for wavelength-tunable isolated attosecond pulse generation SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID HIGH-ORDER HARMONICS; CARRIER-ENVELOPE PHASE; X-RAY GENERATION; LASER; LIGHT; FIELD; OPTICS; GASES AB High-order harmonic emission can be confined to the leading edge of an 800 nm driver laser pulse under moderately intense focusing conditions (7x1014 W/cm2) (Pfeifer et al. in Opt. Express 15:17120, 2007). Here, the experimentally observed curtailment of harmonic production on the leading edge of the driver pulse is shown to be controlled by an ionization-induced phase-matching condition. The transient plasma density inherent to the process of high-harmonic generation terminates the harmonic emission by an ultrafast loss of phase matching on the leading edge of the laser pulse. The analysis is supported by a reconstruction of the in situ intensity envelope of the driver pulse with attosecond temporal resolution, performed by measurements of the carrier-envelope phase dependence of individual half-cycle harmonic cutoffs. The method opens the way to wavelength-tunable isolated attosecond pulse generation. C1 [Jullien, A.; Pfeifer, T.; Abel, M. J.; Nagel, P. M.; Bell, M. J.; Neumark, D. M.; Leone, S. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jullien, A.; Pfeifer, T.; Abel, M. J.; Nagel, P. M.; Bell, M. J.; Neumark, D. M.; Leone, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jullien, A.; Pfeifer, T.; Abel, M. J.; Nagel, P. M.; Bell, M. J.; Neumark, D. M.; Leone, S. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Jullien, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM Aurelie.Jullien@ensta.fr RI Neumark, Daniel/B-9551-2009; Jullien, Aurelie/C-8345-2009 OI Neumark, Daniel/0000-0002-3762-9473; FU Air Force Office of Scientific research [FA9550-04-1-0242]; US Department of Energy [DE-AC02-05CH11231]; Feodor-Lynen Fellowship of the Alexander von Humboldt Foundation FX The authors would like to thank Lukas Gallman for his essential contribution to the laser and phase-stabilization development and Jun Ye and Jason Jones for providing components of the phase-stabilization electronics. This work is supported by a MURI program from the Air Force Office of Scientific research, contract No. FA9550-04-1-0242. Portions of the laboratory infrastructure are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231. T. P. acknowledges support of a Feodor-Lynen Fellowship of the Alexander von Humboldt Foundation. NR 41 TC 26 Z9 26 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD NOV PY 2008 VL 93 IS 2-3 SI SI BP 433 EP 442 DI 10.1007/s00340-008-3187-z PG 10 WC Optics; Physics, Applied SC Optics; Physics GA 368IA UT WOS:000260613600021 ER PT J AU Michelsen, HA Linne, MA Kock, BF Hofmann, M Tribalet, B Schulz, C AF Michelsen, H. A. Linne, M. A. Kock, B. F. Hofmann, M. Tribalet, B. Schulz, C. TI Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article DE 65; 80; +n; 78; 20; Nv; 42; 62; -b; 44; 05; +e ID PARTICLE-SIZE MEASUREMENTS; LAMINAR DIFFUSION FLAME; SOLID CARBON; THERMOCHEMICAL HEAT; VOLUME FRACTION; GASEOUS OXYGEN; LII; GRAPHITE; COMBUSTION; SURFACE AB This paper presents an analysis of several equations used to model laser-induced incandescence (LII) of soot. The analysis focuses on sub-models of the change in particle enthalpy during sublimation, conduction, and oxidation. Assuming that pressure is constant, expressing the conductive cooling rate in terms of enthalpy instead of energy, thereby accounting for expansion work, increases the signal decay rate and has an effect comparable to increasing the thermal accommodation coefficient from 0.30 to 0.38. Accounting for oxidative heating decreases the signal decay rate and has an effect comparable to decreasing the accommodation coefficient from 0.30 to 0.25. As an estimate of magnitude of these effects, primary particle sizes inferred from signal decay rates measured at low fluences may be over-predicted by as much as 17% if oxidation is neglected in the model at O-2 partial pressures of similar to 0.2 bar, under-predicted by 24% if expansion work is neglected, and under-predicted by only 9% if both are neglected. This paper also provides updated parameterizations for average enthalpies of formation, molecular weights, and total pressures of sublimed carbon clusters for use in LII models. C1 [Michelsen, H. A.; Linne, M. A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. [Kock, B. F.; Hofmann, M.; Tribalet, B.; Schulz, C.] Univ Duisburg Essen, IVG, D-4100 Duisburg, Germany. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. EM hamiche@sandia.gov RI Schulz, Christof/A-5711-2010 OI Schulz, Christof/0000-0002-6879-4826 FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy; Sandia Corporation; Lockheed Martin Company; National Nuclear Security Administration [DE-AC04-94-AL85000]; German Research Foundation (DFG) [SCHU1369/3] FX We are grateful to Alan Kerstein, Fengshan Liu, David Snelling, and Thomas Dreier for reading the manuscript and offering valuable suggestions. H. A. Michelsen and M. A. Linne were funded by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. Financial support by the German Research Foundation (DFG) within the project SCHU1369/3 is gratefully acknowledged. NR 58 TC 12 Z9 12 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD NOV PY 2008 VL 93 IS 2-3 SI SI BP 645 EP 656 DI 10.1007/s00340-008-3181-5 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA 368IA UT WOS:000260613600048 ER PT J AU Wee, SH Goyal, A Zuev, YL Cantoni, C AF Wee, Sung Hun Goyal, Amit Zuev, Yuri L. Cantoni, Claudia TI Tuning Flux-pinning in Epitaxial NdBa2Cu3O7-delta Films via Engineered, Hybrid Nanoscale Defect Structures SO APPLIED PHYSICS EXPRESS LA English DT Article ID SELF-ASSEMBLED NANODOTS; COLUMNAR DEFECTS; YBA2CU3O7-DELTA FILMS; COATED CONDUCTORS; SUPERCONDUCTOR; BAZRO3 AB Epitaxial NdBa2Cu3O7-delta films with a hybrid nanoscale defect structure comprised of BaZrO3 nanodot arrays aligned along the c-axis in one halt of the film thickness and aligned perpendicular to the c-axis in the other half thickness of the film were fabricated. Transmission electron microscopy images confirm the orientation of the nanoscale defect structures. The angular dependence of critical current density, J(c), at 77K, 1 T, shows significantly reduced angular variation of J(c). This study nicely demonstrates how pinning characteristics can be tuned by tuning the nanoscale defect structures within the films. (C) 2008 The Japan Society of Applied Physics C1 [Wee, Sung Hun; Goyal, Amit; Zuev, Yuri L.; Cantoni, Claudia] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wee, Sung Hun] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wees@ornl.gov RI Cantoni, Claudia/G-3031-2013 OI Cantoni, Claudia/0000-0002-9731-2021 FU US Department of Energy, Office of Electricity Deliver and Energy Reliability-Superconductivity [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX S. H. Wee and Y. L. Zuev would like to thank Oak Ridge Associated Universities for a postdoctoral fellowship. The authors would like to thank Sy Cook at Oak Ridge National Laboratory for laser-scribing, a microbridge on the sample. The authors also thank V. Selvamanikcam at SuperPower Inc. for providing the Hastelloy substrates with an IBAD MgO layer/honroepi tax ia MgO layer/epitaxial LaMnO3. Research was sponsored by the US Department of Energy, Office of Electricity Deliver and Energy Reliability-Superconductivity Program, under Contract DE-AC05-00OR22725 with UT-Battelle. LLC managing contractor for Oak Ridge National Laboratory. NR 15 TC 8 Z9 8 U1 1 U2 4 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1882-0778 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD NOV PY 2008 VL 1 IS 11 AR 111702 DI 10.1143/APEX.1.111702 PG 3 WC Physics, Applied SC Physics GA 378GQ UT WOS:000261309600014 ER PT J AU Thiessen, KM Batandjieva, B Andersson, KG Arkhipov, A Charnock, TW Gallay, F Gaschak, S Golikov, V Hwang, WT Kaiser, JC Kamboj, S Steiner, M Tomas, J Trifunovic, D Yu, C Zelmer, RL Zlobenko, B AF Thiessen, K. M. Batandjieva, B. Andersson, K. G. Arkhipov, A. Charnock, T. W. Gallay, F. Gaschak, S. Golikov, V. Hwang, W. T. Kaiser, J. C. Kamboj, S. Steiner, M. Tomas, J. Trifunovic, D. Yu, C. Zelmer, R. L. Zlobenko, B. TI Improvement of modelling capabilities for assessing urban contamination: The EMRAS Urban Remediation Working Group SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT International Conference on Environmental Radioactivity - From Measurements and Assessments to Regulation CY APR 23-27, 2007 CL Vienna, AUSTRIA SP IAEA, Dept Nucl Sci & Applicat, Dept Nucl Safety & Secur DE urban contamination; model testing; radioactivity; Chernobyl; countermeasures ID RUSSIA; AREA AB The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modelling for Radiation Safety (EMRAS) programme was established to improve modelling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful. (C) 2008 IAEA. Published by Elsevier Ltd. All rights reserved. C1 [Thiessen, K. M.] SENES Oak Ridge Inc, Ctr Risk Anal, Oak Ridge, TN 37830 USA. [Batandjieva, B.] IAEA, A-1400 Vienna, Austria. [Andersson, K. G.] Riso Natl Lab, DK-4000 Roskilde, Denmark. [Arkhipov, A.; Gaschak, S.] Chernobyl Ctr Nucl Safety Radioact Waste & Radioe, UA-07100 Slavutych, Kiev Region, Ukraine. [Charnock, T. W.] Hlth Protect Agcy, Didcot, Oxon, England. [Gallay, F.] IRSN, F-92265 Fontenay Aux Roses, France. [Golikov, V.] Minist Publ Hlth, Inst Radiat Hyg, St Petersburg 197101, Russia. [Hwang, W. T.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Kaiser, J. C.] GSF Forschungszentrum Umwelt & Gesundheit, Inst Radiat Protect, D-85764 Neuherberg, Germany. [Kamboj, S.; Yu, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Steiner, M.] BfS, D-85764 Neuherberg, Germany. [Tomas, J.] CPHR, Havana, Cuba. [Trifunovic, D.] State Off Radiat Protect, Zagreb 10000, Croatia. [Zelmer, R. L.] Atom Energy Canada Ltd, Low Level Radioact Waste Management Off, Port Hope, ON L1A 2S6, Canada. [Zlobenko, B.] Natl Acad Sci, Inst Environm Geochem, UA-03142 Kiev, Ukraine. RP Thiessen, KM (reprint author), SENES Oak Ridge Inc, Ctr Risk Anal, 102 Donner Dr, Oak Ridge, TN 37830 USA. EM kmt@senes.com RI Kaiser, Jan Christian/M-9852-2014; OI Thiessen, Kathleen/0000-0002-5564-7499; Kaiser, Jan Christian/0000-0003-0359-2251 NR 5 TC 8 Z9 8 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD NOV PY 2008 VL 66 IS 11 BP 1741 EP 1744 DI 10.1016/j.apradiso.2007.11.023 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 357GK UT WOS:000259834100046 PM 18513982 ER PT J AU Beresford, NA Balonov, M Beaugelin-Seiller, K Brown, J Copplestone, D Hingston, JL Horyna, J Hosseini, A Howard, BJ Kamboj, S Nedveckaite, T Olyslaegers, G Sazykina, T Batlle, JVI Yankovich, TL Yu, C AF Beresford, Nicholas A. Balonov, Mikhail Beaugelin-Seiller, Karine Brown, Justin Copplestone, David Hingston, Joanne L. Horyna, Jan Hosseini, Ali Howard, Brenda J. Kamboj, Sunita Nedveckaite, Tatjana Olyslaegers, Geert Sazykina, Tatiana Batlle, Jordi Vives i Yankovich, Tamara L. Yu, Charley TI An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT International Conference on Environmental Radioactivity - From Measurements and Assessments to Regulation CY APR 23-27, 2007 CL Vienna, AUSTRIA SP IAEA, Dept Nucl Sci & Applicat, Dept Nucl Safety & Secur DE non-human biota; radiological protection; model AB Over the last decade a number of models and approaches have been developed for the estimation of the exposure of non-human biota to ionising radiations. In some countries these are now being used in regulatory assessments. However, to date there has been no attempt to compare the outputs of the different models used. This paper presents the work of the International Atomic Energy Agency's EMRAS Biota Working Group which compares the predictions of a number Of Such models in model-model and model-data inter-comparisons. (C) 2008 IAEA. Published by Elsevier Ltd. All rights reserved. C1 [Beresford, Nicholas A.; Howard, Brenda J.] Lancaster Environm Ctr, Ctr Ecol & Hydrol Lancaster, Lancaster LA1 4AP, England. [Balonov, Mikhail] IAEA, A-1400 Vienna, Austria. [Beaugelin-Seiller, Karine] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. [Brown, Justin; Hosseini, Ali] Norwegian Radiat Protect Author, Oslo, Norway. [Horyna, Jan] SUJB, Prague, Czech Republic. [Kamboj, Sunita; Yu, Charley] Argonne Natl Lab, Argonne, IL 60439 USA. [Nedveckaite, Tatjana] Lithuania Acad Sci, Inst Phys, LT-232600 Vilnius, Lithuania. [Olyslaegers, Geert] CEN SCK, B-2400 Mol, Belgium. [Sazykina, Tatiana] SPA Typhoon, Obninsk, Russia. [Batlle, Jordi Vives i] Westlakes Sci Consulting Ltd, Whitehaven, Cumbria, England. [Yankovich, Tamara L.] Atom Energy Canada Ltd, Ottawa, ON K1A 0S4, Canada. RP Beresford, NA (reprint author), Lancaster Environm Ctr, Ctr Ecol & Hydrol Lancaster, Lib Ave, Lancaster LA1 4AP, England. EM nab@ceh.ac.uk RI Howard, Brenda/I-8279-2012; Beresford, Nicholas/I-6188-2012; OI Howard, Brenda/0000-0002-9698-9524; Copplestone, David/0000-0002-1468-9545 NR 18 TC 36 Z9 36 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD NOV PY 2008 VL 66 IS 11 BP 1745 EP 1749 DI 10.1016/j.apradiso.2008.04.009 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 357GK UT WOS:000259834100047 PM 18515123 ER PT J AU Yao, W Cheng, ZQ Pham, A Busse, C Zimmermann, EA Ritchie, RO Lane, NE AF Yao, Wei Cheng, Zhiqiang Pham, Aaron Busse, Cheryl Zimmermann, Elizabeth A. Ritchie, Robert O. Lane, Nancy E. TI Glucocorticoid-Induced Bone Loss in Mice Can Be Reversed by the Actions of Parathyroid Hormone and Risedronate on Different Pathways for Bone Formation and Mineralization SO ARTHRITIS AND RHEUMATISM LA English DT Article ID DENTIN MATRIX PROTEIN-1; CONTROLLED CLINICAL-TRIAL; WNT SIGNALING PATHWAY; INDUCED OSTEOPOROSIS; OSTEOBLAST DIFFERENTIATION; COMPUTED TOMOGRAPHY; GENE-TRANSCRIPTION; VERTEBRAL FRACTURE; DEFICIENT MICE; TREATED MICE AB Objective. Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. Methods. Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 mu g/kg) or risedronate (5 mu g/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes-regulating Wnt signaling (bone formation) and mineralization. Results. Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (-27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. Conclusion. Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization. C1 [Lane, Nancy E.] Univ Calif Davis, Med Ctr, Ctr Healthy Aging, Dept Internal Med, Sacramento, CA 95817 USA. [Zimmermann, Elizabeth A.; Ritchie, Robert O.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Lane, NE (reprint author), Univ Calif Davis, Med Ctr, Ctr Healthy Aging, Dept Internal Med, Sacramento, CA 95817 USA. EM nelane@ucdavis.edu RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; OI Ritchie, Robert/0000-0002-0501-6998; Zimmermann, Elizabeth/0000-0001-9927-3372 FU NIH [R01-AR-043052-07]; National Institute of Child Health and Human Development, the Office of Research on Women's Health, the Office of Dietary Supplements [HD-051958-02]; National Institute on Aging; Procter and Gamble Pharmaceuticals; US Department of Energy US Department of Energy [t DE-AC02-05CH11231] FX Supported by NIH grant R01-AR-043052-07, by a Building Interdisciplinary Research Careers in Women's Health award (grant HD-051958-02), which was co-funded by the National Institute of Child Health and Human Development, the Office of Research on Women's Health, the Office of Dietary Supplements, and the National Institute on Aging, and by a Procter and Gamble Pharmaceuticals research grant to Drs. Yao and Lane. Ms Zimmerman and Dr. Ritchie's work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231 from the US Department of Energy. NR 70 TC 64 Z9 67 U1 0 U2 9 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0004-3591 J9 ARTHRITIS RHEUM JI Arthritis Rheum. PD NOV PY 2008 VL 58 IS 11 BP 3485 EP 3497 DI 10.1002/art.23954 PG 13 WC Rheumatology SC Rheumatology GA 374JO UT WOS:000261039800025 PM 18975341 ER PT J AU Roth, K Targoff, J Brodrick, J AF Roth, Kurt Targoff, Jason Brodrick, James TI Using Stirling Engines For Residential CHP SO ASHRAE JOURNAL LA English DT Article C1 [Roth, Kurt; Targoff, Jason] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Roth, K (reprint author), TIAX LLC, Cambridge, MA USA. NR 8 TC 6 Z9 6 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2008 VL 50 IS 11 BP 42 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 372WD UT WOS:000260932100006 ER PT J AU Lee, YS Beers, TC Sivarani, T Prieto, CA Koesterke, L Wilhelm, R Fiorentin, PR Bailer-Jones, CAL Norris, JE Rockosi, CM Yanny, B Newberg, HJ Covey, KR Zhang, HT Luo, AL AF Lee, Young Sun Beers, Timothy C. Sivarani, Thirupathi Prieto, Carlos Allende Koesterke, Lars Wilhelm, Ronald Fiorentin, Paola Re Bailer-Jones, Coryn A. L. Norris, John E. Rockosi, Constance M. Yanny, Brian Newberg, Heidi J. Covey, Kevin R. Zhang, Hao-Tong Luo, A. -Li TI THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: spectroscopic ID DIGITAL SKY SURVEY; INFRARED CAII TRIPLET; LOW METAL ABUNDANCE; DATA RELEASE; MILKY-WAY; ATMOSPHERIC PARAMETERS; EMPIRICAL CALIBRATION; GALACTIC HALO; STARS; SPECTRA AB We describe the development and implementation of the Sloan Extension for Galactic Exploration and Understanding (SEGUE) Stellar Parameter Pipeline (SSPP). The SSPP is derived, using multiple techniques, radial velocities, and the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). The SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and tests of its performance using several external data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6). C1 [Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi] Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA. [Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Prieto, Carlos Allende; Koesterke, Lars] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wilhelm, Ronald] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Fiorentin, Paola Re; Bailer-Jones, Coryn A. L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Norris, John E.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Rockosi, Constance M.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Newberg, Heidi J.] Rensselaer Polytech Inst, Dept Phys & Astron, Troy, NY 12180 USA. [Covey, Kevin R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zhang, Hao-Tong; Luo, A. -Li] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. RP Lee, YS (reprint author), Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA. EM lee@pa.msu.edu; beers@pa.msu.edu; thirupathi@pa.msu.edu; callende@astro.as.utexas.edu; ron.wilhelm@ttu.edu; fiorent@mpia-hd.mpg.de; calj@mpia-hd.mpg.de; jen@mso.anu.edu.au; crockosi@ucolick.org; yanny@fnal.gov; newbeh@rpi.edu; kcovey@cfa.harvard.edu; zht@lamost.org; lal@lamost.org OI Re Fiorentin, Paola/0000-0002-4995-0475; Covey, Kevin/0000-0001-6914-7797 FU Physics Frontiers Center/Joint Institute for Nuclear Astrophysics [PHY 02-16783]; U. S. National Science Foundation; NASA [NAG5-13057, NAG5-13147]; Australian Research Council [DP0663562]; Deutsche Forschungsgemeinschaft (DFG) [BA2163]; Marie Curie Research Training Network European Leadership in Space Astrometry [MRTN-CT-2006-033481]; Chinese Academy of Sciences (LAMOST) FX S.L., T.C.B., and T. S. acknowledge partial funding of this work from grant PHY 02-16783: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics, awarded by the U. S. National Science Foundation. NASA grants (NAG5-13057, NAG5-13147) to C. A. are gratefully acknowledged. J.E.N. acknowledges support from Australian Research Council Grant DP0663562. C.B.J. and P. R. F. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) grant BA2163. Support through the Marie Curie Research Training Network European Leadership in Space Astrometry under contract MRTN-CT-2006-033481 to P. R. F. is also acknowledged. H.Z. and A. L. L. acknowledge partial support from the Chinese Academy of Sciences (LAMOST). NR 62 TC 263 Z9 264 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2008 VL 136 IS 5 BP 2022 EP 2049 DI 10.1088/0004-6256/136/5/2022 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 361MT UT WOS:000260132500025 ER PT J AU Lee, YS Beers, TC Sivarani, T Johnson, JA An, DK Wilhelm, R Prieto, CA Koesterke, L Fiorentin, PR Bailer-Jones, CAL Norris, JE Yanny, B Rockosi, C Newberg, HJ Cudworth, KM Pan, KK AF Lee, Young Sun Beers, Timothy C. Sivarani, Thirupathi Johnson, Jennifer A. An, Deokkeun Wilhelm, Ronald Prieto, Carlos Allende Koesterke, Lars Fiorentin, Paola Re Bailer-Jones, Coryn A. L. Norris, John E. Yanny, Brian Rockosi, Constance Newberg, Heidi J. Cudworth, Kyle M. Pan, Kaike TI THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: spectroscopic ID DIGITAL SKY SURVEY; OLD OPEN CLUSTERS; ELEMENTAL ABUNDANCE RATIOS; MEDIUM-RESOLUTION SPECTRA; INFRARED CAII TRIPLET; DATA RELEASE; RADIAL-VELOCITIES; MILKY-WAY; ATMOSPHERIC PARAMETERS; EMPIRICAL CALIBRATION AB We validate the accuracy and precision of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) and radial velocities (RVs), by comparing these estimates for selected members of three globular clusters (M 13, M15, and M2) and two open clusters (NGC 2420 and M67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine atmospheric parameter and RV estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, sigma([Fe/H]) = 0.13 dex for stars in the range of -0.3 <= g - r <= 1.3 and 2.0 <= log g <= 5.0, at least over the metallicity interval spanned by the clusters studied (- 2.3 <= [Fe/H] <= 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of color-magnitude diagrams with stellar evolution models; we find satisfactory agreement (sigma(T-eff) < 200 K and sigma(log g) <= 0.4 dex). C1 [Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi] Michigan State Univ, Dept Phys & Astron, Ctr Study Cosm Evolut, E Lansing, MI 48824 USA. [Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Johnson, Jennifer A.; An, Deokkeun] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Wilhelm, Ronald] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Prieto, Carlos Allende; Koesterke, Lars] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Fiorentin, Paola Re; Bailer-Jones, Coryn A. L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Norris, John E.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rockosi, Constance] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Newberg, Heidi J.] Rensselaer Polytech Inst, Dept Phys & Astron, Troy, NY 12180 USA. [Cudworth, Kyle M.] Univ Chicago, Yerkes Observ, Williams Bay, WI 53191 USA. [Pan, Kaike] Apache Point Observ, Sunspot, NM 88349 USA. RP Lee, YS (reprint author), Michigan State Univ, Dept Phys & Astron, Ctr Study Cosm Evolut, E Lansing, MI 48824 USA. EM lee@pa.msu.edu; beers@pa.msu.edu; thirupathi@pa.msu.edu; jaj@astronomy.ohio-state.edu; deokkeun@astronomy.ohio-state.edu; ron.wilhelm@ttu.edu; callende@astro.as.utexas.edu; fiorent@mpia-hd.mpg.de; calj@mpia-hd.mpg.de; jen@mso.anu.edu.au; yanny@fnal.gov; crockosi@ucolick.org; newbeh@rpi.edu; kmc@yerkes.uchicago.edu; kpan@apo.nmsu.edu OI Re Fiorentin, Paola/0000-0002-4995-0475 FU Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; NASA; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 02-16783]; U.S. National Science Foundation; NASA [NAG5-13057, NAG5-13147]; Australian Research Council Grant [DP0663562]; Deutsche Forschungsgemeinschaft (DFG) [BA2163]; Marie Curie Research Training Network ELSA (European Leadership in Space Astrometry) [MRTN-CT-2006-033481] FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; S. L., T. C. B., and T. S. acknowledge partial funding of this work from grant PHY 02-16783: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. NASA grants (NAG5-13057, NAG5-13147) to C. A. are thankfully acknowledged. J.E.N. acknowledges support from Australian Research Council Grant DP0663562. C.B.J. and P. R. F. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) grant BA2163. Support through the Marie Curie Research Training Network ELSA (European Leadership in Space Astrometry) under contract MRTN-CT-2006-033481 to P. R. F. is also acknowledged. NR 71 TC 170 Z9 171 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2008 VL 136 IS 5 BP 2050 EP 2069 DI 10.1088/0004-6256/136/5/2050 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 361MT UT WOS:000260132500026 ER PT J AU Prieto, CA Sivarani, T Beers, TC Lee, YS Koesterke, L Shetrone, M Sneden, C Lambert, DL Wilhelm, R Rockosi, CM Lai, DK Yanny, B Ivans, II Johnson, JA Aoki, W Bailer-Jones, CAL Fiorentin, PR AF Prieto, Carlos Allende Sivarani, Thirupathi Beers, Timothy C. Lee, Young Sun Koesterke, Lars Shetrone, Matthew Sneden, Christopher Lambert, David L. Wilhelm, Ronald Rockosi, Constance M. Lai, David K. Yanny, Brian Ivans, Inese I. Johnson, Jennifer A. Aoki, Wako Bailer-Jones, Coryn A. L. Fiorentin, Paola Re TI THE SEGUE STELLAR PARAMETER PIPELINE. III. COMPARISON WITH HIGH-RESOLUTION SPECTROSCOPY OF SDSS/SEGUE FIELD STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: spectroscopic ID DIGITAL SKY SURVEY; HIGH-DISPERSION-SPECTROGRAPH; HOBBY-EBERLY TELESCOPE; GALACTIC DISK; DATA RELEASE; RADIAL-VELOCITIES; NEARBY STARS; COOL STARS; AB-INITIO; F-DWARF AB We report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which we compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R similar to 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/Ns), we empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s(-1), 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. We estimate random errors for lower S/N based on numerical simulations. C1 [Prieto, Carlos Allende; Koesterke, Lars; Shetrone, Matthew; Sneden, Christopher; Lambert, David L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Prieto, Carlos Allende; Koesterke, Lars; Shetrone, Matthew; Sneden, Christopher; Lambert, David L.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Sivarani, Thirupathi; Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, Ctr Study Cosm Evolut, E Lansing, MI 48824 USA. [Sivarani, Thirupathi; Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Wilhelm, Ronald] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Rockosi, Constance M.; Lai, David K.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ivans, Inese I.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Ivans, Inese I.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Aoki, Wako] Natl Astron Observ, Mitaka, Tokyo 1818588, Japan. [Bailer-Jones, Coryn A. L.; Fiorentin, Paola Re] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Prieto, CA (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Surrey RH5 6NT, England. EM callende@astro.as.utexas.edu; thirupathi@pa.msu.edu; beers@pa.msu.edu; lee@pa.msu.edu; lars@astro.as.utexas.edu; shetrone@astro.as.utexas.edu; chris@astro.as.utexas.edu; dll@astro.as.utexas.edu; ron.wilhelm@ttu.edu; crockosi@ucolick.org; david@ucolick.org; yanny@fnal.gov; iii@ociw.edu; jaj@astronomy.ohio-state.edu; aoki.wako@nao.ac.jp OI Re Fiorentin, Paola/0000-0002-4995-0475 FU NASA [NAG5-13057, NAG5-13147]; U.S. National Science Foundation [AST 04-06784, AST 07-07776]; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 02-16783]; Welch Foundation of Houston, Texas FX NASA grants (NAG5-13057, NAG5-13147) to C. A. P. and D. L. L. are thankfully acknowledged. T. C. B., Y.S.L., B. M., and T. S. acknowledge support from the U.S. National Science Foundation under grants AST 04-06784 and AST 07-07776, as well as from grant PHY 02-16783; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA). D. L. L.' s research is supported in part by the Welch Foundation of Houston, Texas. NR 65 TC 140 Z9 140 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2008 VL 136 IS 5 BP 2070 EP 2082 DI 10.1088/0004-6256/136/5/2070 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 361MT UT WOS:000260132500027 ER PT J AU Pelangeon, A Atteia, JL Nakagawa, YE Hurley, K Yoshida, A Vanderspek, R Suzuki, M Kawai, N Pizzichini, G Boer, M Braga, J Crew, G Donaghy, TQ Dezalay, JP Doty, J Fenimore, EE Galassi, M Graziani, C Jernigan, JG Lamb, DQ Levine, A Manchanda, J Martel, F Matsuoka, M Olive, JF Prigozhin, G Ricker, GR Sakamoto, T Shirasaki, Y Sugita, S Takagishi, K Tamagawa, T Villasenor, J Woosley, SE Yamauchi, M AF Pelangeon, A. Atteia, J.-L. Nakagawa, Y. E. Hurley, K. Yoshida, A. Vanderspek, R. Suzuki, M. Kawai, N. Pizzichini, G. Boer, M. Braga, J. Crew, G. Donaghy, T. Q. Dezalay, J. P. Doty, J. Fenimore, E. E. Galassi, M. Graziani, C. Jernigan, J. G. Lamb, D. Q. Levine, A. Manchanda, J. Martel, F. Matsuoka, M. Olive, J.-F. Prigozhin, G. Ricker, G. R. Sakamoto, T. Shirasaki, Y. Sugita, S. Takagishi, K. Tamagawa, T. Villasenor, J. Woosley, S. E. Yamauchi, M. TI Intrinsic properties of a complete sample of HETE-2 gamma-ray bursts A measure of the GRB rate in the Local Universe SO ASTRONOMY & ASTROPHYSICS LA English DT Review DE gamma rays: bursts; X-rays: bursts ID TIME RADIO OBSERVATIONS; 25 APRIL 1998; PROMPT EMISSION; STAR-FORMATION; HOST GALAXY; E-P,E-I-E-ISO CORRELATION; LUMINOSITY FUNCTION; REDSHIFT INDICATOR; UNUSUAL SUPERNOVA; SPECTRAL-ANALYSIS AB Context. As a result of the numerous missions dedicated to the detection of Gamma-ray bursts (GRBs), the observed properties of these events are now well known. However, studying their parameters in the source frame is not simple since it requires having measurements of both the bursts' parameters and of their distances. Aims. Taking advantage of the forthcoming Catalog of the High Energy Transient Explorer 2 (HETE-2) mission, the aim of this paper is to evaluate the main properties of HETE-2 GRBs - the peak energy (E(peak)), the duration (T(90)) and the isotropic energy (E(iso)) - in their source frames and to derive their unbiased distribution. Methods. We first construct a complete sample containing all the bursts localized by the Wide-Field X-ray Monitor (WXM) on-board HETE-2, which are selected with a uniform criterion and whose observed parameters can be constrained. We then derive the intrinsic E(peak), T(90) and E(is)o distributions using their redshift when it is available, or their pseudo-redshift otherwise. We finally compute the "volume of detectability" V(max) of each GRB, i.e. the volume of the universe in which the burst is bright enough to be part of our sample, and the corresponding number of GRB within their visibility volume N(Vmax), in order to derive a weight for each detected burst accounting both for the detection significance and the star formation history of the universe. Results. We obtain unbiased distributions of three intrinsic properties of HETE-2 GRBs: E(peak)(intr), T(90)(intr) and the isotropic energy of the burst. These distributions clearly show the predominence of X-ray flashes (XRFs) in the global GRB population. We also derive the rate of local GRBs: R(0)(H2) greater than or similar to 11 Gpc(-3) yr(-1), which is intermediate between the local rate obtained by considering only the "high-luminosity" bursts (similar to 1 Gpc(-3) yr(-1)) and that obtained by including the "low-luminosity" bursts (greater than or similar to 200 Gpc(-3) yr(-1)). Conclusions. This study shows that the XRFs are predominent in the GRB population and are closely linked to the "classical" GRBs. We show that HETE-2 detected no low-luminosity GRB like GRB 980425 or XRF 060218, due to the small size of its detectors, excluding this type of burst from our statistical analysis. The comparison of the GRB rate derived in this study with the known rate of type Ib/c supernovae clearly shows that the progenitors of SNe Ib/c must have some special characteristics in order to produce a gamma- ray burst or an X-ray flash. C1 [Pelangeon, A.; Atteia, J.-L.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Nakagawa, Y. E.; Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. [Nakagawa, Y. E.; Yoshida, A.; Kawai, N.; Tamagawa, T.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Vanderspek, R.; Crew, G.; Doty, J.; Levine, A.; Martel, F.; Prigozhin, G.; Ricker, G. R.; Villasenor, J.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Jernigan, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Pizzichini, G.] INAF IASF Bologna, I-40129 Bologna, Italy. [Boer, M.] St Michael Observ, CNRS, OAMP, Observ Haute Provence, Paris, France. [Braga, J.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, Brazil. [Donaghy, T. Q.; Graziani, C.; Lamb, D. Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dezalay, J. P.] Univ Toulouse, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Fenimore, E. E.; Galassi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Manchanda, J.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Mumbai 400005, Maharashtra, India. [Suzuki, M.; Matsuoka, M.] Natl Space Dev Agcy Japan, Tsukuba Space Ctr, Tsukuba, Ibaraki 3058505, Japan. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Shirasaki, Y.] Natl Astron Observ, Mitaka, Tokyo 1818588, Japan. [Sugita, S.] Aoyama Gakuin Univ, Dept Phys, Setagaya Ku, Tokyo 1578572, Japan. [Takagishi, K.; Yamauchi, M.] Miyazaki Univ, Fac Engn, Miyazaki 8892192, Japan. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Sakamoto, T.] Univ Maryland, Joint Astron Ctr, Baltimore, MD 21250 USA. RP Pelangeon, A (reprint author), Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, 14 Av Edouard Belin, F-31400 Toulouse, France. EM alexandre.pelangeon@ast.obs-mip.fr; atteia@ast.obs-mip.fr FU NASA [NASW-4690]; CNES [793-01-8479]; Ministry of Education, Culture, Sports, Science and Technology [19047001]; Ministry of National Education, Research and Technology; JSPS Research Fellowships for Young Scientists; RIKEN; MIT [SC-R-293291]; ASI [I/088/06/0] FX The HETE-2 mission was supported in the US by NASA contract NASW-4690, in France by CNES contract 793-01-8479 and in Japan in part by the Ministry of Education, Culture, Sports, Science and Technology and by Grant-in-Aid for Scientific Research on Priority Areas 19047001. The authors acknowledge the valuable support of the HETE-2 Operation Team. AP is supported in France by the Ministry of National Education, Research and Technology. Y.E.N. is supported by the JSPS Research Fellowships for Young Scientists. This work is supported in part by a special postdoctoral researchers program in RIKEN. K. H. is grateful for support under MIT Contract SC-R-293291. G. Pizzichini aknowledges financial support as part of ASI contract I/088/06/0. Finally, the authors acknowledge the referee for his/her valuable and relevant remarks that helped improving the content of this paper. NR 150 TC 41 Z9 41 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2008 VL 491 IS 1 BP 157 EP U67 DI 10.1051/0004-6361:200809709 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 367NW UT WOS:000260559700012 ER PT J AU Leach, SM Cardoso, JF Baccigalupi, C Barreiro, RB Betoule, M Bobin, J Bonaldi, A Delabrouille, J de Zotti, G Dickinson, C Eriksen, HK Gonzalez-Nuevo, J Hansen, FK Herranz, D Le Jeune, M Lopez-Caniego, M Martinez-Gonzalez, E Massardi, M Melin, JB Miville-Deschenes, MA Patanchon, G Prunet, S Ricciardi, S Salerno, E Sanz, JL Starck, JL Stivoli, F Stolyarov, V Stompor, R Vielva, P AF Leach, S. M. Cardoso, J. -F. Baccigalupi, C. Barreiro, R. B. Betoule, M. Bobin, J. Bonaldi, A. Delabrouille, J. de Zotti, G. Dickinson, C. Eriksen, H. K. Gonzalez-Nuevo, J. Hansen, F. K. Herranz, D. Le Jeune, M. Lopez-Caniego, M. Martinez-Gonzalez, E. Massardi, M. Melin, J. -B. Miville-Deschenes, M. -A. Patanchon, G. Prunet, S. Ricciardi, S. Salerno, E. Sanz, J. L. Starck, J. -L. Stivoli, F. Stolyarov, V. Stompor, R. Vielva, P. TI Component separation methods for the PLANCK mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: cosmic microwave background; methods: data analysis ID MICROWAVE-ANISOTROPY-PROBE; POWER SPECTRUM ESTIMATION; WMAP OBSERVATIONS; POINT SOURCES; SATELLITE-OBSERVATIONS; STATISTICAL PROPERTIES; EXTRAGALACTIC SOURCES; INFRARED-EMISSION; BACKGROUND MAPS; CMB EXPERIMENTS AB Context. The PLANCK satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. Aims. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into "components" with different physical origins (Galactic synchrotron, free-free and dust emissions; extra-galactic and far-IR point sources; Sunyaev-Zeldovich effect, etc.). Methods. A component separation challenge has been organised, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Results. Different methods proved to be effective in cleaning the CMB maps of foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. Conclusions. We foresee that the final component separation pipeline for planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation, and compact source extraction. C1 [Leach, S. M.; Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Massardi, M.; Stivoli, F.] SISSA, ISAS, Astrophys Sector, I-34014 Trieste, Italy. [Leach, S. M.; Baccigalupi, C.; Stivoli, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. [Cardoso, J. -F.; Betoule, M.; Delabrouille, J.; Le Jeune, M.; Patanchon, G.; Stompor, R.] CNRS, F-75205 Paris 13, France. [Cardoso, J. -F.; Betoule, M.; Delabrouille, J.; Le Jeune, M.; Patanchon, G.; Stompor, R.] Univ Paris 07, Lab APC, F-75205 Paris 13, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris, France. [Barreiro, R. B.; Herranz, D.; Martinez-Gonzalez, E.; Sanz, J. L.; Vielva, P.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Bobin, J.; Starck, J. -L.] CEA Saclay, SEDI Serv Astrophys, F-91191 Gif Sur Yvette, France. [Bonaldi, A.; de Zotti, G.; Ricciardi, S.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Bonaldi, A.] Dipartimento Astron, I-35122 Padua, Italy. [Dickinson, C.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Eriksen, H. K.; Hansen, F. K.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Eriksen, H. K.; Hansen, F. K.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Lopez-Caniego, M.; Stolyarov, V.] Cavevdish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Melin, J. -B.] CEA Saclay, DSM,Irfu,SPP, F-91191 Gif Sur Yvette, France. [Miville-Deschenes, M. -A.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Prunet, S.] Inst Astrophys, F-75014 Paris, France. [Ricciardi, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Space Sci Lab, Berkeley, CA 94720 USA. [Salerno, E.] CNR, Ist Sci & Technol Informaz, Area Ric, I-56124 Pisa, Italy. RP Leach, SM (reprint author), SISSA, ISAS, Astrophys Sector, Via Beirut 4, I-34014 Trieste, Italy. EM leach@sissa.it RI Starck, Jean-Luc/D-9467-2011; Salerno, Emanuele/A-2137-2010; Lopez-Caniego, Marcos/M-4695-2013; Vielva, Patricio/F-6745-2014; Herranz, Diego/K-9143-2014; Bobin, Jerome/P-3729-2014; Barreiro, Rita Belen/N-5442-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Stolyarov, Vladislav/C-5656-2017 OI Ricciardi, Sara/0000-0002-3807-4043; Lopez-Caniego, Marcos/0000-0003-1016-9283; Starck, Jean-Luc/0000-0003-2177-7794; Salerno, Emanuele/0000-0002-3433-3634; Vielva, Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417; Bobin, Jerome/0000-0003-1457-7890; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Stolyarov, Vladislav/0000-0001-8151-828X NR 56 TC 133 Z9 134 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2008 VL 491 IS 2 BP 597 EP 615 DI 10.1051/0004-6361:200810116 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 370KM UT WOS:000260761100037 ER PT J AU Hauschildt, PH Baron, E AF Hauschildt, P. H. Baron, E. TI A 3D radiative transfer framework III. Periodic boundary conditions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; scattering ID SOLAR CHEMICAL-COMPOSITION; LINE FORMATION; GRANULATION; ABUNDANCES AB Aims. We present a general method to solve radiative transfer problems including scattering in the continuum as well as in lines in 3D configurations with periodic boundary conditions. Methods. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate. operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle using the MPI library. Results. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D plane parallel tests. The 3D results agree very well with the well-tested 1D calculations. Conclusions. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution. C1 [Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Hauschildt, PH (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM yeti@hs.uni-hamburg.de; baron@ou.edu RI Baron, Edward/A-9041-2009 OI Baron, Edward/0000-0001-5393-1608 FU NASA [NAG5-3505, NAG5-12127]; NSF [AST-0307323, AST-0707704]; US DOE [DE-FG02-07ER41517]; DFG [GrK 1351, SFB 676]; DFG; National Energy Research Supercomputer Center (NERSC); Office of Science of the US Department of Energy [DE-AC03-76SF00098] FX This work was supported in part by by NASA grants NAG5-3505 and NAG5-12127, NSF grants AST-0307323, and AST-0707704, and US DOE Grant DE-FG02-07ER41517, as well as DFG GrK 1351 and SFB 676. Some of the calculations presented here were performed at the Hochstleistungs Rechenzentrum Nord (HLRN); at the NASA's Advanced Supercomputing Division's Project Columbia, at the Hamburger Sternwarte Apple G5 and Delta Opteron clusters financially supported by the DFG and the State of Hamburg; and at the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC03-76SF00098. NR 10 TC 12 Z9 12 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2008 VL 490 IS 2 BP 873 EP 877 DI 10.1051/0004-6361:200810239 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 367DE UT WOS:000260531900046 ER PT J AU Abbasi, RU Abu-Zayyad, T Allen, M Amman, JF Archbold, G Belov, K Belz, JW BenZvi, SY Bergman, DR Blake, SA Boyer, JH Brusova, OA Burt, GW Cannon, C Cao, Z Deng, W Fedorova, Y Findlay, J Finley, CB Gray, RC Hanlon, WF Hoffman, CM Holzscheiter, MH Hughes, G Huntemeyer, P Ivanov, D Jones, BF Jui, CCH Kim, K Kirn, MA Knapp, BC Loh, EC Maestas, MM Manago, N Mannel, EJ Marek, LJ Martens, K Matthews, JN Moore, SA O'Neill, A Painter, CA Perera, L Reil, K Riehle, R Roberts, MD Rodriguez, D Sasaki, N Schnetzer, SR Scott, LM Seman, M Sinnis, G Smith, JD Snow, R Sokolsky, P Song, C Springer, RW Stokes, BT Stratton, SR Thomas, JR Thomas, SB Thomson, GB Tupa, D Wiencke, LR Zech, A Zhang, X AF Abbasi, R. U. Abu-Zayyad, T. Allen, M. Amman, J. F. Archbold, G. Belov, K. Belz, J. W. BenZvi, S. Y. Bergman, D. R. Blake, S. A. Boyer, J. H. Brusova, O. A. Burt, G. W. Cannon, C. Cao, Z. Deng, W. Fedorova, Y. Findlay, J. Finley, C. B. Gray, R. C. Hanlon, W. F. Hoffman, C. M. Holzscheiter, M. H. Hughes, G. Huentemeyer, P. Ivanov, D. Jones, B. F. Jui, C. C. H. Kim, K. Kirn, M. A. Knapp, B. C. Loh, E. C. Maestas, M. M. Manago, N. Mannel, E. J. Marek, L. J. Martens, K. Matthews, J. N. Moore, S. A. O'Neill, A. Painter, C. A. Perera, L. Reil, K. Riehle, R. Roberts, M. D. Rodriguez, D. Sasaki, N. Schnetzer, S. R. Scott, L. M. Seman, M. Sinnis, G. Smith, J. D. Snow, R. Sokolsky, P. Song, C. Springer, R. W. Stokes, B. T. Stratton, S. R. Thomas, J. R. Thomas, S. B. Thomson, G. B. Tupa, D. Wiencke, L. R. Zech, A. Zhang, X. CA High Resolution Fly's Eye Collabor TI Search for correlations between HiRes stereo events and active galactic nuclei SO ASTROPARTICLE PHYSICS LA English DT Article DE Active galactic nuclei; Ultrahigh energy cosmic rays; Anisotropy ID ENERGY COSMIC-RAYS AB We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and active galactic nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by the Pierre Auger collaboration. Using these parameters, the Auger collaboration concludes that a positive correlation exists for Sources visible to their Southern hemisphere location. We also describe results using two methods for determining the chance probability of correlations: one in which a hypothesis is formed from scanning one half of the data and tested on the second half, and another which involves a scan over the entire data set. The most significant correlation found Occurred with a chance probability of 24%. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bergman, D. R.; Hughes, G.; Ivanov, D.; Perera, L.; Schnetzer, S. R.; Scott, L. M.; Stratton, S. R.; Thomson, G. B.; Zech, A.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; BenZvi, S. Y.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Amman, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belz, J. W.; Kirn, M. A.] Montana State Univ, Dept Phys, Bozeman, MT 59812 USA. [Boyer, J. H.; Finley, C. B.; Knapp, B. C.; Mannel, E. J.; O'Neill, A.; Seman, M.; Song, C.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Boyer, J. H.; Finley, C. B.; Knapp, B. C.; Mannel, E. J.; O'Neill, A.; Seman, M.; Song, C.; Zhang, X.] Columbia Univ, Nevis Lab, New York, NY 10027 USA. [Manago, N.; Sasaki, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Roberts, M. D.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Scott, LM (reprint author), Rutgers State Univ, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. EM lscott@physics.rutgers.edu RI Song, Chihwa/A-3455-2008; Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI Tupa, Dale/0000-0002-6265-5016 FU US NSF [PHY-9100221, PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0073057, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516, PHY-0307098, PHY-0649681, PHY-0703893]; DOE [FG03-92ER40732] FX This work was Supported by US NSF Grants PHY-9100221, PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0073057, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516, PHY-0307098, PHY-0649681, and PHY-0703893, and by the DOE Grant FG03-92ER40732. We gratefully acknowledge the contributions from the technical Staffs Of Our home institutions. The cooperation of Colonels E. Fischer, G. Harter and G. Olsen, the US Army, and the Dugway Proving Ground staff is greatly appreciated. NR 20 TC 88 Z9 88 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD NOV PY 2008 VL 30 IS 4 BP 175 EP 179 DI 10.1016/j.astropartphys.2008.08.004 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 400NZ UT WOS:000262876400002 ER PT J AU Diehl, S Li, H Fryer, CL Rafferty, D AF Diehl, Steven Li, Hui Fryer, Christopher L. Rafferty, David TI CONSTRAINING THE NATURE OF X-RAY CAVITIES IN CLUSTERS AND GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cooling flows; galaxies: clusters: general; instabilities; MHD; X-rays: galaxies: clusters; X-rays: ISM ID ACTIVE GALACTIC NUCLEI; HOT INTERSTELLAR-MEDIUM; LUMINOUS ELLIPTIC GALAXIES; MAGNETIC TOWER JETS; RADIO BUBBLES; COOLING FLOWS; INTRACLUSTER MEDIUM; CHANDRA OBSERVATION; TAYLOR INSTABILITY; PERSEUS CLUSTER AB We present results from an extensive survey of 64 cavities in the X-ray halos of clusters, groups, and normal elliptical galaxies. We show that the evolution of the size of the cavities as they rise in the X-ray atmosphere is inconsistent with the standard model of adiabatic expansion of purely hydrodynamic models. We also note that the majority of the observed bubbles should have already been shredded apart by Rayleigh-Taylor and Richtmyer-Meshkov instabilities if they were of purely hydrodynamic nature. Instead, we find that the data agree much better with a model where the cavities are magnetically dominated and inflated by a current-dominated MHD jet model, recently developed by Li and coworkers and Nakamura and coworkers. We conduct complex Monte Carlo simulations of the cavity detection process including incompleteness effects to reproduce the cavity sample's characteristics. We find that the current-dominated model agrees within 1 sigma, whereas the other models can be excluded at > 5 sigma confidence. To bring hydrodynamic models into better agreement, cavities would have to be continuously inflated. However, these assessments are dependent on our correct understanding of the detectability of cavities in X-ray atmospheres and will await confirmation when automated cavity detection tools become available in the future. Our results have considerable impact on the energy budget associated with AGN feedback. C1 [Diehl, Steven] Los Alamos Natl Lab, Theoret Astrophys Grp T6, Los Alamos, NM 87545 USA. [Fryer, Christopher L.] Los Alamos Natl Lab, Computat Phys & Methods Grp CCS2, Los Alamos, NM 87545 USA. [Rafferty, David] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Rafferty, David] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Diehl, S (reprint author), Los Alamos Natl Lab, Theoret Astrophys Grp T6, POB 1663, Los Alamos, NM 87545 USA. EM diehl@lanl.gov; hli@lanl.gov NR 50 TC 43 Z9 43 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2008 VL 687 IS 1 BP 173 EP 192 DI 10.1086/591310 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YD UT WOS:000260370800015 ER PT J AU Bongard, S Baron, E Smadja, G Branch, D Hauschildt, PH AF Bongard, Sebastien Baron, E. Smadja, G. Branch, David Hauschildt, Peter H. TI MULTILAYERED SPECTRAL FORMATION IN TYPE Ia SUPENOVAE AROUND MAXIMUM LIGHT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: miscellaneous; stars: atmospheres; supernovae: general ID STELLAR ATMOSPHERE PROGRAM; SUPERNOVA SPECTRA; SPECTROSCOPIC DIVERSITY; PARALLEL IMPLEMENTATION; NON-LTE; MODELS; LUMINOSITY AB We use the radiative transfer code PHOENIX to study the line formation of the wavelength region 5000-7000 angstrom. This is the region where the SN IaYdefining Si II feature occurs. This region is important, since the ratio of the two nearby silicon lines has been shown to correlate with the absolute blue magnitude. We use a grid of LTE synthetic spectral models to investigate the formation of line features in the spectra of SNe Ia. By isolating the main contributors to the spectral formation, we show that the ions that drive the spectral ratio are Fe III, Fe II, Si II, and S II. While the former two strongly dominate the flux transfer, the latter two form in the same physical region inside the supernova. We also show that the naive blackbody that one would derive from a fit to the observed spectrum is very different than the true underlying continuum. C1 [Bongard, Sebastien] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bongard, Sebastien; Baron, E.; Branch, David] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bongard, Sebastien; Smadja, G.] Univ Lyon 1, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Baron, E.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Hauschildt, Peter H.] Hamburger Sternwarte, D-21029 Hamburg, Germany. RP Bongard, S (reprint author), Lawrence Berkeley Natl Lab, Div Phys, MS 50A-5014,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sbongard@lbl.gov; baron@ou.edu; smadja@in2p3.fr; yeti@hs.uni-hamburg.de RI Baron, Edward/A-9041-2009 OI Baron, Edward/0000-0001-5393-1608 FU NASA [NAG5-3505, NAG512127]; AST [05- 06028, 0707704]; US DOE [DE-FG02-07ER41517]; US Department of Energy Scientific Discovery through Advanced Computing program [DE-FG02-06ER06-04]; National Energy Research Scientific Computing Center (NERSC); Office of Science of the US Department of Energy [DE-AC0376SF00098]; Hochstleistungs Rechenzentrum Nord (HLRN) FX We thank the anonymous referee for comments that significantly improved the organization of this paper. This work was supported in part by NASA grants NAG5-3505 and NAG512127, NSF grants AST 03-07323, AST 05- 06028, and AST 0707704, and US DOE grant DE-FG02-07ER41517. S. Bongard and E. Baron acknowledge support from the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC0376SF00098; and the Hochstleistungs Rechenzentrum Nord (HLRN). We thank all these institutions for a generous allocation of computer time. NR 22 TC 20 Z9 20 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2008 VL 687 IS 1 BP 456 EP 465 DI 10.1086/590107 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YD UT WOS:000260370800035 ER PT J AU Coleman, BK Lunden, MM Destaillats, H Nazaroff, WW AF Coleman, Beverly K. Lunden, Melissa M. Destaillats, Hugo Nazaroff, William W. TI Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Secondary organic aerosol; Indoor air quality; Cleaning products; Terpenes; Ozone; Particle size distribution; Nucleation ID GAS-PHASE REACTIONS; ULTRAFINE PARTICLES; CLEANING PRODUCTS; REFRACTIVE-INDEX; AIR FRESHENERS; SCALE CHAMBER; INDOOR AIR; D-LIMONENE; EMISSIONS; POLLUTANTS AB We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting similar behavior to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established, reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10-400 nm) in every experiment and with an optical particle counter (OPC, 0.1-2.0 mu m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM(1.1)) ranged from 10 to >300 mu g m(-3) and yields ranged from 5% to 37%. Steady-state nucleation rates and SOA mass formation rates were similar to 10 cm(-3) s(-1) and similar to 10 mu g m(-3) min(-1), respectively. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Coleman, Beverly K.; Nazaroff, William W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Lunden, Melissa M.; Destaillats, Hugo] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Dept Civil & Environm Engn, Tempe, AZ 85287 USA. RP Nazaroff, WW (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM nazaroff@ce.berkeley.edu RI Nazaroff, William/C-4106-2008; Destaillats, Hugo/B-7936-2013 OI Nazaroff, William/0000-0001-5645-3357; FU California Air Resources Board [01-336]; National Science Foundation; US DOE [DE-AC02-05CH11231] FX We thank Brett Singer and Al Hodgson (LBNL) for their assistance with the experiments and Charles Weschler (EOHSI/DTU) for helpful discussions. The California Air Resources Board (Contract No. 01-336) provided financial support for the experimental work on which this paper is based. The statements and conclusions in this report are those of the researchers and not necessarily those of the California ARB. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. A graduate fellowship from the National Science Foundation that supported B Coleman is gratefully acknowledged. All work at LBNL was conducted under US DOE Contract No. DE-AC02-05CH11231. NR 36 TC 64 Z9 65 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2008 VL 42 IS 35 BP 8234 EP 8245 DI 10.1016/j.atmosenv.2008.07.031 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 378DK UT WOS:000261301200012 ER PT J AU Theofilopoulos, S Lykidis, A Leondaritis, G Mangoura, D AF Theofilopoulos, Spyros Lykidis, Athanasios Leondaritis, George Mangoura, Dimitra TI Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS LA English DT Article DE Lipid metabolism; Phosphatidate phosphatase; Phosphatidic acid; Tricylglycerol; Bifunctional enzyme ID DIACYLGLYCEROL PYROPHOSPHATE PHOSPHATASE; ACID PHOSPHATASE; SACCHAROMYCES-CEREVISIAE; ENDOPLASMIC-RETICULUM; MOLECULAR-CLONING; CELL-DEATH; SIGNAL-TRANSDUCTION; MAMMALIAN-CELLS; RAT-LIVER; PHOSPHOHYDROLASE AB Phosphatidate phosphatases, PAPs, are key enzymes in lipid biosynthesis and signaling. Type I PAP enzymes participate in de-novo phospholipid biosynthesis, whereas type II PAP enzymes have an established role in lipid signaling. To identify novel human type II PAPs potentially involved in de-novo phospholipid synthesis we used bioinformatics to screen for enzymes with an active site exposed to the cytosolic side of membranes. Two related enzymes, a novel lipid phosphatase related protein (LPRP-A) and a presqualene diphosphate phosphatase (PAP-SP) met this criterion. PA-PSP and LPRP-A have differential tissue and subcellular distribution, and novel yet differential roles in lipid metabolism. Specifically, PA-PSP, but not LPRP-A, was a potent Mg(2+)-independent, NEM-insensitive type II PAP. Subcellular fractionation detection indicated that both proteins were associated with membranes, while immunofluorescent deconvolution imaging revealed that these membranes were exclusively from the nuclear envelope and the endoplasmic reticulum. PA-PSP overexpression, but not LPRP-A, accelerated the synthesis of phosphatidylcholine and caused accumulation of triacylglycerol with concomitant decrease in the rate of phosphatidylinositol synthesis. Coexpression of human CTP:phosphocholine cytidylyltransferase-a with PA-PSP enhanced the effect of PA-PSP on phosphatidylcholine levels, yet attenuated its effect on triacylglycerol. Taken together, our studies provide the first evidence that the eukaryotic, ER-resident PA-PSP is a bifunctional enzyme with specific type II PAP activity, and regulates, in addition to type I PAPs, the de-novo biosynthesis of phospholipids and triacylglycerols. (C) 2008 Elsevier B.V. All rights reserved. C1 [Theofilopoulos, Spyros; Lykidis, Athanasios; Leondaritis, George; Mangoura, Dimitra] Acad Athens, Biomed Res Fdn, Ctr Neurosci, Athens 11527, Greece. RP Lykidis, A (reprint author), Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. EM alykidis@lbl.gov; mangoura@bioacademy.gr RI Theofilopoulos, Spyridon/E-1508-2011; Theofilopoulos, Spyridon/B-2075-2015 FU Marie Curie Reintegration [013030]; Biomedical Research Foundation FX This work was supported in part by a Marie Curie Reintegration Grant to A.L, contract grant number 013030; G.L. has a Biomedical Research Foundation postdoctoral fellowship. We would like to thank Kostas Zorpas for the technical assistance. NR 61 TC 3 Z9 4 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1388-1981 J9 BBA-MOL CELL BIOL L JI Biochim. Biophys. Acta Mol. Cell Biol. Lipids PD NOV-DEC PY 2008 VL 1781 IS 11-12 BP 731 EP 742 DI 10.1016/j.bbalip.2008.09.001 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 383LP UT WOS:000261675400008 PM 18930839 ER PT J AU Horgan, FG AF Horgan, Finbarr G. TI Dung beetle assemblages in forests and pastures of El Salvador: a functional comparison SO BIODIVERSITY AND CONSERVATION LA English DT Article DE carrion; decomposition; deforestation; diversity-function; functional groups; guilds; Scarabaeidae; tropical pastures ID CATTLE DUNG; COLEOPTERA-SCARABAEIDAE; COPROPHAGOUS BEETLES; SPATIAL AGGREGATION; SPECIES-DIVERSITY; COMMUNITIES; FRAGMENTATION; COMPETITION; DECOMPOSITION; COLONIZATION AB This study examines the functional attributes of Neotropical dung beetles, and, based on the analysis, evaluates the role of dung beetles in pastures and tropical dry forest in El Salvador. Dung beetle diversity was lower in pastures than in forests. However, the total biomass of beetles at similarly-sized dung baits was frequently higher in pastures. Diversity loss followed structured patterns: (1) carrion and fruit feeding beetles were well represented (species number) in the forests but were largely absent from pastures; (2) large ball rollers and small fast tunnellers were present in forests but were absent from pastures; (3) large fast tunnellers and small slow tunnellers were poorly represented in pastures compared to forests but the few species that survived in pastures attained extremely high populations; and (4) each functional group in the species-poor pasture assemblages was divided almost equally into day and night active species. Substrate and habitat generalists that were present in both the forests and pastures were attracted to fruit and carrion in forested habitat but not in open pastures. In open habitats, flies and other insects may be the principal decomposers of decaying fruit and carrion. C1 [Horgan, Finbarr G.] TEAGASC, Oak Pk Res Ctr, Carlow, Ireland. [Horgan, Finbarr G.] Univ El Salvador, Escuela Biol, San Salvador, El Salvador. RP Horgan, FG (reprint author), TEAGASC, Oak Pk Res Ctr, Carlow, Ireland. EM finbarr.horgan@teagasc.ie NR 45 TC 5 Z9 14 U1 2 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3115 J9 BIODIVERS CONSERV JI Biodivers. Conserv. PD NOV PY 2008 VL 17 IS 12 BP 2961 EP 2978 DI 10.1007/s10531-008-9408-2 PG 18 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 356ZG UT WOS:000259815500010 ER PT J AU Tuberville, TD Norton, TM Todd, BD Spratt, JS AF Tuberville, Tracey D. Norton, Terry M. Todd, Brian D. Spratt, Jeffrey S. TI Long-term apparent survival of translocated gopher tortoises: A comparison of newly released and previously established animals SO BIOLOGICAL CONSERVATION LA English DT Article DE Translocation; Augmentation; Gopherus polyphemus; Apparent survival; Program MARK; Mark-recapture models ID TURTLE STERNOTHERUS-DEPRESSUS; CHELYDRA-SERPENTINA; INDIGENOUS HARVEST; LIVED ORGANISMS; PIG PREDATION; POPULATION; CONSERVATION; POLYPHEMUS; MANAGEMENT; MORTALITY AB Most turtle species require high adult survivorship to maintain stable populations. Translocations are often implemented to conserve turtle populations but may cause demographic disturbance as a result of increased mortality or dispersal of released animals. The gopher tortoise (Gopherus polyphemus) is one of the most frequently translocated turtle species. Short-term monitoring indicates that dispersal by released tortoises is common, but few long-term data are available to determine if losses of translocated animals continue for multiple years. We used 12 years of mark-recapture data to investigate long-term apparent survival of two groups of gopher tortoises translocated during separate periods to St. Catherines Island, Georgia, USA. We analyzed capture histories in program MARK to compare apparent survival of newly released tortoises and previously established translocated tortoises and also to determine whether apparent survival varied with sex or maturity. Apparent annual survival did not vary between adult males and females (0.98 +/- 0.01), but was lower in sexually immature tortoises (0.84 +/- 0.05). We documented a temporary reduction in apparent survival of newly released adult (0.75 +/- 0.06) and immature tortoises (0.45 +/- 0.26) during the first year after release that may be attributed in part to permanent dispersal. However, for both maturity classes, apparent survival of newly released tortoises was consistently high and matched that of previously established animals during the remainder of the study. Additional long-term studies of both translocated and naturally-occurring populations are needed to improve management of remaining tortoise populations. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Tuberville, Tracey D.; Todd, Brian D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Norton, Terry M.; Spratt, Jeffrey S.] St Catherines Isl Fdn, Midway, GA 31320 USA. RP Tuberville, TD (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM tracey.tuberville@gmail.com; tnmynahvet@aol.com; btodd@vt.edu; jspratt@tnc.org FU St. Catherines Island Foundation; Wildlife Conservation Society; American Museum of Natural History; U.S. Army Engineer Research and Development Center - Construction Engineering Research Lab; Department of Energy [DE-FC09-07SR22506]; University of Georgia Research Foundation FX We thank Royce Hayes, John Behler, Bonnie Raphael, William F. Holmstrom, Kelly Spratt, Jennifer Savage, Dave Rostal, Brad Winn, Jack Tuberville, Judy Greene, Kurt BuhImann, and the many other staff and volunteers for their dedicated field assistance during this project. We also thank Envirovet participants for their help in processing animals. Royce Hayes and St. Catherines Island Foundation staff provided valuable logistical support, including housing, throughout the study. We greatly appreciate the work by Alejandro Garcia and Katie Distler in compiling and organizing data and field notes. Research was conducted under permits issued by Georgia Department of Natural Resources (29-WCH-07-137). Funding was provided by St. Catherines Island Foundation, Wildlife Conservation Society, American Museum of Natural History, and Chelonian Research Foundation. Partial support for TDT during data analysis was provided by U.S. Army Engineer Research and Development Center - Construction Engineering Research Lab. Whit Gibbons, Craig Guyer, Justin Congdon, and three anonymous reviewers provided helpful comments on previous versions of this manuscript. Manuscript preparation was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 52 TC 29 Z9 31 U1 6 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0006-3207 J9 BIOL CONSERV JI Biol. Conserv. PD NOV PY 2008 VL 141 IS 11 BP 2690 EP 2697 DI 10.1016/j.biocon.2008.08.004 PG 8 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 372YW UT WOS:000260939200003 ER PT J AU Badireddy, AR Korpol, BR Chellam, S Gassman, PL Engelhard, MH Lea, AS Rosso, KM AF Badireddy, Appala Raju Korpol, Bhoom Reddy Chellam, Shankararaman Gassman, Paul L. Engelhard, Mark H. Lea, Alan S. Rosso, Kevin M. TI Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression Using Sub-Inhibitory Concentrations of Bismuth Thiols SO BIOMACROMOLECULES LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; PSEUDOMONAS-AERUGINOSA; FTIR-SPECTROSCOPY; BACILLUS-SUBTILIS; BIOFILMS; SURFACE; CULTURE; DIMERCAPROL; XPS; POLYSACCHARIDES AB Free and bound (or capsular) EPS produced by suspended cultures of Escherichia coli and Serratia marcescens were characterized in detail using colorimetric analysis of total proteins and polysaccharides, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) in the presence and absence of bismuth-based antifouling agents. Subtle differences in the chemical composition of free and bound EPS were observed for both bacteria in the absence of bismuth. Total polysaccharides and proteins in free and bound EPS decreased upon treatment with subinhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), with BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount produced. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, antifouling properties of bismuth thiols appear to originate in their ability to suppress C-acetylation and protein secondary structure formation in addition to free and bound EPS secretion. C1 [Badireddy, Appala Raju; Korpol, Bhoom Reddy; Chellam, Shankararaman] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Chellam, Shankararaman] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chellam, S (reprint author), Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. EM chellam@uh.edu RI Engelhard, Mark/F-1317-2010; OI Lea, Alan/0000-0002-4232-1553; Engelhard, Mark/0000-0002-5543-0812 FU National Science Foundation CAREER program [CBET-0134301]; Texas Hazardous Waste Research Center [066UHH2925] FX This research has been funded by grants from the National Science Foundation CAREER program (CBET-0134301) and the Texas Hazardous Waste Research Center (066UHH2925). A portion of the research described in this manuscript was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The contents do not necessarily reflect the views and policies of the sponsors nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. NR 50 TC 37 Z9 37 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD NOV PY 2008 VL 9 IS 11 BP 3079 EP 3089 DI 10.1021/bm800600p PG 11 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 371UM UT WOS:000260856900016 PM 18937399 ER PT J AU Nishiyama, Y Johnson, GP French, AD Forsyth, VT Langan, P AF Nishiyama, Yoshiharu Johnson, Glenn P. French, Alfred D. Forsyth, V. Trevor Langan, Paul TI Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose I-beta SO BIOMACROMOLECULES LA English DT Article ID SYNCHROTRON X-RAY; FIBER DIFFRACTION; NATIVE CELLULOSE; THERMAL-EXPANSION; CRYSTAL-STRUCTURE; SYSTEM; BEHAVIOR AB In the crystal structure of cellulose 1,3, disordered hydrogen bonding can be represented by the average of two mutually exclusive hydrogen bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in different regions of the microfibril (giving temporally or a spatially averaged structures, respectively). We have used neutron crystallographic techniques to determine the occupancies of A and B at 295 and 15 K, quantum mechanical calculations to compare the energies of A and B, and molecular dynamics calculations to look at the stability of A. Microfibrils are found to have most chains arranged in a crystalline I-beta structure with hydrogen bonding scheme A. Smaller regions of static disorder exist, perhaps at defects within or between crystalline domains in which the hydrogen bonding is complex but with certain features that are found in B. C1 [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Nishiyama, Yoshiharu] Univ Grenoble 1, Ctr Rech Macromol Vegetales, CNRS, F-38041 Grenoble 9, France. [Johnson, Glenn P.; French, Alfred D.] USDA, So Reg Res Ctr, New Orleans, LA 70124 USA. [Forsyth, V. Trevor] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Forsyth, V. Trevor] Univ Keele, EPSAM, ISTM, Keele ST5 5BG, Staffs, England. RP Langan, P (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM langan_paul@lanl.gov RI Forsyth, V. Trevor/A-9129-2010; Nishiyama, Yoshiharu/A-3492-2012; Langan, Paul/N-5237-2015 OI Forsyth, V. Trevor/0000-0003-0380-3477; Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122 NR 37 TC 110 Z9 113 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD NOV PY 2008 VL 9 IS 11 BP 3133 EP 3140 DI 10.1021/bm800726v PG 8 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 371UM UT WOS:000260856900023 PM 18855441 ER PT J AU Lu, JQ Zhang, XG AF Lu, Jun-Qiang Zhang, X. -G. TI Nucleotide Capacitance Calculation for DNA Sequencing SO BIOPHYSICAL JOURNAL LA English DT Article ID TRANSPORT AB Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine, and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nanogap electrode may not be sufficient to be used as a standalone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence. C1 [Lu, Jun-Qiang; Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xgz@ornl.gov RI LU, JUN-QIANG/B-9511-2008 OI LU, JUN-QIANG/0000-0002-0758-9925 FU U. S. National Human Genome Research Institute of the National Institutes of Health [1 R21 HG003578-01] FX We thank Dr. Predrag Krstic for helpful discussions, and Dr. Miguel Fuentes-Cabrera for providing the coordinates of the nucleotide molecules.; This research was supported by the U. S. National Human Genome Research Institute of the National Institutes of Health under grant No. 1 R21 HG003578-01, and was conducted at the Center for Nanophase Materials Sciences sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, United States Department of Energy. NR 12 TC 8 Z9 8 U1 1 U2 2 PU BIOPHYSICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD NOV 1 PY 2008 VL 95 IS 9 BP L60 EP L62 DI 10.1529/biophysj.108.140749 PG 3 WC Biophysics SC Biophysics GA 360QO UT WOS:000260072600002 PM 18708466 ER PT J AU Wu, M Wang, M Liu, JH Huo, H AF Wu, May Wang, Michael Liu, Jiahong Huo, Hong TI Assessment of Potential Life-Cycle Energy and Greenhouse Gas Emission Effects from Using Corn-Based Butanol as a Transportation Fuel SO BIOTECHNOLOGY PROGRESS LA English DT Review DE butanol; ABE fermentation; well-to-wheels; GHG emissions; fossil energy ID CLOSTRIDIUM-BEIJERINCKII BA101; BIOCHEMICAL PRODUCTION; DOWNSTREAM PROCESS; ABE PRODUCTION; FERMENTATION; ETHANOL; ACETONE; RECOVERY AB Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent Years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process. which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. hi this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, Yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield. should be conducted. C1 [Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong] Argonne Natl Lab, Div Energy Syst, Ctr Transportat Res, Argonne, IL 60439 USA. RP Wu, M (reprint author), Argonne Natl Lab, Div Energy Syst, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mwu@anl.gov FU U.S. Department of Energy's Office of FreedomCAR and Vehicle Technologies FX This work was sponsored by the U.S. Department of Energy's Office of FreedomCAR and Vehicle Technologies, which is part of the Office of Energy Efficiency and Renewable Energy. We would like to thank Professor Hans Blaschek of the University of Illinois at Urbana-Champaign and Dr. Nasib Quresh of the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), for providing process data and insights on the ABE fermentation process with Clostridium beijerinckii BA101. We also thank Andrew McAloon of the USDA Economic Research Service (ERS) Eastern Regional Research Center (ERRC) for providing the corn-to-ethanol dry mill Aspen Plus model. NR 32 TC 31 Z9 33 U1 8 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD NOV-DEC PY 2008 VL 24 IS 6 BP 1204 EP 1214 DI 10.1021/bp.71 PG 11 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 389CX UT WOS:000262069100002 PM 19194933 ER PT J AU Shin, M Besser, LM Correa, A AF Shin, Mikyong Besser, Lilah M. Correa, Adolfo TI Prevalence of Spina Bifida among Children and Adolescents in Metropolitan Atlanta SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article; Proceedings Paper CT 41st Annual Meeting of the Society-for-Epidemiologic-Research CY JUN 24-27, 2008 CL Chicago, IL SP Soc Epidemiol Res DE spina bifida; prevalence; children; adolescents; birth defects; neural tube defects; disparities ID NEURAL-TUBE DEFECTS; FOLIC-ACID FORTIFICATION; UNITED-STATES; HEALTH-CARE; PRENATAL-DIAGNOSIS; POPULATION; SURVIVAL; TRENDS; MYELOMENINGOCELE; EPIDEMIOLOGY AB BACKGROUND: Although studies have examined the prevalence of spina bifida (SB) among births, little is known about the SB prevalence among children and adolescents. We estimated the prevalence of SB among children and adolescents in metropolitan Atlanta. METHODS: This study used data from a population-based registry of birth defects, with information on children with SB (cases) born in five Atlanta counties from 1979-2002. The population at risk was derived from United States Census data and variations in SB prevalence were examined by race/ethnicity, sex, lesion level, age group under 20 years, 4-year birth cohort, and time period using Poisson regression. RESULTS: From 1.979 to 2002, SB birth prevalence decreased from 6.3 to 3.2 per 1.0,000 live births (p < 0.001) and SB prevalence within each age group also declined. In 2002, there were 211 children 0-19 years old surviving with SB in Atlanta (2-4 per 10,000 children 0-19 years old); prevalence of SB was higher among non-Hispanic whites and among children with lumbosacral lesion but did not vary by sex. With the exception of the most recent birth cohort (1998-2002), within each 4-year birth cohort, the prevalence of SB was generally higher among non-Hispanic whites than among non-Hispanic blacks. CONCLUSIONS: This study provides minimum prevalence estimates among children and adolescents with SB in metropolitan Atlanta, and identifies race/ethnic disparities in such prevalence estimates. This information Could be useful for assessing the specialized health care needs for children with SB and the possible reasons for the racial/ethnic variation in prevalence of SB. Birth Defects Research (Part A) 82:748-754, 2008. (C) 2008 Wiley-Liss, Inc. C1 [Shin, Mikyong; Besser, Lilah M.; Correa, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Shin, Mikyong] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Besser, Lilah M.] Univ N Carolina, Dept City & Reg Planning, Chapel Hill, NC USA. RP Shin, M (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,Mailstop E-86, Atlanta, GA 30333 USA. EM mshin@cdc.gov NR 49 TC 10 Z9 11 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD NOV PY 2008 VL 82 IS 11 BP 748 EP 754 DI 10.1002/bdra.20530 PG 7 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 381WS UT WOS:000261567200003 PM 18985687 ER PT J AU Jurczyk, P Lu, JJ Xiong, L Cragan, JD Correa, A AF Jurczyk, Pawel Lu, James J. Xiong, Li Cragan, Janet D. Correa, Adolfo TI Fine-Grained Record Integration and Linkage Tool SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article; Proceedings Paper CT Annual Symposium on American-Medical-Informatics-Association CY NOV 08-12, 2008 CL Washington, DC SP Amer Med Informat Assoc AB BACKGROUND: As part of the surveillance program to monitor the occurrence of birth defects in the metropolitan Atlanta area, we developed a record linkage software tool that provides latitude in the choice of linkage parameters, allows for efficient and accurate linkages, and enables objective assessments of the quality of the linked data. METHODS: We developed and implemented a Java-based fine-grained probabilistic record integration and linkage tool (FRIL) that incorporates a rich collection of record distance metrics, search methods, and analysis tools. Along its workflow, FRIL provides a rich set of user-tunable parameters augmented with graphic visualization tools to assist users in understanding the effects of parameter choices. We used this software tool to link data from vital records (n = 1.25 million) with birth defects surveillance records (n = 12,700) from the metropolitan Atlanta Congenital Defects Program (MACDP) for the birth years 1967-2006. RESULTS: Compared with the data linkage performed by conventional algorithms, the data linkage of birth certificates with birth defect records in MACDP using FRIL was more efficient. The linkage based on FRIL was also accurate, showing 99% precision and 95% recall. Based on positive user feedback, new features continue to be developed, and the tool is being adopted in several other data linkage projects in MACDP. CONCLUSIONS: A software tool that allows significant user interaction and control, such as FRIL, can provide accurate data linkages for birth defect surveillance programs and allows an objective assessment of the quality of linked data. Birth Defects Research (Part A) 82:822-829, 2008. (c) 2008 Wiley-Liss, Inc. C1 [Jurczyk, Pawel; Lu, James J.; Xiong, Li] Emory Univ, Atlanta, GA 30322 USA. [Jurczyk, Pawel; Cragan, Janet D.; Correa, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Jurczyk, Pawel] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Jurczyk, P (reprint author), Emory Univ, Mail Stop 1131-002-IAC, Atlanta, GA 30322 USA. EM pjurczy@emory.edu NR 14 TC 12 Z9 13 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD NOV PY 2008 VL 82 IS 11 BP 822 EP 829 DI 10.1002/bdra.20521 PG 8 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 381WS UT WOS:000261567200013 PM 18985680 ER PT J AU Ritchie, RO Koester, KJ Ionova, S Yao, W Lane, NE Ager, JW AF Ritchie, R. O. Koester, K. J. Ionova, S. Yao, W. Lane, N. E. Ager, J. W., III TI Measurement of the toughness of bone: A tutorial with special reference to small animal studies SO BONE LA English DT Review DE Bone; Small animal models; Strength; Fracture toughness; Crack-resistance curves ID HUMAN CORTICAL BONE; CRACK-GROWTH-RESISTANCE; FRACTURE-TOUGHNESS; MECHANICAL-PROPERTIES; BIOMECHANICAL PROPERTIES; HARDENING MATERIAL; TRABECULAR BONE; HUMAN FEMUR; RATS; DENSITY AB Quantitative assessment of the strength and toughness of bone has become an integral part of many biological and bioengineering studies on the Structural properties of bone and their degradation due to aging. disease and therapeutic treatment. Whereas the biomechanical techniques for characterizing bone strength are well documented, few Studies have focused on the theory, methodology, and various experimental procedures for evaluating the fracture toughness of bone, i.e., its resistance to fracture, with particular reference to whole bone testing in small animal Studies. In this tutorial, we consider the many techniques for evaluating toughness and assess their specific relevance and application to the mechanical testing of small animal bones. Parallel experimental studies on wild-type rat and Mouse femurs are used to evaluate the utility of these techniques and specifically to determine the coefficient of variation of the measured toughness values. Published by Elsevier Inc. C1 [Ritchie, R. O.; Koester, K. J.; Ionova, S.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ritchie, R. O.; Koester, K. J.; Ionova, S.; Ager, J. W., III] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Yao, W.; Lane, N. E.] UC Davis Med Ctr, Aging Ctr, Dept Med, Sacramento, CA USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Ager, Joel/0000-0001-9334-9751 FU Laboratory Directed Research; Development Program of Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy; National Institutes of Health [R01 AR043052-07, 1K12HD05195801] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. Rat bones were provided by the UC Davis Medical Center under grant nos. R01 AR043052-07 and 1K12HD05195801 from the National Institutes of Health. NR 61 TC 74 Z9 75 U1 0 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD NOV PY 2008 VL 43 IS 5 BP 798 EP 812 DI 10.1016/j.bone.2008.04.4.027 PG 15 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 365ZK UT WOS:000260448500002 PM 18647665 ER PT J AU Webley, PW Atkinson, D Collins, RL Dean, K Fochesatto, J Sassen, K Cahill, CF Prata, A Flynn, CJ Mizutani, K AF Webley, P. W. Atkinson, D. Collins, R. L. Dean, K. Fochesatto, J. Sassen, K. Cahill, C. F. Prata, A. Flynn, C. J. Mizutani, K. TI Predicting and Validating the Tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID REDOUBT VOLCANO; ALASKA C1 [Webley, P. W.] Univ Alaska Fairbanks, Arctic Reg Super Comp Ctr, Inst Geophys, Fairbanks, AK 99775 USA. [Webley, P. W.; Dean, K.] Univ Alaska Fairbanks, Alaska Volcano Observ, Fairbanks, AK 99775 USA. [Atkinson, D.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Prata, A.] Norwegian Inst Air Res, Kjeller, Norway. [Flynn, C. J.] Pacific NW Natl Lab, Richmond, WA USA. [Mizutani, K.] Natl Inst Informat & Commun Technol, Tokyo, Japan. RP Webley, PW (reprint author), Univ Alaska Fairbanks, Arctic Reg Super Comp Ctr, Inst Geophys, 909 Koyukuk Dr, Fairbanks, AK 99775 USA. EM pwebley@gi.olaska.edu RI Webley, Peter/F-8238-2015 OI Webley, Peter/0000-0001-5327-8151 NR 14 TC 4 Z9 5 U1 3 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD NOV PY 2008 VL 89 IS 11 BP 1647 EP + DI 10.1175/2008BAMS2579.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 381XA UT WOS:000261568000005 ER PT J AU May, M AF May, Michael TI The trouble with disarmament SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article C1 [May, Michael] Stanford Univ, Stanford, CA 94305 USA. [May, Michael] Stanfords Ctr Int Secur & Cooperat, Stanford, CA USA. [May, Michael] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP May, M (reprint author), Stanford Univ, Stanford, CA 94305 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU EDUC FOUNDATION NUCLEAR SCI PI CHICAGO PA 6042 SOUTH KIMBARK, CHICAGO, IL 60637 USA SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD NOV-DEC PY 2008 VL 64 IS 5 BP 20 EP 21 DI 10.2968/064005007 PG 2 WC International Relations; Social Issues SC International Relations; Social Issues GA 374GV UT WOS:000261032700014 ER PT J AU Ma, Z Yin, HF Overbury, SH Dai, S AF Ma, Zhen Yin, Hongfeng Overbury, Steven H. Dai, Sheng TI Metal Phosphates as a New Class of Supports for Gold Nanocatalysts SO CATALYSIS LETTERS LA English DT Article DE Gold catalysis; CO oxidation; Activity; Metal phosphates; Nanoparticles ID TEMPERATURE CO OXIDATION; CATALYTIC-ACTIVITY; THERMAL-STABILITY; AU/TIO2 CATALYSTS; AU NANOPARTICLES; ISO-BUTANE; SIO2; DEHYDROGENATION; DEACTIVATION; SILICA AB Oxides and carbon are commonly used as supports for gold nanoparticles, but metal salts are barely considered as suitable supports. Our group recently communicated that gold nanoparticles supported on nanosized LaPO4 (6-8 nm) are active for CO oxidation (Yan et al., Angew Chem Int Ed 45:3614, 2006). In the current work, we systematically developed an array of Au/M-P-O catalysts and tested them for catalytic activity and stability. It was found that 200 degrees C-pretreated Au/M-P-O (M = Ca, Fe, Co, Y, La, Pr, Nd, Sm, Eu, Ho, Er) show high CO conversions below 50 degrees C, and 500 degrees C-pretreated Au/M-P-O (M = Ca, Y, La, Pr, Nd, Sm, Eu, Ho, Er) show high CO conversions below 100 degrees C. These samples were characterized by ICP-OES, BET, XRD, TEM, SEM, and H-2-TPR. The stability of selected catalysts was studied as a function of time on stream. This work furnishes a new catalyst system for further fundamental and applied research. C1 [Ma, Zhen; Yin, Hongfeng; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Ma, Zhen/F-1348-2010; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-00OR22725]; ORNL; Oak Ridge Associated Universities FX This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. DOE under Contract DE-AC05-00OR22725. This research was supported in part by the appointment for Z. Ma and H. F. Yin to the ORNL Research Associates Program, administered jointly by ORNL and the Oak Ridge Associated Universities. NR 52 TC 42 Z9 43 U1 2 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD NOV PY 2008 VL 126 IS 1-2 BP 20 EP 30 DI 10.1007/s10562-008-9627-x PG 11 WC Chemistry, Physical SC Chemistry GA 366UN UT WOS:000260509000003 ER PT J AU Qiu, SR Orme, CA AF Qiu, S. Roger Orme, Christine A. TI Dynamics of Biomineral Formation at the Near-Molecular Level SO CHEMICAL REVIEWS LA English DT Review ID ATOMIC-FORCE MICROSCOPY; CALCIUM-OXALATE MONOHYDRATE; DEFINED HYDRODYNAMIC CONDITIONS; DICALCIUM PHOSPHATE DIHYDRATE; HYDROXYAPATITE SINGLE-CRYSTAL; SCANNING ELECTRON-MICROSCOPY; INTERFACIAL SURFACE-TENSION; PHASE-SHIFT INTERFEROMETRY; ACIDIC AQUEOUS-SOLUTION; ABALONE SHELL PROTEINS C1 [Qiu, S. Roger; Orme, Christine A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Orme, CA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave,Mailstop L-367, Livermore, CA 94550 USA. RI Orme, Christine/A-4109-2009 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Institutes of Health [NIDCR DE03223, NIDDK DK61673, NIDDK DE03223] FX We wish to thank our colleagues and collaborators Jennifer Giocondi, Jim De Yoreo, Raymond Friddle, Bill Bourcier, Stan Prussin, George Nancollas, and John Hoyer for their helpful discussions. We especially thank Alex Chernov for his generosity with his time. We thank Michael Ward for providing original figures. We also thank our three reviewers for significantly improving our discussion. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Portions of this work were supported by the National Institutes of Health (NIDCR DE03223, NIDDK DK61673 and DE03223). NR 284 TC 44 Z9 46 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 J9 CHEM REV JI Chem. Rev. PD NOV PY 2008 VL 108 IS 11 BP 4784 EP 4822 DI 10.1021/cr800322u PG 39 WC Chemistry, Multidisciplinary SC Chemistry GA 373VR UT WOS:000261002100017 PM 19006401 ER PT J AU Wong, CY AF Wong Cheuk-Yin TI Parton Momentum Distribution at the Moment of Jet-Parton Collisions SO CHINESE PHYSICS LETTERS LA English DT Article AB The early parton momentum distribution is extracted by using the STAR collaboration data of ridge particles associated with a near-side jet in central AuAu collisions at root sNN = 200 GeV. The ridge particles are identified as medium partons kicked by the jet near the surface and they carry direct information on the parton momentum distribution at the moment of jet-parton collisions. The extracted parton momentum distribution has a thermal-like transverse momentum distribution but a rapidity plateau structure with a relatively. at rapidity distribution at mid-rapidities with sharp kinematic boundaries at large rapidities that depend on the transverse momentum. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU Division of Nuclear Physics; U.S. DOE [DE-AC05-00OR22725]; UT-Battle, LLC FX Supported in part by the Division of Nuclear Physics, U.S. DOE, under Contract No DE-AC05-00OR22725, managed by UT-Battle, LLC. NR 27 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X EI 1741-3540 J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD NOV PY 2008 VL 25 IS 11 BP 3936 EP 3939 PG 4 WC Physics, Multidisciplinary SC Physics GA 367CH UT WOS:000260529600027 ER PT J AU Tekabe, Y Li, Q Rosario, R Sedlar, M Majewski, S Hudson, BI Einstein, AJ Schmidt, AM Johnson, LL AF Tekabe, Yared Li, Qing Rosario, Rosa Sedlar, Marija Majewski, Stan Hudson, Barry I. Einstein, Andrew J. Schmidt, Ann Marie Johnson, Lynne L. TI Development of Receptor for Advanced Glycation End Products-Directed Imaging of Atherosclerotic Plaque in a Murine Model of Spontaneous Atherosclerosis SO CIRCULATION-CARDIOVASCULAR IMAGING LA English DT Article DE atherosclerosis; imaging; RAGE ID CELL-SURFACE RECEPTOR; BINDING-PROTEINS; ANNEXIN-V; IN-VIVO; RAGE; MICE; MACROPHAGES; EXPRESSION; ANTIBODY; LIGANDS AB Background-The receptor for advanced glycation end products (RAGE) is implicated in the development and progression of atherosclerosis. We tested the hypothesis that (99m)Tc-labeled anti-RAGE F(ab')(2) can be used as a noninvasive tool to image atherosclerotic lesions in apolipoprotein E-deficient (apoE(-/-)) mice. Methods and Results-A sequence in the V-type Ig extracellular domain of RAGE was used to develop a peptide injected into rabbits; serum was retrieved, IgG prepared and affinity-purified, and pepsin-digested into F(ab')(2). Thirteen 6-week apoE(-/-) mice were fed a Western diet. At 20 weeks, 6 were injected with 15.2 +/- 1.9 MBq (350 to 411 mu Ci) (99m)Tc-labeled anti-RAGE F(ab')(2), 6 were injected with (99m)Tc-labeled control nonspecific IgG F(ab')(2), and 1 was injected with dual-labeled (99m)Tc and rhodamine anti-RAGE F(ab')(2). Four 20-week C57BL/6 mice were injected with (99m)Tc-labeled anti-RAGE F(ab')(2). All mice were imaged on a high resolution mini-gamma camera 4 hours after injection and euthanized. The aortic tree was dissected and photographed, and the proximal aorta was sectioned for staining after gamma scintillation counting. All 6 apoE(-/-) mice injected with (99m)Tc-labeled anti-RAGE F(ab')(2) fragments showed focal tracer uptake in the proximal aorta (mean %ID/g, 1.98%). Disease and antibody controls showed no focal tracer uptake in the thorax (%ID/g, < 1.0%). Histological sections of the proximal aorta showed American Heart Association class III lesions with lipid laden macrophages, smooth muscle cells, and positive staining for RAGE. On immunofluorescence, RAGE colocalized with macrophages. Conclusion-These data show the feasibility of noninvasively imaging RAGE in atherosclerotic lesions in a murine model and confirm levels of RAGE expression sufficient to allow detection on in vivo imaging. (Circ Cardiovasc Imaging. 2008;1:212-219.) C1 [Tekabe, Yared; Rosario, Rosa; Einstein, Andrew J.; Johnson, Lynne L.] Columbia Univ, Med Ctr, Dept Med, Div Cardiol, New York, NY 10032 USA. [Li, Qing; Rosario, Rosa; Hudson, Barry I.; Schmidt, Ann Marie] Columbia Univ, Med Ctr, Dept Surg, Div Surg Sci, New York, NY 10032 USA. [Majewski, Stan] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Tekabe, Y (reprint author), Columbia Univ, Med Ctr, Dept Med, Div Cardiol, 620 W 168 St, New York, NY 10032 USA. EM yt2166@columbia.edu RI Hudson, Barry/B-3122-2009 OI Hudson, Barry/0000-0001-7647-8121 FU American Heart Association Heritage Foundation; American Society of Nuclear Cardiology FX This study was supported by the American Heart Association Heritage Foundation award (Dr Tekabe) and a grant from the American Society of Nuclear Cardiology (Dr Tekabe). NR 21 TC 15 Z9 15 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1941-9651 J9 CIRC-CARDIOVASC IMAG JI Circ.-Cardiovasc. Imaging PD NOV PY 2008 VL 1 IS 3 BP 212 EP 219 DI 10.1161/CIRCIMAGING.108.788299 PG 8 WC Cardiac & Cardiovascular Systems; Radiology, Nuclear Medicine & Medical Imaging SC Cardiovascular System & Cardiology; Radiology, Nuclear Medicine & Medical Imaging GA 446NR UT WOS:000266128800007 PM 19808545 ER PT J AU Oevermann, M Schmidt, H Kerstein, AR AF Oevermann, M. Schmidt, H. Kerstein, A. R. TI Investigation of autoignition under thermal stratification using linear eddy modeling SO COMBUSTION AND FLAME LA English DT Article DE HCCI; Autoignition; Thermal explosion; Turbulence; Linear eddy model ID DIFFERENTIAL MOLECULAR-DIFFUSION; DIRECT NUMERICAL-SIMULATION; IGNITION FRONT PROPAGATION; TURBULENT PREMIXED FLAMES; TEMPERATURE INHOMOGENEITIES; CONSTANT VOLUME; TRANSPORT; REGIME; CHEMISTRY; FLOW AB The influence of thermal stratification on autoignition at constant volume and high pressure is investigated under turbulent conditions using the one-dimensional linear eddy model (LEM) and detailed hydrogen/air chemistry. Results are presented for the influence of initial temperature inhomogeneities on the heat release rate and the relative importance of diffusion and chemical reactions. The predicted heat release rates are compared with heat release rates of recent published studies obtained by two-dimensional direct numerical simulations (DNS). Using the definition of Chen et al. [Combust. Flame 145 (2006) 145-159] for the displacement speed of the H(2) mass fraction tracked at the location of maximum heat release, and a comparison of budget terms, different combustion modes including ignition-front propagation and deflagration waves are identified and the results are compared to the DNS data. The LEM approach shows qualitatively and quantitatively reasonable agreement with the DNS data over the whole range of investigated temperature fluctuations. The results presented in this work suggest that LEM is a potential candidate as a submodel for CFD calculations of HCCI engines. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Oevermann, M.] Tech Univ Berlin, Inst Energietech, D-10623 Berlin, Germany. [Schmidt, H.] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany. [Kerstein, A. R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Oevermann, M (reprint author), Tech Univ Berlin, Inst Energietech, Fasanenstr 89, D-10623 Berlin, Germany. EM michael.oevermann@tu-berlin.de RI Schmidt, Heiko/J-6835-2016 OI Schmidt, Heiko/0000-0002-6475-6646 FU Division of Chemical Sciences, Geosciences. and Biosciences. Office of Basic Energy Sciences. United States Department of Energy [DE-AC04-94-AL85000]; National Science Foundation [ATM-0346854] FX The authors acknowledge the support and helpful discussions with J. Chen and E. Hawkes.; This work was partially supported by the Division of Chemical Sciences, Geosciences. and Biosciences. Office of Basic Energy Sciences. United States Department of Energy. and by the National Science Foundation under Grant No. ATM-0346854. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation. a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. NR 25 TC 17 Z9 17 U1 2 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2008 VL 155 IS 3 BP 370 EP 379 DI 10.1016/j.combustflame.2008.04.020 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 380IB UT WOS:000261458300004 ER PT J AU Yoo, CS Chen, JH Frank, JH AF Yoo, Chun Sang Chen, Jacqueline H. Frank, Jonathan H. TI A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow (vol 155, pg 450, 2008) SO COMBUSTION AND FLAME LA English DT Correction C1 [Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Yoo, CS (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. NR 1 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2008 VL 155 IS 3 BP 450 EP 450 DI 10.1016/j.combustflame.2008.10.018 PG 1 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 380IB UT WOS:000261458300013 ER PT J AU Xu, XQ Umansky, MV Dudson, B Snyder, RB AF Xu, X. Q. Umansky, M. V. Dudson, B. Snyder, R. B. TI Boundary Plasma Turbulence Simulations for Tokamaks SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article; Proceedings Paper CT Workshop on the Frontiers on Computational Physics CY OCT 01-02, 2007 CL Chinese Univ Hong Kong, Hong Kong, PEOPLES R CHINA HO Chinese Univ Hong Kong DE Plasma turbulence simulation; plasma two-fluids equation; field-aligned coordinates; plasma blobs ID SCRAPE-OFF LAYER; L-H TRANSITION; EDGE TURBULENCE; DENSITY LIMITS; DIII-D; FLUID SIMULATIONS; TRANSPORT; PEDESTAL; COMPUTATION; EQUATIONS AB The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (n(i)), electron and ion temperature (T(e), T(j)) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density oil tokamak edge turbulence and blob dynamics. C1 [Xu, X. Q.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xu, X. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China. [Dudson, B.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Snyder, R. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Xu, XQ (reprint author), Lawrence Livermore Natl Lab, L-630,POB 808,7000 East Ave, Livermore, CA 94550 USA. EM xxu@llnl.gov; umansky@llnl.gov; bd512@york.ac.uk; snyder@fusion.gat.com NR 76 TC 35 Z9 35 U1 1 U2 9 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD NOV PY 2008 VL 4 IS 5 BP 949 EP 979 PG 31 WC Physics, Mathematical SC Physics GA 376WE UT WOS:000261212900002 ER PT J AU Edelsbrunner, H Harer, J Mascarenhas, A Pascucci, V Snoeyink, J AF Edelsbrunner, Herbert Harer, John Mascarenhas, Ajith Pascucci, Valerio Snoeyink, Jack TI Time-varying Reeb graphs for continuous space-time data SO COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS LA English DT Article DE differential and computational topology; Morse functions; critical points; level sets; Reeb graph; triangulations; combinatorial algorithms ID CONTOUR TREES AB The Reeb graph is a useful tool in visualizing real-valued data obtained from computational simulations of physical processes. We characterize the evolution of the Reeb graph of a time-varying continuous function defined in three-dimensional space. We show how to maintain the Reeb graph over time and compress the entire sequence of Reeb graphs into a single, partially persistent data structure, and augment this data structure with Betti numbers to describe the topology of level sets and with path seeds to assist in the fast extraction of level sets for visualization. (c) 2008 Elsevier B.V. All rights reserved. C1 [Mascarenhas, Ajith; Pascucci, Valerio] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Edelsbrunner, Herbert] Raindrop Geomag, Res Triangle Pk, NC USA. [Edelsbrunner, Herbert; Harer, John] Duke Univ, Dept Math & Comp Sci, Durham, NC 27706 USA. [Snoeyink, Jack] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA. RP Mascarenhas, A (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM ajmasci@gmail.com OI Snoeyink, Jack/0000-0002-3887-4008 FU NSF [EIA-99-72879, CCR-00-86013, DMS-01-07621, 0128426]; University of California Lawrence Livermore National Laboratory [W-7405-Eng-48] FX Research of the first author was supported by NSF under grants EIA-99-72879 and CCR-00-86013. Research of the second author was supported by NSF under grant DMS-01-07621. Research of the third and last author was supported by NSF under grant 0128426 and by sub-contracts from Lawrence Livermore National Labs. Portions of this work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. NR 26 TC 22 Z9 22 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7721 EI 1879-081X J9 COMP GEOM-THEOR APPL JI Comput. Geom.-Theory Appl. PD NOV PY 2008 VL 41 IS 3 BP 149 EP 166 DI 10.1016/j.comgeo.2007.11.001 PG 18 WC Mathematics, Applied; Mathematics SC Mathematics GA 347IF UT WOS:000259133100003 ER PT J AU Saltz, J Kurc, T Hastings, S Langella, S Oster, S Ervin, D Sharma, A Pan, T Gurcan, M Permar, J Ferreira, R Payne, P Catalyurek, U Caserta, E Leone, G Ostrowski, MC Madduri, R Foster, I Madhavan, S Buetow, KH Shanbhag, K Siegel, E AF Saltz, Joel Kurc, Tahsin Hastings, Shannon Langella, Stephen Oster, Scott Ervin, David Sharma, Ashish Pan, Tony Gurcan, Metin Permar, Justin Ferreira, Renato Payne, Philip Catalyurek, Umit Caserta, Enrico Leone, Gustavo Ostrowski, Michael C. Madduri, Ravi Foster, Ian Madhavan, Subhashree Buetow, Kenneth H. Shanbhag, Krishnakant Siegel, Eliot TI e-Science, caGrid, and Translational Biomedical Research SO COMPUTER LA English DT Article ID INFRASTRUCTURE AB Researchers are harnessing dramatic advances in many biomedical technology areas to better understand the causes of disease and to direct disease treatment. The authors' work explores the critical role e-Science plays in enabling translational biomedical research-the process of developing and applying basic science knowledge and techniques to enable new ways of diagnosing and staging, treating, or preventing diseases, as well as the adoption of best practices in the community. C1 [Saltz, Joel; Kurc, Tahsin] Emory Univ, Ctr Comprehens Informat, Atlanta, GA 30322 USA. [Hastings, Shannon; Langella, Stephen; Oster, Scott; Ervin, David; Permar, Justin] Ohio State Univ, Software Res Inst, Columbus, OH 43210 USA. [Sharma, Ashish; Pan, Tony; Gurcan, Metin; Payne, Philip; Catalyurek, Umit] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA. [Leone, Gustavo] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA. [Ostrowski, Michael C.] Ohio State Univ, Dept Mol & Cellular Biochem, Columbus, OH 43210 USA. [Ostrowski, Michael C.] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Madduri, Ravi; Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. [Buetow, Kenneth H.] NCI, Ctr Bioinformat, Bethesda, MD 20892 USA. [Shanbhag, Krishnakant] NCI, Ctr Biomed Informat & Informat Technol, Bethesda, MD 20892 USA. [Siegel, Eliot] Univ Maryland, Sch Med, Baltimore, MD 21201 USA. RP Saltz, J (reprint author), Emory Univ, Ctr Comprehens Informat, Atlanta, GA 30322 USA. EM jhsaltz@emory.edu; tkurc@emory.edu; shannon.hastings@osumc.edu; stephen.langella@osumc.edu; oster@bmi.osu.edu; ervin@bmi.osu.edu; ashish@bmi.osu.edu; tpan@bmi.osu.edu; gurcan@bmi.osu.edu; jpermar@bmi.osu.edu; renato@dcc.ufmg.br; philip.payne@osumc.edu; umit@bmi.osu.edu; enrico.caserta@osumc.edu; gustavo.leone@osumc.edu; michael.ostrowski@osumc.edu; madduri@mcs.anl.gov; foster@ci.uchicago.edu; madhavas@mail.nih.gov; buetowk@mail.nih.gov; shanbhak@mail.nih.gov; esiegel@umaryland.edu RI Catalyurek, Umit/A-2454-2008; Ostrowski, Michael/H-3108-2011; Gurcan, Metin/F-4536-2012; InWeb, Inct/J-9839-2013 OI Catalyurek, Umit/0000-0002-5625-3758; Ostrowski, Michael/0000-0003-2948-6297; FU NCI caGrid Developer grant [79077CBS10]; State of Ohio BRTT Program [04-049, BRTT02-0003]; NHLBI [R24 HL085343]; NIH [U54 CA113001, R01 LM009239, N01-CO-12400]; NSF [CNS-0403342, CNS-0615155]; US Department of Energy [DE-AC02-06CH11357]; Children's Neuroblastoma Cancer Foundation FX We thank Laura Esserman and Nola Hylton at the University of California, San Francisco, the PIs for the I-SPY trial project; Howard Fine at the NCI, the PI for the GMDI and Rembrandt projects; and Stephen Chanock, NCI, the PI for the CGEMS (GWAS) project. Our work was supported in part by the NCI caGrid Developer grant 79077CBS10, the State of Ohio BRTT Program grants ODOD AGMT TECH 04-049 and BRTT02-0003, the NHLBI R24 HL085343 grant, the NIH U54 CA113001 and R01 LM009239 grants, and NSF grants CNS-0403342 and CNS-0615155; by the NCI and NIH under contract no. N01-CO-12400; by the US Department of Energy under contract DE-AC02-06CH11357; and by Children's Neuroblastoma Cancer Foundation. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government. NR 12 TC 9 Z9 9 U1 1 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD NOV PY 2008 VL 41 IS 11 BP 58 EP + DI 10.1109/MC.2008.459 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 369VT UT WOS:000260722700014 PM 21311723 ER PT J AU Bennett, J Pascucci, V Joy, K AF Bennett, Janine Pascucci, Valerio Joy, Kenneth TI A genus oblivious approach to cross parameterization SO COMPUTER AIDED GEOMETRIC DESIGN LA English DT Article; Proceedings Paper CT 15th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2007) CY OCT 29-NOV 02, 2007 CL Maui, HI DE Cross parameterization; Morphing; Morse theory; Genus reduction ID SURFACE; TOPOLOGY; MODELS; MESHES AB In this paper we present a robust approach to construct a map between two triangulated meshes, M and M' of arbitrary and possibly unequal genus. We introduce a novel initial alignment scheme that allows the user to identify "landmark tunnels" and/or a "constrained silhouette" in addition to the standard landmark vertices. To describe the evolution of non-landmark tunnels we automatically derive a continuous deformation from M to M' using a variational implicit approach. Overall, we achieve a cross parameterization scheme that is provably robust in the sense that it can map M to M' without constraints on their relative genus. We provide a number of examples to demonstrate the practical effectiveness of our scheme between meshes of different genus and shape. (c) 2008 Elsevier B.V. All rights reserved. C1 [Bennett, Janine; Joy, Kenneth] Univ Calif Davis, Davis, CA 95616 USA. [Pascucci, Valerio] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Bennett, J (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM janine.bennett@gmail.com; pascucci@acm.org; kijoy@ucdavis.edu NR 45 TC 3 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8396 J9 COMPUT AIDED GEOM D JI Comput. Aided Geom. Des. PD NOV PY 2008 VL 25 IS 8 SI SI BP 592 EP 606 DI 10.1016/j.cagd.2008.06.003 PG 15 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 369ZS UT WOS:000260733000005 ER PT J AU Mandel, J Sousedik, B Dohrmann, CR AF Mandel, Jan Sousedik, Bedrich Dohrmann, Clark R. TI Multispace and multilevel BDDC SO COMPUTING LA English DT Article DE Iterative substructuring; Additive Schwarz method; Balancing domain; decomposition; BDD; BDDC; Multispace BDDC; Multilevel BDDC ID DOMAIN DECOMPOSITION; FETI-DP; SUBSTRUCTURING METHODS; ENERGY MINIMIZATION; LOWER BOUNDS; CONSTRAINTS; DIMENSIONS AB The Balancing Domain Decomposition by Constraints (BDDC) method is the most advanced method from the Balancing family of iterative substructuring methods for the solution of large systems of linear algebraic equations arising from discretization of elliptic boundary value problems. In the case of many substructures, solving the coarse problem exactly becomes a bottleneck. Since the coarse problem in BDDC has the same structure as the original problem, it is straightforward to apply the BDDC method recursively to solve the coarse problem only approximately. In this paper, we formulate a new family of abstract Multispace BDDC methods and give condition number bounds from the abstract additive Schwarz preconditioning theory. The Multilevel BDDC is then treated as a special case of the Multispace BDDC and abstract multilevel condition number bounds are given. The abstract bounds yield polylogarithmic condition number bounds for an arbitrary fixed number of levels and scalar elliptic problems discretized by finite elements in two and three spatial dimensions. Numerical experiments confirm the theory. C1 [Mandel, Jan; Sousedik, Bedrich] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA. [Sousedik, Bedrich] Acad Sci Czech Republic, Inst Thermomech, Prague 18200 8, Czech Republic. [Dohrmann, Clark R.] Sandia Natl Labs, Struct Dynam Res Dept, Albuquerque, NM 87185 USA. RP Mandel, J (reprint author), Univ Colorado, Dept Math & Stat Sci, POB 173364,Campus Box 170, Denver, CO 80217 USA. EM jan.mandel@ucdenver.edu; bedrich.sousedik@ucdenver.edu; crdohrm@sandia.gov RI Mandel, Jan/A-2281-2009; Sousedik, Bedrich/I-9257-2014 OI Mandel, Jan/0000-0002-8489-5766; Sousedik, Bedrich/0000-0002-8053-8956 NR 19 TC 21 Z9 21 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0010-485X J9 COMPUTING JI Computing PD NOV PY 2008 VL 83 IS 2-3 BP 55 EP 85 DI 10.1007/s00607-008-0014-7 PG 31 WC Computer Science, Theory & Methods SC Computer Science GA 382FX UT WOS:000261592000001 ER PT J AU Anderson, JA Travesset, A AF Anderson, Joshua A. Travesset, Alex TI MOLECULAR DYNAMICS ON GRAPHIC PROCESSING UNITS: HOOMD TO THE RESCUE SO COMPUTING IN SCIENCE & ENGINEERING LA English DT News Item ID SIMULATIONS C1 [Travesset, Alex] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Travesset, Alex] Ames Lab, Ames, IA USA. RP Anderson, JA (reprint author), Ames Lab, Ames, IA USA. EM joaander@ameslab.gov; trvsst@ameslab.gov NR 3 TC 0 Z9 0 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2008 VL 10 IS 6 BP 8 EP + PG 2 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 361MC UT WOS:000260130800004 ER PT J AU Suflita, JM Phelps, TJ Little, B AF Suflita, J. M. Phelps, T. J. Little, B. TI Carbon Dioxide Corrosion and Acetate: A Hypothesis on the influence of Microorganisms SO CORROSION LA English DT Article DE acetate; acetogenic bacteria; anaerobic biodegradation; carbon dioxide corrosion; fermentative bacteria; methanogens; microorganisms; sulfate-reducing bacteria AB It is our hypothesis that fermentative, acetogenic, and sulfate-reducing bacteria residing in pipeline facilities can influence corrosion through the production of carbon dioxide and acetate under the prevailing anaerobic conditions. The exacerbation of carbon dioxide corrosion of carbon steel in the presence of acetic acid is a well-known phenomenon in the oil industry. Both chemical compounds can be produced and consumed by microorganisms during the anaerobic biodegradation of organic matter including hydrocarbons. We contend that the principles governing anaerobic biodegradation activity can be extrapolated to aboveground oil production facilities and that the microbial diversity inherent in petroleum reservoirs largely reflects that in pipelines. C1 [Little, B.] USN, Res Lab, Stennis Space Ctr, MS 39525 USA. [Suflita, J. M.] Univ Oklahoma, Inst Energy & Environm, Norman, OK 73019 USA. [Suflita, J. M.] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Phelps, T. J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Little, B (reprint author), USN, Res Lab, Stennis Space Ctr, MS 39525 USA. FU Office of Naval Research [N000140810829, N0001408WX20857]; Conoco Phillips FX This work was supported in part by the Office of Naval Research through awards (N000140810829 and N0001408WX20857) and Conoco Phillips. NR 65 TC 11 Z9 11 U1 1 U2 6 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD NOV PY 2008 VL 64 IS 11 BP 854 EP 859 DI 10.5006/1.3279919 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA V17ZS UT WOS:000207975700005 ER PT J AU Zhang, P Burton, JW Upchurch, RG Whittle, E Shanklin, J Dewey, RE AF Zhang, Ping Burton, Joseph W. Upchurch, Robert G. Whittle, Edward Shanklin, John Dewey, Ralph E. TI Mutations in a Delta(9)-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds SO CROP SCIENCE LA English DT Article ID ACYL-CARRIER-PROTEIN; DESATURASE GENE; SUBSTRATE-SPECIFICITY; OIL; EXPRESSION; ACP; TEMPERATURE; FERREDOXIN; ISOFORMS; TENDENCY AB Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of Delta(9)-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability. C1 [Zhang, Ping; Dewey, Ralph E.] N Carolina State Univ, Crop Sci Dep, Raleigh, NC 27695 USA. [Burton, Joseph W.; Upchurch, Robert G.] N Carolina State Univ, USDA ARS, Raleigh, NC 27695 USA. [Whittle, Edward; Shanklin, John] Brookhaven Natl Lab, Dep Biol, Upton, NY 11973 USA. RP Dewey, RE (reprint author), N Carolina State Univ, Crop Sci Dep, Raleigh, NC 27695 USA. EM ralph_dewey@ncsu.edu NR 37 TC 31 Z9 33 U1 1 U2 16 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 0011-183X J9 CROP SCI JI Crop Sci. PD NOV-DEC PY 2008 VL 48 IS 6 BP 2305 EP 2313 DI 10.2135/cropsci2008.02.0084 PG 9 WC Agronomy SC Agriculture GA 382IH UT WOS:000261599000028 ER PT J AU Dale, VH Peacock, AD Garten, CT Sobek, E Wolfe, AK AF Dale, Virginia H. Peacock, Aaron D. Garten, Charles T., Jr. Sobek, Edward Wolfe, Amy K. TI Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests SO ECOLOGICAL INDICATORS LA English DT Article; Proceedings Paper CT Symposium on Ecological Indicators at Multiple Scales CY AUG 07-12, 2005 CL Montreal, CANADA SP Ecol Soc Amer DE discriminant analysis; disturbance; indicators; microbes; military land; soil; vegetation ID QUALITY; RESTORATION; COMMUNITIES; THRESHOLDS; MANAGEMENT; VEGETATION; GRASSLAND; LANDSCAPE; PALUSTRIS; USA AB Characterizing how resource use and management activities affect ecological conditions is necessary to document and understand anthropogenic changes in ecological systems. Resource managers on military installations have the delicate task of balancing the training needs of soldiers effectively with the need to maintain a high quality of ecological conditions. This study considers ways that ecological indicators can provide information on impacts that training has on environmental characteristics that occur at different scales and in different sectors of the environment. The characteristics examined include soil chemistry, soil microbes, and vegetation. A discriminant function analysis was conducted to determine whether ecological indicators could differentiate among different levels of military use. A combination of 10 indicators explained 90% of the variation among plots from five different military use levels. Results indicated that an appropriate suite of ecological indicators for military resource managers includes soil, microbial, and vegetation characteristics. Since many of these indicators are related, managers at this location potentially have freedom to choose indicators that are relatively easy to measure, without sacrificing information. Published by Elsevier Ltd. C1 [Dale, Virginia H.; Garten, Charles T., Jr.; Wolfe, Amy K.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Peacock, Aaron D.] Univ Tennessee, Ctr Biomarker Anal, Knoxville, TN 37932 USA. [Sobek, Edward] MDDS Inc, Knoxville, TN 37916 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov RI Dale, Virginia/B-6023-2009 NR 58 TC 14 Z9 14 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1470-160X J9 ECOL INDIC JI Ecol. Indic. PD NOV PY 2008 VL 8 IS 6 BP 818 EP 827 DI 10.1016/j.ecolind.2007.08.001 PG 10 WC Biodiversity Conservation; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 317UB UT WOS:000257044500005 ER PT J AU Wu, G Swaidan, R Li, DY Li, N AF Wu, Gang Swaidan, Raja Li, Deyu Li, Ning TI Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon SO ELECTROCHIMICA ACTA LA English DT Article DE nitrogen doping; carbon support; methanol electro-oxidation; PtRu catalysts; DMFC ID NITROGEN-CONTAINING CARBON; OXYGEN REDUCTION REACTION; MEMBRANE FUEL-CELL; ELECTRONIC-PROPERTIES; NANOFIBER ELECTRODES; PLASMA TREATMENT; COMPOSITE FILMS; LOW-TEMPERATURE; THIN-FILMS; NANOTUBES AB A typical heteroatom (nitrogen)-doped carbon materials were successfully synthesized through the carbonization of a hybrid containing traditional carbon black covered by in situ polymerized polyaniline. The nitrogen content onto carbon can be adjusted up to 5.1 at.% by changing the coverage of polyaniline. The effects of nitrogen doping on the Surface physical and electrochemical properties of carbon were studied using XPS, XRD and HRTEM, as well as CV and EIS techniques. With increasing nitrogen doping, the carbon structure became more compact, showing curvatures and dislocations in the graphene stacking. The nitrogen-doped carbon also exhibited a higher accessible surface area in electrochemical reactions, and a lower charge transfer resistance at the carbon/electrolyte interface. Moreover, to investigate the influence of nitrogen doping on the electrocatalytic activity of the PtRu/C catalyst, comparisons in CO stripping and methanol oxidation were carried out on PtRu catalysts supported by non-doped and nitrogen -doped carbon. Since the promotional roles of nitrogen doping, including the high electrochemically accessible Surface area, the richness of the disordered nanostructures and defects, and the high electron density on N-doped carbon supports, contribute to the synthesis of well-dispersed PtRu particles with high Pt utilization and stronger metal-support interactions, an enhanced catalytic activity for methanol oxidation was obtained in the case of the PtRu/N-C catalyst in comparison with the traditional PtRu/C catalyst. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Wu, Gang; Li, Deyu; Li, Ning] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China. [Swaidan, Raja] Cooper Union Adv Sci & Art, Dept Chem Engn, New York, NY 10003 USA. RP Wu, G (reprint author), Los Alamos Natl Lab, MPA 11, Los Alamos, NM 87545 USA. EM wugang@lanl.gov RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU National Natural Science Foundation of China (NSFC) [20435010, 20503012] FX The authors acknowledge the financial support for this work from the National Natural Science Foundation of China (NSFC) (20435010, 20503012). We also thank Dr. Huang Jiugui in Baoshan Iron & Steel Co. for his help on HRTEM and other analysis. NR 52 TC 85 Z9 88 U1 9 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 1 PY 2008 VL 53 IS 26 BP 7622 EP 7629 DI 10.1016/j.electacta.2008.03.082 PG 8 WC Electrochemistry SC Electrochemistry GA 355SW UT WOS:000259729700004 ER PT J AU Weber, AZ Hickner, MA AF Weber, A. Z. Hickner, M. A. TI Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly SO ELECTROCHIMICA ACTA LA English DT Article DE polymer-electrolytefuel cell; water transport; neutron imaging; mathematical model; thermal management ID DIFFUSION MEDIUM; NAFION MEMBRANES; 2-PHASE BEHAVIOR; TRANSPORT; SATURATION; SORPTION; PEFCS AB Water-content profiles across the membrane electrode assembly of a polymer-electrolytefuel cell were measured using high-resolution neutron imaging and compared to mathematical-modeling predictions. It was found that the membrane held considerably more water than the other membrane-electrode constituents (catalyst layers, microporous layers, and macroporous gas-diffusion layers) at low temperatures, 40 and 60 degrees C. The water content in the membrane and the assembly decreased drastically at 80 degrees C where vapor transport and a heat-pipe effect began to dominate the water removal from the membrane-electrode assembly. In the regimes where vapor transport was significant, the through-plane water-content profile skewed towards the cathode. Similar trends were observed as the relative humidity of the inlet gases was lowered. This combined experimental and modeling approach has been beneficial in rationalizing the results of each and has given insight into future directions for new experimental work and refinements to currently available models. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Weber, A. Z.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hickner, M. A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Weber, AZ (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM azweber@lbl.gov OI Weber, Adam/0000-0002-7749-1624 FU Pennsylvania State University Materials Research Institute; Lawrence Berkeley National Laboratory FX This work was supported by the Pennsylvania State University Materials Research Institute, the Penn State Institutes of Energy & the Environment, and industrial sponsors to Lawrence Berkeley National Laboratory. NR 19 TC 92 Z9 92 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 1 PY 2008 VL 53 IS 26 BP 7668 EP 7674 DI 10.1016/j.electacta.2008.05.018 PG 7 WC Electrochemistry SC Electrochemistry GA 355SW UT WOS:000259729700010 ER PT J AU Tian, HJ Chaudhari, K Simonyi, T Poston, J Liu, TF Sanders, T Veser, G Siriwardane, R AF Tian, Hanjing Chaudhari, Karuna Simonyi, Thomas Poston, James Liu, Tengfei Sanders, Tom Veser, Goetz Siriwardane, Ranjani TI Chemical-looping Combustion of Coal-derived Synthesis Gas Over Copper Oxide Oxygen Carriers SO ENERGY & FUELS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; IRON-OXIDES; REDUCTION; OXIDATION; TEMPERATURE; METHANE; CO2; SEPARATION; PARTICLES; SYSTEM AB CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 degrees C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO(2) from fuel gas at 800 and 900 degrees C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 degrees C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 degrees C. C1 [Tian, Hanjing; Chaudhari, Karuna; Simonyi, Thomas; Poston, James; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Tian, Hanjing; Chaudhari, Karuna; Simonyi, Thomas] Parsons, Pittsburgh, PA 15129 USA. [Liu, Tengfei; Sanders, Tom; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Siriwardane, R (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM ranjani.siriwardane@netl.doe.gov RI Veser, Goetz/I-5727-2013 FU Department of Energy-National Energy Technology Laboratory; Office of Energy Science FX The authors gratefully acknowledge Anthony Zinn of REM, Clark Robinson of Parsons, and Rahual Solunke of the University of Pittsburgh for the experimental setup and result discussions. This work was funded in parts through grants from Department of Energy-National Energy Technology Laboratory and the Office of Energy Science. NR 47 TC 37 Z9 38 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV-DEC PY 2008 VL 22 IS 6 BP 3744 EP 3755 DI 10.1021/ef800438x PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 374PV UT WOS:000261057100025 ER PT J AU Heintz, YJ Sehabiague, L Morsi, BI Jones, KL Pennline, HW AF Heintz, Yannick J. Sehabiague, Laurent Morsi, Badie I. Jones, Kenneth L. Pennline, Henry W. TI Novel Physical Solvents for Selective CO(2) Capture from Fuel Gas Streams at Elevated Pressures and Temperatures SO ENERGY & FUELS LA English DT Review ID LIQUID MASS-TRANSFER; TRANSFER COEFFICIENTS; AGITATED REACTORS; CARBON-DIOXIDE; HYDROCARBON SURFACTANTS; SLURRY REACTORS; ORGANIC LIQUIDS; OXYGEN CARRIERS; N-HEXANE; SOLUBILITY AB Three perfluorinated compounds (PFCs), PP10, PP11, and PP25, manufactured by F2 Chemicals Ltd., U.K., were investigated as physical solvents for selective CO(2) capture from synthesis gas or syngas streams at elevated pressures and temperatures. The equilibrium solubility, the hydrodynamic, and the mass-transfer parameters of CO(2) in the solvents were measured in a 4-L ZipperClave agitated reactor under wide ranges of operating conditions: pressures (6-30 bar), temperatures (300-500 K), mixing speeds (10-20 Hz), and liquid heights (0.14-0.22 m). The CO(2) solubilities in the three solvents decreased with an increasing temperature at constant pressure and followed Henry's law. The CO(2) Solubilities in PP25 were greater than those in PP10 and PP11. The volumetric liquid-side mass-transfer coefficients (k(L)a) of CO(2) in the PFCs increased with mixing speed, pressure, and temperature. Also, the gas-liquid interfacial areas of CO(2) in the three PFCs appeared to control the behavior of kLa. This study proved the thermal and chemical stability and the ability of the PFCs to selectively absorb CO(2) at temperatures up to 500 K and pressures as high as 30 bar. A preliminary conceptual process design using PP25 for selective CO(2) capture from hot-shifted gas with pressure-swing and pressure-temperature-swing regeneration options was devised [a temperature-swing option was also examined but is not reported here because it is outside the context of the present study, which involves a physical solvent process benchmark (Selexol) for which temperature-swing regeneration is not a viable option]. The pressure-temperature-swing option led to greater PP25 solvent loss but a more favorable (more negative) net enthalpy than the pressure-swing option. However, for either regeneration option to be economically viable, the PP25 solvent must be completely recovered from the process. C1 [Heintz, Yannick J.; Morsi, Badie I.; Jones, Kenneth L.; Pennline, Henry W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Heintz, Yannick J.; Sehabiague, Laurent; Morsi, Badie I.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Morsi, BI (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM morsi@pitt.edu RI Sehabiague, Laurent/J-7273-2012; OI Sehabiague, Laurent/0000-0001-7402-2550 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-AC26-04NT41817] FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's ongoing research in carbon dioxide capture under the RDS contract DE-AC26-04NT41817. NR 108 TC 36 Z9 36 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV-DEC PY 2008 VL 22 IS 6 BP 3824 EP 3837 DI 10.1021/ef800091e PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 374PV UT WOS:000261057100036 ER PT J AU Allendorf, MD Diver, RB Siegel, NP Miller, JE AF Allendorf, Mark D. Diver, Richard B. Siegel, Nathan P. Miller, James E. TI Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials SO ENERGY & FUELS LA English DT Article ID SOLAR HYDROGEN-PRODUCTION; COMPOUND ENERGY FORMALISM; HIGH-TEMPERATURE; IRON-OXIDE; THERMOCHEMICAL CYCLE; O SYSTEM; GENERATION; ZIRCONIA; MODEL; HEAT AB We report a comprehensive thermodynamic analysis of thermal oxidation-reduction cycles for producing hydrogen that use metal ferrites with the spinel structure (MFe(2)O(4); M = Fe, Co, Ni, and Zn) as the redox material. Solution phases (both solid and liquid) were included in the calculations as well as the expected line compounds. Omitting solution phases, whose existence is experimentally well-documented, has a very significant impact upon the results of the calculations. Thermodynamic modeling of the three important material-related aspects of the process was performed, including synthesis of the ferrite materials from bulk oxides, thermal reduction at high temperatures, and reoxidation by reaction with steam. An experimental investigation of the Ni(x)Fe(3-x)O(4) system was performed to provide compositional data for comparison to model predictions. The results indicate that the Fe[Ni ratio, thermal reduction reaction kinetics, and the specifics of the cooling process affect the composition of the synthesized material. In particular, the presence of oxygen in the atmosphere during the cooling period following calcination substantially alters the sample composition. Predicted compositions following thermal reduction indicate that the stabilities are Fe(3)O(4) > CoFe(2)O(4) similar to NiFe(2)O(4) > ZnFe(2)O(4) and that the zinc-substituted ferrite is less desirable for solar hydrogen generation because of the high vapor pressure of zinc. Finally, modeling of the water oxidation step shows that efficient reoxidation to the original ferrite is thermodynamically feasible in all cases. We conclude that the temperature history and level of background O(2) present will affect both the phase purity of the initially formed material and the stability of the composition over the course of thermal cycling. C1 [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Diver, Richard B.; Siegel, Nathan P.; Miller, James E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov RI Miller, James/C-1128-2011; Dom, Rekha/B-7113-2012 OI Miller, James/0000-0001-6811-6948; FU U.S. Department of Energy [DE-AC04-94-AL85000]; Sandia National Laboratories Laboratory Research and Development Program FX We are grateful to Ralph Tissot for conducting the XRD analysis used in this work and to Dr. T. M. Besmann and Prof. C. Wolverton for helpful technical discussions. This work is supported by the U.S. Department of Energy under contract DE-AC04-94-AL85000. Funding was provided by the Sandia National Laboratories Laboratory Research and Development Program. NR 44 TC 82 Z9 84 U1 3 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV-DEC PY 2008 VL 22 IS 6 BP 4115 EP 4124 DI 10.1021/ef8005004 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 374PV UT WOS:000261057100075 ER PT J AU Nemergut, DR Townsend, AR Sattin, SR Freeman, KR Fierer, N Neff, JC Bowman, WD Schadt, CW Weintraub, MN Schmidt, SK AF Nemergut, Diana R. Townsend, Alan R. Sattin, Sarah R. Freeman, Kristen R. Fierer, Noah Neff, Jason C. Bowman, William D. Schadt, Christopher W. Weintraub, Michael N. Schmidt, Steven K. TI The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID EXTRACELLULAR ENZYME-ACTIVITY; AMMONIA-OXIDIZING ARCHAEA; NORTHERN HARDWOOD FORESTS; DISSOLVED ORGANIC-CARBON; LONG-TERM FERTILIZATION; NUTRIENT AVAILABILITY; ENVIRONMENTAL-SAMPLES; BACTERIAL COMMUNITY; TEMPERATE FORESTS; SPECIES RICHNESS AB Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. C1 [Nemergut, Diana R.; Townsend, Alan R.; Sattin, Sarah R.; Bowman, William D.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Nemergut, Diana R.; Neff, Jason C.] Univ Colorado, Environm Studies Program, Boulder, CO 80309 USA. [Townsend, Alan R.; Sattin, Sarah R.; Freeman, Kristen R.; Fierer, Noah; Bowman, William D.; Schmidt, Steven K.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Neff, Jason C.] Univ Colorado, Dept Geol, Boulder, CO 80309 USA. [Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Weintraub, Michael N.] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. RP Nemergut, DR (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. EM nemergut@colorado.edu RI Schmidt, Steven/G-2771-2010; Weintraub, Michael/E-9259-2011; Schadt, Christopher/B-7143-2008; OI Schmidt, Steven/0000-0002-9175-2085; Schadt, Christopher/0000-0001-8759-2448; NEFF, JASON/0000-0002-8290-1472 FU NSF Microbial Observatories Program [MCB-0455606]; Niwot Ridge LTER Program FX The authors wish to thank Christian Lauber, Dan Fernandez and Robert Kysela for assistance with laboratory analyses. We also acknowledge Elizabeth Costello for insightful discussions and Cory Cleveland for help with sampling. This work was partially supported by the NSF Microbial Observatories Program (MCB-0455606) and the Niwot Ridge LTER Program. NR 84 TC 108 Z9 114 U1 8 U2 86 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD NOV PY 2008 VL 10 IS 11 BP 3093 EP 3105 DI 10.1111/j.1462-2920.2008.01735.x PG 13 WC Microbiology SC Microbiology GA 355AF UT WOS:000259680300018 PM 18764871 ER PT J AU Druhan, JL Conrad, ME Williams, KH N'Guessan, L Long, PE Hubbard, SS AF Druhan, Jennifer L. Conrad, Mark E. Williams, Kenneth H. N'Guessan, Lucie Long, Philip E. Hubbard, Susan S. TI Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID IN-SITU BIOREDUCTION; CONTAMINATED AQUIFER; SUBMICROMOLAR LEVELS; REDUCING CONDITIONS; HYDROGEN-SULFIDE; FRACTIONATION; U(VI); GROUNDWATER; CARBON; TEMPERATURE AB Aqueous uranium (U(VI)) concentrations in a contaminated aquifer in Rifle Colorado have been successfully loweredthrough electron donor amended bioreduction. Samples collected during the acetate amendment experiment were analyzed for aqueous concentrations of Fe(II), sulfate, sulfide, acetate, U(VI), and delta S-34 of sulfate and sulfide to explore the utility of sulfur isotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment of up to 7%. in delta S-34 of sulfate in down-gradient monitoring wells indicates a transition to elevated bacterial sulfate reduction. A depletion in Fe(II), sulfate, and sulfide concentrations at the height of sulfate reduction, along with an increase in the delta S-34 of sulfide to levels approaching the delta S-34 values of sulfate, indicates sulfate limited conditions concurrent with a rebound in U(VI) concentrations. Upon cessation of acetate amendment, sulfate and sulfide concentrations increased, while delta S-34 values of sulfide returned to less than -20 parts per thousand and sulfate delta S-34 decreased to near-background values, indicating lower levels of sulfate reduction accompanied by a corresponding drop in U(VI). Results indicate a transition between electron donor and sulfate-limited conditions at the height of sulfate reduction and suggest stability of biogenic FeS precipitates following the end of acetate amendment. C1 [Druhan, Jennifer L.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Conrad, Mark E.; Williams, Kenneth H.; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [N'Guessan, Lucie] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Druhan, JL (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM ljennydruhan@berkeley.edu RI Conrad, Mark/G-2767-2010; Druhan, Jennifer/G-2584-2011; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155; FU Director, Office of Science, Office of Biological and Environmental Research; Environmental Remediation Sciences Division; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory and to Pacific Northwest National Laboratory under Contract No. DE-AC06-76RL01830. The authors wish to thank Alexandra V. Turchyn for her valued input. NR 47 TC 17 Z9 17 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2008 VL 42 IS 21 BP 7842 EP 7849 DI 10.1021/es800414s PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 367OL UT WOS:000260561200023 PM 19031870 ER PT J AU Schofield, EJ Veeramani, H Sharp, JO Suvorova, E Bernier-Latmani, R Mehta, A Stahlman, J Webb, SM Clark, DL Conradson, SD Ilton, ES Bargar, JR AF Schofield, Eleanor J. Veeramani, Harish Sharp, Jonathan O. Suvorova, Elena Bernier-Latmani, Rizlan Mehta, Apurva Stahlman, Jonathan Webb, Samuel M. Clark, David L. Conradson, Steven D. Ilton, Eugene S. Bargar, John R. TI Structure of Biogenic Uraninite Produced by Shewanella oneidensis Strain MR-1 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HIGHLY CONTAMINATED AQUIFER; IN-SITU BIOSTIMULATION; URANIUM IMMOBILIZATION; REDUCING CONDITIONS; REDUCTION; U(VI); BIOREDUCTION; BIOREMEDIATION; GROUNDWATER; DISSOLUTION AB The stability of biogenic uraninite with respect to oxidation is seminal to the success of in situ bioreduction strategies for remediation of subsurface U(VI) contamination. The properties and hence stability of uraninite are dependent on its size, structure, and composition. In this study,the local-, intermediate-, and long-range molecular-scale structure of nanoscale uraninite produced by Shewanella oneidensis strain MR-1 was investigated using EXAFS, SR-based powder diffraction and TEM. The uraninite products were found to be structurally homologous with stoichiometric UO2 under all conditions considered. Significantly, there was no evidence for lattice strain of the biogenic uraninite nanoparticles. The fresh nanoparticles were found to exhibit a well-ordered interior core of diameter ca. 1.3 nm and an outer region of thickness ca similar to 0.6 nm in which the structure is locally distorted. The lack of nanoparticle strain and structural homology with stoichiometric UO2 suggests that established thermodynamic parameters for the latter material are an appropriate starting point to model the behavior of nanobiogenic uraninite. The detailed structural analysis in this study provides an essential foundation for subsequent investigations of environmental samples. C1 [Schofield, Eleanor J.; Mehta, Apurva; Stahlman, Jonathan; Webb, Samuel M.; Bargar, John R.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Veeramani, Harish; Sharp, Jonathan O.; Suvorova, Elena; Bernier-Latmani, Rizlan] Ecole Polytech Fed Lausanne, Environm Microbiol Lab, CH-1015 Lausanne, Switzerland. [Clark, David L.] Los Alamos Natl Lab, Seaborg Inst Transactinium Sci, ADSMS, Los Alamos, NM 87545 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sharp, Jonathan O.] Colorado Sch Mines, Golden, CO 80401 USA. RP Schofield, EJ (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM eleanors@slac.stanford.edu RI Webb, Samuel/D-4778-2009; Clark, David/A-9729-2011; Bernier-Latmani, Rizlan/E-4398-2011; Sharp, Jonathan/A-4893-2013; Suvorova, Elena/I-5582-2013; Veeramani, Harish/N-2783-2015 OI Webb, Samuel/0000-0003-1188-0464; Bernier-Latmani, Rizlan/0000-0001-6547-722X; Sharp, Jonathan/0000-0002-2942-1066; Veeramani, Harish/0000-0002-7623-209X FU DoE-OBER SLAC project [SCW0041]; EPFL [DE-FG02-06ER64227]; SSRL Environmental Remediation Science Program; Stanford Synchrotron Radiation Laboratory; Stanford University; SSRL Structural Molecular Biology Program; Department of Energy, Office of Biological and Environmental Research; National institutes of Health, National Center for Research Resources, Biomedical Technology Program; EPFL; Swiss NSF [20021-113784]; Heavy Element Chemistry program; DOE OBES [W-7450]; Lehigh University [ESCA-300] FX We thank Dan Schwarz for preparing the synthetic UO2 used in this study. We thank Carol Morris, Ray Russ, and Darryl Murray for radiation control technical support and Joe Rogers, Jeff Maske, and Ron Marks for their assistance with beam line hardware and data acquisition systems. Funding for this project was provided by DoE-OBER SLAC project number SCW0041 and grant no. DE-FG02-06ER64227 to EPFL. Portions of this project were supported by the SSRL Environmental Remediation Science Program. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. DOE, OBES. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National institutes of Health, National Center for Research Resources, Biomedical Technology Program. Work carried out at EPFL was also funded by the Swiss NSF grant no. 20021-113784. Work carried out at LANL was funded by the Heavy Element Chemistry program of DOE OBES under contract W-7450. We thank Al Miller for guidance in using the Scienta ESCA-300 at Lehigh University. We thank three anonymous reviewers for their helpful comments. Safety: This work involved the handling of Uranium-238 and the development of standard handling protocols. NR 34 TC 70 Z9 71 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2008 VL 42 IS 21 BP 7898 EP 7904 DI 10.1021/es800579g PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 367OL UT WOS:000260561200031 PM 19031878 ER PT J AU Zhang, F Luo, WS Parker, JC Spalding, BP Brooks, SC Watson, DB Jardine, PM Gu, BH AF Zhang, Fan Luo, Wensui Parker, Jack C. Spalding, Brian P. Brooks, Scott C. Watson, David B. Jardine, Philip M. Gu, Baohua TI Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CATION-EXCHANGE MODEL; SULFATE SORPTION; FOREST SOILS; ADSORPTION; RETENTION; TRANSPORT; MONTMORILLONITE; ALUMINUM; BATCH; IONS AB Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO42- for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions. C1 [Zhang, Fan; Luo, Wensui; Brooks, Scott C.; Watson, David B.; Jardine, Philip M.; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Parker, Jack C.; Spalding, Brian P.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. RP Zhang, F (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM zhangf@ornl.gov RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012 OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research Programs; Oak Ridge National Laboratory; UT- Battelle, LLC; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Programs. Oak Ridge National Laboratory is managed by UT- Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 32 TC 9 Z9 10 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2008 VL 42 IS 21 BP 8007 EP 8013 DI 10.1021/es800311m PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 367OL UT WOS:000260561200047 PM 19031894 ER PT J AU Zelenyuk, A Yang, J Song, C Zaveri, RA Imre, D AF Zelenyuk, Alla Yang, Juan Song, Chen Zaveri, Rahul A. Imre, Dan TI A New Real-Time Method for Determining Particles' Sphericity and Density: Application to Secondary Organic Aerosol Formed by Ozonolysis of alpha-Pinene SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BEAM WIDTH PROBE; MASS-SPECTROMETER; ATMOSPHERIC PARTICLES; AERODYNAMIC DIAMETERS; CONTROLLED DIMENSIONS; NOZZLE EXPANSIONS; SIZE; MOBILITY; MORPHOLOGY; FIELD AB Particle volumes are most often obtained by measuring particle mobility size distributions and assuming that the particles are spherical. Particle volumes are then converted to mass loads by using particle densities that are commonly estimated from measured mobility and vacuum aerodynamic diameters, assuming that the particles are spherical. For aspherical particles, these assumptions can introduce significant errors. We present in this work a new method that can be applied to any particle system to determine in real time whether the particles are spherical or not. We use oursecond-generation single particle mass spectrometer (SPLAT II) to measure with extremely high precision the vacuum aerodynamic size distributions of particles that are classified by differential mobility analyzer and demonstrate that the line shape of these vacuum aerodynamic size distributions provide a way to unambiguously distinguish between spherical and aspherical particles. Moreover, the very same experimental system is used to obtain the size, density, composition, and dynamic shape factors of individual particles. We present an application of this method to secondary organic aerosols that are formed as a result of ozonolysis of alpha-pinene in the presence and absence of an OH scavenger and find these particles to be spherical with densities of 1.198 +/- 0.004 and 1.213 +/- 0.003 g cm(-3), respectively. C1 [Zelenyuk, Alla; Yang, Juan; Song, Chen; Zaveri, Rahul A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. RP Zelenyuk, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM alla.zelenyuk@pnl.gov RI Song, Chen/H-3374-2011; Yang, Juan/F-5220-2010; OI Yang, Juan/0000-0001-5502-9351; Zaveri, Rahul/0000-0001-9874-8807 FU U.S. Department of Energy Office of Basic Energy Sciences; Chemical Sciences Division; Department of Energy's Office of Biological and Environmental Research; PNNL Laboratory Directed Research and Development (LDRD); U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RL0 1830] FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division. This research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). Funding for C.S. and R.A.Z. was provided by the PNNL Laboratory Directed Research and Development (LDRD) program. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL0 1830. NR 45 TC 32 Z9 32 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2008 VL 42 IS 21 BP 8033 EP 8038 DI 10.1021/es8013562 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 367OL UT WOS:000260561200051 PM 19031898 ER PT J AU Apte, MG Maddalena, RL Russell, ML AF Apte, M. G. Maddalena, R. L. Russell, M. L. TI VOC and Aldehyde Emissions from Four Fema Temporary Housing Units SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Apte, M. G.; Maddalena, R. L.; Russell, M. L.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S266 EP S266 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191901215 ER PT J AU Lobscheid, A Apte, M Mendell, MJ AF Lobscheid, A. Apte, M. Mendell, M. J. TI California Elementary School Ventilation Study: Study Design and Methods SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Lobscheid, A.; Apte, M.; Mendell, M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S187 EP S187 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191901008 ER PT J AU Maddalena, R Destaillats, H Russell, ML Hodgson, AT Hammond, SK McKone, TE AF Maddalena, R. Destaillats, H. Russell, M. L. Hodgson, A. T. Hammond, S. K. McKone, T. E. TI Emissions Measurements to Characterize Residential Exposures to Indoor Pollutants from Printers SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Maddalena, R.; Destaillats, H.; Russell, M. L.; Hodgson, A. T.; McKone, T. E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Hammond, S. K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RI Destaillats, Hugo/B-7936-2013 NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S265 EP S266 PG 2 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191901214 ER PT J AU Marchetti, F Weldon, RH Xing, C Cabreros, D Kurtovich, E Schmid, T Young, S Zbang, L Rappaport, S Li, G Wyrobek, AJ Eskenazi, B AF Marchetti, F. Weldon, R. H. Xing, C. Cabreros, D. Kurtovich, E. Schmid, T. Young, S. Zbang, L. Rappaport, S. Li, G. Wyrobek, A. J. Eskenazi, B. TI Chromosomal Aberrations and Aneupoidies in the Sperm of Chinese Men Occupationatly Exposed to Benzene SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Marchetti, F.; Wyrobek, A. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Weldon, R. H.; Kurtovich, E.; Young, S.; Zbang, L.; Rappaport, S.; Eskenazi, B.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Xing, C.; Li, G.] Chinese Ctr Dis Control & Prevent, Beijing, Peoples R China. [Cabreros, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Schmid, T.] Univ Hosp Rechts, Munich, Germany. NR 0 TC 1 Z9 1 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S137 EP S137 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191900399 ER PT J AU McKone, TE Sohn, M Maddalena, R Vallero, D AF McKone, T. E. Sohn, M. Maddalena, R. Vallero, D. TI Addressing Uncertainty and Variability in Ecological and Human Exposure Assessment: A Comparison SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [McKone, T. E.; Sohn, M.; Maddalena, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Vallero, D.] US EPA, Res Triangle Pk, NC 27711 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S278 EP S278 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191901247 ER PT J AU McKone, TE Arnot, J Sohn, M Vallero, D AF McKone, T. E. Arnot, J. Sohn, M. Vallero, D. TI Characterizing Source-to-Dose Relationships for Persistent Pollutants SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [McKone, T. E.; Sohn, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Arnot, J.] Trent Univ, Peterborough, ON K9J 7B8, Canada. [Vallero, D.] US EPA, Res Triangle Pk, NC 27711 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S31 EP S31 PG 1 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191900073 ER PT J AU Mendell, MJ Mirer, AG AF Mendell, M. J. Mirer, A. G. TI Dampness, Mould, and Health-a Review of Epidemiologic Evidence for the Upcoming WHO Guidelines for Indoor Air Quality SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Mendell, M. J.; Mirer, A. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S136 EP S137 PG 2 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191900398 ER PT J AU Schenker, U Scheringer, M Sohn, MD Maddalena, RL McKone, TE Hungerbuhler, K AF Schenker, U. Scheringer, M. Sohn, M. D. Maddalena, R. L. McKone, T. E. Hungerbuehler, K. TI Improved Estimates of Global Transport of DDT and Their Implications Using Sensitivity and Bayesian Analyses SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 20th Annual Conference of the International-Society-for-Environmental-Epidemiology CY OCT 12-16, 2008 CL Pasadena, CA SP Int Soc Environm Epidemiol C1 [Schenker, U.; Scheringer, M.; Hungerbuehler, K.] ETH, Inst Chem & Bioengn, Zurich, Switzerland. [Sohn, M. D.; Maddalena, R. L.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [McKone, T. E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2008 VL 19 IS 6 BP S322 EP S323 PG 2 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 362IR UT WOS:000260191901367 ER PT J AU Durakiewicz, T Riseborough, PS Olson, CG Joyce, JJ Oppeneer, PM Elgazzar, S Bauer, ED Sarrao, JL Guziewicz, E Moore, DP Butterfield, MT Graham, KS AF Durakiewicz, T. Riseborough, P. S. Olson, C. G. Joyce, J. J. Oppeneer, P. M. Elgazzar, S. Bauer, E. D. Sarrao, J. L. Guziewicz, E. Moore, D. P. Butterfield, M. T. Graham, K. S. TI Observation of a kink in the dispersion of f-electrons SO EPL LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CYLINDRICAL FERMI SURFACES; CUPRATE SUPERCONDUCTORS; CRYSTAL-GROWTH; BAND-STRUCTURE; ACCURATE; USB2; SPECTROSCOPY; SYSTEM AB Strong interactions in correlated electron systems may result in the formation of heavy quasiparticles that exhibit kinks in their dispersion relation. Spectral weight is incoherently shifted away from the Fermi energy, but Luttinger's theorem requires the Fermi volume to remain constant. Our angle-resolved photoemission study of USb(2) reveals a kink in a noncrossing 5f band, representing the first experimental observation of a kink structure in f-electron systems. The kink energy scale of 21 meV and the ultra-small peak width of 3 meV are observed. We propose the novel mechanism of renormalization of a point-like Fermi surface, and that Luttinger's theorem remains applicable. Copyright (C) EPLA, 2008 C1 [Durakiewicz, T.; Joyce, J. J.; Bauer, E. D.; Sarrao, J. L.; Moore, D. P.; Graham, K. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Riseborough, P. S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Olson, C. G.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Oppeneer, P. M.; Elgazzar, S.] Uppsala Univ, Dept Phys & Mat Sci, S-75121 Uppsala, Sweden. [Guziewicz, E.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Butterfield, M. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM tomasz@lanl.gov RI Bauer, Eric/D-7212-2011; Riseborough, Peter/D-4689-2011; Guziewicz, Elzbieta/S-4910-2016; OI Guziewicz, Elzbieta/0000-0001-6158-5258; Durakiewicz, Tomasz/0000-0002-1980-1874; Moore, David/0000-0002-0645-587X; Bauer, Eric/0000-0003-0017-1937 FU U. S. DOE; LANL LDRD Program; NSF [DMR-0084402]; Swedish Research Council (VR); SNIC; European Commission (JRC-ITU); Polish grant [N202 140 32/3877] FX This work was performed under the auspices of the U. S. DOE and LANL LDRD Program. The SRC is supported by the NSF under Award Np. DMR-0084402. Support from the Swedish Research Council (VR), SNIC, and European Commission (JRC-ITU) is gratefully acknowledged. Thanks are due to K. Byczuk, A. Kaminski, J. D. Thompson, F. Ronning, T. Klimczuk, C. Batista, A. Balatsky and Y.- F. Yang for stimulating discussions. EG was supported by the Polish grant N202 140 32/3877. NR 30 TC 13 Z9 13 U1 1 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2008 VL 84 IS 3 AR 37003 DI 10.1209/0295-5075/84/37003 PG 6 WC Physics, Multidisciplinary SC Physics GA 410SM UT WOS:000263598600027 ER PT J AU Kohama, Y Kamihara, Y Riggs, S Balakirev, FF Atake, T Jaime, M Hirano, M Hosono, H AF Kohama, Y. Kamihara, Y. Riggs, S. Balakirev, F. F. Atake, T. Jaime, M. Hirano, M. Hosono, H. TI Hall coefficient and H-c2 in underdoped LaFeAsO0.95F0.05 SO EPL LA English DT Article ID MAGNETIC-FIELDS; 43 K; SUPERCONDUCTIVITY; TEMPERATURE; DEPENDENCE AB The electrical resistivity and Hall coefficient of LaFeAsO0.95F0.05 polycrystalline samples were measured in pulsed magnetic fields up to mu H-0 = 60 T from room temperature to 1.5 K. The resistance of the normal state shows a negative temperature coefficient (d rho/dT < 0) below 70 K for this composition, indicating insulating ground state in underdoped LaFeAsO system in contrast to heavily doped compound. The charge carrier density obtained from Hall effect can be described as constant plus a thermally activated term with an energy gap. E = 630 K. The upper critical field, H-c2, estimated from resistivity measurements, exceeds 75 T with zero-field T-c = 26.3 K, suggesting an unconventional nature for superconductivity. Copyright (C) EPLA, 2008 C1 [Kohama, Y.; Riggs, S.; Balakirev, F. F.; Jaime, M.] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Kohama, Y.; Atake, T.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Kamihara, Y.; Hirano, M.; Hosono, H.] Tokyo Inst Technol, Frontier Res Ctr, Japan Sci & Technol Agcy, ERATO SORST,Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Kohama, Y (reprint author), Los Alamos Natl Lab, MPA NHMFL, POB 1663, Los Alamos, NM 87545 USA. EM ykohama@lanl.gov RI Kamihara, Yoichi/C-4471-2008; Hosono, Hideo/J-3489-2013; Jaime, Marcelo/F-3791-2015 OI Hosono, Hideo/0000-0001-9260-6728; Jaime, Marcelo/0000-0001-5360-5220 FU JSPS [19.9728]; DOE; NSF; Florida State University through the National High Magnetic Field Laboratory FX This work was supported by Grant-in-Aid JSPS (No. 19.9728), the DOE, the NSF, and Florida State University through the National High Magnetic Field Laboratory. We thank H. Kawaji, H. Yuan and J. Singleton for technical assistance during the experiments and helpful discussion. NR 22 TC 15 Z9 15 U1 0 U2 5 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2008 VL 84 IS 3 AR 37005 DI 10.1209/0295-5075/84/37005 PG 4 WC Physics, Multidisciplinary SC Physics GA 410SM UT WOS:000263598600029 ER PT J AU Thom, RM Southard, SL Borde, AB Stoltz, P AF Thom, Ronald M. Southard, Susan L. Borde, Amy B. Stoltz, Peter TI Light requirements for growth and survival of eelgrass (Zostera marina L.) in Pacific Northwest (USA) estuaries SO ESTUARIES AND COASTS LA English DT Article DE eelgrass; Zostera marina; light requirements; eelgrass growth; Puget Sound eelgrass; eelgrass light criteria ID SUBMERSED AQUATIC VEGETATION; LOWER CHESAPEAKE BAY; HALODULE-WRIGHTII; SEAGRASS PRODUCTIVITY; HABITAT REQUIREMENTS; THALASSIA-TESTUDINUM; DEPTH DISTRIBUTION; HALOPHILA-OVALIS; STANDING-STOCK; COASTAL LAGOON AB We developed light requirements for eelgrass in the Pacific Northwest, USA, to evaluate the effects of short- and long-term reductions in irradiance reaching eelgrass, especially related to turbidity and overwater structures. Photosynthesis-irradiance experiments and depth distribution field studies indicated that eelgrass productivity was maximum at a photosynthetic photon flux density (PPFD) of about 350-550 mu mol quanta m(-2) s(-1). Winter plants had approximately threefold greater net apparent primary productivity rate at the same irradiance as summer plants. Growth studies using artificial shading as well as field monitoring of light and eelgrass growth indicated that long-term survival required at least 3 mol quanta m(-2) day(-1) on average during spring and summer (i.e., May-September), and that growth was saturated above about 7 mol quanta m(-2) day(-1). We conclude that non-light-limited growth of eelgrass in the Pacific Northwest requires an average of at least 7 mol quanta m(-2) day(-1) during spring and summer and that long-term survival requires a minimum average of 3 mol quanta m(-2) day(-1). C1 [Thom, Ronald M.; Southard, Susan L.; Borde, Amy B.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Stoltz, Peter] Glacier NW, Seattle, WA 98134 USA. RP Thom, RM (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM ron.thom@pnl.gov; sue.southard@pnl.gov; amy.borde@pnl.gov; PStoltz@calportland.com FU Washington State Department of Transportation (WSDOT); Glacier Northwest; NOAA Coastal Ocean Program; US Department of Energy FX This research was funded by Washington State Department of Transportation (WSDOT), Glacier Northwest, NOAA Coastal Ocean Program, and the US Department of Energy through their Laboratory Directed Research and Development program. We sincerely acknowledge Jim Schafer and Jim Toohey from WSDOT and Ron Summers from Glacier Northwest. Those participating in this work included Sandy Wyllie Escheverria, David Shreffler, Bruce Higgins, Greg Williams, John Southard, Liam Antrim, Charles Simenstad, Annette Olson, Brie Van Cleve, Jennifer Lipfert, and Kari Steenworth. Jeni Smith assisted in the production of the final manuscript. Finally, we sincerely appreciate comments and corrections of drafts of this manuscript by Jeff Ward, Andrea Copping, and two anonymous reviewers. NR 59 TC 20 Z9 23 U1 5 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 J9 ESTUAR COAST JI Estuaries Coasts PD NOV PY 2008 VL 31 IS 5 BP 969 EP 980 DI 10.1007/s12237-008-9082-3 PG 12 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 353KN UT WOS:000259565700012 ER PT J AU Tackmann, K AF Tackmann, K. CA BABAR Collaboration TI Determination of the b-quark mass and nonperturbative parameters in semileptonic B-meson decays at BABAR SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID QCD; DISTRIBUTIONS AB Knowing the mass of the b-quark is essential to the study of the structure and decays of B-mesons as well as to future tests of the Higgs mechanism of mass generation. We present recent preliminary measurements of the b-quark mass and related nonperturbative parameters from moments of kinematic distributions in charmed and charmless semileptonic B-meson decays. Their determination from charmless semileptonic B-meson decays is the first measurement in this mode. The data were collected by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-)-collider at the Stanford Linear Accelerator Center at a center-of-mass energy of 10.58 GeV. C1 [Tackmann, K.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Tackmann, K (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM kerstin@slac.stanford.edu FU Department of Energy [DE-AC02-76SF00515] FX This work is supported in part by the Department of Energy contract DE-AC02-76SF00515. NR 17 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV PY 2008 VL 38 IS 2 BP 137 EP 140 DI 10.1140/epja/i2008-10645-y PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 379WE UT WOS:000261426100004 ER PT J AU Staudinger, U Schlegel, R Weidisch, R Fritzsche, J Kluppel, M Heinrich, G Mays, JW Uhrig, D Hadjichristidis, N AF Staudinger, Ulrike Schlegel, Ralf Weidisch, Roland Fritzsche, Juliane Klueppel, Manfred Heinrich, Gert Mays, Jimmy W. Uhrig, David Hadjichristidis, Nikos TI Interpretation of hysteresis behaviour of PI-PS multigraft copolymers by adapting to the dynamic flocculation model SO EUROPEAN POLYMER JOURNAL LA English DT Article DE Multigraft copolymers; Hysteresis behaviour; Modelling; Flocculation model; Thermoplastic elastomers ID DOUBLE-GRAFT-COPOLYMERS; MOLECULAR ARCHITECTURE; MECHANICAL-PROPERTIES; TRIBLOCK COPOLYMERS; RUBBER ELASTICITY; BRANCH-POINTS; PHASE MISCIBILITY; CRACK-PROPAGATION; BLOCK-COPOLYMERS; TUBE-MODEL AB Hysteresis behaviour of highly elastic multigraft copolymers with a polyisoprene (PI) backbone and branched polystyrene (PS) arms has been interpreted by applying the extended non-affine tube model of filler reinforced rubber elasticity (dynamic flocculation model), which takes into account that conformational fluctuations in bulk networks are strongly suppressed by packing effects. Originally, this model was developed to describe hyperelasticity of unfilled networks, and later, stress softening and hysteresis of filler reinforced elastomer materials like carbon black and silica filled rubbers. The evaluation of stress softening is obtained via pre-strain dependent hydrodynamic amplification of the rubber matrix by a fraction of rigid filler clusters with virgin filler-filler bonds. The filler-induced hysteresis is described by a cyclic breakdown and re-aggregation of the residual fraction of more soft filler clusters with already broken filler-filler bonds. We show, for the first time that the developed concept is in fair agreement with experimental stress-strain data of superelastic PI-PS multigraft copolymers. Depending on the PS-content and their functionality multigraft copolymers form microphase separated structures according to the constituting block copolymer concept, where the PS arms act as multi-domains in a PI matrix. The adaptation of the model is based on the assumption that the PS-domains are acting similar to filler clusters. The obtained microscopic material parameters appear reasonable for the description of the structure and mechanical properties of multigraft copolymers. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Staudinger, Ulrike; Schlegel, Ralf; Weidisch, Roland] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany. [Fritzsche, Juliane; Klueppel, Manfred] Deutsch Inst Kautschuktechnol eV, D-30519 Hannover, Germany. [Heinrich, Gert] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany. [Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.; Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hadjichristidis, Nikos] Univ Athens, Dept Chem, Athens 15771, Greece. RP Weidisch, R (reprint author), Univ Jena, Inst Mat Sci & Technol, Lobdergraben 32, D-07743 Jena, Germany. EM ulrike.staudinger@ifam-dd.fraunhofer.de; roland.weidisch@uni-jena.de RI Umlauf, Ursula/D-3356-2014; Uhrig, David/A-7458-2016 OI Uhrig, David/0000-0001-8447-6708 FU "Deutsche Forschungsgemeinschaft" (DFG) FX The authors thank "Deutsche Forschungsgemeinschaft" (DFG) for the financial support. NR 31 TC 8 Z9 8 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0014-3057 J9 EUR POLYM J JI Eur. Polym. J. PD NOV PY 2008 VL 44 IS 11 BP 3790 EP 3796 DI 10.1016/j.eurpolymj.2008.08.005 PG 7 WC Polymer Science SC Polymer Science GA 384CT UT WOS:000261722600048 ER PT J AU Blake, D Suo-Anttila, J AF Blake, David Suo-Anttila, Jill TI Aircraft cargo compartment fire detection and smoke transport modeling SO FIRE SAFETY JOURNAL LA English DT Article DE Smoke; Fire; Transport; Detection; Aircraft; Cargo compartment; CFD; Validation; Modeling AB The US Federal Aviation Administration, along with other regulatory agencies, requires that cargo compartments on passenger carrying aircraft be equipped with fire detection and suppression systems. Current regulations require that the detection system alarms within 1 min of the start of a fire and flight tests are required to demonstrate compliance with these regulations. Due to the high costs of flight tests, extensive ground certification tests are typically conducted to ensure that the detection system will meet the time to alarm requirements during the flight tests. For the purpose of improving the detection system design and certification process, a transient computational fluid dynamics computer code for the prediction of smoke, heat, and gas species transport in cargo compartments has been developed. This simulation tool couples heat, mass, and momentum transfer in a body-fitted coordinate system in order to handle a variety of cargo bay shapes and sizes. Ideally, such a physics-based simulation tool can be used during the certification process to identify worst case locations for fires, optimum placement of detector sensors within the cargo compartment, and sensor alarm levels and algorithms needed to achieve detection within the required time. Validation of the model was completed, and comparison of the predicted results with the results obtained from full-scale fire tests in a variety of actual aircraft cargo compartments provides insight into the model capabilities. Published by Elsevier Ltd. C1 [Suo-Anttila, Jill] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Blake, David] William J Hughes Tech Ctr, Fed Aviat Adm, Atlantic City, NJ USA. RP Suo-Anttila, J (reprint author), Sandia Natl Labs, POB 5800,MS 1135, Albuquerque, NM 87123 USA. EM jmsuoan@sandia.gov FU Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 9 TC 7 Z9 7 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0379-7112 J9 FIRE SAFETY J JI Fire Saf. J. PD NOV PY 2008 VL 43 IS 8 BP 576 EP 582 DI 10.1016/j.firesaf.2008.01.003 PG 7 WC Engineering, Civil; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 367WR UT WOS:000260583800005 ER PT J AU Bennett, P Ishchenko, AA Laval, J Paap, B Sutherland, BM AF Bennett, Paula Ishchenko, Alexander A. Laval, Jacques Paap, Brigitte Sutherland, Betsy M. TI Endogenous DNA damage clusters in human hematopoietic stem and progenitor cells SO FREE RADICAL BIOLOGY AND MEDICINE LA English DT Article DE Free radicals; DNA damage; clustered damages; human stem cells; tobacco use; DNA repair ID DOUBLE-STRAND BREAKS; AVERAGE LENGTH ANALYSIS; COLI ENDONUCLEASE-III; ESCHERICHIA-COLI; IONIZING-RADIATION; CIGARETTE-SMOKE; SUBSTRATE-SPECIFICITY; GEL-ELECTROPHORESIS; AP-ENDONUCLEASES; BASE EXCISION AB Clustered DNA damages-multiple oxidized bases, abasic sites, or strand breaks within a few helical turns-are potentially mutagenic and lethal alterations induced by ionizing radiation. Endogenous clusters are found at low frequencies in unirradiated normal human cells and tissues. Radiation-sensitive hematopoietic cells with low glycosylase levels JK6 and WI-L2-NS) accumulate oxidized base Clusters but not abasic clusters, indicating that cellular repair genotype affects endogenous cluster levels. We asked whether other factors, i.e., in the cellular microenvironment, affect endogenous cluster levels and composition in hematopoietic TK6 and WI-L2-NS cells Were grown in standard medium (RPM[ 1640) alone or supplemented with cells. folate and/or selenium; oxidized base cluster levels were highest in RPM1 1640 and reduced in selenium-supplemented medium. Abasic clusters were low under all conditions. In primary hematopoietic stem and progenitor cells from four non-tobacco-using donors, cluster levels were low. However, in cells from tobacco users, we observed high oxidized base clusters and also abasic clusters, previously observed only in irradiated cells. Protein levels and activity of the abasic endonuclease Ape1 were Similar if) the tobacco users and nonusers. These data suggest that in highly damaging environments, even normal DNA repair capacity can be overwhelmed, leaving highly repair-resistant Clustered damages. Published by Elsevier Inc. C1 [Bennett, Paula; Paap, Brigitte; Sutherland, Betsy M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Ishchenko, Alexander A.; Laval, Jacques] Univ Paris Sud, Inst Concerol Gustave Roussy, CNRS, Grp Reparat ADN,UMR 8126, F-94805 Villejuif, France. RP Sutherland, BM (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM bms@bnl.gov RI Ishchenko, Alexander/E-4914-2012; Ishchenko, Alexander/D-4133-2013 FU NCI NIH HHS [R01 CA86897] NR 56 TC 11 Z9 11 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0891-5849 EI 1873-4596 J9 FREE RADICAL BIO MED JI Free Radic. Biol. Med. PD NOV 1 PY 2008 VL 45 IS 9 BP 1352 EP 1359 DI 10.1016/j.freeradbiomed.2008.08.007 PG 8 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Endocrinology & Metabolism GA 366TP UT WOS:000260506600018 PM 18775489 ER PT J AU Skinner, CH Haasz, AA Alimow, VK Bekris, N Causey, RA Clark, REH Coad, JP Davis, JW Doerner, RP Mayer, M Pisarev, A Roth, J Tanabe, T AF Skinner, C. H. Haasz, A. A. Alimow, V. Kh. Bekris, N. Causey, R. A. Clark, R. E. H. Coad, J. P. Davis, J. W. Doerner, R. P. Mayer, M. Pisarev, A. Roth, J. Tanabe, T. TI RECENT ADVANCES ON HYDROGEN RETENTION IN ITER'S PLASMA-FACING MATERIALS: BERYLLIUM, CARBON, AND TUNGSTEN SO FUSION SCIENCE AND TECHNOLOGY LA English DT Review DE hydrogen retention; plasma-facing materials; ITER ID SINGLE-CRYSTAL TUNGSTEN; C-D-LAYERS; ASDEX UPGRADE DIVERTOR; TRITIUM DEPTH PROFILES; PULSED-LASER ABLATION; FLUX DEUTERIUM PLASMA; HIGH-PURITY BERYLLIUM; JT-60 GRAPHITE TILE; IN-SITU MEASUREMENT; W-SHAPED DIVERTOR AB Management of tritium inventory remains one of the grand challenges in the development of fusion energy, and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory infusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER plasma-facing materials-Be, C, and W-and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this paper together with recommendations for ITER. Basic parameters of diffusivity, solubility, and trapping in Be, C, and W are reviewed. For Be, the development of open porosity can accountfor transient hydrogenic pumping, but long-term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be- and C-containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak, and these can also retain significant amounts of hydrogen isotopes. Oxidative and photonbased techniques for detritiation of plasma-facing components are described. C1 [Skinner, C. H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Haasz, A. A.; Davis, J. W.] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada. [Alimow, V. Kh.] Russian Acad Sci, Inst Phys Chem & Electrochem, Moscow, Russia. [Bekris, N.] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. [Causey, R. A.] Sandia Natl Labs, Livermore, CA USA. [Clark, R. E. H.] IAEA Atom & Mol Data Unit, Vienna, Austria. [Coad, J. P.] Culham Sci Ctr, EURATOM UKAEA Fus Assoc, Abingdon OX14 3D8, Oxon, England. [Doerner, R. P.] Univ Calif San Diego, San Diego, CA 92103 USA. [Mayer, M.; Roth, J.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Pisarev, A.] Moscow State Engn & Phys Inst, Moscow, Russia. [Tanabe, T.] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 812, Japan. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.gov RI Bekris Dr, Nicolas/F-9104-2014; OI Bekris Dr, Nicolas/0000-0003-3621-9082; Mayer, Matej/0000-0002-5337-6963 FU U.S. Department of Energy [DE-AC02-76CH03073, DE-FG0207ER54912]; International Science and Technology Center [2805]; IAEA [12138-ru]; Natural Sciences and Engineering Research Council of Canada; Ministry of Education, Culture, Sports, Science and Technology Japan for Scientific Research [17206092]; Scientific Research in Priority Area; U.K. Engineering and Physical Sciences Research Council; European Communities FX We would like to acknowledge the hospitality of the Atomic and Molecular Data Unit of the International Atomic Energy Agency (IAEA) in hosting the CRP meetings and its encouragement to collaborate in this area of research. The authors would like to thank G. Czechowicz for assistance with the figures. This work was supported in part by U.S. Department of Energy grant DE-AC02-76CH03073 and DE-FG0207ER54912, International Science and Technology Center grant 2805, and IAEA contract 12138-ru. The financial support provided by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. Grant-in-aid of the Ministry of Education, Culture, Sports, Science and Technology Japan for Scientific Research 17206092 and Scientific Research in Priority Area 461 (Tritium for Fusion) is gratefully acknowledged. Funding jointly by the U.K. Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and U.K. Atomic Energy Authority is also acknowledged. NR 284 TC 72 Z9 72 U1 1 U2 35 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2008 VL 54 IS 4 BP 891 EP 945 PG 55 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 369CC UT WOS:000260669700001 ER PT J AU Ryutov, DD Parks, PB AF Ryutov, D. D. Parks, P. B. TI REACHING HIGH-YIELD FUSION WITH A SLOW PLASMA LINER COMPRESSING A MAGNETIZED TARGET SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE plasma liner; magnetized target fusion; magneto-inertial fusion ID PHYSICS BASIS; IGNITION; DRIVE; IMPLOSION; PARTICLE AB Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high-Z material is discussed. A soft-landing (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than similar to 10% of the initial (uncompressed) target radius. A combination of the plasma liner with one or two glide cones allows for direct access to the area near the center of the reactor chamber. One can then generate a plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the Point of maximum compression and thereby increase the fusion yield. C1 [Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Parks, P. B.] Gen Atom Co, San Diego, CA 92186 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutov1@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work would have never been done without the support and encouragement of Y. C. F. Thio, who has brought the problem of plasma liners to the authors' attention and provided a number of insightful comments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 27 TC 1 Z9 1 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2008 VL 54 IS 4 BP 978 EP 988 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 369CC UT WOS:000260669700005 ER PT J AU Murakami, M Park, JM Luce, TC Wade, MR Hong, RM AF Murakami, M. Park, J. M. Luce, T. C. Wade, M. R. Hong, R. M. TI PROSPECTS FOR OFF-AXIS NEUTRAL BEAM CURRENT DRIVE IN THE DIII-D TOKAMAK SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE DIII-D tokamak; neutral beam injection; current drive ID CYCLOTRON CURRENT DRIVE; STEADY-STATE; NONINDUCTIVE CURRENT; OPERATION; PLASMA; TRANSPORT; ITER AB Off-axis neutral beam (NB) current drive (CD) (NBCD) has the potential to supply substantial off-axis CD for the demonstration steady-state, Advanced Tokamak scenarios. A modification of the two existing DIII-D NB beamlines is proposed to allow off-axis CD with NB injection (NBI) vertically steered to drive current as far off axis as half the plasma radius. The profile and magnitude of the driven current is calculated using the NUBEAM Monte Carlo module in the TRANSP and ONETWO transport codes. When the beam is injected in the same direction as the toroidal field, off-axis CD of approximate to 45 kA/MW is calculated at normalized radius (square root of the wtoroidal flux), rho = 0. 5 with full-width at half-maximum of 0.45 in rho. The dimensionless CD efficiency is comparable or somewhat better than that for electron cyclotron CD (ECCD) at the same location and plasma parameters. The efficiency stays nearly constant in going from on-axis to off-axis CD. The localization and magnitude of the off-axis NBCD are sensitive to the alignment of the NBI relative to the helical pitch of the magnetic field lines and thus to the direction of the toroidal field and plasma current. The driven current is still localized off axis for fast ion diffusivities up to 1 m(2)/s. The calculations show that the off-axis NBCD can supply much of the off-axis CD for the steady-state scenarios under consideration, leaving ECCD for fine-tuning of the current profile and real-time control. C1 [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Luce, T. C.; Wade, M. R.; Hong, R. M.] Gen Atom Co, San Diego, CA 92186 USA. RP Murakami, M (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM murakami@fusion.gat.com FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725, DE-FC0204ER54698]; DOE SciDAC program FX This work was supported by the U.S. Department of Energy (DOE) under DE-AC05-00OR22725 and DE-FC0204ER54698. We acknowledge useful discussion with D. N. Hill, T. Oikawa, P. Prater, H. E. St. John, and T. S. Taylor. Some of the modeling was carried out using Grid-enabled TRANSP on the National Fusion Grid, and we would like to thank the members of the National Fusion Collaboratory project (www. fusiongrid.org) sponsored by the DOE SciDAC program. NR 32 TC 8 Z9 8 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2008 VL 54 IS 4 BP 994 EP 1002 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 369CC UT WOS:000260669700007 ER PT J AU Howell, VM de Haan, G Bergren, S Jones, JM Culiat, CT Michaud, EJ Frankel, WN Meisler, MH AF Howell, Viive M. de Haan, Georgius Bergren, Sarah Jones, Julie M. Culiat, Cymbeline T. Michaud, Edward J. Frankel, Wayne N. Meisler, Miriam H. TI A Targeted Deleterious Allele of the Splicing Factor SCNM1 in the Mouse SO GENETICS LA English DT Article ID SODIUM-CHANNEL SCN8A; MYOGENIC REPRESSOR; DISEASE SEVERITY; GENE; MUTATIONS; FAMILY; MICE; DEFICIENCY; EXCITATION; APOPTOSIS AB The auxiliary spliceosomal protein SCNM1 contributes to recognition of nonconsensus splice donor sites. SCNM1 was first identified as a modifier of the severity of a sodium channelopathy in the mouse. The most severely affected strain, C57BL/6J, carries the variant allele SCNM1(R187X), which is defective in splicing the mutated donor site in the Scn8a(medJ) transcript. To further probe the in vivo function of SCNM1, we constructed a floxed allele and generated a mouse with constitutive deletion of exons 3-5. The SCNM1(Delta 3-5) protein is produced and correctly localized to the nucleus, but is more functionally impaired than the C57BL/6J allele. Deficiency of SCNM1 did not significantly alter other brain transcripts. We characterized an ENU-induced allele of Scmn1 and evaluated the ability of wild-type SCNM1 to rescue lethal mutations of I-mfa and Brunol4. The phenotypes of the Scnm1(Delta 3-5) mutant confirm the role of this splice factor in processing the Scn8a(medJ) transcript and provide a new allele of greater severity for future studies. C1 [Howell, Viive M.; de Haan, Georgius; Bergren, Sarah; Jones, Julie M.; Meisler, Miriam H.] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. [Culiat, Cymbeline T.; Michaud, Edward J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Frankel, Wayne N.] Jackson Lab, Bar Harbor, ME 04609 USA. RP Meisler, MH (reprint author), Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. EM meislerm@umich.edu FU NCI NIH HHS [5 P30 CA46592, P30 CA046592]; NIGMS NIH HHS [R01 GM024872, R01 GM24872, R24 GM070857]; NINDS NIH HHS [R01 NS031348, R01 NS31348] NR 32 TC 6 Z9 6 U1 2 U2 4 PU GENETICS PI BALTIMORE PA 428 EAST PRESTON ST, BALTIMORE, MD 21202 USA SN 0016-6731 J9 GENETICS JI Genetics PD NOV PY 2008 VL 180 IS 3 BP 1419 EP 1427 DI 10.1534/genetics.108.094227 PG 9 WC Genetics & Heredity SC Genetics & Heredity GA 374IE UT WOS:000261036200013 PM 18791226 ER PT J AU Karlstrom, KE Crow, R Crossey, LJ Coblentz, D Van Wijk, JW AF Karlstrom, Karl E. Crow, Ryan Crossey, L. J. Coblentz, D. Van Wijk, J. W. TI Model for tectonically driven incision of the younger than 6 Ma Grand Canyon SO GEOLOGY LA English DT Article ID SOUTHWESTERN COLORADO PLATEAU; HISTORY; UPLIFT AB Accurate models for the incision of the Grand Canyon must include characterization of tectonic influences on incision dynamics such as active faulting and mantle to surface fluid interconnections. These young tectonic features support other geologic data that indicate that the Grand Canyon has been carved in the past 6 Ma. New U-Pb dates on speleothems are reinterpreted here in terms of improved geologic constraints and understanding of the modern aquifer. The combined data suggest that Grand Canyon incision rates have been relatively steady since 3-4 Ma. Differences in rates in the eastern (175-250 m/Ma) and western (50-80 m/Ma) Grand Canyon are explained by Neogene fault block uplift across the Toroweap-Hurricane system. Mantle tomography shows an abrupt step in mantle velocities near the Colorado Plateau edge, and geodynamic modeling suggests that upwellling asthenosphere is driving uplift of the Colorado Plateau margin relative to the Basin and Range. Our model for dynamic surface uplift in the past 6 Ma contrasts with the notion of passive incision of the Grand Canyon due solely to river integration and geomorphic response to base-level fall. C1 [Karlstrom, Karl E.; Crow, Ryan; Crossey, L. J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Coblentz, D.; Van Wijk, J. W.] Los Alamos Natl Lab, Geodynam Grp, Los Alamos, NM 87545 USA. RP Karlstrom, KE (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM kek1@unm.edu RI Crossey, Laura/C-2033-2008; Crow, Ryan/C-4103-2009 OI Crossey, Laura/0000-0001-6237-8023; FU National Science Foundation [EAR-9706541, EAR-0711546] FX Support for this study came from National Science Foundation grants EAR-9706541 and EAR-0711546. Grand Canyon National Park provided river and sampling permits. This paper benefited from reviews by Dick Young, Rebecca Dorsey, and Kyle House. NR 21 TC 84 Z9 84 U1 3 U2 21 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-8505 J9 GEOLOGY JI Geology PD NOV PY 2008 VL 36 IS 11 BP 835 EP 838 DI 10.1130/G25032A.1 PG 4 WC Geology SC Geology GA 370HK UT WOS:000260753100001 ER PT J AU Tartakovsky, AM Neuman, SP AF Tartakovsky, Alexandre M. Neuman, Shlomo P. TI Effects of Peclet number on pore-scale mixing and channeling of a tracer and on directional advective porosity SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS AB Field tracer tests indicate that indicate that advective porosity, the quantity relating advective velocity to Darcy flux, may exhibit directional dependence. Theory (S. P. Neuman, 2005)suggests that directional variations in advective porosity could arise from incomplete mixing of an inert tracer between directional flow channels within a sampling volume of soil or rock that may be hydraulically isotropic or anisotropic, rendering advective porosity a function of Peclet number. Whereas Neuman was able to quantify the process for idealized intersecting fracture sets, his theory is too abstract to allow doing so for more complex systems of fractures or pores. We use Smoothed Particle Hydrodynamics (e.g., A. M. Tartakovsky and P. Meakin, 2005, 2006) to simulate advective-diffusive transport of a passive tracer in the interior of an idealized pore space between impermeable circular or elliptical solid grains of random size, arranged randomly within a square domain. Our numerical experiments reveal a transition from complete mixing of tracer at small Peclet numbers to the gradual evolution of pore-scale channels of tracer which allow less and less mixing as Peclet numbers grow. Advective porosity, computed as the ratio between total water flux across the domain boundaries and migration rate of the tracer center of mass, is found to diminish asymptotically from a value close to the total porosity at small Peclet numbers to a constant dominated entirely by advection at large Peclet numbers. When total porosity is kept constant, channeling is less pronounced and mixing more prominent when flow takes place parallel to the longer axes of elliptical grains as compared to when the grains are circular. However, the rate is faster and the asymptote smaller when flow takes place perpendicular to the longer elliptical grain axes. Citation: Tartakovsky, A. M., and S. P. Neuman (2008), Effects of Peclet number on pore-scale mixing and channeling of a tracer and on directional advective porosity, Geophys. Res. Lett., 35, L21401. doi: 10.1029/2008GL035895. C1 [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Computat Math Div, Richland, WA 99352 USA. [Neuman, Shlomo P.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Computat Math Div, POB 999, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov NR 6 TC 15 Z9 15 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 1 PY 2008 VL 35 IS 21 AR L21401 DI 10.1029/2008GL035895 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 368BZ UT WOS:000260597600005 ER PT J AU Chen, J Kemna, A Hubbard, SS AF Chen, Jinsong Kemna, Andreas Hubbard, Susan S. TI A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters SO GEOPHYSICS LA English DT Article ID DOMAIN-INDUCED POLARIZATION; TIME-DOMAIN; RESISTIVITY TOMOGRAPHY; HYDRAULIC CONDUCTIVITY; INVERSION; SAND; RELAXATION; SIZE; IP AB We have developed a Bayesian model to invert spectral induced-polarization (SIP) data for Cole-Cole parameters using Markov-chain Monte Carlo (MCMC) sampling methods. We compared the performance of the MCMC-based stochastic method with an iterative Gauss-Newton-based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton-based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information often is inaccurate or insufficient. In contrast, the MCMC-based inversion method provides extensive global information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. In addition, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC-based method does not explicitly offer a single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can be used first to obtain the medians of unknown parameters by starting from an arbitrary set of initial values. The deterministic method then can be initiated using the medians as starting values to obtain the optimal estimates of the Cole-Cole parameters. C1 [Chen, Jinsong; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kemna, Andreas] Forschungszentrum Julich, Agrosphere ICG 4, Julich, Germany. RP Chen, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jchen@lbl.gov; kemna@geo.uni-bonn.de; sshubbard@lbl.gov RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010 FU Department of Energy, Environmental Remediation Science Program (ERSP) [DE-AC0376SF00098] FX This study was funded by the Department of Energy, Environmental Remediation Science Program (ERSP) grant DE-AC0376SF00098 to Susan Hubbard. We thank Martin Munch (formerly ICG-4, Forschungszentrum Julich, Germany) and Odilia Esser (ICG-4, Forschungszentrum Julich, Germany) who helped with the laboratory SIP measurements included in this study. We also thank the associate editor Dr. John Bradford, Dr. Louise Pellerin, and two anonymous reviewers for their insightful comments and suggestions. NR 40 TC 37 Z9 39 U1 2 U2 8 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2008 VL 73 IS 6 BP F247 EP F259 DI 10.1190/1.2976115 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 376VR UT WOS:000261211600012 ER PT J AU Vasco, DW Ferretti, A Novali, F AF Vasco, D. W. Ferretti, Alessandro Novali, Fabrizio TI Estimating permeability from quasi-static deformation: Temporal variations and arrival-time inversion SO GEOPHYSICS LA English DT Review DE geophysical fluid dynamics; geophysical signal processing; hydrological techniques; inverse problems; ray tracing; remote sensing by radar ID SYNTHETIC-APERTURE RADAR; LAPSE SEISMIC DATA; SAR INTERFEROMETRY; PERMANENT SCATTERERS; LAND SUBSIDENCE; SURFACE DISPLACEMENT; GEOTHERMAL-FIELD; VELOCITY CHANGES; EARTHS SURFACE; LAS-VEGAS AB Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective, one can define a pressure "arrival time" and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire "travel time" or phase field obtained from the deformation data, we can construct the trajectories directly, thereby linearizing the inverse problem. A numerical study indicates that, using this approach, we can infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture Radar (InSAR) observations associated with a CO2 injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline that defines the field. C1 [Vasco, D. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Ferretti, Alessandro; Novali, Fabrizio] Tele Rilevamento Europa, Milan, Italy. RP Vasco, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov; alessandro.ferretti@treuropa.com; fabrizio.novali@treuropa.com RI Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 NR 106 TC 24 Z9 24 U1 2 U2 12 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2008 VL 73 IS 6 BP O37 EP O52 DI 10.1190/1.2978164 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 376VR UT WOS:000261211600016 ER PT J AU Gasperikova, E Hoversten, GM AF Gasperikova, E. Hoversten, G. M. TI Gravity monitoring of CO(2) movement during sequestration: Model studies SO GEOPHYSICS LA English DT Article DE climate mitigation; geophysical techniques; gravity; hydrocarbon reservoirs AB Sequestration/enhanced oil recovery (EOR) petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and carbon dioxide, or CO(2)), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO(2)). Coal formations undergoing methane extraction tend to be thin (3-10 m) but shallow compared to either EOR or brine formations. Injecting CO(2) into an oil reservoir decreases the bulk density in the reservoir. The spatial pattern of the change in the vertical component of gravity (G(z)) is correlated directly with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G(z) clearly identify the vertical section of the reservoir where fluid saturations are changing. The CO(2)-brine front, on the order of 1 km within a 20-m-thick brine formation at 1900-m depth with 30% CO(2) and 70% brine saturations, respectively, produced a -10-mu Gal surface gravity anomaly. Such an anomaly would be detectable in the field. The amount of CO(2) in a coal-bed methane scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial-size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrate that the general position of density changes caused by CO(2) can be recovered but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements. C1 [Gasperikova, E.; Hoversten, G. M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Hoversten, G. M.] Chevron Texaco, San Ramon, CA USA. RP Gasperikova, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM egasperikova@lbl.gov; HOVG@chevron.com RI Gasperikova, Erika/D-1117-2015 OI Gasperikova, Erika/0000-0003-1553-4569 FU Cooperative Research and Development Agreement; U. S. Department of Energy; National Energy Technologies Laboratory; Ernest Orlando Lawrence Berkeley National Laboratory; U. S. Department of Energy [DE-AC03-76SF00098] FX This work was supported in part by a Cooperative Research and Development Agreement among BP Corporation North America as part of the CO2 Capture Project of the Joint Industry Program; the U. S. Department of Energy through the National Energy Technologies Laboratory; and the Ernest Orlando Lawrence Berkeley National Laboratory, managed by the University of California for the U. S. Department of Energy under contract DE-AC03-76SF00098. We would like to thank Xiong Li, John Ferguson, and two anonymous reviewers for suggestions and comments that improved this manuscript. NR 11 TC 18 Z9 18 U1 1 U2 4 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2008 VL 73 IS 6 BP WA105 EP WA112 DI 10.1190/1.2985823 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 376VR UT WOS:000261211600030 ER PT J AU Vasco, DW Ferretti, A Novali, F AF Vasco, D. W. Ferretti, Alessandro Novali, Fabrizio TI Reservoir monitoring and characterization using satellite geodetic data: Interferometric synthetic aperture radar observations from the Krechba field, Algeria SO GEOPHYSICS LA English DT Article DE carbon compounds; faulting; geomorphology; geophysical fluid dynamics; geophysical techniques; groundwater; inverse problems; radar interferometry; remote sensing by radar ID LAPSE SEISMIC DATA; SAR INTERFEROMETRY; SURFACE DISPLACEMENT; PERMANENT SCATTERERS; GEOTHERMAL-FIELD; LAND SUBSIDENCE; EARTHS SURFACE; DEFORMATION; PRESSURE; OIL AB Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of 11 field estimates allows us to construct a measure of diffusive traveltime throughout a reservoir. The dense distribution of traveltime values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to interferometric synthetic-aperture radar (InSAR) data gathered over a carbon dioxide (CO(2)) injection site in Algeria reveals pressure propagation along two northwest-trending corridors. An inversion of the traveltimes indicates the existence of two northwest-trending high-permeability zones. The high-permeability features trend in the same direction as the regional fault and fracture zones. Model-parameter-resolution estimates indicate the features are well resolved. C1 [Vasco, D. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Ferretti, Alessandro; Novali, Fabrizio] Europa, Tele Rilevamento, Milan, Italy. RP Vasco, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov; alessandro.ferretti@treuropa.com; fabrizio.novali@treuropa.com RI Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU Office of Basic Energy Sciences; GEOSEQ; U. S. Department Distance north [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary, Office of Basic Energy Sciences, and the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory of the U. S. Department Distance north (m) Calculated deviation (days) Distance north (m) of Energy under contract DE-AC02-05CH11231. The In Salah CO2 Joint Industry Project (BP, StatoilHydro, and Sonatrach) is thanked for providing production, injection, and subsurface data. The permanent scatterer data were processed by Tele-Rilevamento Europa (TRE), a spin-off of Politecnico di Milano, worldwide exclusive licensee of the Polimi PS Technique T. The authors thank ESAfor satellite data used in this study and the entire TRE staff for supporting the SAR data processing. Additional computations were conducted at the Center for Computational Seismology, Berkeley Laboratory. NR 57 TC 62 Z9 62 U1 1 U2 15 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2008 VL 73 IS 6 BP WA113 EP WA122 DI 10.1190/1.2981184 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 376VR UT WOS:000261211600031 ER PT J AU Geshi, N Oikawa, A Yin, L Motawia, MS Scheller, HV AF Geshi, Naomi Oikawa, Ai Yin, Lan Motawia, Mohammed Saddik Scheller, Henrik Vibe TI Glycosyltranfserases Involved in the Plant Cell Wall Polysaccharides Biosynthesis SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Glycobiology CY NOV 12-15, 2008 CL Ft Worth, TX SP Soc Glycobiol C1 [Geshi, Naomi; Yin, Lan; Motawia, Mohammed Saddik] Univ Copenhagen, Frederiksberg, Denmark. [Oikawa, Ai; Scheller, Henrik Vibe] Joint Bioenergy Inst, Emeryville, CA USA. RI Scheller, Henrik/A-8106-2008 OI Scheller, Henrik/0000-0002-6702-3560 NR 0 TC 0 Z9 0 U1 1 U2 3 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2008 VL 18 IS 11 MA 135 BP 973 EP 973 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 361QE UT WOS:000260141400144 ER PT J AU Durbin, PW AF Durbin, Patricia W. TI LAURISTON S. TAYLOR LECTURE: THE QUEST FOR THERAPEUTIC ACTINIDE CHELATORS SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; actinides; chelation; review papers ID SIMULATED WOUND CONTAMINATION; MICROBIAL IRON TRANSPORT; IN-VIVO CHELATION; ACUTE URANIUM INTOXICATION; ION SEQUESTERING AGENTS; HYDROXYPYRIDINONATE LIGANDS; COORDINATION CHEMISTRY; METAL-COMPLEXES; DFO-HOPO; POLYAMINOCARBOXYLIC ACID AB All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-L1(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Durbin, PW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 70A-1150,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM PWDurbin-Heavey@lbl.gov FU NIAID NIH HHS [AI074065] NR 284 TC 45 Z9 47 U1 3 U2 24 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD NOV PY 2008 VL 95 IS 5 BP 465 EP 492 DI 10.1097/01.HP.0000326345.41816.c2 PG 28 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 361WH UT WOS:000260157700003 PM 18849679 ER PT J AU Apostolopoulos, V Yuriev, E Lazoura, E Yu, MM Ramsland, PA AF Apostolopoulos, Vasso Yuriev, Elizabeth Lazoura, Eliada Yu, Minmin Ramsland, Paul A. TI MHC and MHC-like molecules SO HUMAN VACCINES LA English DT Review DE MHC class I; MHC class II; MHC class III; classical MHC; non-classical MHC; crystallography; peptide; non-canonical peptides; HLA-E; HLA-F; HLA-G; HFE; H-2M; H-2Q; H-2T; HLA-DM; HLA-DO; TCR; peptide ID MAJOR HISTOCOMPATIBILITY COMPLEX; T-CELL-RECEPTOR; CLASS-II MOLECULES; CRYSTAL-STRUCTURE; VACCINE DESIGN; PEPTIDE BINDING; HIGH-AFFINITY; HLA-G; 3-DIMENSIONAL STRUCTURE; IMMUNE-RESPONSES AB Major histocompatibility complex (MHC) molecules bind and present short antigenic peptide fragments on the surface of antigen presenting cells (APCs) to T cell receptors. Recognition of peptide-MHC complexes by T cells initiates a cascade of signals in T cells and activated cells either destroy or help to destroy the APC. The MHCs are divided into three subgroups: MHC class I, MHC class II and MHC class III. In addition, non-classical MHC molecules and MHC-like molecules play a pivotal role in shaping our understanding of the immune response. In the design of molecular vaccines for the treatment of diseases, an understanding of the three-dimensional structure of MHC, its interaction with peptide ligands, and its interaction with the T cell receptor are important prerequisites, all of which are discussed herein. C1 [Apostolopoulos, Vasso; Lazoura, Eliada; Ramsland, Paul A.] Burnet Inst Austin, Heidelberg, Vic 3084, Australia. [Yuriev, Elizabeth] Monash Univ, Monash Inst Pharmaceut Sci, Parkville, Vic, Australia. [Yu, Minmin] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA USA. RP Apostolopoulos, V (reprint author), Burnet Inst Austin, Kronheimer Bldg, Studley Rd, Heidelberg, Vic 3084, Australia. EM vasso@burnet.edu.au RI Yuriev, Elizabeth/A-7132-2016 OI Yuriev, Elizabeth/0000-0002-3909-0379 FU R. D. Wright Research [223316, 365209]; ational Health and Medical Research Council of Australia [223310] FX V. A. and P. R. were supported by R. D. Wright Research Fellowships (223316 and 365209) and V. A. by a project grant (223310) from the National Health and Medical Research Council of Australia. NR 80 TC 4 Z9 4 U1 1 U2 10 PU LANDES BIOSCIENCE PI AUSTIN PA 1002 WEST AVENUE, 2ND FLOOR, AUSTIN, TX 78701 USA SN 1554-8619 J9 HUM VACCINES JI Hum. Vaccines PD NOV-DEC PY 2008 VL 4 IS 6 BP 400 EP 409 PG 10 WC Biotechnology & Applied Microbiology; Immunology SC Biotechnology & Applied Microbiology; Immunology GA 373LA UT WOS:000260971900003 PM 18728400 ER PT J AU Olken, F Gruenwald, L AF Olken, Frank Gruenwald, Le TI Data Stream Management Aggregation, Classification, Modeling, and Operator Placement SO IEEE INTERNET COMPUTING LA English DT Editorial Material C1 [Olken, Frank] Natl Sci Fdn, Comp & Informat Sci Directorate, Intelligent Informat Syst Div, Arlington, VA USA. [Olken, Frank] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Gruenwald, Le] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA. RP Olken, F (reprint author), Natl Sci Fdn, Comp & Informat Sci Directorate, Intelligent Informat Syst Div, Arlington, VA USA. EM folken@nsf.gov; ggruenwald@ou.edu NR 0 TC 5 Z9 5 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD NOV-DEC PY 2008 VL 12 IS 6 BP 9 EP 12 DI 10.1109/MIC.2008.121 PG 4 WC Computer Science, Software Engineering SC Computer Science GA 369VU UT WOS:000260722800003 ER PT J AU Tan, W Foster, I Madduri, R AF Tan, Wei Foster, Ian Madduri, Ravi TI Combining the Power of Taverna and caGrid Scientific Workflows that Enable Web-Scale Collaboration SO IEEE INTERNET COMPUTING LA English DT Article ID SERVICES; SYSTEMS AB Service-oriented architecture represents a promising approach to integrating data and software across different institutional and disciplinary sources, thus facilitating Web-scale collaboration while avoiding the need to convert different data and software to common formats. The US National Cancer Institute's Biomedical Information Grid program seeks to create both a service-oriented infrastructure (caGrid) and a suite of data and analytic services. Workflow tools in caGrid facilitate both the use and creation of services by accelerating service discovery, composition, and orchestration tasks. The authors present caGrid's workflow requirements and explain how they met these requirements by adopting and extending the Taverna system. C1 [Tan, Wei; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Madduri, Ravi] Univ Chicago, Argonne Natl Lab, Div Math & Comp Sci, Chicago, IL 60637 USA. RP Tan, W (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wtan@mcs.anl.gov; foster@anl.gov; madduri@mcs.anl.gov RI Tan, Wei/A-8144-2009 FU US National Cancer Institute; National Institutes of Health [N01-CO-12400] FX We thank Stian Soiland-Reyes for his great help in using Taverna and developing the plug-in, and Paolo Missier for the constructive discussion on Taverna's modeling style. We also thank the caGrid team for their help in various use cases. This project has been funded in whole or in part with federal funds from the US National Cancer Institute, National Institutes of Health, under contract no. N01-CO-12400. NR 10 TC 12 Z9 13 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 EI 1941-0131 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD NOV-DEC PY 2008 VL 12 IS 6 BP 61 EP 68 DI 10.1109/MIC.2008.120 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 369VU UT WOS:000260722800009 ER PT J AU Parks, RC Rogers, E AF Parks, Raymond C. Rogers, Edmond TI Vulnerability Assessment for Critical Infrastructure Control Systems SO IEEE SECURITY & PRIVACY LA English DT Article C1 [Parks, Raymond C.] Sandia Natl Labs, Informat Design Assurance Red Team, Livermore, CA 94550 USA. [Rogers, Edmond] N Amer Elect Reliabil Corp, Control Syst Secur Working Grp, Princeton, NJ USA. RP Parks, RC (reprint author), Sandia Natl Labs, Informat Design Assurance Red Team, Livermore, CA 94550 USA. EM rcparks@sandia.gov; edmond.rogers@gmail.com NR 0 TC 8 Z9 8 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD NOV-DEC PY 2008 VL 6 IS 6 BP 37 EP 43 PG 7 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 376UC UT WOS:000261207500008 ER PT J AU Ingole, S Manandhar, P Chikkannanavar, SB Akhadov, EA Picraux, ST AF Ingole, Sarang Manandhar, Pradeep Chikkannanavar, Satishkumar B. Akhadov, Elshan A. Picraux, S. Tom TI Charge Transport Characteristics in Boron-Doped Silicon Nanowires SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Depletion layer; nanoelectronics; nanowires (NWs); silicon ID CONTACT RESISTANCE AB We report the charge transport and inferred surface depletion characteristics of silicon nanowires (Si NWs) with diameters of 90-170 nm after boron doping to 8 x 10(17) and 4 x 10(19) cm(-3) by a proximity diffusion doping technique. Four-probe current-voltage measurements were performed to obtain the NW resistivity, and the electrically active dopant concentration and surface oxide charge density were extracted by varying the NW diameter. The Ti/Au to Si NW contact resistance and specific contact resistivity were also obtained, and specific contact resistivities as low as 2 x 10(-5) Omega.cm(2) were achieved. The derived parameters for these ex situ boron-doped Si NWs agree reasonably well with the expected characteristics and earlier reported results for in situ boron-doped Si NWs. Interface charge creates a surface depletion region in p-type Si NWs, which decreases the conducting area of the NW. This effect increases the NW resistance and becomes increasingly significant with decreasing dopant concentration and NW diameter. A simple method is presented to estimate the relative influence of surface charge density on electrical transport in NWs for this case. C1 [Ingole, Sarang] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Ingole, Sarang; Picraux, S. Tom] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Manandhar, Pradeep; Chikkannanavar, Satishkumar B.; Akhadov, Elshan A.; Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Ingole, S (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM singole@purdue.edu; pradeep@lanl.gov; satishbc@lanl.gov; eakhado@sandia.gov; picraux@lanl.gov FU National Science Foundation [DMR-0413523]; National Nuclear Security Administration's Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by the National Science Foundation under Grant DMR-0413523, by the National Nuclear Security Administration's Laboratory Directed Research and Development Program, U.S. Department of Energy, through Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, under Contract DE-AC52-06NA25396, and by the National Nanotechnology Enterprise Development Center. The review of this paper was arranged by Editor C. Lieber. NR 18 TC 12 Z9 12 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9383 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD NOV PY 2008 VL 55 IS 11 BP 2931 EP 2938 DI 10.1109/TED.2008.2005175 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 372JX UT WOS:000260899000011 ER PT J AU Chen, JJ Liu, JJ West, A Yan, YF Yu, MH Zhou, WL AF Chen, Jiajun Liu, Jingjing West, Amber Yan, Yanfa Yu, Minghui Zhou, Weilie TI Room Temperature Ferromagnetism of FeCo-Codoped ZnO Nanorods Prepared by Chemical Vapor Deposition SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT International Magnetics Conference (Intermag) CY MAY 04-08, 2008 CL Madrid, SPAIN DE CVD; diluted magnetic semiconductor; ferromagnetism; nanostructure ID SEMICONDUCTORS; SPINTRONICS AB FeCo-codoped ZnO nanorods with room temperature ferromagnetic ordering have been synthesized by chemical vapor deposition. Detailed nanostructures: were investigated by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and nanoprobe X-ray energy dispersive spectroscopy (EDS). The ZnO nanorods were grown along c-axis of a single crystalline wurtzite structure and no second phase was observed by high resolution TEM. EDS analysis along the nanowires indicated that Co and Fe were successfully doped into the ZnO lattice with concentrations about 0.6-1.0 at.%. Magnetic measurement demonstrates a ferromagnetic ordering with Curie temperature higher than 300 K presents in the ZnO nanorods. C1 [Chen, Jiajun; Liu, Jingjing; West, Amber; Yu, Minghui; Zhou, Weilie] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA. [Yan, Yanfa] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhou, WL (reprint author), Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA. EM wzhou@uno.edu RI Chen, Jiajun/A-9200-2011 OI Chen, Jiajun/0000-0002-6550-0343 NR 15 TC 4 Z9 4 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2008 VL 44 IS 11 BP 2681 EP 2683 DI 10.1109/TMAG.2008.2003037 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 391GG UT WOS:000262221200059 ER PT J AU Orna, J Morellon, L Algarabe, PA Pardo, JA Sangiao, S Magen, C Snoeck, E De Teresa, JM Ibarra, AR AF Orna, J. Morellon, L. Algarabel, P. A. Pardo, J. A. Sangiao, S. Magen, C. Snoeck, E. De Teresa, J. M. Ibarra, A. R. TI Fe3O4/MgO/Fe Heteroepitaxial Structures for Magnetic Tunnel Junctions SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (INTERMAG) CY MAY 04-08, 2008 CL Madrid, SPAIN DE Epitaxial layers; pulsed laser deposition; spintronics; thin films ID HALF-METALLIC FE3O4; FABRICATION; MAGNETORESISTANCE; LAYERS; FILMS AB In this work we report the growth and structural and magnetic characterization of heteroepitaxial Fe3O4/MgO/Fe junctions. All three layers have been deposited by pulsed laser deposition. Combining High Resolution Transmission Electron Microscopy and X-ray results, we have obtained for the heterostructure the epitaxy relation MgO(001) [100]//Fe3O4(001)[100]/MgO(001) [100]/Fe(001)[110]. All interfaces appear very sharp with relatively small root-mean square (rms) roughness, similar to 0.2 nm. The magnetic coupling between Fe3O4 and Fe electrodes is also very small, J similar to 0.03 mJ/m(2) (MgO barrier thickness of 2 nm). Microfabrication of Magnetic Tunnel Junctions from these heterostructures is in progress. C1 [Orna, J.; Morellon, L.; Pardo, J. A.; Sangiao, S.; Ibarra, A. R.] Univ Zaragoza, Inst Nanociencia Aragon, E-50009 Zaragoza, Spain. [Orna, J.; Morellon, L.; Algarabel, P. A.; De Teresa, J. M.; Ibarra, A. R.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Pardo, J. A.] Univ Zaragoza, Dept Ciencia & Tecnol Mat & Fluidos, Zaragoza 50018, Spain. [Magen, C.; Snoeck, E.] CNRS, Ctr Elaborat Mat & Etud Struct, F-31055 Toulouse, France. [Magen, C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Morellon, L (reprint author), Univ Zaragoza, Inst Nanociencia Aragon, E-50009 Zaragoza, Spain. EM morellon@unizar.es RI DE TERESA, JOSE/E-2430-2011; PARDO, JOSE/B-9490-2011; Magen, Cesar/A-2825-2013; SANGIAO, SORAYA/B-6436-2013; Algarabel, Pedro/K-8583-2014; Ibarra, Manuel Ricardo/K-1150-2014; OI DE TERESA, JOSE/0000-0001-9566-0738; PARDO, JOSE/0000-0002-0111-8284; SANGIAO, SORAYA/0000-0002-4123-487X; Algarabel, Pedro/0000-0002-4698-3378; Ibarra, Manuel Ricardo/0000-0003-0681-8260; /0000-0003-3724-508X NR 19 TC 4 Z9 4 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2008 VL 44 IS 11 BP 2862 EP 2864 DI 10.1109/TMAG.2008.2002484 PN 1 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 391GG UT WOS:000262221200106 ER PT J AU Lu, Y Cho, MH Kim, J Lee, Y Rhee, J Lee, JH AF Lu, Yuehui Cho, Min Hyung Kim, JinBae Lee, YoungPak Rhee, Jooyull Lee, Jae-Hwang TI Control of Diffracted Magneto-Optical Enhancement in Ni Gratings SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT International Magnetics Conference (Intermag) CY MAY 04-08, 2008 CL Madrid, SPAIN DE Diffraction; magneto-optical (MO) effect; Ni grating ID MAGNETOPHOTONIC CRYSTALS; PHOTONIC CRYSTALS AB The so-called diffracted magneto-optical (MO) effects, in which the MO responses of diffracted beams are measured in the off-specular geometry, have been utilized to change the amplitude and the sign of MO signals. An enhancement of MO effect of the first-order diffraction was found. In this paper, the rigorous coupled-wave analysis implemented as Airy-like internal reflection series was developed to simulate the diffracted longitudinal MO Kerr effect. We demonstrate that the enhancement of the MO effect is controllable for a certain diffraction order by adjusting the geometrical parameters of Ni gratings. Furthermore, it is believed that the absolute magnitude and the MO enhancement can be more effectively tuned by designing the grating profile and carefully selecting the gyrotropic materials. C1 [Lu, Yuehui; Cho, Min Hyung; Kim, JinBae; Lee, YoungPak] Hanyang Univ, Program Div Adv Res & Educ Phys BK21, Quantum Photon Sci Res Ctr, Seoul 133791, South Korea. [Rhee, Jooyull] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Lee, Jae-Hwang] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lee, Y (reprint author), Hanyang Univ, Program Div Adv Res & Educ Phys BK21, Quantum Photon Sci Res Ctr, Seoul 133791, South Korea. EM yplee@hanyang.ac.kr RI Rhee, Joo/D-2987-2011 NR 23 TC 3 Z9 3 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2008 VL 44 IS 11 BP 3300 EP 3302 DI 10.1109/TMAG.2008.2002778 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 391GG UT WOS:000262221200218 ER PT J AU Piquer, C Laguna-Marco, MA Boada, R Plazaola, F Chaboy, J AF Piquer, Cristina Angeles Laguna-Marco, Maria Boada, Roberto Plazaola, Fernando Chaboy, Jesus TI A Magnetic and Mossbauer Spectral Study of the Lu(Al1-xFex)(2) Compounds SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (INTERMAG) CY MAY 04-08, 2008 CL Madrid, SPAIN DE Iron and rare-earth compounds; magnetic materials; Mossbauer spectroscopy ID ALLOYS AB We present here a magnetic and Fe-57 Mossbauer spectral study of the Lu(Al1-xFex)(2) compounds (x = 0.50, 0.75, and 1). At relatively high temperatures (T-H similar to 300 K for x = 0.75, and T-H similar to 70 K for x = 0.50) a peak is observed in both zero field cooled magnetization, M(T), and low field ac susceptibility versus temperature, chi(ac)(T), curves. Irreversible phenomena occur at temperatures below the maxima in M(T), and a clear dependence with the exciting frequency is observed in the chi(ac) (T) curves. Similar behavior is observed at lower temperatures (T-L similar to 45 K for x: = 0.75, and T-L similar to 10 K for x: = 0.50); however, the low temperature peak in chi(ac)(T) is almost frequency independent. The combined analysis of magnetization data and Fe-57 Mossbauer spectroscopy suggests that the high temperature process corresponds to the apparition of short-range correlations between the magnetic moments, which lead to the formation of magnetic clusters, whereas the low temperature process corresponds to a freezing of the iron magnetic moments. C1 [Piquer, Cristina; Angeles Laguna-Marco, Maria; Boada, Roberto; Chaboy, Jesus] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Angeles Laguna-Marco, Maria] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Plazaola, Fernando] Univ Basque Country, UPV EHU, Dept Elect & Elect, E-48080 Bilbao, Spain. RP Piquer, C (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM cpiquer@unizar.es RI Laguna-Marco, M. A./G-8042-2011; Boada, Roberto/H-5349-2015; OI Laguna-Marco, M. A./0000-0003-4069-0395; Boada, Roberto/0000-0003-4857-8402; Plazaola Muguruza, Fernando/0000-0002-0081-8131 NR 15 TC 2 Z9 2 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2008 VL 44 IS 11 BP 4206 EP 4209 DI 10.1109/TMAG.2008.2001493 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 391GH UT WOS:000262221300213 ER PT J AU Boada, R Laguna-Marco, MA Piquer, C Jimenez-Villacorta, F Chaboy, J AF Boada, R. Laguna-Marco, M. A. Piquer, C. Jimenez-Villacorta, F. Chaboy, J. TI Effect of Aluminium Substitution in RT2 Compounds (R = rare-earth, T = transition metal) on the Magnetic Properties by Modification of the Electronic Structure SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (INTERMAG) CY MAY 04-08, 2008 CL Madrid, SPAIN DE Intermetallic compounds; Laves phase compounds; magnetic materials; X-ray absorption spectroscopy ID RAY-ABSORPTION SPECTROSCOPY; SPECTRA; LUFE2; FE; CE AB We present an X-ray absorption spectroscopy (XAS) study performed at both the Fe K-edge and rare-earth L-1,L-3-edges; of the R1-xRx'(Fe1-yAly)(2) series (R = Ho, Er and R' = Lu, Y). We show that substitution of the rare-earth (Ho, Er) by a non-magnetic one (Y, Lu) acts as a simple magnetic dilution effect. In contrast, the magnetic properties of these systems are drastically changed when Fe is substituted by the non-magnetic Al, independently of the rare-earth involved. The combined study of the different regions of the absorption spectra for the different atomic species in these materials allow us to disentangle the structural and electronic effects of the substitution. Our results reveal that the change of the magnetic properties upon Al substitution are triggered by the strong modification of the density of states (DOS) which also affects the R(5d)-Fe(3d) hybridization. C1 [Boada, R.; Laguna-Marco, M. A.; Piquer, C.; Chaboy, J.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Laguna-Marco, M. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jimenez-Villacorta, F.] European Synchrotron Radiat Facil, SpLine Spanish CRG BM25, F-38043 Grenoble, France. RP Boada, R (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM rboada@unizar.es RI Jimenez-Villacorta, Felix/C-3924-2009; Laguna-Marco, M. A./G-8042-2011; Boada, Roberto/H-5349-2015 OI Jimenez-Villacorta, Felix/0000-0001-7257-9208; Laguna-Marco, M. A./0000-0003-4069-0395; Boada, Roberto/0000-0003-4857-8402 NR 19 TC 1 Z9 1 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2008 VL 44 IS 11 BP 4214 EP 4217 DI 10.1109/TMAG.2008.2001315 PN 2 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 391GH UT WOS:000262221300215 ER PT J AU Huang, QJ Lilley, CM Divan, R Bode, M AF Huang, Qiaojian Lilley, Carmen M. Divan, Ralu Bode, Matthias TI Electrical Failure Analysis of Au Nanowires SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Electrical properties; electromigration; failure mechanism; nanowires ID ELECTROMIGRATION FAILURE; INTERCONNECTS AB Au nanowires were patterned with electron beam (e-beam) lithography and fabricated with an Au film deposited by e-beam evaporation. Two failure analyses were performed: failure current density and electromigration. It was experimentally found that the failure current density increases for the smaller width wire. Size and surface effects on the failure current density were explored. Also, in situ electromigration studies on Au nanowires were performed to characterize the activation energy of An nanowires with a SEM. C1 [Huang, Qiaojian; Lilley, Carmen M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Divan, Ralu; Bode, Matthias] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Huang, QJ (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. EM clilley@uic.edu RI Huang, Qiaojian/A-4951-2010; Bode, Matthias/S-3249-2016 OI Bode, Matthias/0000-0001-7514-5560 NR 19 TC 5 Z9 5 U1 2 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD NOV PY 2008 VL 7 IS 6 BP 688 EP 692 DI 10.1109/TNANO.2008.2006166 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 393HM UT WOS:000262364400005 ER PT J AU Su, GJ Tang, LX AF Su, Gui-Jia Tang, Lixin TI A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter for Hybrid and Fuel Cell Vehicle Power Systems SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE EV/HEV power management; interleaved multiphase dc-dc converter; multivoltage-bus dc-dc converter; soft switching AB Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus, A low-cost dc-dc converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge oil the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents. C1 [Su, Gui-Jia] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. [Tang, Lixin] Oak Ridge Associated Univ, Knoxville, TN 37931 USA. RP Su, GJ (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. EM sugj@ornl.gov; lixin.tang@ieee.org RI Tang, Lixin/B-9242-2009 OI Tang, Lixin/0000-0001-8361-8196 FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX Manuscript received February 13, 2008; revised May 5, 2008. First published November 25,2009; current version published December 9,2008. This work was supported in part by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725, and in part by the U.S. Government under Contract DE-AC05-00OR22725. Recommended for publication by Associate Editor L.Tolbert. NR 20 TC 39 Z9 50 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8993 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD NOV PY 2008 VL 23 IS 6 BP 3035 EP 3046 DI 10.1109/TPEL.2008.2005386 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 390HB UT WOS:000262153800040 ER PT J AU Tang, LX Su, GJ AF Tang, Lixin Su, Gui-Jia TI High-Performance Control of Two Three-Phase Permanent-Magnet Synchronous Machines in an Integrated Drive for Automotive Applications SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Closed-loop control systems; component-count-reduced inverter; permanent-magnet (PM) motor drive ID INVERTER AB The closed-loop control of an integrated dual ac drive system is presented to control two three-phase permanent-magnet motors. A five-leg inverter is employed in the drive system; three of the inverter legs are for a main traction motor, but only two tire needed for a three-phase auxiliary motor by utilizing the neutral point of the traction motor. An integrated drive with reduced component count is therefore achieved by eliminating one inverter leg and its gate drivers. A modified current control scheme based on the rotor flux orientation principle is presented. Simulation and experimental results are included to verify the independent control capability of the integrated drive. C1 [Tang, Lixin; Su, Gui-Jia] Oak Ridge Natl Lab, Oak Ridge, TN 37932 USA. RP Tang, LX (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37932 USA. EM tangl@ornl.gov RI Tang, Lixin/B-9242-2009 OI Tang, Lixin/0000-0001-8361-8196 NR 19 TC 12 Z9 13 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8993 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD NOV PY 2008 VL 23 IS 6 BP 3047 EP 3055 DI 10.1109/TPEL.2008.2005374 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 390HB UT WOS:000262153800041 ER PT J AU Zhou, N Trudnowski, DJ Pierre, JW Mittelstadt, WA AF Zhou, Ning Trudnowski, Daniel J. Pierre, John W. Mittelstadt, William A. TI Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Autoregressive moving average processes; least squares methods; power system identification; power system measurements; power system monitoring; power system parameter estimation; power system stability; recursive estimation; robustness ID IDENTIFICATION; OSCILLATIONS; PERFORMANCE; SIGNALS AB This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from nontypical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte Carlo method that the proposed R3LS method can estimate and track electromechanical modes by effectively using combined typical and nontypical measurement data. C1 [Zhou, Ning] Pacific NW Natl Lab, Richland, WA 99352 USA. [Trudnowski, Daniel J.] Montana Tech Univ Montana, Butte, MT 59701 USA. [Pierre, John W.] Univ Wyoming, Laramie, WY 82071 USA. [Mittelstadt, William A.] Bonneville Power Adm, Vancouver, WA 98666 USA. RP Zhou, N (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ning.zhou@pnl.gov; DTrudnowski@mtech.cdu; pierre@uwyo.edu; wmittelstadt@bpa.gov FU U.S. Department of Energy and EPSCoR [DE-FG02-03ER46044, DE-FC26-06NT42750]; BPA [162-0027]; U.S. Department of Energy [DE-AC05-76RL01830] FX Manuscript received February 08. 2008: revised April 29, 2008. First published August 29, 2008 current version published October 22, 2008, This work was supported in part by the U.S. Department of Energy and EPSCoR under grants DE-FG02-03ER46044 and DE-FC26-06NT42750 and in part by BPA under contract 162-0027. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Paper no. TPWRS-00084-2008. NR 23 TC 95 Z9 103 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2008 VL 23 IS 4 BP 1670 EP 1680 DI 10.1109/TPWRS.2008.2002173 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 371WO UT WOS:000260863600016 ER PT J AU Brooks, RR Pang, JE Griffin, C AF Brooks, R. R. Pang, Jing-En Griffin, C. TI Game and Information Theory Analysis of Electronic Countermeasures in Pursuit-Evasion Games SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Electronic countermeasure (ECM); game theory; information theory; pursuit evasion ID VISIBILITY; CURVATURE; MODEL AB Two-player pursuit-evasion games in the literature typically either assume both players have perfect knowledge of the opponent's positions or use primitive sensing models. This unrealistically skews the problem in favor of the pursuer who needs only maintain a faster velocity at all turning radii. In real life, an evader usually escapes when the pursuer no longer knows the evader's position. In our previous work, we modeled pursuit evasion without perfect information as a two-player bimatrix game by using a realistic sensor model and information theory to compute game-theoretic payoff matrices. That game as a saddle point when the evader uses strategies that exploit sensor limitations, whereas the pursuer relies on strategies that ignore the sensing limitations. In this paper, we consider, for the first time, the effect of many types of electronic countermeasures (ECM) on pursuit-evasion games. The evader's decision to initiate its ECM is modeled as a function of the distance between the players. Simulations show how to find optimal strategies for ECM use when initial conditions are known. We also discuss the effectiveness of different ECM technologies in pursuit-evasion games. C1 [Brooks, R. R.] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. [Pang, Jing-En] Cai Technol Inc, Clemson, SC 29634 USA. [Griffin, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Brooks, RR (reprint author), Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. EM rrb@acm.org; jpang@cai-technologies.com; griffinch@ieee.org FU U. S. Army Research Laboratory; U. S. Army Research Office [W911NF-05-1-0226] FX This work was supported in part by the U. S. Army Research Laboratory and in part by the U. S. Army Research Office under Grant W911NF-05-1-0226. NR 42 TC 12 Z9 12 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 EI 1558-2426 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD NOV PY 2008 VL 38 IS 6 BP 1281 EP 1294 DI 10.1109/TSMCA.2008.2003970 PG 14 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 372KE UT WOS:000260899700008 ER PT J AU Sanquist, TF Doctor, P Parasuraman, R AF Sanquist, Thomas F. Doctor, Pamela Parasuraman, Raja TI Designing Effective Alarms for Radiation Detection in Homeland Security Screening SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS LA English DT Editorial Material DE Homeland security; likelihood alarm display; radiation detection ID PORTAL MONITORS; SYSTEM AB In this correspondence, the human factors involved in the design of effective homeland security threat detection systems are described and illustrated for radiation portal monitor (RPM) systems deployed at U.S. ports of entry. Due to the occurrence of nuisance alarms based on naturally occurring radioactive material and the low base rate of nuclear smuggling incidents, it is shown that the probability of a true threat alarm for these systems is extremely low. Receiver operating characteristic analysis of RPM systems illustrates good simple detection capability, but threat classification performance only at the chance level. Application of the human factors concept of the threat likelihood display, based on energy spectrum and cargo commodity data fusion for signal classification, reduces nuisance alarms and increases the probability of a true threat alarm to potentially effective levels. Thus, threat likelihood displays offer an approach for enhancing the effectiveness of homeland security detection and warning systems by raising the credibility of the alerts that are provided. C1 [Sanquist, Thomas F.] Pacific NW Natl Lab, Seattle, WA 98109 USA. [Doctor, Pamela] Pacific NW Natl Lab, Richland, WA 99352 USA. [Parasuraman, Raja] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA. RP Sanquist, TF (reprint author), Pacific NW Natl Lab, Seattle, WA 98109 USA. EM sanquist@pnl.gov; pamela.doctor@pnl.gov; rparasur@gmu.edu NR 17 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1094-6977 J9 IEEE T SYST MAN CY C JI IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. PD NOV PY 2008 VL 38 IS 6 BP 856 EP 860 DI 10.1109/TSMCC.2008.2001708 PG 5 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Interdisciplinary Applications SC Computer Science GA 372KA UT WOS:000260899300014 ER PT J AU Chen, M Hansen, C Ma, KL North, C Carpendale, S AF Chen, Min Hansen, Charles Ma, Kwan-Liu North, Chris Carpendale, Sheelagh TI Preface SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Editorial Material C1 [Chen, Min] Univ Swansea, Swansea, W Glam, Wales. [Hansen, Charles] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA. [Ma, Kwan-Liu] Univ Calif Davis, Davis, CA 95616 USA. [North, Chris] Virginia Tech, Blacksburg, VA 24061 USA. [Carpendale, Sheelagh] Univ Calgary, Calgary, AB T2N 1N4, Canada. [Hansen, Charles] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Hansen, Charles] Los Alamos Natl Lab, Adv Comp Lab, Los Alamos, NM 87545 USA. RP Chen, M (reprint author), Univ Swansea, Swansea, W Glam, Wales. NR 0 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2008 VL 14 IS 6 BP XI EP XIII PG 3 WC Computer Science, Software Engineering SC Computer Science GA 365CY UT WOS:000260384700002 ER PT J AU Cui, WW Zhou, H Qu, HM Wong, PC Li, XM AF Cui, Weiwei Zhou, Hong Qu, Huamin Wong, Pak Chung Li, Xiaoming TI Geometry-Based Edge Clustering for Graph Visualization SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Graph visualization; visual clutter; mesh; edge clustering ID LAYOUT AB Graphs have been widely used to model relationships among data. For large graphs, excessive edge crossings make the display visually cluttered and thus difficult to explore. In this paper, we propose a novel geometry-based edge-clustering framework that can group edges into bundles to reduce the overall edge crossings. Our method uses a control mesh to guide the edge-clustering process; edge bundles can be formed by forcing all edges to pass through some control points on the mesh. The control mesh can be generated at different levels of detail either manually or automatically based on underlying graph patterns. Users can further interact with the edge-clustering results through several advanced visualization techniques such as color and opacity enhancement. Compared with other edge-clustering methods, our approach is intuitive, flexible, and efficient. The experiments on some large graphs demonstrate the effectiveness of our method. C1 [Cui, Weiwei; Zhou, Hong; Qu, Huamin] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. [Wong, Pak Chung] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Xiaoming] Peking Univ, Beijing, Peoples R China. RP Cui, WW (reprint author), Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. EM weiwei@cse.ust.hk; zhouhong@cse.ust.hk; huamin@cse.ust.hk; pak.wong@pnl.gov; lxm@pku.edu.cn FU HK RGC [CERG 618706]; China NSFC [60773162] FX This work is supported by HK RGC grant CERG 618706 and China NSFC grant 60773162. We thank anonymous reviewers for their valuable comments. NR 23 TC 78 Z9 87 U1 2 U2 10 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2008 VL 14 IS 6 BP 1277 EP 1284 DI 10.1109/TVCG.2008.135 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 365CY UT WOS:000260384700020 PM 18988974 ER PT J AU Glatter, M Huang, J Ahern, S Daniel, J Lu, AD AF Glatter, Markus Huang, Jian Ahern, Sean Daniel, Jamison Lu, Aidong TI Visualizing Temporal Patterns in Large Multivariate Data using Textual Pattern Matching SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Multivariate visualization; Time-varying; Uncertainty AB Extracting and visualizing temporal patterns in large scientific data is an open problem in visualization research. First, there are few proven methods to flexibly and concisely define general temporal patterns for visualization. Second, with large time-dependent data sets, as typical with today's large-scale simulations, scalable and general solutions for handling the data are still not widely available. In this work, we have developed a textual pattern matching approach for specifying and identifying general temporal patterns. Besides defining the formalism of the language, we also provide a working implementation with sufficient efficiency and scalability to handle large data sets. Using recent large-scale simulation data from multiple application domains, we demonstrate that our visualization approach is one of the first to empower a concept driven exploration of large-scale time-varying multivariate data. C1 [Glatter, Markus; Huang, Jian] Univ Tennessee, Knoxville, TN 37996 USA. [Ahern, Sean; Daniel, Jamison] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Lu, Aidong] Univ N Carolina, Charlotte, NC 28223 USA. RP Glatter, M (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM glatter@cs.utk.edu; huangj@cs.utk.edu; ahern@ornl.gov; danieljr@ornl.gov; aidong.lu@uncc.edu FU University of Tennesee; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the University of Tennesee, the Oak Ridge National Laboratory, and by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 8 TC 16 Z9 16 U1 0 U2 16 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2008 VL 14 IS 6 BP 1467 EP 1474 DI 10.1109/TVCG.2008.184 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 365CY UT WOS:000260384700044 PM 18988998 ER PT J AU Gyulassy, A Bremer, PT Hamann, B Pascucci, V AF Gyulassy, Attila Bremer, Peer-Timo Hamann, Bernd Pascucci, Valerio TI A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Topology-based analysis; Morse-Smale complex; large scale data ID SIMPLIFICATION; TOPOLOGY AB The Morse-Smale (MS) complex has proven to be a useful tool in extracting and visualizing features from scalar-valued data. However, efficient computation of the MS complex for large scale data remains a challenging problem. We describe a new algorithm and easily extensible framework for computing MS complexes for large scale data of any dimension where scalar values are given at the vertices of a closure-finite and weak topology (CW) complex, therefore enabling computation on a wide variety of meshes such as regular grids, simplicial meshes, and adaptive multiresolution (AMR) meshes. A new divide-and-conquer strategy allows for memory-efficient computation of the MS complex and simplification on-the-fly to control the size of the output. In addition to being able to handle various data formats, the framework supports implementation-specific optimizations, for example, for regular data. We present the complete characterization of critical point cancellations in all dimensions. This technique enables the topology based analysis of large data on off-the-shelf computers. In particular we demonstrate the first full computation of the MS complex for a 1 billion/1024(3) node grid on a laptop computer with 2Gb memory. C1 [Gyulassy, Attila; Hamann, Bernd] Univ Calif Davis, Davis, CA 95616 USA. [Gyulassy, Attila; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pascucci, Valerio] Univ Utah, Salt Lake City, UT 84112 USA. RP Gyulassy, A (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM aggyulassy@ucdavis.edu; ptbremer@acm.org; hamann@cs.ucdavis.edu; pascucci@acm.org FU Lawrence Scholar Program (LSP); National Science Foundation [CCF-0702817]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Attila Gyulassy was supported by, the Lawrence Scholar Program (LSP). In addition. this research was supported in part by the National Science Foundation under grant CCF-0702817. We would like to thank the members of the Center for Applied Scientific Computing (CASC), at LLNL. and the members of the Visualization and Computer Graphics Research Group of the Institute tor Data Analysis and visualization (IDAV), at UC Davis. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 33 TC 53 Z9 54 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2008 VL 14 IS 6 BP 1619 EP 1626 DI 10.1109/TVCG.2008.110 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 365CY UT WOS:000260384700063 PM 18989018 ER PT J AU Gosink, LJ Anderson, JC Bethel, EW Joy, KI AF Gosink, Luke J. Anderson, John C. Bethel, E. Wes Joy, Kenneth I. TI Query-Driven Visualization of Time-Varying Adaptive Mesh Refinement Data SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE AMR; Query-Driven Visualization; Multitemporal Visualization ID SIMULATIONS; EQUATIONS AB The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties of AMR grids that challenge many existing visualization techniques. Further, we present the first implementation of query-driven visualization on the GPU that uses a GPU-based indexing structure to both answer queries and efficiently utilize GPU memory. We apply our method to two different science domains to demonstrate its broad applicability. C1 [Gosink, Luke J.; Anderson, John C.; Joy, Kenneth I.] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Bethel, E. Wes] Lawrence Berkeley Lab, Sci Visualizat Grp, Berkeley, CA USA. RP Gosink, LJ (reprint author), Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. EM ljgosink@ucdavis.edu; janderson@ucdavis.edu; ewbethel@lbl.gov; kijoy@ucdavis.edu FU Lawrence Berkeley and Lawrence Livermore National Laboratories; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Lawrence Berkeley and Lawrence Livermore National Laboratories. and by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET). We Would like to thank colleagues in the Institute for Data Analysis and Visualization (IDAV) at UC Davis for their support during, the course Of this work. Additionally, the authors thank Bill Kuo. Wei Wang. Cindy Bruyere, Tint Scheitlin, and Don Middleton of the U.S. National Center for Atmospheric Research (NCAR), and the U.S. National Science Foundation (NSF) for providing the Weather Research and Forecasting (WRF) Model simulation data of Hurricane Isabel. Data for the Argon simulation was provided by John Bell and Marc Day. Center for Coamputational Science and Engineering. Lawrence Berkeley National Laboratory. We also thank our reviewers for helping to improve this paper. NR 32 TC 8 Z9 8 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2008 VL 14 IS 6 BP 1715 EP 1722 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 365CY UT WOS:000260384700075 PM 18989030 ER PT J AU Dobson, PF Fayek, M Goodell, PC Ghezzehei, TA Melchor, F Murrell, MT Oliver, R Reyes-Cortes, IA de la Garza, R Simmons, A AF Dobson, Patrick F. Fayek, Mostafa Goodell, Philip C. Ghezzehei, Teamrat A. Melchor, Felipe Murrell, Michael T. Oliver, Ronald Reyes-Cortes, Ignacio A. de la Garza, Rodrigo Simmons, Ardyth TI Stratigraphy of the PB-1 Well, Nopal I Uranium Deposit, Sierra Pena Blanca, Chihuahua, Mexico SO INTERNATIONAL GEOLOGY REVIEW LA English DT Article ID SPENT NUCLEAR-FUEL; YUCCA MOUNTAIN; NATURAL ANALOG; WASTE REPOSITORY; NEVADA; TUFF; MINERALIZATIONS; GEOCHEMISTRY; MIGRATION; DISTRICT AB The Nopal I site in the Pena Blanca uranium district. has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport.The well penetrates through the Tertiary Volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 in, thus providing an Opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the welt. The upper unit encountered in the PB-1. well is the Nopal Formation, a densely welded, crystal-rich, chlorite ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration, encountered in the depth interval 17.45-22.30 m, was interpreted to represent the basal vitrophyre Of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of his unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 1.36.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Three thin (2-6 m) intervals of intercalated pumiceous tuffs tire present within this unit. The Contact between the Pozos Formation and the underlying Cretaceous limestone basement was encountered at a depth of 244.40 m. The water table is located at a depth of similar to 223 m. Several zones with elevated radioactivity in the PB-1 core occur above the current water table. These zones may be associated with changes in redox conditions that could have resulted in the precipitation of uraninite from downward-flowing waters transporting U from the overlying Nopal deposit. All of the intersected units have low (typically sub-millidarcy) matrix permeability, thus fluid How in this area is dominated by fracture flow. These stratigraphic and rock-properly observations call be used to constrain flow and transport models for the Pena Blanca natural analogue. C1 [Dobson, Patrick F.; Ghezzehei, Teamrat A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Fayek, Mostafa] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada. [Goodell, Philip C.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Melchor, Felipe] PetroLab, Chihuahua, Mexico. [Murrell, Michael T.; Oliver, Ronald; Simmons, Ardyth] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reyes-Cortes, Ignacio A.; de la Garza, Rodrigo] Univ Autonoma Chihuahua, Fac Ingn, Chihuahua 31125, Mexico. RP Dobson, PF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM PFDobson@lbl.gov RI Ghezzehei, Teamrat/G-7483-2011; Dobson, Patrick/D-8771-2015 OI Ghezzehei, Teamrat/0000-0002-0287-6212; Dobson, Patrick/0000-0001-5031-8592 FU Office of the Chief Scientist; Office of Civilian Radioactive Waste Management (OCRWM); Lawrence Berkeley National Laboratory (LBNL) through U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of the Chief Scientist, Office of Civilian Radioactive Waste Management (OCRWM), provided to the Lawrence Berkeley National Laboratory (LBNL) through U.S. Department of Energy Contract No. DE-AC02-05CH11231. Statements expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy, LBNL, or Los Alamos National Laboratory. We wish to extend our thanks to Paul Cook (LBNL), Dr. Victor Manuel Reyes Gomez, and Mr. Octavio Raul Hinojosa de la Garza (Centro de Investigacion, Instituto de Ecologia, A.C.), Dr. Alfredo Rodriguez (World Wildlife Fund), and Prof. Lourdes Villalba and Ing. Hector Mendoza (Facultad de Ingenieria, Universidad Autonoma de Chihuahua) for their assistance. Differential GPS measurements of well locations were made by Prof. Steve Harder of the University of Texas at El Paso. NR 35 TC 7 Z9 7 U1 0 U2 6 PU BELLWETHER PUBL LTD PI COLUMBIA PA 8640 GUILFORD RD, STE 200, COLUMBIA, MD 21046 USA SN 0020-6814 J9 INT GEOL REV JI Int. Geol. Rev. PD NOV PY 2008 VL 50 IS 11 BP 959 EP 974 DI 10.2747/0020-6814.50.11.959 PG 16 WC Geology SC Geology GA 360JJ UT WOS:000260053500001 ER PT J AU Alava, MJ Nukala, PKVV Zapperi, S AF Alava, Mikko J. Nukala, Phani K. V. V. Zapperi, Stefano TI Fracture size effects from disordered lattice models SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article; Proceedings Paper CT Conference on Physical Aspects of Fracture Scaling and Size Effect CY MAR 09-13, 2008 CL Ascona, SWITZERLAND DE Fracture; Size effect; Notch; Statistical models; Disorder ID ELASTIC NETWORKS; PERCOLATION; MECHANICS; FAILURE; FORCES; SOLIDS AB We study size effects in the fracture strength of notched quasi-brittle materials using numerical simulations of lattice models for fracture. In particular, we consider the random fuse model, the random spring model and the random beam model, which all give similar results. These allow us to establish and understand the crossover between a regime controlled by disorder-induced statistical effects and a stress-concentration controlled regime ruled by fracture mechanics. The crossover is described by a scaling law that accounts for the presence of fracture process zone which we quantify by averaging over several disordered configurations of the model. The models can be used to study the development of the fracture process zone as the load is increased and to express this in terms of crack resistance (R-curve). C1 [Alava, Mikko J.] Helsinki Univ Technol, Dept Appl Phys, Helsinki 02015, Finland. [Nukala, Phani K. V. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] Univ Modena & Reggio Emilia, Dipartimento Fis, CNR, INFM, Modena, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. RP Zapperi, S (reprint author), Univ Modena & Reggio Emilia, Dipartimento Fis, CNR, INFM, S3,Via G Campi 213A, Modena, Italy. EM stefano.zapperi@unimore.it RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 NR 23 TC 11 Z9 11 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 J9 INT J FRACTURE JI Int. J. Fract. PD NOV PY 2008 VL 154 IS 1-2 BP 51 EP 59 DI 10.1007/s10704-008-9306-3 PG 9 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 409HQ UT WOS:000263497200005 ER PT J AU Nukala, PKVV Zapperi, S Alava, MJ Simunovic, S AF Nukala, Phani K. V. V. Zapperi, Stefano Alava, Mikko J. Simunovic, Srdan TI Anomalous roughness of fracture surfaces in 2D fuse models SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article; Proceedings Paper CT Conference on Physical Aspects of Fracture Scaling and Size Effect CY MAR 09-13, 2008 CL Ascona, SWITZERLAND DE Crack roughness; Anomalous scaling; Multi-affine scaling; Stochastic excursions ID CRACK-PROPAGATION; BRITTLE-FRACTURE; INTERFACES; MORPHOLOGY; WOOD AB We study anomalous scaling and multi-scaling of two-dimensional crack profiles in the random fuse model using both periodic and open boundary conditions. Our large scale and extensively sampled numerical results reveal the importance of crack branching and coalescence of microcracks, which induce jumps in the solid-on-solid crack profiles. Removal of overhangs (jumps) in the crack profiles eliminates the multiscaling observed in earlier studies and reduces anomalous scaling. We find that the probability density distribution p(Delta h(l)) of the height differences Delta h(l) = [h(x+l)-h(x)] of the crack profile obtained after removing the jumps in the profiles has the scaling form p(Delta h(l)) = (Delta h(2)(l)>(-1/2) f(Delta h(l)/(Delta h(2)(l)>(1/2)), and follows a Gaussian distribution even for small bin sizes l. The anomalous scaling can be summarized with the scaling relation [(1/2)/(Delta h(2)(L/2)>(1/2)](1/zeta loc)+(l-L/2)(2)/(L/2)(2) = 1, where (1/2) similar to L-zeta and L is the system size. C1 [Nukala, Phani K. V. V.; Simunovic, Srdan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] Univ Modena & Reggio Emilia, CNR, Dipartimento Fis, INFM, Modena, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. [Alava, Mikko J.] Aalto Univ, Dept Appl Phys, FIN-02150 Espoo, Finland. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM nukalapk@ornl.gov RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 NR 41 TC 4 Z9 4 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD NOV PY 2008 VL 154 IS 1-2 BP 119 EP 130 DI 10.1007/s10704-008-9298-z PG 12 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 409HQ UT WOS:000263497200010 ER PT J AU Nagarajan, V Ponyauin, V Chen, YT Vernon, ME Pickard, P Hechanova, AE AF Nagarajan, Vijaisri Ponyauin, Valery Chen, Yitung Vernon, Milton E. Pickard, Paul Hechanova, Anthony E. TI Numerical study of sulfur trioxide decomposition in bayonet type heat exchanger and chemical decomposer with porous media zone and different packed bed designs SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Bayonet heat exchanger; Hydrogen production; Sulfuric acid decomposition; SI thermochemical cycle; Porous medium approach; Packed bed design ID HYDROGEN-PRODUCTION AB The Department of Energy (DOE) Nuclear Hydrogen Initiative was investigating thermochemical cycles for hydrogen production using high temperature heat exchangers. The present work was concerned with use of bayonet type heat exchanger as silicon carbide integrated decomposer (SID) which produces sulfuric acid decomposition product - sulfur dioxide. The product can be used within the sulfur-iodine thermochemical cycle and hybrid sulfur process. A two-dimensional axis-symmetric geometry of the bayonet heat exchanger has been created using GAMBIT software. Fluid, thermal and chemical reaction analyses were performed using FLUENT software. The working fluids in the model were sulfur trioxide, sulfur dioxide, oxygen and water vapor. Silicon carbide with 1 wt% of platinum was used as a catalyst for the chemical reaction. The form of pellets packing was simple cubical packing and porous media approach was used. The chemical reaction for the two-dimensional model was carried out in two cases (ways): (1) constant outer wall temperature and (2) by applying the measured values obtained from the thermocouples placed along the outer wall of the lab scale model of the bayonet heat exchanger in Sandia National Lab (SNL). The decomposition of sulfur trioxide for the two-dimensional model was calculated and the obtained results were compared with the experimental results. But, practically the flow of fluid between the pellets in the decomposer region of the bayonet heat exchanger may have many swirling and recirculation. Hence a further study on three-dimensional model of the decomposer with different arrangement of the pellets in the packed bed region was carried out. The chemical decomposition that occurred in packed bed was of the decomposer. The engineering design of the packed bed was very much influenced by the structure of the packing matrix, which was governed by the shape, dimension and the loading of the constituent particles. The investigations of different types of catalyst in the packed bed region and the decomposition of sulfur trioxide were calculated and the results obtained were consistent with the experimental results. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Nagarajan, Vijaisri; Ponyauin, Valery; Chen, Yitung] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. [Vernon, Milton E.; Pickard, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hechanova, Anthony E.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. RP Nagarajan, V (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM vijaisri.n@gmail.com FU US Department of Energy [DE-FG04-01AL67356] FX This study was funded by the US Department of Energy under the contract DE-FG04-01AL67356. NR 22 TC 19 Z9 20 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2008 VL 33 IS 22 BP 6445 EP 6455 DI 10.1016/j.ijhydene.2008.06.075 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 381NO UT WOS:000261543400006 ER PT J AU Han, ST Comfoltey, EN Shapiro, MA Sirigiri, JR Tax, DS Temkin, RJ Woskov, PP Rasmussen, DA AF Han, S. T. Comfoltey, E. N. Shapiro, M. A. Sirigiri, J. R. Tax, D. S. Temkin, R. J. Woskov, P. P. Rasmussen, D. A. TI Low-power testing of losses in millimeter-wave transmission lines for high-power applications SO INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES LA English DT Article DE millimeter wave; transmission line; gyrotron; miter bend; corrugated waveguide; ITER ID GUIDE; ITER AB We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3 +/- 0.1 dB per miter bend using a VNA; and 0.22 +/- 0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05 +/- 0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. C1 [Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Han, S. T.] Korea Electrotechnol Res Inst, Chang Won 641120, Kyungnam, South Korea. [Rasmussen, D. A.] ITER Project Off, Oak Ridge, TN USA. [Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Shapiro, MA (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM saiph@keri.re.kr; shapiro@psfc.mit.edu RI Sirigiri, Jagadishwar/E-6070-2011 FU National Institutes of Health (NIH)/National Institute for Biomedical Imaging and Bioengineering (NIBIB) [EB001965, EB004866]; UT-Battelle LLC [4000048870] FX The authors thank J. Anderson of MIT Lincoln Lab, K. Sakamoto of JAEA, and T. Bigelow of Oak Ridge National Lab for very helpful discussions. This research was supported by the National Institutes of Health (NIH)/National Institute for Biomedical Imaging and Bioengineering (NIBIB) under contracts EB001965 and EB004866; and by the US ITER Project Office through UT-Battelle LLC subcontract 4000048870. NR 17 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-9271 J9 INT J INFRARED MILLI JI Int. J. Infrared Millimeter Waves PD NOV PY 2008 VL 29 IS 11 BP 1011 EP 1018 DI 10.1007/s10762-008-9404-3 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 348CA UT WOS:000259187400003 PM 19081774 ER PT J AU Rosenbaum, RK Bachmann, TM Gold, LS Huijbregts, MAJ Jolliet, O Juraske, R Koehler, A Larsen, HF MacLeod, M Margni, M McKone, TE Payet, J Schuhmacher, M van de Meent, D Hauschild, MZ AF Rosenbaum, Ralph K. Bachmann, Till M. Gold, Lois Swirsky Huijbregts, Mark A. J. Jolliet, Olivier Juraske, Ronnie Koehler, Annette Larsen, Henrik F. MacLeod, Matthew Margni, Manuele McKone, Thomas E. Payet, Jerome Schuhmacher, Marta van de Meent, Dik Hauschild, Michael Z. TI USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE Characterisation factors; Characterisation modelling; Comparative impact assessment; Comparison; Consensus model; Freshwater ecotoxicity; Harmonisation; Human exposure; Human toxicity; LCIA; Life cycle impact assessment; Toxic impact ID LONG-RANGE TRANSPORT; CARCINOGENIC-POTENCY-DATABASE; DIFFERENT LCIA METHODS; MULTIMEDIA FATE; POLLUTANTS; SUBSTANCES; POTENTIALS; FRAMEWORK; CHEMICALS; WORKSHOP AB Background, aim and scope In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation models was initiated by the United Nations Environment Program (UNEP)-Society for Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON and EcoSense. In this paper, we describe this model comparison process and its results-in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (1) to identify specific sources of differences between the models' results and structure, (2) to detect the indispensable model components and (3) to build a scientific consensus model from them, representing recommended practice. Materials and methods A chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than two orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment or nesting an urban box in a continental box. Discussion The precision of the new characterisation factors (CFs) is within a factor of 100-1,000 for human health and 10-100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model, respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement. Conclusions USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC's Life Cycle Initiative regarding characterisation of toxic impacts in life cycle assessment. recommendations and perspectives We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs. C1 [Rosenbaum, Ralph K.; Margni, Manuele] Ecole Polytech, CIRAIG, Dept Chem Engn, Montreal, PQ H3C 3A7, Canada. [Bachmann, Till M.] Univ Karlsruhe, EIFER, D-76131 Karlsruhe, Germany. [Gold, Lois Swirsky] Univ Calif Berkeley, Oakland, CA USA. [Gold, Lois Swirsky] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. [Huijbregts, Mark A. J.; van de Meent, Dik] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [Jolliet, Olivier] Univ Michigan, Ctr Risk Sci & Commun, Ann Arbor, MI 48109 USA. [Juraske, Ronnie; Schuhmacher, Marta] Univ Rovira & Virgili, Sch Chem Engn, Tarragona 43007, Spain. [Juraske, Ronnie; Koehler, Annette] ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland. [Larsen, Henrik F.; Hauschild, Michael Z.] Tech Univ Denmark, DTU Management Engn, DK-2800 Lyngby, Denmark. [MacLeod, Matthew] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Payet, Jerome] Ecole Polytech Fed Lausanne, Inst Environm Sci & Technol, CH-1015 Lausanne, Switzerland. [van de Meent, Dik] Natl Inst Publ Hlth & Environm RIVM, NL-3720 BA Bilthoven, Netherlands. RP Rosenbaum, RK (reprint author), Ecole Polytech, CIRAIG, Dept Chem Engn, 2900 Edouard Montpetit,Stn Ctr Ville,POB 6079, Montreal, PQ H3C 3A7, Canada. EM ralph.rosenbaum@polymtl.ca RI van de Meent, Dik/C-3982-2011; Hauschild, Michael/G-4335-2011; Huijbregts, Mark/B-8971-2011; MacLeod, Matthew/D-5919-2013; Margni, Manuele/A-4579-2013; QSA, DTU/J-4787-2014; Hauschild, Michael /L-6059-2015; Schuhmacher, Marta/F-4902-2017; OI Rosenbaum, Ralph/0000-0002-7620-1568; MacLeod, Matthew/0000-0003-2562-7339; Hauschild, Michael /0000-0002-8331-7390; Schuhmacher, Marta/0000-0003-4381-2490; Bachmann, Till/0000-0002-3191-8143; Jolliet, Olivier/0000-0001-6955-4210 FU ACC (American Chemical Council); ICMM (International Council on Mining and Metals) FX Most of the work for this project was carried out on a voluntary basis and financed by in-kind contributions from the authors' home institutions which are therefore gratefully acknowledged. The work was performed under the auspices of the UNEP-SETAC Life Cycle Initiative which also provided logistic and financial support and facilitated stakeholder consultations. The financial support from ACC (American Chemical Council) and ICMM (International Council on Mining and Metals) is also gratefully acknowledged. A number of persons have contributed to the process and success of the model comparison and scientific consensus model development. The authors are grateful for the participation of Miriam Diamond, Louise Deschenes, Bill Adams, Andrea Russel, Jeroen Guinee, Pierre-Yves Robidoux, Stefanie Hellweg, Evangelia Demou, Stig Irving Olsen, Cecile Bulle, Sau Soon Chen, Manuel Olivera, Julian Marshall, Bert-Droste Franke, Peter Fantke, Oleg Travnikov, Dick de Zwart, Peter Chapman, Kees van Gestel and Thomas H. Slone. NR 60 TC 400 Z9 410 U1 14 U2 117 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD NOV PY 2008 VL 13 IS 7 BP 532 EP 546 DI 10.1007/s11367-008-0038-4 PG 15 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 367LO UT WOS:000260553700003 ER PT J AU Linder, EV Miquel, R AF Linder, Eric V. Miquel, Ramon TI COSMOLOGICAL MODEL SELECTION: STATISTICS AND PHYSICS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article DE Model selection; dark energy ID PARAMETERS AB Interpretation of cosmological data to determine the number and values of parameters describing the universe must not rely solely on statistics but involve physical insight. When statistical techniques such as "model selection" or "integrated survey optimization" blindly apply Occam's Razor, this can lead to painful results. Sensitivity to prior probabilities and to the number of models compared can lead to "prior selection" rather than robust model selection. A concrete example demonstrates that information criteria can in fact misinform over a large region of parameter space. C1 [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Miquel, Ramon] Inst Fis Altes Energies, Inst Catalana Recerca & Estudis Avancats, E-08193 Barcelona, Spain. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM evlinder@lbl.gov; rmiquel@ifae.es FU Director, Office of Science, Department of Energy [DE-AC02-05CH11231] FX We thank Don Groom, and Andrew Liddle for their lively discussions. This work has been supported partially by the Director, Office of Science, Department of Energy under grant DE-AC02-05CH11231. NR 11 TC 13 Z9 13 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 EI 1793-6594 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD NOV PY 2008 VL 17 IS 12 BP 2315 EP 2324 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 396VN UT WOS:000262619400009 ER PT J AU Marley, PL Jenkins, DG Pattabiraman, NS Robinson, AP Wadsworth, R Courtin, S Haas, F Lebhertz, D Lister, CJ Carpenter, M Zhu, S Seweryniak, D Wuosmaa, A Lighthall, J O'Donnell, D AF Marley, P. L. Jenkins, D. G. Pattabiraman, N. S. Robinson, A. P. Wadsworth, R. Courtin, S. Haas, F. Lebhertz, D. Lister, C. J. Carpenter, M. Zhu, S. Seweryniak, D. Wuosmaa, A. Lighthall, J. O'Donnell, D. TI HEAVY ION RADIATIVE CAPTURE OF C-12+C-12 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Workshop on State of the Art in Nuclear Cluster Physics CY MAY 13-16, 2008 CL Strasbourg, FRANCE AB Resonances in light heavy ion reactions are a much studied but little understood phenomenon. New measurements are reported of the C-12(C-12,gamma)Mg-24 radiative capture reaction with the aim of performing spectroscopic measurements on the previously identified resonances. The preliminary analysis is outlined relating to the identification of the Mg-24 using a triple ion chamber setup. C1 [Marley, P. L.; Jenkins, D. G.; Pattabiraman, N. S.; Robinson, A. P.; Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Courtin, S.; Haas, F.; Lebhertz, D.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, F-67037 Strasbourg 2, France. [Lister, C. J.; Carpenter, M.; Zhu, S.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Wuosmaa, A.; Lighthall, J.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [O'Donnell, D.] Univ Paisley, Sch Sci & Engn, Nucl Phys Grp, Paisley PA1 2BE, Renfrew, Scotland. RP Marley, PL (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM pm153@york.ac.uk RI O'Donnell, David/J-7786-2013; Carpenter, Michael/E-4287-2015 OI O'Donnell, David/0000-0002-4710-3803; Carpenter, Michael/0000-0002-3237-5734 NR 8 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2008 VL 17 IS 10 BP 2040 EP 2043 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 392GD UT WOS:000262290100008 ER PT J AU Bonnet, E Wieleczko, JP Del Campo, JG La Commara, M Barlini, S Beck, C Borderie, B Bougault, R Chbihi, A Dayras, R De Angelis, G Frankland, JD Galindo-Uribarri, A Glodariou, T Kravchuk, V Lautesse, P Moisan, J Le Neindre, N Martin, B Nalpas, L Onofrio, AD Parlog, M Pierroutsakou, D Rejmund, F Rivet, MF Romoli, M Rosato, E Roy, R Shapira, D Spadaccini, G Tamain, B Vigilante, M AF Bonnet, E. Wieleczko, J. P. Del Campo, J. Gomez La Commara, M. Barlini, S. Beck, C. Borderie, B. Bougault, R. Chbihi, A. Dayras, R. De Angelis, G. Frankland, J. D. Galindo-Uribarri, A. Glodariou, T. Kravchuk, V. Lautesse, Ph Moisan, J. Le Neindre, N. Martin, B. Nalpas, L. Onofrio, A. D. Parlog, M. Pierroutsakou, D. Rejmund, F. Rivet, M. F. Romoli, M. Rosato, E. Roy, R. Shapira, D. Spadaccini, G. Tamain, B. Vigilante, M. TI INFLUENCE OF NEUTRON ENRICHMENT ON DISINTEGRATION MODES OF COMPOUND NUCLEI SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article CT Workshop on State of the Art in Nuclear Cluster Physics CY MAY 13-16, 2008 CL Strasbourg, FRANCE AB Cross sections, kinetic energy and angular distributions of fragments with charge 6 <= Z <= 28 emitted in (78,82)Kr + (40)C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influence of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models. C1 [Bonnet, E.; Wieleczko, J. P.; Chbihi, A.; Frankland, J. D.; Moisan, J.; Rejmund, F.] CEA, GANIL, F-14076 Caen, France. [Bonnet, E.; Wieleczko, J. P.; Chbihi, A.; Frankland, J. D.; Moisan, J.] CNRS, IN2P3, F-14076 Caen, France. [Del Campo, J. Gomez; Galindo-Uribarri, A.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [La Commara, M.; Martin, B.; Pierroutsakou, D.; Romoli, M.; Rosato, E.; Spadaccini, G.; Vigilante, M.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [La Commara, M.; Martin, B.; Pierroutsakou, D.; Romoli, M.; Rosato, E.; Spadaccini, G.; Vigilante, M.] Univ Naples Federico 2, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Barlini, S.; Bougault, R.; Le Neindre, N.; Parlog, M.; Tamain, B.] ENSICAEN & Univ, LPC, CNRS, IN2P3, F-14050 Caen, France. [Beck, C.] CNRS, IN2P3, IPHC, F-67037 Strasbourg, France. [Borderie, B.; Rivet, M. F.] CNRS, IN2P3, IPNO, F-91406 Orsay, France. [Dayras, R.; Nalpas, L.] CEA Saclay, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [De Angelis, G.; Glodariou, T.; Kravchuk, V.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. [Lautesse, Ph] CNRS & Univ, IN2P3, IPNL, F-69622 Villeurbanne, France. [Onofrio, A. D.] Seconda Univ Napoli, Dipartimento Sci Ambiantali, I-81100 Caserta, Italy. [Roy, R.] Univ Laval, Phys Nucl Lab, Quebec City, PQ, Canada. RP Bonnet, E (reprint author), CEA, GANIL, BP 55027, F-14076 Caen, France. RI Frankland, John/I-4768-2013; spadaccini, giulio/K-7633-2015; Rosato, 357/E-1555-2011 OI Frankland, John/0000-0002-4907-5041; spadaccini, giulio/0000-0002-6327-432X; NR 6 TC 18 Z9 18 U1 1 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2008 VL 17 IS 10 BP 2359 EP 2362 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 392GD UT WOS:000262290100064 ER PT J AU Anderson, IE McCallum, RW Tang, W AF Anderson, Iver E. McCallum, R. William Tang, Wei TI ALLOY DESIGN AND MICROSTRUCTURE OF ADVANCED PERMANENT MAGNETS USING RAPID SOLIDIFICATION AND POWDER PROCESSING SO INTERNATIONAL JOURNAL OF POWDER METALLURGY LA English DT Article ID IRON-BORON MAGNETS; MAGNETIZATION; ND2FE14B; SYSTEM AB Current Nd(2)Fe(14)B magnet alloys exhibit excellent room-temperature magnetic properties arts they are well suited for applications with operating temperatures <= 120 degrees C. due in part to their low Curie temperature of -310 degrees C. The poor temperature stability of these rare earth (RE) permanent magnet alloys above 120 degrees C limits their current performance in existing motors and their potential application in advanced drive-motor designs. Consequently, it is necessary to,find other compositions to improve (lie thermal stability of RE(2)Fe(14)B magnets. A systematic study was conducted by melt spinning on the magnetic properties of a series of isotropic nanocrystalline magnet alloys where a yttrium (Y)+dysprosium (Dy) mixture replaced neodymium (Nd) or praseodymium (Pr) as the dominant RE constituent in mixed rare earth (MRE)(2)Fe(14)B (MRE = Y+Dy+Nd). The most recent results have shown that the Y+Dy-based MRE(2)Fe(14)B alloy can result in isotropic bonded magnets with superior magnetic properties in competitive commercial isotropic bonded magnets above similar to 30 degrees C and well beyond 200 degrees C by a judicious combination of Y. Dy, and Nd, along with a minor cobalt substitution for iron. Gas-atomized powders of these advanced magnet alloys have also demonstrated improved magnetic strength over existing commercial spherical powders to a fine-powder-size range that is suitable for injection molding of bonded isotropic magnets. C1 [Anderson, Iver E.] Iowa State Univ, Ames Lab, Mat Sci & Engn Dept, Ames, IA 50011 USA. [McCallum, R. William; Tang, Wei] Iowa State Univ, Ames Lab USDOE, MEP Program, Ames, IA 50011 USA. RP Anderson, IE (reprint author), Iowa State Univ, Ames Lab, Mat Sci & Engn Dept, 222 Met Dev, Ames, IA 50011 USA. EM anderson@ameslab.gov NR 41 TC 0 Z9 0 U1 4 U2 11 PU AMER POWDER METALLURGY INST PI PRINCETON PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA SN 0888-7462 J9 INT J POWDER METALL JI Int. J. Powder Metall. PD NOV-DEC PY 2008 VL 44 IS 6 BP 19 EP 37 PG 19 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 414QU UT WOS:000263881100004 ER PT J AU Narayan, S Lehmann, J Coleman, MA Vaughan, A Yang, CC Enepekides, D Farwell, G Purdy, JA Laredo, G Nolan, K Pearson, FS Vijayakumar, S AF Narayan, Samir Lehmann, Joerg Coleman, Matthew A. Vaughan, Andrew Yang, Claus Chunli Enepekides, Danny Farwell, Gregory Purdy, James A. Laredo, Grace Nolan, Kerry Pearson, Francesca S. Vijayakumar, Srinivasan TI Prospective evaluation to establish a dose response for clinical oral mucositis in patients undergoing head-and-neck conformal radiotherapy SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Article DE head-and-neck cancer; radiation therapy; mucositis; buccal mucosa; RNA analysis ID RADIATION-THERAPY; ALTERED FRACTIONATION; STRESS GENES; CANCER; CARCINOMA; IRRADIATION; TOXICITY; IMRT; RISK; CONSEQUENCES AB Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively-studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade <= 1) and short duration (<= 1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction. (C) 2008 Elsevier Inc. C1 [Narayan, Samir; Lehmann, Joerg; Vaughan, Andrew; Yang, Claus Chunli; Purdy, James A.; Laredo, Grace; Vijayakumar, Srinivasan] Calif State Univ Sacramento, Dept Radiat Oncol, Davis Med Ctr, Davis Hlth Syst, Sacramento, CA 95817 USA. [Coleman, Matthew A.; Nolan, Kerry; Pearson, Francesca S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Enepekides, Danny; Farwell, Gregory] Calif State Univ Sacramento, Davis Med Ctr, Dept Otolaryngol, Sacramento, CA 95819 USA. RP Narayan, S (reprint author), Calif State Univ Sacramento, Dept Radiat Oncol, Davis Med Ctr, Davis Hlth Syst, 4501 X St,G155, Sacramento, CA 95817 USA. EM narayans@trinity-health.org OI Coleman, Matthew/0000-0003-1389-4018 NR 33 TC 18 Z9 19 U1 2 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD NOV 1 PY 2008 VL 72 IS 3 BP 756 EP 762 DI 10.1016/j.ijrobp.2008.01.060 PG 7 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 358CN UT WOS:000259894300018 PM 18417299 ER PT J AU Wagner, ID Zhao, WD Zhang, CL Romanek, CS Rohde, M Wiegel, J AF Wagner, Isaac D. Zhao, Weidong Zhang, Chuanlun L. Romanek, Christopher S. Rohde, Manfred Wiegel, Juergen TI Thermoanaerobacter uzonensis sp nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID DEOXYRIBONUCLEIC-ACID; GEN-NOV; CLOSTRIDIUM; THERMOSULFURIGENES; SULFURIGIGNENS; ETHANOLICUS; DISTINCTION; THIOSULFATE; SULFUR AB Several strains of heterotrophic, anaerobic thermophilic bacteria were isolated from hot springs of the Uzon Caldera, Kamchatka, Far East Russia. Strain JW/IW010(T) was isolated from a hot spring within the West sector of the Eastern Thermal field, near Pulsating Spring in the Winding Creek area. Cells of strain JW/IW010(T) were straight to slightly curved rods, 0.5 mu m in width and variable in length from 2 to 5 lum and occasionally up to 15 pm, and formed oval subterminal spores. Cells stained Gram-negative, but were Gram-type positive. Growth was observed between 32.5 and 69 degrees C with an optimum around 61 degrees C (no growth occurred at or below 30 degrees C, or at or above 72 degrees C. The pH 60 degrees C range for growth was 4.2-8.9 with an optimum at 7.1 (no growth occurred at or below pH 60 degrees(C) 3.9, or at 9.2 or above). The shortest observed doubling-time at pH 60 degrees(C) 6.9 and 61 degrees C was 30 min. Strain JW/IW010T was chemo-organotrophic; yeast extract, peptone, Casamino acids and tryptone supported growth. Yeast extract was necessary for the utilization of non-proteinaceous substrates, and growth was observed with inulin, cellobiose, maltose, sucrose, glucose, fructose, galactose, mannose, xylose, trehalose, mannitol, pyruvate and crotonate. The G + C content of the genomic DNA of strain JW/IW010(T) was 33.6 mol% (HPLC method). The major phospholipid fatty acids were iso-15:0 (53.5 %), 15:0 (11.8 %), 16:0 (7.3 %), 10-methyl 16: 0 (7.3 %) and anteiso-15:0 (5.3%). 16S rRNA gene sequence analysis placed strain JW/IW010(T) in the genus Thermoanaerobacter of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) (97 % 16S rRNA gene sequence similarity) and Thermoanaerobacter kivui IDSIM 2030(T) (94.5 %) as the closest phylogenetic relatives with validly published names. The level of DNA-DNA relatedness between strain JW/IW010(T) and Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) was 64 %. Based on the physiological, phylogenetic and genotypic data, strain JW/IW010(T) represents a novel taxon, for which the name Thermoanaerobacter uzonensis sp. nov. is proposed. The type strain is JW/IW010(T) (=ATCC BAA-1464(T) =DSM 18761(T)). The effectively published strain, 1501/60, of 'Clostridium uzonii [Krivenko, V. V., Vaclachloriya, R. M., Chermykh, N. A., Mityushina, L. L. & Krasilnikova, E. N. (11990). Microbiology (English translation of Mikrobiologiia) 59, 741-748] had approximately 88.0% DNA-DNA relatedness with strain JW/IW010(T) and was included in the noveltaxon. C1 [Wagner, Isaac D.; Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Zhao, Weidong; Zhang, Chuanlun L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Zhao, Weidong; Zhang, Chuanlun L.; Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Rohde, Manfred] HZI Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany. RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. EM jwiegel@uga.edu OI Wiegel, Juergen/0000-0002-6343-6464 FU NSF [MCB 0238407, MCB 0348180, NSF-REU 034007, NSF-REU 0341906, NSF-REU 0433510] FX This research was supported by NSF grants MCB 0238407 (Kamchatka Microbial Observatory) to J. W., C. S. R. and C. L. Z. and MCB 0348180 (Nevada Microbial Interactions and processes) to C. L. Z., C. S. R. and J. W. We thank M. M. Hodges and K. Lee for their assistance in the field (supported by NSF Research Experience for Undergraduate programmes: NSF-REU 034007, NSF-REU 0341906, and NSF-REU 0433510) and D. Crowe and P. Schroeder for assistance with the hot spring location coordinates. We also thank W. B. Whitman for equipment access and help with DNA G+C content determination, R. J. Maier and M.-Y. Sun for equipment access, and J.P. Euzeby for assistance with the nomenclature. NR 25 TC 11 Z9 13 U1 0 U2 5 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD NOV PY 2008 VL 58 BP 2565 EP 2573 DI 10.1099/ijs.0.65343-0 PN 11 PG 9 WC Microbiology SC Microbiology GA 377VS UT WOS:000261280500018 PM 18984694 ER PT J AU Li, FX Zhang, WJ Tolbert, LM Kueck, JD Rizy, DT AF Li, Fangxing Zhang, Wenjuan Tolbert, Leon M. Kueck, John D. Rizy, D. Tom TI A Framework to Quantify the Economic Benefit from Local VAR Compensation SO INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE LA English DT Article DE Reactive power; Var compensation; Economic benefits; Transfer capability ID TRANSFER CAPABILITY; SENSITIVITY; NETWORK AB It is generally accepted that reactive power (or Var) compensation will bring benefits for utilities and industrial customers by providing local voltage and power factor support. However, there is a lack of a systematic approach to quantitatively identify the economic benefit. In addition, with deregulation and restructuring, it is important to indicate the amount of benefit that each market participant may potentially receive given the right price signals. If such information can be easily obtained and presented, it will be more convenient for decision-markers to determine the cost benefit sharing, of installing a Var compensator. The vision of this paper is to lay out a possible method for quantitatively evaluating the benefits from local reactive power compensation. The approach is to quantify the benefits into several categories such as reduced losses, shifting reactive power flow to real power flow, and increased transfer. The calculation of these benefits are illustrated with a simple two-bus power system model and then presented with a more complicated model using Optimal Power Flow to calculate the benefits. Simulation on the more complex system is conducted with seven buses in two areas. The simulation results show that the possible economic benefits can be significant, if compared with capacity payments to central generators or payment of power factor penalties applied by utilities. The potential economic value of local Var compensation may give various parties in electricity supply, delivery and end-use consumption a better understanding of the Var benefits to assist their cost-benefit analysis for Var compensation installation. Sensitivity analysis is also provided to illustrate that the benefits may not be monotonically increasing. Also, this paper suggests that the future reactive power market should consider local Var providers or other way to encourage load Var capability, since local Var benefit is significant. Copyright (C) 2008 Praise Worthy Prize S.r.l. - All rights reserved. C1 [Li, Fangxing; Zhang, Wenjuan; Tolbert, Leon M.] Univ Tennessee, Knoxville, TN 37996 USA. [Rizy, D. Tom] Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN USA. [Rizy, D. Tom] Oak Ridge Natl Lab, Distriburt Energy Commun & Control Lab DECC, Oak Ridge, TN USA. RP Li, FX (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. RI Li, Fangxing/E-6023-2013; OI Li, Fangxing/0000-0003-1060-7618; Tolbert, Leon/0000-0002-7285-609X NR 12 TC 2 Z9 2 U1 0 U2 1 PU PRAISE WORTHY PRIZE SRL PI NAPOLI PA PIAZZA G D ANNUNZIO, NAPOLI, 15-I80125, ITALY SN 1827-6660 J9 INT REV ELECTR ENG-I JI Int. Rev. Electr. Eng.-IREE PD NOV-DEC PY 2008 VL 3 IS 6 BP 989 EP 998 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 423PH UT WOS:000264507700007 ER PT J AU Wrighton, KC Agbo, P Warnecke, F Weber, KA Brodie, EL DeSantis, TZ Hugenholtz, P Andersen, GL Coates, JD AF Wrighton, Kelly C. Agbo, Peter Warnecke, Falk Weber, Karrie A. Brodie, Eoin L. DeSantis, Todd Z. Hugenholtz, Philip Andersen, Gary L. Coates, John D. TI A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells SO ISME JOURNAL LA English DT Article DE biofuel; biofilm; extracellular electron transfer; iron reduction; anode ID 16S RIBOSOMAL-RNA; DISSIMILATORY FE(III) REDUCTION; EXTRACELLULAR ELECTRON-TRANSFER; ELECTRICITY-GENERATION; FE(III)-REDUCING BACTERIUM; COMMUNITY STRUCTURE; OXIDE REDUCTION; BIOFUEL CELLS; SP-NOV.; MICROORGANISMS AB Significant effort is currently focused on microbial fuel cells (MFCs) as a source of renewable energy. Most studies concentrate on operation at mesophilic temperatures. However, anaerobic digestion studies have reported on the superiority of thermophilic operation and demonstrated a net energy gain in terms of methane yield. As such, our studies focused on MFC operation and microbiology at 55 degrees C. Over a 100-day operation, these MFCs were stable and achieved a power density of 37 mW m(-2) with a coulombic efficiency of 89%. To infer activity and taxonomic identity of dominant members of the electricity-producing community, we performed phylogenetic microarray and clone library analysis with small subunit ribosomal RNA (16S rRNA) and ribosomal RNA gene (16S rDNA). The results illustrated the dominance (80% of clone library sequences) of the Firmicutes in electricity production. Similarly, rRNA sequences from Firmicutes accounted for 50% of those taxa that increased in relative abundance from current-producing MFCs, implying their functional role in current production. We complemented these analyses by isolating the first organisms from a thermophilic MFC. One of the isolates, a Firmicutes Thermincola sp. strain JR, not only produced more current than known organisms (0.42 mA) in an H-cell system but also represented the first demonstration of direct anode reduction by a member of this phylum. Our research illustrates the importance of using a variety of molecular and culture-based methods to reliably characterize bacterial communities. Consequently, we revealed a previously unidentified functional role for Gram-positive bacteria in MFC current generation. C1 [Wrighton, Kelly C.; Agbo, Peter; Weber, Karrie A.; Coates, John D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Warnecke, Falk; Hugenholtz, Philip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. [Brodie, Eoin L.; DeSantis, Todd Z.; Andersen, Gary L.; Coates, John D.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. RP Coates, JD (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 271 Koshland Hall, Berkeley, CA 94720 USA. EM jcoates@nature.berkeley.edu RI Hugenholtz, Philip/G-9608-2011; Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; OI Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; hugenholtz, philip/0000-0001-5386-7925 FU DOE Laboratory Directed Research and Development (LDRD) program; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX Funding for this work was provided to JDC through the DOE Laboratory Directed Research and Development (LDRD) program. Part of this work was performed under the auspices of Lawrence Berkeley National Laboratory through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. We are indebted to Yvette Piceno and Julita Madejska for expertize with the PhyloChip and clone libraries, respectively. We thank Derek Lovley and his lab members Kelly Nevin, Sean Covalla and Jessica Johnson for technical guidance regarding microbial fuel cells. We appreciate the time David Coates spent on international phone calls sharing his knowledge of electrochemistry. We are also grateful to Cameron Thrash, Forest Kaser, Rebecca Daly and Kristen DeAngelis for informative discussions regarding microbial physiology, electrochemistry, phylogenetic structure and community assembly. Finally, we thank John Hake and Ryoko Kataoka of East Bay MUD for donating the thermophilic anaerobic digester sludge. NR 47 TC 122 Z9 127 U1 4 U2 60 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD NOV PY 2008 VL 2 IS 11 BP 1146 EP 1156 DI 10.1038/ismej.2008.48 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 374EW UT WOS:000261026900006 PM 18769460 ER PT J AU Das, S AF Das, Sujit TI Primary magnesium production costs for automotive applications SO JOM LA English DT Article ID CHINA AB Focusing on primary magnesium production cost estimates, this paper provides a forecast of the long-term competitiveness of magnesium in automotive applications. Competing magnesium production technologies are considered, with particular emphasis on the long-term viability of cheap supplies using Chinese production technology. Also considered are two yet-to-be commercialized production processes. C1 Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Das, S (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM dass@ornl.gov NR 29 TC 20 Z9 20 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD NOV PY 2008 VL 60 IS 11 BP 63 EP 69 DI 10.1007/s11837-008-0151-7 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 372BX UT WOS:000260877500011 ER PT J AU Murray, R Janke, R Hart, WE Berry, JW Taxon, T Uber, J AF Murray, Regan Janke, Robert Hart, William E. Berry, Jonathan W. Taxon, Tom Uber, James TI Sensor network design of contamination warning systems: A decision framework SO JOURNAL AMERICAN WATER WORKS ASSOCIATION LA English DT Article ID MUNICIPAL WATER NETWORKS; DETECTING ACCIDENTAL CONTAMINATIONS; MONITORING STATIONS; DRINKING-WATER; PLACEMENT; SECURITY AB The authors describe a decision framework for selecting sensor monitoring locations for a contamination warning system. Using the threat ensemble Vulnerability assessment and sensor placement optimization tool (TEVA-SPOT) to determine sensor placement, a utility can eliminate the guessing game of where to best locate sensors. Specifically, sensor locations can be selected to protect against various contamination threats and optimize the security objectives important to the utility while at the same time restricting possible monitoring locations to a set of locations identified as feasible by the water utility. To implement TEVA-SPOT successfully, utilities will need to have an accurate and up-to-date hydraulic and quality network model and be willing to commit personnel to investigate potential sensor locations. By following the approach detailed in this article, water utilities can gain an understanding of contamination incidents' potential effects on public health and utility infrastructure as well as insight into the ways a contamination warning system can mitigate these effects.-MPM. C1 [Murray, Regan] US EPA, Natl Homeland Secur Res Ctr, Cincinnati, OH 45268 USA. [Berry, Jonathan W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Taxon, Tom] Argonne Natl Lab, Argonne, IL 60439 USA. [Uber, James] Univ Cincinnati, Cincinnati, OH 45221 USA. RP Murray, R (reprint author), US EPA, Natl Homeland Secur Res Ctr, 26 W Martin Luther King Dr MS NG 16, Cincinnati, OH 45268 USA. EM murray.regan@epa.gov RI uber, james/E-7189-2010 NR 32 TC 7 Z9 7 U1 0 U2 12 PU AMER WATER WORKS ASSOC PI DENVER PA 6666 W QUINCY AVE, DENVER, CO 80235 USA SN 2164-4535 J9 J AM WATER WORKS ASS JI J. Am. Water Work Assoc. PD NOV PY 2008 VL 100 IS 11 BP 97 EP 109 PG 13 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 377TP UT WOS:000261273800014 ER PT J AU Benner, WH Bogan, MJ Rohner, U Boutet, S Woods, B Frank, M AF Benner, W. Henry Bogan, Michael J. Rohner, Urs Boutet, Sebastien Woods, Bruce Frank, Matthias TI Non-destructive characterization and alignment of aerodynamically focused particle beams using single particle charge detection SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Particle charge; Particle charge detector; Single particle; Aerodynamic focusing; Mass spectrometry; X-ray diffractive imaging ID DETECTION MASS-SPECTROMETRY; FREE-ELECTRON LASER; CONTROLLED DIMENSIONS; NOZZLE EXPANSIONS; LENSES; NANOPARTICLES; MOTION; IONS; DIVERGENCE AB We describe the first experimental measurements of aerodynamically focused particle beams Using single particle image-charge detection. An aerodynamic lens produces particle beams, which at times is not aligned with the bore of the lens, thus complicating the process of aligning a particle beam with the focus of a laser beam. A key result of this work is the development of a non-optical technique for aiming a beam of particles in vacuum into the focus of a laser beam. In the present application, the laser beam is fixed in space by the geometry of a large stationary vacuum system and it is necessary to blindly aim a narrowly focused particle beam across the laser beam. Our aiming device is based oil the non-destructive detection of electrically charged particles as they pass through a small metal tube that picks tip the image charge of the transiting particle. Individual electrosprayed particles larger than 70 nm produce an electrical Pulse that can be thresholded and counted. The duration of the detector signal provides a way to measure particle velocity and the amplitude of the signal is proportional to particle charge. The rate of particle injection into vacuum, single particle velocity and charge and particle beam shape and position can be measured with the charge detector. We show data for aiming and focusing electrosprayed polystyrene latex spheres ranging in size from 70 to 190 nm. Particle injection rates as high as 3000 per second and particle beam diameters as small as 250 mu m were achieved by using the charge detector to optimize the performance of the aerodynamic lens to focus the particles before they entered. We also describe how this detector and injector system will be implemented for real-time particle analysis for aerosol mass spectrometry and single particle X-ray diffractive imaging. (C) 2008 Published by Elsevier Ltd. C1 [Benner, W. Henry; Bogan, Michael J.; Rohner, Urs; Boutet, Sebastien; Woods, Bruce; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boutet, Sebastien] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Benner, WH (reprint author), Lawrence Livermore Natl Lab, POB 808,L-452,7000 East Ave, Livermore, CA 94550 USA. EM benner2@llnl.gov RI Bogan, Mike/I-6962-2012; Frank, Matthias/O-9055-2014 OI Bogan, Mike/0000-0001-9318-3333; FU US Department of Energy by Lawrence Livermore National Laboratory (LLNL) [W-7405-Eng-48, DE-AC52-07NA27344]; Laboratory Directed Research and Development Program of LLNL [05-SI-003] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. This project was supported by Project 05-SI-003 from the Laboratory Directed Research and Development Program of LLNL. NR 26 TC 21 Z9 21 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2008 VL 39 IS 11 BP 917 EP 928 DI 10.1016/j.jaerosci.2008.05.008 PG 12 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 381LT UT WOS:000261538300001 ER PT J AU Olfert, JS Kulkarni, P Wang, J AF Olfert, Jason S. Kulkarni, Pramod Wang, Jian TI Measuring aerosol size distributions with the fast integrated mobility spectrometer SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Aerosol size distribution; Fast response; Electrical mobility; Fast integrated mobility spectrometer ID REAL-TIME MEASUREMENT; TWOMEY ALGORITHM; LINEAR INVERSION; ANALYZER; IMPACTOR; COUNTER AB A fast integrated mobility spectrometer (FIMS) has been developed for rapid aerosol size distribution measurements including those aerosols with low particle number concentrations. In this work, an inversion routine has been developed for the FINIS and it is demonstrated that the FIMS can accurately measure aerosol size distributions. The inversion routine includes corrections for the particle residence time in the FINIS and other factors related to the width of the response (or transfer) function and multiple charging of particles. Steady-state size distributions measured with the FIMS compared well with those measured by a scanning mobility particle sizer (SNIPS). Experiments also show that the FIMS is able to capture the size distribution of rapidly changing aerosol populations. The total particle concentration integrated from distributions measured by the FIMS agrees well with simultaneous measurements by a condensation particle counter (CPC). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Olfert, Jason S.; Wang, Jian] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Kulkarni, Pramod] NIOSH, Ctr Dis Control & Prevent, Cincinnati, OH 45226 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 815E, Upton, NY 11973 USA. EM jian@bnl.gov RI Wang, Jian/G-9344-2011 FU Office of Biological and Environmental Research, Department of Energy (DOE) [DE-AC02-98CH10866]; Office of Global Programs of National Oceanic and Atmospheric Administration [NRMT0000-5-203]; Laboratory Directed Research and Development program at the Brookhaven National Laboratory (BNL); Brookhaven Science Associates FX This work was supported by the Office of Biological and Environmental Research, Department of Energy (DOE), under Contract DE-AC02-98CH10866, the Office of Global Programs of National Oceanic and Atmospheric Administration under Contract NRMT0000-5-203, and the Laboratory Directed Research and Development program at the Brookhaven National Laboratory (BNL). BNL is operated for the DOE by Battelle Memorial Institute. Jason Olfert also acknowledges partial support from the Goldhaber Distinguished Fellowship from Brookhaven Science Associates. The authors also wish to acknowledge Dr. Peter Takacs for his help with the optics on the FIMS. NR 19 TC 21 Z9 21 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2008 VL 39 IS 11 BP 940 EP 956 DI 10.1016/j.jaerosci.2008.06.005 PG 17 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 381LT UT WOS:000261538300003 ER PT J AU Liu, YG Daum, PH AF Liu, Yangang Daum, Peter H. TI Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Refractive index; Particle density; Effective medium theory; Mixing rules; Aerosols ID ATMOSPHERIC AEROSOL; LIGHT EXTINCTION; PARTICLES; COEFFICIENTS; PREDICTION; SCATTERING; CARBON; FIELD AB This paper focuses on two important yet poorly addressed aspects of ambient aerosols: relationship of refractive index to mass density (index-density relationship) and consistency of the mixing rules used to calculate these two quantities of a multicomponent mixture like ambient aerosols with the index-density relationship. Combined empirical and theoretical analyses show that a denser material generally tends to have a larger refraction index because the applied electric field induces a greater number of electric dipoles, and that the index-density relationship can be described reasonably well by the Lorentz-Lorenz relation. It is shown that the commonly used volume-mean mixing rule for calculating the effective mass density, the Lorentz-Lorenz mixing rule and the molar refraction mixing rule for calculating effective refractive index form a set of mixing rules that are consistent with the Lorentz-Lorenz relation. The molar fraction mixing rule and the Lorentz-Lorenz mixing rule are shown to be equivalent for the Lorentz-Lorenz mixture while the linear volume-mixing rule is an approximation of the Lorentz-Lorenz mixing rule for quasi-homogeneous mixtures wherein the refractive indices of the constituents do not differ much. The results highlight the need for consistency of the mixing rules for calculating the effective refractive index and mass density with the index-density relationship, which not only provides a theoretical guide for judiciously choosing the mixing rules to calculate effective properties of ambient aerosols but also poses new challenges to develop an effective medium theory that applies to more than one quantity. An empirical power-law expression is obtained from the published data that relates the effective specific refractive index to the effective mass density of aerosol particles. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Liu, Yangang; Daum, Peter H.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Liu, YG (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 815E,75 Rutherford Dr, Upton, NY 11973 USA. EM lyg@bnl.gov RI Liu, Yangang/H-6154-2011 FU National Science Foundation [PHY05-51164] FX This research at BNL is supported by the Atmospheric Radiation Measurements and Atmospheric Sciences Programs of the US Department of Energy. The authors thank Dr. S. E. Schwartz for pointing to us the data source (www.knovel.com) and the BNL librarian for helping with the data, and Dr. R.L. McGraw for drawing our attention to Debye (1929). The insightful comments by the reviewers improve the paper significantly. Liu started to collect data on refractive index and mass density in 1990 when he was with the Chinese Academy of the Meteorological Sciences, continued data collection when he was with the Desert Research Institute from 1993 to 1998. The paper is finalized while Liu visited the Kavli Institute for Theoretical Physics from June I to 21, 2008, supported in part by the National Science Foundation under Grant no. PHY05-51164. NR 33 TC 64 Z9 65 U1 2 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2008 VL 39 IS 11 BP 974 EP 986 DI 10.1016/j.jaerosci.2008.06.006 PG 13 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 381LT UT WOS:000261538300005 ER PT J AU Finn, D Clawson, KL Carter, RG Rich, JD Allwine, KJ AF Finn, Dennis Clawson, Kirk L. Carter, Roger G. Rich, Jason D. Allwine, K. Jerry TI Plume Dispersion Anomalies in a Nocturnal Urban Boundary Layer in Complex Terrain SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MOUNTAIN BASIN COMPLEX; AVENUE STREET CANYON; SALT-LAKE-CITY; LOW-LEVEL JET; OKLAHOMA-CITY; TURBULENCE STATISTICS; DOPPLER LIDAR; AIR-QUALITY; DOWN-VALLEY; WIND-FIELD AB The URBAN 2000 experiments were conducted in the complex urban and topographical terrain in Salt Lake City, Utah, in stable nighttime conditions. Unexpected plume dispersion often arose because of the interaction of complex terrain and mountain-valley flow dynamics, drainage flows, synoptic influences, and urban canopy effects, all within a nocturnal boundary layer. It was found that plume dispersion was strongly influenced by topography, that dispersion can be significantly different than what might be expected based upon the available wind data, and that it is problematic to rely on any one urban-area wind measurement to predict or anticipate dispersion. Small-scale flows can be very important in dispersion, and their interaction with the larger-scale flow field needs to be carefully considered. Some of the anomalies observed include extremely slow dispersion, complicated recirculation dispersion patterns in which plume transport was in directions opposed to the measured winds, and flow decoupling. Some of the plume dispersion anomalies could only be attributed to small-scale winds that were not resolved by the existing meteorological monitoring network. The results shown will make clear the difficulties in modeling or planning for emergency response to toxic releases in a nocturnal urban boundary layer within complex terrain. C1 [Finn, Dennis; Clawson, Kirk L.; Carter, Roger G.; Rich, Jason D.] NOAA, ARLFRD, Idaho Falls, ID 83402 USA. [Allwine, K. Jerry] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Finn, D (reprint author), NOAA, ARLFRD, 1750 Foote Dr, Idaho Falls, ID 83402 USA. EM dennis.finn@noaa.gov RI Clawson, Kirk/C-5910-2016; Finn, Dennis/C-3204-2016 OI Clawson, Kirk/0000-0002-8789-9607; FU National Oceanic and Atmospheric Administration; U. S. Dept. of Energy's Chemical and Biological National Security Program [DE-A101-01NN20120]; Defense Threat Reduction Agency (DTRA), Department of Defense (DOD) FX We acknowledge the efforts of the many people who contributed to the execution of the URBAN 2000 study and made possible the analyses contained in this manuscript. In particular we thank Debbie Lacroix, Dr. Tami Grimmett, Neil Hukari, Brad Reese, Dr. Jeff French, Randy Johnson, the late Dr. Timothy Crawford, Wayne Hooker, and Tom Strong from ARLFRD who helped with instrument preparation, data collection, chemical analyses, and report preparation. We also thank Jim Bowers of the U. S. Army Dugway Proving Ground, Dr. Joe Shinn of the Lawrence Livermore National Laboratory, and Dr. Gerald Streit and their staffs for their cooperation and assistance in making this project a success. We also acknowledge the assistance of local and state officials including Cindy Clark (Utah Automated Geographic Reference Center), Nick Kryger (Public Works Department of Salt Lake City), and Mark Miller (Salt Lake County Surveyor's Office). This project was supported by the National Oceanic and Atmospheric Administration, by the U. S. Dept. of Energy's Chemical and Biological National Security Program under Interagency Agreement DE-A101-01NN20120, and the Defense Threat Reduction Agency (DTRA) of the Department of Defense (DOD). The DOD Military Interdepartmental Purchase Request number was MIPR5KDPG87101. NR 52 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2008 VL 47 IS 11 BP 2857 EP 2878 DI 10.1175/2008JAMC1864.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 374VR UT WOS:000261072300008 ER PT J AU Chen, ZJ Xiao, HY Zu, XT Gao, F AF Chen, Z. J. Xiao, H. Y. Zu, X. T. Gao, F. TI First-principles calculation of defect formation energies and electronic properties in stannate pyrochlores SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HEAVY-ION IRRADIATION; NUCLEAR-WASTE DISPOSAL; AUGMENTED-WAVE METHOD; BEAM IRRADIATION; RADIATION TOLERANCE; BASIS-SET; PLUTONIUM; IMMOBILIZATION; FORM; PSEUDOPOTENTIALS AB The electronic structures and defect formation energies for a series of stannate pyrochlores Ln(2)Sn(2)O(7) (Ln = La, Pr, Nd, Sm, Gd, Tb, Ho, Er, Lu, and Y) have been investigated using the first-principles total energy calculations. The calculated results show that Ln-site cation ionic radius, x-O(48f), lattice constant and the covalency of the < Sn-O(48f)> bond have a significant affect on the defect formation energies. The cation-antisite defect has the lowest formation energy, as compared with that of other defects, indicating that cation disorder causes local oxygen disordering. The present studies suggest that Lu(2)Sn(2)O(7) is the most resistant to ion beam-induced amorphization. The electronic structure calculations reveal that Ln(2)Sn(2)O(7) compounds have direct band gaps of 2.64-2.95 eV at the Gamma point in the Brillouin zone. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3000558] C1 [Chen, Z. J.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, ZJ (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zjchen@uestc.edu.cn RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 41 TC 10 Z9 11 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093702 DI 10.1063/1.3000558 PG 6 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700055 ER PT J AU Du, MH Takenaka, H Singh, DJ AF Du, Mao-Hua Takenaka, Hiroyuki Singh, David J. TI Native defects and oxygen and hydrogen-related defect complexes in CdTe: Density functional calculations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; HIGH-RESISTIVITY CDTE; DEEP LEVELS; P-CDTE; CDZNTE; PHOTOLUMINESCENCE; SEMICONDUCTORS; PASSIVATION; CD1-XZNXTE; CRYSTALS AB We study structural and electronic properties of various intrinsic and extrinsic defects in CdTe based on first-principles calculations. The focus is given to the role of these defects in the carrier compensation in semi-insulating CdTe, which is essential for the CdTe-based radiation detectors. The semi-insulating behavior of CdTe has been attributed to the Fermi level pinning near middle of the band gap by deep donors. These deep donors compensate shallow acceptors and are generally assumed to be Te antisites. However, we find that intrinsic defects, including the Te antisite, may not have a significant effect on the carrier compensation due either to lack of deep levels near midgap or to low defect concentration. We demonstrate instead that an extrinsic defect, O-Te-H complex, may play an important role in the carrier compensation in CdTe. Other hydrogen-related defects are also discussed. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000562] C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mhdu@ornl.gov RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU U. S. DOE Office of Nonproliferation Research and Development [NA22] FX We thank Gomez W. Wright, Su-Huai Wei, Shengbai Zhang, Lynn A. Boatner, and Kelvin G. Lynn for helpful discussions. This work was supported by the U. S. DOE Office of Nonproliferation Research and Development NA22. NR 56 TC 25 Z9 25 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093521 DI 10.1063/1.3000562 PG 9 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700039 ER PT J AU Liu, ACY Chen, X Choi, DY Luther-Davies, B AF Liu, A. C. Y. Chen, Xidong Choi, D.-Y. Luther-Davies, B. TI Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As(2)S(3) films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MEDIUM-RANGE ORDER; CHALCOGENIDE GLASSES; THIN-FILMS; FLUCTUATION MICROSCOPY; OPTICAL-PROPERTIES; COVALENT GLASSES; DIFFRACTION PEAK; PHASE-SEPARATION; WAVE-GUIDES; REALGAR AB The morphology and structural order of thermally deposited and annealed amorphous As(2)S(3) films have been investigated using high resolution transmission electron microscopy. It was found that both the as-deposited and annealed films contained sparsely distributed nanocrystallites of the orpiment As(2)S(3) crystalline phase. However, from selected area electron diffraction both films appeared amorphous. Fluctuation electron microscopy revealed that the as-deposited film contained greater nanoscale inhomogeneity. Low temperature annealing reduced the nanoscale inhomogeneity and resulted in a more homogeneous and energetically favorable network. The reduction in nanoscale inhomogeneity upon low temperature annealing was accompanied by the appearance of a first sharp diffraction peak in the diffraction pattern. This first-sharp diffraction peak has been attributed to chemical ordering of interstitial voids. Our measurements suggest that this chemical short-range ordering is associated with the dissolution of the energetically unfavorable larger correlated structures that contribute to the inhomogeneity of the as-deposited film. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3009971] C1 [Liu, A. C. Y.] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Chen, Xidong] Cedarville Univ, Cedarville, OH 45314 USA. [Chen, Xidong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Choi, D.-Y.; Luther-Davies, B.] Australian Natl Univ, Ctr Ultrahigh Bandwidth Devices Opt Syst, Laser Phys Ctr, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. RP Liu, ACY (reprint author), Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. EM amelia.liu@eng.monash.edu.au RI Luther-Davies, Barry/D-7294-2013; Choi, Duk-Yong/E-6542-2013 OI Luther-Davies, Barry/0000-0002-2747-5036; Choi, Duk-Yong/0000-0002-5339-3085 FU Electron Microscopy Center for Materials Research at Argonne National Laboratory; U. S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; Australian Research Council; Federation Fellow and Centre of Excellence FX The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U. S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. The support of the Australian Research Council through its Federation Fellow and Centre of Excellence programs is gratefully acknowledged. NR 28 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093524 DI 10.1063/1.3009971 PG 7 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700042 ER PT J AU Perry, WL Sewell, TD Glover, BB Dattelbaum, DM AF Perry, W. Lee Sewell, Thomas D. Glover, Brian B. Dattelbaum, Dana M. TI Electromagnetically induced localized ignition in secondary high explosives SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PENTAERYTHRITOL TETRANITRATE AB A model for electromagnetically induced hot spots is developed from the well-established theories of dielectric mixtures, microwave absorption, heat transfer, and thermal ignition. This mathematical model is used to elucidate the interplay among these theories for a microwave heated system of secondary high explosive within which isolated electromagnetically lossy spheres are randomly distributed. Results are shown in this article for the specific case of pentaerythritol tetranitrate with embedded spheres of varying diameter and conductivity illuminated by a uniform time harmonic electromagnetic field of 1, 8, and 15 GHz. It is shown that for a given frequency and electric field strength internal to a particle embedded in a secondary high explosive, there exists a range of values for the particle's diameter and conductivity for which electromagnetically induced hot-spot ignition of the high explosive is possible. By providing an accurate estimate for the range of necessary geometric and electrical properties of the system, this idealized model can be used to guide potentially complex and otherwise less tractable computational and experimental studies of microwave-induced hot spots. We found that the condition of relatively large particles, with semiconductorlike conductivity, exposed to the highest possible frequency is most favorable for hot-spot ignition. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3002421] C1 [Perry, W. Lee] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Perry, WL (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM wperry@lanl.gov; sewellt@missouri.edu OI Perry, William/0000-0003-1993-122X FU Los Alamos National Laboratory Directed Research and Development Program; DoD/DOE Joint Munitions Program; National Nuclear Security Administration of the United States Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Los Alamos National Laboratory Directed Research and Development Program and the DoD/DOE Joint Munitions Program. Los Alamos National Laboratory is operated by Los Alamos National Security, L. L. C. under the auspices of the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC52-06NA25396. NR 14 TC 6 Z9 6 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 094906 DI 10.1063/1.3002421 PG 6 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700136 ER PT J AU Rudd, RE Klepeis, JE AF Rudd, Robert E. Klepeis, John E. TI Multiphase improved Steinberg-Guinan model for vanadium SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AUGMENTED-WAVE METHOD; ELASTIC-CONSTANTS; HIGH-PRESSURES; TEMPERATURE DEPENDENCE; LATTICE-DYNAMICS; SINGLE-CRYSTAL; STRAIN-RATE; METALS; NB; COMPRESSION AB Vanadium has been observed recently to transform from the body-centered cubic (bcc) crystal structure to a rhombohedral structure at high pressure (similar to 0.69 Mbar) [Y. Ding et al., Phys. Rev. Lett. 98, 085502 (2007)]. Recent theoretical work predicts a transformation to a second rhombohedral phase at 1.2 Mbar before transforming back to the bcc structure at 2.8 Mbar at absolute zero temperature [B. Lee et al., Phys. Rev. B 75, 180101 (R) (2007)]. Here we develop an analytic model for the shear modulus in these phases based on ab initio calculations of the single-crystal elastic moduli and a finite element based homogenization technique. The form of the shear modulus is suited to application in strength models such as in the Steinberg-Guinan form and other analogous continuum-level models. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3013429] C1 [Rudd, Robert E.; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rudd, RE (reprint author), Lawrence Livermore Natl Lab, L-045, Livermore, CA 94551 USA. EM robert.rudd@llnl.gov OI Rudd, Robert/0000-0002-6632-2681 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank R. Becker, G. Collins, A. Landa, D. Orlikowski, B. Remington, P. Soderlind, and L. Yang for useful discussions. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 50 TC 9 Z9 9 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093528 DI 10.1063/1.3013429 PG 7 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700046 ER PT J AU Sun, Q Yerino, CD Ko, TS Cho, YS Lee, IH Han, J Coltrin, ME AF Sun, Qian Yerino, Christopher D. Ko, Tsung Shine Cho, Yong Suk Lee, In-Hwan Han, Jung Coltrin, Michael E. TI Understanding nonpolar GaN growth through kinetic Wulff plots SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID R-PLANE SAPPHIRE; VAPOR-PHASE EPITAXY; A-PLANE; LATERAL OVERGROWTH; SELECTIVE GROWTH; DEFECT DENSITY; BUFFER LAYER; MOVPE-GROWTH; MOCVD; DEPOSITION AB In this paper we provide explanations to the complex growth phenomena of GaN heteroepitaxy on nonpolar orientations using the concept of kinetic Wulff plots (or upsilon-plots). Quantitative mapping of kinetic Wulff plots in polar, semipolar, and nonpolar angles are achieved using a differential measurement technique from selective area growth. An accurate knowledge of the topography of kinetic Wulff plots serves as an important stepping stone toward model-based control of nonpolar GaN growth. Examples are illustrated to correlate growth dynamics based on the kinetic Wulff plots with commonly observed features, including anisotropic nucleation islands, highly striated surfaces, and pentagonal or triangular pits. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3009969] C1 [Sun, Qian; Yerino, Christopher D.; Ko, Tsung Shine; Cho, Yong Suk; Lee, In-Hwan; Han, Jung] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. [Coltrin, Michael E.] Sandia Natl Labs, Adv Mat Sci Dept, Albuquerque, NM 87185 USA. RP Sun, Q (reprint author), Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. EM qian.sun@yale.edu; jung.han@yale.edu RI Sun, Qian/D-4052-2009 FU United States Department of Energy (US DOE) [DE-FC26-07NT43227]; US DOE under Contract [DE-AC04-94AL85000]; Office of Basic Energy Sciences Division of Materials Sciences and Engineering FX This work was finally supported by the United States Department of Energy (US DOE) under Contract No. DE-FC26-07NT43227. The work performed at Sandia National Laboratories was supported by the US DOE under Contract No. DE-AC04-94AL85000, with funding from the Office of Basic Energy Sciences Division of Materials Sciences and Engineering. The authors acknowledge the kind support from Dr. Nate Gardner at Lumileds and the discussion with Dr. David J. Srolovitz at Princeton University. NR 41 TC 63 Z9 63 U1 4 U2 58 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093523 DI 10.1063/1.3009969 PG 5 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700041 ER PT J AU Tringe, JW Vanamu, G Zaidi, SH AF Tringe, Joseph W. Vanamu, Ganesh Zaidi, Saleem H. TI Templated control of Au nanospheres in silica nanowires SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL NANOCRYSTAL MEMORIES; OPTICAL-PROPERTIES; SOLAR-CELLS; GOLD; GROWTH; NANOPARTICLES; SI; ARRAYS; ROUTE; FILMS AB The formation of regularly spaced metal nanostructures in selectively placed insulating nanowires is an important step toward realization of a wide range of nanoscale electronic and optoelectronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with smaller area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3006009] C1 [Tringe, Joseph W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vanamu, Ganesh] Intel Corp, Santa Clara, CA 95054 USA. [Zaidi, Saleem H.] Gratings Inc, Albuquerque, NM 87107 USA. RP Tringe, JW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM tringe2@llnl.gov NR 39 TC 2 Z9 2 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 094317 DI 10.1063/1.3006009 PG 8 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700113 ER PT J AU Veal, BW Paulikas, AP AF Veal, B. W. Paulikas, A. P. TI Growth strains and creep in thermally grown alumina: Oxide growth mechanisms SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GRAIN-BOUNDARY DIFFUSION; FE-CR-AL; DOPED SAPPHIRE ALPHA-AL2O3; BARRIER COATINGS; SELF-DIFFUSION; OXIDATION BEHAVIOR; IN-SITU; OXYGEN DIFFUSION; SCALE ADHESION; PIPE DIFFUSION AB In situ measurements of growth strains and creep relaxation in alpha-Al(2)O(3) films, isothermally grown on beta-NiAl alloys at 1100 degrees C, are reported and analyzed. Samples containing the reactive element Zr, and Zr-free samples, are examined. For Zr-free samples, steady state growth strains are compressive, whereas the growth strains are tensile when the reactive element (RE) is added to the alloy. This behavior is attributed to the counterflow of oxygen and aluminum interstitials, and to simultaneous counterflow of oxygen and aluminum vacancies, all moving through the grain boundaries. Cross diffusing oxygen and aluminum interstitials may merge and combine within the film, forming new oxide along grain boundary walls, a mechanism that leads to an in-plane compressive stress. Cross diffusing oxygen and aluminum vacancies will also merge and combine within the film; in this case material is removed from grain boundary walls, a mechanism that leads to an in-plane tensile stress. When no RE is present, the interstitial mechanism dominates and the resultant stress is compressive. Consistent with the "dynamic segregation model," the RE slows the outdiffusion of A1 interstitials permitting the tensile mechanism to dominate. This interpretation invokes the unconventional view that oxygen and aluminum interstitials and vacancies, created in and driven by the strong chemical gradient, all participate meaningfully in the scale growth process. Grain boundary diffusion measurements were obtained from low stress creep data, interpreted using the Coble model of grain boundary diffusion. Reported diffusion measurements of oxygen through grain boundaries of alpha-Al(2)O(3), which are known to be inconsistent with oxide scale growth, are critically examined. A simple picture, a " balanced defect model," emerges that is consistent with the dynamic segregation model, observed growth stresses and their dependence on the presence of a reactive element, sequential oxidation experiments, and our best knowledge about grain boundary diffusion coefficients. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3009973] C1 [Veal, B. W.; Paulikas, A. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Veal, BW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM veal@anl.gov NR 71 TC 17 Z9 18 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093525 DI 10.1063/1.3009973 PG 15 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700043 ER PT J AU Wang, ZG Zu, XT Gao, F Weber, WJ AF Wang, Zhiguo Zu, Xiaotao Gao, Fei Weber, William J. TI Nanomechanical behavior of single crystalline SiC nanotubes revealed by molecular dynamics simulations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SILICON-CARBIDE NANOTUBES; INDIUM-PHOSPHIDE NANOWIRES; CHEMICAL-VAPOR-DEPOSITION; AB-INITIO CALCULATIONS; TRANSPORT-PROPERTIES; CARBON NANOTUBES; SURFACE; POTENTIALS; ELASTICITY; SYSTEMS AB Molecular dynamics simulations with Tersoff potentials were used to study the response of single crystalline SiC nanotubes under tensile, compressive, torsional, combined tension-torsional, and combined compression-torsional strains. The simulation results reveal that the nanotubes deform through bond-stretching and breaking and exhibit brittle properties under uniaxial tensile strain, except for the thinnest nanotube at high temperatures, which fails in a ductile manner. Under uniaxial compressive strain, the SiC nanotubes buckle with two modes, i.e., shell buckling and column buckling, depending on the length of the nanotubes. Under torsional strain, the nanotubes buckle either collapse in the middle region into a dumbbell-like structure for thinner wall thicknesses or fail by bond breakage for the largest wall thickness. Both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3005979] C1 [Wang, Zhiguo; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of UESTC [JX0731]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-76RL01830] FX Two of the authors (Z. W. and X. Z.) are grateful for the National Natural Science Foundation of China (Grant No. 10704014 ) and the Young Scientists Foundation of UESTC (Grant No. JX0731). Another two authors (F. G. and W. J. W.) were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 44 TC 7 Z9 7 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2008 VL 104 IS 9 AR 093506 DI 10.1063/1.3005979 PG 8 WC Physics, Applied SC Physics GA 372ZV UT WOS:000260941700024 ER PT J AU Varotsou, A Friedel, RH Reeves, GD Lavraud, B Skoug, RM Cayton, TE Bourdarie, S AF Varotsou, Athina Friedel, Reiner H. Reeves, Geoff D. Lavraud, Benoit Skoug, Ruth M. Cayton, Tom E. Bourdarie, Sebastien TI Characterization of relativistic electron flux rise times during the recovery phase of geomagnetic storms as measured by the NS41 GPS satellite SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT AGU Fall Meeting 2006 CY DEC 11-15, 2006 CL San Francisco, CA DE Radiation belt dynamics; Relativistic electrons; Geomagnetic storms; Satellite data ID OUTER RADIATION BELT; WHISTLER-MODE CHORUS; PITCH-ANGLE SCATTERING; ION-CYCLOTRON WAVES; DAWN-DUSK ASYMMETRY; MAGNETIC STORMS; INNER MAGNETOSPHERE; RESONANT DIFFUSION; ZONE ELECTRONS; EMIC WAVES AB Intense relativistic electron enhancements in the Earth's radiation belts are observed during periods of enhanced geomagnetic activity. Different physical processes-identified as being responsible for these enhancements-would lead to different characteristic rise times of the electron fluxes. Here we present for the first time MeV electron flux rise times near the equator as estimated from 51/2 years of data from the NS41 Global Positioning System (GPS) satellite, in an effort to relate measured electron flux rise timescales with those predicted by theory. The GPS orbit crosses the heart of the radiation belts, covering the L>4 region and measuring equatorial fluxes at L similar to 4.2. We have calculated V values using the Tsyganenko 2001 storm magnetic field model and have limited our study to the equator by imposing L* = 4-4.5. Forty events, for which fluxes rise by a factor of 5 or more after the storm main phase, were selected from the analysis of the > 1.22 MeV electron channel. The main results of our study are as follows: (1) the electron flux rise time distribution is very large indicating that there are a large variety of events observed at GPS orbit, similar to that observed at GEO, (2) fluxes rise in two phases, an initial fast rise is observed where most of the flux increase takes place, followed by a slower increase to the maximum flux, (3) fluxes gain 1-2 orders of magnitude on a timescale of 1-2 days, on average, in good agreement with timescales predicted by electron-chorus resonant interaction in quasi-linear theory using average wave characteristics for AE > 500 nT, and (4) the direction of the IMF Bz could be an important parameter in determining the behavior of the flux of relativistic electrons during the recovery phase. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Varotsou, Athina; Friedel, Reiner H.; Reeves, Geoff D.; Lavraud, Benoit; Skoug, Ruth M.; Cayton, Tom E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bourdarie, Sebastien] Off Natl Etud & Rech Aerosp, F-31055 Toulouse 4, France. RP Varotsou, A (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM athina@lanl.gov; friedel@lanl.gov; reeves@lanl.gov; lavraud@lanl.gov; rskoug@lanl.gov; tcayton@lanl.gov; sebastien.bourdarie@onecert.fr RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011 OI Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098 NR 72 TC 5 Z9 5 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD NOV PY 2008 VL 70 IS 14 SI SI BP 1745 EP 1759 DI 10.1016/j.jastp.2008.01.020 PG 15 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 381LX UT WOS:000261538700007 ER PT J AU MacDonald, EA Denton, MH Thomsen, MF Gary, SP AF MacDonald, E. A. Denton, M. H. Thomsen, M. F. Gary, S. P. TI Superposed epoch analysis of a whistler instability criterion at geosynchronous orbit during geomagnetic storms SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT AGU Fall Meeting 2006 CY DEC 11-15, 2006 CL San Francisco, CA DE Magnetic storms and substorms; Plasma waves and instabilities; Plasma sheet; Radiation belts ID MAGNETOSPHERIC PLASMA ANALYZER; OUTER RADIATION BELT; ELECTRON ACCELERATION; RELATIVISTIC ELECTRONS; CHORUS; ENERGIES AB Enhanced whistler mode waves produced by anisotropic hot plasma-sheet electrons outside the storm-time plasmapause have been suggested as one mechanism for accelerating relativistic outer-belt electrons in the aftermath of geomagnetic storms. Using measurements from the Los Alamos Magnetospheric Plasma Analyzers in geosynchronous orbit, we perform a superposed-epoch study of the storm-time behavior of the inferred plasma-sheet whistler growth parameter. Separate analyses are done for storms that result in strong relativistic electron enhancements and those that do not. The inferred whistler instability is strongest in the midnight-to-dawn sector, where freshly injected plasma-sheet electrons drift into and through the inner magnetosphere. During the main phase of both sets of storms, there is a marked drop in the whistler growth parameter, especially in the prime midnight-to-dawn sector. In the early recovery phase, this parameter is elevated and then returns to more typical values over the next few days. The elevation of the whistler growth parameter persists longer for the electron-enhanced storms than for those that do not produce such enhancements. These results suggest that whistler wave generation is greater during storms yielding enhanced levels of relativistic electrons. (C) 2008 Elsevier Ltd. All rights reserved. C1 [MacDonald, E. A.; Thomsen, M. F.; Gary, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Denton, M. H.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England. RP MacDonald, EA (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM macdonald@lanl.gov OI Denton, Michael/0000-0002-1748-3710 NR 29 TC 25 Z9 25 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD NOV PY 2008 VL 70 IS 14 SI SI BP 1789 EP 1796 DI 10.1016/j.jastp.2008.03.021 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 381LX UT WOS:000261538700010 ER PT J AU Battle, SE Meyer, F Rello, J Kung, VL Hauser, AR AF Battle, Scott E. Meyer, Folker Rello, Jordi Kung, Vanderlene L. Hauser, Alan R. TI Hybrid Pathogenicity Island PAGI-5 Contributes to the Highly Virulent Phenotype of a Pseudomonas aeruginosa Isolate in Mammals SO JOURNAL OF BACTERIOLOGY LA English DT Article ID III PROTEIN SECRETION; NUCLEOTIDE-SEQUENCE; INTEGRATION SITES; GENETIC ELEMENTS; GENOMIC ISLANDS; TRANSFER-RNA; EVOLUTION; MODEL; CYTOTOXICITY; INFECTIONS AB Most known virulence determinants of Pseudomonas aeruginosa are remarkably conserved in this bacterium's core genome, yet individual strains differ significantly in virulence. One explanation for this discrepancy is that pathogenicity islands, regions of DNA found in some strains but not in others, contribute to the overall virulence of P. aeruginosa. Here we employed a strategy in which the virulence of a panel of P. aeruginosa isolates was tested in mouse and plant models of disease, and a highly virulent isolate, PSE9, was chosen for comparison by subtractive hybridization to a less virulent strain, PAO1. The resulting subtractive hybridization sequences were used as tags to identify genomic islands found in PSE9 but absent in PAO1. One 99-kb island, designated P. aeruginosa genomic island 5 (PAGI-5), was a hybrid of the known P. aeruginosa island PAPI-1 and novel sequences. Whereas the PAPI-1-like sequences were found in most tested isolates, the novel sequences were found only in the most virulent isolates. Deletional analysis confirmed that some of these novel sequences contributed to the highly virulent phenotype of PSE9. These results indicate that targeting highly virulent strains of P. aeruginosa may be a useful strategy for identifying pathogenicity islands and novel virulence determinants. C1 [Battle, Scott E.; Kung, Vanderlene L.; Hauser, Alan R.] Northwestern Univ, Feinberg Sch Med, Dept Microbiol Immunol, Chicago, IL 60611 USA. [Hauser, Alan R.] Northwestern Univ, Feinberg Sch Med, Dept Med, Chicago, IL 60611 USA. [Meyer, Folker] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Rello, Jordi] Univ Rovira & Virgili, Crit Care Dept, Tarragona, Spain. [Rello, Jordi] Univ Rovira & Virgili, CIBER Enfermedades Resp, Joan Univ Hosp 23, Tarragona, Spain. RP Hauser, AR (reprint author), 303 E Chicago Ave,Searle 6-495, Chicago, IL 60611 USA. EM ahauser@northwestern.edu OI Meyer, Folker/0000-0003-1112-2284; Rello, Jordi/0000-0003-0676-6210 FU American Heart Association; NIH [K02 AI065615, RO1 AI053674] FX This work was supported by an American Heart Association predoctoral fellowship to S. E. B. and by NIH grants K02 AI065615 and RO1 AI053674 to A. R. H.; We thank Peter Agron for advice and technical assistance with the subtractive hybridization technique, Laurence Rahme for assistance with the lettuce model of infection, Kathryn Bieging for experimental assistance, and Herbert Schweizer for providing the mini-CTX, pX1918G, pFlp2, and pEX100T vectors. NR 61 TC 31 Z9 31 U1 0 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2008 VL 190 IS 21 BP 7130 EP 7140 DI 10.1128/JB.00785-08 PG 11 WC Microbiology SC Microbiology GA 361ZF UT WOS:000260166900022 PM 18757543 ER PT J AU Isabel, S Leblanc, E Boissinot, M Boudreau, DK Grondin, M Picard, FJ Martel, EA Parham, NJ Chain, PSG Bader, DE Mulvey, MR Bryden, L Roy, PH Ouellette, M Bergeron, MG AF Isabel, Sandra Leblanc, Eric Boissinot, Maurice Boudreau, Dominique K. Grondin, Myrian Picard, Francois J. Martel, Eric A. Parham, Nicholas J. Chain, Patrick S. G. Bader, Douglas E. Mulvey, Michael R. Bryden, Louis Roy, Paul H. Ouellette, Marc Bergeron, Michel G. TI Divergence among Genes Encoding the Elongation Factor Tu of Yersinia Species SO JOURNAL OF BACTERIOLOGY LA English DT Article ID COMPLETE GENOME SEQUENCE; RIBOSOMAL-RNA OPERONS; PHYLOGENETIC NETWORKS; SALMONELLA-TYPHIMURIUM; FREDERIKSENII STRAINS; DNA HYBRIDIZATION; 16S RDNA; SP-NOV; PESTIS; PSEUDOTUBERCULOSIS AB Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species. C1 [Isabel, Sandra; Leblanc, Eric; Boissinot, Maurice; Boudreau, Dominique K.; Grondin, Myrian; Picard, Francois J.; Martel, Eric A.; Parham, Nicholas J.; Roy, Paul H.; Ouellette, Marc; Bergeron, Michel G.] Univ Laval, CHUQ, Pavillon CHUL, Ctr Rech Infectiol, Quebec City, PQ G1V 4G2, Canada. [Chain, Patrick S. G.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA USA. [Chain, Patrick S. G.] Joint Genome Inst, Microbial Program, Walnut Creek, CA USA. [Chain, Patrick S. G.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Bader, Douglas E.] Def R&D Canada Suffield, Medicine Hat, AB, Canada. [Mulvey, Michael R.; Bryden, Louis] Publ Hlth Agcy Canada, Natl Microbiol Lab, Winnipeg, MB, Canada. RP Bergeron, MG (reprint author), Univ Laval, CHUQ, Pavillon CHUL, Ctr Rech Infectiol, 2705 Blvd Laurier, Quebec City, PQ G1V 4G2, Canada. EM Michel.G.Bergeron@crchul.ulaval.ca RI Grondin, Myrian/C-6979-2011; chain, patrick/B-9777-2013 FU CBRN Research and Technology Initiative [CRTI-0154RD]; Genome Canada; Genome Quebec; Infectio Diagnostic Inc.; Canadian Institutes of Health Research [PA-15586]; Fondation Dr George Phenix (Montreal, Canada); Fonds de la Recherche en Santedu Quebec (Montreal, Canada); Natural Sciences and Engineering Research Council of Canada (Ottawa, Canada) FX We thank Martine Bastien, France Begin, Eve Berube, Karel Boissinot, Xavier Bouhy, Gilles Chabot, Natalie Clairoux, Richard Giroux, Marie-Claude Helie, Jean-Luc Simard, Viridiana Sistek, and Mario Vaillancourt for their technical support.; This research project was funded by the CBRN Research and Technology Initiative under project CRTI-0154RD, Genome Canada, Genome Quebec, Infectio Diagnostic Inc., and the Canadian Institutes of Health Research (grant PA-15586). S. I. received scholarships from the Fondation Dr George Phenix (Montreal, Canada) and the Fonds de la Recherche en Santedu Quebec (Montreal, Canada). P. S. G. C. received a scholarship from the Natural Sciences and Engineering Research Council of Canada (Ottawa, Canada). NR 62 TC 8 Z9 8 U1 1 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2008 VL 190 IS 22 BP 7548 EP 7558 DI 10.1128/JB.01067-08 PG 11 WC Microbiology SC Microbiology GA 365TC UT WOS:000260429700023 PM 18790860 ER PT J AU Coblentz, D Keating, PL AF Coblentz, D. Keating, P. L. TI Topographic controls on the distribution of tree islands in the high Andes of south-western Ecuador SO JOURNAL OF BIOGEOGRAPHY LA English DT Article DE Andes; Cajas National Park; fire ecology; geoecology; geomorphometry; landscape ecology; Polylepis; remote sensing; topographic analysis; tropical montane forest ID LAND-USE; PARAMO VEGETATION; CENTRAL ARGENTINA; PASOCHOA VOLCANO; NATIONAL-PARK; RAIN-FOREST; CLASSIFICATION; COVER; FIRE; MOUNTAINS AB Aim To evaluate the hypothesis that geomorphometric parameters of upper montane Andean environments have an important influence on the regional fire ecology and consequently play a role in the spatial distribution of 'remnant' tree islands dominated by Polylepis. Location A glacial landscape located between 3600 and 4400 m elevation in Cajas National Park, south-western Ecuador. Methods The eigenvalue ratio method was used to evaluate the regional geomorphometric parameters of a 30-m digital elevation model for Cajas National Park. The landscape character was evaluated by quantifying the topographic roughness, organization, and gradient. This information was used to determine the spatial correlations between terrain characteristics and the distribution of tree islands in the region. Results We demonstrate a strong spatial correlation between areas of high topographic roughness and gradient, and the locations of the major tree islands. We find that there is a distinctive relationship between the topographic roughness and organization in the vicinity of the tree islands (e.g. increased upslope roughness and decreased topographic grain strength) that substantiates the notion that the tree islands are located in relatively inaccessible topography. Main conclusions In the northern and central Andes, the location of Polylepis-dominated 'forest islands' has been shown to be a function of climate, terrain characteristics, and anthropogenic disturbances. Although the relative importance of various ecological factors has been debated, it remains clear that fires have exerted a strong influence on these ecosystems. Other authors have noted that tree islands are more likely to occur at the base of cliffs, above moist areas, and in other areas where fires do not burn frequently. Our results corroborate these observations, and demonstrate that the occurrence of Polylepis patches is strongly correlated with specific combinations of terrain features. Although we do not discount the importance of other factors in determining the spatial position and areal extent of these forests, we demonstrate strong support for fire-related hypotheses. C1 [Coblentz, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Keating, P. L.] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. RP Coblentz, D (reprint author), Los Alamos Natl Lab, MS F665, Los Alamos, NM 87545 USA. EM coblentz@lanl.gov FU Fulbright Commission of Ecuador; National Geographic Society, Indiana University; NSF [EAR-9422423] FX Research for this article was funded by the Fulbright Commission of Ecuador, the National Geographic Society, Indiana University, and NSF Grant EAR-9422423 awarded to B. Hansen, B. Leon, D. Rodbell, G. Seltzer, and K. R. Young. The Instituto Geografico Militar in Quito provided topographic maps and aerial photographs, and LAND INFO Worldwide Mapping, LLC created the DEM utilized in this study. We are grateful to INEFAN for providing a permit to conduct research within the park, to the herbarium staff at the Catholic University in Quito for providing facilities and logistical support, and to Stephanie Dickenson and Tom Evans for providing statistical consulting. The program GMT (Wessel & Smith, 1991) was used for a large part of the analysis as well as for the figures in this paper. NR 89 TC 20 Z9 23 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0305-0270 J9 J BIOGEOGR JI J. Biogeogr. PD NOV PY 2008 VL 35 IS 11 BP 2026 EP 2038 DI 10.1111/j.1365-2699.2008.01956.x PG 13 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 359VK UT WOS:000260016000008 ER PT J AU Barnard, AS Sternberg, M AF Barnard, A. S. Sternberg, M. TI Vacancy Induced Structural Changes in Diamond Nanoparticles SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE Vacancy; Defect; Diamond; Nanoparticle; Graphitization; Theory and Simulation ID NANOCRYSTALLINE DIAMOND; ULTRANANOCRYSTALLINE DIAMOND; DEFECT CENTERS; CVD DIAMOND; NITROGEN; FILMS; EMISSION; SURFACE; NANODIAMOND; DEPOSITION AB Although optically active defects in nanodiamond are being considered as candidates for optical labeling in biomedical applications, development in this area is being hindered the fact that suitable defects are rarely seen in diamond nanoparticles in the size regime required. These defects usually form as a complex with an impurity and a neutral of charged vacancy, so a measurable concentration of vacancy point defects is also necessary. Presented here are results of density functional tight binding computer simulations investigating the stability of vacancies in diamond nanoparticles with different surface structures. The results indicate that both neutral and charged vacancies alter the structure of as-grown diamond nanoparticles and are likely to diffuse out of the particle during synthesis or irradiation. We also find that suitable passivation of the particle may alleviate this problem, and hence facilitate the formation of defect complexes. C1 [Barnard, A. S.] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia. [Sternberg, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Barnard, AS (reprint author), Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia. RI Barnard, Amanda/A-7340-2011 OI Barnard, Amanda/0000-0002-4784-2382 FU US Department of Energy; Basic Energy Sciences [DE-AC02-06CH11357] FX This work has been supported by the US Department of Energy, Basic Energy Sciences. under contract DE-AC02-06CH11357. Computational resources for this project have been supplied the Oxford Supercomputing Centre (OSC), and the Victorian Partnership for Advance Computing (VPAC) facility. NR 40 TC 14 Z9 14 U1 0 U2 5 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD NOV PY 2008 VL 5 IS 11 BP 2089 EP 2095 DI 10.1166/jctn.2008.1102 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 376VQ UT WOS:000261211500002 ER PT J AU Cahn, RN de Putter, R Linder, EV AF Cahn, Robert N. de Putter, Roland Linder, Eric V. TI Field flows of dark energy SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy theory; cosmological constant experiments ID QUINTESSENCE; COSMOLOGY; SPACE AB Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen randomly. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases from the literature. C1 [Cahn, Robert N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cahn, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rncahn@lbl.gov; rdeputter@berkeley.edu; evlinder@lbl.gov FU Director; Office of Science; Office of High Energy Physics; US Department of Energy [DE-AC0205CH11231] FX We thank Steven Weinberg for motivating part of this work and Wayne Hu for useful discussions. EL and RdP are grateful to the Michigan Center for Theoretical Physics for hospitality. RNC thanks Institut National de Physique Nucleaire et de Physique des Particules for support and the Laboratoire de Physique Nucleaire et Hautes Energies for its hospitality. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-AC0205CH11231. NR 28 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2008 IS 11 AR 015 DI 10.1088/1475-7516/2008/11/015 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 377OJ UT WOS:000261260200010 ER PT J AU Turetsky, MR Crow, SE Evans, RJ Vitt, DH Wieder, RK AF Turetsky, Merritt R. Crow, Susan E. Evans, Robert J. Vitt, Dale H. Wieder, R. Kelman TI Trade-offs in resource allocation among moss species control decomposition in boreal peatlands SO JOURNAL OF ECOLOGY LA English DT Article DE boreal; climate change; decomposition; metabolism; mosses; non-structural carbohydrates; peatlands; resource allocation; Sphagnum; structural carbohydrates ID LITTER DECOMPOSITION; SPHAGNUM MOSSES; WATER LEVEL; CARBON; PEAT; ECOSYSTEMS; CANADA; GROWTH; BIODIVERSITY; PATTERNS AB 1. We separated the effects of plant species controls on decomposition rates from environmental controls in northern peatlands using a full factorial, reciprocal transplant experiment of eight dominant bryophytes in four distinct peatland types in boreal Alberta, Canada. Standard fractionation techniques as well as compound-specific pyrolysis molecular beam mass spectrometry were used to identify a biochemical mechanism underlying any interspecific differences in decomposition rates. 2. We found that over a 3-year field incubation, individual moss species and not micro-environmental conditions controlled early stages of decomposition. Across species, Sphagnum mosses exhibited a trade-off in resource partitioning into metabolic and structural carbohydrates, a pattern that served as a strong predictor of litter decomposition. 3. Decomposition rates showed a negative co-variation between species and their microtopographic position, as species that live in hummocks decomposed slowly but hummock microhabitats themselves corresponded to rapid decomposition rates. By forming litter that degrades slowly, hummock mosses appear to promote the maintenance of macropore structure in surface peat hummocks that aid in water retention. 4. Synthesis. Many northern regions are experiencing rapid climate warming that is expected to accelerate the decomposition of large soil carbon pools stored within peatlands. However, our results suggest that some common peatland moss species form tissue that resists decomposition across a range of peatland environments, suggesting that moss resource allocation could stabilize peatland carbon losses under a changing climate. C1 [Turetsky, Merritt R.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. [Crow, Susan E.] Queens Univ Belfast, CHRONO Ctr, Belfast, Antrim, North Ireland. [Evans, Robert J.] Natl Renewable Energy Lab, Golden, CO USA. [Vitt, Dale H.] So Illinois Univ, Dept Plant Biol, Carbondale, IL 62901 USA. [Wieder, R. Kelman] Villanova Univ, Dept Biol, Villanova, PA 19085 USA. RP Turetsky, MR (reprint author), Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. EM mrt@uoguelph.ca RI Turetsky, Merritt/B-1255-2013 NR 60 TC 81 Z9 82 U1 5 U2 58 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-0477 J9 J ECOL JI J. Ecol. PD NOV PY 2008 VL 96 IS 6 BP 1297 EP 1305 DI 10.1111/j.1365-2745.2008.01438.x PG 9 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA 361DU UT WOS:000260108500017 ER PT J AU Ueda, K Fukuzawa, H Liu, XJ Sakai, K Prumper, G Morishita, Y Saito, N Suzuki, IH Nagaya, K Iwayama, H Yao, M Kreidi, K Schoffler, M Jahnke, T Schossler, S Dorner, R Weber, T Harries, J Tamenori, Y AF Ueda, K. Fukuzawa, H. Liu, X. -J. Sakai, K. Pruemper, G. Morishita, Y. Saito, N. Suzuki, I. H. Nagaya, K. Iwayama, H. Yao, M. Kreidi, K. Schoeffler, M. Jahnke, T. Schoessler, S. Doerner, R. Weber, Th. Harries, J. Tamenori, Y. TI Interatomic Coulombic decay following the Auger decay: Experimental evidence in rare-gas dimers SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Interatomic Coulombic decay; Rare-gas dimer; Auger decay; Coincidence ID MOMENTUM IMAGING SPECTROSCOPY; PHOTOCHEMISTRY BEAMLINE BL27SU; POTENTIAL-ENERGY FUNCTIONS; DIATOMIC-MOLECULES; HIGH-RESOLUTION; NOBLE-GASES; KR 3D; ION; PHOTOIONIZATION; TRANSITIONS AB Interatomic Coulombic decay (ICD) in Ar(2), ArKr and Kr(2) following Ar 2p or Kr 3d Auger decay has been investigated by means of momentum-resolved electron-ion-ion coincidence spectroscopy. This sequential decay leads to Coulombic dissociation into dication and monocation. Simultaneously determining the kinetic energy of the ICD electron and the kinetic energy release between the two atomic ions, we have been able to unambiguously identify the ICD channels. We find that, in general, spin-conserved ICD, in which the singlet (triplet) dicationic state produced via the atomic Auger decay preferentially decays to the singlet (triplet) state, transferring the energy to the other atom, is faster than spin-flip ICD, in which the Auger final singlet (triplet) dicationic state decays to the triplet (singlet) state. However, spin-flip ICD may take place when spin-conserved ICD becomes energetically forbidden. Dipole-forbidden ICDs from Kr(2+)(4s(-2) (1)S)-B (B = Ar or Kr) to Kr(2+)(4p(-2) (1)D, (3)P)-B(+) are also observed. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ueda, K.; Fukuzawa, H.; Liu, X. -J.; Sakai, K.; Pruemper, G.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Morishita, Y.; Saito, N.; Suzuki, I. H.] NMIJ, Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Suzuki, I. H.] Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan. [Nagaya, K.; Iwayama, H.; Yao, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Kreidi, K.] DESY, D-22607 Hamburg, Germany. [Schoeffler, M.; Jahnke, T.; Schoessler, S.; Doerner, R.] Univ Frankfurt, D-60438 Frankfurt, Germany. [Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harries, J.; Tamenori, Y.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. RP Ueda, K (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. EM ueda@tagen.tohoku.ac.jp RI Liu, XJ/G-4152-2010; Harries, James/G-2336-2011; Doerner, Reinhard/A-5340-2008; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008; Tamenori, Yusuke/F-8867-2014; Saito, Norio/E-2890-2014 OI Harries, James/0000-0003-2173-0697; Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848; Tamenori, Yusuke/0000-0001-8004-895X; FU JASRI [2007A1394-NSb-np, 2007A1602-NSb-np]; Japan Society for Promotion of Science (JSPS); Ministry of Education, Culture, Sports, Science and Technology (MEXT); BMBF; DFG; DESY FX The experiments were performed at SPring-8 with the approval of JASRI (2007A1394-NSb-np and 2007A1602-NSb-np). The authors are grateful to S. Stoychev, A. Kuleff, V. Averbukh and L.S. Cederbaurn for discussion on theoretical aspects. The work was supported by Grants-in-Aid for Scientific Research from the Japan Society for Promotion of Science (JSPS), by the Budget for "Promotion of X-ray Free Electron Laser Research" from Ministry of Education, Culture, Sports, Science and Technology (MEXT), and by BMBF and DFG. XJL acknowledges JSPS for financial support. KK acknowledges financial support by DESY and the HGF Initiative and Networking Fund. NR 48 TC 18 Z9 18 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD NOV PY 2008 VL 166 SI SI BP 3 EP 10 DI 10.1016/j.elspec.2008.03.002 PG 8 WC Spectroscopy SC Spectroscopy GA 378VZ UT WOS:000261354000002 ER PT J AU Boutet, S Bogan, MJ Barty, A Frank, M Benner, WH Marchesini, S Seibert, MM Hajdu, J Chapman, HN AF Boutet, Sebastien Bogan, Michael J. Barty, Anton Frank, Matthias Benner, W. Henry Marchesini, Stefano Seibert, M. Marvin Hajdu, Janos Chapman, Henry N. TI Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Soft-X-ray free-electron-laser; Spherical nanoparticles; X-ray diffractive imaging ID FREE-ELECTRON LASER; HOLOGRAPHY; CRYSTALLOGRAPHY; MICROSCOPY; OBJECTS; TIME AB We report the first successful reconstruction of the real space image from coherent X-ray diffraction patterns of membrane-supported nanoparticles using single ultrafast pulses. The particles consisted of 145-nm spherical polystyrene spheres that were size-selected by differential mobility analysis. We investigated the dependence of signal intensity on the number of spherical nanoparticles irradiated by single ultrafast pulses at the FLASH FEL facility. We demonstrate detection of as few as two 145-nm diameter particles irradiated by a single 32 nm fs-long FLASH pulse focused to 2.4Jcm(-2). In this case the noise in the diffraction pattern. due to photon-counting statistics and scattering from the supporting silicon nitride membrane, was the largest contributor to the recorded intensity. We were able to reconstruct high-resolution images of the nanoparticles using a strong scattering reference object to aid the phase retrieval of the coherent diffraction pattern. This method of reference-enhanced diffractive imaging may allow the imaging of weakly scattering objects at FLASH and other future X-ray FEL sources. Published by Elsevier B.V. C1 [Boutet, Sebastien; Hajdu, Janos] Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Bogan, Michael J.; Barty, Anton; Frank, Matthias; Benner, W. Henry; Marchesini, Stefano; Chapman, Henry N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boutet, Sebastien; Seibert, M. Marvin; Hajdu, Janos] Uppsala Univ, Lab Mol Biophys, Inst Cell & Mol Biol, S-75124 Uppsala, Sweden. [Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Boutet, S (reprint author), Stanford Linear Accelerator Ctr, Linac Coherent Light Source, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM sboutet@slac.stanford.edu RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Bogan, Mike/I-6962-2012; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014; OI Chapman, Henry/0000-0002-4655-1743; Bogan, Mike/0000-0001-9318-3333; Barty, Anton/0000-0003-4751-2727; Seibert, Mark Marvin/0000-0003-0251-0744 FU U.S. Department of Energy [W-7405-Eng-48]; Lawrence Livermore National Laboratory [05-SI-003]; National Center for Electron Microscopy; Natural Sciences and Engineering Research Council of Canada; Stanford Linear Accelerator Center [DE-AC02-76-SF00515]; European Union (TUIXS); Swedish Research Councils; DFG-Cluster of Excellence through the Munich-Centre for Advanced Photonics; [DE-AC52-07NA27344] FX Special thanks are due to the scientific and technical staff of the FLASH at DESY, Hamburg, in particular to R. Treusch, J. Schneider, S. Dusterer, T. Tschentscher, J. Feldhaus, R.L. Johnson, U. Hahn, T. Nunez, K. Tiedtke, S. Toleikis, E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. We are grateful to our collaborators in T. Moller's group at Technische Universitat Berlin for accomodating our experiment in their vacuum chamber. We also thank T. McCarville, F. Weber, and M. Haro for technical help with these experiments. This work was supported by the following agencies: The U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344, Lawrence Livermore National Laboratory (the project 05-SI-003 from the Laboratory Directed Research and Development Program of LLNL); The National Center for Electron Microscopy; and the Natural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship to M.J.B.); The Stanford Linear Accelerator Center under DOE contract DE-AC02-76-SF00515; the European Union (TUIXS); The Swedish Research Councils, the DFG-Cluster of Excellence through the Munich-Centre for Advanced Photonics. NR 29 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD NOV PY 2008 VL 166 SI SI BP 65 EP 73 DI 10.1016/j.elspec.2008.06.004 PG 9 WC Spectroscopy SC Spectroscopy GA 378VZ UT WOS:000261354000010 ER PT J AU Moseley, RA Barnett, MO Stewart, MA Mehlhorn, TL Jardine, PM Ginder-Vogel, M Fenclorf, S AF Moseley, Rebecca A. Barnett, Mark O. Stewart, Melanie A. Mehlhorn, Tonia L. Jardine, Philip M. Ginder-Vogel, Matthew Fenclorf, Scott TI Decreasing Lead Bioaccessibility in Industrial and Firing Range Soils with Phosphate-Based Amendments SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID IN-SITU STABILIZATION; PB-CONTAMINATED SOILS; MANGANESE OXIDE; RISK-ASSESSMENT; AMENDED SOILS; PHOSPHORUS; BIOAVAILABILITY; IMMOBILIZATION; SPECIATION; BIOSOLIDS AB In-situ stabilization using phosphate (P) amendments, such as P-based fertilizers and rock, are a potentially cost-effective and minimally disruptive alternative for stabilizing Pb in soils. We examined the effect of time (0-365 d), in vitro extraction pH (1.5 vs. 2.3), and dosage of three P-based amendments on the bioaccessibility (as a surrogate for oral bioavailability) of Pb in 10 soils from U.S. Department of Defense facilities. Initial untreated soil bioaccessibility consistently exceeded the U.S. Environmental Protection Agency default value of 60% relative bioavailability, with higher bioaccessibiliry consistently observed at an in vitro extraction pH of 1.5 vs. 2.3. Although P-based amendments statistically (P < 0.05) reduced bioaccessibility in many instances, with reductions dependent on the amendment and dosage, large amendment dosages (approximately 20-25% by mass to yield 5% P by mass) were required to reduce average bioaccessibility by approximately 25%. For most amendment combinations, reductions continued to occur for periods up to 1 yr, indicating that the observed reductions were not merely experimental artifacts of the in vitro extraction procedure. Although our results indicated that reductions in Pb bioaccessibility with P amendments are technically feasible, relatively large amendment masses were required to achieve relatively modest reductions in bioaccessibility The cost and potential environmental implications of adding such large amounts of P may limit the practicality of in situ immobilization for some Pb-contaminated soils, industrial and firing range soils in particular. C1 [Moseley, Rebecca A.; Barnett, Mark O.] Auburn Univ, Dept Civil Engn, Auburn, AL 36849 USA. [Mehlhorn, Tonia L.; Jardine, Philip M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Ginder-Vogel, Matthew; Fenclorf, Scott] Stanford Univ, Dep Geol & Environm Sci, Stanford, CA 94305 USA. RP Barnett, MO (reprint author), Auburn Univ, Dept Civil Engn, 208 Harbert Engn Ctr, Auburn, AL 36849 USA. EM mark.barnett@auburn.edu FU Strategic Environmental Research and Development Program (SERDP); U.S. Department of Education FX This research was sponsored by the Strategic Environmental Research and Development Program (SERDP) under the direction of Dr. Andrea Leeson. The lead author (RAM) was also supported in part by a GAANN Fellowship from the U.S. Department of Education. The authors appreciate the assistance of Kent Hartzog and Vijay Loganathan and the comments of three anonymous reviewers who greatly improved the manuscript. NR 45 TC 17 Z9 17 U1 1 U2 6 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD NOV-DEC PY 2008 VL 37 IS 6 BP 2116 EP 2124 DI 10.2134/jeq2007.0426 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 372ZW UT WOS:000260941800014 PM 18948465 ER PT J AU Robel, M Kristo, MJ AF Robel, Martin Kristo, Michael J. TI Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE PCA; PLSDA; Classification; Nuclear reactor; Nuclear fuel; Discriminant analysis ID RADIONUCLIDES AB The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Robel, Martin; Kristo, Michael J.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Robel, M (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 E Ave, Livermore, CA 94550 USA. EM robel1@llnl.gov FU U.S. Department of Energy; University of California Lawrence Livermore National Laboratory [7405-En-48] FX The authors wish to express their gratitude to 1. Hutcheon for supporting this research and to S. Bowman, 1. Gauld, G. Nicolaou, J. Shaver, and D. Vogt for valuable technical insight and feedback. This work was performed under the auspice of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-En-48. NR 19 TC 7 Z9 8 U1 2 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD NOV PY 2008 VL 99 IS 11 BP 1789 EP 1797 DI 10.1016/j.jenvrad.2008.07.004 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 377SX UT WOS:000261272000010 PM 18774205 ER PT J AU Socha, JJ Lee, WK Harrison, JF Waters, JS Fezzaa, K Westneat, MW AF Socha, John J. Lee, Wah-Keat Harrison, Jon F. Waters, James S. Fezzaa, Kamel Westneat, Mark W. TI Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle SO JOURNAL OF EXPERIMENTAL BIOLOGY LA English DT Article DE beetle; convection; gas exchange; imaging; synchrotron x-ray; tracheal compression ID ACID-BASE STATUS; INSECT RESPIRATION; ACTIVE REGULATION; NERVOUS-SYSTEM; VENTILATION; PHASE; PUPAE; DIFFUSION; FLIGHT; GRASSHOPPERS AB Rhythmic tracheal compression is a prominent feature of internal dynamics in multiple orders of insects. During compression parts of the tracheal system collapse, effecting a large change in volume, but the ultimate physiological significance of this phenomenon in gas exchange has not been determined. Possible functions of this mechanism include to convectively transport air within or out of the body, to increase the local pressure within the tracheae, or some combination thereof. To determine whether tracheal compressions are associated with excurrent gas exchange in the ground beetle Pterostichus stygicus, we used flow-through respirometry and synchrotron x-ray phase-contrast imaging to simultaneously record CO(2) emission and observe morphological changes in the major tracheae. Each observed tracheal compression (which occurred at a mean frequency and duration of 15.6 +/- 4.2 min(-1) and 2.5 +/- 0.8 s, respectively) was associated with a local peak in CO(2) emission, with the start of each compression occurring simultaneously with the start of the rise in CO(2) emission. No such pulses were observed during inter-compression periods. Most pulses occurred on top of an existing level of CO(2) release, indicating that at least one spiracle was open when compression began. This evidence demonstrates that tracheal compressions convectively pushed air out of the body with each stroke. The volume of CO(2) emitted per pulse was 14 +/- 4 nl, representing approximately 20% of the average CO(2) emission volume during x-ray irradiation, and 13% prior to it. CO(2) pulses with similar volume, duration and frequency were observed both prior to and after x-ray beam exposure, indicating that rhythmic tracheal compression was not a response to x-ray irradiation per se. This study suggests that intra-tracheal and trans-spiracular convection of air driven by active tracheal compression may be a major component of ventilation for many insects. C1 [Socha, John J.; Lee, Wah-Keat; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Harrison, Jon F.] Arizona State Univ, Sect Organismal Integrat & Syst Biol, Tempe, AZ 85287 USA. [Waters, James S.; Westneat, Mark W.] Field Museum Nat Hist, Dept Zool, Chicago, IL 60605 USA. RP Socha, JJ (reprint author), Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. EM jjsocha@vt.edu RI Waters, James/B-3878-2010; OI Waters, James/0000-0002-9804-1585; Waters, James/0000-0001-7077-9441 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Melina Hale for use of the Picospritzer III, John Lighton and Jaco Klok for discussion, Alexander Kaiser for critical reading of the manuscript, Steve Deban for advice, and Kendra Greenlee for providing suggestive preliminary data on respirometry for Platynus decentis. We also thank two anonymous reviewers for helpful comments. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 55 TC 36 Z9 37 U1 4 U2 10 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0022-0949 J9 J EXP BIOL JI J. Exp. Biol. PD NOV 1 PY 2008 VL 211 IS 21 BP 3409 EP 3420 DI 10.1242/jeb.019877 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 361YU UT WOS:000260165100016 PM 18931314 ER PT J AU Chrisman, W Knize, MG Tanga, MJ AF Chrisman, W. Knize, M. G. Tanga, M. J. TI Synthesis and Mutagenic Potency of Structural Isomers of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine SO JOURNAL OF HETEROCYCLIC CHEMISTRY LA English DT Article ID HETEROCYCLIC AMINES; DIETARY CARCINOGEN; COOKED-BEEF; 2-AMINO-1-METHYL-6-PHENYLIMIDAZO<4,5-B>PYRIDINE; 2-AMINO-3,4-DIMETHYL-3H-IMIDAZO<4,5-F>QUINOLINE; AMINOPYRIDINES; IDENTIFICATION; METABOLISM; PRODUCTS; HUMANS AB Synthesis of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), three structural isomers, and two desphenyl PhIP congeners has been carried out. Mutagenic potency was evaluated using S. typhimurium strain TA98 in the Ames test. Mutagenic potency increased in relation to structural features in these heterocyclic amines that allow extended resonance between the phenyl and imidazo[4,5-b]pyridine N(2)-amino substituents. By contrast, PhIP isomers, whose substitution disallows involvement of the phenyl group in their aminoimidazo resonance hybrids, and desphenyl congeners were from 86- to 234-fold less mutagenic than PhIP. C1 [Chrisman, W.; Tanga, M. J.] SRI Int, Biosci Div, Menlo Pk, CA 94025 USA. [Knize, M. G.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Tanga, MJ (reprint author), SRI Int, Biosci Div, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. EM mary.tanga@sri.com NR 33 TC 8 Z9 8 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-152X J9 J HETEROCYCLIC CHEM JI J. Heterocycl. Chem. PD NOV-DEC PY 2008 VL 45 IS 6 BP 1641 EP 1649 PG 9 WC Chemistry, Organic SC Chemistry GA 374XS UT WOS:000261077600014 ER PT J AU Cirigliano, V Giannotti, M Neufeld, H AF Cirigliano, Vincenzo Giannotti, Maurizio Neufeld, Helmut TI Electromagnetic effects in Kl(3) decays SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Electromagnetic Processes and Properties; Chiral Lagrangians; Kaon Physics; Standard Model ID CHIRAL PERTURBATION-THEORY; RADIATIVE-CORRECTIONS; VIRTUAL PHOTONS; ENERGY AB We study the radiative corrections to all K-l3 decay modes to leading non-trivial order in the chiral effective field theory, working with a fully inclusive prescription on real photon emission. We present new results for K-mu 3 modes and update previous results on K-e3 modes. Our analysis provides important theoretical input for the extraction of the CKM element V-us from K-l3 C1 [Cirigliano, Vincenzo; Giannotti, Maurizio] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Neufeld, Helmut] Univ Vienna, Fak Phys, A-1090 Vienna, Austria. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM cirigliano@lanl.gov; maurizio@lanl.gov; Helmut.Neufeld@univie.ac.at NR 43 TC 12 Z9 12 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 006 PG 15 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100006 ER PT J AU Davoudiasl, H AF Davoudiasl, Hooman TI New dimensions for Randall-Sundrum phenomenology SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Phenomenology of Field Theories in Higher Dimensions ID EXTRA DIMENSIONS; GEOMETRY; FIELDS AB We consider a 6D extension of the Randall-Sundrum (RS) model, RS6, where the Standard Model (SM) gauge fields are allowed to propagate in an additional dimension, compactified on S1 or S1/Z2. In a minimal scenario, fermions propagate in the 5D RS subspace and their localization provides a model of flavor. New Kaluza-Klein (KK) states, corresponding to excitations of the gauge fields along the 6(th) dimension, appear near the TeV scale. The new gauge KK modes behave differently from those in the 5D warped models. These RS6 states have couplings with strong dependence on 5D field localization and, within the SM, only interact with heavy fermions and the Higgs sector, to a very good approximation. Thus, the collider phenomenology of the new gauge KK states sensitively depends on the 5D fermion geography. We briefly discuss inclusion of SM fermions in all 6 dimensions, as well as the possibility of going beyond 6D. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov FU DOE [DE-AC02-98CH10886] FX We thank Sally Dawson for discussions. H.D. is supported in part by the DOE grant DE-AC02-98CH10886 NR 35 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 013 PG 14 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100013 ER PT J AU Kitano, R AF Kitano, Ryuichiro TI Study of chargino-neutralino production at hadron colliders in a long-lived slepton scenario SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetric Standard Model; Supersymmetry Phenomenology ID GAUGE-BOSON COUPLINGS; MEDIATED SUPERSYMMETRY BREAKING; BIG-BANG NUCLEOSYNTHESIS; E(+)E(-) COLLISIONS; W-BOSON; GRAVITINO; PARTICLES; E+E-->W+W; DECAY; PAIRS AB The differential cross section of the chargino-neutralino production, q (q) over bar -> (XX0)-X-+/-, followed by their decays into scalar tau leptons, (XX0)-X-+/- -> ((tau) over tilde (+/-)nu) ((tau) over tilde (-/+)tau(+/-)) -> ((tau) over tilde (+/-)nu) ((tau) over tilde (-/+)ll(+/-)nu(nu) over bar), is calculated including the effect of spin correlations. In the case where (tau) over tilde is long-lived, this final state can be fully reconstructed in a hadron-collider experiment up to a discrete two-fold ambiguity. Distributions of various kinematic variables can thus be observable and tell us about masses and spins of superparticles and also parity/CP violation in interactions by comparing with the cross-section formula. Observing non-trivial distributions derived in this paper will be a good test of supersymmetry. C1 Los Alamos Natl Lab, Theoret Div T 8, Los Alamos, NM 87545 USA. RP Kitano, R (reprint author), Los Alamos Natl Lab, Theoret Div T 8, Los Alamos, NM 87545 USA. EM kitano@lanl.gov NR 55 TC 8 Z9 8 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 045 PG 30 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100045 ER PT J AU Poland, D Thaler, J AF Poland, David Thaler, Jesse TI The dark top SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Beyond Standard Model; Global Symmetries; Technicolor and Composite Models ID SYMMETRY-BREAKING; PHENOMENOLOGICAL LAGRANGIANS; WEINBERG ANGLE; MODEL; MATTER; HIGGS; SUPERSYMMETRY; DIMENSIONS; VIOLATION; GEOMETRY AB We present a class of composite Higgs models in which the particle that regulates the top quark contribution to the Higgs potential is also a weakly-interacting dark matter candidate. This color-neutral "dark top" is related to the standard model top quark through a large global symmetry. Because the same couplings that control the Higgs potential also determine various dark matter cross sections, the dark top scenario is quite predictive once the dark top mass and various quantum numbers are specified. We construct two concrete examples of dark top models with plausible UV completions and study their dark matter properties and LHC signatures. C1 [Poland, David; Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Poland, David; Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Poland, David] Harvard Univ, Dept Phys, Jefferson Lab, Cambridge, MA 02138 USA. RP Poland, D (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, 366 LeConte Hall 7300, Berkeley, CA 94720 USA. EM dpoland@gmail.com; jthaler@jthaler.net RI Poland, David/A-8689-2015 OI Poland, David/0000-0003-3854-2430 NR 101 TC 13 Z9 13 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 083 PG 36 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100083 ER PT J AU Rizzo, TG AF Rizzo, Thomas G. TI Unique signatures of unparticle resonances at the LHC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Gauge Symmetry ID PHYSICS; PHENOMENOLOGY AB The coupling of unparticles to the Standard Model (SM) Higgs boson leads to a breaking of conformal symmetry which produces an effective mass term in the unparticle propagator. Simultaneously, the unparticle couplings to other SM fields produces an effective unparticle decay width via one-loop self-energy graphs. The resulting unparticle propagator then leads to a rather unique appearance for the shape of unparticle resonances that are not of the usual Breit-Wigner variety when they form in high energy collisions. In this paper we explore whether or not such resonances, appearing in the Drell-Yan channel at the LHC, can be differentiated from more conventional Z'-like structures which are representative of the typical Breit-Wigner lineshape. We will demonstrate that even with the high integrated luminosities available at the LHC it may be difficult to differentiate these two types of resonance structures for a substantial range of the unparticle model parameters. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Rizzo, TG (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM rizzo@slac.stanford.edu FU Department of Energy [DE-AC02-76SF00515] FX Work supported in part by the Department of Energy, Contract DE-AC02-76SF00515 NR 30 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 039 PG 15 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100039 ER PT J AU Vitev, I Wicks, S Zhang, BW AF Vitev, Ivan Wicks, Simon Zhang, Ben-Wei TI A theory of jet shapes and cross sections: from hadrons to nuclei SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; Phenomenological Models; Hadronic Colliders ID MULTIPLE PARTON SCATTERING; RADIATIVE ENERGY-LOSS; QCD MATTER; COLLISIONS; LHC; QGP AB For jets, with great power comes great opportunity. The unprecedented center of mass energies available at the LHC open new windows on the QGP: we demonstrate that jet shape and jet cross section measurements become feasible as a new, differential and accurate test of the underlying QCD theory. We present a first step in understanding these shapes and cross sections in heavy ion reactions. Our approach allows for detailed simulations of the experimental acceptance/cuts that help isolate jets in such high-multiplicity environment. It is demonstrated for the first time that the pattern of stimulated gluon emission can be correlated with a variable quenching of the jet rates and provide an approximately model-independent approach to determining the characteristics of the medium-induced bremsstrahlung spectrum. Surprisingly, in realistic simulations of parton propagation through the QGP we find a minimal increase in the mean jet radius even for large jet attenuation. Jet broadening is manifest in the tails of the energy distribution away from the jet axis and its quantification requires high statistics measurements that will be possible at the LHC. C1 [Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wicks, Simon] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Zhang, Ben-Wei] Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov; simonw@phys.columbia.edu; bzhang@lanl.gov NR 50 TC 26 Z9 26 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2008 IS 11 AR 093 PG 36 WC Physics, Particles & Fields SC Physics GA 378IT UT WOS:000261315100093 ER PT J AU Svenson, KL Ahituv, N Durgin, RS Savage, H Magnani, PA Foreman, O Paigen, B Peters, LL AF Svenson, Karen L. Ahituv, Nadav Durgin, Rebecca S. Savage, Holly Magnani, Phyllis A. Foreman, Oded Paigen, Beverly Peters, Luanne L. TI A new mouse mutant for the LDL receptor identified using ENU mutagenesis SO JOURNAL OF LIPID RESEARCH LA English DT Article DE N-ethyl-N-nitrosourea; atherosclerosis; hyperlipidemia; high-throughput phenotyping ID TRANSGENIC MICE; FAMILIAL HYPERCHOLESTEROLEMIA; ATHEROSCLEROTIC LESIONS; MISSENSE MUTATION; INBRED STRAINS; GENE; MODELS; EXPRESSION; SCREEN AB In an effort to discover new mouse models of cardiovascular disease using N-ethyl-N-nitrosourea (ENU) mutagenesis followed by high-throughput phenotyping, we have identified a new mouse mutation, C699Y, in the LDL receptor (Ldlr), named wicked high cholesterol (WHC). When WHC was compared with the widely used Ldlr knockout (KO) mouse, notable phenotypic differences between strains were observed, such as accelerated atherosclerotic lesion formation and reduced hepatosteatosis in the ENU mutant after a short exposure to an atherogenic diet. This loss-of-function mouse model carries a single base mutation in the Ldlr gene on an otherwise pure C57BL/6J (B6) genetic background, making it a useful new tool for understanding the pathophysiology of atherosclerosis and for evaluating additional genetic modifiers regulating hyperlipidemia and atherogenesis. Further investigation of genomic differences between the ENU mutant and KO strains may reveal previously unappreciated sequence functionality. C1 [Svenson, Karen L.; Durgin, Rebecca S.; Savage, Holly; Magnani, Phyllis A.; Foreman, Oded; Paigen, Beverly; Peters, Luanne L.] Jackson Lab, Bar Harbor, ME 04609 USA. [Ahituv, Nadav] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Svenson, KL (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. EM ksven@jax.org OI Ahituv, Nadav/0000-0002-7434-8144 FU National Heart, Lung, and Blood Institute [HL-66611] FX This work was supported by National Heart, Lung, and Blood Institute programs for genomic applications, Grant HL-66611. NR 32 TC 5 Z9 5 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0022-2275 J9 J LIPID RES JI J. Lipid Res. PD NOV PY 2008 VL 49 IS 11 BP 2452 EP 2462 DI 10.1194/jlr.M800303-JLR200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 359EP UT WOS:000259969500018 PM 18632552 ER PT J AU Xu, SJ Harel, E Michalak, DJ Crawford, CW Budker, D Pines, A AF Xu, Shoujun Harel, Elad Michalak, David J. Crawford, Charles W. Budker, Dmitry Pines, Alexander TI Flow in Porous Metallic Materials: A Magnetic Resonance Imaging Study SO JOURNAL OF MAGNETIC RESONANCE IMAGING LA English DT Article DE low-field MRI; laser detection; porous metal; flow imaging; remote detection; penetration depth ID ATOMIC MAGNETOMETER; FABRICATION; MEDIA; FIELD; NMR; MRI AB Purpose: To visualize flow dynamics of analytes inside porous metallic materials with laser-detected magnetic resonance imaging (MRI). Materials and Methods: We examine the flow of nuclear-polarized water in a porous stainless steel cylinder. Laser-detected MRI utilizes a sensitive optical atomic magnetometer as the detector. Imaging was performed in a remote-detection mode: the encoding was conducted in the Earth's magnetic field, and detection is conducted downstream of the encoding location. Conventional MRI (7T) was also performed for comparison. Results: Laser-detected MRI clearly showed MR images of water flowing through the sample, whereas conventional MRI provided no image. Conclusion: We demonstrated the viability of laser-detected MRI at low-field for studying porous metallic materials, extending MRI techniques to a new group of systems that is normally not accessible to conventional MRI. C1 [Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Shoujun; Harel, Elad; Michalak, David J.; Crawford, Charles W.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Xu, Shoujun; Harel, Elad; Michalak, David J.; Crawford, Charles W.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Shoujun; Harel, Elad; Michalak, David J.; Crawford, Charles W.; Budker, Dmitry; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Budker, D (reprint author), Univ Calif Berkeley, Dept Phys, Room 273,Birge Hall, Berkeley, CA 94720 USA. EM budker@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI); Nuclear Sciences Division of the U.S. Department of Energy FX Supported in part by grants from the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) and the Nuclear Sciences Division of the U.S. Department of Energy (both to D.B). NR 22 TC 8 Z9 8 U1 0 U2 7 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1053-1807 J9 J MAGN RESON IMAGING JI J. Magn. Reson. Imaging PD NOV PY 2008 VL 28 IS 5 BP 1299 EP 1302 DI 10.1002/jmri.21532 PG 4 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 367QC UT WOS:000260566100033 PM 18972341 ER PT J AU Velez, M Martin, JI Villegas, JE Hoffmann, A Gonzalez, EM Vicent, JL Schuller, IK AF Velez, M. Martin, J. I. Villegas, J. E. Hoffmann, A. Gonzalez, E. M. Vicent, J. L. Schuller, Ivan K. TI Superconducting vortex pinning with artificial magnetic nanostructures SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Review DE superconducting thin film; magnetic nanostructure; vortex pinning ID HIGH-TEMPERATURE SUPERCONDUCTORS; ANTIDOT PERMALLOY ARRAYS; NB THIN-FILMS; PERIODIC ARRAYS; FLUX QUANTA; CRITICAL CURRENTS; SQUARE LATTICE; REGULAR ARRAYS; NI DOTS; FERROMAGNET/SUPERCONDUCTOR BILAYER AB This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field. (C) 2008 Elsevier B.V. All rights reserved. C1 [Velez, M.; Martin, J. I.] Univ Oviedo, Dept Fis, CINN, E-33007 Oviedo, Spain. [Villegas, J. E.] CNRS Thales, Unite Mixte Phys, RD 128, F-91767 Palaiseau, France. [Villegas, J. E.] Univ Paris 11, F-91405 Orsay, France. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gonzalez, E. M.; Vicent, J. L.] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain. [Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. RP Velez, M (reprint author), Univ Oviedo, Dept Fis, CINN, Av Calvo Sotelo S-N, E-33007 Oviedo, Spain. EM mvelez@uniovi.es RI Hoffmann, Axel/A-8152-2009; Villegas, Javier E./C-7200-2011; Velez, Maria/A-2734-2012; Martin, Jose/C-5250-2013 OI Hoffmann, Axel/0000-0002-1808-2767; Villegas, Javier E./0000-0002-2096-3360; Velez, Maria/0000-0003-0311-7434; Martin, Jose/0000-0003-2256-0909 NR 224 TC 145 Z9 145 U1 9 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2008 VL 320 IS 21 BP 2547 EP 2562 DI 10.1016/j.jmmm.2008.06.013 PG 16 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 336WK UT WOS:000258395400003 ER PT J AU Rui, X Shield, JE Sun, Z Skomski, R Xu, Y Sellmyer, DJ Kramer, MJ Wu, YQ AF Rui, X. Shield, J. E. Sun, Z. Skomski, R. Xu, Y. Sellmyer, D. J. Kramer, M. J. Wu, Y. Q. TI Intra-cluster exchange-coupled high-performance permanent magnets SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE cluster; energy product; exchange-spring; magnetic material; inert gas condensation ID TRANSMISSION ELECTRON-MICROSCOPE; HIGH-ENERGY PRODUCTS; L1(0) FEPT; FILMS; MICROSTRUCTURE; NANOPARTICLES; MULTILAYERS AB Inert gas condensation has been used to produce Fe-rich Fe-Pt clusters imbedded in C or SiO(2). Compositions of the clusters ranged from the single-phase Fe(3)Pt phase field to the single-phase FePt phase field, and included compositions in the two-phase Fe(3)Pt + FePt phase field. The as-formed clusters formed in the A1 fcc structure for all compositions, and after proper heat treatment transformed to the Fe(3)Pt and/or FePt phases, depending on composition. Because the clusters were well isolated, the scale of the phases was limited by the cluster size. This intracluster structuring on such a. ne scale ensured that the soft Fe3Pt and hard FePt phases were fully magnetically exchange-coupled with each other, which allowed greater soft phase fractions comparing with previous work. Energy products of the two-phase clusters with 50% Fe(3)Pt exceeded 25MGOe, compared to 11.8MGOe for the single-phase FePt clusters. Micromagnetic simulations revealed remarkable similarities with the experimental results with respect to the relationship between both coercivity and energy product as a function of cluster composition. Published by Elsevier B.V. C1 [Rui, X.; Shield, J. E.] Univ Nebraska, Dept Mech Engn, Lincoln, NE 68588 USA. [Rui, X.; Shield, J. E.; Sun, Z.; Skomski, R.; Xu, Y.; Sellmyer, D. J.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Sun, Z.; Skomski, R.; Xu, Y.; Sellmyer, D. J.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Kramer, M. J.; Wu, Y. Q.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kramer, M. J.; Wu, Y. Q.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Rui, X (reprint author), Univ Nebraska, Dept Mech Engn, Lincoln, NE 68588 USA. EM repreter@hotmail.com NR 32 TC 12 Z9 12 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2008 VL 320 IS 21 BP 2576 EP 2583 DI 10.1016/j.jmmm.2008.03.042 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 336WK UT WOS:000258395400007 ER PT J AU Parish, CM Brennecka, GL Tuttle, BA Brewer, LN AF Parish, Chad M. Brennecka, Geoff L. Tuttle, Bruce A. Brewer, Luke N. TI Quantitative chemical analysis of fluorite-to-perovskite transformations in (Pb,La)(Zr,Ti)O-3 PLZT thin films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; MORPHOTROPIC PHASE-BOUNDARY; ZIRCONATE-TITANATE FILMS; SOLUTION DEPOSITION; PZT FILMS; GEL; CRYSTALLIZATION; NONSTOICHIOMETRY; STOICHIOMETRY; FABRICATION AB Lead loss during processing of solution-derived Pb(Zr,Ti)O-3 (PZT)-based thin-films call result ill the formation of a Pb-deficient, nonferroelectric fluorite phase that is detrimental to dielectric properties. It has recently been shown that this nonferroelectric fluorite phase can be converted to the desired perovskite phase by postcrystallization treatment. Here, quantitative standard-based energy-dispersive x-ray spectrometry (EDS) in a scanning transmission electron microscope (STEM) is used to study cation distribution before and after this fluorite-to-perovskite transformation. Single-phase perovskite PbZr0.53Ti0.47O3 (PZT 53/47) and Pb0.88La0.12Zr0.68Ti0.29O3 (PLZT 12/70/30) specimens that underwent this treatment were found to be chemically indistinguishable from the perovskite present in the multiphase specimens prior to the fluorite-to-perovskite transformation. Significant Zr-Ti Segregation IS found in PLZT 12/70/30 but not in PZT 53/47. Slight La-segregation was seen in rapidly crystallized PLZT, but not in more slowly crystallized PLZT. C1 [Parish, Chad M.; Brennecka, Geoff L.; Tuttle, Bruce A.; Brewer, Luke N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Parish, CM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cmparis@sandia.gov RI Brennecka, Geoff/J-9367-2012; Parish, Chad/J-8381-2013 OI Brennecka, Geoff/0000-0002-4476-7655; FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Thanks to P. Kotula, J. Michael, J. Sigman, and J. Goldstein for constructive criticism. NR 43 TC 7 Z9 7 U1 0 U2 3 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2008 VL 23 IS 11 BP 2944 EP 2953 DI 10.1557/JMR.2008.0353 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 373AU UT WOS:000260944200012 ER PT J AU Jiang, WH Liu, FX Liao, HH Choo, H Liaw, PK Edwards, BJ Khomami, B AF Jiang, W. H. Liu, F. X. Liao, H. H. Choo, H. Liaw, P. K. Edwards, B. J. Khomami, B. TI Temperature increases caused by shear banding in as-cast and relaxed Zr-based bulk metallic glasses under compression SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; PLASTIC-FLOW; SERRATED FLOW; FATIGUE BEHAVIOR; MECHANICAL-BEHAVIOR; RATE DEPENDENCE; STRUCTURAL RELAXATION; AMORPHOUS METALS; FORMING ALLOYS; NANOINDENTATION AB Using an infrared camera, the temperature evolution of as-cast and relaxed bulk metallic glasses during compression was measured. Substantial variations in the temperatures of both glasses during plastic deformation were observed, which are conjectured to result at least partially from shear-banding phenomena. The relaxed glass has a larger temperature rise than the as-cast glass, which can be attributed to a reduction in the free volume. The larger temperature increase in the relaxed glass may be responsible for the observed work softening. The relaxed glass also has a higher maximum temperature than the as-cast, which can be attributed to a stronger strain-rate dependence of the temperature rise rate, and a shorter dissipation time scale for the heat due to conduction. The experimental data follow the well-known model behavior, and suggest the possibility of a statistical correlation between the fluctuations of strain rates and the rates of the temperature variation. C1 [Jiang, W. H.; Liu, F. X.; Liao, H. H.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Choo, H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Edwards, B. J.; Khomami, B.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Jiang, WH (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wjiang5@utk.edu RI Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Edwards, Brian/0000-0002-2378-5627 FU National Science Foundation (NSF) [DMR-0231320] FX This work was Supported by the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320) with Dr. C. Huber as the Program Director. NR 53 TC 5 Z9 5 U1 1 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2008 VL 23 IS 11 BP 2967 EP 2974 DI 10.1557/JMR.2008.0355 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 373AU UT WOS:000260944200014 ER PT J AU Polat, O Aytug, T Paranthaman, M Kim, K Zhang, Y Thompson, JR Christen, DK Xiong, X Selvamanickam, V AF Polat, O. Aytug, T. Paranthaman, M. Kim, K. Zhang, Y. Thompson, J. R. Christen, D. K. Xiong, X. Selvamanickam, V. TI Direct growth of LaMnO3 cap buffer layers on ion-beam-assisted deposition MgO for simplified template-based YBa2Cu3O7-delta-coated conductors SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID YBCO-COATED CONDUCTORS; IBAD-MGO; SUPERCONDUCTING PROPERTIES; FILMS; SUPERPOWER; ZIRCONIA AB Simplification of the ion-beam-assisted deposition (IBAD) buffer architecture is one of the key issues for reduced manufacturing cost of second-generation superconducting wire production. In this work, we studied various radio frequency magnetron sputter deposition conditions for epitaxial growth of LaMnO3 (LMO) layers, with varying thicknesses, directly on IBAD-MgO without homo-epitaxial MgO layers. Performance of the simplified LMO/IBAD-MgO samples was qualified by pulsed-laser-deposited 1-mu m-thick YBa2Cu3O7-delta (YBCO) coatings. Detailed property characterizations revealed that though the growth temperature has a Substantial effect on the texture of LMO layers, neither LMO thickness nor different sputter gas compositions had a significant effect on the performance of YBCO films. The superconducting properties of YBCO on LMO/IBAD-MgO are found to be similar to those obtained on ternplates having homo-epitaxial MgO layers. The present results underscore the strong potential of LMO as a single cap layer directly on IBAD-MgO for the development of a simplified IBAD architecture. C1 [Polat, O.; Aytug, T.; Paranthaman, M.; Kim, K.; Zhang, Y.; Thompson, J. R.; Christen, D. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Polat, O.; Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Xiong, X.; Selvamanickam, V.] SuperPower Inc, Schenectady, NY 12304 USA. RP Aytug, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM avtugt@ornl.gov RI Paranthaman, Mariappan/N-3866-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531 FU United States Department of Energy (US DOE) [DE-AC05-00OR22725]; Office of Electricity Delivery and Energy Reliability; Office of Science, Basic Energy Sciences; Department of Materials Sciences and Engineering; American Chemical Society; Petroleum Research Fund [43258-G5] FX This work was done as part of the ORNL-SuperPower Cooperative Research and Development Agreement (CRADA) and supported by the United States Department of Energy (US DOE), Office of Electricity Delivery and Energy Reliability, and Office of Science, Basic Energy Sciences, Department of Materials Sciences and Engineering. O. Polat is grateful for the support of American Chemical Society, Petroleum Research Fund, Grant No. 43258-G5. Thanks are due to Dr. C.M. Rouleau for performing RHEED analysis on the MgO templates. This research was performed at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US DOE under Contract No. DE-AC05-00OR22725. NR 20 TC 9 Z9 10 U1 0 U2 7 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2008 VL 23 IS 11 BP 3021 EP 3028 DI 10.1557/JMR.2008.0362 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 373AU UT WOS:000260944200021 ER PT J AU Reedy, ED AF Reedy, E. D., Jr. TI Effect of patterned nanoscale interfacial roughness on interfacial toughness: A finite element analysis SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MIXED-MODE FRACTURE; ADHESION; TOPOGRAPHY; FILM AB A finite element analysis Was used to determine how patterned, nanoscale interfacial roughness could potentially increase the apparent interfacial toughness of brittle, thin-film material systems. The pattern analyzed was composed of parallel channels with either a rectangular-toothed or a rippled cross-section. Results are presented for a thin, linear elastic, bimaterial strip loaded by displacing the top edge relative to the bottom edge. The finite element calculations indicate that the interface does not Unzip in a steady, continuous manner. Instead, the crack tip stalls as it tries to kink in a direction that is offset from its original path. The apparent Interfacial toughness is found to depend on the intrinsic interfacial toughness, the ratio of real-to-nominal interfacial area, the extent of ligament. tooth-tip damage that Occurs before crack propagation, strain energy locked in by persistent contact, and the level of energy dissipation associated with dynamic fracture. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reedy, ED (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edreedy@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 19 TC 8 Z9 8 U1 0 U2 4 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2008 VL 23 IS 11 BP 3056 EP 3065 DI 10.1557/JMR.2008.0369 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 373AU UT WOS:000260944200025 ER PT J AU Boyce, BL Ballarini, R Chasiotis, I AF Boyce, B. L. Ballarini, R. Chasiotis, I. TI An argument for proof testing brittle microsystems in high-reliability applications SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article ID SILICON; MEMS; STRENGTH; POLYSILICON; FILMS; CERAMICS; FATIGUE AB The vast majority of microelectromechanical systems (MEMS) for sensor and actuator applications are fabricated from brittle materials, such as Si, SiC and diamond. Numerous prior studies have shown that the structural reliability of these flaw-intolerant materials is governed by processing-induced critical defects, and that their failure strengths have a wide dispersion associated with a low Weibull modulus. This broad distribution of critical failure conditions creates an uncertainty that cannot be tolerated in high-risk or high-consequence applications. This note presents arguments for the adoption of proof testing methodologies which will provide a statistically-sound basis for certifying MEMS component reliability. C1 [Boyce, B. L.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. [Ballarini, R.] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA. [Chasiotis, I.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, Ctr Mat Sci & Engn, POB 5800,MS0889, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov RI Boyce, Brad/H-5045-2012 OI Boyce, Brad/0000-0001-5994-1743 NR 23 TC 6 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD NOV PY 2008 VL 18 IS 11 AR 117001 DI 10.1088/0960-1317/18/11/117001 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 363JP UT WOS:000260263900035 ER PT J AU Tsunoda, M Isailovic, D Yeung, ES AF Tsunoda, M. Isailovic, D. Yeung, E. S. TI Real-time three-dimensional imaging of cell division by differential interference contrast microscopy SO JOURNAL OF MICROSCOPY LA English DT Article DE Cell division; differential interference contrast microscopy; microtubules; sub-diffraction limit resolution; 3D live-cell imaging ID FABRY-PEROT INTERFEROMETRY; LIQUID-CHROMATOGRAPHY; REFRACTIVE-INDEX; VISUALIZATION; MICROTUBULE; DETECTOR AB Differential interference contrast (DIC) microscopy can provide information about subcellular components and organelles inside living cells. Applicability to date, however, has been limited to 2D imaging. Unfortunately, understanding of cellular dynamics is difficult to extract from these single optical sections. We demonstrate here that 3D differential interference contrast microscopy has sub-diffraction limit resolution both laterally and vertically, and can be used for following Madin Darby canine kidney cell division process in real time. This is made possible by optimization of the microscope optics and by incorporating computer-controlled vertical scanning of the microscope stage. C1 [Yeung, E. S.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM yeung@ameslab.gov FU U. S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences FX E.S.Y. thanks the Robert Allen Wright Endowment for Excellence for support. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. NR 13 TC 9 Z9 9 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD NOV PY 2008 VL 232 IS 2 BP 207 EP 211 PG 5 WC Microscopy SC Microscopy GA 367IA UT WOS:000260544500003 PM 19017219 ER PT J AU Weis, DC Visco, DP Faulon, JL AF Weis, Derick C. Visco, Donald P., Jr. Faulon, Jean-Loup TI Data mining PubChem using a support vector machine with the Signature molecular descriptor: Classification of factor XIa inhibitors SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING LA English DT Article DE De novo; Signature; Factor XIa; HTS ID EXTENDED VALENCE SEQUENCES; THROUGHPUT SCREENING DATA; FEATURE-SELECTION; BIOLOGICAL EVALUATION; CYTOCHROME-P450 3A4; CRYSTAL-STRUCTURES; EXPRESSION DATA; PREDICTION; DISCOVERY; DATABASES AB The amount of high-throughput screening (HTS) data readily available has significantly increased because of the PubChem project (http://pubchem.ncbi.nlm.nih.gov/). There is considerable opportunity for data mining of small molecules for a variety of biological systems using cheminformatic tools and the resources available through PubChem. In this work, we trained a support vector machine (SVM) classifier using the Signature molecular descriptor on factor XIa inhibitor HTS data. The optimal number of Signatures was selected by implementing a feature selection algorithm of highly correlated clusters. Our method included an improvement that allowed clusters to work together for accuracy improvement, where previous methods have scored clusters on an individual basis. The resulting model had a 10-fold cross-validation accuracy of 89%, and additional validation was provided by two independent test sets. We applied the SVM to rapidly predict activity for approximately 12 million compounds also deposited in PubChem. Confidence in these predictions was assessed by considering the number of Signatures within the training set range for a given compound, defined as the overlap metric. To further evaluate compounds identified as active by the SVM, docking studies were performed using AutoDock. A focused database of compounds predicted to be active was obtained with several of the compounds appreciably dissimilar to those used in training the SVM. This focused database is suitable for further study. The data mining technique presented here is not specific to factor XIa inhibitors, and could be applied to other bioassays in PubChem where one is looking to expand the search for small molecules as chemical probes. (C) 2008 Elsevier Inc. All rights reserved. C1 [Weis, Derick C.; Visco, Donald P., Jr.] Tennessee Technol Univ, Dept Chem Engn, Cookeville, TN 38505 USA. [Faulon, Jean-Loup] Sandia Natl Labs, Computat Biosci Dept, Albuquerque, NM 87185 USA. RP Visco, DP (reprint author), Tennessee Technol Univ, Dept Chem Engn, Box 5013, Cookeville, TN 38505 USA. EM dvisco@tntech.edu; jfaulon@sandia.gov FU Department of Energy's 2004 Presidential Early Career Scientist and Engineer Award FX This work was funded by the Department of Energy's 2004 Presidential Early Career Scientist and Engineer Award. Computational work on this project was performed at the Computer Aided Engineering Laboratory on the Tennessee Technological University campus. NR 53 TC 21 Z9 22 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1093-3263 J9 J MOL GRAPH MODEL JI J. Mol. Graph. PD NOV PY 2008 VL 27 IS 4 BP 466 EP 475 DI 10.1016/j.jmgm.2008.08.004 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer Science, Interdisciplinary Applications; Crystallography; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Crystallography; Mathematical & Computational Biology GA 391YX UT WOS:000262271200007 PM 18829357 ER PT J AU Lafferty, WJ Flaud, JM Sams, RL Ngom, EHA AF Lafferty, W. J. Flaud, J. -M. Sams, R. L. Ngom, El Hadji Abib TI High resolution analysis of the rotational levels of the (000), (010), (100), (001), (020), (110) and (011) vibrational states of (SO2)-S-34-O-16 SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Rovibrational energy levels; (SO2)-S-34; Infrared spectra; Fermi and Coriolis resonances; Hamiltonian constants ID SO2; SPECTRUM AB A high resolution (0.0018 cm - (1)) Fourier transform instrument has been used to record the spectrum of an enriched S-34 (95.3%) sample of sulfur dioxide. A thorough analysis of the nu(2), 2 nu(2) - nu(2), nu(1), nu(1) + nu 2 - nu(2), nu(3), nu 2+ nu(3) - nu(2), nu(1) + nu 2and nu 2+ nu(3) bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (010), (110) and (011) states, a simple Watson - type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (020), (100) and (101) states to within their experimental accuracy. More explicitly, it was necessary to use a Delta K = 2 term to model the Fermi interaction between the (020) and (100) levels and a Delta K = 3 term to model the Coriolis interaction between the (100) and (001) levels. Precise Hamiltonian constants were derived for the (000), (010), (100), (001), (020), (110) and (011) vibrational states. Published by Elsevier Inc. C1 [Lafferty, W. J.] Natl Inst Stand & Technol, Opt Phys Lab, Gaithersburg, MD 20899 USA. [Flaud, J. -M.] Univ Paris 07, CNRS, Lab Inter Univ Syst Atmospher, F-94010 Creteil, France. [Sams, R. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ngom, El Hadji Abib] Univ Cheikh Anta Diop, Ecole Super Polytech, Dakar, Senegal. RP Lafferty, WJ (reprint author), Natl Inst Stand & Technol, Opt Phys Lab, 100 Bur Dr,Room B260,MS 8441, Gaithersburg, MD 20899 USA. EM Walter.Lafferty@nist.gov FU United States Department of Energy; Office of Basic Energy Sciences, Chemical Sciences Division FX The portion of this work performed at NIST was supported by the NASA Upper Atmosphere Research Program. This research was also supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and the experimental part was performed at the W. R, Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 11 TC 23 Z9 23 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD NOV PY 2008 VL 252 IS 1 BP 72 EP 76 DI 10.1016/j.jms.2008.06.013 PG 5 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 368LD UT WOS:000260621700013 ER PT J AU Kelly, JF Maki, A Blake, TA Sams, RL AF Kelly, James F. Maki, Arthur Blake, Thomas A. Sams, Robert L. TI Supersonic free-jet quantum cascade laser measurements of nu(4) for (CF3Cl)-Cl-35 and (CF3Cl)-Cl-37 and FTS measurements from 400 to 1260 cm(-1) SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Freon-13; Chlorotrifluoromethane; Infrared; Rovibrational; Coriolis perturbation; Fourier transform spectroscopy; Quantum cascade laser ID RESOLUTION INFRARED-SPECTRUM; FORCE-CONSTANTS; VIBRATIONAL-SPECTRA; SYMMETRIC TOPS; ROVIBRATIONAL ANALYSIS; MOLECULAR-BEAM; WAVE SPECTRUM; HOT BANDS; CF3 CL-35; SPECTROSCOPY AB A supersonic free-jet spectrum of the nu(4) band of CF3Cl has been measured using a quantum cascade laser system. Those measurements were combined with a low temperature (-67 degrees C) FTS spectrum of the region 1060-1260 cm(-1) and with room temperature FFS measurements down to 400 cm-1 to give improved values for the rovibrational constants for the nu(1), nu(2), nu(3), 2 nu(3), 2 nu(5), nu(4), and nu(5) states of (CF3Cl)-Cl-35 and (CF3Cl)-Cl-37. The principal perturbation found by earlier investigators in the v, band is treated as a very weak Coriolis interaction at several avoided crossings of the rotational levels of the v, state and the 2 nu(5) state with kl < 0. None of the other vibrational states showed any signs of perturbations. With these new measurements we now have high resolution data on all of the fundamental vibrational states except nu(6). (C) 2008 Elsevier Inc. All rights reserved. C1 [Kelly, James F.; Blake, Thomas A.; Sams, Robert L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Blake, TA (reprint author), Pacific NW Natl Lab, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM ta.blake@pnl.gov FU Pacific Northwest National Laboratory's FX The authors thank Dr. Steven W. Sharpe for insight and guidance on the use of the pulsed molecular beam system. The authors also thank the reviewer for pointing out the VECSEL reference (Ref. [39]). This research was supported by the Pacific Northwest National Laboratory's Laboratory Directed Research and Development program. The research described here was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the United States Department of Energy by the Battelle Memorial Institute under contract No. De-AC05-76RL01830. NR 40 TC 6 Z9 6 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD NOV PY 2008 VL 252 IS 1 BP 81 EP 89 DI 10.1016/j.jms.2008.07.001 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 368LD UT WOS:000260621700015 ER PT J AU Li, YB Ma, L Zhang, X Joly, AG Liu, ZL Chen, W AF Li, Yuebin Ma, Lun Zhang, Xing Joly, Alan G. Liu, Zuli Chen, Wei TI Synthesis and Optical Properties of Sulfide Nanoparticles Prepared in Dimethylsulfoxide SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Synthesis; Sulfide; Nanoparticles; Quantum Dots; Luminescence; Dimethylsulfoxide ID ZNS-MN NANOPARTICLES; CDS NANOPARTICLES; SEMICONDUCTOR CLUSTERS; NANOCRYSTALS; FLUORESCENCE; TEMPERATURE; EMISSION; SURFACE AB Many methods have been reported for the formation of sulfide nanoparticles by the reaction of metallic salts with sulfide chemical sources in aqueous solutions or organic solvents. Here, we report the formation of sulfide nanoparticles in dimethylsulfoxide (DMSO) by boiling metallic salts without sulfide sources. The sulfide sources are generated from the boiling of DMSO and react with metallic salts to form sulfide nanoparticles. In this method DMSO functions as a solvent and a sulfide source as well as a stabilizer for the formation of the nanoparticles. The recipe is simple and economical making sulfide nanoparticles formed in this way readily available for many potential applications. C1 [Li, Yuebin; Ma, Lun; Zhang, Xing; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Yuebin; Liu, Zuli] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. RI Li, Yuebin/D-6599-2011 FU UTA; NSF and DHS [CBET-0736172]; DOD [HDTRAI-08-P0034]; Office of the Congressionally Directed Medical Research [W81XWH-08-1-0450]; U.S. Department of Energy [DE-AC0676RLO1830]; China 973 plan [2006CB9216]; NNSF of China [10574047] FX This work is supported by the Startup and LERR Funds from UTA, the NSF and DHS joint program (CBET-0736172), DOD HDTRAI-08-P0034 and the DOD Breast Cancer Research Program of the Office of the Congressionally Directed Medical Research Programs (W81XWH-08-1-0450). Part of the research described was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC0676RLO1830. Zuh Liu would like to thank the support by the China 973 plan (2006CB9216) and the NNSF of China (10574047). NR 34 TC 4 Z9 4 U1 0 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD NOV PY 2008 VL 8 IS 11 BP 5646 EP 5651 DI 10.1166/jnn.2008.474 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 379IV UT WOS:000261390800005 PM 19198283 ER PT J AU Fernandez, CA Wiacek, RJ Nachimuthu, P Fryxell, GE Pierson, AM Warner, CL Warner, MG Addleman, RS AF Fernandez, Carlos A. Wiacek, Robert J. Nachimuthu, Ponnusamy Fryxell, Glen E. Pierson, Amanda M. Warner, Cynthia L. Warner, Marvin G. Addleman, R. Shane TI A Simple Method for the Prevention of Non-Specific Adsorption by Nanocrystals onto Surfaces SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE SAM; Nanoparticles; Monolayer; Adsorption ID SELF-ASSEMBLED MONOLAYERS; GOLD NANOPARTICLES; SEMICONDUCTOR NANOCRYSTALS; SILICON; FILMS; GLASS AB In this work we introduce an efficient method for averting non-specific adsorption of various nanoparticles to typical oxide surfaces, such as glass, quartz, and sapphire, through the attachment of a fluorinated self-assembled monolayer (SAM) that minimizes the interactions between stabilized nanoparticles and these surfaces. This surface treatment is shown to be effective for a variety of nanoparticles in a range of solvent systems. As a result, monitoring and characterization of nanoparticles and their surface chemistry is allowed, while simultaneously preventing loss of expensive nanomaterials to the various surfaces inherent in laboratory apparatus. C1 [Fernandez, Carlos A.; Wiacek, Robert J.; Nachimuthu, Ponnusamy; Fryxell, Glen E.; Pierson, Amanda M.; Warner, Cynthia L.; Warner, Marvin G.; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Addleman, RS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. FU Safer Nanomaterials Nanomanufacturing Initiative (SNNI) of Oregon Nanoscience and Microtechnologies Institute (ONAMI); Pacific Northwest National Laboratory; US Department of Energy by Battelle [DE-AC06-67RLO 1830] FX Funding for this work was provided by the Safer Nanomaterials Nanomanufacturing Initiative (SNNI) of Oregon Nanoscience and Microtechnologies Institute (ONAMI) and Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under contract DE-AC06-67RLO 1830. NR 29 TC 1 Z9 1 U1 1 U2 5 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD NOV PY 2008 VL 8 IS 11 BP 5781 EP 5786 DI 10.1166/jnn.2008.320 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 379IV UT WOS:000261390800027 PM 19198305 ER PT J AU Gorokhova, EI Anan'eva, GV Demidenko, VA Rodnyi, PA Khodyuk, IV Bourret-Courchesne, ED AF Gorokhova, E. I. Anan'eva, G. V. Demidenko, V. A. Rodnyi, P. A. Khodyuk, I. V. Bourret-Courchesne, E. D. TI Optical, luminescence, and scintillation properties of ZnO and ZnO:Ga ceramics SO JOURNAL OF OPTICAL TECHNOLOGY LA English DT Article ID ZINC-OXIDE; BAND; GA; DEPENDENCE; DETECTORS; PBI2 AB Uniaxial hot pressing has been used to obtain ceramics based on zinc oxide, and their optical, x-ray-structure, luminescence, and scintillation characteristics have been studied. It is shown that, by changing the concentration of the dopant (Ga) and the codopant (N), it is possible to change the intensities of the edge band (397.5 nm) and the intraband luminescence (510 nm) of the ZnO luminescence, as well as their ratio. Undoped ZnO ceramic has good transparency in the visible region and fairly high luminous yield: 9050 photons per MeV. Ceramic ZnO: Ga possesses intense edge luminescence with a falloff time of about 1 ns. (C) 2008 Optical Society of America. C1 [Gorokhova, E. I.; Anan'eva, G. V.; Demidenko, V. A.] All Russia Sci Ctr, SI Vavilov State Opt Inst, Sci Res & Technol Inst Opt Mat Sci, St Petersburg, Russia. [Rodnyi, P. A.; Khodyuk, I. V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Bourret-Courchesne, E. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gorokhova, EI (reprint author), All Russia Sci Ctr, SI Vavilov State Opt Inst, Sci Res & Technol Inst Opt Mat Sci, St Petersburg, Russia. EM E.Gorokhova@rambler.ru RI Gorokhova, Elena/R-8727-2016; Rodnyi, Piotr/B-3698-2017 OI Gorokhova, Elena/0000-0002-0043-260X; NR 21 TC 18 Z9 18 U1 1 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1070-9762 J9 J OPT TECHNOL+ JI J. Opt. Technol. PD NOV PY 2008 VL 75 IS 11 BP 741 EP 746 DI 10.1364/JOT.75.000741 PG 6 WC Optics SC Optics GA 379XS UT WOS:000261430500010 ER PT J AU Pinar, A Tabak, EK Aykanat, C AF Pinar, Ali Tabak, E. Kartal Aykanat, Cevdet TI One-dimensional partitioning for heterogeneous systems: Theory and practice SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Parallel computing; One-dimensional partitioning; Load balancing; Chain-on-chain partitioning; Dynamic programming; Parametric search ID UNSTRUCTURED GRIDS; ALGORITHMS AB We study the problem of one-dimensional partitioning of nonuniform workload arrays, with optimal load balancing for heterogeneous systems. We look at two cases: chain-on-chain partitioning, where the order of the processors is specified, and chain partitioning. where processor permutation is allowed. We present polynomial time algorithms to solve the chain-on-chain partitioning problem optimally, while we prove that the chain partitioning problem is NP-complete. Our empirical studies show that our proposed exact algorithms produce substantially better results than heuristics, while solution times remain comparable. (C) 2008 Elsevier Inc. All rights reserved. C1 [Tabak, E. Kartal; Aykanat, Cevdet] Bilkent Univ, Dept Comp Engn, Bilkent, Turkey. [Pinar, Ali] Lawrence Berkeley Natl Lab, High Performance Comp Res Dept, Berkeley, CA USA. RP Aykanat, C (reprint author), Bilkent Univ, Dept Comp Engn, Bilkent, Turkey. EM apinar@lbl.gov; tabak@cs.bilkent.edu.tr; aykanat@cs.bilkent.edu.tr FU US Department of Energy [DE-AC03-76SF00098]; The Scientific and Technological Research Council of Turkey (TUBITAK) [EEEAG-105E065, EEEAG-106E069] FX First author was supported by the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of US Department of Energy under contract DE-AC03-76SF00098.; This work is partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under projects EEEAG-105E065 and EEEAG-106E069. NR 17 TC 4 Z9 4 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD NOV PY 2008 VL 68 IS 11 BP 1473 EP 1486 DI 10.1016/j.jpdc.2008.07.005 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 360YP UT WOS:000260095000007 ER PT J AU Martin, S Chandler, G Derzon, MS AF Martin, Shawn Chandler, Gordon Derzon, Mark S. TI Simulation of high-pressure micro-capillary (3)He counters SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID PROPORTIONAL COUNTER; RESPONSE FUNCTION; NEUTRON; RESOLUTION; DETECTORS; GAS AB Low-pressure (1-4 atm) cylindrical (3)He counters are widely used as neutron detectors. These detectors are relatively large (1-2.5 cm diameter) and can be subject to noise induced by microphonics. Meanwhile, new advancements in micro-fabrication are enabling the manufacture of high-pressure (over 3000 atm) micro-capillaries (similar to 100 mu m diameter). Can these micro-capillaries be used as accurate and high-efficiency (3)He counters? To investigate these questions, we have developed amathematical model/computer simulation. Our model shows that such capillaries have the potential for being high-efficiency neutron spectrometers capable of resolving not only energy, but also angle of incidence for fixed sources. We benchmark the model against published results and extrapolate spectra to the pressures of interest. C1 [Martin, Shawn; Chandler, Gordon; Derzon, Mark S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM smartin@sandia.gov FU Sandia Laboratory Directed Research and Development (LDRD); United States Department of Energy [DE-AC04-94AL85000] FX This project was funded by Sandia Laboratory Directed Research and Development (LDRD). We wish to acknowledge the efforts of many who have supported this project, including S Mani, D Myers, J Novak, T Zipperian, C Sumpter, R Kensek, M A Sweeney, R Renzi, B Simmons, J Williams, B Ballard, D Palmer and D Powers. We also want to thank the anonymous reviewers for their detailed suggestions for improving this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 25 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2008 VL 35 IS 11 AR 115103 DI 10.1088/0954-3899/35/11/115103 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 353JY UT WOS:000259563900013 ER PT J AU Matevosyan, HH Thomas, AW AF Matevosyan, Hrayr H. Thomas, Anthony W. TI Role of the U(1) ghost beyond leading order in a large-Nc expansion SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article AB The 1/N-c expansion is one of the very few methods we have for generating a systematic expansion of QCD at the energy scale relevant to hadron structure. The present formulation of this theory relies on the double-line notation for calculating the leading order of a diagram in the 1/N-c expansion, where the local SU(N-c) gauge symmetry is substituted by a U(N-c) symmetry and the associated U(1) ghost field is ignored. In the current work we demonstrate the insufficiency of this formulation for describing certain non-planar diagrams of interest in current attempts to model QCD. We derive a more complete set of Feynman rules that include the U(1) ghost field and provide a useful tool for calculating both color factors and 1/N-c orders of all color-singlet diagrams. C1 [Matevosyan, Hrayr H.; Thomas, Anthony W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Matevosyan, Hrayr H.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Matevosyan, Hrayr H.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 46408 USA. [Thomas, Anthony W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Matevosyan, HH (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. OI Matevosyan, Hrayr/0000-0002-4074-7411; Thomas, Anthony/0000-0003-0026-499X FU DOE [DE-AC05-06OR23177] FX This work was supported in part by DOE contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. The authors would like to especially mention Jose Goity for stimulating discussions and useful suggestions. HHM thanks Elizabeth Jenkins for encouraging conversations and Jerry P Draayer for his support during the course of the work. NR 5 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2008 VL 35 IS 11 AR 115006 DI 10.1088/0954-3899/35/11/115006 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 353JY UT WOS:000259563900006 ER PT J AU Marchi, CS Balch, DK Nibur, K Somerday, BP AF Marchi, C. San Balch, D. K. Nibur, K. Somerday, B. P. TI Effect of High-Pressure Hydrogen Gas on Fracture of Austenitic Steels SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers CY JUL 17-21, 2005 CL Denver, CO SP Amer Soc Mech Engineers ID STACKING-FAULT ENERGY; STAINLESS-STEEL; EMBRITTLEMENT; TOPOGRAPHY; DUCTILITY; BEHAVIOR; METALS AB Applications requiring the containment and transportation of hydrogen gas at pressures greater than 70 MPa are anticipated in the evolving hydrogen economy infrastructure. Since hydrogen is known to alter the mechanical properties of materials, data are needed to guide the selection of materials for structural components. The objective of this study is to characterize the role of yield strength, microstructural orientation, and small concentrations of ferrite on hydrogen-assisted fracture in two austenitic stainless steels: 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). The testing methodology involves exposure of tensile specimens to high-pressure hydrogen gas at elevated temperature in order to precharge the specimens with hydrogen, and subsequently testing the specimens in laboratory air to measure strength and ductility. In all cases, the alloys remain ductile despite precharging to hydrogen concentrations of similar to 1 at. %, as demonstrated by reduction in area values between 30% and 60% and fracture modes dominated by microvoid processes. Low concentrations of ferrite and moderate increases in yield strength do not exacerbate hydrogen-assisted fracture in 21-6-9 and 22-13-5, respectively. Microstructural orientation has a pronounced effect on ductility in 22-13-5 due to the presence of aligned second-phase particles. C1 [Marchi, C. San; Balch, D. K.; Nibur, K.; Somerday, B. P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Marchi, CS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 35 TC 13 Z9 13 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD NOV PY 2008 VL 130 IS 4 AR 041401 DI 10.1115/1.2967833 PG 9 WC Engineering, Mechanical SC Engineering GA 359YR UT WOS:000260024700016 ER PT J AU Yu, ET Hawkins, A Kuntz, ID Rahn, LA Rothfuss, A Sale, K Young, MM Yang, CL Pancerella, CM Fabris, D AF Yu, Eizadora T. Hawkins, Arie Kuntz, Irwin D. Rahn, Larry A. Rothfuss, Andrew Sale, Kenneth Young, Malin M. Yang, Christine L. Pancerella, Carmen M. Fabris, Daniele TI The Collaboratory for MS3D: A New Cyberinfrastructure for the Structural Elucidation of Biological Macromolecules and Their Assemblies Using Mass Spectrometry-Based Approaches SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Collaboratory; data analysis tools; structural biology; mass spectrometry ID CROSS-LINKS; STANDARDS; PROTEINS AB Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies. C1 [Hawkins, Arie; Fabris, Daniele] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA. [Kuntz, Irwin D.] UCSF Mol Design Inst, San Francisco, CA 94143 USA. [Yu, Eizadora T.; Sale, Kenneth; Young, Malin M.] Sandia Natl Labs, Biosyst Res, Livermore, CA 94551 USA. [Rahn, Larry A.; Rothfuss, Andrew; Pancerella, Carmen M.] Sandia Natl Labs, Adv Software R&D, Livermore, CA 94551 USA. [Yang, Christine L.] Sandia Natl Labs, Exploratory Comp Dept, Livermore, CA 94551 USA. [Yang, Christine L.] Sandia Natl Labs, Software Engn Dept, Livermore, CA 94551 USA. RP Fabris, D (reprint author), Univ Maryland Baltimore Cty, Dept Chem & Biochem, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM fabris@umbc.edu RI Yu, Eizadora/A-8971-2011; OI Rahn, Larry/0000-0002-4793-1158 FU NIH; NSF [0439067]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; [RR019864-01] FX Funding for the Collaboratory for MS3D (C-MS3D) is provided jointly by NIH (RR019864-01 to C.P.) and NSF (Chem 0439067 to D.F.). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 17 Z9 17 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD NOV PY 2008 VL 7 IS 11 BP 4848 EP 4857 DI 10.1021/pr800443f PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 370VU UT WOS:000260792000024 PM 18817429 ER PT J AU Schneller, T Kohlstedt, H Petraru, A Waser, R Guo, J Denlinger, J Learmonth, T Glans, PA Smith, KE AF Schneller, T. Kohlstedt, H. Petraru, A. Waser, R. Guo, J. Denlinger, J. Learmonth, T. Glans, Per-Anders Smith, K. E. TI Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr0.3Ti0.7)O-3 thin films by soft X-ray absorption and soft X-ray emission spectroscopy SO JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 14th International Sol-Gel Conference CY SEP 02-07, 2007 CL Montpellier, FRANCE SP Int Sol Gel Soc DE chemical solution deposition; complex oxide films; ferroelectric; PZT; thin films; XRD; XAS; RIXS; microstructure; hysteresis ID LEAD-ZIRCONATE-TITANATE; TIME TEXTURE TRANSITION; FERROELECTRIC PROPERTIES; ELECTRICAL-PROPERTIES; ELECTRONIC-STRUCTURE; PREFERENTIAL ORIENTATION; PRECURSOR SOLUTIONS; VAPOR-DEPOSITION; ANATASE TIO2; PZT FILMS AB Chemical solution deposited (CSD) complex oxide thin films attract considerable interest in various emerging fields as for example, fuel cells, ferroelectric random access memories or coated conductors. In the present paper the results of soft-X-ray spectroscopy between 280 and 560 eV on the amorphous to crystalline phase transition of ferroelectric Pb(Zr0.3Ti0.7)O-3 (PZT) thin films are presented. Five CSD samples derived from the same wafer coated with a PZT film pyrolyzed at 350 degrees C were heat treated at different temperatures between 400 and 700 degrees C. At first the samples were morphologically and electrically characterized. Subsequently the soft-X-ray absorption and emission experiments were performed at the undulator beamline 8.0 of the Advanced Light Source of the Lawrence Berkeley National Laboratory. Soft-X-ray absorption spectra were acquired for the Ti L (2,3)-, O K-, and C K-edge thresholds by using simultaneously the total electron yield (TEY) and total fluorescence yield (TFY) detection methods. For two samples, annealed at 400 and 700 degrees C, respectively, the resonant inelastic soft-X-ray spectroscopy (RIXS) was applied for various excitation energies near the Ti L-, O K-edges. We observed clear evidence of a rutile phase at untypically low temperatures. This rutile phase transforms into the perovskite phase upon increasing annealing temperature. These results are discussed in the framework of current microscopic models of the PZT (111) texture selection. C1 [Schneller, T.] Rhein Westfal TH Aachen, Inst Werkstoffe Elektrotech 2, D-52056 Aachen, Germany. [Schneller, T.] Rhein Westfal TH Aachen, Inst Mat Elect Engn 2, D-52056 Aachen, Germany. Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Forschungszentrum Julich, CNI, D-52425 Julich, Germany. [Guo, J.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Learmonth, T.; Glans, Per-Anders; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Schneller, T (reprint author), Rhein Westfal TH Aachen, Inst Werkstoffe Elektrotech 2, D-52056 Aachen, Germany. EM schneller@iwe.rwth-achen.de RI Waser, Rainer/J-6103-2013; Glans, Per-Anders/G-8674-2016 OI Waser, Rainer/0000-0002-9080-8980; NR 81 TC 13 Z9 13 U1 2 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-0707 J9 J SOL-GEL SCI TECHN JI J. Sol-Gel Sci. Technol. PD NOV PY 2008 VL 48 IS 1-2 BP 239 EP 252 DI 10.1007/s10971-008-1816-y PG 14 WC Materials Science, Ceramics SC Materials Science GA 349IB UT WOS:000259273400034 ER PT J AU Diver, RB Miller, JE Allendorf, MD Siegel, NP Hogan, RE AF Diver, Richard B. Miller, James E. Allendorf, Mark D. Siegel, Nathan P. Hogan, Roy E. TI Solar thermochemical water-splitting ferrite-cycle heat engines SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE solar; thermochemical; hydrogen; metal oxide; ferrite; redox; heat engine ID HYDROGEN-PRODUCTION; REDOX SYSTEM AB Thermochemical cycles are a type of heat engine that utilize high-temperature heat to produce chemical work. Like their mechanical work producing counterparts, their efficiency depends on the operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxide (ferrites) working materials. The design concepts utilize two sets of moving beds of ferrite reactant materials in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency-thermal recuperation between solids in efficient countercurrent arrangements. They also provide an inherent separation of the product hydrogen and oxygen and are an excellent match with a high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this paper, the counter-rotating-ring receiver/reactor/recuperator solar thermochemical heat engine concept is introduced, and its basic operating principles are described. Preliminary thermal efficiency estimates are presented and discussed. Our results and development approach are also outlined. C1 [Diver, Richard B.; Miller, James E.; Siegel, Nathan P.; Hogan, Roy E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Diver, RB (reprint author), Sandia Natl Labs, POB 5800,MS1127, Albuquerque, NM 87185 USA. EM rbdiver@sandia.gov RI Miller, James/C-1128-2011; Dom, Rekha/B-7113-2012 OI Miller, James/0000-0001-6811-6948; NR 26 TC 109 Z9 109 U1 4 U2 29 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD NOV PY 2008 VL 130 IS 4 AR 041001 DI 10.1115/1.2969781 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 356VH UT WOS:000259805200001 ER PT J AU Hess, NJ Qafoku, O Xia, YX Moore, DA Felmy, AR AF Hess, Nancy J. Qafoku, Odeta Xia, Yuanxian Moore, Dean A. Felmy, Andrew R. TI Thermodynamic Model for the Solubility of TcO2 center dot xH(2)O in Aqueous Oxalate Systems SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Technetium(IV); Oxalate; Complexation; Stability constants; Solubility; Speciation ID HIGH-IONIC-STRENGTH AB The room temperature solubility of amorphous, hydrous technetium(IV) oxide (TcO2 center dot xH(2)O) was studied across a broad range of pH values extending from 1.5 to 12 and in oxalate concentrations from dilute (10(-6) mol.kg(-1)) to complete saturation with respect to sodium bioxalate at lower pH values, and to saturation with respect to sodium oxalate at higher pH values. The solubility was measured to very long equilibration times (i.e., as long a 1000 days or longer). The thermodynamic modeling results show that the dominant species in solution must have at least one more hydroxyl moiety present in the complex than proposed by previous investigators (e.g., TcO(OH)Ox(-) rather than TcO(Ox)(aq)). Inclusion of the single previously unidentified species TcO(OH)Ox(-) in our aqueous thermodynamic model explains a wider range of observed solubility data for TcO2 center dot xH(2)O(am) in the presence of oxalate and over a broad range of pH values. Inclusion of this species is also supported by the recently proposed thermodynamic data for the TcO(OH)(+) hydrolysis species that indicates that this species is stable at pH values as low as one. C1 [Hess, Nancy J.; Qafoku, Odeta; Xia, Yuanxian; Moore, Dean A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Felmy, Andrew R.] WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. RP Hess, NJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM nancy.hess@pnl.gov OI Hess, Nancy/0000-0002-8930-9500 FU Environmental Management Science Program (EMSP), U.S. Department of Energy; Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This work was supported by the Environmental Management Science Program (EMSP), U.S. Department of Energy. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. NR 15 TC 8 Z9 8 U1 0 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD NOV PY 2008 VL 37 IS 11 BP 1471 EP 1487 DI 10.1007/s10953-008-9328-5 PG 17 WC Chemistry, Physical SC Chemistry GA 360GK UT WOS:000260045800001 ER PT J AU Rard, JA Clegg, SL Palmer, DA AF Rard, Joseph A. Clegg, Simon L. Palmer, Donald A. TI Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T = 298.15 and 323.15 K, and Representation with an Extended Ion-Interaction (Pitzer) Model (vol 36, pg 1347, 2007) SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Correction C1 [Rard, Joseph A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Clegg, Simon L.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. RP Rard, JA (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. EM solution_chemistry2@comcast.net NR 1 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD NOV PY 2008 VL 37 IS 11 BP 1625 EP 1626 DI 10.1007/s10953-008-9333-8 PG 2 WC Chemistry, Physical SC Chemistry GA 360GK UT WOS:000260045800011 ER PT J AU Hedayat, AS Su, GQ Streets, WE AF Hedayat, A. S. Su, Guoqin Streets, W. Elane TI Statistical scoring procedures applicable to laboratory performance evaluation SO JOURNAL OF STATISTICAL PLANNING AND INFERENCE LA English DT Article DE bias; precision; interlaboratory study; proficiency testing; random effect model ID VARIANCE-COMPONENTS; ROBUST ESTIMATION; MODEL AB Two statistical scoring procedures based on p-values have been developed to evaluate the overall performance of analytical laboratories performing environmental measurements. The overall scores of bias and standing are used to determine how consistently a laboratory is able to measure the true (unknown) value correctly over time. The overall scores of precision and standing are used to determine how well a laboratory is able to reproduce its measurements in the long run. Criteria are established for qualitatively labeling measurements as Acceptable, Warning, and Not Acceptable and for identifying areas where laboratories should re-evaluate their measurement procedures. These statistical scoring procedures are applied to two real environmental data sets. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hedayat, A. S.] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA. [Su, Guoqin] Novartis Pharmaceut Corp, E Hanover, NJ 07936 USA. [Streets, W. Elane] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Hedayat, AS (reprint author), Univ Illinois, Dept Math Stat & Comp Sci MC 249, 851 S Morgan St, Chicago, IL 60607 USA. EM hedayat@uic.edu FU National Science Foundation (NSF) [DMS-0603761] FX The research related to this work is supported by the National Science Foundation (NSF) Grant DMS-0603761. The contents are solely the responsibility of the authors and do not necessarily represent the official view of NSF. NR 30 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3758 J9 J STAT PLAN INFER JI J. Stat. Plan. Infer. PD NOV 1 PY 2008 VL 138 IS 11 BP 3336 EP 3349 DI 10.1016/j.jspi.2006.07.017 PG 14 WC Statistics & Probability SC Mathematics GA 350EB UT WOS:000259334300008 PM 19885371 ER PT J AU Reu, PL Miller, TJ AF Reu, P. L. Miller, T. J. TI The application of high-speed digital image correlation SO JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN LA English DT Article DE digital image correlation; speckle correlation; high-speed imaging; ultra-high-speed photography ID PHOTOGRAPHY AB Digital image correlation (DIC) is a method of using digital images to calculate two-dimensional displacement and deformation or for stereo systems three-dimensional shape, displacement, and deformation. While almost any imaging system can be used with DIC, there are some important challenges when working with the technique in high- and ultra-high-speed applications. This article discusses three of these challenges: camera sensor technology, camera frame rate, and camera motion mitigation. Potential solutions are treated via three demonstration experiments showing the successful application of high-speed DIC for dynamic events. The application and practice of DIC at high speeds, rather than the experimental results themselves, provide the main thrust of the discussion. C1 [Reu, P. L.; Miller, T. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reu, PL (reprint author), Sandia Natl Labs, POB 5800,MS-1070, Albuquerque, NM 87185 USA. EM plreu@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogramme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.; The authors would like to acknowledge Hubert Schreier and Tim Brown for their participation and discussions regarding DIC. They would also like to thank Todd Rumbough of DRS imaging for helping out in the testing of the Shimadzu cameras and going to extra lengths to make the experiment successful. Additionally, Mark Nissen was instrumental in the tests for high-speed imaging expertise and lighting and Adam Jimenez for running the explosive facility used for the Shimadzu tests. Finally, the authors would like to thank the staff of the Diagnostic Applications Department at Sandia National Laboratories for their hard efforts in collecting the diagnostic imagery and Rob Shields for suggesting the use of quadrille markers within speckle patterns. NR 15 TC 35 Z9 35 U1 0 U2 12 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0309-3247 J9 J STRAIN ANAL ENG JI J. Strain Anal. Eng. Des. PD NOV PY 2008 VL 43 IS 8 SI SI BP 673 EP 688 DI 10.1243/03093247JSA414 PG 16 WC Engineering, Mechanical; Mechanics; Materials Science, Characterization & Testing SC Engineering; Mechanics; Materials Science GA 378TE UT WOS:000261346000002 ER PT J AU Jin, H Lu, WY Korellis, J AF Jin, H. Lu, W-Y Korellis, J. TI Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging SO JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN LA English DT Article DE digital image correlation; scanning electron microscopy; LIGA microsystems; ductile fracture; plastic zone ID EXPERIMENTAL VALIDATION; QUANTITATIVE SMALL; MOIRE METHOD; MAGNIFICATIONS; PATTERNS; SCALES; STRAIN AB This paper presents a study of micro-scale deformation of materials utilizing scanning electron microscopy (SEM) images and the digital image correlation (DIC) technique. A loading stage was integrated into the SEM imaging system. During the experiment, a series of SEM images of the specimen were acquired in situ. The DIC technique was then applied to these SEM images to calculate the displacement and strain field at the area of interest. Additional surface preparation may be needed in order to have all effective pattern for DIC analysis. Two applications are presented in the paper. Using small tensile specimens, the mechanical properties of electrodeposited nickel-based LIGA (an acronym from German words for lithography, electroplating, and moulding) specimens were characterized. In this case, the natural rnicrostructural feature of the specimen surface was used directly as the pattern for DIC analysis. This method was also applied to study the strain concentration around the crack tip during the ductile fracture test of Al 6061-T651. In contrast to the previous case, the DIC patterns were generated by sputtering a thin layer of gold film on to the specimen surface through the copper mesh grid. C1 [Jin, H.; Lu, W-Y; Korellis, J.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Jin, H (reprint author), Sandia Natl Labs, Mech Mat Dept, 7011 East Ave, Livermore, CA 94550 USA. EM hjin@sandia.gov NR 21 TC 38 Z9 39 U1 5 U2 32 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0309-3247 J9 J STRAIN ANAL ENG JI J. Strain Anal. Eng. Des. PD NOV PY 2008 VL 43 IS 8 SI SI BP 719 EP 728 DI 10.1243/03093247JSA412 PG 10 WC Engineering, Mechanical; Mechanics; Materials Science, Characterization & Testing SC Engineering; Mechanics; Materials Science GA 378TE UT WOS:000261346000005 ER PT J AU Subramaniyan, R Grobelny, E Studham, S George, AD AF Subramaniyan, Rajagopal Grobelny, Eric Studham, Scott George, Alan D. TI Optimization of checkpointing-related I/O for high-performance parallel and distributed computing SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Checkpointing; Fault tolerance; Modeling; High-performance computing; Parallel computing; Distributed computing; Supercomputing; Technology growth AB Checkpointing, the process of saving program/application state, usually to a stable storage, has been the most common fault-tolerance methodology for high-performance applications. The rate of checkpointing (how often) is primarily driven by the failure rate of the system. If the checkpointing rate is low, fewer resources are consumed but the chance of high computational loss is increased and vice versa if the checkpointing rate is high. It is important to strike a balance, and an optimum rate of checkpointing is required. In this paper, we analytically model the process of checkpointing in terms of mean-time-between-failure of the system, amount of memory being checkpointed, sustainable I/O bandwidth to the stable storage, and frequency of checkpointing. We identify the optimum frequency of checkpointing to be used on systems with given specifications thereby making way for efficient use of available resources and maximum performance of the system without compromising on the fault-tolerance aspects. Further, we develop discrete-event models simulating the checkpointing process to verify the analytical model for optimum checkpointing. Using the analytical model, we also investigate the optimum rate of checkpointing for systems of varying resource levels ranging from small embedded cluster systems to large supercomputers. C1 [Subramaniyan, Rajagopal; Grobelny, Eric; George, Alan D.] Univ Florida, High Performance Comp & Simulat HCS Res Lab, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Studham, Scott] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Subramaniyan, R (reprint author), Univ Florida, High Performance Comp & Simulat HCS Res Lab, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. EM subraman@hcs.ufl.edu; grobelny@hcs.ufl.edu; george@hcs.ufl.edu; studham@ornl.gov NR 15 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD NOV PY 2008 VL 46 IS 2 BP 150 EP 180 DI 10.1007/s11227-007-0162-0 PG 31 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 363EM UT WOS:000260250600005 ER PT J AU Fenter, P Park, C Kohli, V Zhang, Z AF Fenter, P. Park, C. Kohli, V. Zhang, Z. TI Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray microscopy; X-ray reflectivity; interfacial X-ray scattering; phase contrast; full-field imaging; surface topography; structure factor; pure phase object ID ENERGY-ELECTRON MICROSCOPY; FOURIER-TRANSFORM; SURFACE; DIFFRACTION; SCATTERING; RECONSTRUCTION; CRYSTALLOGRAPHY; HOLOGRAPHY; ROUGHNESS; OXIDATION AB The contrast mechanism for imaging molecular-scale features on solid surfaces described for X-ray reflection interface microscopy (XRIM) through of experimental images with model calculations and simulated Images of elementary steps show that image contrast is controlled changes in the incident angle of the X-ray beam with respect to the surface. Systematic changes in the magnitude and sign of image contrast asymmetric for angular deviations of the sample from the specular condition. No changes in image contrast are observed when defocusing condenser or objective lenses. These data are explained with model calculations that reproduce all of the qualitative features observed in experimental data. These results provide new insights into the image mechanism, including contrast reversal as a function of incident angle, sensitivity of image contrast to step direction (i.e. up versus down), and ability to maximize image contrast at almost any scattering condition defined the vertical momentum transfer, Q(z). The full surface topography can then, principle, be recovered by a series of images as a function of incident angle fixed momentum transfer. Inclusion of relevant experimental details shows the image contrast magnitude is controlled by the intersection of the resolution function (i.e. controlled by numerical aperture of the and objective lenses) and the spatially resolved interfacial structure factor of object being imaged. Together these factors reduce the nominal contrast for step near the specular reflection condition to a value similar to that experimentally. This formalism demonstrates that the XRIM images derive limited aperture contrast, and explains how non-zero image contrast can obtained when imaging a pure phase object corresponding to the topography. C1 [Fenter, P.; Park, C.; Kohli, V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhang, Z.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fenter@anl.gov RI Park, Changyong/A-8544-2008; Zhang, Zhan/A-9830-2008 OI Park, Changyong/0000-0002-3363-5788; Zhang, Zhan/0000-0002-7618-6134 FU Geosciences Research Program of the Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Geosciences Research Program of the Office of Basic Energy Sciences, US Department of Energy (DOE), through contract DE-AC02-06CH11357. The data were collected at the X-ray Operations and Research (XOR) beamlines 12-ID-D (BESSRC/XOR) at the Advanced Photon Source (APS), Argonne National Laboratory. Use of the Advanced Photon Source is also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We thank Steve Wang, Michael Feser and Wenbing Yun (Xradia) for their assistance in developing and subsequent optimization of this instrument, as well as Yong Chu and Franz Pfeiffer for useful discussions. NR 46 TC 8 Z9 8 U1 2 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2008 VL 15 BP 558 EP 571 DI 10.1107/S0909049508023935 PN 6 PG 14 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 363RO UT WOS:000260284600003 PM 18955761 ER PT J AU Boutet, S Robinson, IK AF Boutet, Sebastien Robinson, Ian K. TI Coherent X-ray diffractive imaging of protein crystals SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE coherent X-ray diffractive imaging; protein crystals; ferritin; phase retrieval; surface contraction ID RADIATION-DAMAGE; CRYSTALLOGRAPHY; PHASE AB The technique of coherent X-ray diffraction imaging (CXDI) has recently shown great promise for the study of inorganic nanocrystals. In this work the CXDI method has been applied to the study of micrometer-size protein crystals. Finely sampled diffraction patterns of single crystals were measured and iterative phase-retrieval algorithms were used to reconstruct the two-dimensional shape of the crystal. The density maps have limited reproducibility because of radiation damage, but show clear evidence for crystal facets. Qualitative analysis of a number of single-crystal diffraction peaks indicates the presence of inward surface contraction on 2 mm size crystals. A survey of several hundred diffraction patterns yielded a number of examples with dramatic single-sided streaks, for which a plausible model is constructed. C1 [Boutet, Sebastien; Robinson, Ian K.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Boutet, Sebastien] Stanford Linear Accelerator Ctr, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Robinson, Ian K.] Univ Coll, London Ctr Nanotechnol, London, England. RP Boutet, S (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM sboutet@slac.stanford.edu FU NSF [DMR03-08660]; EPSRC; University of Illinois at Urbana-Champaign, Materials Research Laboratory US DOE [DEFG02-91ER45439]; State of Illinois-IBHE-HECA; NSF; Oak Ridge National Laboratory (US DOE; National Institute of Standards and Technology (US Department of Commerce) FX This research was supported by NSF grant DMR03-08660 and the EPSRC. The XOR-UNI facility at the Advanced Photon Source (APS) was supported by the University of Illinois at Urbana-Champaign, Materials Research Laboratory (US DOE contract DEFG02-91ER45439, the State of Illinois-IBHE-HECA, and the NSF), the Oak Ridge National Laboratory (US DOE under contract with UT-Battelle LLC), and the National Institute of Standards and Technology (US Department of Commerce). SB wishes to thank the Fonds quebecois de la recherche sur la nature et les technologies for its support. NR 25 TC 13 Z9 13 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2008 VL 15 BP 576 EP 583 DI 10.1107/S0909049508029439 PN 6 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 363RO UT WOS:000260284600005 PM 18955763 ER PT J AU Shapiro, DA Chapman, HN DePonte, D Doak, RB Fromme, P Hembree, G Hunter, M Marchesini, S Schmidt, K Spence, J Starodub, D Weierstall, U AF Shapiro, D. A. Chapman, H. N. DePonte, D. Doak, R. B. Fromme, P. Hembree, G. Hunter, M. Marchesini, S. Schmidt, K. Spence, J. Starodub, D. Weierstall, U. TI Powder diffraction from a continuous microjet of submicrometer protein crystals SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE serial crystallography; membrane proteins; protein structure; radiation damage; nanocrystals ID RAY; CRYSTALLOGRAPHY; RESOLUTION; SCATTERING AB Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865 11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules. C1 [Shapiro, D. A.; Marchesini, S.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shapiro, D. A.; Marchesini, S.] Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Chapman, H. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [DePonte, D.; Doak, R. B.; Hembree, G.; Schmidt, K.; Spence, J.; Starodub, D.; Weierstall, U.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Fromme, P.; Hunter, M.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Shapiro, DA (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM dashapiro@lbl.gov RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Weierstall, Uwe/B-3568-2011 OI Chapman, Henry/0000-0002-4655-1743; FU Center for Biophotonics Science and Technology at the University of California at Davis; National Science Foundation [IDBR-0555845, 0417142]; ARO [W911NF-05-1-0152]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy FX We graciously acknowledge support from the staff of the Advanced Light Source at Lawrence Berkeley National Laboratory. This research is supported by grants from The Center for Biophotonics Science and Technology at the University of California at Davis, the National Science Foundation (IDBR-0555845) and ARO (W911NF-05-1-0152). The Advanced Light Source at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy. The structural project on photosystem I is supported by the National Science Foundation, grant number 0417142. NR 20 TC 28 Z9 28 U1 1 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2008 VL 15 BP 593 EP 599 DI 10.1107/S0909049508024151 PN 6 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 363RO UT WOS:000260284600007 PM 18955765 ER PT J AU Walko, DA Arms, DA Landahl, EC AF Walko, D. A. Arms, D. A. Landahl, E. C. TI Empirical dead-time corrections for synchrotron sources SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE dead-time; photon detector; synchrotron fill pattern; data correction ID COUNTING LOSSES; X-RAYS; DETECTORS AB An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction. C1 [Walko, D. A.; Arms, D. A.; Landahl, E. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Walko, DA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM d-walko@anl.gov RI Landahl, Eric/A-1742-2010 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX We thank John Quintana for helpful discussions, Steve Ross for supplying APDs, the APS Detector Pool for equipment loans, and the staff of beamline XOR/7ID for providing the beam time used for these measurements. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 9 TC 15 Z9 15 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2008 VL 15 BP 612 EP 617 DI 10.1107/S0909049508022358 PN 6 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 363RO UT WOS:000260284600010 PM 18955768 ER PT J AU Sannibale, F Marcelli, A Innocenzi, P AF Sannibale, Fernando Marcelli, Augusto Innocenzi, Plinio TI IKNO, a user facility for coherent terahertz and UV synchrotron radiation SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE synchrotron radiation source; terahertz; coherent synchrotron radiation; UV AB IKNO (Innovation and KNOwledge) is a proposal for a multi- user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation ranging from the IR to the VUV. IKNO can be operated in an ultra- stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing third-generation light sources. Simultaneously to the CSR operation, broadband incoherent synchrotron radiation up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent synchrotron radiation are described in this paper. The proposed location for the infrastructure facility is Sardinia, Italy. C1 [Sannibale, Fernando] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Marcelli, Augusto] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Innocenzi, Plinio] Univ Sassari, I-074041 Alghero, Italy. RP Sannibale, F (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fsannibale@lbl.gov RI Innocenzi, Plinio/D-5301-2009; OI Innocenzi, Plinio/0000-0003-2300-4680 NR 27 TC 7 Z9 7 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2008 VL 15 BP 655 EP 659 DI 10.1107/S0909049508023959 PN 6 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 363RO UT WOS:000260284600016 PM 18955774 ER PT J AU Edgerton, SA MacCracken, MC Jacobson, MZ Ayala, A Whitman, CE Trexler, MC AF Edgerton, Sylvia A. MacCracken, Michael C. Jacobson, Mark Z. Ayala, Alberto Whitman, Carol E. Trexler, Mark C. TI Prospects for Future Climate Change and the Reasons for Early Action SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Editorial Material ID TEMPERATURE; OZONE C1 [Edgerton, Sylvia A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [MacCracken, Michael C.] Climate Inst, Climate Change Programs, Washington, DC USA. [Jacobson, Mark Z.] Stanford Univ, Atmosphere & Energy Program, Stanford, CA 94305 USA. [Ayala, Alberto] Calif Air Resources Board, Div Res, Climate Change Mitigat & Emiss Branch, Sacramento, CA USA. [Whitman, Carol E.] Natl Rural Elect Cooperat Assoc, Washington, DC USA. [Trexler, Mark C.] EcoSecurities, Global Consulting Serv, Portland, OR USA. RP Edgerton, SA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Edgerton@pnal.gov NR 45 TC 5 Z9 5 U1 1 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1096-2247 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD NOV PY 2008 VL 58 IS 11 BP 1386 EP 1400 DI 10.3155/1047-3289.58.11.1386 PG 15 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 372FA UT WOS:000260886300001 PM 19044154 ER EF