FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Friedland, S Gurvits, L AF Friedland, Shmuel Gurvits, Leonid TI Lower bounds for partial matchings in regular bipartite graphs and applications to the monomer-dimer entropy SO COMBINATORICS PROBABILITY & COMPUTING LA English DT Article ID DOUBLY STOCHASTIC MATRIX; PERMANENT AB We derive here the Friedland-Tverberg inequality for positive hyperbolic polynomials. This inequality is applied to give lower bounds for the number of matchings in r-regular bipartite graphs. It is shown that some of these bounds are asymptotically sharp. We improve the known lower bound for the three-dimensional monomer-dimer entropy. C1 [Friedland, Shmuel] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA. [Gurvits, Leonid] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Friedland, S (reprint author), Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA. EM friedlan@uic.edu; gurvits@lanl.gov NR 23 TC 5 Z9 5 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0963-5483 J9 COMB PROBAB COMPUT JI Comb. Probab. Comput. PD MAY PY 2008 VL 17 IS 3 BP 347 EP 361 DI 10.1017/S0963548307008747 PG 15 WC Computer Science, Theory & Methods; Mathematics; Statistics & Probability SC Computer Science; Mathematics GA 298RX UT WOS:000255705900004 ER PT J AU Anderson, JC Garth, C Duchaineau, MA Joy, KI AF Anderson, J. C. Garth, C. Duchaineau, M. A. Joy, K. I. TI Discrete multi-material interface reconstruction for volume fraction data SO COMPUTER GRAPHICS FORUM LA English DT Article; Proceedings Paper CT 10th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis 08) CY MAY 26-28, 2008 CL Eindhoven, NETHERLANDS SP IEEE VGTC ID POTTS-MODEL; TRACKING AB Material interface reconstruction (MIR) is the task of constructing boundary interfaces between regions of homogeneous material, while satisfying volume constraints, over a structured or unstructured spatial domain. In this paper, we present a discrete approach to MIR based upon optimizing the labeling of fractional volume elements within a discretization of the problem's original domain. We detail how to construct and initially label a discretization, and introduce a volume conservative swap move for optimization. Furthermore, we discuss methods for extracting and visualizing material interfaces from the discretization. Our technique has significant advantages over previous methods: we produce interfaces between multiple materials that are continuous across cell boundaries for time-varying and static data in arbitrary dimension with bounded error C1 [Anderson, J. C.; Garth, C.; Joy, K. I.] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Duchaineau, M. A.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. RP Anderson, JC (reprint author), Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA. EM janderson@ucdavis.edu; cgarth@ucdavis.edu; duchaine@llnl.gov; kijoy@ucdavis.edu NR 30 TC 10 Z9 10 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0167-7055 EI 1467-8659 J9 COMPUT GRAPH FORUM JI Comput. Graph. Forum PD MAY PY 2008 VL 27 IS 3 BP 1015 EP 1022 DI 10.1111/j.1467-8659.2008.01237.x PG 8 WC Computer Science, Software Engineering SC Computer Science GA 318ES UT WOS:000257075000039 ER PT J AU Mostofi, AA Yates, JR Lee, YS Souza, I Vanderbilt, D Marzari, N AF Mostofi, Arash A. Yates, Jonathan R. Lee, Young-Su Souza, Ivo Vanderbilt, David Marzari, Nicola TI wannier90: A tool for obtaining maximally-localised Wannier functions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE electronic structure; density-functional theory; wannier function ID PSEUDOPOTENTIALS; SIMULATIONS; COMPUTATION; INSULATORS; METALS AB We present wannier90, a program for calculating maximally-localised Wannier functions (MLWF) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWF in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWF can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90 is able to output MLWF for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modem theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. wannier90 is freely available under the GNU General Public License from http://www.wannier.org/. Program summary Program title: wannier90 Catalogue identifier: AEAK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 556 495 No. of bytes in distributed program, including test data, etc.: 5 709 419 Distribution format: tar.gz Programming language: Fortran 90, perl Computer: any architecture with a Fortran 90 compiler Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX RAM: 10 MB Word size: 32 or 64 Classification: 7.3 External routines: BLAS (http://www/netlib.oi-g/blas). LAPACK (http://www.netlib.org/lapack). Both available under open-source licenses. Nature of problem: Obtaining maximally-localised Wannier functions from a set of Bloch energy bands that may or may not be entangled. Solution method: In the case of entangled bands, the optimally-connected subspace of interest is determined by minimising a functional which measures the subspace dispersion across the Brillouin zone. The maximally-localised Wannier functions within this subspace are obtained by subsequent minimisation of a functional that represents the total spread of the Wannier functions in real space. For the case of isolated energy bands only the second step of the procedure is required. Unusual features: Simple and user-friendly input system. Wannier functions and interpolated band structure output in a variety of file formats for visualisation. Running time: Test cases take 1 minute. References: [1] N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56 (1997) 12847. [2] I. Souza, N. Marzari, D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65 (2001) 035109. (C) 2007 Elsevier B.V. All rights reserved. C1 [Mostofi, Arash A.; Lee, Young-Su; Marzari, Nicola] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Yates, Jonathan R.; Souza, Ivo] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. [Yates, Jonathan R.; Souza, Ivo] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vanderbilt, David] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Mostofi, AA (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM a.mostofi@imperial.ac.uk RI Yates, Jonathan/E-7339-2010; Lee, Young-Su/C-3834-2012; Mostofi, Arash/L-6592-2013; Marzari, Nicola/D-6681-2016; OI Marzari, Nicola/0000-0002-9764-0199; Mostofi, Arash/0000-0002-6883-8278 NR 34 TC 799 Z9 801 U1 17 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY 1 PY 2008 VL 178 IS 9 BP 685 EP 699 DI 10.1016/j.cpc.2007.11.016 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 305MW UT WOS:000256183500006 ER PT J AU Wienke, BR O'Leary, TR AF Wienke, B. R. O'Leary, T. R. TI Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers SO COMPUTERS IN BIOLOGY AND MEDICINE LA English DT Article DE bubble model; diving risk; LANL data bank; decompression diving; maximum likelihood; Monte Carlo sampling ID DECOMPRESSION-SICKNESS; GAS BUBBLES; OXYGEN; AIR; DYNAMICS; TISSUES; BLOOD; LIKELIHOOD; EXPOSURES; ALTITUDE AB Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAU1 tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application. Published by Elsevier Ltd. C1 [Wienke, B. R.] Los Alamos Natl Lab, Appl & Computat Phys Div, Los Alamos, NM 87545 USA. [O'Leary, T. R.] NAUI Worldwide, NAUI Tech Diving Operat, Tampa, FL 33689 USA. RP Wienke, BR (reprint author), Los Alamos Natl Lab, Appl & Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. EM brw@lanl.gov NR 92 TC 3 Z9 3 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-4825 J9 COMPUT BIOL MED JI Comput. Biol. Med. PD MAY PY 2008 VL 38 IS 5 BP 583 EP 600 DI 10.1016/j.compbiomed.2008.02.006 PG 18 WC Biology; Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Computer Science; Engineering; Mathematical & Computational Biology GA 306AE UT WOS:000256218200006 PM 18371945 ER PT J AU Sviercoski, RF Travis, BJ Hyman, JM AF Sviercoski, Rosangela F. Travis, Bryan J. Hyman, James M. TI Analytical effective coefficient and a first-order approximation for linear flow through block permeability inclusions SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE homogenization; effective diffusion coefficient; generalized Voigt-Reiss' inequality; upscaled Darcy's law; first-order approximation ID MULTISCALE FINITE-ELEMENT; ELLIPTIC PROBLEMS; NUMERICAL HOMOGENIZATION; POROUS-MEDIA AB We present a closed form solution for the Upscaled diffusion coefficient and derive a first-order homogenized approximation to linear flow equations with periodic and rapidly oscillating coefficients. The coefficients are defined as step functions describing inclusions of various shapes in a main matrix. This constitutes the n-dimensional upscaled version of Darcy's law for linear flow in such systems. We consider the two-scale asymptotic expansion of the Solution of the flow equation, and develop a corrector to an analytical approximation for the Solution of the periodic cell-problem. We demonstrate that the proposed analytical form for the effective coefficient satisfies the generalized Voiat-Reiss' inequality and is in agreement with other known theoretical results, including the geometric average for the checkerboard geometry, and with some published numerical results. The zeroth-order approximation in H-1(Omega) is readily obtained and the first-order approximation in L-2(Omega) is derived from the proposed analytical approximation to the basis functions. The analytical basis functions are also used to define a correction function that incorporates the heterogeneous features into the zeroth-order approximation to the gradient and flux, which considerably improves the convergence results. We illustrate the procedure with coefficients describing square inclusions with contrast ratios between the inclusion and the matrix as 10:1, 100:1, 1000:1 and 1:10, respectively. We demonstrate numerically that the convergence properties of the proposed approximations agree with the classical theoretical results in homogenization theory. Published by Elsevier Ltd. C1 [Sviercoski, Rosangela F.; Travis, Bryan J.; Hyman, James M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sviercoski, RF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rsvier@latil.gov NR 27 TC 6 Z9 6 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD MAY PY 2008 VL 55 IS 9 BP 2118 EP 2133 DI 10.1016/j.camwa.2007.07.016 PG 16 WC Mathematics, Applied SC Mathematics GA 293IH UT WOS:000255328500019 ER PT J AU Kurzak, J Buttari, A Luszczek, P Dongarra, J AF Kurzak, Jakub Buttari, Alfredo Luszczek, Piotr Dongarra, Jack TI The PlayStation 3 for high-performance scientific computing SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Is real-world gaming technology the next big thing in the more academically based high-performance computing arena? The authors put PlayStation 3 to the test. C1 [Kurzak, Jakub] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. [Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. RP Kurzak, J (reprint author), Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. EM kurzak@eecs.utk.edu; buttari@eecs.utk.edu; luszczek@eecs.utk.edu; dongarra@eecs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 0 TC 15 Z9 15 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAY-JUN PY 2008 VL 10 IS 3 BP 84 EP 87 DI 10.1109/MCSE.2008.85 PG 4 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 286PZ UT WOS:000254859600014 ER PT J AU Stevens, KJ Ingham, B Toney, MF Brown, SA Lassesson, A AF Stevens, K. J. Ingham, B. Toney, M. F. Brown, S. A. Lassesson, A. TI Structure of palladium nanoclusters for hydrogen gas sensors SO CURRENT APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 3rd International Conference on Advanced Materials and Nanotechnology CY FEB 11-16, 2007 CL Wellington, NEW ZEALAND SP Ngai Tahu, Univ Canterbury, Massey Univ, Victoria Univ Wellington, Anaspec, AJ Park, Ind Res Lte, Royal Soc New Zealand, New Zealand Minist Res, Sci & Technol, AOARD Res Agcy DE palladium; hydrogen; nanoclusters; oxidation ID X-RAY-DIFFRACTION; SYSTEM; CARBON AB Palladium nanoclusters produced by inert gas aggregation/magnetron sputtering are used as building blocks for the construction of nano electronic devices with large surface to volume ratios that can be used as sensitive hydrogen gas sensors in fuel cells and in petrochemical plants. X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and high resolution transmission electron microscopy (HRTEM) have been used to characterise the structure, lattice constant, particle diameter and oxide thickness of the palladium nanoclusters in order to understand the operation of these sensors. Grazing incidence XRD (GIXRD) of heat treated Pd clusters has shown that the palladanite structure forms at elevated temperatures. (C) 2007 Elsevier B.V. All rights reserved. C1 [Stevens, K. J.] MPT Solut Ltd, Lower Hutt 5045, New Zealand. [Stevens, K. J.; Brown, S. A.] MacDiarmid Inst Adv Mat & Nanotechnol, Christchurch, New Zealand. [Ingham, B.] Ind Res Ltd, Lower Hutt 5045, New Zealand. [Ingham, B.; Toney, M. F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Brown, S. A.; Lassesson, A.] Univ Canterbury, Nano Cluster Devices Ltd, Christchurch 1, New Zealand. RP Stevens, KJ (reprint author), MPT Solut Ltd, POB 38-096, Lower Hutt 5045, New Zealand. EM k.stevens@mptsolutions.com RI Brown, Simon/C-1014-2008 OI Brown, Simon/0000-0002-6041-4331 NR 14 TC 7 Z9 7 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAY PY 2008 VL 8 IS 3-4 BP 443 EP 446 DI 10.1016/j.cap.2007.10.032 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 265NA UT WOS:000253365000057 ER PT J AU Ingham, B Illy, BN Ryan, MP AF Ingham, Bridget Illy, Benoit N. Ryan, Mary P. TI In situ synchrotron studies of ZnO nanostructures during electrochemical deposition SO CURRENT APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 3rd International Conference on Advanced Materials and Nanotechnology CY FEB 11-16, 2007 CL Wellington, NEW ZEALAND SP Ngai Tahu, Univ Canterbury, Massey Univ, Victoria Univ Wellington, Anaspec, AJ Park, Ind Res Lte, Royal Soc New Zealand, New Zealand Minist Res, Sci & Technol, AOARD Res Agcy DE electrochemical synthesis; nanostructures; ZnO; XANES; synchrotron techniques ID ZINC-OXIDE FILMS; CR ALLOYS; ELECTRODEPOSITION; GROWTH AB ZnO nanostructured films fabricated by electrochemical deposition exhibit a variety of morphologies. Understanding their respective nucleation and growth mechanisms requires in situ techniques. A time-resolved X-ray absorption and fluorescence method is described, which adequately captures both processes and illustrates differences in the growth rates for films deposited at different potentials. In so doing, the new method has significant advantages over a previous method of continually scanning across the near-edge region of the absorption spectrum while the film was being deposited. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ingham, Bridget] Ind Res Ltd, Lower Hutt, New Zealand. [Ingham, Bridget] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, London Ctr Nanotechnol, London SW7 2AZ, England. RP Ingham, B (reprint author), Ind Res Ltd, POB 31-310, Lower Hutt, New Zealand. EM b.ingham@irl.cri.nz OI Ryan, Mary/0000-0001-8582-3003 NR 24 TC 9 Z9 10 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAY PY 2008 VL 8 IS 3-4 BP 455 EP 458 DI 10.1016/j.cap.2007.10.038 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 265NA UT WOS:000253365000060 ER PT J AU Bowden, M Autrey, T Brown, I Ryan, M AF Bowden, Mark Autrey, Tom Brown, Ian Ryan, Martin TI The thermal decomposition of ammonia borane: A potential hydrogen storage material SO CURRENT APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 3rd International Conference on Advanced Materials and Nanotechnology CY FEB 11-16, 2007 CL Wellington, NEW ZEALAND SP Ngai Tahu, Univ Canterbury, Massey Univ, Victoria Univ Wellington, Anaspec, AJ Park, Ind Res Lte, Royal Soc New Zealand, New Zealand Minist Res, Sci & Technol, AOARD Res Agcy DE hydrogen storage; mechanism; kinetics ID DERIVATIVES AB One equivalent of hydrogen gas is evolved from ammonia borane (NH3BH3) when it is heated above 70 degrees C. The initial stages of this process have been examined using TG/DSC, optical microscopy, and high temperature X-ray diffraction. Two exothermic events have been observed, the first of which takes place without hydrogen evolution. During this stage, the sample loses its crystallinity and bire-fringence. The products are believed to be a more mobile form of NH3BH3 and the diammoniate of diborane ([NH3BH2NH3](+)[BH4](-)). These products subsequently react in the second exothermic stage to generate hydrogen. (C) 2007 Elsevier B.V. All rights reserved. C1 [Bowden, Mark; Brown, Ian; Ryan, Martin] Ind Res Ltd, Lower Hutt, New Zealand. [Bowden, Mark; Brown, Ian] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington, New Zealand. [Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99252 USA. RP Bowden, M (reprint author), Ind Res Ltd, POB 31-310, Lower Hutt, New Zealand. EM m.bowden@irl.cri.nz NR 9 TC 57 Z9 58 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD MAY PY 2008 VL 8 IS 3-4 BP 498 EP 500 DI 10.1016/j.cap.2007.10.045 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 265NA UT WOS:000253365000071 ER PT J AU Butovich, IA Millar, TJ Ham, BM AF Butovich, Igor A. Millar, Thomas J. Ham, Bryan M. TI Understanding and analyzing meibomian lipids - A review SO CURRENT EYE RESEARCH LA English DT Review DE fragmentation; HPLC; marsupial; mass spectroscopy; meibomian lipids ID HUMAN TEAR FLUID; MASS-SPECTROMETRIC ANALYSIS; POTATO-TUBER LIPOXYGENASE; GLAND SECRETIONS; CHRONIC BLEPHARITIS; DRY EYE; DIADENOSINE POLYPHOSPHATES; CORNEAL SURFACE; FATTY-ACIDS; FILM AB Purpose: This review is intended to bring to the informed reader the current state of knowledge about meibomian lipids and the art for analyzing them. Methods: At the forefront of any endeavor, there are controversies, and these, along with future directions in the field, are brought to the reader's attention. Results: Function and anatomy of meibomian glands are briefly covered, giving insight into possible mechanisms for secretory controls. Anatomically, some anomalies in meibomian gland distribution of different species, such as whales versus dolphins, are presented, and, for the first time, the structure of the meibomian glands in a selection of marsupials is presented. In attempting to make the literature more accessible, lipid structure and nomenclature are described, and these structures are related to their possible effects on the physicochemical properties of meibomian lipids. The advantages and disadvantages of various collection and storage techniques arc described, as well as how gas chromatography and combined HPLC and mass spectrometry coupled with fragmentation are currently enabling us to determine the nature of the lipids in very small samples. Conclusions: This review extends to discussing the lipids in tears (as opposed to meibomian gland lipids) and briefly highlights new thoughts about the interactions between proteins of the tear film and meibomian lipids. A model that includes proteins in the outer layer of the tear film is also presented. This model is currently being critically analyzed by the ocular community. It concludes briefly by highlighting possible further areas of research in this area. C1 [Millar, Thomas J.] Univ Western Sydney, Sch Nat Sci, Penrith, NSW, Australia. [Butovich, Igor A.] Univ Texas SW Med Ctr Dallas, Dept Ophthalmol, Dallas, TX USA. [Butovich, Igor A.] Univ Texas SW Med Ctr Dallas, Grad Sch Biomed Sci, Dallas, TX USA. [Ham, Bryan M.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ham, Bryan M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Millar, TJ (reprint author), LZ1 18,Parramatta Campus North,Locked Bag 1797, Penrith, NSW 1797, Australia. EM t.millar@uws.edu.au FU NEI NIH HHS [EY-016664, R24 EY016664, R24 EY016664-03] NR 86 TC 77 Z9 79 U1 1 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0271-3683 J9 CURR EYE RES JI Curr. Eye Res. PD MAY-JUN PY 2008 VL 33 IS 5-6 BP 405 EP 420 DI 10.1080/02713680802018419 PG 16 WC Ophthalmology SC Ophthalmology GA 312LE UT WOS:000256672100001 PM 18568877 ER PT J AU Lamont, AD AF Lamont, Alan D. TI Assessing the long-term system value of intermittent electric generation technologies SO ENERGY ECONOMICS LA English DT Article DE Q42; alternative energy resources; intermittent generation technologies; electric generation systems AB This research investigates the economic penetration and system-wide effects of large-scale intermittent technologies in an electric generation system. The research extends the standard screening curve analysis to optimize the penetration and system structure with intermittent technologies. The analysis is based on hour-by-hour electric demands and intermittent generation. A theoretical framework is developed to find an expression for the marginal value of an intermittent technology as a function of the average system marginal cost, the capacity factor of the generator, and the covariance between the generator's hourly production and the hourly system marginal cost. A series of model runs are made examining the penetration of wind and photovoltaic in a simple electric generation system. These illustrate the conclusions in the theoretical analysis and illustrate the effects that large-scale intermittent penetration has on the structure of the generation system. In the long-term, adding intermittent generation to a system allows us to restructure the dispatchable generation capacity to a mix with lower capital cost. It is found that large-scale intermittent generation tends to reduce the optimal capacity and production of baseload generators and increase the capacity and production of intermediate generators, although the extent to which this occurs depends strongly on the pattern of production from the intermediate generators. It is also shown that the marginal value of intermittent generation declines as it penetrates. The analysis investigates the specific mechanism through which this occurs. (c) 2007 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lamont, AD (reprint author), Lawrence Livermore Natl Lab, POB 550,L-644, Livermore, CA 94550 USA. EM lamont1@llnl.gov NR 17 TC 67 Z9 68 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD MAY PY 2008 VL 30 IS 3 BP 1208 EP 1231 DI 10.1016/j.eneco.2007.02.007 PG 24 WC Economics SC Business & Economics GA 286YU UT WOS:000254883600032 ER PT J AU Li, Y Vodacek, A Raqueno, N Kremens, R Garrett, AJ Bosch, I Makarewicz, JC Lewis, TW AF Li, Yan Vodacek, Anthony Raqueno, Nina Kremens, Robert Garrett, Alfred J. Bosch, Isidro Makarewicz, Joseph C. Lewis, Theodore W. TI Circulation and stream plume modeling in Conesus Lake SO ENVIRONMENTAL MODELING & ASSESSMENT LA English DT Article DE hydrodynamic modeling; lake circulation; hydrometeorological event; stream plume; macrophyte; Conesus Lake; remote sensing ID SIMULATIONS; IMAGERY; FLOW AB A three-dimensional hydrodynamic model that includes the effect of drag from macrophytes was applied to Conesus Lake to study the seasonal circulation and thermal structure during spring and early summer. Local weather conditions and stream flow data were used to drive the model. The drag coefficient for macrophytes was calculated as a function of leaf density. In general, the model results show good agreements with the observations, including vertical temperature profiles measured at two locations and average surface temperature derived from calibrated thermal imagery for large-scale simulations of the entire lake. Additional high-resolution simulations were carried out to understand water circulation and transport of sediment and model-generated tracer during hydrometeorological events at stream mouths for two experimental sites. The model results show that the plume development at stream mouths during storm events in Conesus Lake are site-dependent and may either be current- or wind-driven. The results also show a significant effect from the presence of macrophytes on sediment deposition near stream mouths. C1 [Li, Yan; Vodacek, Anthony; Raqueno, Nina; Kremens, Robert] Rochester Inst Technol, Ctr Imaging Sci, Digital Imaging & Remote Sensing Lab, Rochester, NY 14623 USA. [Garrett, Alfred J.] Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29802 USA. [Bosch, Isidro] SUNY Coll Geneseo, Dept Biol, Geneseo, NY 14454 USA. [Makarewicz, Joseph C.; Lewis, Theodore W.] SUNY Coll Brockport, Dept Environm Sci & Biol, Brockport, NY 14420 USA. RP Li, Y (reprint author), Rochester Inst Technol, Ctr Imaging Sci, Digital Imaging & Remote Sensing Lab, Rochester, NY 14623 USA. EM yxl4059@cis.rit.edu RI Vodacek, Anthony/F-1585-2011 OI Vodacek, Anthony/0000-0001-9196-0928 NR 22 TC 10 Z9 10 U1 2 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-2026 J9 ENVIRON MODEL ASSESS JI Environ. Model. Assess. PD MAY PY 2008 VL 13 IS 2 BP 275 EP 289 DI 10.1007/s10666-007-9090-x PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA 275RB UT WOS:000254088200009 ER PT J AU Liu, CM Yeh, MT Paul, S Lee, YC Jacob, DJ Fu, M Woo, JH Carmichael, GR Streets, DG AF Liu, Chung-Ming Yeh, Ming-Te Paul, Sahana Lee, Y-C. Jacob, D. J. Fu, M. Woo, J. -H. Carmichael, G. R. Streets, D. G. TI Effect of anthropogenic emissions in East Asia on regional ozone levels during spring cold continental outbreaks near Taiwan: A case study SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE surface ozone; cold air outbreak; anthropogenic emission; numerical simulation ID ACID DEPOSITION MODEL; LONG-RANGE TRANSPORT; ATMOSPHERIC CHEMISTRY; AIR-POLLUTION; APRIL 2001; ART.; SIMULATION; BIOMASS; IMPACT; CHINA AB A numerical simulation study to quantify the effect of upstream transport and fossil-fuel and biomass-burning emissions from East Asia on the surface ozone near Taiwan has been performed based on data taken April 8-13, 2001, when a cold air outbreak occurred. The TAQM (Taiwan Air Quality Model) is employed in this study. Results show that, without considering emissions in East Asia, upstream transport of chemical species associated with the movement of the cold air mass increased the levels of CO and ozone near Taiwan from 75 to 180 ppbv, and 35 to 55 ppbv, respectively. Fossil-fuel and biomass-burning emissions can thus result in a significant increase of CO and ozone levels (70-150% and 50-100%, respectively) from the emissionless background. The most noteworthy phenomenon is that biomass burning in Eastern China alone can contribute up to 20% of the increase for these species, while the biomass burning in Southeast Asia has negligible influence. (c) 2007 Published by Elsevier Ltd. C1 [Liu, Chung-Ming; Yeh, Ming-Te; Paul, Sahana; Lee, Y-C.] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. [Jacob, D. J.; Fu, M.] Harvard Univ, Dept Earth & Planetary Sci, Div Engn & Appl Sci, Boston, MA 02115 USA. [Woo, J. -H.; Carmichael, G. R.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. [Streets, D. G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Liu, CM (reprint author), Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. EM liucm@ntu.edu.tw RI Fu, Tzung-May/N-3418-2015; OI Streets, David/0000-0002-0223-1350 NR 35 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD MAY PY 2008 VL 23 IS 5 BP 579 EP 591 DI 10.1016/j.envsoft.2007.08.007 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 261ZM UT WOS:000253118500006 ER PT J AU Lee, MH Clingenpeel, SC Leiser, OP Wymore, RA Sorenson, KS Watwood, ME AF Lee, M. Hope Clingenpeel, Scott C. Leiser, Owen P. Wymore, Ryan A. Sorenson, Kent S., Jr. Watwood, Mary E. TI Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site SO ENVIRONMENTAL POLLUTION LA English DT Article DE cometabolism; groundwater; activity; trichloroethene (TCE); natural attenuation ID METHYLOSINUS-TRICHOSPORIUM OB3B; SOLUBLE METHANE MONOOXYGENASE; PSEUDOMONAS-STUTZERI OX1; O-XYLENE MONOOXYGENASE; TOLUENE DIOXYGENASE; OXIDIZING BACTERIA; MICROBIAL-POPULATIONS; ESCHERICHIA-COLI; FIELD-EVALUATION; DEGRADE TOLUENE AB A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Lee, M. Hope; Clingenpeel, Scott C.] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA. [Lee, M. Hope] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Leiser, Owen P.; Watwood, Mary E.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Wymore, Ryan A.; Sorenson, Kent S., Jr.] CDM, Denver, CO 80202 USA. RP Lee, MH (reprint author), N Wind Inc, 1425 Higham St, Idaho Falls, ID 83402 USA. EM hlee@northwind-inc.com OI Clingenpeel, Scott/0000-0002-6619-6320 NR 45 TC 11 Z9 11 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD MAY PY 2008 VL 153 IS 1 BP 238 EP 246 DI 10.1016/j.envpol.2007.07.034 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 300JE UT WOS:000255819300028 PM 17904715 ER PT J AU Glatz, A Beloborodov, IS Vinokur, VM AF Glatz, A. Beloborodov, I. S. Vinokur, V. M. TI Giant magnetoresistance in nanogranular magnets SO EPL LA English DT Article ID GRANULAR FILMS; TRANSPORT; SYSTEMS; SUPERCONDUCTORS; MULTILAYERS; DYNAMICS; METALS; OXIDES AB We study the giant magnetoresistance of nanogranular magnets in the presence of an external magnetic field and finite temperature. We show that the magnetization of arrays of nanogranular magnets has hysteretic behaviour at low temperatures leading to a double peak in the magnetoresistance which coalesces at high temperatures into a single peak. We numerically calculate the magnetization of magnetic domains and the motion of domain walls in this system using a combined mean-field approach and a model for an elastic membrane moving in a random medium, respectively. From the obtained results, we calculate the electric resistivity as a function of magnetic field and temperature. Our findings show excellent agreement with various experimental data. Copyright (C) EPLA, 2008. C1 [Glatz, A.; Beloborodov, I. S.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM glatz@anl.gov NR 37 TC 3 Z9 3 U1 1 U2 7 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2008 VL 82 IS 4 AR 47002 DI 10.1209/0295-5075/82/47002 PG 6 WC Physics, Multidisciplinary SC Physics GA 307EN UT WOS:000256300900018 ER PT J AU Lamoreaux, SK Archibald, G Barnes, PD Buttler, WT Clark, DJ Cooper, MD Espy, M Greene, GL Golub, R Hayden, ME Lei, C Marek, LJ Peng, JC Penttila, S AF Lamoreaux, S. K. Archibald, G. Barnes, P. D. Buttler, W. T. Clark, D. J. Cooper, M. D. Espy, M. Greene, G. L. Golub, R. Hayden, M. E. Lei, C. Marek, L. J. Peng, J. -C. Penttila, S. TI Measurement of the (3)He mass diffusion coefficient in superfluid (4)He over the 0.45-0.95K temperature range (vol 58, pg 718, 2002) SO EPL LA English DT Correction C1 [Lamoreaux, S. K.; Barnes, P. D.; Buttler, W. T.; Clark, D. J.; Cooper, M. D.; Espy, M.; Greene, G. L.; Marek, L. J.; Peng, J. -C.; Penttila, S.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Archibald, G.; Hayden, M. E.; Lei, C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Golub, R.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. RP Lamoreaux, SK (reprint author), Yale Univ, Dept Phys, Box 208120, New Haven, CT 06520 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2008 VL 82 IS 3 AR 39901 DI 10.1209/0295-5075/82/39901 PG 1 WC Physics, Multidisciplinary SC Physics GA 293XU UT WOS:000255369500031 ER PT J AU Oeschler, N Fisher, RA Phillips, NE Gordon, JE Foo, ML Cava, RJ AF Oeschler, N. Fisher, R. A. Phillips, N. E. Gordon, J. E. Foo, M. -L. Cava, R. J. TI Evidence for two-band superconductivity and non-magnetic pair breaking in Na0.3CoO2 center dot 1.3H(2)O; effects of sample age SO EPL LA English DT Article ID PHASE-DIAGRAM; HEAT; NAXCOO2-CENTER-DOT-YH(2)O AB The specific heat of Na0.3CoO2 center dot 1.3H(2)O gives evidence of two electron bands with comparable densities of states and different superconducting-state energy gaps. A non-magnetic pair-breaking action, which acts preferentially in the band with the smaller gap, progresses with sample age. The two bands and non-magnetic pair breaking have implications for possible pairing mechanisms; the effects of the pair breaking constitute the "sample dependence" of the properties of this material. In concert with structural changes reported by others, the specific heat suggests dual roles for O vacancies - tuning the carrier concentration to favor superconductivity, and pair breaking to destroy it. Copyright (c) EPLA, 2008. C1 [Oeschler, N.; Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Oeschler, N.; Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gordon, J. E.] Amherst Coll, Dept Phys, Amherst, MA 01002 USA. [Foo, M. -L.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Oeschler, N (reprint author), Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. EM nephill@cchem.berkeley.edu RI Foo, Maw Lin/H-9273-2012 NR 33 TC 6 Z9 6 U1 0 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2008 VL 82 IS 4 AR 47011 DI 10.1209/0295-5075/82/47011 PG 5 WC Physics, Multidisciplinary SC Physics GA 307EN UT WOS:000256300900027 ER PT J AU Szigethy, G Xu, J Gorden, AEV Teat, SJ Shuh, DK Raymond, KN AF Szigethy, Geza Xu, Jide Gorden, Anne E. V. Teat, Simon J. Shuh, David K. Raymond, Kenneth N. TI Surprising coordination geometry differences in Ce(IV)- and Pu(IV)-maltol complexes SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE actinoids; chelating agents; coordination compounds; plutonium ID SEQUESTERING AGENTS; ACTINIDES; PLUTONIUM; CHEMISTRY AB As part of a study to characterize the detailed coordination behavior of Pu(IV), single-crystal X-ray diffraction structures have been determined for Pu(IV) and Ce(IV) complexes with the naturally occurring ligand maltol (3-hydroxy-2-methylpyran-4-one) and its derivative bromomaltol (5-bromo-3-hydroxy-2-methylpyran-4-one). Although Ce(IV) is generally accepted as a structural analog for Pu(IV) and the maltol complexes of these two metals are isostructural, the corresponding bromomaltol complexes are strikingly different with respect to ligand orientation about the metal ion: All complexes exhibit trigonal dodecahedral coordination geometry but the Ce(IV)-bromomaltol complex displays an uncommon ligand arrangement not found in the Pu(IV) complex. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008). C1 [Szigethy, Geza; Gorden, Anne E. V.; Shuh, David K.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. [Szigethy, Geza; Xu, Jide; Gorden, Anne E. V.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu RI Gorden, Anne/D-2477-2011 OI Gorden, Anne/0000-0001-6623-9880 NR 24 TC 28 Z9 28 U1 3 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAY PY 2008 IS 13 BP 2143 EP 2147 DI 10.1002/ejic.200800144 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 300VX UT WOS:000255854400003 ER PT J AU Lin, Q Heideman, CL Nguyen, N Zschack, P Chiritescu, C Cahill, DG Johnson, DC AF Lin, Qiyin Heideman, Colby L. Nguyen, Ngoc Zschack, Paul Chiritescu, Catalin Cahill, David G. Johnson, David C. TI Designed synthesis of families of misfit-layered compounds SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE incommensurate structure; synthesis design; nanostructure; crystal engineering; layered compounds ID ELECTRICAL TRANSPORT; MODULATED STRUCTURE; MAGNETIC-PROPERTIES; SULFIDE; (BISE)1.09TASE2; CHALCOGENIDES; SYSTEM AB The synthesis of several new families of misfit-layered compounds is demonstrated. These compounds are crystalline along the c-axis and in the ab-plane, but show very short coherence lengths between ab-planes. This disorder leads to ultra-low and tunable thermal conductivity. Annealing iso-structural samples under a chalcogen vapour until equilibrium is reached results in reproducible Seebeck and resistivity values. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008). C1 [Heideman, Colby L.; Nguyen, Ngoc; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Lin, Qiyin] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chiritescu, Catalin; Cahill, David G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Chiritescu, Catalin; Cahill, David G.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, 1253 Univ Oregon, Eugene, OR 97403 USA. EM davej@uoregon.edu RI Cahill, David/B-3495-2014 NR 25 TC 23 Z9 23 U1 1 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAY PY 2008 IS 15 BP 2382 EP 2385 DI 10.1002/ejic.200800158 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 308AB UT WOS:000256359600002 ER PT J AU Nieto, I Bontchev, RP Smith, JM AF Nieto, Ismael Bontchev, Ranko. P. Smith, Jeremy M. TI Synthesis of a bulky bis(carbene)borate ligand - Contrasting structures of homoleptic nickel(II) bis(pyrazolyl)borate and bis(carbene)borate complexes SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE carbene ligands; ligand design; coordination modes; ligand effects; nickel ID N-HETEROCYCLIC CARBENES; AB-INITIO PSEUDOPOTENTIALS; TRANSITION-ELEMENTS; PALLADIUM(II); PLATINUM(II) AB Twofold deprotonation of the "boronium" cation H2B(tBu-ImH)(2)I-+(-) provides access to the bulky his (carbene) borate ligand H2B(tBuIm)(2)(-). Transfer of the ligand to Ni-II sources affords the square-planar, diamagnetic complex Ni[H2B-(tBuIm)(2)](2). The proper-Lies of this complex are contrasted with the related his (pyrazolyl) borate complex Ni[H2B(tBupyr)(2)](2), which is octahedral and paramagnetic. Density functional theory has been used to evaluate the reasons for the structural differences. Stabilization of the square-planar geometry by the bis(carbene)borate ligand can be ascribed to its greater donor ability. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008). C1 [Nieto, Ismael; Smith, Jeremy M.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Bontchev, Ranko. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smith, JM (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. EM jesmith@nmsu.edu RI Smith, Jeremy/H-5043-2012 NR 25 TC 33 Z9 33 U1 1 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAY PY 2008 IS 15 BP 2476 EP 2480 DI 10.1002/ejic.200800034 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 308AB UT WOS:000256359600014 ER PT J AU Mincher, BJ Ball, RD Houghton, TP Mionczynski, J Hnilicka, PA AF Mincher, B. J. Ball, R. D. Houghton, T. P. Mionczynski, J. Hnilicka, P. A. TI Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis) SO EUROPEAN JOURNAL OF WILDLIFE RESEARCH LA English DT Article DE animal nutrition; selenium; mineral licks; sodium ID WHITE-TAILED DEER; MOUNTAIN GOAT; MINERAL LICKS; SODIUM AB Geophagia has been commonly reported for bighorn sheep (Ovis canadensis) and other ungulates worldwide. The phenomenon is often attributed to the need to supplement animal diets with minerals available in the soil at mineral lick locations. Sodium is the mineral most frequently cited as being the specific component sought, although this has not been found universally. In this study area, bighorn sheep left normal summer-range to make bimonthly 26-km, 2,000-m-elevation round-trip migrations, the apparent purpose of which was to visit mineral licks on normal winter-range. Lick soil and normal summer-range soil were sampled for their available mineral content and summer-range forage was sampled for total mineral content, and comparisons were made to determine the specific components sought at the lick by bighorn sheep consuming soil. It was concluded that bighorn sheep were attracted to the lick by a desire for sodium but that geophagia also supplemented a diet deficient in the trace element selenium. Where sheep are denied access to licks, populations may be limited by mineral deficiency. C1 [Mincher, B. J.; Ball, R. D.; Houghton, T. P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Mionczynski, J.] Wildlife Consultant, Atlantic City, WY 82520 USA. [Hnilicka, P. A.] US Fish & Wildlife Serv, Lander, WY 82520 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov RI Ball, Richard/B-8150-2017; Mincher, Bruce/C-7758-2017 OI Ball, Richard/0000-0002-4798-6044; NR 21 TC 5 Z9 5 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1612-4642 J9 EUR J WILDLIFE RES JI Eur. J. Wildl. Res. PD MAY PY 2008 VL 54 IS 2 BP 193 EP 198 DI 10.1007/s10344-007-0128-9 PG 6 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 289ZB UT WOS:000255091300005 ER PT J AU Al-Sharab, JF Wittig, JE Bertero, G Yamashita, T Bentley, J Evans, ND AF Al-Sharab, J. F. Wittig, J. E. Bertero, G. Yamashita, T. Bentley, J. Evans, N. D. TI Magnetic energy distribution in polycrystalline sputtered CoCr magnetic thin films SO EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS LA English DT Article ID THERMAL-STABILITY; MEDIA; MICROSTRUCTURE AB Magnetic thin films of Co(80)Cr(16)Ta(4) were sputtered onto identical CrMo seed-layers at - 200 V bias and 3 different substrate temperatures ( 150, 200, and 250 degrees C). Energy-filtered transmission electron microscopy ( EFTEM) was performed to analyze Cr levels at the grain boundaries as well as inside the grains. These quantitative Cr measurements were used to estimate the local values of magnetocrystalline anisotropy ( K(u)) and, together with grain size distributions, calculate the product of Ku and the grain volume ( K(u)V), a quantity which is a measure of thermal stability. The results show that the coercivity as well as the fraction of stable grains increased with increasing substrate temperature. The increase in the fraction of stable grains is produced by the enhancement in the Ku value due to Cr depletion of the grain interiors and the magnetic decoupling between the grains from Cr grain-boundary segregation. C1 [Al-Sharab, J. F.] Rutgers State Univ, Ctr Nanomat Res, Piscataway, NJ 08854 USA. [Wittig, J. E.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37234 USA. [Bertero, G.; Yamashita, T.] Komag Incorp, San Jose, CA 95131 USA. [Bentley, J.; Evans, N. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Al-Sharab, JF (reprint author), Rutgers State Univ, Ctr Nanomat Res, Bush Campus, Piscataway, NJ 08854 USA. EM jafarhan@rci.rutgers.edu RI Evans, Neal/F-5955-2011 NR 8 TC 0 Z9 0 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1286-0042 J9 EUR PHYS J-APPL PHYS JI Eur. Phys. J.-Appl. Phys PD MAY PY 2008 VL 42 IS 2 BP 125 EP 128 DI 10.1051/epjap:2008048 PG 4 WC Physics, Applied SC Physics GA 294OC UT WOS:000255414400011 ER PT J AU Abdullin, S Abramov, V Acharya, B Adams, M Akchurin, N Akgun, U Anderson, EW Antchev, G Ayan, S Aydin, S Baarmand, M Baden, D Banerjee, S Banerjee, S Bard, R Barnes, V Bawa, H Baiatian, G Bencze, G Beri, S Bhatnagar, V Bodek, A Budd, H Burchesky, K Camporesi, T Cankocak, K Carrell, K Chendvankar, S Chung, Y Cremaldi, L Cushman, P Damgov, J de Barbaro, P Demianov, A de Visser, T Dimitrov, L Dugad, S Dumanoglu, I Duru, F Elias, J Elvira, D Emeliantchik, I Eno, S Ershov, A Eskut, E Fisher, W Freeman, J Gavrilov, V Genchev, V Gershtein, Y Golutvin, I Goncharov, P Grassi, T Green, D Gribushin, A Grinev, B Gulmez, E Gumus, K Haelen, T Hagopian, S Hagopian, V Hauptman, J Hazen, E Heering, A Imboden, M Isiksal, E Jarvis, C Johnson, K Kaftanov, V Kalagin, V Karmgard, D Kalmani, S Katta, S Kaur, M Kaya, M Kayis-Topaksu, A Kellogg, R Khmelnikov, A Kisselevich, I Kodolova, O Kohli, J Kolossov, V Korablev, A Korneev, Y Kosarev, I Krinitsyn, A Krokhotin, A Kryshkin, V Kuleshov, S Kumar, A Kunori, S Polatoz, A Laasanen, A Lawlor, C Lazic, D Levchuk, L Litvintsev, D Litov, L Los, S Lubinsky, V Lukanin, V Machado, E Mans, J Massolov, V Mazumdar, K Merlo, JP Mescheryakov, G Mestvirishvili, A Miller, M Mondal, N Nagaraj, P Norbeck, E O'Dell, V Olson, J Onel, Y Onengut, G Ozdes-Koca, N Ozkorucuklu, S Ozok, F Paktinat, S Patil, M Petrushanko, S Pikalov, V Piperov, S Podrasky, V Pompos, A Posch, C Qian, W Ralich, R Reddy, L Reidy, J Ruchti, R Rohlf, J Ronzhin, A Ryazanov, A Sanders, DA Sanzeni, C Sarycheva, L Satyanarayana, B Schmidt, I Senchishin, V Sergeyev, S Serin-Zeyrek, M Sever, R Singh, J Sirunyan, A Skuja, A Sherwood, B Shumeiko, N Smirnov, V Sorokin, P Stefanovich, R Stolin, V Sudhakar, K Suzuki, I Talov, V Thomas, R Tully, C Turchanovich, L Ulyanov, A Vankov, I Vardanyan, I Verma, P Vesztergombi, G Vidal, R Vlassov, E Vodopiyanov, I Volkov, A Volodko, A Winn, D Whitmore, J Wu, SX Zalan, P Zarubin, A Zeyrek, M AF Abdullin, S. Abramov, V. Acharya, B. Adams, M. Akchurin, N. Akgun, U. Anderson, E. W. Antchev, G. Ayan, S. Aydin, S. Baarmand, M. Baden, D. Banerjee, Sud. Banerjee, Sun. Bard, R. Barnes, V. Bawa, H. Baiatian, G. Bencze, G. Beri, S. Bhatnagar, V. Bodek, A. Budd, H. Burchesky, K. Camporesi, T. Cankocak, K. Carrell, K. Chendvankar, S. Chung, Y. Cremaldi, L. Cushman, P. Damgov, J. de Barbaro, P. Demianov, A. de Visser, T. Dimitrov, L. Dugad, S. Dumanoglu, I. Duru, F. Elias, J. Elvira, D. Emeliantchik, I. Eno, S. Ershov, A. Eskut, E. Fisher, W. Freeman, J. Gavrilov, V. Genchev, V. Gershtein, Y. Golutvin, I. Goncharov, P. Grassi, T. Green, D. Gribushin, A. Grinev, B. Guelmez, E. Gumus, K. Haelen, T. Hagopian, S. Hagopian, V. Hauptman, J. Hazen, E. Heering, A. Imboden, M. Isiksal, E. Jarvis, C. Johnson, K. Kaftanov, V. Kalagin, V. Karmgard, D. Kalmani, S. Katta, S. Kaur, M. Kaya, M. Kayis-Topaksu, A. Kellogg, R. Khmelnikov, A. Kisselevich, I. Kodolova, O. Kohli, J. Kolossov, V. Korablev, A. Korneev, Y. Kosarev, I. Krinitsyn, A. Krokhotin, A. Kryshkin, V. Kuleshov, S. Kumar, A. Kunori, S. Polatoz, A. Laasanen, A. Lawlor, C. Lazic, D. Levchuk, L. Litvintsev, D. Litov, L. Los, S. Lubinsky, V. Lukanin, V. Machado, E. Mans, J. Massolov, V. Mazumdar, K. Merlo, J. P. Mescheryakov, G. Mestvirishvili, A. Miller, M. Mondal, N. Nagaraj, P. Norbeck, E. O'Dell, V. Olson, J. Onel, Y. Onengut, G. Ozdes-Koca, N. Ozkorucuklu, S. Ozok, F. Paktinat, S. Patil, M. Petrushanko, S. Pikalov, V. Piperov, S. Podrasky, V. Pompos, A. Posch, C. Qian, W. Ralich, R. Reddy, L. Reidy, J. Ruchti, R. Rohlf, J. Ronzhin, A. Ryazanov, A. Sanders, D. A. Sanzeni, C. Sarycheva, L. Satyanarayana, B. Schmidt, I. Senchishin, V. Sergeyev, S. Serin-Zeyrek, M. Sever, R. Singh, J. Sirunyan, A. Skuja, A. Sherwood, B. Shumeiko, N. Smirnov, V. Sorokin, P. Stefanovich, R. Stolin, V. Sudhakar, K. Suzuki, I. Talov, V. Thomas, R. Tully, C. Turchanovich, L. Ulyanov, A. Vankov, I. Vardanyan, I. Verma, P. Vesztergombi, G. Vidal, R. Vlassov, E. Vodopiyanov, I. Volkov, A. Volodko, A. Winn, D. Whitmore, J. Wu, S. X. Zalan, P. Zarubin, A. Zeyrek, M. CA CMS-HCAL Collaboration TI Design, performance, and calibration of CMS hadron-barrel calorimeter wedges SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID FIBER READOUT AB Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. C1 [Abdullin, S.; Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.] Univ Maryland, College Pk, MD 20742 USA. [Baiatian, G.; Sirunyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Emeliantchik, I.; Massolov, V.; Shumeiko, N.; Stefanovich, R.] NCPHEP, Minsk, Byelarus. [Damgov, J.; Dimitrov, L.; Genchev, V.; Piperov, S.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Litov, L.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bencze, G.; Vesztergombi, G.; Zalan, P.] Res Inst Particle & Nucl Phys, KFKI RMKI, Budapest, Hungary. [Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J.] Panjab Univ, Chandigarh 160014, India. [Acharya, B.; Banerjee, Sud.; Chendvankar, S.; Dugad, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Paktinat, S.] Inst Studies Theoret Phys & Math, Tehran, Iran. [Golutvin, I.; Kalagin, V.; Kosarev, I.; Mescheryakov, G.; Smirnov, V.; Volkov, A.; Zarubin, A.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Gavrilov, V.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Litvintsev, D.; Stolin, V.; Ulyanov, A.; Vlassov, E.] ITEP, Moscow, Russia. [Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volodko, A.] IHEP, Protvino, Russia. [Camporesi, T.; de Visser, T.] CERN, Geneva, Switzerland. [Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N.] Cukurova Univ, Adana, Turkey. [Cankocak, K.; Ozkorucuklu, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Guelmez, E.; Isiksal, E.; Kaya, M.; Ozkorucuklu, S.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] KIPT, Kharkov, Ukraine. [Grinev, B.; Lubinsky, V.; Senchishin, V.] Kharkov Single Crystals Inst, UA-310141 Kharkov, Ukraine. [Anderson, E. W.; Hauptman, J.] Iowa State Univ, Ames, IA USA. [Abdullin, S.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Lazic, D.; Litvintsev, D.; Los, S.; O'Dell, V.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Antchev, G.; Hazen, E.; Heering, A.; Imboden, M.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S. X.] Boston Univ, Boston, MA 02215 USA. [Adams, M.; Burchesky, K.; Qian, W.] Univ Illinois, Chicago, IL USA. [Podrasky, V.; Sanzeni, C.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Akgun, U.; Ayan, S.; Duru, F.; Merlo, J. P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I.] Univ Iowa, Iowa City, IA USA. [Akchurin, N.; Carrell, K.; Gumus, K.; Thomas, R.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Baarmand, M.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Cushman, P.; Heering, A.; Mans, J.; Sherwood, B.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L.; Reidy, J.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Karmgard, D.; Ruchti, R.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Mans, J.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Bodek, A.; Budd, H.; Chung, Y.; de Barbaro, P.; Haelen, T.; Imboden, M.] Univ Rochester, Rochester, NY USA. [Gershtein, Y.; Hagopian, S.; Hagopian, V.; Johnson, K.] Florida State Univ, Tallahassee, FL 32306 USA. [Barnes, V.; Laasanen, A.; Pompos, A.] Purdue Univ, W Lafayette, IN 47907 USA. RP Abdullin, S (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM Nural.Akchurin@ttu.edu RI Kodolova, Olga/D-7158-2012; Demianov, Andrei/E-4565-2012; Gribushin, Andrei/J-4225-2012; Imboden, Matthias/B-5159-2008; Gulmez, Erhan/P-9518-2015; Petrushanko, Sergey/D-6880-2012; Vardanyan, Irina/K-7981-2012; Bheesette, Satyanarayana/A-1360-2013; Kuleshov, Sergey/D-9940-2013; Gumus, Kazim/G-2498-2013; Fisher, Wade/N-4491-2013; OI Imboden, Matthias/0000-0003-4629-4246; Gulmez, Erhan/0000-0002-6353-518X; Gershtein, Yuri/0000-0002-4871-5449; Kuleshov, Sergey/0000-0002-3065-326X; Gumus, Kazim/0000-0002-1450-6868; Baarmand, Marc/0000-0002-9792-8619; Uliyanov, Alexey/0000-0001-6935-8949 NR 23 TC 13 Z9 13 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2008 VL 55 IS 1 BP 159 EP 171 DI 10.1140/epjc/s10052-008-0573-y PG 13 WC Physics, Particles & Fields SC Physics GA 299FR UT WOS:000255742000015 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Jechow, M Pavel, N Molina, AGY Antonelli, S Antonioli, P Bari, G Basile, M Bellagamba, L Bindi, M Boscherini, D Bruni, A Bruni, G Cifarelli, L Cindolo, F Contin, A Corradi, M De Pasquale, S Iacobucci, G Margotti, A Nania, R Polini, A Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Kind, OM Nuncio-Quiroz, AE Paul, E Renner, R Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Adler, V Behrens, U Blohm, C Bonato, A Borras, K Ciesielski, R Coppola, N Drugakov, V Fang, S Fourletova, J Geiser, A Gladkov, D Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Rinaldi, L Roloff, P Rubinsky, I Santamarta, R Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Wolf, G Wrona, K Youngman, C Zeuner, W Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Borodin, M Kozulia, A Lisovyi, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Zambrana, M Corriveau, F Liu, C Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Zotkin, SA Abt, I Buttner, C Caldwell, A Kollar, D Schmidke, WB Sutiak, J Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Korcsak-Gorzo, K Oliver, K Patel, S Roberfroid, V Robertson, A Straub, PB Uribe-Estrada, C Walczak, R Bellan, P Bertolin, A Brugnera, R Carlin, R Dal Corso, F Dusini, S Garfagnini, A Limentani, S Longhin, A Stanco, L Turcato, M Oh, BY Raval, A Ukleja, J Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Gabareen, A Ingbir, R Kananov, S Levy, A Smith, O Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Ferrero, MI Monaco, V Sacchi, R Solano, A Arneodo, M Costa, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Gwenlan, C Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Giller, I Hochman, D Karshon, U Rosin, M Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Jechow, M. Pavel, N. Molina, A. G. Yaguees Antonelli, S. Antonioli, P. Bari, G. Basile, M. Bellagamba, L. Bindi, M. Boscherini, D. Bruni, A. Bruni, G. Cifarelli, L. Cindolo, F. Contin, A. Corradi, M. De Pasquale, S. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Kind, O. M. Nuncio-Quiroz, A. E. Paul, E. Renner, R. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Adler, V. Behrens, U. Blohm, C. Bonato, A. Borras, K. Ciesielski, R. Coppola, N. Drugakov, V. Fang, S. Fourletova, J. Geiser, A. Gladkov, D. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Rinaldi, L. Roloff, P. Rubinsky, I. Santamarta, R. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Wolf, G. Wrona, K. Youngman, C. Zeuner, W. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Borodin, M. Kozulia, A. Lisovyi, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Y. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Zotkin, S. A. Abt, I. Buettner, C. Caldwell, A. Kollar, D. Schmidke, W. B. Sutiak, J. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Korcsak-Gorzo, K. Oliver, K. Patel, S. Roberfroid, V. Robertson, A. Straub, P. B. Uribe-Estrada, C. Walczak, R. Bellan, P. Bertolin, A. Brugnera, R. Carlin, R. Dal Corso, F. Dusini, S. Garfagnini, A. Limentani, S. Longhin, A. Stanco, L. Turcato, M. Oh, B. Y. Raval, A. Ukleja, J. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Gabareen, A. Ingbir, R. Kananov, S. Levy, A. Smith, O. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Arneodo, M. Costa, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Gwenlan, C. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Giller, I. Hochman, D. Karshon, U. Rosin, M. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Diffractive photoproduction of dijets in ep collisions at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DEEP-INELASTIC SCATTERING; LUND MONTE-CARLO; CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; PARTON DISTRIBUTIONS; CROSS-SECTIONS; HADRON-COLLISIONS; JET FRAGMENTATION; VIRTUAL PHOTONS; HARD SCATTERING AB Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV2, 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E-T(jet), were required to satisfy E-T(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Jechow, M.; Pavel, N.; Molina, A. G. Yaguees] Humboldt Univ, Inst Phys, Berlin, Germany. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henry Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Uribe-Estrada, C.] Univ Sci & Technol, AGH, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Adler, V.; Fourletova, J.; Geiser, A.; Gladkov, D.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, D-22763 Hamburg, Germany. [Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Univ Florence, Florence, Italy. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Mitilini, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Aushev, V.; Borodin, M.; Kozulia, A.; Lisovyi, M.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Borodin, M.; Kozulia, A.; Lisovyi, M.] Kiev Natl Univ, Kiev, Ukraine. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain La Neuve, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Zotkin, S. A.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Buettner, C.; Caldwell, A.; Kollar, D.; Schmidke, W. B.; Sutiak, J.; Grigorescu, G.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Patel, S.; Roberfroid, V.; Robertson, A.; Straub, P. B.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Turcato, M.; Bellan, P.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] Dipartimento Fis Univ, Padua, Italy. [Turcato, M.; Bellan, P.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] Ist Nazl Fis Nucl, Padua, Italy. [Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Gabareen, A.; Ingbir, R.; Kananov, S.; Levy, A.; Smith, O.; Stern, A.] Tel Aviv Univ, Sch Phys, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Costa, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Giller, I.; Hochman, D.; Karshon, U.; Rosin, M.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Kitamura, S.] Tokyo Metropolitan Univ, Dept Radiol Sci, Tokyo, Japan. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Kind, O. M.; Nuncio-Quiroz, A. E.; Paul, E.; Renner, R.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tobias.haas@desy.de RI Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; Bastero-Gil, Mar/F-1405-2016; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Wing, Matthew/C-2169-2008; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012 OI Wiggers, Leo/0000-0003-1060-0520; Bastero-Gil, Mar/0000-0001-9962-5905; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; NR 73 TC 34 Z9 34 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2008 VL 55 IS 2 BP 177 EP 191 DI 10.1140/epjc/s10052-008-0598-2 PG 15 WC Physics, Particles & Fields SC Physics GA 301AC UT WOS:000255867700001 ER PT J AU Benayoun, M David, P DelBuono, L Leitner, O O'Connell, HB AF Benayoun, M. David, P. DelBuono, L. Leitner, O. O'Connell, H. B. TI The dipion mass spectrum in e(+)e(-) annihilation and tau decay: a dynamical (rho, omega, phi) mixing approach SO EUROPEAN PHYSICAL JOURNAL C LA English DT Review ID PION FORM-FACTOR; EFFECTIVE CHIRAL LAGRANGIANS; PI(+)PI(-) CROSS-SECTION; HIDDEN LOCAL SYMMETRIES; QED VACUUM POLARIZATION; VECTOR-MESON-DOMINANCE; MUON MAGNETIC-MOMENT; RADIATIVE-CORRECTIONS; HADRONIC CONTRIBUTION; BRANCHING RATIO AB We readdress the problem of finding a simultaneous description of the pion form factor data in e(+)e(-) annihilations and in tau decays. For this purpose, we work in the framework of the hidden local symmetry Lagrangian and modify the vector meson mass term by including the pion and kaon loop contributions. This leads us to define the physical rho, omega and phi fields as linear combinations of their ideal partners, with coefficients being meromorphic functions of s, the square of the four-momentum flowing into the vector meson lines. This allows us to define a dynamical, i.e. s-dependent, vector meson mixing scheme. The model is overconstrained by extending the framework in order to include the description of all meson radiative (VP gamma and P gamma gamma couplings) and leptonic (Ve(+)e(-) couplings) decays and also the isospin breaking (omega/phi -> pi(+)pi(-)) decay modes. The model provides a simultaneous, consistent and good description of the e(+)e(-) and tau dipion spectra. The expression for the pion form factor in the latter case is derived from those in the former case by switching off the isospin breaking effects specific to e(+)e(-) and switching on those for tau decays. Besides, the model also provides a good account of all decay modes of the form VP gamma and P gamma gamma as well as the isospin breaking decay modes. It leads us to propose new reference values for the rho(0) -> e(+)e(-) and omega -> pi(+)pi(-) partial widths, which are part of our description of the pion form factor. Other topics (phi -> k (k) over bar, the rho meson mass and width parameters) are briefly discussed. As the e(+)e(-) data are found to be perfectly consistent with tau data up to identified isospin breaking effects, one finds no reason to cast any doubt on them and, therefore, on the theoretical estimate of the muon anomalous moment a(mu) derived from them. Therefore, our work turns out to confirm the relevance of the reported 3.3 sigma discrepancy between this theoretical estimate of a(mu) and its direct BNL measurement. C1 [Benayoun, M.; David, P.; DelBuono, L.; Leitner, O.] CNRS, IN2P3, LPNHE Paris VI VII, F-75252 Paris 05, France. [Leitner, O.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [O'Connell, H. B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Benayoun, M (reprint author), CNRS, IN2P3, LPNHE Paris VI VII, 4 Pl Jussieu,Tour 33 RdC, F-75252 Paris 05, France. EM benayoun@in2p3.fr OI O'Connell, Heath/0000-0002-1895-5310 NR 101 TC 46 Z9 46 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2008 VL 55 IS 2 BP 199 EP 236 DI 10.1140/epjc/s10052-008-0586-6 PG 38 WC Physics, Particles & Fields SC Physics GA 301AC UT WOS:000255867700003 ER PT J AU Kepka, O Marquet, C Peschanski, R Royon, C AF Kepka, O. Marquet, C. Peschanski, R. Royon, C. TI Next-to-leading BFKL phenomenology of forward-jet cross sections at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID INELASTIC EP SCATTERING; EXACT GLUON KINEMATICS; SMALL-X; MUELLER-NAVELET; PERTURBATION-THEORY; IMPACT FACTOR; POMERON; QCD; SATURATION; EVOLUTION AB We show that the forward-jet measurements performed at HERA allow for a detailed study of corrections due to next-to-leading logarithms (NLL) in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach. While the description of the d sigma/dx data shows small sensitivity to NLL-BFKL corrections, these can be tested by the triple differential cross section d(3)sigma/dxdk(T)(2)dQ(3) recently measured. These data can be successfully described using a renormalization-group improved NLL kernel, while the standard next-to-leading-order QCD or leading-logarithm BFKL approaches fail to describe the same data in the whole kinematic range. We present a detailed analysis of the NLL scheme and renormalization-scale dependences and also discuss the photon impact factors. C1 [Kepka, O.; Royon, C.] CEA Saclay, IRFU, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Marquet, C.] Brookhaven Natl Lab, BNL Res Ctr, RIKEN, Upton, NY 11973 USA. [Peschanski, R.] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Peschanski, R.] CNRS, Unite Rech Associee, URA 2306, F-75700 Paris, France. RP Kepka, O (reprint author), CEA Saclay, IRFU, Serv Phys Particules, F-91191 Gif Sur Yvette, France. EM oldrich.kepka@cea.fr; marquet@quark.phy.bnl.gov; robi.peschanski@cea.fr; christophe.royon@cea.fr NR 45 TC 13 Z9 13 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2008 VL 55 IS 2 BP 259 EP 272 DI 10.1140/epjc/s10052-008-0587-5 PG 14 WC Physics, Particles & Fields SC Physics GA 301AC UT WOS:000255867700006 ER PT J AU Weierstall, U Doak, RB Spence, JCH Starodub, D Shapiro, D Kennedy, P Warner, J Hembree, GG Fromme, P Chapman, HN AF Weierstall, U. Doak, R. B. Spence, J. C. H. Starodub, D. Shapiro, D. Kennedy, P. Warner, J. Hembree, G. G. Fromme, P. Chapman, H. N. TI Droplet streams for serial crystallography of proteins SO EXPERIMENTS IN FLUIDS LA English DT Article ID X-RAY GENERATION; MASS-SPECTROMETRY; MU-M; PHOTOELECTRON-SPECTROSCOPY; ELECTROSPRAY-IONIZATION; LARGE BIOMOLECULES; OPTICAL-PROPERTIES; LIQUID MICROJETS; ELECTRIC-FIELD; LOW HYDRATION AB Serial diffraction of proteins requires an injection method to deliver analyte molecules-preferably uncharged, fully hydrated, spatially oriented, and with high flux-into a focused probe beam of electrons or X-rays that is only a few tens of microns in diameter. This work examines conventional Rayleigh sources and electrospray-assisted Rayleigh sources as to their suitability for this task. A comparison is made and conclusions drawn on the basis of time-resolved optical images of the droplet streams produced by these sources. Straight-line periodic streams of monodisperse droplets were generated with both sources, achieving droplet diameters of 4 and 1 micrometer, respectively, for the conventional and electrospray-assisted versions. Shrinkage of droplets by evaporation is discussed and quantified. It is shown experimentally that proteins pass undamaged through a conventional Rayleigh droplet source. C1 [Weierstall, U.; Doak, R. B.; Spence, J. C. H.; Starodub, D.; Kennedy, P.; Warner, J.; Hembree, G. G.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Shapiro, D.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fromme, P.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Chapman, H. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Weierstall, U (reprint author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. EM weier@asu.edu RI Chapman, Henry/G-2153-2010; Weierstall, Uwe/B-3568-2011 OI Chapman, Henry/0000-0002-4655-1743; NR 72 TC 44 Z9 44 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD MAY PY 2008 VL 44 IS 5 BP 675 EP 689 DI 10.1007/s00348-007-0426-8 PG 15 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 286LX UT WOS:000254848500001 ER PT J AU Hess, M Katzer, M Antranikian, G AF Hess, Matthias Katzer, Moritz Antranikian, Garabed TI Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus SO EXTREMOPHILES LA English DT Article DE Picrophilus torridus; Archaea; esterases; hormone sensitive lipase; thermostability; thermoacidophilic; nonsteroidal anti-inflammatory drugs; organic solvents ID HORMONE-SENSITIVE LIPASE; ARCHAEON SULFOLOBUS-SOLFATARICUS; MULTIPLE SEQUENCE ALIGNMENT; BACTERIUM OENOCOCCUS-OENI; ESCHERICHIA-COLI; HYPERTHERMOPHILIC ARCHAEON; BACILLUS-ACIDOCALDARIUS; GENE CLONING; CARBOXYLESTERASE; PROTEIN AB Two genes encoding esterases EstA and EstB of Picrophilus torridus were identified by the means of genome analysis and were subsequently cloned in Escherichia coli. PTO 0988, which is encoding EstA, consists of 579 bp, whereas PTO 1141, encoding EstB, is composed of 696 bp, corresponding to 192 aa and 231 aa, respectively. Sequence comparison revealed that both biocatalysts have low sequence identities (14 and 16%) compared to previously characterized enzymes. Detailed analysis suggests that EstA and EstB are the first esterases from thermoacidophiles not classified as members of the HSL family. Furthermore, the subunits with an apparent molecular mass of 22 and 27 kDa of the homotrimeric EstA and EstB, respectively, represent the smallest esterase subunits from thermophilic microorganisms reported to date. The recombinant esterases were purified by Ni2+ affinity chromatography, and the activity of the purified esterases was measured over a wide pH (pH 4.5-8.5) and temperature range (10-90 degrees C). Highest activity of the esterases was measured at 70 degrees C (EstA) and 55 degrees C (EstB) with short pNP-esters as preferred substrates. In addition, esters of the non-steroidal anti-inflammatory drugs naproxen, ketoprofen, and ibuprofen are hydrolyzed by both EstA and EstB. Extreme thermostability was measured for both enzymes at temperatures as high as 90 degrees C. The determined half-life (t(1/2)) at 90 degrees C was 21 and 10 h for EstA and EstB, respectively. Remarkable preservation of esterase activity in the presence of detergents, urea, and commonly used organic solvents complete the exceptional phenotype of EstA and EstB. C1 [Katzer, Moritz; Antranikian, Garabed] Hamburg Univ Technol, Inst Tech Microbiol, D-21073 Hamburg, Germany. [Hess, Matthias] DOE Joint Genome Inst, Genom Div, Walnut Creek, CA USA. RP Antranikian, G (reprint author), Hamburg Univ Technol, Inst Tech Microbiol, Kasernenstr 12, D-21073 Hamburg, Germany. EM antranikian@tuhh.de RI Hess, Matthias/B-1783-2012 NR 56 TC 40 Z9 42 U1 0 U2 17 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1431-0651 EI 1433-4909 J9 EXTREMOPHILES JI Extremophiles PD MAY PY 2008 VL 12 IS 3 BP 351 EP 364 DI 10.1007/s00792-008-0139-9 PG 14 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 296TY UT WOS:000255569900005 PM 18330499 ER PT J AU Torriani, SFF Goodwin, SB Kema, GHJ Pangilinan, JL McDonald, BA AF Torriani, Stefano F. F. Goodwin, Stephen B. Kema, Gert H. J. Pangilinan, Jasmyn L. McDonald, Bruce A. TI Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE comparative genomics; genome organization; microsatellites; mitochondrial genome (mtDNA); Septoria tritici ID FRAGMENT-LENGTH-POLYMORPHISM; SEPTORIA-TRITICI BLOTCH; COMPLETE DNA-SEQUENCE; GENETIC-STRUCTURE; NUCLEAR; DIVERSITY; WHEAT; POPULATIONS; EVOLUTION; SELECTION AB The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenctically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of 35 additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus. (c) 2007 Elsevier Inc. All rights reserved. C1 [Torriani, Stefano F. F.; McDonald, Bruce A.] ETH Zurich LFW, Inst Integrat Biol, Plant Pathol Grp, CH-8092 Zurich, Switzerland. [Goodwin, Stephen B.] USDA ARS, Purdue Univ, Crop Prod & Pest Control Res Unit, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Kema, Gert H. J.] Plant Res Int BV, NL-6700 AA Wageningen, Netherlands. [Pangilinan, Jasmyn L.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP McDonald, BA (reprint author), ETH Zurich LFW, Inst Integrat Biol, Plant Pathol Grp, Univ Str 2, CH-8092 Zurich, Switzerland. EM bruce.mcdonald@agrl.ethz.ch RI McDonald, Bruce/A-2748-2008; OI McDonald, Bruce/0000-0002-5332-2172; Goodwin, Stephen/0000-0001-5708-9729 NR 62 TC 35 Z9 35 U1 9 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAY PY 2008 VL 45 IS 5 BP 628 EP 637 DI 10.1016/j.fgb.2007.12.005 PG 10 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 290WN UT WOS:000255153600006 PM 18226935 ER PT J AU Long, JC Sommer, F Allen, MD Lu, SF Merchant, SS AF Long, Joanne C. Sommer, Frederik Allen, Michael D. Lu, Shu-Fen Merchant, Sabeeha S. TI FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts, are regulated by iron SO GENETICS LA English DT Article ID MAIZE FERRITIN; DIFFERENTIAL EXPRESSION; LEAF SENESCENCE; GENE-EXPRESSION; ABSCISIC-ACID; PISUM-SATIVUM; ARABIDOPSIS; DEFICIENCY; ELEMENT; PLANTS AB Two unlinked genes FER1 and FER2 encoding ferritin subunits were identified in the Chlamydomonas genome. An improved FER2 gene model, built on the basis of manual sequencing and incorporation of unplaced reads, indicated 49% identity between the ferritin Subunits. Both FER1 and FER2 transcripts are increased in abundance as iron nutrition is decreased but the pattern for each gene is distinct. Using subunit specific antibodies, we monitored expression at the protein level. In response to low iron, ferritin1 subunits and the ferritin1 complex are increased in parallel to the increase in FER1 mRNA. Nevertheless, the iron content of the ferritin I complex is decreased. This suggests that increased expression results in increased capacity for iron binding in the chloroplast of iron-limited cells, which supports a role for ferritin1 as an iron buffer. On the other hand, ferritin2 abundance is decreased in iron-deprived cells, indicative of the operation of iron-nutrition-responsive regulation at the translational or post-translational level for FER2. Both ferritin subunits are plastid localized but ferritin1 is quantitatively recovered in soluble extracts of cells while ferritin2 is found in the particulate fraction. Partial purification of the ferritin1 complex indicates that the two ferritins are associated in distinct complexes and do not coassemble. The ratio of ferritin1 to ferritin2 is 70:1 in iron-replete cells, suggestive of a more dominant role of ferritin1 in iron homeostasis. The Volvox genome contains orthologs of each FER gene, indicating that the duplication of FER genes and potential diversification of function Occurred prior to the divergence of species in the Volvocales. C1 [Merchant, Sabeeha S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. RP Merchant, SS (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM sabeeha@chem.ucla.edu FU NIGMS NIH HHS [R01 GM042143, F31 GM077066, GM07185, GM077066, T32 GM007185] NR 54 TC 33 Z9 33 U1 1 U2 5 PU GENETICS PI BALTIMORE PA 428 EAST PRESTON ST, BALTIMORE, MD 21202 USA SN 0016-6731 J9 GENETICS JI Genetics PD MAY PY 2008 VL 179 IS 1 BP 137 EP 147 DI 10.1534/genetics.107.083824 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 307IG UT WOS:000256312000013 PM 18493046 ER PT J AU Bourg, IC Sposito, G AF Bourg, Ian C. Sposito, Garrison TI Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HYDROPHOBIC HYDRATION SHELL; IN-GROUND WATER; SELF-DIFFUSION; PALEOTEMPERATURE RECONSTRUCTION; COMPUTER-SIMULATIONS; MASS DEPENDENCE; COMBINING RULES; PORE-WATER; HELIUM; AIR AB Despite their great importance in low-temperature geochemistry, diffusion coefficients of noble gas isotopes in liquid water (D) have been measured only for the major isotopes of helium, neon, krypton and xenon. Data on the diffusion coefficients of minor noble gas isotopes are essentially non-existent and so typically have been estimated by a kinetic-theory model in which D varies as the inverse square root of the isotopic mass (m): D proportional to m(-0.5). To examine the validity of the kinetic-theory model, we performed molecular dynamics (MD) simulations of the diffusion of noble gases in ambient liquid water. Our simulation results agree with available experimental data on the solvation structure and diffusion coefficients of the major noble gas isotopes and reveal for the first time that the isotopic mass-dependence of all noble gas self-diffusion coefficients has the power-law form D proportional to m(-beta) with 0 75th percentile) had lower frequencies of sperm with disomies X, 21, sex nullisomy, and a lower aggregate measure of sperm aneuploidy (P <= 0.04) compared with men with lower intake. In adjusted continuous analyses, total folate intake was inversely associated with aggregate sperm aneuploidy (-3.6% change/100 mu g folate; 95% CI: -6.3, -0. 8) and results were similar for disomies X, 21 and sex nullisomy. No consistent associations were found between antioxidant or zinc intakes and sperm aneuploidy. CONCLUSIONS: Men with high folate intake had lower overall frequencies of several types of aneuploid sperm. C1 [Young, S. S.; Eskenazi, B.; Block, G.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94704 USA. [Marchetti, F. M.; Wyrobek, A. J.] Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94551 USA. [Marchetti, F. M.; Wyrobek, A. J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Eskenazi, B (reprint author), Univ Calif Berkeley, Sch Publ Hlth, 2150 Shattuck Ave,Suite 600, Berkeley, CA 94704 USA. EM eskenazi@berkeley.edu RI Block, Gladys/E-3304-2010; OI Marchetti, Francesco/0000-0002-9435-4867 FU NIA NIH HHS [1 U01 AG12554]; NIEHS NIH HHS [P42 ES04705] NR 89 TC 62 Z9 63 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0268-1161 J9 HUM REPROD JI Hum. Reprod. PD MAY PY 2008 VL 23 IS 5 BP 1014 EP 1022 DI 10.1093/humrep/den036 PG 9 WC Obstetrics & Gynecology; Reproductive Biology SC Obstetrics & Gynecology; Reproductive Biology GA 293GO UT WOS:000255323800003 PM 18353905 ER PT J AU Jager, HI Rose, KA Vila-Gispert, A AF Jager, Henriette I. Rose, Kenneth A. Vila-Gispert, Anna TI Life history correlates and extinction risk of capital-breeding fishes SO HYDROBIOLOGIA LA English DT Article DE extinction risk; comparative analysis; life history; migration; spawning interval ID FRESH-WATER FISHES; POPULATION REGULATION; WHITE STURGEON; PATTERNS; REPRODUCTION; CONSERVATION; PHYLOGENIES; STRATEGIES; MANAGEMENT; ANIMALS AB We consider a distinction for fishes, often made for birds and reptiles, between capital-breeding and income-breeding species. Species that follow a capital-breeding strategy tend to evolve longer intervals between reproductive events and tend to have characteristics that we associate with higher extinction risk. To examine whether these ideas are relevant for fishes, we assembled life history data for fish species, including an index of extinction risk, the interval between spawning events, the degree of parental care, and whether or not the species migrates to spawn. These data were used to evaluate two hypotheses: (1) fish species with a major accessory activity to spawning (migration or parental care) spawn less often and (2) fish species that spawn less often are at greater risk of extinction. We tested these hypotheses by applying two alternative statistical methods that account for phylogenetic correlation in cross-taxon comparisons. The two methods predicted average intervals between spawning events 0.13-0.20 years longer for fishes with a major accessory activity. Both accessories, above-average parental care and spawning migration, were individually associated with longer average spawning intervals. We conclude that the capital-breeding paradigm is relevant for fishes. We also confirmed the second hypothesis, that species in higher IUCN extinction risk categories had longer average spawning intervals. Further research is needed to understand the relationship between extinction risk and spawning interval, within the broader context of life history traits and aquatic habitats. C1 [Jager, Henriette I.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Rose, Kenneth A.] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Rose, Kenneth A.] Louisiana State Univ, Coastal Fisheries Inst, Baton Rouge, LA 70803 USA. [Vila-Gispert, Anna] Univ Girona, Inst Aquat Ecol, Girona, Spain. [Vila-Gispert, Anna] Univ Girona, Dept Environm Sci, Girona, Spain. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov OI Jager, Henriette/0000-0003-4253-533X; Vila-Gispert, Anna/0000-0001-6430-0262 NR 35 TC 14 Z9 14 U1 2 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0018-8158 J9 HYDROBIOLOGIA JI Hydrobiologia PD MAY PY 2008 VL 602 BP 15 EP 25 DI 10.1007/s10750-008-9287-2 PG 11 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 275RH UT WOS:000254088800003 ER PT J AU Engle, MA Goff, F Jewett, DG Reller, GJ Bauman, JB AF Engle, Mark A. Goff, Fraser Jewett, David G. Reller, Gregory J. Bauman, Joel B. TI Application of environmental groundwater tracers at the Sulphur Bank Mercury Mine, California, USA SO HYDROGEOLOGY JOURNAL LA English DT Article; Proceedings Paper CT 6th Ordinary Session of the African-Ministers-Council-on-Water (AMCOW) CY MAY, 2007 CL Brazzaville, CONGO SP African Minist Council Water DE groundwater flow; stable isotopes; water budget; USA; hydrochemistry ID CLEAR LAKE; WATERS; POLLUTION; GEYSERS; BORON AB Boron, chloride, sulfate, delta D, delta O-18, and H-3 concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine (SBMM), California, USA were used to examine geochemical processes and provide constraints on evaporation and groundwater flow. SBMM is an abandoned sulfur and mercury mine with an underlying hydrothermal system, adjacent to Clear Lake, California. Results for non-H-3 tracers (i.e., boron, chloride, sulfate, delta D, and delta O-18) identify contributions from six water types at SBMM. Processes including evaporation, mixing, hydrothermal water input and possible isotopic exchange with hydrothermal gases are also discerned. Tritium data indicate that hydrothermal waters and other deep groundwaters are likely pre-bomb (before similar to 1952) in age while most other waters were recharged after similar to 1990. A boron-based steady-state reservoir model of the Herman Impoundment pit lake indicates that 71-79% of its input is from meteoric water with the remainder from hydrothermal contributions. Results for groundwater samples from six shallow wells over a 6-month period for delta D and delta O-18 suggests that water from Herman Impoundment is diluted another 3% to more than 40% by infiltrating meteoric water, as it leaves the site. Results for this investigation show that environmental tracers are an effective tool to understand the SBMM hydrogeologic regime. C1 [Jewett, David G.] US EPA, Off Res & Dev, Ada, OK 74820 USA. [Goff, Fraser] Los Alamos Natl Lab, Geol Geochem Grp, Los Alamos, NM 87545 USA. [Engle, Mark A.; Reller, Gregory J.; Bauman, Joel B.] Tetra Tech EM Inc, Rancho Cordova, CA 95670 USA. RP Engle, MA (reprint author), US Geol Survey, 956 Natl Ctr, Reston, VA 20192 USA. EM engle@usgs.gov OI Engle, Mark/0000-0001-5258-7374 NR 38 TC 5 Z9 5 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD MAY PY 2008 VL 16 IS 3 BP 559 EP 573 DI 10.1007/s10040-007-0240-7 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 289CM UT WOS:000255032600012 ER PT J AU de Pater, I Showalter, MR Macintosh, B AF de Pater, Imke Showalter, Mark R. Macintosh, Bruce TI Keck observations of the 2002-2003 jovian ring plane crossing SO ICARUS LA English DT Article DE planetary rings; Jupiter ID JUPITERS SYNCHROTRON-RADIATION; INFRARED STANDARD STARS; AUGUST 1995; SYSTEM; MAGNETOSPHERE; GALILEO; MOONS AB We present new observations of Jupiter's ring system at a wavelength of 2.2 mu m obtained with the 10-m W.M. Keck telescopes on three nights during a ring plane crossing: UT 19 December 2002, and 22 and 26 January 2003. We used conventional imaging, plus adaptive optics on the last night. Here we present detailed radial profiles of the main ring, halo and gossamer rings, and interpret the data together with information extracted from radio observations of Jupiter's synchrotron radiation. The main ring is confined to a 800-km-wide annulus between 128,200 and 129,000 km, with a similar to 5000 km extension on the inside. The normal optical depth is 8 x 10(-6), 15% of which is provided by bodies with radii a > 5 cm. These bodies are as red as Metis. Half the optical depth, tau approximate to 4 x 10(-6), is attributed to micron-sized dust, and the remaining tau approximate to 3 x 10(-6) to grains tens to hundreds of pm in size. The inward extension consists of micron-sized (a <= 10 mu m) dust, which probably migrates inward under Poynting-Robertson drag. The inner limit of this extension falls near the 3:2 Lorentz resonance (at orbital radius r = 122,400 km), and coincides with the outer limit of the halo. The gossamer rings appear to be radially confined, rather than broad sheets of material. The Amalthea ring is triangularly shaped, with a steep outer dropoff over similar to 5000 km, extending a few 1000 km beyond the orbit of Amalthea, and a more gradual inner dropoff over 15,000-20,000 km. The inner edge is near the location of the synchronous orbit. The optical depth in the Amalthea ring is similar to 5 x 10(-7), up to 20% of which is comprised of macroscopic material. The optical depth in the Thebe ring is a factor of 3 smaller. (C) 2007 Elsevier Inc. All rights reserved. C1 [de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Showalter, Mark R.] SETI Inst, Mountain View, CA 94043 USA. [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP de Pater, I (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM imke@astron.berkeley.edu NR 28 TC 5 Z9 5 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2008 VL 195 IS 1 BP 348 EP 360 DI 10.1016/j.icarus.2007.11.029 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 295HR UT WOS:000255466100020 ER PT J AU Fox, BP Schneider, ZV Simmons-Potter, K Thomes, WJ Meister, DC Bambha, RP Kliner, DAV AF Fox, Brian P. Schneider, Zachary V. Simmons-Potter, Kelly Thomes, William. J., Jr. Meister, Dorothy C. Bambha, Ray P. Kliner, Dahv A. V. TI Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers SO IEEE JOURNAL OF QUANTUM ELECTRONICS LA English DT Article DE gamma irradiation; photodarkening; radiation effects; radiation-induced absorption; rare-earth doped fibers; Yb-doped fibers ID POWER; LASER; GENERATION; AMPLIFIERS; DEFECTS; GLASSES AB Yb(3+)-doped silicate fibers are commonly employed in optical systems utilizing fiber lasers and amplifiers. Deployment of such materials and systems in space-based and other adverse radiation environments requires knowledge of their response to fluxes of ionizing radiation. This paper reports the results of gamma radiation exposures on a suite of passive, modern, highly Yb(3+)-doped aluminosilicate fibers. Of interest are the effects of total dose,and dose rate as well as the development of radiation-induced absorption across a broad spectral window (1.0-1.7 mu m). Results indicate that these fibers exhibit reasonable radiation resistance to gamma exposures typical of a five-year low-Earth-orbit environment. Maximum transmittance losses of less than 10% in the 1.0-1.7 mu m spectral region for total gamma exposures of 2-5 krad (Si) were observed. In addition, it was found that the dependence of transmittance on radiation dose generally followed a power law that was dependent on,dose rate. C1 [Fox, Brian P.; Schneider, Zachary V.; Simmons-Potter, Kelly] Univ Arizona, Tucson, AZ USA. [Thomes, William. J., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Thomes, William. J., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meister, Dorothy C.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Bambha, Ray P.; Kliner, Dahv A. V.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Fox, BP (reprint author), Univ Arizona, Tucson, AZ USA. EM bpf@e-mail.arizona.edu; zvs@e-mail.arizona.edu; kspotter@ece.arizona.edu; joe.thomes@nasa.gov; demeist@sandia.gov NR 23 TC 13 Z9 14 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9197 J9 IEEE J QUANTUM ELECT JI IEEE J. Quantum Electron. PD MAY-JUN PY 2008 VL 44 IS 5-6 BP 581 EP 586 DI 10.1109/JQE.2008.919873 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 312VW UT WOS:000256701500024 ER PT J AU Krishnaswami, K Bernacki, BE Cannon, BD Ho, N Anheier, NC AF Krishnaswami, Kannan Bernacki, Bruce E. Cannon, Bret D. Ho, Nicolas Anheier, Norman C. TI Emission and propagation properties of midinfrared quantum cascade lasers (vol 20, pg 306, 2008) SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Correction C1 [Krishnaswami, Kannan; Bernacki, Bruce E.; Cannon, Bret D.; Ho, Nicolas; Anheier, Norman C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Krishnaswami, K (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM kannan.krishnaswami@pnl.gov NR 1 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD MAY-JUN PY 2008 VL 20 IS 9-12 BP 757 EP 757 DI 10.1109/LPT.2008.919565 PG 1 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 316QZ UT WOS:000256966100031 ER PT J AU Su, MF Taha, MMR Christodoulou, CG El-Kady, I AF Su, Mehmet F. Taha, Mahmoud M. Reda Christodoulou, Christos G. El-Kady, Ihab TI Fuzzy learning of talbot effect guides optimal mask design for proximity field nanopatterning lithography SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE finite-difference time-domain (FDTD) methods; nanotechnology; numerical analysis; optimization methods; photolithography ID 3-DIMENSIONAL NANOSTRUCTURES AB Processing methods used in photonics and nanotechnology possess many limitations restricting their application areas such as high cost, inability to produce fine details, problems with scalability, and long processing time. Proximity field nanopatterning is a lithography method which surpasses these limitations. By using interference patterns produced by a two-dimensional phase mask, the technique is able to generate a submicron detailed exposure on a millimeter-size slab of light sensitive photopolymer, which is then developed like a photographic plate to reveal three-dimensional interference patterns from the phase mask. While it is possible to use simulations to obtain the interference patterns produced by a phase mask, realizing the mask dimensions necessary for producing a desired interference pattern is analytically challenging due to the intricacies of light interactions involved in producing the final interference pattern. An alternative method is to iteratively optimize the phase mask until the interference patterns obtained converge to the desired pattern. However, depending on the optimization technique used, one either risks a significant probability of failure or requires a prohibitive number of iterations. We argue that an optimization technique that is to take advantage of the physics of the problem using machine learning methods (here fuzzy learning) can lead to competent mask design. This technique is described in this letter. C1 [Su, Mehmet F.; Christodoulou, Christos G.; El-Kady, Ihab] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Taha, Mahmoud M. Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. [El-Kady, Ihab] Dept Photon Microsyst Technol, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Su, MF (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. EM mfatihsu@ece.unm.edu; mrtaha@unm.edu; Christos@ece.unm.edu; ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 9 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD MAY-JUN PY 2008 VL 20 IS 9-12 BP 761 EP 763 DI 10.1109/LPT.2008.91951 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 316QZ UT WOS:000256966100032 ER PT J AU Kroposki, B Lasseter, R Ise, T Morozumi, S Papathanassiou, S Hatziargyriou, N AF Kroposki, Benjamin Lasseter, Robert Ise, Toshifumi Morozumi, Satoshi Papathanassiou, Stavros Hatziargyriou, Nikos TI Making microgrids work SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Kroposki, Benjamin] Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. [Lasseter, Robert] Univ Wisconsin, Madison, WI 53706 USA. [Ise, Toshifumi] Japan Womens Univ, Fac Engn, Dept Elect Engn, Tokyo, Japan. [Papathanassiou, Stavros; Hatziargyriou, Nikos] Natl Tech Univ Athens, GR-10682 Athens, Greece. RP Kroposki, B (reprint author), Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. NR 6 TC 231 Z9 252 U1 4 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2008 VL 6 IS 3 BP 40 EP 53 DI 10.1109/MPE.2008.918718 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA 338JO UT WOS:000258504200010 ER PT J AU Marnay, C Asano, H Papathanassiou, S Strbac, G AF Marnay, Chris Asano, Hiroshi Papathanassiou, Stavros Strbac, Goran TI Policymaking for microgrids SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Marnay, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Staff Sci, Berkeley, CA 94720 USA. [Papathanassiou, Stavros] Natl Tech Univ Athens, GR-10682 Athens, Greece. RP Marnay, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Staff Sci, Berkeley, CA 94720 USA. NR 8 TC 42 Z9 48 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2008 VL 6 IS 3 BP 66 EP 77 DI 10.1109/MPE.2008.918715 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 338JO UT WOS:000258504200012 ER PT J AU Venkataramanan, G Marnay, C AF Venkataramanan, Girl Marnay, Chris TI A larger role for microgrids SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Venkataramanan, Girl] Univ Wisconsin, Madison, WI 53706 USA. [Marnay, Chris] Lawrence Berkeley Lab, Staff Sci, Berkeley, CA USA. RP Venkataramanan, G (reprint author), Univ Wisconsin, Madison, WI 53706 USA. NR 3 TC 61 Z9 70 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2008 VL 6 IS 3 BP 78 EP 82 DI 10.1109/MPE.2008.918720 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA 338JO UT WOS:000258504200013 ER PT J AU Jefferson, DR Rubin, AD AF Jefferson, David R. Rubin, Aviel D. TI New research results for electronic voting SO IEEE SECURITY & PRIVACY LA English DT Editorial Material C1 [Jefferson, David R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rubin, Aviel D.] Johns Hopkins Univ, Informat Secur Inst, Baltimore, MD 21218 USA. RP Jefferson, DR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM d_jefferson@yahoo.com; rubin@jhu.edu RI Rubin, Aviel/A-3344-2010 NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD MAY-JUN PY 2008 VL 6 IS 3 BP 12 EP 13 PG 2 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 310ZH UT WOS:000256569100003 ER PT J AU Govind, N Andzelm, J Maiti, A AF Govind, Niranjan Andzelm, Jan Maiti, Amitesh TI Dissociation chemistry of gas molecules on carbon nanotubes - Applications to chemical sensing SO IEEE SENSORS JOURNAL LA English DT Article DE adsorption; carbon nanotubes; chemical sensors; chemisorption; dissociation ID SENSORS; NO2; DEFECTS; ADSORPTION; SOLIDS AB It is well known in the literature that carbon nanotubes (CNTs) interact weakly with many gas molecules like H2O, O-2, CO, NH3, H-2, and NO2, to name a few. Exposure to NO2, O-2, and NH3 significantly affects the electrical conductance of a single wall nanotube (SWNT). These can be explained using a simple charge transfer picture, which results in the observed changes in the hole conduction of the tubes. It is also known that pure SWNTs only weakly interact with these molecules. We have recently investigated (Andzelm et al., 2006) how common defects in CNTs [Stone-Wales (SW), monovacancy, and interstitial] influence the chemisorption of NH3. This paper is a continuation of our previous work. Here, we further investigate, via Density Functional Theory (DFT) calculations, the effects of SW defects on the adsorption/dissociation of O-2 and H2O. We also study the diffusion of adsorbed oxygen atoms on the nanotube surface in the vicinity of the SW defect, as well as the dissociation of NH3 in the presence of adsorbed oxygen atoms. C1 [Govind, Niranjan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Andzelm, Jan] USA, Res Lab, Aberdeen Proving Ground, MD 21010 USA. [Maiti, Amitesh] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Govind, N (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM niri.govind@pnl.gov; jandzelm@arl.army.mil; maiti2@llnl.gov RI Govind, Niranjan/D-1368-2011 FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC06-76RLO 1830]; DOE's Office of Biological and Environmental Research; U.S. Department of Energy; University of California LLNL [W-7405-Eng-48] FX Manuscript received January 21, 2008; revised February 13, 2008; accepted February 14, 2008. This work at Pacific Northwest National Laboratory (PNNL) was supported in part by the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 (Office of Biological and Environmental Research, EMSL operations). The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute. EMSL operations are supported by the DOE's Office of Biological and Environmental Research. The work at Lawrence Livermore National Laboratory, Livermore (LLNL) was performed under the auspices of the U.S. Department of Energy by the University of California LLNL under Contract W-7405-Eng-48. NR 25 TC 10 Z9 10 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD MAY-JUN PY 2008 VL 8 IS 5-6 BP 837 EP 841 DI 10.1109/JSEN.2008.923947 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 342CW UT WOS:000258763200060 ER PT J AU Norton, ML Day, BS Cao, H Rahman, M Gin, A AF Norton, Michael L. Day, B. Scott Cao, Huan Rahman, Mashiur Gin, Aaron TI Arrays of nanoarrays: Elements of binding SO IEEE SENSORS JOURNAL LA English DT Article DE DNA; molecular assembly; nanoarchitectures; nanostructures ID DNA; MONOLAYERS; DESORPTION AB The development of strategies for the robust attachment of organized patterns of nanostructures to a variety of surfaces has been a major objective of this laboratory. One of the significant impediments to single molecule, as opposed to multiple molecule, attachment arises from the size gap or intrinsic mismatch between the size of readily obtainable "top down" nanostructures and the native size scale of the molecules of interest. Although binding structures of diameter significantly less than 100 nm can certainly be fabricated, the techniques required to generate them are not widely available to researchers and the failure rate for the production of such structures is relatively high. These concerns have motivated this laboratory to instead pursue the synthesis of adapter structures which bridge, or partially bridge, this size gap by increasing the effective footprint of a single DNA molecule. Although several different approaches to the generation of adapter structures are under parallel development in the laboratory, one is based on a totally synthetic polydentate macromolecule. In this paper, the merits of this multithiol system will be presented. The development of an experimental platform for the characterization of attachment sites and adapter structure/attachment site interactions will also be described. These platforms are compatible with a wide range of characterization methods, including scanning electron microscopy, atomic force microscopy, laser scanning confocal microscopy, scanning tunneling electron microscopy and near field scanning optical microscopy, which can be used to evaluate these structures over the macro/micro/nano size range. C1 [Norton, Michael L.; Day, B. Scott; Cao, Huan; Rahman, Mashiur] Marshall Univ, Dept Chem, Huntington, WV 25755 USA. [Gin, Aaron] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gin, Aaron] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Norton, ML (reprint author), Marshall Univ, Dept Chem, Huntington, WV 25755 USA. EM Norton@marshall.edu; day17@marshall.edu; rahman@marshall.edu; agin@sandia.gov RI Gin, Aaron/E-3647-2010 FU Army Research Office [W911NF-06-I-0178, W91 INF-05-1-0309]; U.S. Department of Energy, Center for Integrated Nanotechnologies; Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX Manuscript received August 5, 2007; accepted November 6, 2007. This work was supported in part by the Army Research Office under Contracts W911NF-06-I-0178 and W91 INF-05-1-0309, in part by the U.S. Department of Energy, Center for Integrated Nanotechnologies, Los Alamos National Laboratory under Contract DE-AC52-06NA25396, and in part by Sandia National Laboratories under Contract DE-AC04-94AL85000. The Associate Editor coordinating the review of this paper and approving it for publication was Prof. Robert Trew. NR 22 TC 1 Z9 1 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD MAY-JUN PY 2008 VL 8 IS 5-6 BP 874 EP 879 DI 10.1109/JSEN.2008.923280 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 342CW UT WOS:000258763200066 ER PT J AU May, EE Dolan, PL Crozier, PS Brozik, S Manginell, M AF May, Elebeoba E. Dolan, Patricia L. Crozier, Paul S. Brozik, Susan Manginell, Monica TI Towards de novo design of deoxyribozyme biosensors for GMO detection SO IEEE SENSORS JOURNAL LA English DT Article DE avian influenza; biosensor; deoxyribozyme; error control codes; hybridization thermodynamics; molecular beacons; single nucleotide polymorphism ID NEAREST-NEIGHBOR THERMODYNAMICS; INFLUENZA-A VIRUSES; LOGIC GATES; DNA ENZYME; ACID AB Hybrid systems that provide a seamless interface between nanoscale molecular events and microsystem technologies enable the development of complex biological sensor systems that not only detect biomolecular threats, but also are able to determine and execute a programmed response to such threats. The challenge is to move beyond the current paradigm of compartmentalizing detection, analysis, and interpretation into separate steps. We present methods that will enable the de novo design and development of customizable biosensors that can exploit deoxyribozyme computing (Stojanovic and Stefanovic, 2003) to concurrently perform in vitro target detection, genetically modified organism detection, and classification. C1 [May, Elebeoba E.] Sandia Natl Labs, Dept Computat Biol, Albuquerque, NM 87185 USA. [Dolan, Patricia L.; Brozik, Susan; Manginell, Monica] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Crozier, Paul S.] Sandia Natl Labs, Dept Multiscale Computat Mat & Methods, Albuquerque, NM 87185 USA. RP May, EE (reprint author), Sandia Natl Labs, Dept Computat Biol, POB 5800, Albuquerque, NM 87185 USA. EM eemay@sandia.gov; pldolan@sandia.gov; pscrozi@sandia.gov; smbrozi@sandia.gov; mmmang@sandia.gov FU United States Department of Energys National Nuclear Security Administration [DEAC0494AL85000]; Sandia National Laboratories' FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energys National Nuclear Security Administration under contract DEAC0494AL85000. This work was supported by Sandia National Laboratories' Laboratory Directed Research and Development Program. E.E.M. and P.L.D. contributed equally to this work. The associate editor coordinating the review of this paper and approving it for publication was Dr. Dennis Polla. NR 25 TC 33 Z9 33 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD MAY-JUN PY 2008 VL 8 IS 5-6 BP 1011 EP 1019 DI 10.1109/JSEN.2008.923945 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 342CW UT WOS:000258763200086 ER PT J AU Kaheil, YH Gill, MK Mckee, M Bastidas, LA Rosero, E AF Kaheil, Yasir H. Gill, M. Kashif Mckee, Mac Bastidas, Luis A. Rosero, Enrique TI Downscaling and assimilation of surface soil moisture using ground truth measurements SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE data assimilation; downscaling; pattern search; soil moisture; support vector machine (SVM); variogram analysis ID SUPPORT VECTOR MACHINES; VARIABILITY; MODEL AB Methods for reconciliation of spatial and temporal scales of data have become increasingly important as remote sensing data become more readily available and as the science of hydrology moves more heavily toward distributed modeling. The purpose of this paper is to develop a method to disaggregate coarse-resolution remote sensing data to finer scale resolutions that are more appropriate for use in hydrologic studies and water management. This disaggregation is done with the help of point measurements on the ground. The downscaling of remote sensing data is achieved by three main steps: initialization, spatial pattern mimicking, and assimilation. The first two steps are part of the main algorithm, and the last step, assimilation, is included for fine-tuning and to ensure further compatibility between the coarse-scale and fine-scale images. The assimilation step also incorporates the information coming from the point measurements. The approach has been applied and validated by downscaling images for two cases. In the first case, a synthetically generated random field is reproduced at fine and coarse resolutions. The downscaled image has been shown to match the spatial properties of the true image according to the variogram test as well as the magnitude of values according to the various univariate goodness-of-fit measures R-2 = 0.91. In the second case, a soil moisture field from the Southern Great Plains (SGP 97) experiments is downscaled from a resolution of 800 m x 800 m to a resolution of 50 m x 50 m. C1 [Kaheil, Yasir H.; Mckee, Mac; Bastidas, Luis A.] Utah State Univ, Utah Water Res Lab, Logan, UT 84322 USA. [Gill, M. Kashif] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mckee, Mac; Bastidas, Luis A.] Utah State Univ, Dept Civil & Environm Engn, Logan, UT 84322 USA. [Rosero, Enrique] Univ Texas Austin, Dept Geol Sci, John A Katherine G Sch Geosci, Austin, TX 78712 USA. RP Kaheil, YH (reprint author), Univ Western Ontario, Dept Biol, London, ON N6A 5B8, Canada. EM ykaheil@uwo.ca; kashif.gill@pnl.gov; erosero@mail.utexas.edu RI Bastidas, Luis/B-5236-2008 NR 16 TC 25 Z9 26 U1 2 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2008 VL 46 IS 5 BP 1375 EP 1384 DI 10.1109/TGRS.2008.916086 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 291UQ UT WOS:000255222800009 ER PT J AU Donde, V Lopez, V Lesieutre, B Pinar, A Yang, C Meza, J AF Donde, Vaibhav Lopez, Vanessa Lesieutre, Bernard Pinar, Ali Yang, Chao Meza, Juan TI Severe multiple contingency screening in electric power systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE load flow analysis; load shedding; optimization methods; power system reliability; power system security ID SADDLE NODE BIFURCATION; VOLTAGE COLLAPSE; TERRORIST THREAT; FLOW; SECURITY AB We propose a computationally efficient approach to detect severe multiple contingencies. We pose a contingency analysis problem using a nonlinear optimization framework, which enables us to detect the fewest possible transmission line outages resulting in a system failure of specified severity, and to identify the most severe system failure caused by removing a specified number of transmission lines from service. Illustrations using a three-bus system and the IEEE 30-bus system aim to exhibit the effectiveness of the proposed approach. C1 [Donde, Vaibhav] ABB Corp Res Ctr, Raleigh, NC 27606 USA. [Lopez, Vanessa] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Lesieutre, Bernard] Univ Wisconsin, Madison, WI 53706 USA. [Pinar, Ali; Yang, Chao; Meza, Juan] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Donde, V (reprint author), ABB Corp Res Ctr, Raleigh, NC 27606 USA. EM vaibhav.d.donde@us.abb.com; lopezva@us.ibm.com; BCLesieutre@lbl.gov; APinar@lbl.gov; CYang@lbl.gov; JCMeza@lbl.gov RI Meza, Juan/B-5601-2012; OI Meza, Juan/0000-0003-4543-0349 FU U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy under Contract DE-AC03-76SF00098. Paper no. TPWRS-00392-2006. NR 26 TC 44 Z9 46 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2008 VL 23 IS 2 BP 406 EP 417 DI 10.1109/TPWRS.2008.919243 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 342DX UT WOS:000258765900017 ER PT J AU Fripp, M Wiser, RH AF Fripp, Matthias Wiser, Ryan H. TI Effects of temporal wind patterns on the value of wind-generated electricity in California and the Northwest SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE energy resources; power generation economics; renewable energy sources; wind power generation ID CAPACITY CREDIT; POWER; SYSTEMS AB Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5%-10%. A load-based metric, power production during the top 10% of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50% based on the timing of wind alone. C1 [Fripp, Matthias] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Wiser, Ryan H.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fripp, M (reprint author), Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. EM mfripp@berkeley.edu; rhwiser@lbl.gov FU Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Office of Energy Efficiency and Renewable Energy (Wind and Hydropower Technologies Program) and in part by the Office of Electricity Delivery and Energy Reliability (Permitting, Siting and Analysis) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this paper were previously published in the Proceedings of the 26th USAEE/IAEE North American Conference, Ann Arbor, MI, September24-27, 2006. Paper no. TPWRS-00754-2006. NR 38 TC 24 Z9 24 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2008 VL 23 IS 2 BP 477 EP 485 DI 10.1109/TPWRS.2008.919427 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 342DX UT WOS:000258765900025 ER PT J AU Trudnowski, DJ Pierre, JW Zhou, N Hauer, JF Parashar, M AF Trudnowski, Daniel J. Pierre, John W. Zhou, Ning Hauer, John F. Parashar, Manu TI Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE electromechanical dynamics; mode estimation; phasor measurement units (PMUs); power system stability; situational awareness; software certification ID ELECTROMECHANICAL MODES; AMBIENT DATA; IDENTIFICATION; SYSTEMS AB The frequency and damping of electromechanical modes offer considerable insight into the dynamic stability properties of a power system. The performance properties of three mode-estimation block-processing algorithms from the perspective of near real-time automated stability assessment are demonstrated and examined. The algorithms are: the extended modified Yule Walker (YW); extended modified Yule Walker with Spectral analysis (YWS); and sub-space system identification (N4SID). The YW and N4SID have been introduced in previous publications while the YWS is introduced here. Issues addressed include: stability assessment requirements; automated subset selecting identified modes; using algorithms in an automated format; data assumptions and quality; and expected algorithm estimation performance. C1 [Trudnowski, Daniel J.] Montana Tech Univ Montana, Butte, MT 59701 USA. [Pierre, John W.] Univ Wyoming, Laramie, WY 82071 USA. [Zhou, Ning; Hauer, John F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Parashar, Manu] Elect Power Grp, Pasadena, CA 91101 USA. RP Trudnowski, DJ (reprint author), Montana Tech Univ Montana, Butte, MT 59701 USA. EM dtrudnowski@mtech.edu; pierre@uwyo.edu; ning.zhou@pnl.gov; john.hauer@pnl.gov; parashar@electricpowergroup.com FU U.S. Department of Energy [DE-FC26-06NT42750] FX Manuscript received January 5, 2007; revised JULY 9, 2007. This work was supported by the U.S. Department of Energy under Grant DE-FC26-06NT42750. Paper no. TPWRS-00931-2006. NR 18 TC 106 Z9 112 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2008 VL 23 IS 2 BP 680 EP 690 DI 10.1109/TPWRS.2008.919415 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 342DX UT WOS:000258765900047 ER PT J AU Makarov, YV Dong, ZY Hill, DJ AF Makarov, Yuri V. Dong, Zhao Yang Hill, David J. TI On convexity of power flow feasibility boundary SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE convexity; optimization; power flow feasibility boundary; security; stability AB Power flow feasibility boundaries are constraints limiting the operating transmission capability and the available stability (security) margin of the system. The convexity properties of this boundary are important to the analytical description of its shape (including the needs of approximation) and for the calculation of security margins. These analyses are significantly simplified if the boundary is convex. The conjecture that the boundary is convex in the space of system parameters has been used over a long time. However, some alarming experimental counter-examples already exist which show that this boundary is not always convex. In this letter, an analytical approach is presented to analyze the convexity properties of the power flow feasibility boundary. In particular, the approach helps to identify nonconvex parts of the boundary. Numerical case studies illustrate the effectiveness of the approach. C1 [Makarov, Yuri V.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dong, Zhao Yang] Univ Queensland, Brisbane, Qld 4072, Australia. [Hill, David J.] Australian Natl Univ, Canberra, ACT 0200, Australia. RP Makarov, YV (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI gao, xiaodan/K-3594-2015 NR 4 TC 16 Z9 17 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2008 VL 23 IS 2 BP 811 EP 813 DI 10.1109/TPWRS.2008.919307 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 342DX UT WOS:000258765900064 ER PT J AU Peterka, T Kooima, RL Sandin, DJ Johnson, A Leigh, J DeFanti, TA AF Peterka, Tom Kooima, Robert L. Sandin, Daniel J. Johnson, Andrew Leigh, Jason DeFanti, Thomas A. TI Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Virtual Reality 2007 Conference CY MAR 10-14, 2007 CL Charlotte, NC SP IEEE VGTC, IEEE Comp Soc DE three-dimensional graphics and realism; virtual reality; autostereoscopic display; dynallax; parallax barrier; varrier; visualization; 3D display ID VIRTUAL-REALITY DISPLAY AB A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system. C1 [Peterka, Tom] Argonne Natl Lab, Argonne, IL 60439 USA. [Kooima, Robert L.; Johnson, Andrew; Leigh, Jason] Univ Illinois, Dept Comp Sci, Elect Visualizat Lab, Chicago, IL 60607 USA. [Sandin, Daniel J.; DeFanti, Thomas A.] California Inst Telecommun & Informat Technol, Garden, MI 49835 USA. [Sandin, Daniel J.; DeFanti, Thomas A.] Elect Visualizat Lab, Garden, MI 49835 USA. [DeFanti, Thomas A.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Peterka, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 221,Rm D239, Argonne, IL 60439 USA. EM tpeterka@mcs.anl.gov; rlk@evl.uic.edu; dan@uic.edu; tdefanti@ucsd.edu OI Johnson, Andrew/0000-0002-0814-6093 NR 18 TC 39 Z9 44 U1 2 U2 11 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAY-JUN PY 2008 VL 14 IS 3 BP 487 EP 499 DI 10.1109/TVCG.2007.70627 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 272SM UT WOS:000253880100002 PM 18369259 ER PT J AU Paul, B Ahern, S Bethel, EW Brugger, E Cook, R Daniel, J Lewis, K Owen, J Southard, D AF Paul, Brian Ahern, Sean Bethel, E. Wes Brugger, Eric Cook, Rich Daniel, Jamison Lewis, Ken Owen, Jens Southard, Dale TI Chromium renderserver: Scalable and open remote rendering infrastructure SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE remote visualization; remote rendering; parallel rendering; virtual network computer; collaborative visualization; distance visualization ID SYSTEMS AB Chromium Renderserver ( CRRS) is a software infrastructure that provides the ability for one or more users to run and view image output from unmodified, interactive OpenGL and X11 applications on a remote parallel computational platform equipped with graphics hardware accelerators via industry-standard Layer-7 network protocols and client viewers. The new contributions of this work include a solution to the problem of synchronizing X11 and OpenGL command streams, remote delivery of parallel hardware-accelerated rendering, and a performance analysis of several different optimizations that are generally applicable to a variety of rendering architectures. CRRS is fully operational, Open Source software. C1 [Paul, Brian; Lewis, Ken; Owen, Jens] Tingsten Graph Inc, Steamboat Springs, CO 80487 USA. [Ahern, Sean; Daniel, Jamison] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bethel, E. Wes] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Brugger, Eric; Cook, Rich; Southard, Dale] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Paul, B (reprint author), Tingsten Graph Inc, Steamboat Springs, CO 80487 USA. EM brian.paul@tungstengraphics.com; ahern@ornl.gov; EWBethel@lbl.gov; brugger2@llnl.gov; rcook@llnl.gov; danieljr@ornl.gov; kwlewis@tungstengraphics.com; jens@tungstengraphics.com; dsouth@llnl.gov NR 21 TC 5 Z9 5 U1 0 U2 13 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAY-JUN PY 2008 VL 14 IS 3 BP 627 EP 639 DI 10.1109/TVCG.2007.70631 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 272SM UT WOS:000253880100013 PM 18369269 ER PT J AU Carr, GL Smith, RJ Mihaly, L Zhang, H Reitze, DH Tanner, DB AF Carr, G. L. Smith, R. J. Mihaly, L. Zhang, H. Reitze, D. H. Tanner, D. B. TI High-resolution far-infrared spectroscopy at NSLS beamline U12IR SO INFRARED PHYSICS & TECHNOLOGY LA English DT Article; Proceedings Paper CT 4th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources CY SEP 25-29, 2007 CL Awaji Isl, JAPAN SP Kobe Univ, Grad Sch Sci, UVSOR Facil, Inst Mol Sci, Japan Synchrotron Radiat Inst, Univ Fukui, FIR CTR, Ritsumeikan Univ, SLLS Ctr, Tokyo Univ Sci, IR FEL Res Ctr DE infrared spectroscopy; high-resolution; synchrotron radiation; water vapor ID RADIATION AB A Bruker model IFS 125HR Fourier transform interferometer has been installed and its performance tested using high-brightness, far-infrared synchrotron radiation. Results of absorption measurements for the rotational modes of water vapor demonstrate a nearly 10-fold improvement in signal-to-noise when compared with the instrument's internal high-pressure Hg arc lamp source. (c) 2008 Published by Elsevier B.V. C1 [Carr, G. L.; Smith, R. J.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Mihaly, L.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA. [Zhang, H.; Reitze, D. H.; Tanner, D. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Carr, GL (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. EM carr@bnl.gov NR 9 TC 1 Z9 2 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4495 J9 INFRARED PHYS TECHN JI Infrared Phys. Technol. PD MAY PY 2008 VL 51 IS 5 BP 404 EP 406 DI 10.1016/j.infrared.2007.12.034 PG 3 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 310EH UT WOS:000256511200013 ER PT J AU Levenson, E Lerch, P Martin, MC AF Levenson, Erika Lerch, Philippe Martin, Michael. C. TI Spatial resolution limits for synchrotron-based infrared spectromicroscopy SO INFRARED PHYSICS & TECHNOLOGY LA English DT Article; Proceedings Paper CT 4th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources CY SEP 25-29, 2007 CL Awaji Isl, JAPAN SP Kobe Univ, Grad Sch Sci, UVSOR Facil, Inst Mol Sci, Japan Synchrotron Radiat Res Inst, Univ Fukui, FIR CTR, Ritsumeikan Univ, SLLS Ctr, Tokyo Univ Sci, IR FEL Res Ctr DE synchrotron; spatial resolution; microscopy; spectromicroscopy; imaging; diffraction ID RADIATION; PERFORMANCE; LIGHT AB Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continu mu m XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF(2) beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam. size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution. (c) 2007 Elsevier B.V. All rights reserved. C1 [Levenson, Erika; Martin, Michael. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Lerch, Philippe] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Martin, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MCMartin@lbl.gov NR 17 TC 16 Z9 16 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4495 J9 INFRARED PHYS TECHN JI Infrared Phys. Technol. PD MAY PY 2008 VL 51 IS 5 BP 413 EP 416 DI 10.1016/j.infrared.2007.12.004 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 310EH UT WOS:000256511200016 ER PT J AU Gallet, J Riley, M Hao, Z Martin, MC AF Gallet, Julien Riley, Michael Hao, Zhao Martin, Michael C. TI Increasing FTIR spectromicroscopy speed and resolution through compressive imaging SO INFRARED PHYSICS & TECHNOLOGY LA English DT Article; Proceedings Paper CT 4th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources CY SEP 25-29, 2007 CL Awaji Isl, JAPAN SP Kobe Univ, Grad Sch Sci, UVSOR Facil, Inst Mol Sci, Japan Synchrotron Radiat Inst, Univ Fukui, FIR CTR, Ritsumeikan Univ, SLLS Ctr, Tokyo Univ Sci, IR FEL Res Ctr DE synchrotron; spatial resolution; spectromicroscopy; imaging; compressive imaging; Hadamard ID SYNCHROTRON INFRARED BEAMLINES; ADVANCED LIGHT-SOURCE; RADIATION; MICROSPECTROSCOPY; PERFORMANCE; TRANSFORM AB At the Advanced Light Source at Lawrence Berkeley National Laboratory, we are investigating how to increase both the speed and resolution of synchrotron infrared imaging. Synchrotron infrared beamlines have diffraction-limited spot sizes and high signal to noise, however spectral. images must be obtained one point at a time and the spatial resolution is limited by the effects of diffraction. One technique to assist in speeding up spectral image acquisition is described here and uses compressive imaging algorithms. Compressive imaging can potentially attain resolutions higher than allowed by diffraction and/or can acquire spectral images without having to measure every spatial point individually thus increasing the speed of such maps. Here we present and discuss initial tests of compressive imaging techniques performed with ALS Beamline 1.4.3's Nic-Plan infrared microscope, Beamline 1.4.4 Continuum XL IR microscope, and also with a stand-alone Nicolet Nexus 470 FTIR spectrometer. (c) 2007 Elsevier B.V. All rights reserved. C1 [Gallet, Julien; Riley, Michael; Hao, Zhao; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Martin, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MCMartin@lbl.gov RI Hao, Zhao/G-2391-2015 OI Hao, Zhao/0000-0003-0677-8529 NR 13 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4495 J9 INFRARED PHYS TECHN JI Infrared Phys. Technol. PD MAY PY 2008 VL 51 IS 5 BP 420 EP 422 DI 10.1016/j.infrared.2007.12.003 PG 3 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 310EH UT WOS:000256511200018 ER PT J AU Disselkamp, RS Harris, BD Patel, JN Hart, TR Peden, CHF AF Disselkamp, R. S. Harris, B. D. Patel, J. N. Hart, T. R. Peden, C. H. F. TI Propanal synthesis from aqueous propylene glycol/hydrogen peroxide on a Ru/alumina catalyst SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE propylene glycol; hydrogen peroxide; dehydration; ruthenium/alumina catalyst; magnesium promoter ID LIQUID-PHASE OXIDATION; GOLD CATALYSTS; ALCOHOLS AB The conversion of polyol materials, including 1,2-diols, into higher commodity chemicals is actively being pursued by many researchers. Here we report the production of propanal from aqueous propylene glycol and hydrogen peroxide using a Ru/alumina catalyst. Experiments were conducted by adding up to four peroxide equivalents under steady-state reflux conditions at 371 K. The product propanal and its subsequent reaction product with substrate, 1,3-dioxolane-2-ethyl-4-methyl, was observed to be an intermediate achieving a maximum concentration of 3% of substrate. Buffering using Mg(OH)(2) at pH similar to 10 resulted in propanal formation, whereas buffering at similar pH using Na(2)HPO(4) did not, from which we propose that magnesium acts as a promoter in the reaction. The mechanism appears to be a dehydration to enol, followed by rearrangement to product. Experiments utilizing Ru/carbon did not yield any propanol suggesting that the acidic sites of alumina aid the dehydration reaction. To our knowledge, this represents the first time hydrogen peroxide has been used in an alcohol dehydration reaction. Published by Elsevier B.V. C1 [Disselkamp, R. S.; Harris, B. D.; Patel, J. N.; Hart, T. R.; Peden, C. H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Disselkamp, RS (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. EM rdisselkamp@columbiabasin.edu OI Peden, Charles/0000-0001-6754-9928; Hart, Todd/0000-0001-8013-0689 NR 7 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD MAY PY 2008 VL 11 IS 5 BP 561 EP 563 DI 10.1016/j.inoche.2008.01.024 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 306OY UT WOS:000256258900023 ER PT J AU Bland, LC Ogawa, A Matulenko, YA Mochalov, VV Morozov, DA Nogach, LV Shestermanov, KE Vasiliev, AN Rakness, G AF Bland, L. C. Ogawa, A. Matulenko, Yu. A. Mochalov, V. V. Morozov, D. A. Nogach, L. V. Shestermanov, K. E. Vasiliev, A. N. Rakness, G. TI An electromagnetic shower profile in the lead-glass calorimeter in the energy range of 3-23 GeV SO INSTRUMENTS AND EXPERIMENTAL TECHNIQUES LA English DT Article AB The transverse profile of electromagnetic showers in a calorimeter made of T Phi 1-00 lead glass was measured at electron energies of 3, 9, and 23 GeV for two configurations of the setup: with and without an assembly of passive material being placed in front of the calorimeter. The method for obtaining the shower profile did not require the use of high-precision coordinate detectors. Parameterization of shower profiles by a two-dimensional function with two parameters was proposed. A program for simulating Cherenkov light in a lead glass calorimeter was developed. The experimental data agree with the results of Monte Carlo simulation within the limits of experimental errors. C1 [Bland, L. C.; Ogawa, A.; Rakness, G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Matulenko, Yu. A.; Mochalov, V. V.; Morozov, D. A.; Nogach, L. V.; Shestermanov, K. E.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Moscow Oblast, Russia. [Rakness, G.] Penn State Univ, University Pk, PA 16802 USA. RP Bland, LC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM morozov@ihep.ru NR 6 TC 0 Z9 0 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0020-4412 J9 INSTRUM EXP TECH+ JI Instrum. Exp. Tech. PD MAY-JUN PY 2008 VL 51 IS 3 BP 342 EP 350 DI 10.1134/S0020441208030044 PG 9 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 310LU UT WOS:000256531900004 ER PT J AU Iwasaki, E Matsumi, Y Takahashi, K Wallington, TJ Hurley, MD Orlando, JJ Kaiser, EW Calvert, JG AF Iwasaki, E. Matsumi, Y. Takahashi, K. Wallington, T. J. Hurley, M. D. Orlando, J. J. Kaiser, E. W. Calvert, J. G. TI Atmospheric chemistry of cyclohexanone: UV spectrum and kinetics of reaction with chlorine atoms SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Article ID LASER-PHOTOLYSIS TECHNIQUE; GAS-PHASE; RADICAL REACTIONS; KETONES; PHOTODISSOCIATION AB Absolute and relative rate techniques were used to study the reactivity of Cl atoms with cyclohexanone in 6 Torr of argon or 800-950 Torr of N-2 at 295 2 K. The absolute rate experiments gave k(Cl + cyclohexanone) = (1.88 +/- 0.38) x 10(-10), whereas the relative rate experiments gave k(Cl + cyclohexanone) = (1.66 +/- 0.26) x 10(-10) cm(3) molecule(-1) s(-1.). Cyclohexanone has a broad UV absorption band with a maximum cross section of (4.0 +/- 0.3) x 10(-20) cm(2) molecule(-1) near 285 nm. The results are discussed with respect to the literature data. (C) 2008 Wiley Periodicals, Inc. C1 [Wallington, T. J.; Hurley, M. D.] Ford Motor Co, Dearborn, MI 48121 USA. [Iwasaki, E.; Matsumi, Y.] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Iwasaki, E.; Matsumi, Y.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Takahashi, K.] Kyoto Univ, Kyoto Univ Pioneering Res Unit Next Generat, Kyoto 6110011, Japan. [Orlando, J. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Earth & Sun Syst Lab, Boulder, CO 80307 USA. [Kaiser, E. W.] Univ Michigan, Dept Nat Sci, Dearborn, MI 48128 USA. [Calvert, J. G.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Wallington, TJ (reprint author), Ford Motor Co, Mail Drop RIC-2122,POB 2053, Dearborn, MI 48121 USA. EM twalling@ford.com NR 17 TC 5 Z9 5 U1 3 U2 12 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0538-8066 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD MAY PY 2008 VL 40 IS 5 BP 223 EP 229 DI 10.1002/kin.20291 PG 7 WC Chemistry, Physical SC Chemistry GA 288IT UT WOS:000254980400001 ER PT J AU Mahjoob, S Vafai, K Beer, NR AF Mahjoob, Shadi Vafai, Kambiz Beer, N. Reginald TI Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article ID HEAT-FLUX APPLICATIONS; DNA-AMPLIFICATION; POROUS-MEDIA; PCR DEVICE; FLOW; CHIP; MICROCHIP; VOLUMES; SYSTEM AB Polymerase chain reaction (PCR) is widely used in biochemical analysis to amplify DNA and RNA in vitro. The PCR process is highly temperature sensitive, and thermal management has in important role in PCR operation in reaching the required temperature set points at each step of the process. The goal of this research is to achieve a thermal technique to rapidly increase the heating/cooling thermal cycling speed while maintaining a uniform temperature distribution throughout the substrate containing the aqueous nucleic acid sample. In this work, an innovative microfluidic PCR. thermal cycler, which Utilizes a properly arranged configuration filled with a porous medium, is investigated. Various effective parameters that are relevant in optimizing this flexible heat exchanger are investigated such as heat exchanger geometry, flow rate, conductive plate, the porous matrix material, and utilization of thermal grease. An optimized case is established based on the effects of the cited parameters oil the temperature distribution and the required power for circulating the fluid in the heat exchanger. The results indicate that the heating/cooling temperature ramp of the proposed PCR heat exchanger is considerably higher (150.82 degrees C/s) than those ill the literature. In addition, the proposed PCR offers a very uniform temperature in the Substrate while utilizing a low power. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Mahjoob, Shadi; Vafai, Kambiz] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. [Beer, N. Reginald] Lawrence Livermore Natl Lab, Ctr Micro & Nanotechnol, Livermore, CA 94550 USA. RP Vafai, K (reprint author), Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. EM vafai@engr.ucr.edu NR 44 TC 12 Z9 12 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAY PY 2008 VL 51 IS 9-10 BP 2109 EP 2122 DI 10.1016/j.ijheatmasstransfer.2007.11.014 PG 14 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 300GG UT WOS:000255811700001 ER PT J AU Wehner, M Oliker, L Shalf, J AF Wehner, Michael Oliker, Leonid Shalf, John TI Towards ultra-high resolution models of climate and weather SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE climate model; atmospheric general circulation model; finite volume model; global warming; petascale simulation; power efficient computing; embedded processor AB We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model C1 [Wehner, Michael; Oliker, Leonid; Shalf, John] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA. RP Wehner, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA. EM LOLIKER@LBL.GOV NR 23 TC 24 Z9 25 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2008 VL 22 IS 2 BP 149 EP 165 DI 10.1177/1094342007085023 PG 17 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 330KO UT WOS:000257940100002 ER PT J AU Allegretti, DG Kenyon, GT Priedhorsky, WC AF Allegretti, Dylan G. Kenyon, Garrett T. Priedhorsky, William C. TI Cellular automata for Distributed Sensor Networks SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE distributed sensor networks; tracking; low signal-to-noise; local communication; continuous automata ID TRACKING; LOCALIZATION; ALGORITHMS AB Distributed Sensor Networks (DSNs) may be useful for detecting and tracking moving objects. Although such systems have important surveillance and homeland security applications, several technical problems exist. The cheap, low-powered sensors necessary for deployment over large areas may function poorly in low signal-to-noise environments. Although combining information from multiple sensors improves detection capabilities, long-range communication with a central computer may exhaust local power resources. We consider cellular automata rules that address these problems. By communicating locally, sensors can accurately track a moving object in a noisy environment. By communicating anonymously, they can use low-powered radio transmitters and receivers and avoid complex digital communication protocols. Our computer simulations show that DSNs can use cellular automata to greatly enhance the detection capabilities of individual sensors and reduce the amount of long-range communication by an order of magnitude. C1 [Allegretti, Dylan G.; Kenyon, Garrett T.] Los Alamos Natl Lab, P Div, Los Alamos, NM 87545 USA. [Priedhorsky, William C.] Los Alamos Natl Lab, Threat Reduct Directorate, Los Alamos, NM 87545 USA. RP Allegretti, DG (reprint author), Los Alamos Natl Lab, P Div, POB 1663, Los Alamos, NM 87545 USA. EM GKENYON@LANL.GOV OI Priedhorsky, William/0000-0003-0295-9138 NR 11 TC 2 Z9 2 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2008 VL 22 IS 2 BP 167 EP 176 DI 10.1177/1094342007083803 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 330KO UT WOS:000257940100003 ER PT J AU Tseng, YH Ding, C AF Tseng, Yu-Heng Ding, Chris TI Efficient parallel I/O in community atmosphere model (CAM) SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE CAM; climate modeling; index reshuffle; parallel I/O; parallel netCDF ID ALGORITHMS AB Century-long global climate simulations at high resolutions generate large amounts of data in a parallel architecture. Currently, the community atmosphere model (CAM), the atmospheric component of the NCAR community climate system model (CCSM), uses sequential I/O which causes a serious bottleneck for these simulations. We describe the parallel I/O development of CAM in this paper. The parallel I/O combines a novel remapping of 3-D arrays with the parallel netCDF library as the I/O interface. Because CAM history variables are stored in disk file in a different index order than the one in CPU resident memory because of parallel decomposition, an index reshuffle is done on the fly. Our strategy is first to remap 3-D arrays from its native decomposition to z-decomposition on a distributed architecture, and from there write data out to disk. Because z-decomposition is consistent with the last array dimension, the data transfer can occur at maximum block sizes and, therefore, achieve maximum I/O bandwidth. We also incorporate the recently developed parallel netCDF library at Argonne/Northwestern as the collective I/O interface, which resolves a long-standing issue because netCDF data format is extensively used in climate system models. Benchmark tests are performed on several platforms using different resolutions. We test the performance of our new parallel I/O on five platforms (SP3, SP4, SP5, Cray X1E, BlueGene/L) up to 1024 processors. More than four realistic model resolutions are examined, e. g. EUL T85 (similar to 1.4 degrees), FV-B (2 degrees x 2.5 degrees), FV-C (1 degrees x 1.25 degrees), and FV-D (0.5 degrees x 0.625 degrees) resolutions. For a standard single history output of CAM 3.1 FV-D resolution run (multiple 2-D and 3-D arrays with total size 4.1 GB), our parallel I/O speeds up by a factor of 14 on IBM SP3, compared with the existing I/O; on IBM SP5, we achieve a factor of 9 speedup. The estimated time for a typical century-long simulation of FV D-resolution on IBM SP5 shows that the I/O time can be reduced from more than 8 days (wall clock) to less than 1 day for daily output. This parallel I/O is also implemented on IBM BlueGene/L and the results are shown, whereas the existing sequential I/O fails due to memory usage limitation. C1 [Tseng, Yu-Heng] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 106, Taiwan. [Ding, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Tseng, YH (reprint author), Natl Taiwan Univ, Dept Atmospher Sci, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan. EM YHTSENG@AS.NTU.EDU.TW OI Tseng, Yu-heng/0000-0002-4816-4974 NR 21 TC 1 Z9 2 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD MAY PY 2008 VL 22 IS 2 BP 206 EP 218 DI 10.1177/1094342008090914 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 330KO UT WOS:000257940100006 ER PT J AU Jorquera, O Kiperstok, A Sales, EA Embirucu, M Ghirardi, ML AF Jorquera, Orlando Kiperstok, Asher Sales, Emerson A. Embirucu, Marcelo Ghirardi, Maria L. TI S-systems sensitivity analysis of the factors that may influence hydrogen production by sulfur-deprived Chlamydomonas reinhardtii SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE metabolic map; hydrogen microalgae; mathematical model; S-systems ID PHOTOSYNTHETIC ELECTRON-TRANSPORT; GREEN-ALGA; H-2 PRODUCTION; PHOTOPRODUCTION; DEPRIVATION; FERMENTATION; EVOLUTION; ENERGY; CELLS AB We built a metabolic map of the hydrogen production process by the microalga Chlamydomonas reinhardtii, mathematically modeled this map in the S-systems formalism, then analyzed the effect of variations in the value of different model parameters on the overall response of the system. The mathematical model exhibited behavior similar to that described in literature for photosynthetic algal hydrogen production by sulfur-deprived algal cultures. This behavior consists of an initial phase during which oxygen is transiently generated and then consumed, followed by an anaerobic phase that is characterized by generation of hydrogen. Our analysis of the effect of independent variables on the hydrogen production process mostly agrees with previous work [Horner J, Wolinsky M. A power-law sensitivity analysis of the hydrogen-producing metabolic pathway in Chlamydomonas reinhardtii. Int J Hydrogen Energy 2002;27: 1251-1255]. Moreover, a more detailed study of the effects of parameter modification (rate constants and kinetic order) indicated that genetic engineering of the hydrogenase expression, activity and stability may lead to increased performance of the process. Published by Elsevier Ltd. on behalf of international Association for Hydrogen Energy. C1 [Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Jorquera, Orlando; Kiperstok, Asher] Univ Fed Bahia, Bahia Ctr Clean Technol TECLIM, Dept Environm Engn, Escola Politecn, BR-40210630 Salvador, BA, Brazil. [Sales, Emerson A.] Univ Fed Bahia, Inst Chem, Dept Phys Chem, BR-41170290 Salvador, BA, Brazil. [Embirucu, Marcelo] Univ Fed Bahia, Polytech Inst, BR-40210630 Salvador, BA, Brazil. RP Ghirardi, ML (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ojorquer24@yahoo.com; asher@ufba.br; eas@ufba.br; embirucu@ufba.br; maria_ghirardi@nrel.gov RI SALES, EMERSON/F-2005-2015; OI SALES, EMERSON/0000-0002-9607-7285; Jorquera, Orlando/0000-0003-4086-5474 NR 29 TC 14 Z9 15 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2008 VL 33 IS 9 BP 2167 EP 2177 DI 10.1016/j.ijhydene.2008.01.054 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 312ZO UT WOS:000256711100006 ER PT J AU Subramanyan, K Wu, Y Diwekar, UM Wang, MQ AF Subramanyan, Karthik Wu, Ye Diwekar, Urmila M. Wang, Michael Q. TI New stochastic simulation capability applied to the GREET model SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE distribution function; GREET model; sampling technique; stochastic simulation; uncertainty; well-to-wheels analysis ID EFFICIENT SAMPLING TECHNIQUE; RIDGE REGRESSION; UNCERTAINTY; OPTIMIZATION AB Background, Aims and Scope. In 1995, the Center for Transportation Research (CTR) of Argonne National Laboratory (ANL) began to develop a model, called GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation), for estimating the full fuel-cycle energy and emissions impacts of alternative transportation fuels and advanced vehicle technologies. The parametric assumptions used in the GREET model involve uncertainties. A new stochastic simulation tool, developed by Vishwamitra Research Institute (VRI), is built into the GREET model to address uncertainties. This paper presents the methodology and features of this new stochastic simulation tool and evaluates the performance of the sampling techniques in the tool. Methods. The new tool is interfaced through the graphical user interface (GUI) to perform the stochastic simulation. In general, five steps need to be followed to run a complete simulation: 1) Specify probability distribution functions; 2) Indicate the number of samples and the sampling technique; 3) Define the forecast variables; 4) Delete distribution functions (if necessary); and 5) Propagate the uncertainties and statistically analyze the outputs. The GREET model contains more than 700 default distribution functions for a wide variety of key parameters and as many as 3000 forecast variables. The stochastic simulation tool has been developed to incorporate 11 probability distribution function types for representing uncertain parameters and four sampling techniques (Monte Carlo sampling [MCS], Hammersley Sequence sampling [HSS], Latin Hypercube sampling [LHS] and Latin Hypercube Hammersley sampling [LHHS]) for stochastic simulation. To evaluate the performance of the four sampling techniques, 16 independent stochastic simulation runs were conducted in GREET and the output results were analyzed and compared. Results and Discussion. With the same number of samples, the output distribution curve simulated by HSS is the smoothest corresponding to the highest level of uniformity. To achieve the same level of smoothness as HSS with 1,000 samples, LHHS needs to be simulated with similar to 1500 samples and LHS and MCS with similar to 3,000 samples. As a result, HSS can achieve more than 200% reduction in running time compared to LHS or MCS without compromising the accuracy and quality of the prediction curves. The simulated mean values are close enough to the actual mean value (within +/- 1%) despite the selection of sampling technique and the number of samples (between 1,000 and 4,000). The standard deviation values from each other are close enough as well (within +/- 5%). It shows the trend that the increasing number of samples makes the simulated mean value marginally closer to the actual mean value; however, the improvement effect is negligible. The simulation time is strictly positive-correlated with the number of samples; therefore, the trade-off between extending simulation time and improving the smoothness of the output distribution curve needs to be carefully assessed. Conclusion. A new stochastic simulation tool has been developed to be built into Argonne's GREET model to enhance its capability for addressing uncertainty. This new tool guides the user in each step of the process through the user-friendly GUI windows. According to the performance comparison among the four sampling techniques, HSS was found to be the most efficient technique. Therefore, HSS was set as the default technique in GREET. C1 [Subramanyan, Karthik; Diwekar, Urmila M.] Vishwamitra Res Inst, Ctr Uncertain Syst, Westmont, IL 60559 USA. [Wu, Ye; Wang, Michael Q.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Diwekar, UM (reprint author), Vishwamitra Res Inst, Ctr Uncertain Syst, Westmont, IL 60559 USA. EM urmila@vri-custom.org RI Wu, Ye/O-9779-2015 NR 19 TC 12 Z9 13 U1 1 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD MAY PY 2008 VL 13 IS 3 BP 278 EP 285 DI 10.1065/Ica2007.07.354 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 292FL UT WOS:000255251800012 ER PT J AU Safarik, DJ Schwarz, RB AF Safarik, D. J. Schwarz, R. B. TI Ultrasonic study of short-range hydrogen ordering in Pd-hydride SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH LA English DT Article DE palladium hydride; 50 K anomaly; elastic constants; anelastic relaxation; resonant ultrasound spectroscopy ID PALLADIUM DEUTERIDE; STRUCTURAL-CHANGES; REGION; PHASE AB We used resonant ultrasound spectroscopy to measure the three independent elastic constants of PdH(0.71) and PdH(0.65) in the temperature range 1.4 K < T < 296 K. Measurements were performed as the crystals were rapidly cooled (similar to 10 K min(-1)) and then slowly heated (similar to 0.1 K min-1). During slow heating, the temperature dependence of the shear modulus C = (C(11) - C(12))/2 shows a small peak at similar to 55 K, but this peak is absent during fast cooling. We associate the peak with the so-called "50 K anomaly" in palladium hydride. In contrast, the other shear modulus, C(44), shows no peak during slow heating. We propose that the 50 K anomaly observed in the elastic constants, and in other thermodynamic and transport properties of Pd-hydride, is a kinetic effect arising from changes in the hydrogen atom short-range order as the alloy is heated. C1 [Safarik, D. J.; Schwarz, R. B.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Schwarz, RB (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755,POB 1663, Los Alamos, NM 87545 USA. EM rxzs@lanl.gov OI Safarik, Douglas/0000-0001-8648-9377 NR 21 TC 0 Z9 0 U1 0 U2 5 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 1862-5282 J9 INT J MATER RES JI Int. J. Mater. Res. PD MAY PY 2008 VL 99 IS 5 BP 535 EP 540 DI 10.3139/146.101673 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 308SH UT WOS:000256409800013 ER PT J AU Dadfarnia, M Sofronis, P Somerday, BP Robertson, IM AF Dadfarnia, Mohsen Sofronis, Petros Somerday, Brian P. Robertson, Ian M. TI On the small scale character of the stress and hydrogen concentration fields at the tip of an axial crack in steel pipeline: effect of hydrogen-induced softening on void growth SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH LA English DT Article DE hydrogen; embrittlement; diffusion; elastoplasticity; pipeline; steel ID ASSISTED DUCTILE FRACTURE; DISLOCATION SWEEP-IN; NICKEL-BASE ALLOYS; CARBON-STEELS; PLASTIC-FLOW; DIFFUSION; TRANSPORT; METALS; IRON; THERMODYNAMICS AB Gaseous hydrogen transport at pressures of 15 MPa is envisaged as a means of hydrogen delivery from central production facilities to refueling stations for the planned hydrogen economy. The study of the hydrogen embrittlement of medium or mild strength steels, which are under consideration for pipeline materials, has not as of yet led to methods to design safe and reliable pipelines. The most important failure modes in hydrogen containment components are due to subcritical cracking. However, current design guidelines for pipelines only tacitly address subcritical cracking by applying arbitrary, conservative safety factors on the applied stress. In the present work, we investigate the interaction of hydrogen transport with material elastoplasticity in the neighborhood of an axial crack in a steel pipeline. For all practical purposes, we find that the stress, deformation, and hydrogen fields exhibit a small scale character which allows for the use of the standard modified boundary layer approach to the study of the fracture behavior of steel pipelines. The approach is based on constraint fracture mechanics methodology whereby a two-parameter characterization - the stress intensity factor K(I) and the T-stress - is used to describe the interaction of the stress and deformation fields with the diffusing hydrogen under conditions of hydrogen uptake from the crack faces and outgassing through the outer boundaries, as in the pipeline. Employing the Rice and Tracey model of void growth, we find that hydrogen-induced softening can accelerate void growth in a small region confined at the crack tip by as much as 70 % relative to the case of a hydrogen-free material. We close by suggesting that one can ascertain the hydrogen effects on fracture at an axial pipeline crack with the use of a laboratory fracture mechanics specimen tested in hydrogen gas and subjected to the same intensity factor, K(I), and hydrostatic constraint, T-stress, as the real-life pipeline. C1 [Dadfarnia, Mohsen; Sofronis, Petros] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. [Somerday, Brian P.] Sandia Natl Labs, Livermore, CA USA. [Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Sofronis, P (reprint author), 158 Mech Engn Bldg,1206 W Green St, Urbana, IL 61801 USA. EM sofronis@uiuc.edu OI Dadfarnia, Mohsen/0000-0002-5218-971X NR 62 TC 10 Z9 10 U1 1 U2 8 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 1862-5282 J9 INT J MATER RES JI Int. J. Mater. Res. PD MAY PY 2008 VL 99 IS 5 BP 557 EP 570 DI 10.3139/146.101674 PG 14 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 308SH UT WOS:000256409800017 ER PT J AU Perl, ML AF Perl, Martin L. TI What Einstein did not know SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Editorial Material AB This public lecture is about 100 years of research on elementary particles and fundamental forces, beginning with the identification of the electron about 1900 and extending to the astonishing discovery of Dark Matter in the late 1900s. I talk about the elementary particle concept; the discoveries of leptons, quarks and force carrying particles; and some of the experimental technology used. I tell of my own research, our discovery of the tau lepton, our long, inconclusive search for fractional charged particles, and my new involvement in astronomical research on Dark Matter. I conclude by looking ahead to old unsolved puzzles and new questions on the fundamental nature of matter and force that face us in the 21st Century. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Perl, ML (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM martin@slac.stanford.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD MAY PY 2008 VL 17 IS 5 BP 735 EP 757 DI 10.1142/S0218301308010143 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 308IU UT WOS:000256383400002 ER PT J AU Tannenbaum, MJ AF Tannenbaum, M. J. TI Heavy ion physics at RHIC SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Symposium on 50 Plus Years of High Energy Physics CY OCT 20-21, 2006 CL Univ Buffalo, Buffalo, NY HO Univ Buffalo ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; LARGE TRANSVERSE-MOMENTUM; DENSE PARTONIC MATTER; ELLIPTIC FLOW; J/PSI SUPPRESSION; HADRON-PRODUCTION; AU+AU COLLISIONS; CENTRALITY DEPENDENCE; COLOR DECONFINEMENT AB The status of the physics of heavy ion collisions is reviewed based on measurements over the past 6 years from the Relativistic Heavy Ion Collider (RHIC) at Brook haven National Laboratory. The dense nuclear matter produced in Au + Au collisions with nucleon-nucleon c.m. energy root(NN)-N-s = 200 GeV at RHIC corresponds roughly to the density and temperature of the universea few microseconds after the 'big-bang' and has been described as "a perfect liquid" of quarks and gluons, rather than the gas of freequarks and gluons, "the quark-gluon plasma" as originally envisaged. The measurements and arguments leading to this description will be presented. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tannenbaum, MJ (reprint author), Brookhaven Natl Lab, Dept Phys, 510C, Upton, NY 11973 USA. EM mjt@bnl.gov NR 114 TC 6 Z9 6 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD MAY PY 2008 VL 17 IS 5 BP 771 EP 801 DI 10.1142/S0218301308010167 PG 31 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 308IU UT WOS:000256383400004 ER PT J AU Roy, D Guida, P Zhou, G Echiburu-Chau, C Calaf, GM AF Roy, D. Guida, P. Zhou, G. Echiburu-Chau, C. Calaf, G. M. TI Gene expression profiling of breast cells induced by X-rays and heavy ions SO INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE LA English DT Article DE cDNA expression array; breast epithelial cells; DNA damage/repair radiation signaling pathway genes ID DNA-DAMAGE RESPONSE; IONIZING-RADIATION; GENOMIC INSTABILITY; EPITHELIAL-CELLS; EXCISION-REPAIR; HELA-CELLS; CENP-E; CANCER; IRRADIATION; PHOSPHATASE AB Several genetic aberrations and gene expression changes have been shown to occur when cells are exposed to various types of radiation. The integrity of DNA depends upon several processes that include DNA damage recognition and repair, replication, transcription and cell cycle regulation. Ionizing radiation has many sources, including radon decay from the soil and X-rays from medical practice. Epidemiological evidence indicates a risk for cancer by inducing genetic alterations through DNA damage, and molecular alterations have been reported in epidemiological studies of the A-bomb survivors. A spontaneously immortalized human breast epithelial cell model, MCF-10F, was used to examine the gene expression profiling of breast cells induced by X-ray and heavy ion exposure, by a cDNA expression array of DNA damage and repair genes. This cell line was exposed to 10, 50, 100 and 200 cGy of either X-rays or heavy ions and gene expression profiles were studied. Results indicated that out of a total of 161 genes, 38 were differentially expressed by X-ray treatment and 24 by heavy ion (Fe+2) treatment. Eight genes were common to both treatments and were confirmed by Northern blot analysis: BRCA1, BIRC2/CIAP1, CENP-E, DDB1, MRE11A, RAD54/ATRX, Wip1 and XPF/ERCC4. A number of candidate genes reported here may be useful molecular biomarkers of radiation exposure in breast cells. C1 [Roy, D.] CUNY, Dept Nat Sci, Hostos Coll, Bronx, NY 10541 USA. [Roy, D.; Zhou, G.] Brookhaven Natl Lab, Biol & Med Dept, Upton, NY 11973 USA. [Echiburu-Chau, C.; Calaf, G. M.] Univ Tarapaca, Inst Alta Invest, Arica, Chile. [Calaf, G. M.] Columbia Univ, Med Ctr, Ctr Radiol Res, New York, NY USA. RP Roy, D (reprint author), CUNY, Dept Nat Sci, Hostos Coll, A507E,475 Grand Concourse,HCC, Bronx, NY 10541 USA. EM droy@hostos.cuny.edu NR 53 TC 7 Z9 7 U1 0 U2 2 PU PROFESSOR D A SPANDIDOS PI ATHENS PA 1, S MERKOURI ST, EDITORIAL OFFICE,, ATHENS 116 35, GREECE SN 1107-3756 J9 INT J MOL MED JI Int. J. Mol. Med. PD MAY PY 2008 VL 21 IS 5 BP 627 EP 636 PG 10 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 293FA UT WOS:000255319500014 PM 18425356 ER PT J AU Williams, TO AF Williams, Todd O. TI A new theoretical framework for the formulation of general, nonlinear, multiscale plate theories SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE laminated plates; composite structures; global-local fields; multilength scale plate theory; delamination; cohesive zone model; composite materials ID LAMINATED COMPOSITE PLATES; IMPROVED INPLANE RESPONSES; MODEL; DELAMINATION; INTERFACE; ELEMENT AB A new type of general, theoretical framework for the development of comprehensive, nonlinear, multiscale plate theories for laminated structures is presented. The theoretical framework utilizes a generalized two scale description of the displacement field based on a superposition of global and local effects where the functional forms for the global and local displacement fields are arbitrary. The two scale nature of theory allows it to explicitly consider the layered nature of the structure. The subsequent development of the governing equations for the theory is carried out using the general nonlinear equations of continuum mechanics referenced to the initial configuration. The equations of motion and the lateral surface boundary conditions for the theory are derived using the method of moments over the different scales subject to an orthogonality constraint. The theory satisfies the interfacial constraints and the top and bottom surface boundary conditions in a strong sense. Delamination effects are incorporated into the theory through the use of cohesive zone models (CZMs). Arbitrary CZMs can be incorporated into the theory without the need for reformulation of the governing equations. The theory is formulated in a sufficiently general fashion that any type of history-dependent material can be used to describe the inelastic response of the materials composing the layers. Furthermore, as a result of the multiscale nature of the theory it can be specialized to single scale theories of the equivalent single layer (ESL) or discrete layer (DL) types in a unified fashion and without the need for any reformulation. While the starting point for the proposed theory is the same as used by Williams [Williams, T.O., 1999. A generalized multilength scale nonlinear composite plate theory with delamination. Int. J. Solid Struct. 36, (20) 3015-3050; Williams, T.O., 2001. Efficiency and accuracy considerations in a unified plate theory with delaminations. Comp. Struct. 52, (1) 27-40; Williams, T.O., 2005. A generalized, multilength scale framework for thermo-diffusionally-mechanically coupled, nonlinear, laminated plate theories with delaminations. IJSS 42, (5-6) 1465-1490] the subsequent formulation is significantly different. The differences in the two theories allow the currently proposed theory to improve on the capabilities of the previous theory; particularly in the satisfaction of the traction continuity constraints at the interfaces. It is shown that the theory is capable of providing accurate predictions for all of the fields in perfectly bonded and delaminated plates even for relatively low orders of displacement approximations. In particular, the theory is shown to provide accurate predictions for the transverse stresses that are continuous across the interfaces directly from the constitutive relations. Published by Elsevier Ltd. C1 Univ Calif Los Alamos Natl Lab T3, Div Theoret, Los Alamos, NM 87545 USA. RP Williams, TO (reprint author), Univ Calif Los Alamos Natl Lab T3, Div Theoret, Los Alamos, NM 87545 USA. EM oakhill@lanl.gov NR 30 TC 13 Z9 13 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD MAY 1 PY 2008 VL 45 IS 9 BP 2534 EP 2560 DI 10.1016/j.ijsolstr.2007.12.006 PG 27 WC Mechanics SC Mechanics GA 288JK UT WOS:000254982400008 ER PT J AU Zhao, W Zhang, CL Romanek, CS Wiegel, J AF Zhao, Weidong Zhang, Chuanlun L. Romanek, Christopher S. Wiegel, Juergen TI Description of Caldalkalibacillus uzonensis sp nov and emended description of the genus Caldalkalibacillus SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID BACTERIUM AB Strain JW/WZ-YB58(T), a thermophilic (42-64 degrees C), aerobic, alkalitolerant (pH(25 degrees C) 6.4-9.7), heterotrophic, sporulating, retarded-peritrichously flagellated and slightly curved rod-shaped bacterium, was isolated from the hot spring Zarvarzin 11 in the East Thermal Field of the Uzon Caldera, Kamchatka (Far East Russia). The isolate tolerated high concentrations of CO. The major membrane phospholipid fatty acids of JW/WZ-YB58(T) included iso-C-15:0 (24.5%), anteiso-C-15:0 (18.3%) and iso-C-17:0 (17.5%). The G + C content of the genomic DNA is 45 mol% (HPLC method). Based on 16S rRNA gene sequence analysis and physiological properties, isolate JW/WZ-YB58(T) (=ATCC BAA-1258(T) = DSM 17740(T)) is proposed as the type strain of Caldalkalibacillus uzonensis sp. nov. In contrast to the type species Caldalkalibacillus thermarum, a catalase-reaction-positive aerobe, C. uzonensis was catalase-reaction-negative; thus the description of the genus Caldalkalibacillus is emended to include a catalase-reaction-negative species. C1 [Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Zhao, Weidong; Zhang, Chuanlun L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Zhao, Weidong; Zhang, Chuanlun L.; Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA. RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. EM jwiegel@uga.edu OI Wiegel, Juergen/0000-0002-6343-6464 NR 5 TC 4 Z9 4 U1 1 U2 6 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD MAY PY 2008 VL 58 BP 1106 EP 1108 DI 10.1099/ijs.0.65363-0 PN 5 PG 3 WC Microbiology SC Microbiology GA 304SN UT WOS:000256129500010 PM 18450697 ER PT J AU Jeans, C Singer, SW Chan, CS VerBerkmoes, NC Shah, M Hettich, RL Banfield, JF Thelen, MP AF Jeans, Chris Singer, Steven W. Chan, Clara S. VerBerkmoes, Nathan C. Shah, Manesh Hettich, Robert L. Banfield, Jillian F. Thelen, Michael P. TI Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community SO ISME JOURNAL LA English DT Article DE Fe(II) oxidation; heme; c-type cytochrome; biofilm; acid mine drainage; membrane protein ID ACID-MINE DRAINAGE; ACIDITHIOBACILLUS-FERROOXIDANS; HEME-PROTEINS; EXPRESSION; PROTEOMICS; COMPLEXES; BIOFILM; GENOMES; OXIDASE AB Recently, there has been intense interest in the role of electron transfer by microbial communities in biogeochemical systems. We examined the process of iron oxidation by microbial biofilms in one of the most extreme environments on earth, where the inhabited water is pH 0.5-1.2 and laden with toxic metals. To approach the mechanism of Fe(II) oxidation as a means of cellular energy acquisition, we isolated proteins from natural samples and found a conspicuous and novel cytochrome, Cyt(572), which is unlike any known cytochrome. Both the character of its covalently bound prosthetic heme group and protein sequence are unusual. Extraction of proteins directly from environmental biofilm samples followed by membrane fractionation, detergent solubilization and gel filtration chromatography resulted in the purification of an abundant yellow-red protein. The purified protein has a cytochrome c-type heme binding motif, CxxCH, but a unique spectral signature at 572 nm, and thus is called Cyt(572). It readily oxidizes Fe(2+) in the physiologically relevant acidic regime, from pH 0.95-3.4. Other physical characteristics are indicative of a membrane-bound multimeric protein. Circular dichroism spectroscopy indicates that the protein is largely beta-stranded, and 2D Blue-Native polyacrylamide gel electrophoresis and chemical crosslinking independently point to a multi-subunit structure for Cyt(572). By analyzing environmental genomic information from biofilms in several distinctly different mine locations, we found multiple genetic variants of Cyt(572). MS proteomics of extracts from these biofilms substantiated the prevalence of these variants in the ecosystem. Due to its abundance, cellular location and Fe(2+) oxidation activity at very low pH, we propose that Cyt(572) provides a critical function for fitness within the ecological niche of these acidophilic microbial communities. C1 [Jeans, Chris; Singer, Steven W.; Thelen, Michael P.] Lawrence Livermore Natl Lab, Chem Directorate, Livermore, CA 94550 USA. [Chan, Clara S.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Shah, Manesh] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN USA. RP Thelen, MP (reprint author), Lawrence Livermore Natl Lab, Chem Directorate, L-452,POB 808, Livermore, CA 94550 USA. EM mthelen@llnl.gov RI Thelen, Michael/C-6834-2008; Chan, Clara/B-6420-2011; Thelen, Michael/G-2032-2014; Hettich, Robert/N-1458-2016 OI Thelen, Michael/0000-0002-2479-5480; Chan, Clara/0000-0003-1810-4994; Thelen, Michael/0000-0002-2479-5480; Hettich, Robert/0000-0001-7708-786X NR 24 TC 37 Z9 37 U1 1 U2 13 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAY PY 2008 VL 2 IS 5 BP 542 EP 550 DI 10.1038/ismej.2008.17 PG 9 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 302NG UT WOS:000255974500009 PM 18463612 ER PT J AU Johnson, SL Cueller, AK Ruggero, C Winett-Perlman, C Goodnick, P White, R Miller, I AF Johnson, Sheri L. Cueller, Amy K. Ruggero, Camilo Winett-Perlman, Carol Goodnick, Paul White, Richard Miller, Ivan TI Life events as predictors of mania and depression in bipolar I disorder SO JOURNAL OF ABNORMAL PSYCHOLOGY LA English DT Article DE life events; bipolar disorder; mania; goal attainment ID SOCIAL RHYTHM DISRUPTION; FOLLOW-UP; GENETIC-RELATIONSHIP; MOOD DISORDERS; FUNERAL MANIA; RATING-SCALE; RELIABILITY; RECOVERY; EPISODES; ONSET AB To date, few prospective studies of life events and bipolar disorder are available, and even fewer have separately examined the role of life events in depression and mania. The goal of this study was to prospectively examine the role of negative and goal-attainment life events as predictors of the course of bipolar disorder. One hundred twenty-five individuals with bipolar I disorder were interviewed monthly for an average of 27 months. Negative and goal-attainment life events were assessed with the Life Events and Difficulties Schedule. Changes in symptoms were evaluated using the Modified Hamilton Rating Scale for Depression and the Bech-Rafaelsen Mania Scale. The clearest results were obtained for goal-attainment life events, which predicted increases in manic symptoms over time. Negative life events predicted increases in depressive symptoms within regression models but were not predictive within multilevel modeling of changes in depressive symptoms. Given different patterns for goal attainment and negative life events, it appears important to consider specific forms of life events in models of bipolar disorder. C1 [Johnson, Sheri L.; Cueller, Amy K.; Ruggero, Camilo; Winett-Perlman, Carol] Univ Miami, Dept Psychol, Coral Gables, FL 33124 USA. [Goodnick, Paul] Univ Miami, Dept Psychiat & Behav Sci, Coral Gables, FL 33124 USA. [White, Richard] Lawrence Livermore Natl Lab, Appl Stat & Econ Grp, Livermore, CA USA. [Miller, Ivan] Brown Univ, Dept Psychiat & Human Behav, Providence, RI 02912 USA. [Miller, Ivan] Butler Hosp, Providence, RI 02906 USA. RP Johnson, SL (reprint author), Univ Miami, Dept Psychol, POB 248185, Coral Gables, FL 33124 USA. EM sjohnson@miami.edu RI johnson, sheri/D-8712-2014 OI johnson, sheri/0000-0002-9945-4816 FU NIMH NIH HHS [R29 MH055950, R29 MH055950-05, MH 48171, R29 MH55950, R01 MH048171] NR 75 TC 95 Z9 95 U1 1 U2 11 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0021-843X J9 J ABNORM PSYCHOL JI J. Abnorm. Psychol. PD MAY PY 2008 VL 117 IS 2 BP 268 EP 277 DI 10.1037/0021-843X.117.2.268 PG 10 WC Psychology, Clinical; Psychology, Multidisciplinary SC Psychology GA 298FJ UT WOS:000255671500002 PM 18489203 ER PT J AU Kumar, V Chandrasekar, A Alapaty, K Niyogi, D AF Kumar, Vinod Chandrasekar, A. Alapaty, K. Niyogi, Dev TI The impacts of indirect soil moisture assimilation and direct surface temperature and humidity assimilation on a mesoscale model simulation of an Indian monsoon depression SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID 4-DIMENSIONAL DATA ASSIMILATION; EXPERIMENT BOBMEX; BOUNDARY-LAYER; PREDICTION; SYSTEM; PART; SENSITIVITY; SATELLITES; PARAMETERS; RETRIEVAL AB This study investigates the impact of the Flux-Adjusting Surface Data Assimilation System (FASDAS) and the four-dimensional data assimilation ( FDDA) using analysis nudging on the simulation of a monsoon depression that formed over India during the 1999 Bay of Bengal Monsoon Experiment (BOBMEX) field campaign. FASDAS allows for the indirect assimilation/adjustment of soil moisture and soil temperature together with continuous direct surface data assimilation of surface temperature and surface humidity. Two additional numerical experiments [control (CTRL) and FDDA] were conducted to assess the relative improvements to the simulation by FASDAS. To improve the initial analysis for the FDDA and the surface data assimilation (SDA) runs, the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature profiles from the NOAA Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS), surface winds from the Quick Scatterometer (QuikSCAT), and the conventional meteorological upper-air (radiosonde/rawinsonde, pilot balloon) and surface data. The results from the three simulations are compared with each other as well as with NCEP-NCAR reanalysis, the Tropical Rainfall Measuring Mission (TRMM), and the special buoy, ship, and radiosonde observations available during BOBMEX. As compared with the CTRL, the FASDAS and the FDDA runs resulted in (i) a relatively better-developed cyclonic circulation and (ii) a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall. The FASDAS run showed a consistently improved model simulation performance in terms of reduced rms errors of surface humidity and surface temperature as compared with the CTRL and the FDDA runs. C1 [Kumar, Vinod; Chandrasekar, A.] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India. [Alapaty, K.] Natl Sci Fdn, Div Atmospher Sci, Arlington, VA 22230 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Niyogi, Dev] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Alapaty, K.] US DOE, Off Biol & Environm Res, Off Sci, Germantown, MD USA. RP Chandrasekar, A (reprint author), Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India. EM chand@phy.iitkgp.ernet.in NR 40 TC 7 Z9 7 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2008 VL 47 IS 5 BP 1393 EP 1412 DI 10.1175/2007JAMC1599.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 311BH UT WOS:000256574500009 ER PT J AU Pol, SU Brown, MJ AF Pol, Suhas U. Brown, Michael J. TI Flow patterns at the ends of a street canyon: Measurements from the Joint Urban 2003 field experiment SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID TURBULENCE STATISTICS; POLLUTANT DISPERSION; PART I; WIND; VARIABILITY; TRANSPORT AB During the Joint Urban 2003 experiment held in Oklahoma City, Oklahoma, an east-west-running street canyon was heavily instrumented with wind sensors. In this paper, the flow patterns at the street canyon ends are investigated by looking at sonic anemometers placed near ground level and tethersonde wind vane systems operated in "ladder" mode that were suspended over the sides of the buildings on each side of the street. For southerly flow conditions, the street-level wind sensors often showed what appeared to be a horizontally rotating "corner" or "end" vortex existing at each end of the street canyon near the intersections. It was found that this vortex flow pattern appeared for a wide range of upper-level wind directions but then changed to purely unidirectional flow for wind directions that were outside this range. The tethersonde wind vane measurements show that this vortexlike flow regime occasionally existed through the entire depth of the street canyon. The horizontal extent of the end vortex into the street canyon was found to be different at each end of the street. Under high-wind conditions, the mean wind patterns in the street did not vary appreciably during the day and night. The end vortex may be important in the dispersal of airborne contaminants, acting to enhance lateral and vertical mixing. C1 [Pol, Suhas U.; Brown, Michael J.] Los Alamos Natl Lab, Grp D3, Los Alamos, NM 87545 USA. RP Pol, SU (reprint author), Los Alamos Natl Lab, Grp D3, MS-F607, Los Alamos, NM 87545 USA. EM suhas.pol@asu.edu OI Brown, Michael J./0000-0002-8069-0835 NR 31 TC 3 Z9 7 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2008 VL 47 IS 5 BP 1413 EP 1426 DI 10.1175/2007JAMC1562.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 311BH UT WOS:000256574500010 ER PT J AU Anderoglu, O Misra, A Wang, H Zhang, X AF Anderoglu, O. Misra, A. Wang, H. Zhang, X. TI Thermal stability of sputtered Cu films with nanoscale growth twins SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NANOCRYSTALLINE COPPER SAMPLES; STRAIN-RATE SENSITIVITY; GAS DEPOSITION METHOD; GRAIN-GROWTH; MECHANICAL-BEHAVIOR; THIN-FILMS; DEFORMATION; MULTILAYERS; COMPOSITES; STRENGTH AB We have investigated the thermal stability of sputter-deposited Cu thin films with a high density of nanoscale growth twins by using high-vacuum annealing up to 800 degrees C for 1 h. Average twin lamella thickness gradually increased from approximately 4 nm for as-deposited films to slightly less than 20 nm after annealing at 800 degrees C. The average columnar grain size, on the other hand, rapidly increased from approximately 50 to 500 nm. In spite of an order of magnitude increase in grain size, the annealed films retained a high hardness of 2.2 GPa, reduced from 3.5 GPa in the as-deposited state. The high hardness of the annealed films is interpreted in terms of the thermally stable nanotwinned structures. This study shows that nanostructures with a layered arrangement of low-angle coherent twin boundaries may exhibit better thermal stability than monolithic nanocrystals with high-angle grain boundaries. (C) 2008 American Institute of Physics. C1 [Anderoglu, O.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA. RP Anderoglu, O (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Misra, Amit/H-1087-2012; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 45 TC 95 Z9 95 U1 4 U2 72 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094322 DI 10.1063/1.2913322 PG 6 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200140 ER PT J AU Cooley, JE Choueiri, EY AF Cooley, James E. Choueiri, Edgar Y. TI Threshold criteria for undervoltage breakdown SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain discharge gap are experimentally and theoretically explored. The minimum number of injected electrons required to achieve breakdown in a parallel-plate gap is measured in argon at pd values of 3-10 Torr m using ultraviolet laser pulses to photoelectrically release electrons from the cathode. This value was found to scale inversely with voltage at constant pd and with pressure within the parameter range explored. A dimensionless theoretical description of the phenomenon is formulated and numerically solved. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low gain. It is also found that fewer electrons are required as the gain due to electron-impact ionization (alpha process) is increased, or as the sensitivity of the alpha process to electric field is enhanced by increasing the gas pressure. A predicted insensitivity to ion mobility implies that the breakdown is determined during the first electron avalanche when space-charge distortion is greatest. (C) 2008 American Institute of Physics. C1 [Cooley, James E.; Choueiri, Edgar Y.] Princeton Univ, Elect Propuls & Plasma Dynam Lab, Princeton, NJ 08544 USA. RP Cooley, JE (reprint author), Princeton Univ, Elect Propuls & Plasma Dynam Lab, Princeton, NJ 08544 USA. EM cooley@princeton.edu; choueiri@princeton.edu NR 16 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 093305 DI 10.1063/1.2913196 PG 9 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200024 ER PT J AU Kothari, H Ramamoorthy, A Akis, R Goodnick, SM Ferry, DK Reno, JL Bird, JP AF Kothari, H. Ramamoorthy, A. Akis, R. Goodnick, S. M. Ferry, D. K. Reno, J. L. Bird, J. P. TI Linear and nonlinear conductance of ballistic quantum wires with hybrid confinement (vol 103, art no 013701, 2008) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14126 USA. [Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Kothari, H.; Ramamoorthy, A.; Akis, R.; Goodnick, S. M.; Ferry, D. K.] Arizona State Univ, Arizona Inst Nanoelect, Tempe, AZ 85287 USA. RP Bird, JP (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14126 USA. EM jbird@buffalo.edu RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 099901 DI 10.1063/1.2914610 PG 1 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200194 ER PT J AU Krause, AR Van Neste, C Senesac, L Thundat, T Finot, E AF Krause, Adam R. Van Neste, Charles Senesac, Larry Thundat, Thomas Finot, Eric TI Trace explosive detection using photothermal deflection spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAS-PHASE DETECTION; MICROCALORIMETRIC SPECTROSCOPY; CHEMICAL-DETECTION; BACILLUS-CEREUS; MICROCANTILEVERS; POLYMERS; SENSORS; FREQUENCY; DESIGN; FILM AB Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT). (C) 2008 American Institute of Physics. C1 [Krause, Adam R.; Van Neste, Charles; Senesac, Larry; Thundat, Thomas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Krause, Adam R.; Van Neste, Charles; Senesac, Larry; Thundat, Thomas] Univ Tennessee, Knoxville, TN 37996 USA. [Finot, Eric] Inst CARNOT Bourgogne, F-21078 Dijon, France. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM thundattg@ornl.gov NR 29 TC 46 Z9 47 U1 5 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094906 DI 10.1063/1.2908181 PG 6 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200172 ER PT J AU Luo, SN Han, LB Xie, Y An, Q Zheng, LQ Xia, KW AF Luo, Sheng-Nian Han, Li-Bo Xie, Yun An, Qi Zheng, Lianqing Xia, Kaiwen TI The relation between shock-state particle velocity and free surface velocity: A molecular dynamics study on single crystal Cu and silica glass SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID WAVE MEASUREMENTS; AMORPHOUS SILICA; FUSED-SILICA; STISHOVITE; DENSIFICATION; SIMULATIONS; EQUATION; RELEASE; COPPER AB We investigate the ratio R-rp of the free surface velocity to the shock-state particle velocity during shock wave loading with molecular dynamics simulations on two representative solids, single crystal Cu, and silica glass. The free surface velocity is obtained as a function of the particle velocity behind the shock front (or shock stress) for loading on Cu along < 100 >, < 110 >, and < 111 >, and on the isotropic glass. R-rp >= 1 for Cu and R-rp < 1 for silica glass, and it increases with shock strength; the simulations agree well with the experimental results. For supported shock loading of silica glass at 30-90 GPa, the Si-IV-Si-VI transition occurs upon shock, inducing substantial densification and thus small R-rp (0.65-0.78). For single crystal Cu, R-rp deviates from 1 near the Hugoniot elastic limit and reaches similar to 1.2 at 355 GPa for < 100 > shock. R-rp is anisotropic, e.g., it is about 1.02, 1.08, and 1.06 for shock loading to about 80 GPa along < 100 >, < 110 >, and < 111 >, respectively. Such an anisotropy is mostly due to that in the degree of stress relaxation at low pressures and that in solid state disordering at high pressures. These results suggest that R-rp is materials dependent and the assumption of R-rp=1 is only valid in a limited stress range. Caution should be exercised when interpreting the free surface velocity measurements as regards the shock states. (C) 2008 American Institute of Physics. C1 [Luo, Sheng-Nian] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Han, Li-Bo; Xie, Yun; An, Qi] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. [Zheng, Lianqing] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. [Xia, Kaiwen] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. RP Luo, SN (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Zheng, Lianqing/B-4171-2008; An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; NR 33 TC 22 Z9 24 U1 6 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 093530 DI 10.1063/1.2919571 PG 6 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200056 ER PT J AU Mao, YB Bargar, J Toney, M Chang, JP AF Mao, Yuanbing Bargar, John Toney, Michael Chang, Jane P. TI Correlation between luminescent properties and local coordination environment for erbium dopant in yttrium oxide nanotubes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; DOPED Y2O3 NANOCRYSTALS; EXCITED LUMINESCENCE; FINE-STRUCTURE; EXAFS; NANOWIRES; IONS AB The local dopant coordination environment and its effect on the photoluminescent (PL) spectral features of erbium-doped yttrium oxide nanotubes (NTs) were probed by synchrotron-based x-ray diffraction (XRD), x-ray absorption near-edge spectroscopy (XANES), and extended x-ray absorption fine structure (EXAFS). XRD, XANES, and EXAFS data demonstrate that single phase solid solutions of Y(2-x)ErxO3 were formed at 0 <= x < 0.4 and 1.2 < x <= 2, and the valence state of Er ions in the Y2O3 NTs is +3. The x-ray spectroscopic data clearly show that the erbium dopants largely reside in two types of sites in the Y2O3 host material, both of which possess a well-defined intermediate-range structure, and that the doping of erbium into Y2O3 does not cause a loss in intermediate-range order and crystallinity in the Er3+:Y2O3 NTs. This well-defined distribution of erbium doping inside the Y2O3 matrix correlates well with the observed sharp and well-resolved PL behavior of these Er3+:Y2O3 NTs at around 1.535 mu m. (C) 2008 American Institute of Physics. C1 [Mao, Yuanbing] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Bargar, John; Toney, Michael] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Mao, YB (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. EM jpchang@ucla.edu RI Mao, Yuanbing/D-5580-2009 NR 37 TC 7 Z9 7 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094316 DI 10.1063/1.2912486 PG 8 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200134 ER PT J AU Metzger, WK AF Metzger, Wyatt K. TI The potential and device physics of interdigitated thin-film solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CUINSE2 CHALCOPYRITE SEMICONDUCTOR; N-TYPE ZNO; PHOTOVOLTAIC DEVICES; CYCLOTRON-RESONANCE; OPTICAL-PROPERTIES; SINGLE-CRYSTALS; DEFECT PHYSICS; PERFORMANCE; ALLOYS AB The device physics of thin-film solar cells with interdigitated p-n junctions is examined for a range of spatial sizes, band offsets, and material parameters. The results are illustrated by focusing on recent nanoscale concepts for Cu(In,Ga)Se(2) solar cells. Ideally, nanoscale interdigitated junctions can improve solar cell performance relative to planar-junction devices, and make reasonably high solar cell efficiencies (> 15%) attainable even with mediocre electro-optical materials. (C) 2008 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Metzger, WK (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM wyatt_metzger@nrel.gov NR 51 TC 6 Z9 6 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094515 DI 10.1063/1.2913502 PG 8 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200157 ER PT J AU Tiedtke, K Feldhaus, J Hahn, U Jastrow, U Nunez, T Tschentscher, T Bobashev, SV Sorokin, AA Hastings, JB Moller, S Cibik, L Gottwald, A Hoehl, A Kroth, U Krumrey, M Schoppe, H Ulm, G Richter, M AF Tiedtke, K. Feldhaus, J. Hahn, U. Jastrow, U. Nunez, T. Tschentscher, T. Bobashev, S. V. Sorokin, A. A. Hastings, J. B. Moeller, S. Cibik, L. Gottwald, A. Hoehl, A. Kroth, U. Krumrey, M. Schoeppe, H. Ulm, G. Richter, M. TI Gas detectors for x-ray lasers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOIONIZATION CROSS-SECTIONS; BEAM-POSITION MONITOR; FREE-ELECTRON LASER; EV PHOTON ENERGY; MULTIPLE PHOTOIONIZATION; IONIZATION; NE; ULTRAVIOLET; ABSORPTION; RANGE AB We have developed different types of photodetectors that are based on the photoionization of a gas at a low target density. The almost transparent devices were optimized and tested for online photon diagnostics at current and future x-ray free-electron laser facilities on a shot-to-shot basis with a temporal resolution of better than 100 ns. Characterization and calibration measurements were performed in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin. As a result, measurement uncertainties of better than 10% for the photon-pulse energy and below 20 mu m for the photon-beam position were achieved at the Free-electron LASer in Hamburg (FLASH). An upgrade for the detection of hard x-rays was tested at the Sub-Picosecond Photon Source in Stanford. (C) 2008 American Institute of Physics. C1 [Sorokin, A. A.; Cibik, L.; Gottwald, A.; Hoehl, A.; Kroth, U.; Krumrey, M.; Schoeppe, H.; Ulm, G.; Richter, M.] Phys Tech Bundesanstalt, D-10587 Berlin, Germany. [Hastings, J. B.; Moeller, S.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Bobashev, S. V.; Sorokin, A. A.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Tiedtke, K.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Nunez, T.; Tschentscher, T.] DESY, D-22603 Hamburg, Germany. RP Richter, M (reprint author), Phys Tech Bundesanstalt, Abbestr 2-12, D-10587 Berlin, Germany. EM mathias.richter@ptb.de RI Richter, Mathias/A-2995-2011; Bobashev, Sergei/C-4795-2011; Krumrey, Michael/G-6295-2011; Ulm, Gerhard/D-4798-2009; Feldhaus, Josef/C-1130-2014 NR 32 TC 59 Z9 59 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094511 DI 10.1063/1.2913328 PG 7 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200153 ER PT J AU Zhang, JX Li, YL Choudhury, S Chen, LQ Chu, YH Zavaliche, F Cruz, MP Ramesh, R Jia, QX AF Zhang, J. X. Li, Y. L. Choudhury, S. Chen, L. Q. Chu, Y. H. Zavaliche, F. Cruz, M. P. Ramesh, R. Jia, Q. X. TI Computer simulation of ferroelectric domain structures in epitaxial BiFeO(3) thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ROOM-TEMPERATURE; POLARIZATION; EVOLUTION AB Ferroelectric domain structures of (001)(c), (101)(c), and (111)(c) oriented epitaxial BiFeO(3) thin films were studied by using the phase-field approach. Long-range elastic and electrostatic interactions were taken into account. The effects of various types of substrate constraint on the domain morphologies were systematically analyzed. It is demonstrated that domain structures of BiFeO(3) thin films could be controlled by selecting proper film orientations and substrate constraint. The dependence of the {110}(c)-type domain wall orientation on substrate constraint for the (001)(c) oriented BiFeO(3) thin film was also discussed. (C) 2008 American Institute of Physics. C1 [Zhang, J. X.; Li, Y. L.; Choudhury, S.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Chu, Y. H.; Zavaliche, F.; Cruz, M. P.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chu, Y. H.; Zavaliche, F.; Cruz, M. P.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jia, Q. X.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP Zhang, JX (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM jzz108@psu.edu RI Ying-Hao, Chu/A-4204-2008; Choudhury, Samrat/B-4115-2009; Zhang, Jingxian/B-2253-2010; Jia, Q. X./C-5194-2008; Chen, LongQing/I-7536-2012 OI Ying-Hao, Chu/0000-0002-3435-9084; Chen, LongQing/0000-0003-3359-3781 NR 26 TC 39 Z9 39 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 094111 DI 10.1063/1.2927385 PG 6 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200117 ER PT J AU Zhang, JZ Zhao, YS Wang, YJ Daemen, L AF Zhang, Jianzhong Zhao, Yusheng Wang, Yuejian Daemen, Luke TI Thermal equations of state and melting of lithium deuteride under high pressure SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NEUTRON-DIFFRACTION; OF-STATE; EXPANSION; HYDRIDE; NACL; LIH AB Based on in situ high-pressure and high-temperature neutron diffraction experiments at pressures of up to 4.1 GPa and temperatures of up to 1280 K, thermoelastic parameters were derived by using a Birch-Murnaghan equation of state. With the pressure derivative of the bulk modulus, K(0)('), fixed at 4.0, we obtained the ambient bulk modulus K(0)=31.5 +/- 0.7 GPa, the temperature derivative of bulk modulus at constant pressure (partial derivative K/partial derivative T)(P)=-2.7x10(-2) GPa/K, the volumetric thermal expansivities alpha(T)(K(-1))=9.8 +/- 0.71x10(-5)+12.62 +/- 1.09x10(-8)T at atmospheric pressure and alpha(T)(K(-1))=5.45 +/- 1.17x10(-5)+6.53 +/- 1.45x10(-8)T at 3.0 GPa, and the pressure derivative of thermal expansion (partial derivative alpha/partial derivative P)(T)=-2.72x10(-5) GPa(-1) K(-1). Within the experimental uncertainties, the ambient bulk modulus and volumetric thermal expansion determined from this work are in good agreement with previous experimental results, whereas the derived (partial derivative K(T)/partial derivative T)(P) and (partial derivative alpha/partial derivative P)(T) values provide the thermoelastic equation-of-state parameters for LiD. We also determined the melting temperature of LiD under high pressure. Our results reveal a substantially increased thermal stability for crystalline LiD when compared to a previous theoretical prediction that used a combined technique of two-phase simulation and first-principles molecular dynamics. (C) 2008 American Institute of Physics. C1 [Zhang, Jianzhong; Zhao, Yusheng; Wang, Yuejian; Daemen, Luke] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Zhang, JZ (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM jzhang@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 NR 20 TC 5 Z9 6 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 093513 DI 10.1063/1.2913059 PG 4 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200039 ER PT J AU Zhou, DY Biswas, R AF Zhou, Dayu Biswas, Rana TI Photonic crystal enhanced light-trapping in thin film solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BACK REFLECTOR AB We utilize photonic crystals to simulate enhanced light-trapping in a-Si:H thin film solar cells. A one dimensional photonic crystal or distributed Bragg reflector with alternating dielectric layers acts as low loss backreflector. A two dimensional photonic crystal between the absorber layer and the Bragg reflector diffracts light at oblique angles within the absorber. The photonic crystal geometry is optimized to obtain maximum absorption. The photonic crystal provides lossless diffraction of photons, increasing the photon path length within the absorber layer. The simulation predicts significantly enhanced photon harvesting between 600 and 775 nm below the band edge, and an absorption increase by more than a factor of 10 near the band edge. The optical path length ratio can exceed the classical limit predicted for randomly roughened scattering surfaces at most wavelengths near the band edge. The optical modeling is performed with a rigorous scattering matrix approach where Maxwell's equations are solved in Fourier space. (C) 2008 American Institute of Physics. C1 [Zhou, Dayu] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Zhou, Dayu] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Biswas, Rana] Iowa State Univ, Dept Phys & Astron, Microelect Res Ctr, Ames, IA 50011 USA. [Biswas, Rana] Iowa State Univ, Dept Elect & Comp Engn, Microelect Res Ctr, Ames, IA 50011 USA. [Biswas, Rana] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Zhou, DY (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM biswasr@iastate.edu NR 20 TC 171 Z9 178 U1 7 U2 59 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2008 VL 103 IS 9 AR 093102 DI 10.1063/1.2908212 PG 5 WC Physics, Applied SC Physics GA 302QG UT WOS:000255983200002 ER PT J AU Holman, HYN Bjornstad, KA Martin, MC Mckinney, WR Blakely, EA Blankenberg, FG AF Holman, Hoi-Ying N. Bjornstad, Kathy A. Martin, Michael C. Mckinney, Wayne R. Blakely, Eleanor A. Blankenberg, Francis G. TI Mid-infrared reflectivity of experimental atheromas SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE spectroscopy; reflectance; optical character recognition; optical properties; molecular spectroscopy; infrared imaging ID ATHEROSCLEROTIC PLAQUES; CHOLESTEROL AB We report that the pathologic components present within the atheromatous plaques of ApoE knockout mice can reflect significant amounts of mid-infrared (mid-IR) light. Furthermore, the reflected light spectra contained the unique signatures of a variety of biologic features including those found in unstable or "vulnerable" plaque. This discovery may represent a unique opportunity to develop a new intravascular diagnostic modality that can detect and characterize sites of atherosclerosis. (c) 2008 Society of Photo-Optical Instrumentation Engineers. C1 [Holman, Hoi-Ying N.; Bjornstad, Kathy A.; Martin, Michael C.; Mckinney, Wayne R.; Blakely, Eleanor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Blankenberg, Francis G.] Stanford Univ, Stanford, CA 94305 USA. RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM blankenb@stanford.edu RI McKinney, Wayne/F-2027-2014; Holman, Hoi-Ying/N-8451-2014 OI McKinney, Wayne/0000-0003-2586-3139; Holman, Hoi-Ying/0000-0002-7534-2625 NR 14 TC 11 Z9 12 U1 0 U2 2 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD MAY-JUN PY 2008 VL 13 IS 3 AR 030503 DI 10.1117/1.2937469 PG 3 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 330NX UT WOS:000257951200003 PM 18601520 ER PT J AU Lessard, GA Habuchi, S Werner, JH Goodwin, PM De Schryver, F Hofkens, J Cotlet, M AF Lessard, Guillaume A. Habuchi, Satoshi Werner, James H. Goodwin, Peter M. De Schryver, Frans Hofkens, Johan Cotlet, Mircea TI Probing dimerization and intraprotein fluorescence resonance energy transfer in a far-red fluorescent protein from the sea anemone Heteractis crispa SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE green fluorescent proteins; HcRed; dimer; fluorescence resonance energy transfer; fluorescence microscopy; single-molecule methods ID CORRELATION SPECTROSCOPY; ANTHOZOA; DYNAMICS AB Proteins from Anthozoa species are homologous to the green fluorescent protein (GFP) from Aequorea victoria but with absorption/emission properties extended to longer wavelengths. HcRed is a far-red fluorescent protein originating from the sea anemone Heteractis crispa with absorption and emission maxima at 590 and 650 nm, respectively. We use ultrasensitive fluorescence spectroscopic methods to demonstrate that HcRed occurs as a dimer in solution and to explore the interaction between chromophores within such a dimer. We show that red chromophores within a dimer interact through a Forster-type fluorescence resonance energy transfer (FRET) mechanism. We present spectroscopic evidence for the presence of a yellow chromophore, an immature form of HcRed. This yellow chromophore is involved in directional FRET with the red chromophore when both types of chromophores are part of one dimer. We show that by combining ensemble and single molecule methods in the investigation of HcRed, we are able to sort out sub-populations of chromophores with different photophysical properties and to understand the mechanism of interaction between such chromophores. This study will help in future quantitative microscopy investigations that use HcRed as a fluorescent marker. (c) 2008 Society of Photo-Optical Instrumentation Engineers. C1 [Lessard, Guillaume A.; Werner, James H.; Goodwin, Peter M.; Cotlet, Mircea] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Habuchi, Satoshi; De Schryver, Frans; Hofkens, Johan] Katholieke Univ Leuven, B-3001 Heverlee, Belgium. RP Cotlet, M (reprint author), Brookhaven Natl Lab, Mail Stop 735, Upton, NY 11973 USA. EM johan.hofkens@chem.kuleuven.be; cotlet@bnl.gov RI Cotlet, Mircea/C-5004-2008; OI Habuchi, Satoshi/0000-0002-6663-2807; Werner, James/0000-0002-7616-8913; Hofkens, Johan/0000-0002-9101-0567 NR 17 TC 4 Z9 4 U1 2 U2 7 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD MAY-JUN PY 2008 VL 13 IS 3 AR 031212 DI 10.1117/1.2937477 PG 7 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 330NX UT WOS:000257951200019 PM 18601536 ER PT J AU Chirico, RD Steele, WV AF Chirico, Robert D. Steele, William V. TI Thermodynamic properties of 1,2-dihydronaphthalene: Glassy crystals and missing entropy SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE heat capacity; enthalpy of combustion; vapor pressure; density; ideal-gas properties; glassy crystals; triple-point temperature; enthalpy of fusion; phase transition ID THERMOCHEMICAL BOND ENERGIES; 3RD VIRIAL-COEFFICIENT; VAPOR-PRESSURE; TEMPERATURES; COMBUSTION; RECONCILIATION; ENTHALPIES; PETROLEUM; NITROGEN AB Measurements leading to the calculation of the standard thermodynamic properties for gaseous 1,2-dihydronaphthalene (Chemical Abstracts registry number [447-53-0]) are reported. Experimental methods include oxygen combustion-bomb calorimetry, adiabatic heat-capacity calorimetry, vibrating-tube densitometry, comparative ebulliometry, and inclined-piston gauge manometry. 1,2-Dihydronaphthalene decomposed significantly when heated to temperatures above T = 480 K. Consequently, the critical temperature, critical pressure, and critical density were estimated. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation were derived at selected temperatures between T = 250 K and 500 K. The standard state is defined as the ideal gas at the pressure p = p degrees = 101.325 kPa. Standard entropies are compared with those calculated statistically on the basis of assigned vibrational spectra from the literature for the vapor phase. A large and near constant difference between the entropies calculated statistically and those determined calorimetrically was observed over the entire temperature range studied. Two glass-like features are observed in the heat capacity against temperature curve for the solid state, indicating that the crystals are disordered. A quantitative accounting for the entropy discrepancy is proposed based on possible molecular orientations of 1,2-dihydronaphthalene. Results are compared with experimental values reported in the literature. Published by Elsevier Ltd. C1 [Chirico, Robert D.] NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA. [Steele, William V.] Univ Tennessee, Dept Chem Engn, Knoxville, TN 37996 USA. [Steele, William V.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Chirico, RD (reprint author), NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA. EM chirico@boulder.nist.gov; steelewv@ornl.gov NR 44 TC 8 Z9 8 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD MAY PY 2008 VL 40 IS 5 BP 806 EP 817 DI 10.1016/j.jct.2008.01.009 PG 12 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 309EV UT WOS:000256444400010 ER PT J AU Van Benthem, MH Keenana, MR AF Van Benthem, Mark H. Keenana, Michael R. TI Tucker1 model algorithms for fast solutions to large PARAFAC problems SO JOURNAL OF CHEMOMETRICS LA English DT Article DE PARAFAC; Tucker model; multivariate factor analysis; trilinear ID MULTIWAY ALGORITHMS; MULTIVARIATE; SPEED AB We describe a method of performing trilinear analysis on large data sets using a modification of the PARAFAC-ALS algorithm. Our method iteratively decomposes the data matrix into a core matrix and three loading matrices based on the Tucker1 model. The algorithm is particularly useful for data sets that are too large to upload into a computer's main memory. While the performance advantage in utilizing our algorithm is dependent on the number of data elements and dimensions of the data array, we have seen a significant performance improvement over operating PARAFAC-ALS on the full data set. In one case of data comprising hyperspectral images from a confocal microscope, our method of analysis was approximately 60 times faster than operating on the full data set, while obtaining essentially equivalent results. Published in 2008 by John Wiley & Sons, Ltd. C1 [Van Benthem, Mark H.; Keenana, Michael R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Van Benthem, MH (reprint author), Sandia Natl Labs, MS0895, Albuquerque, NM 87185 USA. EM mhvanbe@sandia.gov NR 25 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0886-9383 J9 J CHEMOMETR JI J. Chemometr. PD MAY-JUN PY 2008 VL 22 IS 5-6 BP 345 EP 354 DI 10.1002/cem.1130 PG 10 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 316FP UT WOS:000256935000007 ER PT J AU Grafe, M Tappero, RV Marcus, MA Sparks, DL AF Grafe, Markus Tappero, Ryan V. Marcus, Matthew A. Sparks, Donald L. TI Arsenic speciation in multiple metal environments - II. Micro-spectroscopic investigation of a CCA contaminated soil SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE mu SXRF; mu XAFS; metal-arsenic co-localisation; abstract factor analysis; copper-arsenate precipitates ID RAY-ABSORPTION SPECTROSCOPY; SEQUENTIAL EXTRACTION PROCEDURE; CHROMATE RETENTION MECHANISMS; PRINCIPAL COMPONENT ANALYSIS; GOETHITE-WATER INTERFACE; COPPER ARSENATE; CHEMISTRY; ADSORPTION; GEOMETRY; EXAFS AB The speciation of arsenic (As) in a copper-chromated-arsenate (CCA) contaminated soil was investigated using micro-focused X-ray fluorescence (mu XRF) and rnicro-focused X-ray absorption fine structure (mu XAFS) spectroscopies to determine if and how the co-contaminating metal cations (Cu, Zn, Cr) influenced the speciation of As. 15 mu XRF images were collected on 30-mu m polished thin sections and powder-on-tape samples from which Pearson correlation coefficients (p) between As and various metal species were determined based on the fluorescence intensity of each element in each image pixel. 29 mu XAFS and two bulk-XAFS spectra were collected from depths of 0-20 cm (LM-A) and 20-40 cm (LM-B) to determine the chemical speciation of As in the soil by target analyses of principal components with circa 52 reference spectra and linear least-square combination fitting of individual experimental spectra with a refined reference phase list (32) of likely As species. Arsenic and metal cations (Cr, Mn, Fe, Cu, Zn) accumulated in distinct, isolated areas often not larger than 50 x 50 pin in which the Pearson correlation between the elements was strongly positive (p > 0.75). The correlation of As to Zn and Cr decreased from >0.9 to <0.8 and increased to Cu from -0.6 to >0.8 with depth. Arsenic occurred predominantly in the +5 oxidation state. Abstract factor analysis and linear least square combination fit analysis suggested that As occurred as a continuum of fully and poorly-ordered copper-arsenate precipitates with additional components being characterized by surface adsorption complexes on goethite and gibbsite in the presence and absence of Zn. Precipitates other than copper-based ones, e.g., scorodite, adamite and ojuelaite were also identified. The significant co-localization and chemical speciation of As with Cu suggest that the speciation of As in a contaminated soils is not solely controlled by surface adsorption reactions, but significantly influenced by the co-contaminating metal cation fraction. Future studies into As contaminated soil therefore need to focus on identifying the speciation of As and the co-localizing metal cations. (C) 2008 Elsevier Inc. All rights reserved. C1 [Grafe, Markus; Tappero, Ryan V.; Sparks, Donald L.] Univ Delaware, Environm Soil Chem Grp, Dept Plant & Soil Sci, Newark, DE 19717 USA. [Marcus, Matthew A.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Grafe, M (reprint author), Univ Sydney, Fac Agr Food & Nat Resources, Ross St Bldg A03,Room 322, Sydney, NSW 2006, Australia. EM m.grafe@usyd.edu.au NR 42 TC 20 Z9 20 U1 8 U2 38 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 1 PY 2008 VL 321 IS 1 BP 1 EP 20 DI 10.1016/j.jcis.2008.01.033 PG 20 WC Chemistry, Physical SC Chemistry GA 285HF UT WOS:000254767200001 PM 18321525 ER PT J AU Xu, JL Sankar, BV Bapanapalli, S AF Xu, Jianlong Sankar, Bhavani V. Bapanapalli, Satish TI Finite element based method to predict gas permeability in cross-ply laminates SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE cross-ply laminates; fracture mechanics; gas permeability; laminated composites; microcracks ID MICROCRACKING; LEAKAGE; DAMAGE AB A finite-element based method is developed to predict gas permeability in cross-ply laminates. Based on Poiseuille's Law and Darcy's Law, the gas permeability is presented in terms of crack densities, microcrack opening displacements and an experimentally determined constant. The crack densities in each ply are predicted using finite element analysis based on energy concept of micro-fracture mechanics. The microcrack opening displacement of the representative volume element in cross-ply laminate is computed using three-dimensional finite element analysis. The normalized gas permeability in three laminates with different lay-ups are predicted and compared using the current model. Finally, a permeability-related material constant is quantified using the experimental results available in the literature. C1 [Xu, Jianlong; Sankar, Bhavani V.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Bapanapalli, Satish] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sankar, BV (reprint author), Univ Florida, Dept Mech & Aerosp Engn, POB 116250, Gainesville, FL 32611 USA. EM sankar@ufl.edu RI Sankar, Bhavani/F-5193-2011; OI Sankar, Bhavani/0000-0002-4556-1982 NR 19 TC 4 Z9 5 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD MAY PY 2008 VL 42 IS 9 BP 849 EP 864 DI 10.1177/0021998308088610 PG 16 WC Materials Science, Composites SC Materials Science GA 302JB UT WOS:000255963500001 ER PT J AU Nguyen, BN Bapanapalli, SK Holbery, JD Smith, MT Kunc, V Frame, BJ Phelps, JH Tucker, CL AF Nguyen, Ba Nghiep Bapanapalli, Satish K. Holbery, James D. Smith, Mark T. Kunc, Vlastimil Frame, Barbara J. Phelps, Jay H. Tucker, Charles L., III TI Fiber length and orientation in long-fiber injection-molded thermoplastics - Part I: Modeling of microstructure and elastic properties SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE long-fiber thermoplastics; injection molding; fiber length distribution; fiber orientation; elastic properties ID REINFORCED THERMOPLASTICS; THERMOELASTIC PROPERTIES; ASPECT RATIO; COMPOSITES; PREDICTIONS; STIFFNESS; INCLUSIONS; SIMULATION; BEHAVIOR; STRESS AB This article develops a methodology to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The corrected experimental fiber length distribution and the predicted and experimental orientation distributions were used in modeling to compute the elastic properties of the composite. First, from the fiber length distribution (FLD) data in terms of number of fibers versus fiber length, the probability density functions were built and used in the computation. The two-parameter Weibull's distribution was also used to represent the actual FLD. Next, the Mori-Tanaka model that employs the Eshelby's equivalent inclusion method was applied to calculate the stiffness matrix of the aligned fiber composite containing the established FLD. The stiffness of the actual as-formed composite was then determined from the stiffness of the computed aligned fiber composite that was averaged over all possible orientations using the orientation averaging method. The methodology to predict the elastic properties of LFTs was validated via experimental verification of the longitudinal and transverse moduli determined for long glass fiber injection-molded polypropylene specimens. Finally, a sensitivity analysis was conducted to determine the effect of a variation of FLD on the composite elastic properties. Our analysis shows that it is essential to obtain an accurate fiber orientation distribution and a realistic fiber length distribution to accurately predict the composite properties. C1 [Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kunc, Vlastimil; Frame, Barbara J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Phelps, Jay H.; Tucker, Charles L., III] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Nguyen, BN (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM ba.nguyen@pnl.gov RI Tucker, Charles/A-8734-2014; Kunc, Vlastimil/E-8270-2017 OI Tucker, Charles/0000-0002-8995-6740; Kunc, Vlastimil/0000-0003-4405-7917 NR 31 TC 29 Z9 32 U1 1 U2 29 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD MAY PY 2008 VL 42 IS 10 BP 1003 EP 1029 DI 10.1177/0021998308088606 PG 27 WC Materials Science, Composites SC Materials Science GA 302JC UT WOS:000255963600005 ER PT J AU Graves, DT Trebotich, D Miller, GH Colella, P AF Graves, D. T. Trebotich, D. Miller, G. H. Colella, P. TI An efficient solver for the equations of resistive MHD with spatially-varying resistivity SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE resistive MHD; Helmholtz equation; multigrid AB We regularize the variable coefficient Helmholtz equations arising from implicit time discretizations for resistive MHD, in a way that leads to a symmetric positive-definite system uniformly in the time step. Standard centered-difference discretizations in space of the resulting PDE leads to a method that is second-order accurate, and that can be used with multigrid iteration to obtain efficient solvers. (C) 2008 Published by Elsevier Inc. C1 [Graves, D. T.; Miller, G. H.; Colella, P.] Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. [Trebotich, D.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Miller, G. H.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Colella, P (reprint author), Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dtgraves@lbl.gov; trebotichl@llnl.gov; grgmiller@ucdavis.edu; pcolella@lbl.gov NR 6 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 1 PY 2008 VL 227 IS 10 BP 4797 EP 4804 DI 10.1016/j.jcp.2008.01.044 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 295AI UT WOS:000255447000001 ER PT J AU Anderson, JA Lorenz, CD Travesset, A AF Anderson, Joshua A. Lorenz, Chris D. Travesset, A. TI General purpose molecular dynamics simulations fully implemented on graphics processing units SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE graphics processing unit; GPU; NVIDIA; CUDA; molecular dynamics; polymer systems ID ALGORITHM AB Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future. (C) 2008 Elsevier Inc. All rights reserved. C1 [Anderson, Joshua A.; Travesset, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Anderson, Joshua A.; Travesset, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lorenz, Chris D.] Kings Coll London, Div Engn, Mat Res Grp, London WC2R 2LS, England. RP Anderson, JA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM joaander@ameslab.gov RI Anderson, Joshua/H-4262-2011; Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 NR 22 TC 538 Z9 559 U1 16 U2 121 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 1 PY 2008 VL 227 IS 10 BP 5342 EP 5359 DI 10.1016/j.jcp.2008.01.047 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 295AI UT WOS:000255447000027 ER PT J AU Yu, ZQ Kuchibhatla, SVNT Engelhard, MH Shutthanandan, V Wang, CM Nachimuthu, P Marina, OA Saraf, LV Thevuthasan, S Seal, S AF Yu, Z. Q. Kuchibhatla, Satyanarayana V. N. T. Engelhard, M. H. Shutthanandan, V. Wang, C. M. Nachimuthu, P. Marina, O. A. Saraf, L. V. Thevuthasan, S. Seal, S. TI Growth and structure of epitaxial Ce0.8Sm0.2O1.9 by oxygen-plasma-assisted molecular beam epitaxy SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE doping; HRTEM; XPS; XRD; thin films; CeO2; sapphire ID SAMARIA-DOPED CERIA; SOLID OXIDE FUEL; ELECTRICAL-PROPERTIES; THIN-FILMS; HIGH-TEMPERATURE; CEO2 CERAMICS; CONDUCTIVITY; ELECTROLYTES; GD; BEHAVIOR AB We used oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE) to grow highly oriented Ce0.8Sm0.2O1.9 films on single-crystal c-Al2O3. Films were characterized by X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The film/substrate epitaxial relationship can be written as CeO2(1 1 1)//alpha-Al2O3(0 0 0 1) and CeO2[1 1 0]//alpha-Al2O3 [(2) over bar 1 1 0]. Ce and Sm were found to be in their highest oxidation state, +4 and +3, respectively. The doped cubic CeO2 films have a preferred (1 1 1) orientation. Significant conductivity difference was observed between single and polycrystalline films. A good orientation existing in the single-crystalline thin films may help long-range oxygen vacancy transport, ultimately contributing to significantly higher conductivities, in comparison to polycrystalline films. Published by Elsevier B.V. C1 [Yu, Z. Q.] Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China. [Kuchibhatla, Satyanarayana V. N. T.; Engelhard, M. H.; Shutthanandan, V.; Wang, C. M.; Nachimuthu, P.; Marina, O. A.; Saraf, L. V.; Thevuthasan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kuchibhatla, Satyanarayana V. N. T.; Seal, S.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. RP Yu, ZQ (reprint author), Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China. EM zhqyu1966@yahoo.com.cn; theva@pnl.gov RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 34 TC 17 Z9 17 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 1 PY 2008 VL 310 IS 10 BP 2450 EP 2456 DI 10.1016/j.jcrysgro.2007.12.028 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 306GX UT WOS:000256237400006 ER PT J AU Pinnington, T Koleske, DD Zahler, JM Ladous, C Park, YB Crawford, MH Banas, M Thaler, G Russell, MJ Olson, SM Atwater, HA AF Pinnington, T. Koleske, D. D. Zahler, J. M. Ladous, C. Park, Y. -B. Crawford, M. H. Banas, M. Thaler, G. Russell, M. J. Olson, S. M. Atwater, Harry A. TI InGaN/GaN multi-quantum well and LED growth on wafer-bonded sapphire-on-polycrystalline AlN substrates by metalorganic chemical vapor deposition SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE substrates; metalorganic vapor phase epitaxy; nitrides; sapphire; semiconducting III-V materials; light emitting diodes ID LIGHT-EMITTING-DIODES; GAN; BRIGHTNESS; EVOLUTION; LAYER AB We report growth of InGaN/GaN multi-quantum well (MQW) and LED structures on a novel composite substrate designed to eliminate the coefficient of thermal expansion (CTE) mismatch problems which impact GaN growth on bulk sapphire. To form the composite substrate, a thin sapphire layer is wafer-bonded to a polycrystalline aluminum nitride (P-AlN) support substrate. The sapphire layer provides the epitaxial template for the growth; however, the thermo-mechanical properties of the composite substrate are determined by the P-AlN. Using these substrates, thermal stresses associated with temperature changes during growth should be reduced an order of magnitude compared to films grown on bulk sapphire, based on published CTE data. In order to test the suitability of the substrates for GaN LED growth, test structures were grown by metalorganic chemical vapor deposition (MOCVD) using standard process conditions for GaN growth on sapphire. Bulk sapphire substrates were included as control samples in all growth runs. In situ reflectance monitoring was used to compare the growth dynamics for the different substrates. The material quality of the films as judged by X-ray diffraction (XRD), photoluminescence and transmission electron microscopy (TEM) was similar for the composite substrate and the sapphire control samples. Electroluminescence was obtained from the LED structure grown on a P-AlN composite substrate, with a similar peak wavelength and peak width to the control samples. XRD and Raman spectroscopy results confirm that the residual strain in GaN films grown on the composite substrates is dramatically reduced compared to growth on bulk sapphire substrates. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pinnington, T.; Zahler, J. M.; Ladous, C.; Park, Y. -B.; Olson, S. M.; Atwater, Harry A.] Aonex Technol Inc, Pasadena, CA 91106 USA. [Koleske, D. D.; Crawford, M. H.; Banas, M.; Thaler, G.; Russell, M. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Atwater, Harry A.] CALTECH, TJ Watson Labs Appl Phys, Pasadena, CA 91106 USA. RP Pinnington, T (reprint author), Aonex Technol Inc, 129 N Hill Ave,Suite 108, Pasadena, CA 91106 USA. EM tpinnington@aonextech.com NR 17 TC 4 Z9 5 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 1 PY 2008 VL 310 IS 10 BP 2514 EP 2519 DI 10.1016/j.jcrysgro.2008.01.022 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 306GX UT WOS:000256237400016 ER PT J AU Miller, MA Koo, BH Bogart, KHA Mohney, SE AF Miller, M. A. Koo, B. H. Bogart, K. H. A. Mohney, S. E. TI Ti/Al/Ti/Au and V/Al/V/Au contacts to plasma-etched n-Al0.58Ga0.42N SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE AlGaN; ohmic contact; plasma etching; vanadium ID OHMIC CONTACTS; ELECTRICAL CHARACTERIZATION; ALGAN/GAN AB Cross-sectional transmission electron microscopy was used to study annealed Ti/Al/Ti/Au and V/Al/V/Au ohmic contacts to as-received and plasma-etched n-Al0.58Ga0.42N. The reaction depth of low-resistance V-based contacts to as-received n-Al0.58Ga0.42N is very limited, unlike previously reported Ti-based contacts to n-Al (x) Ga1-x N. In the present study, the Ti/Al/Ti/Au contacts to as-received n-Al0.58Ga0.42N required much higher annealing temperatures than the V-based contacts and also exhibited deeper reactions on the order of 40 nm. To achieve a low contact resistance on plasma-etched n-Al0.58Ga0.42N, different metal layer thicknesses and processing conditions were required. The Ti- and V-based contacts to plasma-etched n-Al0.58Ga0.42N exhibited both similar contact resistances and limited reaction depths, along with the presence of an aluminum nitride layer at the metallization/semiconductor interface. Metal channels penetrate the aluminum nitride layer connecting the top of the metallization to the n-Al0.58Ga0.42N. The similarity in phase formation in the contacts to plasma-etched n-Al0.58Ga0.42N is likely the reason behind the similarity in specific contact resistances. C1 [Miller, M. A.; Mohney, S. E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Miller, M. A.; Mohney, S. E.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Koo, B. H.] Changwon Natl Univ, Chang Won 641773, Gyeongnam, South Korea. [Bogart, K. H. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Miller, MA (reprint author), Penn State Univ, Dept Mat Sci & Engn, 207A Steidle Bldg, University Pk, PA 16802 USA. EM mohney@ems.psu.edu NR 11 TC 3 Z9 3 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2008 VL 37 IS 5 BP 564 EP 568 DI 10.1007/s11664-007-0300-8 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 289CU UT WOS:000255033400006 ER PT J AU Chen, Y Zhang, N Dudley, M Caldwell, JD Liu, KX Stahlbush, RE Huang, XR Macrander, AT Black, DR AF Chen, Yi Zhang, Ning Dudley, Michael Caldwell, Joshua D. Liu, Kendrick X. Stahlbush, Robert E. Huang, Xianrong Macrander, Albert T. Black, David R. TI Investigation of electron-hole recombination-activated partial dislocations and their behavior in 4H-SiC epitaxial layers SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Electron-hole recombination; partial dislocation; stacking fault; X-ray topography ID I-N-DIODES; SILICON-CARBIDE AB Electron-hole recombination-activated partial dislocations in 4H silicon carbide homoepitaxial layers and their behavior have been studied using synchrotron X-ray topography and electroluminescence. Stacking faults whose expansion was activated by electron-hole recombination enhanced dislocation glide were observed to be bounded by partial dislocations, which appear as white stripes or narrow dark lines in back-reflection X-ray topographs recorded using the basal plane reflections. Such contrast variations are attributable to the defocusing/focusing of the diffracted X-rays due to the edge component of the partial dislocations, which creates a convex/concave distortion of the basal planes. Simulation results based on the ray-tracing principle confirm our argument. Observations also indicate that, when an advancing partial dislocation interacts with a threading screw dislocation, a partial dislocation dipole is dragged behind in its wake. This partial dislocation dipole is able to advance regardless of the immobility of the C-core segment. A kink pushing mechanism is introduced to interpret the advancement of this partial dislocation dipole. C1 [Chen, Yi; Zhang, Ning; Dudley, Michael] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Caldwell, Joshua D.; Liu, Kendrick X.; Stahlbush, Robert E.] USN, Res Lab, Washington, DC 20375 USA. [Huang, Xianrong; Macrander, Albert T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Black, David R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Chen, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM yichen1@ic.sunysb.edu RI Caldwell, Joshua/B-3253-2008 OI Caldwell, Joshua/0000-0003-0374-2168 NR 19 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2008 VL 37 IS 5 BP 706 EP 712 DI 10.1007/s11664-007-0328-9 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 289CU UT WOS:000255033400030 ER PT J AU Cheng, RK Littlejohn, D AF Cheng, R. K. Littlejohn, D. TI Laboratory study of premixed H(2)-air and H(2)-N(2)-air flames in a low-swirl injector for ultralow emissions gas turbines SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID INTENSE TURBULENCE; MODERATE AB The objective of this study is to conduct laboratory experiments on low-swirl injectors (LSIs) to obtain the basic information for adapting LSI to burn H(2) and diluted H(2) fuels that will be utilized in the gas turbines of the integrated gasification combined cycle coal power plants. The LSI is a novel ultralow emission dry-low NO(x) combustion method that has been developed for gas turbines operating on natural gas. It is being developed for fuel-flexible turbines burning a variety of hydrocarbon fuels, biomass gases, and refinery gases. The adaptation of the LSI to accept H(2) flames is guided by an analytical expression derived from the flow field characteristics and the turbulent flame speed correlation. The evaluation of the operating regimes of nine LSI configurations for H(2) shows an optimum swirl number of 0.51, which is slightly lower than the swirl number of 0.54 for the hydrocarbon LSI. Using particle image velocimetry (PIV), the flow fields of 32 premixed H(2)-air and H(2)-N(2)-air flames were measured. The turbulent flame speeds deduced from PIV show a linear correlation with turbulence intensity. The correlation constant for H(2) is 3.1 and is higher than the 2.14 value for hydrocarbons. The analysis of velocity profiles confirms that the near field flow features of the H(2) flames are self-similar These results demonstrate that the basic LSI mechanism is not affected by the differences in the properties of H(2) and hydrocarbon flames and support the feasibility of the LSI concept for hydrogen fueled gas turbines. C1 [Cheng, R. K.; Littlejohn, D.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Cheng, RK (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. NR 16 TC 9 Z9 9 U1 1 U2 7 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2008 VL 130 IS 3 AR 031503 DI 10.1115/1.2836480 PG 9 WC Engineering, Mechanical SC Engineering GA 298EN UT WOS:000255669300005 ER PT J AU Edmonds, RG Williams, JT Steele, RC Straub, DL Casleton, KH Bining, A AF Edmonds, Ryan G. Williams, Joseph T. Steele, Robert C. Straub, Douglas L. Casleton, Kent H. Bining, Avtar TI Low NO(x) advanced vortex combustor SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy's National Energy Technology Laboratory in Morgantown, WV All testing was performed at elevated pressures and inlet temperatures and at leanfuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NO(x)/CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O(2) dry). The design also achieved less than 3 ppmv NO,, with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications. C1 [Edmonds, Ryan G.; Williams, Joseph T.] Ramgen Power Syst Inc, Bellevue, WA 98005 USA. [Steele, Robert C.] Elect Power Res Inst, Palo Alto, CA 94303 USA. [Straub, Douglas L.; Casleton, Kent H.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Bining, Avtar] Calif Energy Commiss, Sacramento, CA 95814 USA. RP Edmonds, RG (reprint author), Ramgen Power Syst Inc, Bellevue, WA 98005 USA. EM redmonds@ramgen.com NR 8 TC 3 Z9 4 U1 1 U2 1 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2008 VL 130 IS 3 AR 034502 DI 10.1115/1.2838992 PG 4 WC Engineering, Mechanical SC Engineering GA 298EN UT WOS:000255669300035 ER PT J AU Kastengren, AL Powell, CF Wang, YJ Wang, J AF Kastengren, A. L. Powell, C. F. Wang, Y. -J. Wang, J. TI Study of diesel jet variability using single-shot X-ray radiography SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB The variability of diesel jet structure, both as a function of time and between individual injection events, has important implications on the breakup and mixing of the jet. It is accepted that diesel jets become unstable due to interactions with the ambient gas, leading to breakup of the jet. This concept is the principle behind the Kelvin-Helmholtz and Rayleigh-Taylor models of diesel atomization. Very little information regarding diesel jet variability is available, however in the near-nozzle region of the diesel jet, where primary breakup of the jet occurs. This is due to the presence of many small droplets, which strongly scatter visible light and render the spray opaque. X-ray radiography has been successfully used in recent years to probe the structure of diesel sprays with high spatial and temporal resolutions. All of these previous measurements, however were ensemble averaged, measuring only persistent features of the spray. In the current study, measurements are performed at individual measurement points of single diesel injection events. These measurements are taken at several points near the injector exit for a nonhydroground nozzle with a single axial hole at two injection pressures (500 bars and 1000 bars). The variability of the start of injection, end of injection, and the time history of the spray density during the injection event are examined, as well as how these quantities change for different transverse positions across the jet. C1 [Kastengren, A. L.; Powell, C. F.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Wang, Y. -J.; Wang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kastengren, AL (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akastengren@anl.gov RI wang, yujie/C-2582-2015 NR 10 TC 5 Z9 5 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2008 VL 130 IS 3 AR 032811 DI 10.1115/1.2830861 PG 7 WC Engineering, Mechanical SC Engineering GA 298EN UT WOS:000255669300031 ER PT J AU Lachaux, T Musculus, MPB Singh, S Reitz, RD AF Lachaux, Thierry Musculus, Mark P. B. Singh, Satbir Reitz, Rolf D. TI Optical diagnostics of late-injection low-temperature combustion in a heavy-duty diesel engine SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB A late-injection, high exhaust-gas recirculation rate, low-temperature combustion strategy is investigated it? a heavy-duty diesel engine using a suite of optical diagnostics: cheiniltuninescence,for visualization of ignition and combustion, laser Mie scattering for liquid-fuel imaging, planar laser-induced fluorescence (PLIF) for both OH and vapor-fuel imagings, and laser-induced incandescence,for soot imaging. Fuel is injected at top dead center when the in-cylinder gases are hot and dense. Consequently, the maximum liquid-fuel penetration is 27 nun, which is short enough to avoid wall impingement. The cool flame starts 4.5 crank angle degrees (CAD) after the start of injection (ASI), midway between the injector and bowl rim, and likely helps fuel to vaporize. Within a few CAD, the cool-flame combustion reaches the bowl rim. A large premixed combustion occurs near 9 CAD ASI, close to the bowl rim. Soot is visible shortly afterward, along the walls, typically between two adjacent jets. OH PLIF indicates that premixed combustion first occurs within the jet and then spreads along the bowl run in a thin layer, surrounding soot pockets at the start of the mixing-con trolled combustion phase near 17 CAD ASI. During the mixing-controlled phase, soot is not fully oxidized and is still present near the bowl rim late in the cycle. At the end of combustion near 27 CAD ASI, averaged PLIF images indicate two separate zones. OH PLIF appears near the bowl rim, while broad-band PLIF persists late in the cycle near the injector The most likely source of broad-and PLIF is unburned fuel, which indicates that the near-injector region is a potential source of unburned hydrocarbons. C1 [Lachaux, Thierry; Musculus, Mark P. B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Singh, Satbir] Gen Motors Res & Dev, Powertrain Syst Res Lab, Warren, MI 48090 USA. [Reitz, Rolf D.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. RP Lachaux, T (reprint author), Sandia Natl Labs, PO 969,MS9053, Livermore, CA 94551 USA. EM mpmuscu@sandia.gov NR 36 TC 4 Z9 4 U1 3 U2 13 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2008 VL 130 IS 3 AR 032808 DI 10.1115/1.2830864 PG 9 WC Engineering, Mechanical SC Engineering GA 298EN UT WOS:000255669300028 ER PT J AU Lechman, J Lu, N AF Lechman, Jeremy Lu, Ning TI Capillary force and water retention between two uneven-sized particles SO JOURNAL OF ENGINEERING MECHANICS-ASCE LA English DT Article DE absorption; interfacial tension; unsaturated soils; granular materials; tensile stress; theory; particles ID MOISTURE-DISTRIBUTION CURVE; SATURATED IDEAL SOIL; SUCTION DRAIN; CONDENSATION; SPHERES; BRIDGE; MODEL AB Capillary force and water retention between two uneven-sized spherical particles are investigated. Previous studies have been limited to systems with even-sized particles. The appropriate definition of the boundary value problem for a water lens between two uneven-sized particles is presented under the consideration of thermodynamic free energy at the microscopic level. Capillary force and water retention under the consideration of toroidal approximation are also derived for a system with two uneven-sized particles. Comparison of normalized capillary force and water retention calculated by the free energy approach and toroidal approximation are conducted. The quantitative analysis shows that for a system with two identical particles, the behavior of water retention and normalized capillary force is very similar to some recent studies by others, confirming that the toroidal approximation provides reasonably good estimations for both capillary force and water retention. For a system with uneven-sized particles, it is shown that error in normalized capillary force could be significant as the matric suction approaches zero and the particle sizes become very different. The errors for the mean curvature of the meniscus for the toroidal approximation are significant where the matric suction is near zero. Thus for soils with varying particle sizes, it may be necessary to employ the exact solution to meniscus shape in order to accurately quantify normalized capillary force and water retention. The induced normalized capillary force increases inversely with the particle size, and is generally insensitive to the water content. For soil assembly with particle size of 0.01 mm, the normalized capillary force could reach 10 kPa, whereas for soil assembly with particle size of I mm, the normalized capillary force is on the order of 100 Pa. C1 [Lu, Ning] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. [Lechman, Jeremy] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lu, N (reprint author), Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. EM ninglu@mines.edu NR 15 TC 12 Z9 16 U1 1 U2 17 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9399 J9 J ENG MECH-ASCE JI J. Eng. Mech.-ASCE PD MAY PY 2008 VL 134 IS 5 BP 374 EP 384 DI 10.1061/(ASCE)0733-9399(2008)134:5(374) PG 11 WC Engineering, Mechanical SC Engineering GA 292FM UT WOS:000255251900004 ER PT J AU Lu, N Lechman, J Miller, KT AF Lu, Ning Lechman, Jeremy Miller, Kelly T. TI Experimental verification of capillary force and water retention between uneven-sized spheres SO JOURNAL OF ENGINEERING MECHANICS-ASCE LA English DT Article DE absorption; interfacial tension; unsaturated soils; granular materials; tensile stress; experimentation; verification ID PENDULAR LIQUID BRIDGES; RUPTURE; MODEL AB The recently established theoretical results of the solid-water characteristic curve (SWCC) and capillary force characteristic curve (CFCC) are experimentally verified for mechanical and hydrologic interaction between uneven-sized spherical particles under partially saturated conditions. It is shown that the theoretical framework, based on the minimization of the free energy of the liquid meniscus between the two uneven-sized particles, can predict both water retention and capillary force accurately for spherical particles ranging in radius from 165 to 252 mu m. The experimental technique is novel and the results at such scale are valuable for the understanding of gas-solid-liquid interaction among granular media, since there is very limited experimental data available in the literature. The comparisons between the theoretical and experimental predictions of the SWCC and CFCC indicate that the agreements are generally very good, confirming the validity of the theory. C1 [Lu, Ning] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. [Lechman, Jeremy] Sandia Natl Labs, Dept Surface & Interface Sci, Albuquerque, NM 87185 USA. [Miller, Kelly T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. RP Lu, N (reprint author), Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. EM ninglu@mines.edu NR 19 TC 2 Z9 5 U1 1 U2 8 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9399 J9 J ENG MECH-ASCE JI J. Eng. Mech.-ASCE PD MAY PY 2008 VL 134 IS 5 BP 385 EP 395 DI 10.1061/(ASCE)0733-9399(2008)134:5(385) PG 11 WC Engineering, Mechanical SC Engineering GA 292FM UT WOS:000255251900005 ER PT J AU Twining, BS Baines, SB Vogt, S de Jonge, MD AF Twining, Benjamin S. Baines, Stephen B. Vogt, Stefan de Jonge, Martin D. TI Exploring ocean biogeochemistry by single-cell microprobe analysis of protist elemental composition SO JOURNAL OF EUKARYOTIC MICROBIOLOGY LA English DT Article; Proceedings Paper CT 62nd Annual Meeting of the Phycological-Society-of-America CT 61st annual Meeting of the Phycological-Society-of-America CY JUL 27-30, 2008 CY AUG 06-09, 2007 CL New Orleans, LA CL Providence, RI SP Phycol Soc Amer SP Phycol Soc Amer DE iron fertilization; phytoplankton; plankton; Southern Ocean; synchrotron X-ray fluorescence ID X-RAY-FLUORESCENCE; EQUATORIAL PACIFIC-OCEAN; IRON EXPERIMENT SOFEX; MARINE-PHYTOPLANKTON; SOUTHERN-OCEAN; SYNCHROTRON-RADIATION; COMPUTED-TOMOGRAPHY; PARTICULATE MATTER; NUCLEAR MICROPROBE; NORTHEAST PACIFIC AB The biogeochemical cycles of many elements in the ocean are linked by their simultaneous incorporation into protists. In order to understand these elemental interactions and their implications for global biogeochemical cycles, accurate measures of cellular element stoichiometries are needed. Bulk analysis of size-fractionated particulate material obscures the unique biogeochemical roles of different functional groups such as diatoms, calcifying protists, and diazotrophs. Elemental analysis of individual protist cells can be performed using electron, proton, and synchrotron X-ray microprobes. Here we review the capabilities and limitations of each approach and the application of these advanced techniques to cells collected from natural communities. Particular attention is paid to recent studies of plankton biogeochemistry in low-iron waters of the Southern Ocean. Single-cell analyses have revealed significant inter-taxa differences in phosphorus, iron, and nickel quotas. Differences in the response of autotrophs and heterotrophs to iron fertilization were also observed. Two-dimensional sub-cellular mapping indicates the importance of iron to photosynthetic machinery and of zinc to nuclear organelles. Observed changes in diatom silicification and cytoplasm content following iron fertilization modify our understanding of the relationship between iron availability and silicification. These examples demonstrate the advantages of studying ocean biogeochemistry at the level of individual cells. C1 [Twining, Benjamin S.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Baines, Stephen B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA. [Vogt, Stefan; de Jonge, Martin D.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Twining, BS (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM benjamin.twining@sc.edu RI de Jonge, Martin/C-3400-2011; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 NR 120 TC 23 Z9 23 U1 1 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1066-5234 EI 1550-7408 J9 J EUKARYOT MICROBIOL JI J. Eukaryot. Microbiol. PD MAY-JUN PY 2008 VL 55 IS 3 BP 151 EP 162 DI 10.1111/j.1550-7408.2008.00320.x PG 12 WC Microbiology SC Microbiology GA 296GV UT WOS:000255532400003 PM 18460152 ER PT J AU Stishov, SM Petrova, AE Khasanov, S Panova, GK Shikov, AA Lashley, JC Wu, D Lograsso, TA AF Stishov, S. M. Petrova, A. E. Khasanov, S. Panova, G. Kh. Shikov, A. A. Lashley, J. C. Wu, D. Lograsso, T. A. TI Experimental study of the magnetic phase transition in the MnSi itinerant helimagnet SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID WEAK FERROMAGNETISM; RESISTIVE ANOMALIES; MANGANESE; MONOSILICIDES; PRESSURE; ELECTRON; BEHAVIOR; LATTICE AB Magnetic susceptibility, heat capacity, thermal expansion, and resistivity of a high-quality single crystal of MnSi were carefully studied at ambient pressure. The calculated change in magnetic entropy in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the behavior of the thermal expansion coefficient in the range 30-150 K, which correlates to a large enhancement of the linear electronic term in the heat capacity. A surprising similarity between variation of the heat capacity, the thermal expansion coefficient, and the temperature derivative of resistivity through the phase transition in MnSi is observed. Specific forms of the heat capacity, thermal expansion coefficient, and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as a combination of sharp first-order features and broad peaks or shallow valleys of yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state in MnSi slightly above the transition temperature. Present experimental findings bring the current views on the phase diagram of MnSi into question. C1 [Stishov, S. M.; Petrova, A. E.] Inst High Pressure Phys, Troitsk 142190, Moscow Oblast, Russia. [Khasanov, S.] Inst Solid State Phys, Chernogolovka 142432, Moscow Oblast, Russia. [Khasanov, S.] Kurchatov Inst, Russian Res Ctr, Moscow 123182, Russia. [Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wu, D.; Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Stishov, SM (reprint author), Inst High Pressure Phys, Troitsk 142190, Moscow Oblast, Russia. EM sergei@hppi.troitsk.ru RI Khasanov, Salavat/R-8690-2016 NR 37 TC 4 Z9 4 U1 1 U2 15 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD MAY PY 2008 VL 106 IS 5 BP 888 EP 896 DI 10.1134/S1063776108050063 PG 9 WC Physics, Multidisciplinary SC Physics GA 318TO UT WOS:000257115900006 ER PT J AU Jankowski, TA Schmierer, EN Prenger, FC Ashworth, SP AF Jankowski, T. A. Schmierer, E. N. Prenger, F. C. Ashworth, S. P. TI A series pressure drop representation for flow through orifice tubes SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID LOW REYNOLDS-NUMBERS; LAMINAR; LENGTH; MODEL AB A simple model is developed here to predict the pressure drop and discharge coefficient for incompressible flow through orifices with length-to-diameter ratio greater than zero (orifice tubes) over wide ranges of Reynolds number. The pressure drop for flow through orifice tubes is represented as two pressure drops in series; namely, a pressure drop for flow through a sharp-edged orifice in series with a pressure drop for developing flow in a straight length of tube. Both of these pressure drop terms are represented in the model using generally accepted correlations and experimental data for developing flows and sharp-edged orifice flow. We show agreement between this simple model and our numerical analysis of laminar orifice flow with length-to-diameter ratio up to 15 and for Reynolds number up to 150. Agreement is also shown between the series pressure drop representation and experimental data over wider ranges of Reynolds number. Not only is the present work useful as a design correlation for equipment relying on flow through orifice tubes but it helps to explain some of the difficulties that previous authors have encountered when comparing experimental observation and available theories. C1 [Jankowski, T. A.; Schmierer, E. N.; Prenger, F. C.] Los Alamos Natl Lab, Mech & Thermal Engn Grp AET 1, Los Alamos, NM 87545 USA. [Ashworth, S. P.] Los Alamos Natl Lab, Superconductiv Technol Ctr MPA STC, Los Alamos, NM 87545 USA. RP Jankowski, TA (reprint author), Los Alamos Natl Lab, Mech & Thermal Engn Grp AET 1, MS J580, Los Alamos, NM 87545 USA. EM jankowski@lanl.gov RI Jankowski, Todd/A-8793-2014 NR 25 TC 7 Z9 7 U1 0 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0098-2202 J9 J FLUID ENG-T ASME JI J. Fluids Eng.-Trans. ASME PD MAY PY 2008 VL 130 IS 5 AR 051204 DI 10.1115/1.2907408 PG 7 WC Engineering, Mechanical SC Engineering GA 301FC UT WOS:000255880800008 ER PT J AU Balasubramanian, V de Boer, J Jejjala, V Simon, J AF Balasubramanian, Vijay de Boer, Jan Jejjala, Vishnu Simon, Joan TI Entropy of near-extremal black holes in AdS(5) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE AdS-CFT correspondence; black holes in string theory; supersymmetric gauge theory ID CORRESPONDENCE PRINCIPLE; GAUGED SUPERGRAVITY; STRING THEORY AB We construct the microstates of near-extremal black holes in AdS(5) x S-5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S-5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS(3) factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS(2) factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities. C1 [Balasubramanian, Vijay] Univ Penn, David Rittenhouse Labs, Philadelphia, PA 19104 USA. [de Boer, Jan] Inst Theoret Fys, NL-1018 XE Amsterdam, Netherlands. [Jejjala, Vishnu] Univ Durham, Dept Math Sci, Durham DH1 3LE, England. [Simon, Joan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Simon, Joan] Univ Calif Berkeley, LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Balasubramanian, V (reprint author), Univ Penn, David Rittenhouse Labs, Philadelphia, PA 19104 USA. EM vijay@physics.upenn.edu; jdeboer@science.uva.nl; vishnu.jejjala@durham.ac.uk; JSimonSoler@lbl.gov NR 65 TC 26 Z9 26 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2008 IS 5 AR 067 PG 45 WC Physics, Particles & Fields SC Physics GA 312JA UT WOS:000256664400067 ER PT J AU Dorcier, A Hartinger, CG Scopelliti, R Fish, RH Keppler, BK Dyson, PJ AF Dorcier, Antoine Hartinger, Christian G. Scopelliti, Rosario Fish, Richard H. Keppler, Bernhard K. Dyson, Paul J. TI Studies on the reactivity of organometallic Ru-, Rh- and Os-pta complexes with DNA model compounds SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article; Proceedings Paper CT 13th International Conference on Biological Inorganic Chemistry CY JUL 15-20, 2007 CL Vienna, AUSTRIA DE anticancer drugs; DNA binding; electrospray ionization mass spectrometry; pta; arene-ruthenium complexes; bioorganometallic chemistry ID (ETA-5-PENTAMETHYLCYCLOPENTADIENYL)RHODIUM AQUA COMPLEX; BIOORGANOMETALLIC CHEMISTRY; STRUCTURAL CHARACTERIZATION; RUTHENIUM(II) COMPLEXES; ANTICANCER DRUGS; IN-VITRO; ESI-MS; NUCLEOBASE; DERIVATIVES; ADENOSINE AB The reactions of arene-metal complexes (arene = p-cymene, benzene or pentamethylcyclopentadienyl, metal = Ru, Rh or Os), including 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decanephosphine (pta) and chloro co-ligands, with 9-methylguanine, adenine, and a series of nucleosides were studied in water to ascertain the binding modes. The products were characterized by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Tandem mass spectrometry was found to provide excellent information on preferential binding sites. In general, the N7 position on guanine (the most basic site) was found to be the preferred donor atom for coordination to the metal complexes. The X-ray structures of the precursor complexes, [(eta(5)-C(10)H(15))RhCl(pta-Me)(2)]Cl(2), [(eta(6)-Cl(10)H(14))OsCl(pta)(2)]Cl, and [(eta(6)-C(6)H(6))OsCl(2)(CH(3)CN)], are also reported. (C) 2007 Elsevier Inc. All rights reserved. C1 [Dorcier, Antoine; Hartinger, Christian G.; Scopelliti, Rosario; Dyson, Paul J.] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. [Hartinger, Christian G.; Keppler, Bernhard K.] Univ Vienna, Inst Inorgan Chem, A-1090 Vienna, Austria. [Fish, Richard H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hartinger, CG (reprint author), Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland. EM christian.hartinger@epfl.ch; paul.dyson@epfl.ch RI Hartinger, Christian/B-7085-2011; OI Hartinger, Christian/0000-0001-9806-0893; Keppler, Bernhard/0000-0003-0877-1822 NR 45 TC 75 Z9 75 U1 0 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD MAY-JUN PY 2008 VL 102 IS 5-6 BP 1066 EP 1076 DI 10.1016/j.jinorgbio.2007.10.016 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 306HT UT WOS:000256239600010 PM 18086499 ER PT J AU Monnard, PA Szostak, JW AF Monnard, Pierre-Alain Szostak, Jack W. TI Metal-ion catalyzed polymerization in the eutectic phase in water-ice: A possible approach to template-directed RNA polymerization SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article; Proceedings Paper CT 13th International Conference on Biological Inorganic Chemistry CY JUL 15-20, 2007 CL Vienna, AUSTRIA DE template-directed RNA polymerization; metal-ion catalyzed polymerization; eutectic phase in water-ice; micro-environment ID HAIRPIN OLIGONUCLEOTIDES; AQUEOUS-SOLUTIONS; RESIDUES; NUCLEOSIDES; ADENOSINE; ORIGIN; WORLD; STEPS AB The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal-ions. The absence of uridilate derivative polymerization on adenine containing templates has been the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated uridilate monomers in the presence of metal-ion catalysts could efficiently elongate RNA hairpins whose 5'-overhangs served as the templating sequence. The same applies for every other pyrimidine and purine nucleobase. Moreover, the initial elongation rates were always higher in the presence of a template complementary to the nucleotide than in systems without proper base-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions. (C) 2008 Elsevier Inc. All rights reserved. C1 [Monnard, Pierre-Alain] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Szostak, Jack W.] Massachusetts Gen Hosp, Dept Mol Biol, Simches Res Ctr, Boston, MA 02114 USA. [Szostak, Jack W.] Massachusetts Gen Hosp, Howard Hughes Med Inst, Simches Res Ctr, Ctr Computat & Integrat Biol, Boston, MA 02114 USA. RP Monnard, PA (reprint author), Los Alamos Natl Lab, POB 1663,EES-6,MS-D462, Los Alamos, NM 87545 USA. EM pmonnard@lanl.gov; szostak@molbio.mgh.harvard.edu NR 22 TC 24 Z9 26 U1 0 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD MAY-JUN PY 2008 VL 102 IS 5-6 BP 1104 EP 1111 DI 10.1016/j.jinorgbio.2008.01.026 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA 306HT UT WOS:000256239600013 PM 18329104 ER PT J AU Abdesselam, A Allport, PP Anderson, B Andricek, L Anghinolfi, F Apsimon, RJ Atkinson, T Austin, A Band, H Barclay, P Barr, A Batchelor, LE Bates, RL Batley, JR Beck, G Becker, H Bell, P Bell, WH Belymam, A Benes, J Benes, P Berbee, E Bernabeu, J Bethke, S Bingefors, N Bizzell, JP Blaszczak, ZJ Blocki, J Broz, J Bohm, J Brenner, R Brodbeck, TJ de Renstrom, PB Buis, R Burton, G Buskop, J Buttar, CM Butterworth, JM Butterworth, S Capocci, E Carpentieri, C Carter, AA Carter, JR Chamizo, M Charlton, DG Cheplakov, A Chilingarov, A Chouridou, S Chren, D Chu, ML Cindro, V Ciocio, A Civera, JV Clark, A Coe, P Colijn, AP Cooke, PA Costa, MJ Costanzo, D Curtis-Rous, M Dabinett, C Dabrowski, W Dalmau, J Danielsen, KM D'Auria, S Dawson, I de Jong, P Dervan, P Dobson, E Doherty, F Dolezal, Z Donega, M D'Onofrio, M Dorholt, O Doubrava, M Duerdoth, IP Duisters, C Duxfield, R Dwuznik, M Eckert, S Eklund, L Escobar, C Evans, DL Fadeyev, V Fasching, D Feld, L Ferguson, DPS Ferrari, P Ferrere, D Fopma, J Ford, P Fortin, R Foster, JM Fox, H Fraser, TJ Freestone, J French, RS Fuster, J Gallop, BJ Galuska, M Gannaway, F Garcia, C Garcia-Navarro, JE Gibson, M Gibson, S Gnanvo, K Godlewski, J Gonzalez, F Gonzalez-Sevilla, S Goodrick, MJ Gorfine, G Gorisek, A Gornicki, E Greenall, A Greenfield, D Gregory, S Grillo, AA Grosse-Knetter, J Gryska, C Haddad, L Hara, K Harris, M Hartjes, FG Hauff, D Hawes, B Hayler, T Haywood, SJ Heinemann, F Heinzinger, K Hessey, NP Heusch, C Hicheur, A Hill, JC Hodgkinson, M Hodgson, P Hollins, TI Holt, R Homna, J Horaziovsky, T Howell, D Hughes, G Huse, T Ibbotson, M Ikegami, Y Ilyashenko, I Issever, C Jakubek, J Jackson, JN Jakobs, K Jared, RC Jarron, P Johansson, P John, D Jones, A Jones, M Jones, TJ Joos, D Joseph, J Jovanovic, P Jusko, J Jusko, O Kaplon, J Karagoz-Unel, M Ketterer, C Kodys, P Koffeman, E Kohout, Z Kohriki, T Kok, H Kondo, T Koperny, S Korporaal, A Koukol, V Kral, V Kramberger, G Kubik, P Kudlaty, J Kuilman, W Kundu, N Lacasta, C Lacuesta, V Lau, W Lee, SC Leguyt, R Leney, K Lenz, S Lester, CG Liang, Z Liebicher, K Limper, M Lindquist, LE Lindsay, S Linhart, V Lintern, A Locket, C Lockwood, M Loebinger, FK Lozano, M Ludwig, I Ludwig, J Lutz, G Maassen, M Macina, D Macpherson, A MacWaters, C Magrath, CA Malecki, P Mandic, I Mangin-Brinet, M Marshall, G Marti-Garcia, S Martinez-McKinney, GFM Matheson, JP McEwan, F McMahon, SJ McPhail, D Meinhardt, J Mellado, B Mercer, IJ Messmer, I Mikulec, B Mikuz, M Mima, S Mistry, K Mitra, A Mitsou, VA Modesto, P Moed, S Mohn, B Moles, R Moorhead, GF Moreno, B Morin, J Morris, J Moser, HG Moszczynski, A Muijs, AJM Munneke, B Murray, WJ Muskett, D Nacher, J Nagai, K Naito, D Nakano, I Nelson, C Nichols, A Nickerson, RB Nisius, R Noviss, J Olcese, M O'Shea, V Oye, OK Paganis, S Palmer, MJ Parker, MA Parzefall, U Pater, JR Pernegger, H Perrin, E Phillips, A Phillips, PW Pieron, JP Poltorak, K Pospisil, S Postranecky, M Pritchard, T Prokofiev, K Raine, C Ratoff, PN Reitmeijer, A Reznicek, P Richter, RH Robichaud-Veronneau, A Robinson, D Robson, A Rodriguez-Oliete, R Roe, S Rolfe, G Rovenkamp, J Runge, K Saavedra, A Sadrozinski, HFW Sanchez, FJ Sandaker, H Schieck, J Schuijlenburg, H Siegrist, J Seiden, A Sfyrla, A Simm, G Slatter, J Slavieek, T Smith, B Smith, KM Smith, NA Snippe, C Snow, SW Solar, M Solberg, AO Sopko, B Sopko, V Sospedra, L Southern, GD Sowinski, M Spencer, E Spieler, H Stanecka, E Stapnes, S Stastny, J Steckl, I Stodulski, M Strachko, V Stradling, A Stugu, B Sutcliffe, P Szczygiel, R Takashima, R Tanaka, R Tappern, G Tarrant, J Taylor, GN Temple, S Teng, PK Terada, S Thompson, RJ Thresher, NE Titov, M Tovey, DR Tratzl, G Tricoli, A Turala, M Turner, PR Tyndel, M Ullan, M Unno, Y Vickey, T Vacek, V Van der Kraaij, E Van Ovenbeek, M Viehhauser, G Vu, C Villani, EG Anh, TV Vossebeld, JH Wachler, M Wallny, R Ward, CP Warren, MRM Wastie, R Weber, M Weidberg, AR Weilhammer, P Wells, PS Werneke, P Wetzel, P White, MJ Wiesmann, M Wilmut, I Wilson, JA Wolter, M Wormald, MP Wu, SL Wu, X Zimmer, J Zseneii, A Zhu, H AF Abdesselam, A. Allport, P. P. Anderson, B. Andricek, L. Anghinolfi, F. Apsimon, R. J. Atkinson, T. Austin, A. Band, H. Barclay, P. Barr, A. Batchelor, L. E. Bates, R. L. Batley, J. R. Beck, G. Becker, H. Bell, P. Bell, W. H. Belymam, A. Benes, J. Benes, P. Berbee, E. Bernabeu, J. Bethke, S. Bingefors, N. Bizzell, J. P. Blaszczak, Z. J. Blocki, J. Broz, J. Bohm, J. Brenner, R. Brodbeck, T. J. de Renstrom, P. Bruckman Buis, R. Burton, G. Buskop, J. Buttar, C. M. Butterworth, J. M. Butterworth, S. Capocci, E. Carpentieri, C. Carter, A. A. Carter, J. R. Chamizo, M. Charlton, D. G. Cheplakov, A. Chilingarov, A. Chouridou, S. Chren, D. Chu, M. L. Cindro, V. Ciocio, A. Civera, J. V. Clark, A. Coe, P. Colijn, A. P. Cooke, P. A. Costa, M. J. Costanzo, D. Curtis-Rous, M. Dabinett, C. Dabrowski, W. Dalmau, J. Danielsen, K. M. D'Auria, S. Dawson, I. de Jong, P. Dervan, P. Dobson, E. Doherty, F. Dolezal, Z. Donega, M. D'Onofrio, M. Dorholt, O. Doubrava, M. Duerdoth, I. P. Duisters, C. Duxfield, R. Dwuznik, M. Eckert, S. Eklund, L. Escobar, C. Evans, D. L. Fadeyev, V. Fasching, D. Feld, L. Ferguson, D. P. S. Ferrari, P. Ferrere, D. Fopma, J. Ford, P. Fortin, R. Foster, J. M. Fox, H. Fraser, T. J. Freestone, J. French, R. S. Fuster, J. Gallop, B. J. Galuska, M. Gannaway, F. Garcia, C. Garcia-Navarro, J. E. Gibson, M. Gibson, S. Gnanvo, K. Godlewski, J. Gonzalez, F. Gonzalez-Sevilla, S. Goodrick, M. J. Gorfine, G. Gorisek, A. Gornicki, E. Greenall, A. Greenfield, D. Gregory, S. Grillo, A. A. Grosse-Knetter, J. Gryska, C. Haddad, L. Hara, K. Harris, M. Hartjes, F. G. Hauff, D. Hawes, B. Hayler, T. Haywood, S. J. Heinemann, F. Heinzinger, K. Hessey, N. P. Heusch, C. Hicheur, A. Hill, J. C. Hodgkinson, M. Hodgson, P. Hollins, T. I. Holt, R. Homna, J. Horaziovsky, T. Howell, D. Hughes, G. Huse, T. Ibbotson, M. Ikegami, Y. Ilyashenko, I. Issever, C. Jakubek, J. Jackson, J. N. Jakobs, K. Jared, R. C. Jarron, P. Johansson, P. John, D. Jones, A. Jones, M. Jones, T. J. Joos, D. Joseph, J. Jovanovic, P. Jusko, J. Jusko, O. Kaplon, J. Karagoz-Unel, M. Ketterer, Ch. Kodys, P. Koffeman, E. Kohout, Z. Kohriki, T. Kok, H. Kondo, T. Koperny, S. Korporaal, A. Koukol, V. Kral, V. Kramberger, G. Kubik, P. Kudlaty, J. Kuilman, W. Kundu, N. Lacasta, C. Lacuesta, V. Lau, W. Lee, S. C. Leguyt, R. Leney, K. Lenz, S. Lester, C. G. Liang, Z. Liebicher, K. Limper, M. Lindquist, L. E. Lindsay, S. Linhart, V. Lintern, A. Locket, C. Lockwood, M. Loebinger, F. K. Lozano, M. Ludwig, I. Ludwig, J. Lutz, G. Maassen, M. Macina, D. Macpherson, A. MacWaters, C. Magrath, C. A. Malecki, P. Mandic, I. Mangin-Brinet, M. Marshall, G. Marti-Garcia, S. Martinez-McKinney, G. F. M. Matheson, J. P. McEwan, F. McMahon, S. J. McPhail, D. Meinhardt, J. Mellado, B. Mercer, I. J. Messmer, I. Mikulec, B. Mikuz, M. Mima, S. Mistry, K. Mitra, A. Mitsou, V. A. Modesto, P. Moed, S. Mohn, B. Moles, R. Moorhead, G. F. Moreno, B. Morin, J. Morris, J. Moser, H. G. Moszczynski, A. Muijs, A. J. M. Munneke, B. Murray, W. J. Muskett, D. Nacher, J. Nagai, K. Naito, D. Nakano, I. Nelson, C. Nichols, A. Nickerson, R. B. Nisius, R. Noviss, J. Olcese, M. O'Shea, V. Oye, O. K. Paganis, S. Palmer, M. J. Parker, M. A. Parzefall, U. Pater, J. R. Pernegger, H. Perrin, E. Phillips, A. Phillips, P. W. Pieron, J. P. Poltorak, K. Pospisil, S. Postranecky, M. Pritchard, T. Prokofiev, K. Raine, C. Ratoff, P. N. Reitmeijer, A. Reznicek, P. Richter, R. H. Robichaud-Veronneau, A. Robinson, D. Robson, A. Rodriguez-Oliete, R. Roe, S. Rolfe, G. Rovenkamp, J. Runge, K. Saavedra, A. Sadrozinski, H. F. W. Sanchez, F. J. Sandaker, H. Schieck, J. Schuijlenburg, H. Siegrist, J. Seiden, A. Sfyrla, A. Simm, G. Slatter, J. Slavieek, T. Smith, B. Smith, K. M. Smith, N. A. Snippe, C. Snow, S. W. Solar, M. Solberg, A. O. Sopko, B. Sopko, V. Sospedra, L. Southern, G. D. Sowinski, M. Spencer, E. Spieler, H. Stanecka, E. Stapnes, S. Stastny, J. Steckl, I. Stodulski, M. Strachko, V. Stradling, A. Stugu, B. Sutcliffe, P. Szczygiel, R. Takashima, R. Tanaka, R. Tappern, G. Tarrant, J. Taylor, G. N. Temple, S. Teng, P. K. Terada, S. Thompson, R. J. Thresher, N. E. Titov, M. Tovey, D. R. Tratzl, G. Tricoli, A. Turala, M. Turner, P. R. Tyndel, M. Ullan, M. Unno, Y. Vickey, T. Vacek, V. Van der Kraaij, E. Van Ovenbeek, M. Viehhauser, G. Vu, C. Villani, E. G. Anh, T. Vu Vossebeld, J. H. Wachler, M. Wallny, R. Ward, C. P. Warren, M. R. M. Wastie, R. Weber, M. Weidberg, A. R. Weilhammer, P. Wells, P. S. Werneke, P. Wetzel, P. White, M. J. Wiesmann, M. Wilmut, I. Wilson, J. A. Wolter, M. Wormald, M. P. Wu, S. L. Wu, X. Zimmer, J. Zseneii, A. Zhu, H. TI Engineering for the ATLAS SemiConductor Tracker (SCT) end-cap SO JOURNAL OF INSTRUMENTATION LA English DT Article DE particle tracking detectors; large detector systems for particle and astroparticle physics; detector design and construction technologies and materials; overall mechanics design (support structures and materials, vibration analysis etc) ID FREQUENCY SCANNING INTERFEROMETRY AB The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008. C1 [Lozano, M.; Ullan, M.] CSIC, Ctr Nacl Microelect, IMB, Barcelona, Spain. [Abdesselam, A.; Mohn, B.; Solberg, A. O.; Stugu, B.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Charlton, D. G.; Gallop, B. J.; Hollins, T. I.; Jovanovic, P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Batley, J. R.; Carter, J. R.; Goodrick, M. J.; Lester, C. G.; Palmer, M. J.; Parker, M. A.; Phillips, A.; Robinson, D.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Ferrari, P.; Fortin, R.; Godlewski, J.; Grosse-Knetter, J.; Jarron, P.; Kaplon, J.; Macpherson, A.; Pritchard, T.; Roe, S.; Tappern, G.; Weilhammer, P.; Wells, P. S.] CERN, European Lab Particle Phys, CH-1211 Geneva, Switzerland. [Dabrowski, W.; Dwuznik, M.; Koperny, S.; Szczygiel, R.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Blaszczak, Z. J.; Blocki, J.; de Renstrom, P. Bruckman; Gornicki, E.; Malecki, P.; Moszczynski, A.; Pieron, J. P.; Sowinski, M.; Stanecka, E.; Stodulski, M.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Carpentieri, C.; Dabrowski, W.; Dwuznik, M.; Eckert, S.; Feld, L.; Fox, H.; Jakobs, K.; Joos, D.; Ketterer, Ch.; Ludwig, I.; Ludwig, J.; Maassen, M.; Runge, K.; Titov, M.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Chamizo, M.; Clark, A.; Donega, M.; D'Onofrio, M.; Ferrere, D.; Macina, D.; Mangin-Brinet, M.; Mikulec, B.; Moed, S.; Perrin, E.; Robichaud-Veronneau, A.; Sfyrla, A.; Anh, T. Vu; Zseneii, A.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Bates, R. L.; Bell, W. H.; Buttar, C. M.; Cheplakov, A.; D'Auria, S.; Doherty, F.; Haddad, L.; McEwan, F.; O'Shea, V.; Raine, C.; Robson, A.; Smith, K. M.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Beck, G.; Belymam, A.; Carter, A. A.; Dalmau, J.; Gannaway, F.; Gnanvo, K.; Terada, S.; Unno, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Kondo, T.] Kyoto Univ, Fac Educ, Fushimi Ku, Kyoto 612, Japan. [Brodbeck, T. J.; Chilingarov, A.; Hughes, G.; Mercer, I. J.; Ratoff, P. N.; Slatter, J.] Univ Lancaster, Dept Phys & Astron, Lancaster, England. [Ciocio, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Allport, P. P.; Cooke, P. A.; Evans, D. L.; Greenall, A.; Jackson, J. N.; Leney, K.; Lindsay, S.; Lockwood, M.; Muskett, D.; Smith, N. A.; Southern, G. D.; Sutcliffe, P.; Thresher, N. E.; Turner, P. R.; Vossebeld, J. H.; Wormald, M. P.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Gorisek, A.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. [Gorisek, A.; Mandic, I.; Mikuz, M.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Belymam, A.; Carter, A. A.; Dalmau, J.; Gannaway, F.; Gnanvo, K.; Morin, J.; Morris, J.; Nagai, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Anderson, B.; Butterworth, J. M.; Postranecky, M.; Warren, M. R. M.] Univ London, Univ Coll, Dept Phys, London, England. [Bell, P.; Loebinger, F. K.; Pater, J. R.; Snow, S. W.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Atkinson, T.; Gregory, S.; Moorhead, G. F.; Taylor, G. N.] Univ Melbourne, Parkville, Vic 3052, Australia. [Andricek, L.; Becker, H.; Bethke, S.; Hauff, D.; Heinzinger, K.; Heusch, C.; Kudlaty, J.; Leguyt, R.; Liebicher, K.; Lutz, G.; Moser, H. G.; Nisius, R.; Richter, R. H.; Schieck, J.; Tratzl, G.; Wachler, M.; Wetzel, P.; Wiesmann, M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Band, H.; Berbee, E.; Buis, R.; Buskop, J.; Colijn, A. P.; de Jong, P.; Duisters, C.; Hartjes, F. G.; Hessey, N. P.; Homna, J.; Koffeman, E.; Kok, H.; Korporaal, A.; Kuilman, W.; Limper, M.; Muijs, A. J. M.; Munneke, B.; Reitmeijer, A.; Rovenkamp, J.; Schuijlenburg, H.; Snippe, C.; Van der Kraaij, E.; Van Ovenbeek, M.; Werneke, P.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Mima, S.; Naito, D.; Nakano, I.; Tanaka, R.] Okayama Univ, Grad Sch Nat Sci & Technol, Okayama 7008530, Japan. [Danielsen, K. M.; Dorholt, O.; Sandaker, H.; Stapnes, S.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Barr, A.; de Renstrom, P. Bruckman; Coe, P.; Dobson, E.; Fopma, J.; Gibson, S.; Hawes, B.; Heinemann, F.; Howell, D.; Karagoz-Unel, M.; Kundu, N.; Lau, W.; Nickerson, R. B.; Viehhauser, G.; Weidberg, A. R.] Univ Oxford, Dept Phys, Oxford, England. [Broz, J.; Dolezal, Z.; Kodys, P.; Kubik, P.; Reznicek, P.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Benes, J.; Chren, D.; Doubrava, M.; Galuska, M.; Horaziovsky, T.; Jakubek, J.; Jusko, O.; Kohout, Z.; Koukol, V.; Kral, V.; Pospisil, S.; Slavieek, T.; Sopko, B.; Sopko, V.; Steckl, I.; Vacek, V.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Benes, P.; Bohm, J.; Stastny, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Apsimon, R. J.; Austin, A.; Barclay, P.; Batchelor, L. E.; Burton, G.; Capocci, E.; Curtis-Rous, M.; Dabinett, C.; Ford, P.; Harris, M.; Hayler, T.; Haywood, S. J.; Hicheur, A.; Holt, R.; Jones, A.; MacWaters, C.; Matheson, J. P.; McMahon, S. J.; McPhail, D.; Nelson, C.; Nichols, A.; Phillips, P. W.; Rolfe, G.; Smith, B.; Tarrant, J.; Temple, S.; Tricoli, A.; Tyndel, M.; Villani, E. G.; Weber, M.; Wilmut, I.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Martinez-McKinney, G. F. M.; Sadrozinski, H. F. W.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Costanzo, D.; Duxfield, R.; Hodgkinson, M.; Hodgson, P.; Johansson, P.; Paganis, S.; Zhu, H.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Ilyashenko, I.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Fadeyev, V.; Saavedra, A.] Australian Nucl Sci & Technol Org, Sydney, NSW, Australia. [Chu, M. L.; Lee, S. C.; Mitra, A.; Teng, P. K.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Bingefors, N.; Brenner, R.; Eklund, L.; Lindquist, L. E.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Bernabeu, J.; Civera, J. V.; Costa, M. J.; Escobar, C.; Garcia-Navarro, J. E.; Gonzalez, F.; Gonzalez-Sevilla, S.; Lacuesta, V.; Marti-Garcia, S.; Mitsou, V. A.; Modesto, P.; Moles, R.; Moreno, B.; Nacher, J.; Rodriguez-Oliete, R.; Sospedra, L.; Strachko, V.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Jared, R. C.; Joseph, J.; Stradling, A.; Takashima, R.; Vickey, T.; Wu, S. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Olcese, M.] Ist Nazl Fis Nucl, IT-16146 Genoa, Italy. [Olcese, M.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. RP Abdesselam, A (reprint author), CSIC, Ctr Nacl Microelect, IMB, Barcelona, Spain. RI Mitsou, Vasiliki/D-1967-2009; Szczygiel, Robert/B-5662-2011; Buttar, Craig/D-3706-2011; Stastny, jan/H-2973-2014; CARPENTIERI, CARMELA/E-2137-2015; Bernabeu, Jose/H-6708-2015; Marti-Garcia, Salvador/F-3085-2011; Ullan, Miguel/P-7392-2015; Wolter, Marcin/A-7412-2012; Eklund, Lars/C-7709-2012; Moorhead, Gareth/B-6634-2009; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Lozano, Manuel/C-3445-2011; OI Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Bernabeu, Jose/0000-0002-0296-9988; Moorhead, Gareth/0000-0002-9299-9549; O'Shea, Val/0000-0001-7183-1205; Lozano, Manuel/0000-0001-5826-5544; Gnanvo, Kondo/0000-0002-5348-0664; Robson, Aidan/0000-0002-1659-8284; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; PAGANIS, STATHES/0000-0002-1950-8993 NR 50 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2008 VL 3 AR P05002 DI 10.1088/1748-0221/3/05/P05002 PG 84 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 311SH UT WOS:000256619400002 ER PT J AU Bilki, B Butler, J Cundiff, T Drake, G Haberichtera, W Hazen, E Hoff, J Holm, S Kreps, A May, E Mavromanolakis, G Norbeck, E Northacker, D Onel, Y Repond, J Underwood, D Wu, S Xia, L AF Bilki, B. Butler, J. Cundiff, T. Drake, G. Haberichtera, W. Hazen, E. Hoff, J. Holm, S. Kreps, A. May, E. Mavromanolakis, G. Norbeck, E. Northacker, D. Onel, Y. Repond, J. Underwood, D. Wu, S. Xia, L. TI Calibration of a digital hadron calorimeter with muons SO JOURNAL OF INSTRUMENTATION LA English DT Article DE calorimeters; particle tracking detectors AB The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as the active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented. C1 [Cundiff, T.; Drake, G.; Haberichtera, W.; Kreps, A.; May, E.; Repond, J.; Underwood, D.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Butler, J.; Hazen, E.; Wu, S.] Boston Univ, Boston, MA 02215 USA. [Hoff, J.; Holm, S.; Mavromanolakis, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.] Univ Iowa, Iowa City, IA 52242 USA. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@hep.anl.gov OI Bilki, Burak/0000-0001-9515-3306 NR 4 TC 19 Z9 19 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2008 VL 3 AR P05001 DI 10.1088/1748-0221/3/05/P05001 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 311SH UT WOS:000256619400001 ER PT J AU Lee, YJ Kuo, HC Lu, TC Wang, SC Ng, KW Lau, KM Yang, ZP Chang, ASP Lin, SY AF Lee, Ya-Ju Kuo, Hao-Chung Lu, Tien-Chang Wang, Shing-Chung Ng, Kar Wai Lau, Kei May Yang, Zu-Po Chang, Allan Shih-Ping Lin, Shawn-Yu TI Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces SO JOURNAL OF LIGHTWAVE TECHNOLOGY LA English DT Article DE epitaxial growth; light-emitting diodes (LEDs); optical device fabrication ID VAPOR-PHASE EPITAXY; OUTPUT POWER; DISLOCATION DENSITY; QUANTUM-WELLS; LEDS; EXTRACTION; EFFICIENCY; DEPOSITION; LAYERS AB We investigate the mechanism responding for performance enhancement of gallium nitride (GaN)-based light-emitting diode (LED) grown on chemical wet-etching-patterned sapphire substrate (CWE-PSS) with V-Shaped pit features on the top surface. According to temperature-dependent photoluminescence (PL) measurement and the measured external quantum efficiency, the structure can simultaneously enhance both internal quantum efficiency and light extraction efficiency. Comparing to devices grown on planar sapphire substrate, the threading dislocation defects of LED grown on CWE-PSS are reduced from 1.28 x10(9)/cm(2) to 3.62 x10(8)/cm(2), leading to a 12.5% enhancement in internal quantum efficiency. In terms of the theoretical computing of radiation patterns, the V-Shaped pits roughening surface can be thought of as a strong diffuser with paraboloidal autocorrelation function, increasing the escape probability of trapped photons and achieving a 20% enhancement in light extraction efficiency. Moreover, according to the measurement of optical diffraction power, CWE-PSS demonstrated superior guided light extraction efficiency than that of planar sapphire substrate, thus an extra 7.8% enhancement in light extraction efficiency was obtained. Therefore, comparing to the conventional LED, an overall 45% enhancement in integrated output power was achieved. C1 [Lee, Ya-Ju; Kuo, Hao-Chung; Lu, Tien-Chang; Wang, Shing-Chung] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan. [Ng, Kar Wai; Lau, Kei May] Hong Kong Univ Sci & Technol, Dept Elect & Elect Engn, Ctr Photon Technol, Kowloon, Hong Kong, Peoples R China. [Yang, Zu-Po; Lin, Shawn-Yu] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Chang, Allan Shih-Ping] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, YJ (reprint author), Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan. EM yjlee.eo92g@nctu.edu.tw; hckuo@faculty.nctu.edu.tw; timtclu@faculty.nctu.edu.tw; scwang@mail.nctu.edu.tw; eekmlau@ust.hk; ASPChang@lbl.gov; sylin@rpi.edu RI Lu, Tien-chang/D-2536-2014; OI Lu, Tien-chang/0000-0003-4192-9919; Lau, Kei May/0000-0002-7713-1928 NR 24 TC 25 Z9 27 U1 1 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0733-8724 J9 J LIGHTWAVE TECHNOL JI J. Lightwave Technol. PD MAY-JUN PY 2008 VL 26 IS 9-12 BP 1455 EP 1463 DI 10.1109/JLT.2008.922151 PG 9 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 316TA UT WOS:000256971400051 ER PT J AU Mehl, J Ade, PAR Basu, K Becker, D Bender, A Bertoldi, F Cho, HM Dobbs, M Halverson, NW Holzapfel, WL Gusten, R Kennedy, J Kneissl, R Kreysa, E Lanting, TM Lee, AT Lueker, M Menten, KM Muders, D Nord, M Pacaud, F Plagge, T Richards, PL Schilke, P Schwan, D Spieler, H Weiss, A White, M AF Mehl, J. Ade, P. A. R. Basu, K. Becker, D. Bender, A. Bertoldi, F. Cho, H. M. Dobbs, M. Halverson, N. W. Holzapfel, W. L. Gusten, R. Kennedy, J. Kneissl, R. Kreysa, E. Lanting, T. M. Lee, A. T. Lueker, M. Menten, K. M. Muders, D. Nord, M. Pacaud, F. Plagge, T. Richards, P. L. Schilke, P. Schwan, D. Spieler, H. Weiss, A. White, M. TI TES bolometer array for the APEX-SZ camera SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE bolometer; transition edge sensor; SQUID; multiplexer; Sunyaev-Zel'dovich; CMB AB We will report on the APEX-SZ bolometer camera which houses a 320 element Transition-Edge Sensor (TES) bolometer array designed to survey for galaxy clusters using the 12-meter diameter APEX telescope sited in Chile. Design and fabrication of the TES bolometer array will be discussed, as well as its integration with a frequency-domain SQUID multiplexed readout system. The full configuration of the APEX-SZ camera was deployed in April 2007. A preliminary galaxy cluster map from this deployment will be presented. C1 [Mehl, J.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Richards, P. L.; Schwan, D.; White, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Spieler, H.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ade, P. A. R.] Cardiff Univ, Cardiff, S Glam, Wales. [Gusten, R.; Kneissl, R.; Kreysa, E.; Menten, K. M.; Muders, D.; Schilke, P.; Weiss, A.] Max Planck Inst Radio Astron, Bonn, Germany. [Dobbs, M.; Kennedy, J.; Lanting, T. M.] McGill Univ, Montreal, PQ, Canada. [Cho, H. M.] Natl Inst Stand & Technol, Boulder, CO USA. [Basu, K.; Bertoldi, F.; Nord, M.; Pacaud, F.] Univ Bonn, D-5300 Bonn, Germany. [Becker, D.; Bender, A.; Halverson, N. W.] Univ Colorado, Boulder, CO 80309 USA. RP Mehl, J (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM mehl@berkeley.edu RI Holzapfel, William/I-4836-2015; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 4 TC 19 Z9 19 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 697 EP 702 DI 10.1007/s10909-008-9738-1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200018 ER PT J AU Figueroa-Feliciano, E Bandler, SR Bautz, M Brown, G Deiker, S Doriese, WB Flanagan, K Galeazzi, M Hilton, GC Hwang, U Irwin, KD Kallman, T Kelley, RL Kilbourne, CA Kissel, S Levine, A Loewenstein, M Martinez-Galarce, D McCammon, D Mushotzky, R Petre, R Porter, FS Reistema, CD Saab, T Serlemitsos, P Schulz, N Smith, R Ullom, JN AF Figueroa-Feliciano, E. Bandler, S. R. Bautz, M. Brown, G. Deiker, S. Doriese, W. B. Flanagan, K. Galeazzi, M. Hilton, G. C. Hwang, U. Irwin, K. D. Kallman, T. Kelley, R. L. Kilbourne, C. A. Kissel, S. Levine, A. Loewenstein, M. Martinez-Galarce, D. McCammon, D. Mushotzky, R. Petre, R. Porter, F. S. Reistema, C. D. Saab, T. Serlemitsos, P. Schulz, N. Smith, R. Ullom, J. N. TI Micro-X: Mission overview and science goals SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE TES; microcalorimeter; micro-X; supernova remnants; rocket AB Micro-X, the High-Resolution Microcalorimeter X-ray Imaging Rocket, is a sounding rocket space telescope that will combine a transition-edge-sensor (TES) X-ray microcalorimeter array with a conical imaging mirror to obtain high spectral resolution images of extended and point X-ray sources. Microcalorimeters measure the energy of an absorbed photon by sensing the increase in temperature of the sensor from the thermalization of the absorbed photon's energy. The advantages and scientific promise of this technology have fueled active development for the past 20 years. We will leverage this development and take the next step by producing a flight-qualified system that will serve as a pathfinder for future missions. Our scientific program will initially focus on extended sources, for which our high-spectral-resolution observations have distinct advantages over other technologies. For our initial flight, we will observe the bright eastern knot in the Puppis A remnant, a site of complex cloud-shock interactions and ejecta enrichment. A Micro-X observation of the bright eastern knot of Puppis A will obtain a line-dominated spectrum with 90,000 counts collected in 300 seconds at 2 eV resolution across the 0.3-2.5 keV band. C1 [Figueroa-Feliciano, E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Figueroa-Feliciano, E.; Bautz, M.; Kissel, S.; Levine, A.; Schulz, N.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Flanagan, K.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bandler, S. R.; Hwang, U.; Kallman, T.; Kelley, R. L.; Kilbourne, C. A.; Loewenstein, M.; Mushotzky, R.; Petre, R.; Porter, F. S.; Serlemitsos, P.; Smith, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Bandler, S. R.; Loewenstein, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brown, G.] Lawrence Livermore Natl Lab, High Energy Dens Phys & Astrophys Div, Livermore, CA USA. [Deiker, S.; Martinez-Galarce, D.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Reistema, C. D.; Ullom, J. N.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Galeazzi, M.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [McCammon, D.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Saab, T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Figueroa-Feliciano, E (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM enectali@mit.edu RI Bandler, Simon/A-6258-2010; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Bandler, Simon/0000-0002-5112-8106; Porter, Frederick/0000-0002-6374-1119; NR 2 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 740 EP 745 DI 10.1007/s10909-008-9732-7 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200025 ER PT J AU Doriese, WB Ullom, JN Beall, JA Duncan, WD Ferreira, L Hilton, GC Horansky, RD Irwin, KD Mates, JAB Reintsema, CD Schmidt, DR Vale, LR Xu, Y Zink, BL Bacrania, MK Hoover, AS Rudy, CR Rabin, MW Kilbourne, CA Boyce, KR Brown, LE King, JM Porter, FS AF Doriese, W. B. Ullom, J. N. Beall, J. A. Duncan, W. D. Ferreira, L. Hilton, G. C. Horansky, R. D. Irwin, K. D. Mates, J. A. B. Reintsema, C. D. Schmidt, D. R. Vale, L. R. Xu, Y. Zink, B. L. Bacrania, M. K. Hoover, A. S. Rudy, C. R. Rabin, M. W. Kilbourne, C. A. Boyce, K. R. Brown, L. E. King, J. M. Porter, F. S. TI Toward a 256-pixel array of gamma-ray microcalorimeters for nuclear-materials analysis SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE gamma-ray spectrometer; microcalorimeter; transition-edge sensor ID TRANSITION-EDGE SENSORS; EV ENERGY RESOLUTION; MULTIPLEXER; SYSTEM AB We are developing a gamma-ray spectrometer for the analysis of nuclear materials based on an array of superconducting transition-edge-sensor microcalorimeters. The instrument will include eight columns of time-division-SQUID multiplexing circuitry capable of reading out 256 sensors. Our most recent sensors are bulk (1.5 mm square x 0.25 mm thick) superconducting Sn absorbers glued to Mo/Cu bilayer thermometers. When fully populated, the active area of the spectrometer will be 5.76 cm(2), and the maximum count rate of the array will approach 20 kHz. Thus, our spectrometer will be comparable to the state-of-the-art 100 keV high-purity-Ge detector in count rate and collecting area, but with an order of magnitude better energy resolution. Half the detectors will be optimized for operation up to 100 keV, and the other half for operation up to 200 keV. A version of the spectrometer with a partially populated detector array was delivered to Los Alamos National Laboratory in June, 2007. We describe the present status of that instrument. In addition, we review results from a prototype array of 14 detectors that achieved 47 eV average energy resolution (full width at half maximum at 103 keV) and 25 eV resolution in the best detector. An important application of this technology is determining the total Pu content in spent reactor fuel without detailed knowledge of the reactor's operating history. C1 [Doriese, W. B.; Ullom, J. N.; Beall, J. A.; Duncan, W. D.; Ferreira, L.; Hilton, G. C.; Horansky, R. D.; Irwin, K. D.; Mates, J. A. B.; Reintsema, C. D.; Schmidt, D. R.; Vale, L. R.; Xu, Y.; Zink, B. L.] Natl Inst Stand & Technol, Boulder, CO 80303 USA. [Bacrania, M. K.; Hoover, A. S.; Rudy, C. R.; Rabin, M. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kilbourne, C. A.; Boyce, K. R.; Brown, L. E.; King, J. M.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Doriese, WB (reprint author), Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80303 USA. EM doriese@boulder.nist.gov RI Porter, Frederick/D-3501-2012; OI Porter, Frederick/0000-0002-6374-1119; Zink, Barry/0000-0001-7732-532X NR 12 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 754 EP 759 DI 10.1007/s10909-008-9750-5 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200027 ER PT J AU Ahmed, Z Akerib, DS Attisha, MJ Bailey, CN Baudis, L Bauer, DA Brink, PL Brusov, PP Bunker, R Cabrera, B Caldwell, DO Chang, CL Cooley, J Crisler, MB Cushman, P Daal, M DeJongh, F Dixon, R Dragowsky, MR Duong, L Ferril, R Figueroa-Feliciano, E Filippini, J Gaitskell, RJ Golwala, SR Grant, DR Hennings-Yeomans, R Holmgren, D Huber, ME Kamat, S Leclercq, S Mahapatra, R Mandic, V Meunier, P Mirabolfathi, N Nelson, H Ogburn, RW Pyle, M Qiu, X Ramberg, E Rau, W Reisetter, A Ross, RR Saab, T Sadoulet, B Sander, J Schnee, RW Seitz, DN Serfass, B Sundqvist, KM Thompson, JPF Wang, G Yellin, S Yoo, J Young, BA AF Ahmed, Z. Akerib, D. S. Attisha, M. J. Bailey, C. N. Baudis, L. Bauer, D. A. Brink, P. L. Brusov, P. P. Bunker, R. Cabrera, B. Caldwell, D. O. Chang, C. L. Cooley, J. Crisler, M. B. Cushman, P. Daal, M. DeJongh, F. Dixon, R. Dragowsky, M. R. Duong, L. Ferril, R. Figueroa-Feliciano, E. Filippini, J. Gaitskell, R. J. Golwala, S. R. Grant, D. R. Hennings-Yeomans, R. Holmgren, D. Huber, M. E. Kamat, S. Leclercq, S. Mahapatra, R. Mandic, V. Meunier, P. Mirabolfathi, N. Nelson, H. Ogburn, R. W. Pyle, M. Qiu, X. Ramberg, E. Rau, W. Reisetter, A. Ross, R. R. Saab, T. Sadoulet, B. Sander, J. Schnee, R. W. Seitz, D. N. Serfass, B. Sundqvist, K. M. Thompson, J. -P. F. Wang, G. Yellin, S. Yoo, J. Young, B. A. TI Status of the cryogenic Dark Matter Search experiment SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Dark Matter; WIMP; Transition Edge Sensor (TES) ID DETECTORS AB The Cryogenic Dark Matter Search experiment (CDMS) is using Phonon+ Ionization detectors to search for Dark Matter in the form of Weakly Interactive Massive Particles (WIMPs). We report the current status of the experiment and its perspective to achieve the sensitivity goal of the cross section: sigma (WIMP-nucleon)similar to 1 x 10(-44) cm(2) (Spin independent). C1 [Daal, M.; Filippini, J.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Nelson, H.; Ross, R. R.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Attisha, M. J.; Gaitskell, R. J.; Thompson, J. -P. F.] Brown Univ, Providence, RI 02912 USA. [Akerib, D. S.; Bailey, C. N.; Brusov, P. P.; Dragowsky, M. R.; Grant, D. R.; Hennings-Yeomans, R.; Kamat, S.; Schnee, R. W.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Bauer, D. A.; Crisler, M. B.; DeJongh, F.; Dixon, R.; Holmgren, D.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ross, R. R.; Sadoulet, B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Young, B. A.] Santa Clara Univ, Santa Clara, CA 95052 USA. [Cushman, P.; Duong, L.; Qiu, X.; Reisetter, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brink, P. L.; Cabrera, B.; Chang, C. L.; Cooley, J.; Ogburn, R. W.; Pyle, M.; Yellin, S.] Stanford Univ, Stanford, CA 94305 USA. [Bunker, R.; Caldwell, D. O.; Ferril, R.; Mahapatra, R.; Sander, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Huber, M. E.] Univ Colorado, Denver, CO USA. [Huber, M. E.] Hlth Sci Ctr, Denver, CO USA. [Leclercq, S.; Saab, T.] Univ Florida, Gainesville, FL 32611 USA. [Ahmed, Z.; Golwala, S. R.; Wang, G.] CALTECH, Pasadena, CA 91125 USA. [Baudis, L.] Rhein Westfal TH Aachen, D-52074 Aachen, Germany. [Rau, W.] Queens Univ, Kingston, ON K7L 3N6, Canada. [Figueroa-Feliciano, E.] MIT, Cambridge, MA 02139 USA. [Baudis, L.] Univ Zurich, CH-8057 Zurich, Switzerland. RP Mirabolfathi, N (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM mirabol@cosmology.berkeley.edu RI Huber, Martin/B-3354-2011; Bailey, Catherine/C-6107-2009; Qiu, Xinjie/C-6164-2012; Pyle, Matt/E-7348-2015; OI Pyle, Matt/0000-0002-3490-6754; Bunker, Raymond/0000-0003-2174-7632 NR 12 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 800 EP 805 DI 10.1007/s10909-008-9741-6 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200034 ER PT J AU Akerib, DS Bailey, CN Bauer, DA Brink, PL Bunker, R Cabrera, B Caldwell, DO Cooley, J Cushman, P DeJongh, F Dragowsky, MR Duong, L Figueroa-Feliciano, E Filippini, J Golwala, SR Grant, DR Hall, J Hennings-Yeomans, R Holmgren, D Huber, ME Irwin, KD Mahapatra, R Mirabolfathi, N Nelson, H Novak, L Ogburn, RW Pyle, M Qiu, X Ramberg, E Rau, W Reisetter, A Saab, T Sadoulet, B Sander, J Schmitt, RL Schnee, RW Seitz, DN Serfass, B Sundqvist, KM Tomada, A Yellin, S Yoo, J Young, BA AF Akerib, D. S. Bailey, C. N. Bauer, D. A. Brink, P. L. Bunker, R. Cabrera, B. Caldwell, D. O. Cooley, J. Cushman, P. DeJongh, F. Dragowsky, M. R. Duong, L. Figueroa-Feliciano, E. Filippini, J. Golwala, S. R. Grant, D. R. Hall, J. Hennings-Yeomans, R. Holmgren, D. Huber, M. E. Irwin, K. D. Mahapatra, R. Mirabolfathi, N. Nelson, H. Novak, L. Ogburn, R. W. Pyle, M. Qiu, X. Ramberg, E. Rau, W. Reisetter, A. Saab, T. Sadoulet, B. Sander, J. Schmitt, R. L. Schnee, R. W. Seitz, D. N. Serfass, B. Sundqvist, K. M. Tomada, A. Yellin, S. Yoo, J. Young, B. A. TI Present status of the SuperCDMS program SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Dark Matter; cryogenic detectors AB The expected final reach of the Weakly Interacting Massive Particle (WIMP) search experiment CDMS-II by the end of 2007 is a WIMP-nucleon cross-section sensitivity of 2.1x10(-44)cm(2). To proceed further in our search, we have proposed the SuperCDMS Phase A project that would deploy 42 1-inch thick Ge detectors, at a site deeper than the location of CDMS II, and reach a desired sensitivity goal of 1.3x10(-45)cm(2). These cross-sections are of interest and are complementary to Supersymmetry searches at the Large Hadron Collider (LHC) and future linear colliders. C1 [Brink, P. L.; Cabrera, B.; Cooley, J.; Novak, L.; Ogburn, R. W.; Pyle, M.; Tomada, A.; Yellin, S.] Stanford Univ, Palo Alto, CA 94304 USA. [Golwala, S. R.] CALTECH, Pasadena, CA 91125 USA. [Akerib, D. S.; Bailey, C. N.; Dragowsky, M. R.; Grant, D. R.; Hennings-Yeomans, R.; Schnee, R. W.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Bauer, D. A.; DeJongh, F.; Hall, J.; Holmgren, D.; Ramberg, E.; Schmitt, R. L.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Figueroa-Feliciano, E.] MIT, Cambridge, MA 02139 USA. [Irwin, K. D.] Natl Inst Stand & Technol, Boulder, CO USA. [Rau, W.] Queens Univ, Kingston, ON, Canada. [Young, B. A.] Santa Clara Univ, Santa Clara, CA 95053 USA. [Filippini, J.; Mirabolfathi, N.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bunker, R.; Caldwell, D. O.; Mahapatra, R.; Nelson, H.; Sander, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Huber, M. E.] Univ Colorado, Denver, CO 80202 USA. [Huber, M. E.] Hlth Sci Ctr, Denver, CO 80202 USA. [Saab, T.] Univ Florida, Gainesville, FL USA. [Cushman, P.; Duong, L.; Qiu, X.; Reisetter, A.] Univ Minnesota, Minneapolis, MN USA. RP Brink, PL (reprint author), Stanford Univ, Palo Alto, CA 94304 USA. EM pbrink@stanford.edu RI Huber, Martin/B-3354-2011; Bailey, Catherine/C-6107-2009; Qiu, Xinjie/C-6164-2012; Hall, Jeter/F-6108-2013; Pyle, Matt/E-7348-2015; OI Pyle, Matt/0000-0002-3490-6754; Bunker, Raymond/0000-0003-2174-7632 NR 7 TC 8 Z9 8 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 818 EP 823 DI 10.1007/s10909-008-9740-7 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200037 ER PT J AU Gorla, P Arnaboldi, C Beeman, J Capelli, S Giachero, A Gironi, L Pavan, M Pessina, G Pirro, S Previtali, E AF Gorla, P. Arnaboldi, C. Beeman, J. Capelli, S. Giachero, A. Gironi, L. Pavan, M. Pessina, G. Pirro, S. Previtali, E. TI Scintillating bolometers for double beta decay search SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Double Beta Decay; bolometers; CdWO4 ID DARK-MATTER; DISCRIMINATION; DETECTORS AB In the field of Double Beta Decay searches the possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the tiny expected signal, results very appealing. This very interesting possibility can be fulfilled in the case of a scintillating crystal bolometer containing a DBD emitter whose transition energy exceeds the one of the natural 2615 keV gamma line of Tl-208. We present the results achieved in the development of bolometric light detectors for double beta searches. The detectors are 1 mm thick germanium disk coated with a layer of SiO2 in order to increase the light collection. The adopted temperature sensors are NTD Ge thermistors optimized to work at temperatures between 9 and 13 mK. A light detector with a considerable large area (35 cm(2)) was constructed and run in a test measurement. A 140 g CdWO4 crystal (Cd-116 has a DBD transition energy of 2802 keV) was operated as bolometer and the scintillation light was read by the light detector. The excellent results combined with extreme easy light detector assembly represent the first tangible proof demonstrating the feasibility of this kind of technique. C1 [Gorla, P.; Giachero, A.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Coppito, Italy. [Arnaboldi, C.; Pessina, G.; Pirro, S.; Previtali, E.] Ist Nazl Fis Nucl, I-20126 Milan, Italy. [Capelli, S.; Gironi, L.; Pavan, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Beeman, J.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. RP Gorla, P (reprint author), Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, SS 17 Bis Km 18 910, I-67010 Coppito, Italy. EM paolo.gorla@lngs.infn.it RI Giachero, Andrea/I-1081-2013; Gorla, Paolo/B-5243-2014; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; OI Giachero, Andrea/0000-0003-0493-695X; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; pavan, maura/0000-0002-9723-7834; Pessina, Gianluigi Ezio/0000-0003-3700-9757 NR 13 TC 4 Z9 4 U1 1 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 854 EP 859 DI 10.1007/s10909-008-9758-x PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200043 ER PT J AU Dreyer, JG Hennig, W Tan, H Niedermayr, T Breus, D Drury, OB Warburton, WK Friedrich, S AF Dreyer, J. G. Hennig, W. Tan, H. Niedermayr, T. Breus, D. Drury, O. B. Warburton, W. K. Friedrich, S. TI Development of a digital signal readout system for large TES arrays SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE digital signal processor; microcalorimeters; detector arrays ID SPECTROSCOPY; DESIGN AB We are developing a digital signal readout system for arrays of high-resolution gamma and fast-neutron detectors based on superconducting transition edge sensors (TESs). The readout system allows for real time data acquisition and analysis at count rates exceeding 100 Hz for pulses with several similar to ms decay times with minimal loss of energy resolution compared to optimum filtering. This digital signal processing system had originally been developed for gamma-ray analysis with HPGe detectors, and we have modified the hardware and firmware to accommodate the slower TES signals. Parameters of the filtering algorithm have been optimized to maximize either resolution or throughput. Here we present a summary of the digital signal processing hardware and discuss its initial performance. C1 [Dreyer, J. G.; Niedermayr, T.; Drury, O. B.; Friedrich, S.] Adv Detector Grp, LLNL, Livermore, CA 94550 USA. [Dreyer, J. G.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hennig, W.; Tan, H.; Breus, D.; Warburton, W. K.] X Ray Instrumentat Associates XIA LLC, Hayward, CA 94544 USA. RP Dreyer, JG (reprint author), Adv Detector Grp, LLNL, Livermore, CA 94550 USA. EM jdreyer@berkeley.edu NR 8 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 958 EP 963 DI 10.1007/s10909-008-9766-x PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200060 ER PT J AU Porter, FS Beiersdorfer, P Brown, GV Doriese, W Gygax, J Kelley, RL Kilbourne, CA King, J Irwin, K Reintsema, C Ullom, J AF Porter, F. S. Beiersdorfer, P. Brown, G. V. Doriese, W. Gygax, J. Kelley, R. L. Kilbourne, C. A. King, J. Irwin, K. Reintsema, C. Ullom, J. TI The EBIT calorimeter spectrometer: A new, permanent user facility at the LLNL EBIT SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE X-ray; detector; cryogenic; astrophysics ID ASTRO-E2; EMISSION; XRS AB The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 mu s event timing, and capable of uninterrupted acquisition sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument. C1 [Porter, F. S.; Gygax, J.; Kelley, R. L.; Kilbourne, C. A.; King, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beiersdorfer, P.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Doriese, W.; Irwin, K.; Reintsema, C.; Ullom, J.] Natl Inst Stand & Technol, Boulder, CO USA. RP Porter, FS (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM porter@milkyway.gsfc.nasa.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; XRAY, SUZAKU/A-1808-2009 OI Porter, Frederick/0000-0002-6374-1119; NR 9 TC 12 Z9 12 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2008 VL 151 IS 3-4 BP 1061 EP 1066 DI 10.1007/s10909-008-9788-4 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 277HB UT WOS:000254202200076 ER PT J AU Garcia-Revilla, S Valiente, R Romanyuk, YE Pollnau, M AF Garcia-Revilla, S. Valiente, R. Romanyuk, Y. E. Pollnau, M. TI Temporal dynamics of upconversion luminescence in Er3+, Yb3+ co-doped crystalline KY(WO4)(2) thin films SO JOURNAL OF LUMINESCENCE LA English DT Article; Proceedings Paper CT 16th International Conference on Dynamical Processes in Excited States of Solids CY JUN 17-22, 2007 CL Segovia, SPAIN DE upconversion; KY(WO4)(2); Er3+; Yb3+; thin films ID LASER AB Crystalline Er3+ and Yb3+ singly and doubly doped KY(WO4)(2) thin films were grown by low-temperature liquid-phase epitaxy. Absorption, luminescence, excitation and temporal evolution measurements were carried out for both Er3+ and Yb3+ transitions from 10 K to room temperature. Green Er3+ upconversion luminescence was observed after Yb3+ and Er3+ excitation. The mechanisms responsible for the upconversion phenomena detected in each case were identified. (c) 2007 Elsevier B.V. All rights reserved. C1 [Garcia-Revilla, S.; Valiente, R.] Univ Cantabria, Fac Ciencias, Dept Fis Aplicada, E-39005 Santander, Spain. [Romanyuk, Y. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pollnau, M.] Univ Twente, MESA, Res Inst, Integrated Opt Micro Syst Grp, NL-7500 AE Enschede, Netherlands. RP Valiente, R (reprint author), Univ Cantabria, Fac Ciencias, Dept Fis Aplicada, Avda Los Castros S-N, E-39005 Santander, Spain. EM valientr@unican.es RI Valiente, Rafael/M-1680-2014; OI Valiente, Rafael/0000-0001-9855-8309 NR 5 TC 13 Z9 13 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD MAY-JUN PY 2008 VL 128 IS 5-6 BP 934 EP 936 DI 10.1016/j.jlumin.2007.12.025 PG 3 WC Optics SC Optics GA 294RO UT WOS:000255423400072 ER PT J AU Majors, PD McLean, JS Scholten, JCM AF Majors, Paul D. McLean, Jeffrey S. Scholten, Johannes C. M. TI NMR bioreactor development for live in-situ microbial functional analysis SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE nuclear magnetic resonance (NMR) spectroscopy; bioreactor; Eubacterium aggregans; ethanol fermentation; in-vivo metabolomics; bio-based products; bioenergy ID NUCLEAR-MAGNETIC-RESONANCE; SUBSECOND TIME-SCALE; ESCHERICHIA-COLI; VIVO NMR; SACCHAROMYCES-CEREVISIAE; WATER-TREATMENT; SPECTROSCOPY; DYNAMICS; CULTURE; BIOMASS AB A live, in-situ metabolomics capability was developed for prokaryotic cultures under controlled growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed H-1 NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuel production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study also showed that E. aggregans produces lactate end product in significant concentrations-a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics/systems biology methods are discussed. (C) 2008 Elsevier Inc. All rights reserved. C1 [Majors, Paul D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [McLean, Jeffrey S.] J Craig Venter Inst, La Jolla, CA USA. [Scholten, Johannes C. M.] Merck Co Inc, West Point, PA USA. RP Majors, PD (reprint author), Pacific NW Natl Lab, Div Biol Sci, 3335 Q Ave,MSIN K8-98, Richland, WA 99352 USA. EM paul.majors@pnl.gov RI McLean, Jeffrey/A-8014-2012 OI McLean, Jeffrey/0000-0001-9934-5137 NR 39 TC 14 Z9 14 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD MAY PY 2008 VL 192 IS 1 BP 159 EP 166 DI 10.1016/j.jmr.2008.02.014 PG 8 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 299OK UT WOS:000255764700018 PM 18314365 ER PT J AU Fishman, RS Reboredo, FA AF Fishman, Randy S. Reboredo, Fernando A. TI Coercive field of a polycrystalline ferrimagnet with uni-axial anisotropy SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE ferrimagnet; coercive; molecule-based magnet ID MIXED-VALENCY; OXALATE; MAGNETIZATION; MAGNETS; CATION AB Unlike the coercive field H-c of a bulk ferrimagnet, which diverges at the compensation temperature T-comp, the coercive field of a polycrystalline ferrimagnet with uni-axial anisotropy is shown to have a minimum at T-comp. Despite this behavior, the field required for domain-wall motion still diverges at the compensation temperature. These ideas are used to treat a ferrimagnetic class of molecule-based magnets, the bimetallic oxalates, that exhibit a minimum coercivity at T-comp. (c) 2008 Elsevier B.V. All rights reserved. C1 [Fishman, Randy S.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fishmanrs@ornl.gov RI Reboredo, Fernando/B-8391-2009; Fishman, Randy/C-8639-2013 NR 24 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY PY 2008 VL 320 IS 10 BP 1700 EP 1704 DI 10.1016/j.jmmm.2008.01.040 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 280JJ UT WOS:000254422300009 ER PT J AU Soukiassian, A Tian, W Vaithyanathan, V Haeni, JH Chen, LQ Xi, XX Schlom, DG Tenne, DA Sun, HP Pan, XQ Choi, KJ Eom, CB Li, YL Jia, QX Constantin, C Feenstra, RM Bernhagen, M Reiche, P Uecker, R AF Soukiassian, A. Tian, W. Vaithyanathan, V. Haeni, J. H. Chen, L. Q. Xi, X. X. Schlom, D. G. Tenne, D. A. Sun, H. P. Pan, X. Q. Choi, K. J. Eom, C. B. Li, Y. L. Jia, Q. X. Constantin, C. Feenstra, R. M. Bernhagen, M. Reiche, P. Uecker, R. TI Growth of nanoscale BaTiO3/SMO3 superlattices by molecular-beam epitaxy SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID THIN-FILMS; SRTIO3; FERROELECTRICITY; ENHANCEMENT; FABRICATION; DIELECTRICS; SURFACE AB Commensurate BaTiO3/SrTiO3 superlattices were grown by reactive molecular-beam epitaxy on four different substrates: TiO2-terminated (001) SrTiO3, (101) DyScO3, (101) GdSCO3, and (101) SMScO3. With the aid of reflection high-energy electron diffraction (RHEED), precise single-monolayer doses of BaO, SrO, and TiO2 Were deposited sequentially to create commensurate BaTiO3/SrTiO3 superlattices with a variety of periodicities. X-ray diffraction (XRD) measurements exhibit clear superlattice peaks at the expected positions. The rocking curve full width half-maximum of the superlattices was as narrow as 7 are s (0.002 degrees). High-resolution transmission electron microscopy reveals nearly atomically abrupt interfaces. Temperature-dependent ultraviolet Raman and XRD, were used to reveal the paraelectric-to-ferroelectric. transition temperature (T-C). Our results demonstrate the importance of finite size and strain effects on the T-C of BaTiO3/SrTiO3 superlattices. In addition to probing finite size and strain effects, these hetero structures may be relevant for novel phonon devices, including mirrors, filters, and cavities for coherent phonon generation and control. C1 [Soukiassian, A.; Tian, W.; Vaithyanathan, V.; Haeni, J. H.; Chen, L. Q.; Xi, X. X.; Schlom, D. G.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Tenne, D. A.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Sun, H. P.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Choi, K. J.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Li, Y. L.; Jia, Q. X.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Constantin, C.; Feenstra, R. M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Bernhagen, M.; Reiche, P.; Uecker, R.] Inst Crystal Growth, D-12489 Berlin, Germany. RP Soukiassian, A (reprint author), Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. EM aqs11@psu.edu RI Schlom, Darrell/J-2412-2013; Choi, Kyoung Jin/N-4662-2013; Tenne, Dmitri/C-3294-2009; Jia, Q. X./C-5194-2008; Chen, LongQing/I-7536-2012; Eom, Chang-Beom/I-5567-2014; Feenstra, Randall/P-2530-2014; Choi, Kyoung Jin/D-6941-2013 OI Schlom, Darrell/0000-0003-2493-6113; Tenne, Dmitri/0000-0003-2697-8958; Chen, LongQing/0000-0003-3359-3781; Feenstra, Randall/0000-0001-7120-5685; NR 40 TC 23 Z9 23 U1 2 U2 36 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAY PY 2008 VL 23 IS 5 BP 1417 EP 1432 DI 10.1557/JMR.2008.0181 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA 296LC UT WOS:000255543800030 ER PT J AU Park, JY Ogletree, DF Salmeron, M Jenks, CJ Thiel, PA Brenner, J Dubois, JM AF Park, Jeong Young Ogletree, D. F. Salmeron, M. Jenks, C. J. Thiel, P. A. Brenner, J. Dubois, J. M. TI Friction anisotropy: A unique and intrinsic property of decagonal quasicrystals SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID SURFACE OXIDATION; COATINGS; MICROSCOPY AB We show that friction anisotropy is an intrinsic property of the atomic structure of Al-Ni-Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science 309, 1354 (2005)]. Friction anisotropy is manifested in both nanometer-size contacts obtained with sharp atomic force microscope tips and macroscopic contacts produced in pin-on-disk tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure. C1 [Park, Jeong Young; Ogletree, D. F.; Salmeron, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Brenner, J.] Austrian Ctr Competence Tribol Res GmbH, A-2700 Wiener Neustadt, Austria. [Brenner, J.] Austrian Res Ctr Seibersdorf Res GmbH, A-2444 Seibersdorf, Austria. [Dubois, J. M.] Nancy Univ Ecole Mines, Univ Henri Poincare, Inst Natl Polytech Lorraine, CNRS,FR2797,Inst Jean Lamour,LSG2M, F-54042 Nancy, France. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Park, Jeong Young/A-2999-2008; Ogletree, D Frank/D-9833-2016; Krailers, Niramai/K-8496-2016 OI Ogletree, D Frank/0000-0002-8159-0182; Krailers, Niramai/0000-0002-7053-7087 NR 22 TC 19 Z9 19 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD MAY PY 2008 VL 23 IS 5 BP 1488 EP 1493 DI 10.1557/JMR.2008.0187 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 296LC UT WOS:000255543800038 ER PT J AU Rawers, JC AF Rawers, James C. TI Alloying effects on the microstructure and phase stability of Fe-Cr-Mn steels SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ATOMIC INTERACTIONS; NITROGEN; CARBON AB Austenitic Fe-Cr-Mn stainless steels interstitially alloyed with nitrogen have received considerable interest lately, due to their many property improvements over conventional Fe-Cr-Ni alloys. The addition of nitrogen to Fe-Cr-Mn stabilizes the fcc structure and increases the carbon solubility. The benefits of increased interstitial nitrogen and carbon content include: enhanced strength, hardness, and wear resistance. This study examines the effect of carbon, silicon, molybdenum, and nickel additions on the phase stability and tensile behavior of nitrogen-containing Fe-Cr-Mn alloys. Nitrogen and carbon concentrations exceeding 2.0 wt.% were added to the base Fe-18Cr-18Mn composition without the formation of nitride or carbide precipitates. Minor additions of molybdenum, silicon, and nickel did not affect nitrogen interstitial solubility, but did reduce carbon solubility resulting in the formation of M23C6 (M=Cr, Fe, Mo) carbides. Increasing the interstitial content increases the lattice distortion strain, which is directly correlated with an increase in yield stress. C1 US DOE, Natl Energy Technol Lab, Albany, OR USA. RP Rawers, JC (reprint author), US DOE, Natl Energy Technol Lab, Albany, OR USA. EM James.Rawers@NETL.DOE.GOV NR 31 TC 10 Z9 10 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2008 VL 43 IS 10 BP 3618 EP 3624 DI 10.1007/s10853-008-2576-3 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 288CQ UT WOS:000254964200039 ER PT J AU Roy, B Reedy, RC Readey, DW AF Roy, B. Reedy, R. C. Readey, D. W. TI Two-step annealing of hot wire chemical vapor deposited a-Si : H films SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID SOLID-PHASE CRYSTALLIZATION; SILICON THIN-FILMS; HYDROGENATED AMORPHOUS-SILICON; POLYCRYSTALLINE SILICON; MICROCRYSTALLINE SILICON; GRAIN-GROWTH; TEMPERATURE; RECRYSTALLIZATION; MICROSTRUCTURE; TRANSISTORS AB A two-step annealing process was used to investigate the effect of dehydrogenation on crystallization and grain growth of low and high hydrogen content hot wire chemical vapor deposited (HWCVD) a-Si:H films. A low temperature pre-annealing followed by a rapid thermal annealing step at 600 C was carried out. For the high hydrogen content film XRD (111) peak narrowed quite a bit, while opposite effect was observed for the low hydrogen content film. According to the grain sizes as calculated from TEM images, grain sizes of both of the two-step annealed high and low hydrogen content films are smaller than that of the single stage annealed film. C1 [Roy, B.] New Mexico Inst Technol, Socorro, NM 87801 USA. [Roy, B.; Readey, D. W.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Reedy, R. C.] NREL, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Roy, B (reprint author), New Mexico Inst Technol, Jones Hall 159,801 Leroy Pl, Socorro, NM 87801 USA. EM broy@nmt.edu NR 31 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD MAY PY 2008 VL 19 IS 5 BP 418 EP 423 DI 10.1007/s10854-007-9358-6 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 267PS UT WOS:000253522300004 ER PT J AU Triffo, WJ Palsdottir, H McDonald, KL Lee, JK Inman, JL Bissell, MJ Raphael, RM Auer, M AF Triffo, W. J. Palsdottir, H. McDonald, K. L. Lee, J. K. Inman, J. L. Bissell, M. J. Raphael, R. M. Auer, M. TI Controlled microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography SO JOURNAL OF MICROSCOPY LA English DT Article; Proceedings Paper CT Conference on New Developments in High-Pressure Freezing CY OCT 09-11, 2006 CL Max Planck Inst Mol Cell Biol & Genet, Dresden, GERMANY HO Max Planck Inst Mol Cell Biol & Genet DE electron tomography; freeze substitution; high-pressure freezing; mammary organoid; microdialysis tubing; outer hair cell ID OUTER HAIR CELL; RECONSTITUTED BASEMENT-MEMBRANE; MAMMARY EPITHELIAL-CELLS; CAENORHABDITIS-ELEGANS; MICROSCOPY; VISUALIZATION; LIGHT; GFP AB High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding and final orientation for sectioning and subsequent transmission electron microscopy. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 mu m, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography. C1 [Triffo, W. J.; Palsdottir, H.; Lee, J. K.; Inman, J. L.; Bissell, M. J.; Auer, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Triffo, W. J.; Raphael, R. M.] Rice Univ, Dept Bioengn, Houston, TX 77251 USA. [McDonald, K. L.] Univ Calif Berkeley, Electron Microscope Lab, Berkeley, CA 94720 USA. RP Triffo, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,Mail Stop Donner, Berkeley, CA 94720 USA. EM WJTriffo@lbl.gov; MAuer@lbl.gov FU NCI NIH HHS [5 R01 CA64786-07, R01 CA064786, R01 CA064786-07]; NIDCD NIH HHS [DC07680, R55 DC007680] NR 35 TC 7 Z9 7 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 EI 1365-2818 J9 J MICROSC-OXFORD JI J. Microsc.. PD MAY PY 2008 VL 230 IS 2 BP 278 EP 287 DI 10.1111/j.1365-2818.2008.01986.x PG 10 WC Microscopy SC Microscopy GA 292SN UT WOS:000255286500015 PM 18445158 ER PT J AU Ruzer, LS AF Ruzer, Lev S. TI Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE nanoparticle; radon progeny; particle surface area; unattached fraction; aerosols; instrumentation ID ANLAGERUNG RADIOAKTIVER ATOME; AEROSOLE SCHWEBSTOFFE AB A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the "unattached fraction of radon progeny" onto nanometer aerosols. The proposed approach represents a synthesis of: (1) Derived direct analytical correlation between the "unattached fraction" of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter; (2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 mu m. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Ruzer, LS (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. EM LSRuzer@lbl.gov NR 16 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD MAY PY 2008 VL 10 IS 5 BP 761 EP 766 DI 10.1007/s11051-007-9307-6 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 291KK UT WOS:000255195700005 ER PT J AU Wu, H Wang, J Wang, ZM Fisher, DR Lin, YH AF Wu, Hong Wang, Jun Wang, Zhemin Fisher, Darrell R. Lin, Yuehe TI Apoferritin-templated yttrium phosphate nanoparticle conjugates for radioimmunotherapy of cancers SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE cancer; apoferritin; yttrium-90; radioimmunotherapy; nanoparticles ID PROTEIN CAGE; HORSE SPLEEN; FERRITIN; LABELS; ANTIBODIES; THERAPY AB We report a templated-synthetic approach based on protein-cage of apoferritin to prepare radionuclide nanoparticle (NP) conjugates. Non-radioactive yttrium (Y-89) was used as a model target and surrogate for radioyttrium (Y-90) to prepare the nanoparticle conjugate. The center cavity and multiple channel structure of apoferritin offer a fast and facile method to precipitate yttrium phosphate by diffusing yttrium and phosphate ions into the cavity of apoferritin, resulting a core-shell nanoparticle. The yttrium phosphate/apoferritin nanoparticle was functionalized with biotin for further application. The synthesized nanoparticle was characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). We found that the resulting nanoparticles were uniform in size, with a diameter of around 8 nm. We tested the pre-targeting capability of the biotin-modified yttrium phosphate/apoferritin nanoparticle conjugate with streptavidin-modified magnetic beads and with aid of streptavidin-modified fluorescein isothiocyanate (FITC) tracer. This work shows that an yttrium phosphate NP conjugate provides a fast, simple and efficient method to prepare radioactive yttrium conjugate for potential applications in radioimmunotherapy of cancer. C1 [Wu, Hong; Wang, Jun; Wang, Zhemin; Fisher, Darrell R.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Wang, Zheming/E-8244-2010; Lin, Yuehe/D-9762-2011 OI Wang, Zheming/0000-0002-1986-4357; Lin, Yuehe/0000-0003-3791-7587 FU NINDS NIH HHS [U01 NS058161-01] NR 28 TC 17 Z9 17 U1 0 U2 21 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD MAY PY 2008 VL 8 IS 5 BP 2316 EP 2322 DI 10.1166/jnn.2008.177 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 305EJ UT WOS:000256160300014 PM 18572643 ER PT J AU Datta, S Cohen, JD Xu, YQ Mahan, AH Branz, HM AF Datta, Shouvik Cohen, J. David Xu, Yueqin Mahan, A. H. Branz, Howard M. TI Junction capacitance study of an oxygen impurity defect exhibiting configuration relaxation in amorphous silicon-germanium alloys deposited by hot-wire CVD SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE amorphous semiconductors; germanium; silicon; solar cells; photovoltaics; dielectric properties; relaxation; electric modulus; chemical vapor deposition; absorption; optical spectroscopy; photoinduced effects; defects ID A-SI-H; METASTABLE DEFECTS; SEMICONDUCTORS; FILMS; GAP; SPECTROSCOPY; ENERGY; STATES AB We report the observation of light induced electron capture in oxygen contaminated (similar to 5 x 10(20) cm(-3)) hydrogenated amorphous silicon-germanium alloys grown by hot-wire chemical vapor deposition (HWCVD). By examining the time evolution of dark capacitance after 1.2 eV photoexcitation, we are able to estimate the free energy barrier (>= 0.8 eV) for the release of electrons into the conduction band. Such a large thermal barrier, for a defect whose optical threshold is centered (similar to 1.35 eV) so close to the band-gap (1.5 eV), indicates significant configurational relaxation once the oxygen impurity state is occupied with photoexcited electrons. (C) 2007 Elsevier B.V. All rights reserved. C1 [Datta, Shouvik; Cohen, J. David] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Xu, Yueqin; Mahan, A. H.; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Datta, S (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM sdatta@uoregon.edu NR 21 TC 3 Z9 3 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2126 EP 2130 DI 10.1016/j.jnoncrysol.2007.10.036 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400014 ER PT J AU Stradins, P Kondo, M Matsuda, A AF Stradins, P. Kondo, Michio Matsuda, Akihisa TI Thermal stability of light-induced defects in hydrogenated amorphous silicon: Effect on defect creation kinetics and role of network microstructure SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE amorphous semiconductors; silicon; chemical vapor deposition; plasma deposition; photoinduced effects; infrared properties; electron spin resonance; defects ID A-SI-H; METASTABLE DEFECTS; DEGRADATION AB The kinetics of light-induced defect creation in a-Si:H is studied in early-time limit and as function of pre-existing defects of different thermal stability by electron spin resonance and optical spectroscopy techniques. Both for cw and for laser pulse exposures, the early-time kinetics follows sublinear t(beta) time dependences, similar to the long-time limit. In addition, the overall defect creation rate is not a single function of the total defect number. Instead, it depends on the thermal stability, or annealing energy distribution, of the defects present in the film. Furthermore, creation of the thermally less stable defects is unaffected by the presence of a large number of stable defects introduced by pre-exposure at a higher temperature. These findings question the existing defect creation models. Thermal stability of the light-induced defects depends on the network microstructure, the less stable defects being created in a-Si:H deposited near microcrystalline transition. Published by Elsevier B.V. C1 [Stradins, P.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kondo, Michio; Matsuda, Akihisa] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Stradins, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM pauls_stradins@nrel.gov NR 11 TC 6 Z9 6 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2144 EP 2148 DI 10.1016/j.jnoncrysol.2007.09.011 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400018 ER PT J AU Jiang, CS Yan, B Yan, Y Teplin, CW Reedy, R Moutinho, HR Al-Jassim, MM Yang, J Guha, S AF Jiang, C. -S. Yan, B. Yan, Y. Teplin, C. W. Reedy, R. Moutinho, H. R. Al-Jassim, M. M. Yang, J. Guha, S. TI Effect of P incorporation on aggregation of nanocrystallites in amorphous and nanocrystalline mixed-phase silicon thin films SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE nanocrystalline materials; amorphous silicon; atomic force microscopy; thin films ID SOLAR-CELLS AB We report the effects of P incorporation on the nanometer-scale structural and electrical properties of amorphous and nanocrystalline mixed-phase Si:H films. In the intrinsic and weakly P-doped (3 x 10(18) at/cm(3)) films, the nanocrystallites aggregate to cone-shaped structures. Conductive atomic force microscopy images showed high current flows through the nanocrystalline cones and a distinct two-phase structure in the micrometer range. Adding PH(3) into the processing gas moved the amorphous/nanocrystalline transition to a higher hydrogen dilution ratio required for achieving a similar Raman crystallinity. In a heavily P-doped (2 x 10(21) at/cm(3)) film, the nanocrystalline aggregation disappeared, where isolated grains of nanometer sizes were distributed throughout the amorphous matrix. The heavily doped mixed-phase film with 5-10% crystal volume fraction showed a dramatic increase in conductivity. We offer an explanation for the nanocrystalline cone formation based on atomic hydrogen enhanced surface diffusion model, and propose that the coverage of P-related radicals on the existing nanocrystalline surface during film growth and the P segregation in grain boundaries are responsible for preventing new nucleation on the surface of the existing nanocrystallites, resulting in nanocrystallites dispersed throughout the amorphous matrix. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved. C1 [Jiang, C. -S.; Yan, Y.; Teplin, C. W.; Reedy, R.; Moutinho, H. R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yan, B.; Yang, J.; Guha, S.] United Solar Ovonic LLC, Troy, MI 48084 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun_sheng_jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012 NR 11 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2276 EP 2281 DI 10.1016/j.jnoncrysol.2007.09.015 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400047 ER PT J AU Yue, GZ Yan, BJ Teplin, C Yang, J Guha, S AF Yue, Guozhen Yan, Baojie Teplin, Charles Yang, Jeffrey Guha, Subhendu TI Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE amorphous semiconductors; silicon; solar cells AB The effect of a-Si:H i/p buffer layer on the performance of nc-Si:H solar cells is studied systematically. The results show that for thin nc-Si:H cells, an optimized i/p buffer layer significantly reduces the dark current thus increases the open-circuit voltage. We believe that the carrier recombination at the i/p interface is one of the determining factors for the nc-Si:H cell performance, especially for cells with a thin intrinsic layer. Therefore, optimizing the i/p buffer layer is one of the key factors for achieving high efficiency nc-Si:H solar cells. This interface effect is less pronounced as the nc-Si:H intrinsic layer thickness increases, where the recombination in the bulk becomes a dominant factor. Combining the improved nc-Si:H intrinsic layer with a proper hydrogen dilution and an optimized a-Si:H i/p buffer layer, the performance of nc-Si:H single-junction and a-Si:H/a-SiGe:H/nc-Si:H triple junction cells is significantly improved. (C) 2007 Elsevier B.V. All rights reserved. C1 [Yue, Guozhen; Yan, Baojie; Yang, Jeffrey; Guha, Subhendu] United solar Ovon LLC, Troy, MI 48084 USA. [Teplin, Charles] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, BJ (reprint author), United solar Ovon LLC, 1100 W Maple Rd, Troy, MI 48084 USA. EM byan@uni-solar.com NR 7 TC 21 Z9 24 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2440 EP 2444 DI 10.1016/j.jnoncryso1.2007.09.037 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400082 ER PT J AU Ghosh, D Shinar, R Dalal, V Zhou, Z Shinar, J AF Ghosh, Debju Shinar, Ruth Dalal, Vikram Zhou, Zhaoqun Shinar, Joseph TI Amorphous and nanocrystalline p-i-n Si and Si,Ge photodetectors for structurally integrated O-2 sensors SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE nanocrystalline; silicon; sensors; plasma deposition ID DISSOLVED-OXYGEN AB Recent efforts to develop compact, field-deployable photoluminescence (PL)-based chemical and biological sensors have focused on structurally integrating an array of organic light emitting device (OLED) pixels, which serve as the excitation source, with a sensing film, and a thin-film photodetector (PD). To that end, VHF and ECR were used for fabricating and comparing amorphous and nanocrystalline p-i-n Si- and Si,Ge-based PDs for monitoring O-2, which is preferably determined by monitoring the PL decay time, rather than the PL intensity, of the sensing film. This approach eliminates the need for frequent sensor calibration and, as pulsed OLED excitation is employed in this mode, the need for optical filters, which lead to bulkier sensors. Therefore, the development of the PDs also focused on increasing their speed, and understanding the factors affecting it, such as the device structure and boron diffusion during growth from the p+ to the i layer in p-i-n PDs. Incorporating a SiC buffer layer at the p+/i interface and a superstrate structure, where the p+ layer was grown last, increased the speed. The effects of Ge, p+ layer thickness, nanocrystallinity, defect states, and the illumination wavelength on the speed are also discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Shinar, Ruth; Dalal, Vikram] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Ghosh, Debju; Dalal, Vikram; Shinar, Joseph] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Zhou, Zhaoqun; Shinar, Joseph] US DOE, Ames Lab, Ames, IA 50011 USA. [Zhou, Zhaoqun; Shinar, Joseph] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Shinar, R (reprint author), Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. EM rshinar@iastate.edu NR 8 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2606 EP 2609 DI 10.1016/j.jnoncryso1.2007.09.065 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400118 ER PT J AU Ganjoo, A Jain, H Khalid, S AF Ganjoo, Ashtosh Jain, H. Khalid, S. TI Atomistic observation of photo-expansion and photo-contraction in chalcogenide films by in situ EXAFS SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE sychrotron radiation; chalcogenides; laser-matter interactions; X-ray fluorescence; photo-induced effects; structure; short-range order; X-ray absorption ID AMORPHOUS-SEMICONDUCTORS; PHOTOSTRUCTURAL CHANGES; PHOTOINDUCED CHANGES; STRUCTURAL-CHANGES; AS2SE3; SELENIUM; LIGHT AB In situ EXAFS measurements have been performed to study the changes in the local structure of a-As2S3 (around As and S K-edges) and a-GeSe2 (around Ge and Se K-edges) thin films. To study the effect of illumination on the local structure and environment, the structural parameters (nearest neighbor distances, Debye-Waller factor) are estimated for as-deposited films, during illumination and after illumination for both these compositions. For As2S3 films, there is an expansion in the sulfur nearest neighbor distances and a small contraction in the Arsenic nearest neighbor distance during illumination. For GeSe2 films, both Ge and Se show a contraction in the nearest neighbor distances by illumination. Ordering of the structure (a decrease in the Debye Waller factor) is seen with illumination in both the compositions. a-As2S3 films show larger photo-induced changes and also a larger transient part in the changes as compared to a-GeSe2 films, which is suggested to be due to a more 3d rigid structure in GeSe2. Larger changes are seen around the chalcogen atom as compared to As and Ge atoms. From the results, we are able to confirm photo-expansion in As2S3 films and photo-contraction in GeSe2 at an atomistic level. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ganjoo, Ashtosh; Jain, H.] Lehigh Univ, Ctr Opt Technol, Bethlehem, PA 18015 USA. [Ganjoo, Ashtosh; Jain, H.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Khalid, S.] Brookhaven Natl Lab, New York, NY USA. RP Ganjoo, A (reprint author), Lehigh Univ, Ctr Opt Technol, Bethlehem, PA 18015 USA. EM asg2@lehigh.edu NR 23 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2673 EP 2678 DI 10.1016/j.jnoncryso1.2007.09.055 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400133 ER PT J AU Duenow, JN Gessert, TA Wood, DM Young, DL Coutts, TJ AF Duenow, Joel N. Gessert, Timothy A. Wood, David M. Young, David L. Coutts, Timothy J. TI Effects of hydrogen content in sputtering ambient on ZnO : Al electrical properties SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE II-VI semiconductors; sputtering; indium tin oxide and other transparent conductors ID TRANSPARENT CONDUCTING OXIDES; FILMS; MOLYBDENUM; ALUMINUM AB ZnO-based transparent conducting oxide (TCO) thin films have received increased attention recently because of their potential to reduce production costs compared to those of the prevalent TCO indium tin oxide (ITO). Undoped ZnO and ZnO:Al (0.1, 0.2, 0.5, 1, and 2 wt% Al(2)O(3)) polycrystalline films were deposited by RF magnetron sputtering. Controlled incorporation of H(2) and O(2) in the Ar sputtering ambient was investigated. Though optimal substrate temperature was found to be 200 C for films grown in 100% Ar, the addition of H(2) permits improved electrical performance for room-temperature depositions. Temperature-dependent Hall data suggest that ionized impurity and acoustic phonon scattering dominate at high and intermediate carrier concentration levels respectively, with evidence of temperature-activated transport at the lowest levels. Lightly doped ZnO:Al demonstrates reduced infrared absorption compared to the standard 2 wt%-doped ZnO:Al, which may be beneficial to device performance. (C) 2008 Published by Elsevier B.V. C1 [Duenow, Joel N.; Wood, David M.] Colorado Sch Mines, Golden, CO 80401 USA. [Gessert, Timothy A.; Young, David L.; Coutts, Timothy J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Duenow, JN (reprint author), Colorado Sch Mines, 1523 Illinois St, Golden, CO 80401 USA. EM joel_duenow@nrel.gov NR 9 TC 26 Z9 28 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2787 EP 2790 DI 10.1016/j.jnoncrysol.2007.10.070 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400158 ER PT J AU Wang, WN Schiff, E Wang, Q AF Wang, Weining Schiff, Eric Wang, Qi TI Amorphous silicon/polyaniline heterojunction solar cells: Fermi levels and open-circuit voltages SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 22nd International Conference on Amorphous and Nanocrystalline Semiconductors CY AUG 19-24, 2007 CL Breckenridge, CO SP Univ Toledo, PVIC, NREL, United Solar, Forschungszentrum Julich, Hewlett Packard, OptiSolar, PARC, Sanyo, Sharp DE solar cells ID CONDUCTING-POLYMER; SILICON; POLYANILINE AB We fabricated hydrogenated amorphous silicon/polyaniline n-i-p heterojunction solar cells incorporating a doped, hole conducting polyaniline (PANI) layer. The cells were prepared by spin-casting differing polyaniline dispersions corresponding to film conductivities ranging from 10(-2) to 10(2) S/m. The open-circuit voltages V-OC of the cells ranged from 0.5-0.7 V. While these open-circuit voltages are lower than for the best a-Si:H cells utilizing nanocrystalline Si or a-SiC:H p-layers, they illustrate well how open-circuit voltages are limited by the work function of the contacting material. They also give insight into the mechanism limiting V-OC for crystal silicon/PANI n/p solar cells, for which V-OC varies little for PAN I conductivities greater than 10(-1) S/cm. The comparison excludes electrophoresis effects in the PANI as the limiting mechanism. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wang, Weining; Schiff, Eric] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Wang, Qi] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, WN (reprint author), Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. EM wwang@phy.syr.edu RI Wang, Weining/E-3435-2010; Wang, Weining/A-3589-2012; OI Schiff, Eric/0000-0002-4104-7038 NR 17 TC 19 Z9 19 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 1 PY 2008 VL 354 IS 19-25 BP 2862 EP 2865 DI 10.1016/j.jnoncrysol.2007.10.104 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 310AD UT WOS:000256500400173 ER PT J AU Miao, Y Figueroa, SD Fisher, DR Moore, HA Testa, RF Hoffman, TJ Quinn, TP AF Miao, Yubin Figueroa, Said D. Fisher, Darrell R. Moore, Herbert A. Testa, Richard F. Hoffman, Timothy J. Quinn, Thomas P. TI Pb-203-labeled alpha-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE molecular imaging; radiopharmaceuticals; peptides; Pb-203-labeled; melanoma imaging ID IN-VIVO EVALUATION; TUMOR-TARGETING PROPERTIES; SOMATOSTATIN ANALOG; THERAPY; DOSIMETRY; BIODISTRIBUTION; IN-111; Y-90; MODELS; MURINE AB Peptide-targeted a-therapy with 7.4 MBq of Pb-212-[1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ReO-[Cys(3,4,10),D-Phe(7),Arg(11)]alpha-MSH3-13 (Pb-212-DOTA-Re(Arg(11))CCMSH) cured 45% of B16/F1 murine melanoma-bearing C57 mice in a 120-d study, highlighting its melanoma treatment potential. However, there is a need to develop an imaging surrogate for patient-specific dosimetry and to monitor the tumor response to Pb-212-DOTA-Re(Arg(11))CCMSH therapy. The purpose of this study was to evaluate the potential of Pb-203-DOTA-Re(Arg(11))CCMSH as a matched-pair SPECT agent for Pb-212-DOTA-Re(Arg(11)) CCMSH. Methods: DOTA-Re(Arg(11))CCMSH was labeled with Pb-203 in 0.5 M NH4OAc buffer at pH 5.4. The internalization and efflux of Pb-203-DOTA-Re(Arg(11))CCMSH were determined in B16/F1 melanoma cells. The pharmacokinetics of Pb-203-DOTA-Re(Arg(11))CCMSH was examined in B16/F1 melanoma-bearing C57 mice. A micro-SPECT/CT study was performed with Pb-203-DOTA-Re(Arg(11))CCMSH in a B16/F1 melanoma-bearing C57 mouse at 2 h after injection. Results: Pb-203-DOTA-Re(Arg(11))CCMSH was easily prepared in NH4OAc buffer and completely separated from the excess nonradiolabeled peptide by reversed-phase high-performance liquid chromatography (RP-HPLC). Pb-203-DOTA-Re(Arg(11))CCMSH displayed fast internalization and extended retention in B16/F1 cells. Approximately 73% of Pb-203-DOTA-Re(Arg(11))CCMSH activity internalized a er a 20-min incubation at 25 degrees C. After incubation of the cells in culture medium for 20 min, 78% of internalized activity remained in the cells. Pb-203-DOTA-Re(Arg(11))CCMSH exhibited a biodistribution pattern similar to that of Pb-212-DOTA-Re(Arg(11))CCMSH in B16/F1 melanoma-bearing mice. Pb-203-DOTA-Re(Arg(11))CCMSH exhibited a peak tumor uptake of 12.00 +/- 3.20 percentage injected dose per gram (%ID/g) at 1 h after injection. The tumor uptake gradually decreased to 3.43 +/- 1.12 %ID/g at 48 h after injection. Pb-203-DOTA-Re(Arg(11))CCMSH exhibited a peak tumor-to-kidney uptake ratio of 1.53 at 2 h after injection. The absorbed doses to the tumor and kidneys were 4.32 and 4.35 Gy, respectively, per 37 MBq. Whole-body clearance of Pb-203-DOTA-Re(Arg(11))CCMSH was fast, with approximately 89% of the injected activity cleared through the urinary system by 2 h after injection. Pb-203 showed 1.6-mm SPECT resolution, which was comparable to Tc-99m. Melanoma lesions were visualized through SPECT/CT images of Pb-203-DOTA-Re(Arg(11))CCMSH at 2 h after injection. Conclusion: Pb-203-DOTA-Re(Arg(11))CCMSH exhibited favorable pharmacokinetic and tumor imaging properties, highlighting its potential as a matched-pair SPECT agent for Pb-212-DOTA-Re(Arg(11))CCMSH melanoma treatment. C1 [Miao, Yubin] Univ New Mexico, Coll Pharm, Albuquerque, NM 87131 USA. [Miao, Yubin] Univ New Mexico, Dept Dermatol, Albuquerque, NM 87131 USA. [Miao, Yubin] Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Figueroa, Said D.; Hoffman, Timothy J.; Quinn, Thomas P.] Dept Vet Affairs Med Ctr, Columbia, MO USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Moore, Herbert A.; Testa, Richard F.] AlphaMed Inc, Acton, MA USA. [Hoffman, Timothy J.] Univ Missouri, Dept Internal Med, Columbia, MO USA. [Hoffman, Timothy J.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Quinn, Thomas P.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Quinn, Thomas P.] Univ Missouri, Dept Radiol, Columbia, MO 65211 USA. RP Miao, Y (reprint author), Univ New Mexico, Coll Pharm, 2502 Marble NE,MSC09 5360, Albuquerque, NM 87131 USA. EM ymiao@salud.unm.edu; quinnt@missouri.edu FU NCI NIH HHS [P50-CA-103130, P50 CA103130, 1R43 CA11492] NR 20 TC 25 Z9 25 U1 0 U2 6 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD MAY PY 2008 VL 49 IS 5 BP 823 EP 829 DI 10.2967/jnumed.107.048553 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 300FG UT WOS:000255809100034 PM 18413404 ER PT J AU Rajendran, JG Gopal, AK Fisher, DR Durack, LD Gooley, TA Press, OW AF Rajendran, Joseph G. Gopal, Ajay K. Fisher, Darrel R. Durack, Larry D. Gooley, Ted A. Press, Oliver W. TI Myeloablative I-131-tositumomab radioimmunotherapy in treating non-Hodgkin's lymphoma: Comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE non-Hodgkin's lymphoma; radioimmunotherapy; internal dose; patient-specific dosimetry ID STEM-CELL TRANSPLANTATION; Y-90 IBRITUMOMAB TIUXETAN; ANTI-CD20 ANTIBODY; RADIATION-DOSIMETRY; PHASE-II; THERAPY; I-131; TRIAL; BIODISTRIBUTION; TOSITUMOMAB AB Myeloablative radioimmunotherapy using I-131-tositumomab (anti-CD20) monoclonal antibodies is an effective therapy for B-cell non-Hodgkin's lymphoma. The amount of radioactivity for radioimmunotherapy may be determined by several methods, including those based on whole-body retention and on dose to a limiting normal organ. The goal of each approach is to deliver maximal myeloablative amounts of radioactivity within the tolerance of critical normal organs. Methods: Records of 100 consecutive patients who underwent biodistribution and dosimetry evaluation after tracer infusion of I-131-tositumomab before radioimmunotherapy were reviewed. We assessed organ and tissue activities over time by serial gamma-camera imaging to calculate radiation-absorbed doses. Organ volumes were determined from CT scans for organ-specific dosimetry. These dose estimates helped us to determine therapy on the basis of projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared organ-specific dosimetry for treatment planning with the whole-body dose-assessment method by retrospectively analyzing the differences in projected organ-absorbed doses and their ratios. Results: Mean organ doses per unit of administered activity (mGy/MBq) estimated by both methods were 0.33 for liver and 0.33 for lungs by the whole-body method and 1.52 for liver and 1.74 for lungs by the organ-specific method (P = 0.0001). The median differences between methods were 0.92 mGy/MBq (range, 0.36-2.2 mGy/MBq) for lungs, 0.82 mGy/MBq (range, 0.28-1.67 mGy/MBq) for liver, and -0.01 mGy/MBq (range, -0.18-0.16 mGy/MBq) for whole body. The median ratios of the treatment activities based on limiting normal-organ dose were 5.12 (range, 2.33-10.01) for lungs, 4.14 (range, 2.16-6.67) for liver, and 0.94 (range, 0.79-1.22) for whole body. We found substantial differences between the dose estimated by the 2 methods for liver and lungs (P = 0.0001). Conclusion: Dosimetry based on whole-body retention will underestimate the organ doses, and a preferable approach is to evaluate organ-specific doses by accounting for actual radionuclide biodistribution. Myeloablative treatments based on the latter approach allow administration of the maximum amount of radioactivity while minimizing toxicity. C1 [Rajendran, Joseph G.] Univ Washington, Dept Radiol, Div Nucl Med, Seattle, WA 98195 USA. [Gopal, Ajay K.; Press, Oliver W.] Univ Washington, Dept Med, Seattle, WA 98195 USA. [Fisher, Darrel R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gooley, Ted A.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. RP Rajendran, JG (reprint author), Univ Washington, Dept Radiol, Div Nucl Med, Box 356113, Seattle, WA 98195 USA. EM rajan@u.washington.edu FU NCI NIH HHS [P01 CA044991, P01 CA44991, K23 CA 85479, R01 CA076287] NR 37 TC 7 Z9 7 U1 0 U2 3 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD MAY PY 2008 VL 49 IS 5 BP 837 EP 844 DI 10.2967/jnumed.107.043190 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 300FG UT WOS:000255809100036 PM 18413376 ER PT J AU Jackson, VE Craciun, R Dixon, DA Peterson, KA de Jong, WA AF Jackson, Virgil E. Craciun, Raluca Dixon, David A. Peterson, Kirk A. de Jong, Wibe A. TI Prediction of vibrational frequencies of UO22+ at the CCSD(T) level SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EFFECTIVE CORE POTENTIALS; MOLECULAR WAVE-FUNCTIONS; ANO BASIS-SETS; AQUEOUS-SOLUTION; URANYL-ION; INFRARED-SPECTRA; SPECTROSCOPIC CHARACTERIZATION; ELECTRONIC-STRUCTURE; ACTINIDE CHEMISTRY; RAMAN-SPECTRA AB Electronic structure calculations at the coupled cluster (CCSD(T)) and density functional theory levels with relativistic effective core potentials and large basis sets were used to predict the isolated uranyl ion frequencies. The effects of anharmonicity and spin-orbit corrections on the harmonic frequencies were calculated. The anharmonic effects are larger than the spin-orbit corrections, but both are small. The anharmonic effects decreased all the frequencies, whereas the spin-orbit corrections increased the stretches and decreased the bend. Overall, these two corrections decreased the harmonic asymmetric stretch frequency by 6 cm(-1), the symmetric stretch by 3 cm(-1), and the bend by 3 cm(-1). The best calculated values for UO22+ for the asymmetric stretch, symmetric stretch, and bend were 1113, 1032, and 1.74 cm(-1), respectively. The separation between the asymmetric and the symmetric stretch band origins was predicted to be 81 cm(-1), which is consistent with experimental trends for substituted uranyls in solution and in the solid state. The anharmonic vibrational frequencies of the isoelectronic ThO2 molecule also were calculated and compared to experiment to calibrate the UO22+ results. C1 [Jackson, Virgil E.; Craciun, Raluca; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Peterson, Kirk A.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. RI DE JONG, WIBE/A-5443-2008 OI DE JONG, WIBE/0000-0002-7114-8315 NR 56 TC 29 Z9 29 U1 5 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 1 PY 2008 VL 112 IS 17 BP 4095 EP 4099 DI 10.1021/jp710334b PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 292US UT WOS:000255292200040 PM 18348547 ER PT J AU Krishnan, M Kurkal-Siebert, V Smith, JC AF Krishnan, M. Kurkal-Siebert, V. Smith, Jeremy C. TI Methyl group dynamics and the onset of anharmonicity in myoglobin SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; SIDE-CHAIN DYNAMICS; CALMODULIN-PEPTIDE COMPLEX; MOLECULAR-DYNAMICS; NMR RELAXATION; PROTEIN DYNAMICS; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; ENZYME-ACTIVITY; MOSSBAUER-SPECTRA AB The role of methyl groups in the onset of low-temperature anharmonic dynamics in a crystalline protein at low temperature is investigated using atomistic molecular dynamics (MD) simulation. Anharmonicity appears at similar to 150 K, far below the much-studied solvent-activated dynamical transition at similar to 220 K. A significant fraction of methyl groups exhibit nanosecond time scale rotational jump diffusion at 150 K. The splitting and shift in peak position of both the librational band (around 100 cm(-1)) and the torsional band (around 270-300 cm(-1)) also differ significantly among methyl groups, depending on the local environment. The simulation results provide no evidence for a correlation between methyl dynamics and solvent exposure, consistent with the hydration-independence of the low-temperature anharmonic dynamics observed in neutron scattering experiments. The calculated proton mean-square fluctuation and methyl NMR order parameters show a systematic nonlinear dependence on the rotational barrier which can be described using model functions. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. The dynamic heterogeneity and the environmental sensitivity of motional parameters and low-frequency spectral bands of CH3 groups found here suggest that methyl dynamics may be used as a probe to investigate the relation between low-energy structural fluctuations and packing defects in proteins. C1 [Krishnan, M.; Kurkal-Siebert, V.; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany. [Krishnan, M.; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. RP Smith, JC (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Krishnan, Marimuthu/A-6443-2012 OI smith, jeremy/0000-0002-2978-3227; NR 80 TC 38 Z9 38 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 1 PY 2008 VL 112 IS 17 BP 5522 EP 5533 DI 10.1021/jp076641z PG 12 WC Chemistry, Physical SC Chemistry GA 292UT UT WOS:000255292300034 PM 18399677 ER PT J AU Shuford, KL Lee, J Odom, TW Schatz, GC AF Shuford, Kevin L. Lee, Jeunghoon Odom, Teri W. Schatz, George C. TI Optical properties of gold pyramidal shells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DISCRETE-DIPOLE APPROXIMATION; ENHANCED RAMAN-SCATTERING; SILVER NANOPARTICLES; SPECTROSCOPY; MOLECULES; SENSITIVITY; DNA AB We present an investigation of the optical properties of gold pyramidal shell nanoparticles. Theory shows a multiresonance spectrum at near-infrared wavelengths that is consistent with the measured extinction spectra of particles that are fabricated using a soft-lithography technique. In addition to electric dipole and electric quadrupole resonances, the calculations identify an unusual plasmon mode, which involves oscillation of the polarization perpendicular to the direction of both the incident polarization and wave vector. We show that this TE-like resonance can be suppressed by truncating the tip of the pyramid or by increasing the shell thickness without adversely affecting the in-plane dipole and quadrupole resonances. C1 [Shuford, Kevin L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Lee, Jeunghoon; Odom, Teri W.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Odom, Teri W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Shuford, KL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. RI Shuford, Kevin/L-2435-2014; OI Odom, Teri/0000-0002-8490-292X NR 28 TC 20 Z9 20 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 1 PY 2008 VL 112 IS 17 BP 6662 EP 6666 DI 10.1021/jp8004844 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 292UU UT WOS:000255292400012 ER PT J AU Stolyarova, E Stolyarov, D Liu, L Rim, KT Zhang, Y Han, M Hybersten, M Kim, P Flynn, G AF Stolyarova, Elena Stolyarov, Daniil Liu, Li Rim, Kwang T. Zhang, Yuanbo Han, Melinda Hybersten, Mark Kim, Philip Flynn, George TI Scanning tunneling microscope studies of ultrathin graphitic (graphene) films on an insulating substrate under ambient conditions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ATOMIC-STRUCTURE; IMAGES; SURFACE; SHEETS AB In the present study, a scanning tunneling microscope (STM), modified to include active lateral position feedback control, is employed to image single and few layer graphene films placed on a nonconductive substrate under ambient conditions. The return path for tunneling electrons was provided by gold electrodes produced by either electron beam lithography or shadow evaporation techniques. STM images of graphene films with a thickness of two or more layers display topographs that are similar to those obtained from a bulk graphite crystal. For single layer graphene sheets, the ability to obtain atomically resolved images was found to be extremely sensitive to sample preparation methods. Graphene microdevices produced by electron beam lithography with edges covered by gold electrodes show hexagonal patterns similar to those obtained from ultrahigh vacuum STM images reported earlier. Ambient STM measurements of graphene microdevices made by shadow mask evaporation, whose edges were exposed to air, exhibited chaotic topographs caused by instability in the STM feedback control loop due to interactions between tip and sample. STM images recorded on these samples reveal "noisy" topographs that are likely not related to any real surface features.a C1 [Stolyarova, Elena; Liu, Li; Rim, Kwang T.; Kim, Philip; Flynn, George] Columbia Univ, Ctr Electron Transport Mol Nanostruct, New York, NY 10027 USA. [Stolyarov, Daniil; Hybersten, Mark] Brookhaven Natl Lab, Ctr Funct Nanomat, Dept Phys, Upton, NY 11973 USA. [Zhang, Yuanbo] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stolyarova, Elena; Liu, Li; Rim, Kwang T.; Flynn, George] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Kim, Philip] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Flynn, G (reprint author), Columbia Univ, Ctr Electron Transport Mol Nanostruct, New York, NY 10027 USA. EM gwfl@columbia.edu RI Liu, Li/E-8959-2013; OI Liu, Li/0000-0002-4852-1580; Hybertsen, Mark S/0000-0003-3596-9754 NR 25 TC 12 Z9 12 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 1 PY 2008 VL 112 IS 17 BP 6681 EP 6688 DI 10.1021/jp077697w PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 292UU UT WOS:000255292400015 ER PT J AU Strader, ML Garrett-Roe, S Szymanski, P Shipman, ST Johns, JE Yang, A Muller, E Harris, CB AF Strader, Matthew L. Garrett-Roe, Sean Szymanski, Paul Shipman, Steven T. Johns, James E. Yang, Aram Muller, Eric Harris, Charles B. TI The ultrafast dynamics of image potential state electrons at the dimethylsulfoxide/Ag(111) interface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RESOLVED 2-PHOTON PHOTOEMISSION; METAL INTERFACES; SOLVATION; SURFACES; FEMTOSECOND; AG(111); FILMS; WATER; GOLD; DMSO AB Angle-resolved two-photon photoemission was used to study the energy relaxation, population decay, and localization dynamics of image potential state (IPS) electrons in ultrathin films of dimethylsulfoxide (DMSO) on an Ag(111) substrate. Dynamic energy shifts of 50 +/- 10 meV and 220 +/- 10 meV were observed for n = I IPS electrons at one monolayer and two monolayer coverages of DMSO, respectively. The difference in energy shifts is attributed to rotational hindrance of the molecular dipole in the chemisorptive first monolayer. The finding confirms the proposed mechanism for the low differential capacitance of dimethylsulfoxide at noble metal interfaces in solution. A novel description of the IPS as a surface capacitance is presented to facilitate comparisons with electrochemical systems. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Garrett-Roe, Sean/C-6037-2011; Muller, Eric/J-2161-2012 OI Garrett-Roe, Sean/0000-0001-6199-8773; Muller, Eric/0000-0002-9629-1767 NR 39 TC 1 Z9 1 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 1 PY 2008 VL 112 IS 17 BP 6880 EP 6886 DI 10.1021/jp7116664 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 292UU UT WOS:000255292400040 ER PT J AU Culp, JT Natesakhawat, S Smith, MR Bittner, E Matranga, C Bockrath, B AF Culp, Jeffrey T. Natesakhawat, Sittichai Smith, Milton R. Bittner, Edward Matranga, Christopher Bockrath, Bradley TI Hydrogen storage properties of rigid three-dimensional Hofmann clathrate derivatives: The effects of pore size SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CARBIDE-DERIVED CARBONS; GAS SORPTION PROPERTIES; HIGH H-2 ADSORPTION; CRYSTAL-STRUCTURES; POROUS MATERIALS; LIGAND; COMPLEXES; PHYSISORPTION; NANOTUBES AB The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)(4)] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size. C1 [Culp, Jeffrey T.; Natesakhawat, Sittichai; Smith, Milton R.; Bittner, Edward; Matranga, Christopher; Bockrath, Bradley] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Culp, JT (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM Jeffrey.Culp@PP.NETL.D0E.GOV RI Culp, Jeffrey/B-1219-2010; Matranga, Christopher/E-4741-2015; OI Culp, Jeffrey/0000-0002-7422-052X; Matranga, Christopher/0000-0001-7082-5938; Natesakhawat, Sittichai/0000-0003-1272-1238 NR 38 TC 48 Z9 49 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 1 PY 2008 VL 112 IS 17 BP 7079 EP 7083 DI 10.1021/jp710996y PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 292UU UT WOS:000255292400067 ER PT J AU Hardwick, LJ Ruch, PW Hahn, M Scheifele, W Kotz, R Novak, P AF Hardwick, Laurence J. Ruch, Patrick W. Hahn, Matthias Scheifele, Werner Koetz, Ruediger Novak, Petr TI In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article; Proceedings Paper CT 14th International Symposium on Intercalation Compounds (ISIC 14) CY JUN 12-15, 2007 CL Seoul, SOUTH KOREA SP Dansuk Co, Green Life, Nanohybrid, Varian, Pucotech, Korea ITS, Ctr Intelligent NanoBio Mats, Ewha Womans Univ, Inst NanoBio Technol, Ewha Womans Univ, Div Nano Sci,, Minist Educ, Human Resources Dev, Korea Res Fdn, Korea Sci & Engn Fdn, Seoul Convent & Visitors Bur, Korean Federat Sci & Technol Soc, Ewha Womans Univ, Off Res DE electronic; interfaces; Raman spectroscopy; electrochemical properties; defects ID DOUBLE-LAYER CAPACITORS; CHARGE-TRANSFER; ELECTROCHEMICAL INTERCALATION; PROPYLENE CARBONATE; ACTIVATED CARBONS; GRAPHITE; MICROSCOPY; ELECTROLYTES; TEMPERATURE; DISORDER AB In situ Raman spectroscopy was used to demonstrate ion intercalation into microcrystalline graphite (KS44) during cyclic voltammetry experiments from the ionic liquid 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)-imide (EMI-TFSI). This was seen by a split of the G-band (1578 cm(-1)) into the E(2g2)(i) band at 1578 cm(-1) and E(2g2)(b) band at 1600 cm(-1) which occurred below + 1.0 V for EMI(+) and above + 4.65 V vs. Li/Li(+) for TFSI(-). Moreover, ion intercalation was seen to cause irreversible structural changes to the graphitic lattice. The Raman spectrum of activated carbon (Picactif) exhibits broad G- and D-bands around 1587 and 1315 cm(-1) respectively. Changes were observed during potential cycling in 1 mol dm(-3) tetraethylammonium-tetrafluoroborate (TEABF(4)) in acetonitrile that concerned only changes in Raman intensity and shifts in wavenumber of both D- and G-bands. It is hypothesised that the D-band could be composed of two contributions reflecting the D-band of crystalline domains and of cross-linkers. After ion insertion, the contribution from stacked sheets maybe lost, resulting in a wavenumber shift of the band. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Hardwick, Laurence J.; Ruch, Patrick W.; Hahn, Matthias; Scheifele, Werner; Koetz, Ruediger; Novak, Petr] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland. RP Hardwick, LJ (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM LJHardwick@lbl.gov RI Ruch, Patrick/K-3583-2012 NR 35 TC 36 Z9 36 U1 6 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD MAY-JUN PY 2008 VL 69 IS 5-6 BP 1232 EP 1237 DI 10.1016/j.jpcs.2007.10.017 PG 6 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 314NV UT WOS:000256817000050 ER PT J AU Im, HJ Brown, SS Lee, B Kesanli, B Stephan, AC Wallace, SA Dai, S AF Im, Hee-Jung Brown, Suree S. Lee, Byunghwan Kesanli, Banu Stephan, Andrew C. Wallace, Steven A. Dai, Sheng TI Composite micelle-SiO2 hybrid gels for neutron detection SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article; Proceedings Paper CT 14th International Symposium on Intercalation Compounds (ISIC 14) CY JUN 12-15, 2007 CL Seoul, SOUTH KOREA SP Dansuk Co, Green Life, Nanohybrid, Varian, Pucotech, Korea ITS, Ctr Intelligent NanoBio Mats, Inst NanoBio Technol, Div Nano Sci, Off Res Ewha Womans Univ, Minist Educ, Human Resources Dev, Korea Res Fdn, Kor Sci & Engn Fdn, Seoul Convent & Visitors Bur, Korean Federat Sci & Technol Soc DE microporous materials; sol-gel growth ID SCINTILLATORS AB Micelle-SiO2 hybrid gels were designed and prepared as solid-state neutron-detecting materials based on micelle self-assembly. An organic liquid scintillator was homogeneously co-doped in a neutron absorbing lithiated PEG-silica gel through a micelle system. For this purpose, nonionic and anionic surfactants were used to solubilize the organic scintillator. This blue light emitting (lambda(em) = 413 at 340 nm excitation) neutron-detecting material with only a 0.1 wt% of a Li-6(+)-doping showed a great response toward a neutron radiation as demonstrated in comparative investigation by using pulse-height spectra. Published by Elsevier Ltd. C1 [Im, Hee-Jung; Brown, Suree S.; Lee, Byunghwan; Kesanli, Banu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Stephan, Andrew C.; Wallace, Steven A.] Neutron Sci Inc, Knoxville, TN 37932 USA. RP Im, HJ (reprint author), Korea Atom Energy Res Inst, Nucl Chem Res Ctr, 150 Deokjin Dong, Taejon 305353, South Korea. EM imhj@kaeri.re.kr; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 NR 10 TC 3 Z9 3 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD MAY-JUN PY 2008 VL 69 IS 5-6 BP 1415 EP 1418 DI 10.1016/j.jpcs.2007.10.137 PG 4 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 314NV UT WOS:000256817000093 ER PT J AU Armesto, N Borghini, N Jeon, S Wiedemann, UA Abreu, S Akkelin, SV Alam, J Albacete, JL Andronic, A Antonov, D Arleo, F Armesto, N Arsene, IC Barnafoldi, GG Barrette, J Bauchle, B Becattini, F Betz, B Bleicher, M Bluhm, M Boer, D Bopp, FW Braun-Munzinger, P Bravina, L Busza, W Cacciari, M Capella, A Casalderrey-Solana, J Chatterjee, R Chen, LW Cleymans, J Cole, BA Del Valle, ZC Csernai, LP Cunqueiro, L Dainese, A de Deus, JD Ding, HT Djordjevic, M Drescher, H Dremin, IM Dumitru, A Engel, R d'Enterria, D Eskola, KJ Fai, G Ferreiro, EG Fries, RJ Frodermann, E Fujii, H Gale, C Gelis, F Goncalves, VP Greco, V Greiner, C Gyulassy, M van Hees, H Heinz, U Honkanen, H Horowitz, WA Iancu, E Ingelman, G Jalilian-Marian, J Jeon, S Kaidalov, AB Kampfer, B Kang, ZB Karpenko, IA Kestin, G Kharzeev, D Ko, CM Koch, B Kopeliovich, B Kozlov, M Kraus, I Kuznetsova, I Lee, SH Lednicky, R Letessier, J Levin, E Li, BA Lin, ZW Liu, H Liu, W Loizides, C Lokhtin, IP Machado, MVT Malinina, LV Managadze, AM Mangano, ML Mannarelli, M Manuel, C Martinez, G Milhano, JG Mocsy, A Molnar, D Nardi, M Nayak, JK Niemi, H Oeschler, H Ollitrault, JY Paic, G Pajares, C Pantuev, VS Papp, G Peressounko, D Petreczky, P Petrushanko, SV Piccinini, F Pierog, T Pirner, HJ Porteboeuf, S Potashnikova, I Qin, GY Qiu, JW Rafelski, J Rajagopal, K Ranft, J Rapp, R Rasanen, SS Rathsman, J Rau, P Redlich, K Renk, T Rezaeian, AH Rischke, D Roesler, S Ruppert, J Ruuskanen, PV Salgado, CA Sapeta, S Sarcevic, I Sarkar, S Sarycheva, LI Schmidt, I Shoshi, AI Sinha, B Sinyukov, YM Snigirev, AM Srivastava, DK Stachel, J Stasto, A Stocker, H Teplov, CY Thews, RL Torrieri, G Pop, VT Triantafyllopoulos, DN Tuchin, KL Turbide, S Tywoniuk, K Utermann, A Venugopalan, R Vitev, I Vogt, R Wang, E Wang, XN Werner, K Wessels, E Wheaton, S Wicks, S Wiedemann, UA Wolschin, G Xiao, BW Xu, Z Yasui, S Zabrodin, E Zapp, K Zhang, B Zhang, BW Zhang, H Zhou, D AF Armesto, N. Borghini, N. Jeon, S. Wiedemann, U. A. Abreu, S. Akkelin, S. V. Alam, J. Albacete, J. L. Andronic, A. Antonov, D. Arleo, F. Armesto, N. Arsene, I. C. Barnafoeldi, G. G. Barrette, J. Baeuchle, B. Becattini, F. Betz, B. Bleicher, M. Bluhm, M. Boer, D. Bopp, F. W. Braun-Munzinger, P. Bravina, L. Busza, W. Cacciari, M. Capella, A. Casalderrey-Solana, J. Chatterjee, R. Chen, L-W Cleymans, J. Cole, B. A. Del Valle, Z. Conesa Csernai, L. P. Cunqueiro, L. Dainese, A. de Deus, J. Dias Ding, H-T Djordjevic, M. Drescher, H. Dremin, I. M. Dumitru, A. Engel, R. d'Enterria, D. Eskola, K. J. Fai, G. Ferreiro, E. G. Fries, R. J. Frodermann, E. Fujii, H. Gale, C. Gelis, F. Goncalves, V. P. Greco, V. Greiner, C. Gyulassy, M. van Hees, H. Heinz, U. Honkanen, H. Horowitz, W. A. Iancu, E. Ingelman, G. Jalilian-Marian, J. Jeon, S. Kaidalov, A. B. Kaempfer, B. Kang, Z-B Karpenko, Iu A. Kestin, G. Kharzeev, D. Ko, C. M. Koch, B. Kopeliovich, B. Kozlov, M. Kraus, I. Kuznetsova, I. Lee, S. H. Lednicky, R. Letessier, J. Levin, E. Li, B-A Lin, Z-W Liu, H. Liu, W. Loizides, C. Lokhtin, I. P. Machado, M. V. T. Malinina, L. V. Managadze, A. M. Mangano, M. L. Mannarelli, M. Manuel, C. Martinez, G. Milhano, J. G. Mocsy, A. Molnar, D. Nardi, M. Nayak, J. K. Niemi, H. Oeschler, H. Ollitrault, J-Y Paic, G. Pajares, C. Pantuev, V. S. Papp, G. Peressounko, D. Petreczky, P. Petrushanko, S. V. Piccinini, F. Pierog, T. Pirner, H. J. Porteboeuf, S. Potashnikova, I. Qin, G. Y. Qiu, J-W Rafelski, J. Rajagopal, K. Ranft, J. Rapp, R. Raesaenen, S. S. Rathsman, J. Rau, P. Redlich, K. Renk, T. Rezaeian, A. H. Rischke, D. Roesler, S. Ruppert, J. Ruuskanen, P. V. Salgado, C. A. Sapeta, S. Sarcevic, I. Sarkar, S. Sarycheva, L. I. Schmidt, I. Shoshi, A. I. Sinha, B. Sinyukov, Yu M. Snigirev, A. M. Srivastava, D. K. Stachel, J. Stasto, A. Stoecker, H. Teplov, C. Yu Thews, R. L. Torrieri, G. Pop, V. Topor Triantafyllopoulos, D. N. Tuchin, K. L. Turbide, S. Tywoniuk, K. Utermann, A. Venugopalan, R. Vitev, I. Vogt, R. Wang, E. Wang, X. N. Werner, K. Wessels, E. Wheaton, S. Wicks, S. Wiedemann, U. A. Wolschin, G. Xiao, B-W Xu, Z. Yasui, S. Zabrodin, E. Zapp, K. Zhang, B. Zhang, B-W Zhang, H. Zhou, D. TI Heavy-ion collisions at the LHC-Last call for predictions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; COLOR GLASS CONDENSATE; TO-LEADING-ORDER; HIGH-DENSITY QCD; FORWARD-BACKWARD CORRELATIONS; INCLUSIVE PI(0) PRODUCTION; DEEP-INELASTIC SCATTERING; HADRON-HADRON-COLLISIONS; RADIATIVE ENERGY-LOSS AB This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute 'Heavy Ion Collisions at the LHC - Last Call for Predictions', held from 14th May to 10th June 2007. C1 [Borghini, N.; Shoshi, A. I.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Jeon, S.; Gale, C.; Pop, V. Topor] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Wiedemann, U. A.; Arleo, F.; Gelis, F.; Heinz, U.; Mangano, M. L.] CERN, Div TH, PH Dept, CH-1211 Geneva 23, Switzerland. [Abreu, S.; Milhano, J. G.] Inst Super Tecn, CENTRA, P-1049001 Lisbon, Portugal. [Akkelin, S. V.; Karpenko, Iu A.; Sinyukov, Yu M.] Bogolyubov Inst Theret Phys, UA-03680 Kiev 143, Ukraine. [Alam, J.; Chatterjee, R.; Nayak, J. K.; Sarkar, S.; Sinha, B.; Srivastava, D. K.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Albacete, J. L.; Djordjevic, M.; Frodermann, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Andronic, A.; Braun-Munzinger, P.; Stoecker, H.] GSI Darmstadt, Gesell Schwerionenforsch, D-64291 Darmstadt, Germany. [Antonov, D.; Kopeliovich, B.; Pirner, H. J.; Wolschin, G.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Arsene, I. C.; Bravina, L.; Tywoniuk, K.; Zabrodin, E.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Barnafoeldi, G. G.; Csernai, L. P.; Fujii, H.] MTA KFKI RMKI, H-1525 Budapest, Hungary. [Baeuchle, B.; Betz, B.; Bleicher, M.; Dumitru, A.; Koch, B.; Rau, P.; Rischke, D.; Stoecker, H.; Torrieri, G.; Xu, Z.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Baeuchle, B.; Csernai, L. P.] Univ Bergen, Dept Phys, Sect Theoret Phys, N-5007 Bergen, Norway. [Becattini, F.] Univ Florence, I-50019 Florence, Italy. [Becattini, F.] Ist Nazl Fis Nucl, Sez Firenza, I-50019 Florence, Italy. [Bluhm, M.; Kaempfer, B.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Boer, D.; Utermann, A.; Wessels, E.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Bopp, F. W.; Ranft, J.] Univ Siegen, Siegen, Germany. [Braun-Munzinger, P.; Kraus, I.; Oeschler, H.; Wheaton, S.] Tech Univ Darmstadt, Inst Kernphys, D-64283 Darmstadt, Germany. [Bravina, L.; Lokhtin, I. P.; Malinina, L. V.; Managadze, A. M.; Petrushanko, S. V.; Sarycheva, L. I.; Snigirev, A. M.; Teplov, C. Yu; Zabrodin, E.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, RU-119899 Moscow, Russia. [Busza, W.; Loizides, C.] MIT, Cambridge, MA 02139 USA. [Cacciari, M.; Letessier, J.] Univ Paris 06, LPTHE, F-75252 Paris 05, France. [Capella, A.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Casalderrey-Solana, J.; Wang, X. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chen, L-W] Shanghai Jiao Tong Univ, Inst Theoret Phys, Shanghai 200240, Peoples R China. [Chen, L-W] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. [Cleymans, J.; Wheaton, S.] Univ Cape Town, CERN, Res Ctr, ZA-7701 Rondebosch, South Africa. [Cleymans, J.; Wheaton, S.] Univ Cape Town, Dept Phys, ZA-7701 Rondebosch, South Africa. [Cole, B. A.] Columbia Univ, Nevis Lab, New York, NY USA. [Del Valle, Z. Conesa; Martinez, G.; Porteboeuf, S.; Werner, K.] Univ Nantes, CNRS, IN2P3, Ecole Mines, Nantes, France. [Dainese, A.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Padua, Italy. [Ding, H-T; Wang, E.; Zhang, H.; Zhou, D.] Cent China Normal Univ, Inst Particle Phys, Wuhan, Peoples R China. [Drescher, H.; Gyulassy, M.; Horowitz, W. A.; Koch, B.; Rischke, D.; Stoecker, H.; Torrieri, G.; Wicks, S.] Goethe Univ Frankfurt, FIAS, D-60438 Frankfurt, Germany. [Dremin, I. M.] PN Lebedev Phys Inst, Moscow 119991, Russia. [Engel, R.; Pierog, T.] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. [d'Enterria, D.] CERN PH, CH-1211 Geneva 23, Switzerland. [Eskola, K. J.; Honkanen, H.; Niemi, H.; Raesaenen, S. S.; Ruuskanen, P. V.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Eskola, K. J.; Honkanen, H.; Niemi, H.; Renk, T.; Ruuskanen, P. V.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Fai, G.] Kent State Univ, Dept Phys, Kent, OH 44242 USA. [Fries, R. J.; van Hees, H.; Ko, C. M.; Liu, W.; Rapp, R.; Zhang, B-W] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Fries, R. J.; van Hees, H.; Ko, C. M.; Liu, W.; Rapp, R.; Zhang, B-W] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Fries, R. J.; Mocsy, A.; Molnar, D.; Tuchin, K. L.] Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. Univ Tokyo, Inst Phys, Tokyo 1538902, Japan. [Goncalves, V. P.] Univ Fed Pelotas, BR-96010090 Pelotas, RS, Brazil. [Greco, V.] Dipartimento Fis & Astron, I-95125 Catania, Italy. [Horowitz, W. A.; Wicks, S.; Xiao, B-W] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Honkanen, H.] Univ Virginia, Dept Phys, Charlottesville, VA USA. [Iancu, E.; Ollitrault, J-Y] CEA Saclay, Serv Phys Theor, CEA, DSM SPhT,CNRS,MPPU,URA2306, F-91191 Gif Sur Yvette, France. [Ingelman, G.; Rathsman, J.] Uppsala Univ, S-75121 Uppsala, Sweden. [Jalilian-Marian, J.; Machado, M. V. T.] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Kaidalov, A. B.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Kaempfer, B.] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany. [Kang, Z-B; Qiu, J-W; Tuchin, K. L.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Kharzeev, D.; Petreczky, P.; Qiu, J-W; Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. [Kopeliovich, B.; Potashnikova, I.; Rezaeian, A. H.; Schmidt, I.] Univ Tecn Fed, Dept Fis, Valparaiso, Chile. [Kopeliovich, B.; Potashnikova, I.; Rezaeian, A. H.; Schmidt, I.] Univ Tecn Fed, Ctr Estudios Subatom, Valparaiso, Chile. [Kopeliovich, B.; Lednicky, R.; Malinina, L. V.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kraus, I.] NIKHEF H, NL-1098 SJ Amsterdam, Netherlands. [Kuznetsova, I.; Rafelski, J.; Sarcevic, I.; Thews, R. L.; Yasui, S.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Lee, S. H.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Lednicky, R.] Acad Sci Czech Republic, Inst Phys, Prague 18221, Czech Republic. [Levin, E.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, HEP Dept, IL-69978 Tel Aviv, Israel. [Li, B-A] Texas A&M Univ Commerce, Dept Phys, Commerce, TX 75429 USA. [Lin, Z-W] NSSTC, Huntsville, AL 35805 USA. [Lin, Z-W] E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. [Liu, H.; Rajagopal, K.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Mannarelli, M.; Manuel, C.] Campus UAB, Fac Ciencies, Inst Ciencias Espacio IEEC, CSIC, E-08193 Barcelona, Spain. [Molnar, D.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Nardi, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico. [Pantuev, V. S.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Papp, G.] ELTE, Dept Theoret Phys, H-1117 Budapest, Hungary. [Peressounko, D.] RRC Kurchatov Inst, Moscow 123182, Russia. [Piccinini, F.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Roesler, S.] CERN SC, CH-1211 Geneva 23, Switzerland. [Salgado, C. A.] Ist Nazl Fis Nucl, Rome, Italy. [Salgado, C. A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Sapeta, S.] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Stachel, J.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Stasto, A.; Zapp, K.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Triantafyllopoulos, D. N.] ECT, I-38050 Villazzano, TN, Italy. [Vitev, I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zhang, B.] Arkansas State Univ, Dept Chem & Phys, State Univ, AR 72467 USA. RI Lednicky, Richard/K-4164-2013; Chen, Lie-Wen/A-2398-2009; Ollitrault, Jean-Yves/B-3709-2010; Bleicher, Marcus/A-2758-2010; Papp, Gabor/D-1851-2012; Lokhtin, Igor/D-7004-2012; Snigirev, Alexander/D-8912-2012; Becattini, Francesco/I-6435-2012; Schmidt, Ivan/J-5920-2012; Petrushanko, Sergey/D-6880-2012; Machado, Magno/C-2671-2013; Rafelski, Johann/E-4678-2013; Stoecker, Horst/D-6173-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Stoecker, Horst/F-8382-2012; Roganova, Tatiana/E-2118-2012; Torrieri, Giorgio/H-1776-2014; Triantafyllopoulos, Dionysios/J-2052-2014; Kang, Zhongbo/P-3645-2014; Boer, Daniel/B-3493-2015; Manuel, Cristina/C-2108-2015; Salgado, Carlos A./G-2168-2015; Dremin, Igor/K-8053-2015; Lopez Albacete, Javier/D-9272-2016; Greco, Vincenzo/E-1767-2016; Milhano, Jose Guilherme/K-8631-2015; Zhang, Baohong/O-4948-2016; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; OI Chen, Lie-Wen/0000-0002-7444-0629; Ollitrault, Jean-Yves/0000-0001-6037-7975; Stoecker, Horst/0000-0002-3282-3664; Stoecker, Horst/0000-0002-3282-3664; Roganova, Tatiana/0000-0002-6645-7543; Torrieri, Giorgio/0000-0002-0611-766X; Triantafyllopoulos, Dionysios/0000-0002-0952-4201; Boer, Daniel/0000-0003-0985-4662; Manuel, Cristina/0000-0002-0024-3366; Salgado, Carlos A./0000-0003-4586-2758; Lopez Albacete, Javier/0000-0001-8345-6123; Greco, Vincenzo/0000-0002-4088-0810; Milhano, Jose Guilherme/0000-0001-8154-3688; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Wang, Xin-Nian/0000-0002-9734-9967; Dainese, Andrea/0000-0002-2166-1874; Ding, Heng-Tong/0000-0003-0590-081X; Nardi, Marzia/0000-0003-1574-9869 NR 410 TC 188 Z9 188 U1 5 U2 52 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAY PY 2008 VL 35 IS 5 AR 054001 DI 10.1088/0954-3899/35/5/054001 PG 170 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 290BH UT WOS:000255097200002 ER PT J AU Schienbein, I Radescu, VA Zeller, GP Christy, ME Keppel, CE McFarland, KS Melnitchouk, W Olness, FI Reno, MH Steffens, F Yu, JY AF Schienbein, Ingo Radescu, Voica A. Zeller, G. P. Christy, M. Eric Keppel, C. E. McFarland, Kevin S. Melnitchouk, W. Olness, Fredrick I. Reno, Mary Hall Steffens, Fernando Yu, Ji-Young TI Target mass corrections SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID DEEP-INELASTIC-SCATTERING; 3-LOOP SPLITTING FUNCTIONS; PARTON DISTRIBUTIONS; HIGHER TWISTS; QUANTUM CHROMODYNAMICS; POWER CORRECTIONS; HEAVY QUARKS; QCD ANALYSIS; SUM-RULES; CHARGED CURRENT AB With recent advances in the precision of inclusive lepton - nuclear scattering experiments, it has become apparent that comparable improvements are needed in the accuracy of the theoretical analysis tools. In particular, when extracting parton distribution functions in the large- x region, it is crucial to correct the data for effects associated with the nonzero mass of the target. We present here a comprehensive review of these target mass corrections ( TMC) to structure functions data, summarizing the relevant formulas for TMCs in electromagnetic and weak processes. We include a full analysis of both hadronic and partonic masses, and trace how these effects appear in the operator product expansion and the factorized parton model formalism, as well as their limitations when applied to data in the x -> 1 limit. We evaluate the numerical effects of TMCs on various structure functions, and compare fits to data with and without these corrections. C1 [Schienbein, Ingo] Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Schienbein, Ingo; Olness, Fredrick I.; Yu, Ji-Young] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Radescu, Voica A.] Deutsch Elektonen Synchrotron, D-22603 Hamburg, Germany. [Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christy, M. Eric; Keppel, C. E.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Keppel, C. E.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [McFarland, Kevin S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Reno, Mary Hall] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Steffens, Fernando] Mackenzie Presbiteriana Univ, BR-01302907 Sao Paulo, Brazil. RP Schienbein, I (reprint author), Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. EM olness@smu.edu; mary-hall-reno@uiowa.edu NR 70 TC 57 Z9 58 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAY PY 2008 VL 35 IS 5 AR 053101 DI 10.1088/0954-3899/35/5/053101 PG 32 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 290BH UT WOS:000255097200001 ER PT J AU Rawal, A Fang, XW Urman, K Iverson, D Otaigbe, JU Schmidt-Rohr, K AF Rawal, A. Fang, X. -W. Urman, K. Iverson, D. Otaigbe, J. U. Schmidt-Rohr, K. TI Promotion of the gamma-phase of polyamide 6 in its nanocomposite with phosphate glass SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE nanocomposites; NMR; nylon; polyamide-6; gamma-phase ID NYLON-6 CLAY NANOCOMPOSITES; CRYSTAL STRUCTURE; NMR; HYBRIDS; C-13; MORPHOLOGY; STABILITY AB The effect of tin fluorophosphate-glass (Pglass) nanoparticles on the polyamide-6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by C-13 solid-state nuclear magnetic resonance (NMR). The crystallinity determined by direct-polarization C-13 NMR combined with longitudinal relaxation-time (TIC) filtering varied between 31 and 44%. T-1C-filtered C-13 spectra with cross polarization clearly showed resonances of both the alpha- and gamma-crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the a-phase. This suggests that the Pglass promotes the growth of the gamma-crystalline phase. (c) 2008 Wiley Periodicals, Inc. C1 [Rawal, A.; Fang, X. -W.; Schmidt-Rohr, K.] Iowa State Univ, Ames Lab, Ames, IA 50014 USA. [Rawal, A.; Fang, X. -W.; Schmidt-Rohr, K.] Iowa State Univ, Dept Chem, Ames, IA 50014 USA. [Urman, K.; Iverson, D.; Otaigbe, J. U.] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50014 USA. EM srohr@iastate.edu NR 14 TC 6 Z9 6 U1 2 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD MAY 1 PY 2008 VL 46 IS 9 BP 857 EP 860 DI 10.1002/polb.21418 PG 4 WC Polymer Science SC Polymer Science GA 295YA UT WOS:000255509100002 ER PT J AU Uribarri, L Choueiri, EY AF Uribarri, Luke Choueiri, Edgar Y. TI Relationship between anode spots and onset voltage hash in magnetoplasmadynamic thrusters SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID PERFORMANCE AB Experimental results are presented which indicate a direct relationship between voltage transients in magnetoplasmadynamic thrusters operating above onset and the time-resolved appearance of destructively released anode material in the thruster plume. Such a relationship gives support to previously discussed anode spotting theories. Langmuir probe measurements of plasma density fluctuations and measurements of argon and copper (anode material) ion luminosity are compared with the voltage transients. The onset of spikes in the thruster voltage is directly correlated with the onset of similar spikes in the plasma density at the probe location, and with a rise in the copper luminosity, but a fall in that of argon, in the plume. The voltage hash is categorized into two types: large-amplitude spikes at currents well above the onset current, and lower-amplitude random fluctuations at currents just above the onset current. It is shown that the two categories of voltage hash can be related to two classes of damage on the anode surface: pitlike damage of 10 to 100 mu m extent, caused by explosive emission due to voltage spikes, and shallow surface melting due to the lower-amplitude random fluctuations, which may be responsible for observed density and luminosity oscillations at 600 kHz, and a dip in the voltage power spectrum at the same frequency. C1 [Uribarri, Luke; Choueiri, Edgar Y.] Princeton Univ, Dept Mech & Aerosp Engn, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. RP Uribarri, L (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. EM uribarri@princeton.edu; choueiri@princeton.edu NR 17 TC 1 Z9 1 U1 0 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 EI 1533-3876 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2008 VL 24 IS 3 BP 571 EP 577 DI 10.2514/1.34525 PG 7 WC Engineering, Aerospace SC Engineering GA 300HN UT WOS:000255815000023 ER PT J AU Holladay, JD Brooks, KP Humble, P Hu, J Simon, TM AF Holladay, J. D. Brooks, K. P. Humble, P. Hu, J. Simon, T. M. TI Compact reverse water-gas-shift reactor for extraterrestrial in situ resource utilization SO JOURNAL OF PROPULSION AND POWER LA English DT Article AB A compact reverse water-gas-shift reactor suitable for extraterrestrial use as part of the in situ propellant production system is reported. The reactor is less than 15 cm(3) in volume and weighs less than 50 g. With an Ru/ZrO2-CeO catalyst it produces over 150 g H2O/h operating at 800 degrees C. This is near equilibrium conversion at about half-scale of a Mars sample-return mission. Even at these high processing rates, the pressure drop remains low (from 1.6 to 7.6 kPa). C1 [Holladay, J. D.; Brooks, K. P.; Humble, P.; Hu, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Simon, T. M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Holladay, JD (reprint author), Pacific NW Natl Lab, POB 999 MSIN K6-28, Richland, WA 99352 USA. RI Humble, Paul/K-1961-2012; Humble, Paul/E-4766-2015 OI Humble, Paul/0000-0002-2632-6557; NR 24 TC 3 Z9 3 U1 0 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2008 VL 24 IS 3 BP 578 EP 582 DI 10.2514/1.28589 PG 5 WC Engineering, Aerospace SC Engineering GA 300HN UT WOS:000255815000024 ER PT J AU Uribarri, L Choueiri, EY AF Uribarri, Luke Choueiri, E. Y. TI Corruption of pulsed electric thruster voltage fluctuation measurements by transmission line resonances SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 43rd Joint Propulsion Conference CY JUL 08-11, 2007 CL Cincinnati, OH SP Amer Inst Aeronaut & Astronaut, ASME, SAE, ASEE C1 [Uribarri, Luke; Choueiri, E. Y.] Princeton Univ, Elect Prop & Plasma Dynam Lab, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Uribarri, L (reprint author), Princeton Univ, Elect Prop & Plasma Dynam Lab, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM Uribarri@princeton.edu; choueiri@princeton.edu NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2008 VL 24 IS 3 BP 637 EP 639 DI 10.2514/1.33865 PG 3 WC Engineering, Aerospace SC Engineering GA 300HN UT WOS:000255815000035 ER PT J AU Dong, M Yang, LL Williams, K Fisher, SJ Hall, SC Biggin, MD Jin, J Witkowska, HE AF Dong, Ming Yang, Lee Lisheng Williams, Katherine Fisher, Susan J. Hall, Steven C. Biggin, Mark D. Jin, Jian Witkowska, H. Ewa TI A "Tagless" strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE tagless strategy; protein complex; protein separation; column chromatography; relative quantitation; LC MALDI workflow; MALDI TOF/TOF; iTRAQ reagent; Pearson cluster analysis; E. coli ID TANDEM AFFINITY PURIFICATION; MASS-SPECTROMETRY; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; SHOTGUN PROTEOMICS; QUANTITATION; SEDIMENTATION; LOCALIZATION; EXPRESSION; SUBUNITS AB Tandem affinity purification is the principal method for purifying and identifying stable protein complexes system-wide in whole cells. Although highly effective, this approach is laborious and impractical in organisms where genetic manipulation is not possible. Here, we propose a novel "tagless" strategy that combines multidimensional separation of endogenous complexes with mass spectrometric monitoring of their composition. In this procedure, putative protein complexes are identified based on the comigration of collections of polypeptides through multiple orthogonal separation steps. We present proof-of-principle evidence for the feasibility of key aspects of this strategy. A majority of Escherichia coli proteins are shown to remain in stable complexes during fractionation of a crude extract through three chromatographic steps. We also demonstrate that iTRAQ reagent-based tracking can quantify relative migration of polypeptides through chromatographic separation media. LC MALDI MS and MS/ MS analysis of the iTRAQ-labeled peptides gave reliable relative quantification of 37 components of 13 known E. coli complexes: 95% of known complex components closely co-eluted and 57% were automatically grouped by a prototype computational clustering method. With further technological improvements in each step, we believe this strategy will dramatically improve the efficiency of the purification and identification of protein complexes in cells. C1 [Dong, Ming; Yang, Lee Lisheng; Fisher, Susan J.; Biggin, Mark D.; Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Williams, Katherine] Appl Biosyst Inc, Foster City, CA 94404 USA. [Fisher, Susan J.; Hall, Steven C.; Witkowska, H. Ewa] Univ Calif San Francisco, UCSF Mass Spectrometry Core Facil, San Francisco, CA 94143 USA. [Fisher, Susan J.; Hall, Steven C.; Witkowska, H. Ewa] Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA 94143 USA. [Dong, Ming; Yang, Lee Lisheng; Fisher, Susan J.; Hall, Steven C.; Biggin, Mark D.; Jin, Jian; Witkowska, H. Ewa] Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. RP Witkowska, HE (reprint author), 521 Parnassus Ave,Box 0512, San Francisco, CA 94143 USA. EM Witkowsk@cgl.ucsf.edu NR 35 TC 24 Z9 24 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2008 VL 7 IS 5 BP 1836 EP 1849 DI 10.1021/pr700624e PG 14 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 296CD UT WOS:000255520200004 PM 18336004 ER PT J AU Denny, P Hagen, FK Hardt, M Liao, LJ Yan, WH Arellanno, M Bassilian, S Bedi, GS Boontheung, P Cociorva, D Delahunty, CM Denny, T Dunsmore, J Faull, KF Gilligan, J Gonzalez-Begne, M Halgand, F Hall, SC Han, XM Henson, B Hewel, J Hu, S Jeffrey, S Jiang, J Loo, JA Loo, RRO Malamud, D Melvin, JE Miroshnychenko, O Navazesh, M Niles, R Park, SK Prakobphol, A Ramachandran, P Richert, M Robinson, S Sondej, M Souda, P Sullivan, MA Takashima, J Than, S Wang, JH Whitelegge, JP Witkowska, HE Wolinsky, L Xie, YM Xu, T Yu, WX Ytterberg, J Wong, DT Yates, JR Fisher, SJ AF Denny, Paul Hagen, Fred K. Hardt, Markus Liao, Lujian Yan, Weihong Arellanno, Martha Bassilian, Sara Bedi, Gurrinder S. Boontheung, Pinmannee Cociorva, Daniel Delahunty, Claire M. Denny, Trish Dunsmore, Jason Faull, Kym F. Gilligan, Joyce Gonzalez-Begne, Mireya Halgand, Frederic Hall, Steven C. Han, Xuemei Henson, Bradley Hewel, Johannes Hu, Shen Jeffrey, Sherry Jiang, Jiang Loo, Joseph A. Loo, Rachel R. Ogorzallek Malamud, Daniel Melvin, James E. Miroshnychenko, Olga Navazesh, Mahvash Niles, Richard Park, Sung Kyu Prakobphol, Akraporn Ramachandran, Prasanna Richert, Megan Robinson, Sarah Sondej, Melissa Souda, Puneet Sullivan, Mark A. Takashima, Jona Than, Shawn Wang, Jianghua Whitelegge, Julian P. Witkowska, H. Ewa Wolinsky, Lawrence Xie, Yongming Xu, Tao Yu, Weixia Ytterberg, Jimmy Wong, David T. Yates, John R., III Fisher, Susan J. TI The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions SO JOURNAL OF PROTEOME RESEARCH LA English DT Review DE human saliva; parotid; submandibular; sublingual; ductal secretion; proteomics; mass spectrometry ID HUMAN WHOLE SALIVA; TANDEM MASS-SPECTROMETRY; 2-DIMENSIONAL GEL-ELECTROPHORESIS; PROTEIN IDENTIFICATION DATA; APOLIPOPROTEIN-E; YEAST PROTEOME; MATRIX METALLOPROTEINASES; SYSTEMIC ASSESSMENTS; HELICOBACTER-PYLORI; PILOT PHASE AB Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications-914 in parotid and 917 in submandibular/sublingual saliva-were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes ranging from structural functions to enzymatic/catalytic activities. As expected, the majority mapped to the extracellular and secretory compartments. An immunoblot approach was used to validate the presence in saliva of a subset of the proteins identified by mass spectrometric approaches. These experiments focused on novel constituents and proteins for which the peptide evidence was relatively weak. Ultimately, information derived from the work reported here and related published studies can be used to translate blood-based clinical laboratory tests into a format that utilizes saliva. Additionally, a catalogue of the salivary proteome of healthy individuals allows future analyses of salivary samples from individuals with oral and systemic diseases, with the goal of identifying biomarkers with diagnostic and/or prognostic value for these conditions; another possibility is the discovery of therapeutic targets. C1 [Denny, Paul; Denny, Trish; Gilligan, Joyce; Navazesh, Mahvash; Takashima, Jona] Univ So Calif, Sch Dent, Los Angeles, CA 90089 USA. [Hagen, Fred K.; Bedi, Gurrinder S.; Gonzalez-Begne, Mireya; Melvin, James E.; Sullivan, Mark A.] Univ Rochester, Med Ctr, Ctr Oral Biol, Rochester, NY 14642 USA. [Hardt, Markus; Hall, Steven C.; Miroshnychenko, Olga; Niles, Richard; Prakobphol, Akraporn; Robinson, Sarah; Witkowska, H. Ewa] Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA 94143 USA. [Liao, Lujian; Cociorva, Daniel; Delahunty, Claire M.; Han, Xuemei; Xu, Tao; Yates, John R., III] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. [Yan, Weihong; Boontheung, Pinmannee; Loo, Joseph A.; Ramachandran, Prasanna; Sondej, Melissa; Xie, Yongming; Ytterberg, Jimmy] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Malamud, Daniel] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. Univ Calif San Francisco, Biomol Resource Ctr, Mass Spectrometry Facil, San Francisco, CA 94143 USA. [Fisher, Susan J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, Steven C.; Loo, Joseph A.; Loo, Rachel R. Ogorzallek; Witkowska, H. Ewa; Fisher, Susan J.] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Arellanno, Martha; Henson, Bradley; Jeffrey, Sherry; Richert, Megan; Than, Shawn; Wang, Jianghua; Wolinsky, Lawrence; Yu, Weixia; Wong, David T.] Univ Calif Los Angeles, Sch Dent, Los Angeles, CA 90095 USA. [Faull, Kym F.; Halgand, Frederic; Souda, Puneet; Whitelegge, Julian P.] Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA. [Loo, Joseph A.; Wong, David T.] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA. [Wong, David T.] Univ Calif Los Angeles, Div Otolaryngol Head & Neck Surg, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. NYU, Coll Dent, New York, NY 10010 USA. RP Fisher, SJ (reprint author), Univ Calif San Francisco, Dept Cell & Tissue Biol, 513 Parnassus Ave, San Francisco, CA 94143 USA. EM sfisher@cgl.ucsf.edu RI Xu, Tao/A-9353-2009; Liao, Lujian/G-5976-2010; Ytterberg, Anders/E-1773-2016; OI Ytterberg, Anders/0000-0002-1485-2314; Malamud, Daniel/0000-0002-9094-4122 FU NIDCR NIH HHS [U01 DE 016274, U01 DE016267, U01 DE016267-04, U01 DE016274, U01 DE016274-04, U01 DE016275, U01 DE016275-04] NR 103 TC 185 Z9 195 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2008 VL 7 IS 5 BP 1994 EP 2006 DI 10.1021/pr700764j PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 296CD UT WOS:000255520200020 PM 18361515 ER PT J AU Zhang, QB Tang, N Schepmoes, AA Phillips, LS Smith, RD Metz, TO AF Zhang, Qibin Tang, Ning Schepmoes, Athena A. Phillips, Lawrence S. Smith, Richard D. Metz, Thomas O. TI Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE protein nonenzymatic glycation; Amadori compound; boronate affinity enrichment; electron transfer dissociation tandem mass spectrometry; type 2 diabetes mellitus; human plasma; erythrocyte membrane; comparative proteomics ID BORONATE AFFINITY-CHROMATOGRAPHY; DISSOCIATION MASS-SPECTROMETRY; TYPE-2 DIABETIC-PATIENTS; TIME TAG APPROACH; GLYCEMIC CONTROL; ACCURATE MASS; END-PRODUCTS; IN-VIVO; HEMOGLOBIN; IDENTIFICATION AB Nonenzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this work, we report the first proteomics-based characterization of nonenzymatically glycated proteins in human plasma and erythrocyte membranes from individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Phenylboronate affinity chromatography was used to enrich glycated proteins and glycated tryptic peptides from both human plasma and erythrocyte membranes. The enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation-tandem mass spectrometry, resulting in the confident identification of 76 and 31 proteins from human plasma and erythrocyte membranes, respectively. Although most of the glycated proteins could be identified in samples from individuals with normal glucose tolerance, slightly higher numbers of glycated proteins and more glycation sites were identified in samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus. C1 [Zhang, Qibin; Schepmoes, Athena A.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tang, Ning] Agilent Technol, Life Sci & Chem Anal, Santa Clara, CA 95052 USA. [Phillips, Lawrence S.] Emory Univ, Div Endocrinol, Atlanta, GA 30322 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU NCATS NIH HHS [UL1 TR000454]; NCRR NIH HHS [P41 RR018522-06, M01 RR000039, P41 RR018522, RR00039, RR018522]; NIDDK NIH HHS [DK066204, DK071283, R18 DK066204, R21 DK071283, R33 DK071283, R33 DK071283-03] NR 40 TC 69 Z9 72 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2008 VL 7 IS 5 BP 2025 EP 2032 DI 10.1021/pr700763r PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 296CD UT WOS:000255520200023 PM 18396901 ER PT J AU Baler, RD Volkow, ND Fowler, JS Benveniste, H AF Baler, Ruben D. Volkow, Nora D. Fowler, Joanna S. Benveniste, Helene TI Is fetal brain monoamine oxidase inhibition the missing link between maternal smoking and conduct disorders? SO JOURNAL OF PSYCHIATRY & NEUROSCIENCE LA English DT Review DE monoamine oxidase; smoking; maternal-fetal exchange; conduct disorder ID KNOCK-OUT MICE; PRENATAL NICOTINE EXPOSURE; DISRUPTIVE BEHAVIOR DISORDERS; MESSENGER-RNA EXPRESSION; LOW-BIRTH-WEIGHT; AGGRESSIVE-BEHAVIOR; ANTISOCIAL-BEHAVIOR; CIGARETTE-SMOKE; MAO-A; PEDUNCULOPONTINE NUCLEUS AB Smoking is the leading cause of preventable illness in the world today. Prenatal cigarette smoke exposure (PCSE) is a particularly insidious form because so many of its associated health effects befall the unborn child and produce behavioural outcomes that manifest themselves only years later. Among these are the associations between PCSE and conduct disorders, which have been mostly ascribed to the deleterious effects of nicotine on the fetal brain. Here we hypothesize that inhibition of brain monoamine oxidase (MAO) during fetal brain development, secondary to maternal cigarette smoking and in addition to nicotine, is a likely contributor to this association. MAOs play a central role in monoaminergic balance in the brain, and their inhibition during fetal development - but not during adult life - is known to result in an aggressive phenotype in laboratory animals. This paper provides theoretical and experimental support for the notion that cigarette smoke-induced inhibition of MAO in the fetal brain, particularly when it occurs in combination with polymorphisms in the MAOA gene that lead to lower enzyme concentration in the brain, may result in brain morphologic and functional changes that enhance the risk of irritability, poor self-control and aggression in the offspring. It also encourages research to evaluate whether the interaction of smoking exposure during fetal development and MAOA genotype increases the risk for conduct disorder over that incurred by mere fetal exposure to tobacco smoke. C1 [Baler, Ruben D.; Volkow, Nora D.] Natl Inst Drug Abuse, Off Sci Policy & Commun, NIH, Bethesda, MD 20892 USA. [Fowler, Joanna S.; Benveniste, Helene] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Fowler, Joanna S.; Benveniste, Helene] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. RP Baler, RD (reprint author), Natl Inst Drug Abuse, Off Sci Policy & Commun, NIH, 6001 Executive Blvd,Rm 5241,MSC 9591, Bethesda, MD 20892 USA. EM balerr@mail.nih.gov NR 121 TC 21 Z9 21 U1 5 U2 8 PU CMA-CANADIAN MEDICAL ASSOC PI OTTAWA PA 1867 ALTA VISTA DR, OTTAWA, ONTARIO K1G 3Y6, CANADA SN 1180-4882 J9 J PSYCHIATR NEUROSCI JI J. Psychiatry Neurosci. PD MAY PY 2008 VL 33 IS 3 BP 187 EP 195 PG 9 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 306HB UT WOS:000256237800002 PM 18592036 ER PT J AU Bachelor, PP Friese, JI Aalseth, CE McIntyre, JI Miley, HS Perkins, RW Warren, GA AF Bachelor, P. P. Friese, J. I. Aalseth, C. E. McIntyre, J. I. Miley, H. S. Perkins, R. W. Warren, G. A. TI Prompt determination of evacuee radiation dose from a nuclear event SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID HAIR; DOSIMETRY AB In anticipation of a nuclear detonation, techniques to quickly assess the radiation exposure of evacuees should be developed. Based on experience relating neutron radiation exposures to activation products, measurement of activation products can be performed in a few minutes. Personal items exposed to significant levels of radiation allows neutron dose assessment via the activation products. This approach allows prompt collection of important data on human exposure following a nuclear attack. Data collected will facilitate triage decisions for emergency medical treatment to ameliorate the radiation effects on exposed individuals. Activation experiments with everyday items exposed to a neutron source are presented. C1 [Bachelor, P. P.; Friese, J. I.; Aalseth, C. E.; McIntyre, J. I.; Miley, H. S.; Perkins, R. W.; Warren, G. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bachelor, PP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM paula.bachelor@pnl.gov RI McIntyre, Justin/P-1346-2014 OI McIntyre, Justin/0000-0002-3706-4310 NR 10 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 363 EP 367 DI 10.1007/s10967-008-0513-1 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300013 ER PT J AU Plionis, A Haas, D Landsberger, S Brooks, G AF Plionis, A. Haas, D. Landsberger, S. Brooks, G. TI A robust, field-deployable method for the electrodeposition of actinides SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID OXALATE-CHLORIDE ELECTROLYTE; ALPHA-SPECTROMETRY; OPTIMIZATION; ELEMENTS AB Several methods for the electrodeposition of actinides for alpha-spectrometry analysis have been developed over the past few decades, but none have been specifically designed to facilitate rapid analysis in a field situation. This paper describes the development of an electrodeposition procedure that is specifically adapted for use in a mobile lab. Using these techniques one would be able to obtain preliminary results in the event of a radiological incident. Quantitative yields with associated uncertainties have been determined for the procedure. It has also been shown that short deposition times can provide quantitative results. C1 [Plionis, A.; Haas, D.; Landsberger, S.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78712 USA. [Brooks, G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Plionis, A (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, Pickle Res Campus R-9000, Austin, TX 78712 USA. EM aplionis@mail.utexas.edu NR 8 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 369 EP 373 DI 10.1007/s10967-008-0514-0 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300014 ER PT J AU Inn, KGW Filliben, JJ Dahlgran, J AF Inn, K. G. W. Filliben, J. J. Dahlgran, J. TI Draft radioanalytical water and soil performance testing: Uncertainty acceptance criteria derived from historical mixed-analyte performance evaluation program results SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB Radioanalytical performance testing programs provide radioassay laboratories, regulators and the public performance-based evidence that measurement capabilities are in control. Performance acceptance criteria that combine aspects of measurements difference from a known value and the associated combined uncertainty establishes a quantitative statement of statistical confidence. However, there is need for a reasonable upper limit of the reported measurement uncertainty. Evaluation of thousands of historical U.S. DOE Mixed-Analyte Performance Evaluation Program measurement results for 17 radionuclides in soil and water samples provides predictive expectations for future measurement results and a statistical basis for establishing reasonable upper limits for reported measurement uncertainties for performance evaluation programs. C1 [Inn, K. G. W.; Filliben, J. J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Dahlgran, J.] Radiol Environm & Sci Lab, Idaho Falls, ID USA. RP Inn, KGW (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM kenneth.inn@nist.gov NR 4 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 375 EP 383 DI 10.1007/s10967-008-0515-z PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300015 ER PT J AU Keyser, RM Hensley, W Twomey, TR Upp, DL AF Keyser, R. M. Hensley, W. Twomey, T. R. Upp, D. L. TI Comparison of MCNP and experimental measurements for an HPGe-based spectroscopy portal monitor SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB The necessity to monitor international commercial transportation for illicit nuclear materials resulted in the installation of many nuclear radiation detection systems in Portal Monitors. To overcome the difficulty of innocent alarms due to a large content of natural radioactivity or medical nuclides, Department of Homeland Security (DHS) supported the writing of the ANSI N42.38 standard (Performance Criteria for Spectroscopy-Based Portal Monitors used for Homeland Security) to define the performance of a portal monitor with nuclide identification capabilities, called a Spectroscopy Portal Monitor. To accomplish the necessary performance, several different HPGe detector configurations were modeled using MCNP for the horizontal field of view (FOV) and vertical linearity of response over the detection zone of 5 meters by 4.5 meters for 661 keV as representative of the expected nuclides of interest. The configuration with the best result was built and tested. The results for the FOV as a function of energy and the linearity show good agreement with the model and performance exceeding the requirements of N42.38. C1 [Keyser, R. M.; Twomey, T. R.; Upp, D. L.] ORTEC, Oak Ridge, TN 37831 USA. [Hensley, W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Keyser, RM (reprint author), ORTEC, 801 S Illinois Ave, Oak Ridge, TN 37831 USA. EM ron.keyser@ortec-online.com NR 7 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 399 EP 405 DI 10.1007/s10967-008-0518-9 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300018 ER PT J AU Smith, DK Kristo, MJ Niemeyer, S Dudder, GB AF Smith, D. K. Kristo, M. J. Niemeyer, S. Dudder, G. B. TI Documentation of a model action plan to deter illicit nuclear trafficking SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB Theft, illegal possession, smuggling, or attempted unauthorized sale of nuclear and radiological materials remains a worldwide problem. The Nuclear Smuggling International Technical Working Group (ITWG) has adopted a model action plan to guide investigation of these cases through a systematic approach to nuclear forensics. The model action plan was recently documented and provides recommendations concerning incident response, collection of evidence in conformance with required legal standards, laboratory sampling and distribution of samples, radioactive materials analysis, including categorization and characterization of samples, forensics analysis of conventional evidence, and case development including interpretation of forensic signatures. C1 [Smith, D. K.; Kristo, M. J.; Niemeyer, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dudder, G. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Smith, DK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM smith24@llnl.gov NR 5 TC 10 Z9 10 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 415 EP 419 DI 10.1007/s10967-008-0520-2 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300020 ER PT J AU Woodring, ML Ely, JH Angel, LK Wright, IH Eslinger, MA Pospical, AJ Ellis, JE AF Woodring, M. L. Ely, J. H. Angel, L. K. Wright, I. H. Eslinger, M. A. Pospical, A. J. Ellis, J. E. TI Gamma-ray signatures for state-of-health analysis and monitoring of widely-arrayed radiation portal monitor systems SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security and U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM array using these data to determine functionality and performance is ongoing. Advanced state-of-health analysis and monitoring algorithms are being developed. Preparations are underway to incorporate the more difficult state-of-health monitoring of the mobile RPM and Advanced Spectroscopic Portals. C1 [Woodring, M. L.; Ely, J. H.; Angel, L. K.; Wright, I. H.; Eslinger, M. A.; Pospical, A. J.; Ellis, J. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Woodring, ML (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Mitchell.Woodring@pnl.gov NR 2 TC 4 Z9 4 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 421 EP 427 DI 10.1007/s10967-008-0521-1 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300021 ER PT J AU Hofstetter, KJ Beals, DM Odell, DM Eakle, RF Huffman, RK Harpring, LJ AF Hofstetter, K. J. Beals, D. M. Odell, D. M. Eakle, R. F. Huffman, R. K. Harpring, L. J. TI Multi-point radiation monitor SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB A simple, inexpensive instrument for measuring radiation fields in otherwise inaccessible locations has been developed. The RadRope consists of a series of radiation detectors inside a flexible sheath and connected to a data readout device to alert the operator to unexpected radiation fields at a remote location. The instrument is designed for use in a maritime environment and will assist inspection personnel in detecting potential illicit radioactive materials or radiological/nuclear weapons of mass destruction. C1 [Hofstetter, K. J.; Beals, D. M.; Odell, D. M.; Eakle, R. F.; Huffman, R. K.; Harpring, L. J.] Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hofstetter, KJ (reprint author), Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM kenneth.hofstetter@srnl.doe.gov NR 2 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 429 EP 432 DI 10.1007/s10967-008-0522-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300022 ER PT J AU Hofstetter, KJ Beals, DM Odell, DM AF Hofstetter, K. J. Beals, D. M. Odell, D. M. TI Uranium detection using small scintillators in a maritime environment SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB The performance of several commercially available portable radiation spectrometers containing small NaI(Tl) scintillation detectors has been studied. These devices are used by field inspection personnel to detect and identify illicit radioactive materials. The detection and identification of enriched uranium is an important deterrent to undeclared nuclear proliferation and nuclear terrorism. This study was conducted using a variety of shielded and unshielded uranium sources in a simulated maritime environment. The results indicate adequate identification capability for various uranium enrichments using the manufacturer's spectral analysis firmware. More sophisticated methods for analyzing the spectra can be applied to these short field measurements to determine the isotopic enrichment. C1 [Hofstetter, K. J.; Beals, D. M.; Odell, D. M.] Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hofstetter, KJ (reprint author), Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM kenneth.hofstetter@srnl.doe.gov NR 6 TC 3 Z9 3 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 433 EP 439 DI 10.1007/s10967-008-0523-z PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300023 ER PT J AU Robinson, SM Siciliano, ER Schweppe, JE AF Robinson, S. M. Siciliano, E. R. Schweppe, J. E. TI Source injection distribution functions for alarm algorithm testing SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB Developing and testing improved alarm algorithms is a priority of the Radiation Portal Monitor Project (RPMP) at PNNL. Improved algorithms may reduce the potential impediments that radiation screening presents to the flow of commerce, without affecting the detection sensitivity to sources of interest. However, assessing alarm-algorithm performance involves calculation of both detection probabilities and false alarm rates. For statistical confidence, this requires a large amount of data from drive-through (or "dynamic") scenarios both with, and without, sources of interest, but this is usually not feasible. Instead, an "injection-study" procedure is used to approximate the profiles of drive-through commercial data with sources of interest present. This procedure adds net-counts from a pre-defined set of simulated sources to raw, gross-count drive-through data randomly selected from archived RPM data. The accuracy of the procedure - particularly the spatial distribution of the injected counts - has not been fully examined. This report describes the use of previously constructed and validated MCNP computer models for assessing the current injection-study procedure. In particular, this report focuses on the functions used to distribute the injected counts throughout the raw drive-through spatial profiles, and for suggesting a new class of injection spatial distributions that more closely resemble actual cargo scenarios. C1 [Robinson, S. M.; Siciliano, E. R.; Schweppe, J. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Robinson, SM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Sean.Robinson@pnl.gov NR 6 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 447 EP 453 DI 10.1007/s10967-008-0525-x PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300025 ER PT J AU Tandon, L Hastings, E Banar, J Barnes, J Beddingfield, D Decker, D Dyke, J Farr, D FitzPatrick, J Gallimore, D Garner, S Gritzo, R Hahn, T Havrilla, G Johnson, B Kuhn, K LaMont, S Langner, D Lewis, C Majidi, V Martinez, P McCabe, R Mecklenburg, S Mercer, D Meyers, S Montoya, V Patterson, B Pereyra, RA Porterfield, D Poths, J Rademacher, D Ruggiero, C Schwartz, D Scott, M Spencer, K Steiner, R Villarreal, R Volz, H Walker, L Wong, A Worley, C AF Tandon, L. Hastings, E. Banar, J. Barnes, J. Beddingfield, D. Decker, D. Dyke, J. Farr, D. FitzPatrick, J. Gallimore, D. Garner, S. Gritzo, R. Hahn, T. Havrilla, G. Johnson, B. Kuhn, K. LaMont, S. Langner, D. Lewis, C. Majidi, V. Martinez, P. McCabe, R. Mecklenburg, S. Mercer, D. Meyers, S. Montoya, V. Patterson, B. Pereyra, R. A. Porterfield, D. Poths, J. Rademacher, D. Ruggiero, C. Schwartz, D. Scott, M. Spencer, K. Steiner, R. Villarreal, R. Volz, H. Walker, L. Wong, A. Worley, C. TI Nuclear, chemical, and physical characterization of nuclear materials SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID PLUTONIUM; PARTICLES; URANIUM AB The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory (LANL) Nuclear Materials Signatures Program has implemented a graded "conduct of operations" type analysis flow path approach for determining the key nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. This analysis flow path includes both destructive and non-destructive characterization techniques and has been exercized against different nuclear materials from LANL's special nuclear materials archive. Results obtained from the case study will be presented to highlight analytical techniques that offer the critical attribution information. C1 [Tandon, L.; Hastings, E.; Banar, J.; Barnes, J.; Beddingfield, D.; Decker, D.; Dyke, J.; Farr, D.; FitzPatrick, J.; Gallimore, D.; Garner, S.; Gritzo, R.; Hahn, T.; Havrilla, G.; Johnson, B.; Kuhn, K.; LaMont, S.; Langner, D.; Lewis, C.; Majidi, V.; Martinez, P.; McCabe, R.; Mecklenburg, S.; Mercer, D.; Meyers, S.; Montoya, V.; Patterson, B.; Pereyra, R. A.; Porterfield, D.; Poths, J.; Rademacher, D.; Ruggiero, C.; Schwartz, D.; Scott, M.; Spencer, K.; Steiner, R.; Villarreal, R.; Volz, H.; Walker, L.; Wong, A.; Worley, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tandon, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tandon@lanl.gov RI Mecklenburg, Sandra/F-4571-2010; OI Havrilla, George/0000-0003-2052-7152; McCabe, Rodney /0000-0002-6684-7410; Patterson, Brian/0000-0001-9244-7376 NR 18 TC 9 Z9 9 U1 3 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 467 EP 473 DI 10.1007/s10967-008-0528-7 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300028 ER PT J AU Hastings, EP Lewis, C FitzPatrick, J Rademacher, D Tandon, L AF Hastings, E. P. Lewis, C. FitzPatrick, J. Rademacher, D. Tandon, L. TI Characterization of depleted uranium oxides fabricated using different processing methods SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID PARTICLE PROPERTIES; DIOXIDE; SIZE AB Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample's bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350-1100 degrees C). Results will demonstrate how each oxides' material density, particle size distribution, and morphology varies. C1 [Hastings, E. P.; Lewis, C.; FitzPatrick, J.; Rademacher, D.; Tandon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hastings, EP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ehastings@lanl.gov NR 12 TC 9 Z9 9 U1 1 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 475 EP 481 DI 10.1007/s10967-008-0529-6 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300029 ER PT J AU Miley, HS Bowyer, TW Greenwood, LR Arthur, RJ AF Miley, H. S. Bowyer, T. W. Greenwood, L. R. Arthur, R. J. TI Fission product ratios as treaty monitoring discriminants SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB The International Monitoring System (IMS) of the Comprehensive Test Ban Treaty Organization (CTBTO) is currently under construction. The IMS is intended for monitoring of nuclear explosions. The radionuclide part of the IMS monitors the atmosphere for short-lived radioisotopes indicative of a nuclear weapon test, and includes field collection and measurement stations, as well as laboratories to provide reanalysis of the most important samples and a quality control function. The Pacific Northwest National Laboratory in Richland, Washington hosts the United States IMS laboratory, with the designation "RL16." Since acute reactor containment failures and chronic reactor leakage may also produce similar isotopes, it is tempting to compute ratios of detected isotopes to determine the relevance of an event to the treaty or agreement in question. In this paper we will note several shortcomings of simple isotopic ratios: (1) fractionation of different chemical species, (2) difficulty in comparing isotopes within a single element, and (3) the effect of unknown decay times. While these shortcomings will be shown in the light of an aerosol sample, several of the problems extend to xenon isotopic ratios. Due to the difficulties listed above, considerable human expertise will be required to convert a simple mathematical isotope ratio into a criterion which will reliably categorize an event as 'reactor' or 'weapon'. C1 [Miley, H. S.; Bowyer, T. W.; Greenwood, L. R.; Arthur, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miley, HS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM harry.miley@pnl.gov RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 3 TC 2 Z9 2 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 483 EP 487 DI 10.1007/s10967-008-0530-0 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300030 ER PT J AU Farmer, OT Olsen, KB Thomas, ML Garofoli, SJ AF Farmer, O. T., III Olsen, K. B. Thomas, M. L. Garofoli, S. J. TI Analysis of IAEA environmental samples for plutonium and uranium by ICP/MS in support of international safeguards SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB A method for the separation and determination of total and isotopic uranium and plutonium by ICP/MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU(R) resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc.), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels. C1 [Farmer, O. T., III; Olsen, K. B.; Thomas, M. L.; Garofoli, S. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Farmer, OT (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM tom.farmer@pnl.gov OI Gregory, Stephanie/0000-0001-9952-0388 NR 6 TC 13 Z9 13 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 489 EP 492 DI 10.1007/s10967-008-0531-z PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300031 ER PT J AU Engelmann, MD Metz, LA Delmore, JE Engelhard, M Ballou, NE AF Engelmann, M. D. Metz, L. A. Delmore, J. E. Engelhard, M. Ballou, N. E. TI Electrodeposition of technetium on platinum for thermal ionization mass spectrometry (TIMS) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID ENVIRONMENTAL-SAMPLES; ISOTOPE-DILUTION; ICP-MS; TC-99; SEPARATION; PLUTONIUM; LEVEL; RESIN; SOIL; TC AB A novel device has been fabricated for the electrodeposition of technetium metal onto platinum filaments for thermal ionization mass spectrometric (TIMS) measurements. The ability of the device to focus the deposition to diameters of hundreds of micrometers on pre-mounted TIMS filaments coupled with the ease of use and simplicity of design permit for an extremely sensitive yet economical TIMS filament loading technique. Electrodeposition parameters were varied in order to maximize deposition efficiency. X-ray photoelectron spectroscopy (XPS) was used to confirm and characterize the technetium deposit. The technetium is deposited in the metallic state, although surface oxides in the 4+ and 7+ state form readily. Initial TIMS measurements of the electrodeposited technetium in the presence of a barium sulfate ionization enhancer show potential for excellent sensitivity. C1 [Engelmann, M. D.; Metz, L. A.; Engelhard, M.; Ballou, N. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Delmore, J. E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Engelmann, MD (reprint author), Pacific NW Natl Lab, POB 999,MSIN P8-50, Richland, WA 99352 USA. EM mark.engelmann@pnl.gov RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 17 TC 1 Z9 1 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 493 EP 498 DI 10.1007/s10967-008-0532-y PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300032 ER PT J AU Efurd, DW Steiner, RE LaMont, SP Lewis, D AF Efurd, D. W. Steiner, R. E. LaMont, S. P. Lewis, D. TI History of the plutonium bioassay program at the Los Alamos National Laboratory, 1944-2006 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID IONIZATION MASS-SPECTROMETRY; FISSION-TRACK ANALYSIS; MU-BQ QUANTITIES; SYNTHETIC URINE; ALPHA SPECTROMETRY; INTERNAL DOSIMETRY; PU-239; LIMITS AB In 1944 Los Alamos National Laboratory (LANL) instituted a program for the collection and analyses of urine samples from individuals working with plutonium. This program has operated continuously for over 60 years. During that time the plutonium bioassay program incorporated advances in urine sample collection, radiochemical separation techniques, alpha-spectroscopy and thermal ionization mass spectrometry measurement techniques as well as cleanroom technology. All of these advances have produced incremental improvements in plutonium detection limits. A chronological description is given of the methodologies used in the plutonium bioassay program at Los Alamos. C1 [Efurd, D. W.; Steiner, R. E.; LaMont, S. P.; Lewis, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Efurd, DW (reprint author), Los Alamos Natl Lab, POB 1663,MS J514, Los Alamos, NM 87545 USA. EM dwe@lanl.gov NR 34 TC 3 Z9 3 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 499 EP 504 DI 10.1007/s10967-008-0533-x PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300033 ER PT J AU Bores, NE Schultz, MK Rankin, JM Denton, AJ Payne, GF Steiner, RE LaMont, SP Ortiz, SB AF Bores, N. E. Schultz, M. K. Rankin, J. M. Denton, A. J. Payne, G. F. Steiner, R. E. LaMont, S. P. Ortiz, S. B. TI Evaluation of measurements of Pu-238, Pu-239 and Pu-240 in urine at the microbecquerel level using thermal ionization mass spectrometry and alpha-spectrometry at Los Alamos National Laboratory: Results of a two year comparison test (LA-UR-06-8055) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID SAMPLES AB The Intercomparison Studies Program (ISP) at the Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) provides natural-matrix urine quality-assurance/quality-control (QA/QC) samples to radiobioassay analysis laboratories. In 2003, a single laboratory (Los Alamos National Laboratory LANL, Los Alamos NM USA) requested a change in the test-samples provided previously by the ISP. The change was requested to evaluate measurement performance for analyses conducted using thermal-ionization mass spectrometry (TIMS). Radionuclides included Pu-239 at two activity levels (75-150 mu Bq.sample(-1) and 1200-1600 mu Bq.sample(-1)) and Pu-238 (3700-7400 mu Bq.sample(-1)). In addition, Pu-240 was added to the samples so that the Pu239+240 specific activity was 3700-7400 mu Bq.sample(-1). In this paper, the results of testing during the period May, 2003 through September, 2005 are presented and discussed. C1 [Bores, N. E.; Rankin, J. M.; Denton, A. J.; Payne, G. F.] Oak Ridge Natl Lab, Qual Syst & Serv Div, Intercomparison Studies Program, Oak Ridge, TN 37831 USA. [Schultz, M. K.] Univ Iowa Hosp & Clin, Iowa City, IA 52242 USA. [Steiner, R. E.; LaMont, S. P.; Ortiz, S. B.] Los Alamos Natl Lab, Nucl & Radiochem Grp, Los Alamos, NM 87545 USA. RP Bores, NE (reprint author), Oak Ridge Natl Lab, Qual Syst & Serv Div, Intercomparison Studies Program, Oak Ridge, TN 37831 USA. EM boresne@ornl.gov NR 12 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 513 EP 518 DI 10.1007/s10967-008-0535-8 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300035 ER PT J AU Hoffman, DC AF Hoffman, D. C. TI Atom-at-a-time studies of the transactinide elements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID IUPAC TECHNICAL REPORT; SUPERHEAVY NUCLEI; CHEMISTRY; ISOTOPES; RUTHERFORDIUM; CHLORIDES; SYSTEM AB Some of the techniques used in atom-at-a-time investigations of both nuclear and chemical properties of transactinide elements will be discussed. Constraints on the systems that are valid for exploring chemical properties when only a few atoms at a time are available and recent developments in instrumentation are considered. The current status of investigations of the chemical properties of the transactinides is summarized and prospects for additional studies are evaluated. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Hoffman, DC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, MS-70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DCHoffman@lbl.gov NR 31 TC 5 Z9 5 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 525 EP 532 DI 10.1007/s10967-008-0537-6 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300037 ER PT J AU Schwantes, JM Taylor, WA Rundberg, RS Vieira, DJ AF Schwantes, J. M. Taylor, W. A. Rundberg, R. S. Vieira, D. J. TI Preparation of a one-curie Tm-171 target for the detector for advanced neutron capture experiments (DANCE) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; ION-EXCHANGE; RARE-EARTHS; HIGH-PURITY; SEPARATION; LANTHANIDES; CONSTANTS; ACID AB Approximately one curie of Tm-171 (T-1/2 = 1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating ca. 250 mg of its stable enriched Er-170 lanthanide neighbour with neutrons at the ILL reactor in France. This production method resulted in a "difficult-to-separate" 1:167 mixture of near-neighboring lanthanides, Tm and Er. Separation and purification was accomplished using high-performance liquid chromatography (HPLC), with a proprietary cation-exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (alpha-HIB) eluent. This technique yielded a final product of similar to 95% purity with respect to Tm. A portion (20 mu g) of the Tm was electrodeposited onto thin Be foil and delivered to the Los Alamos Neutron Science Center (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step, including scale-up issues related to the use of HPLC for material separation and purification of the target material from alpha-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant. C1 [Schwantes, J. M.; Rundberg, R. S.; Vieira, D. J.] Los Alamos Natl Lab, Isotope & Nucl Chem Grp, Div Chem, Los Alamos, NM 87545 USA. [Taylor, W. A.] Los Alamos Natl Lab, Nucl Mat Div, Los Alamos, NM 87545 USA. RP Schwantes, JM (reprint author), Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Natl Secur Directorate, POB 999,MSIN P8-50, Richland, WA 99352 USA. EM Jon.Schwantes@pnl.gov RI Schwantes, Jon/A-7318-2009 NR 25 TC 3 Z9 4 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 533 EP 542 DI 10.1007/s10967-008-0538-5 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300038 ER PT J AU Schwantes, JM Sudowe, R Nitsche, H Hoffman, DC AF Schwantes, J. M. Sudowe, R. Nitsche, H. Hoffman, D. C. TI Applications of solvent extraction in the high-yield multi-process reduction/separation of Eu from excess Sm SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID SEPARATION; EUROPIUM; RECOVERY; MIDDLE AB A novel multi-process method for separating Eu from neighbouring lanthanides (Ln) has been developed that chemically reduces Eu(III) to Eu(II) prior to solvent extraction of Ln(III) with thenoyltrifluoroacetone in benzene. This method is capable of achieving higher purities (> 99%) and separation yields than previously published multi-process methods that stabilize and separate the reduced Eu(II) as a sulphate solid and is ideal for enriching materials of high-value. Results from a variety of combinations of a chemical or electrochemical reduction process preceding a separation process using either ion-exchange chromatography, reversed phase chromatography, or solvent extraction are discussed. C1 [Schwantes, J. M.] Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Natl Secur Directorate, Richland, WA 99352 USA. [Sudowe, R.] Univ Nevada, Dept Hlth Phys, Las Vegas, NV 89154 USA. [Nitsche, H.; Hoffman, D. C.] Univ Calif Berkeley, Heavy Element Nucl & Radiochem Grp, Div Nucl Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nitsche, H.; Hoffman, D. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Schwantes, JM (reprint author), Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Natl Secur Directorate, POB 999,MSIN P8-50, Richland, WA 99352 USA. EM Jon.Schwantes@pnl.gov RI Schwantes, Jon/A-7318-2009 NR 9 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 543 EP 548 DI 10.1007/s10967-008-0539-4 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300039 ER PT J AU Bond, EM Glover, S Vieira, DJ Rundberg, RS Belier, G Meot, V Hynek, D Jansen, Y Becker, J Macri, R AF Bond, E. M. Glover, S. Vieira, D. J. Rundberg, R. S. Belier, G. Meot, V. Hynek, D. Jansen, Y. Becker, J. Macri, R. TI Preparation of U-235m targets for U-235(n,n')U-235m cross section measurements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID ELECTRODEPOSITION AB This paper describes the preparation of samples for an experiment to measure the cross-section for U-235(n,n')U-235m in a fast fission spectrum of neutrons provided by a fast pulsed reactor/critical assembly. Samples of U-235m have been prepared for the calibration of the internal conversion electron detector that is used for the U-235m measurement. Two methods are described for the preparation of U-235m. The first method used a U-Pu chemical separation based on anion-exchange chromatography and the second method used an alpha recoil collection method. Thin, uniform samples of U-235m+U-235 were prepared for the experiment using electrodeposition. C1 [Bond, E. M.; Vieira, D. J.; Rundberg, R. S.] Los Alamos Natl Lab, C INC, Los Alamos, NM 87545 USA. [Glover, S.] Univ Cincinnati, Dept Mech Ind & Nucl Engn, Cincinnati, OH 45221 USA. [Belier, G.; Meot, V.] CEA DIF DPTA Serv Phys Nucl, F-91680 Bruyeres Le Chatel, France. [Hynek, D.; Jansen, Y.] CEA Valduc, F-21120 Is Sur Tille, France. [Becker, J.; Macri, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bond, EM (reprint author), Los Alamos Natl Lab, C INC, MS J-514, Los Alamos, NM 87545 USA. EM bond@lanl.gov OI Bond, Evelyn/0000-0001-7335-4086 NR 8 TC 7 Z9 7 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 549 EP 554 DI 10.1007/s10967-008-0540-y PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300040 ER PT J AU Baker, JD McGrath, CA Hill, TS Reifarth, R Tovesson, F AF Baker, J. D. McGrath, C. A. Hill, T. S. Reifarth, R. Tovesson, F. TI Actinide targets for neutron cross section measurements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID FILMS AB The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross sections for certain "minor" actinides. For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,gamma) and (n,f) cross sections. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched Pu-239, Pu-240, and Pu-242. Thus far, we have electrodeposited these actinide targets. The chemical purification and electodeposition techniques will be described. C1 [Baker, J. D.; McGrath, C. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hill, T. S.; Reifarth, R.; Tovesson, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Baker, JD (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM john.baker@inl.gov RI McGrath, Christopher/E-8995-2013 NR 8 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 555 EP 560 DI 10.1007/s10967-008-0541-x PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300041 ER PT J AU FitzPatrick, JR Bond, E Slemmons, A Vieira, D AF FitzPatrick, J. R. Bond, E. Slemmons, A. Vieira, D. TI Preparation of americium targets for nuclear chemistry experiments at DANCE SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID THIN; ELECTRODEPOSITION AB Using 1 gram of Am-241 from LANL stocks, the purification steps required to obtain a solution of Am-241 from the original material are described. Part of the purified solution was submitted for purity analysis by mass spectrometry, radiochemistry and trace metals analysis. The impurities were expected to be Pu-239 and Np-237. A second fraction of this material was used for electroplating three samples onto titanium disks that were suitable for insertion into an instrument package to be placed into the DANCE detector. The purification methods used, the electroplating setup and the solutions to various problems that were encountered in making these targets are discussed. The analytical results are discussed as well as the yields from the electrodeposition process. Comparison of these yields with those from similar experiments utilizing U-235 and Am-243 are also discussed. C1 [FitzPatrick, J. R.; Slemmons, A.] Los Alamos Natl Lab, C AAC, Los Alamos, NM 87545 USA. [Bond, E.; Vieira, D.] Los Alamos Natl Lab, C INC, Los Alamos, NM 87545 USA. RP FitzPatrick, JR (reprint author), Los Alamos Natl Lab, C AAC, M-S G740, Los Alamos, NM 87545 USA. EM jrfitzp@lanl.gov OI Bond, Evelyn/0000-0001-7335-4086 NR 14 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2008 VL 276 IS 2 BP 561 EP 566 DI 10.1007/s10967-008-0542-9 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 296ZT UT WOS:000255585300042 ER PT J AU Bennett, CL AF Bennett, Charles L. TI Optimal heat collection element shapes for parabolic trough concentrators SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article AB For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror is instead oblong and is approximately given by a pair of facing parabolic segments. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bennett, CL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 7 TC 1 Z9 1 U1 0 U2 1 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2008 VL 130 IS 2 AR 021008 DI 10.1115/1.2888757 PG 5 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 300QH UT WOS:000255839800008 ER PT J AU Lupfert, E Riffelmann, KJ Price, H Burkholder, F Moss, T AF Luepfert, Eckhard Riffelmann, Klaus-J. Price, Henry Burkholder, Frank Moss, Tim TI Experimental analysis of overall thermal properties of parabolic trough receivers SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE parabolic trough; absorber; thermal losses; thermal testing AB The heat loss of a receiver in a parabolic trough collector plays an important role in collector performance. A number of methods have been used to measure the thermal loss of a receiver tube depending on its operating temperature. This paper presents methods for measuring receiver heat losses including field measurements and laboratory setups both based on energy balances from the hot inside of the receiver tube to the ambient. Further approaches are presented to measure and analyze the temperature of the glass envelope of evacuated receivers and to model overall heat losses and emissivity coefficients of the receiver Good agreement can be found between very different approaches and independent installations. For solar parabolic trough plants operating in the usual 390 degrees C temperature range, the thermal loss is around 300 W/m receiver length. C1 [Luepfert, Eckhard] German Aerosp Ctr DLR, Inst Tech Thermodynam, D-51170 Cologne, Germany. [Riffelmann, Klaus-J.] Flagsol GmbH, Cologne, Germany. [Price, Henry; Burkholder, Frank] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Moss, Tim] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lupfert, E (reprint author), German Aerosp Ctr DLR, Inst Tech Thermodynam, D-51170 Cologne, Germany. EM e.luepfeft@dlr.de NR 7 TC 21 Z9 24 U1 3 U2 19 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2008 VL 130 IS 2 AR 021007 DI 10.1115/1.2888756 PG 5 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 300QH UT WOS:000255839800007 ER PT J AU Rosta, S Hurt, R Boehm, R Hale, MJ AF Rosta, S. Hurt, R. Boehm, R. Hale, M. J. TI Performance of a zero-energy house SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT International Solar Energy Conference CY JUL 08-13, 2006 CL Denver, CO SP ASME, Solar Energy Div, Colorado Renewable Energy Soc AB A comparative study is reported to measure the actual performance of a zero-energy house (ZEH) of typical tract design. Ideally, a ZEH produces as much energy as it consumes in a year's time. Two identically sized tract houses (149.6 m(2) (1610 ft(2))) were constructed side by side in southwest Las Vegas, NV. One house is used as a base line (standard comparison) house and was built using conventional construction techniques. The other house, the ZEH, employs many energy saving features, solar power generation, and supplemental solar water heating. Both houses have been equipped with a network of sensors that measure virtually every aspect of energy usage in each home. Initially, both houses have been utilized as model homes in a tract housing development, so it was reasonable to believe that both experienced similar and consistent usage. Performance data are logged and are posted on the web. This paper describes the differences in construction details between the two houses. Results of monitoring are presented that contrast the performance of the two houses. C1 [Rosta, S.; Hurt, R.; Boehm, R.] UNLV Ctr Energy Res, Las Vegas, NV 89154 USA. [Hale, M. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Rosta, S (reprint author), UNLV Ctr Energy Res, Las Vegas, NV 89154 USA. NR 4 TC 0 Z9 0 U1 1 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2008 VL 130 IS 2 AR 021006 DI 10.1115/1.2844429 PG 4 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 300QH UT WOS:000255839800006 ER PT J AU Lane, SA Lacy, SL Babuska, V Hanes, S Schrader, K Fuentes, R AF Lane, Steven A. Lacy, Seth L. Babuska, Vit Hanes, Stephen Schrader, Karl Fuentes, Robert TI Active vibration control of a deployable optical telescope SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID SPACE; MIRROR; PAMELA; IDENTIFICATION; SYSTEM AB The U.S. Air Force Research Laboratory developed the deployable optical telescope testbed as part of the large deployable optics research program. The goal of this program was to investigate the feasibility of a deployable space telescope concept and to mature critical enabling technologies to provide risk reduction for the general mission concept. This paper discusses many of the challenges encountered in laboratory testing of complex, sensitive, deployable systems. Implementation of a white-light interferometer for initialization and calibration, a pencil beam or single-pixel heterodyne interferometer for measuring primary mirror motion, and a Twyman-Green interferometer system for wave-front monitoring are discussed. Development of integrated system models and system identification methods for controller design are discussed. Active structural control was demonstrated to maintain optical alignment of the telescope while subjected to simulated reaction wheel disturbances, ambient vibration and atmospheric beam steering. Wave-front sensing and interferogram analysis were used to quantitatively assess optical performance, but wave-front error was not fed back to the controller. C1 [Lane, Steven A.; Lacy, Seth L.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. [Babuska, Vit] Sandia Natl Labs, Dept 1525, Albuquerque, NM 87185 USA. [Hanes, Stephen] Boeing Co, Albuquerque, NM 87185 USA. [Schrader, Karl; Fuentes, Robert] Boeing SVS Inc, Albuquerque, NM 87109 USA. RP Lane, SA (reprint author), USAF, Res Lab, Space Vehicles Directorate, 3550 Aberdeen Ave, Kirtland AFB, NM 87117 USA. NR 38 TC 2 Z9 3 U1 3 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY-JUN PY 2008 VL 45 IS 3 BP 568 EP 586 DI 10.2514/1.30838 PG 19 WC Engineering, Aerospace SC Engineering GA 312SG UT WOS:000256690500017 ER PT J AU Chertkov, M Chernyak, VY Teodorescu, R AF Chertkov, Michael Chernyak, Vladimir Y. Teodorescu, Razvan TI Belief propagation and loop series on planar graphs SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE analysis of algorithms; heuristics; error correcting codes ID ISING-MODEL; SPIN-GLASSES; STATISTICS; LATTICE; PHASE; TRANSITION; DIMERS AB We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed. C1 [Chertkov, Michael; Teodorescu, Razvan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, Michael; Teodorescu, Razvan] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. RP Chertkov, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM chertkov@lanl.gov; chernyak@chem.wayne.edu; razvan@lanl.gov RI Chertkov, Michael/O-8828-2015; Chernyak, Vladimir/F-5842-2016; OI Chernyak, Vladimir/0000-0003-4389-4238; Teodorescu, Razvan/0000-0002-7202-1949; Chertkov, Michael/0000-0002-6758-515X NR 54 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD MAY PY 2008 AR P05003 DI 10.1088/1742-5468/2008/05/P05003 PG 19 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 309IW UT WOS:000256454900003 ER PT J AU Langan, P Fisher, Z Kovalevsky, A Mustyakimov, M Valone, AS Unkefer, C Waltman, MJ Coates, L Adams, PD Afonine, PV Bennett, B Dealwis, C Schoenborn, BP AF Langan, Paul Fisher, Zoe Kovalevsky, Andrii Mustyakimov, Marat Valone, Amanda Sutcliffe Unkefer, Cliff Waltman, Mary Jo Coates, Leighton Adams, Paul D. Afonine, Pavel V. Bennett, Brad Dealwis, Chris Schoenborn, Benno P. TI Protein structures by spallation neutron crystallography SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE neutrons; proteins; macromolecular crystallography; deuteration; enzyme mechanisms; drug binding; hydration; joint XN structure refinement ID X-RAY; DIISOPROPYL FLUOROPHOSPHATASE; DIHYDROFOLATE-REDUCTASE; HYDROGEN-ATOMS; DIFFRACTION; METHOTREXATE; SOFTWARE; PH AB The Protein Crystallography Station at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. This capability also includes the Macromolecular Neutron Crystallography (MNC) consortium between Los Alamos (LANL) and Lawrence Berkeley National Laboratories for developing computational tools for neutron protein crystallography, a biological deuteration laboratory, the National Stable Isotope Production Facility, and an MNC drug design consortium between LANL and Case Western Reserve University. C1 [Langan, Paul; Fisher, Zoe; Kovalevsky, Andrii; Mustyakimov, Marat; Valone, Amanda Sutcliffe; Unkefer, Cliff; Waltman, Mary Jo; Coates, Leighton; Schoenborn, Benno P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Adams, Paul D.; Afonine, Pavel V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bennett, Brad; Dealwis, Chris] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. RP Langan, P (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM langan_paul@lanl.gov RI Langan, Paul/N-5237-2015; Adams, Paul/A-1977-2013; OI Langan, Paul/0000-0002-0247-3122; Adams, Paul/0000-0001-9333-8219; Coates, Leighton/0000-0003-2342-049X; Kovalevsky, Andrey/0000-0003-4459-9142 FU NIGMS NIH HHS [1R01GM071939-01, R01 GM071939] NR 26 TC 17 Z9 17 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2008 VL 15 BP 215 EP 218 DI 10.1107/S0909049508000824 PN 3 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 289JD UT WOS:000255049900006 PM 18421142 ER PT J AU Kossecka, E Kosny, J AF Kossecka, Elisabeth Kosny, Jan TI Hot-box testing of building envelope assemblies - A simplified procedure for estimation of minimum time of the test SO JOURNAL OF TESTING AND EVALUATION LA English DT Article DE hot-box testing; time constants; building envelopes; heat flow; heat capacity AB Cost of performing hot-box experiments on building envelope assemblies is relatively high. That is why proper estimation of the minimum amount of time necessary to achieve required test accuracy is critical to all hot-box operators. In this paper, two methods are proposed for determining wall specimen time constants, for the hot-box apparatus testing. The requirements published in ASTM C1363-05 "Standard Test Method for the Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus," concerning determination of the time to reach the steady state of heat flow are discussed. One method requires numerical calculations of the response factors with subsequent determination of time constants. The second method makes use of the approximate relation between the time constant and the product of resistance, capacity, and a structure factor. Both methods may serve for the optimization of the minimum test time during hot-box experiments. C1 [Kossecka, Elisabeth] Polish Acad Sci, Inst Fundamental Technol Res, Dept Ecobldg Engn, Warsaw, Poland. [Kosny, Jan] Oak Ridge Natl Lab, Bldg Envelope Program, Oak Ridge, TN USA. RP Kossecka, E (reprint author), Polish Acad Sci, Inst Fundamental Technol Res, Dept Ecobldg Engn, Warsaw, Poland. EM ekossec@ippt.gov.pl; kosnyj@ornl.gov NR 17 TC 6 Z9 7 U1 0 U2 2 PU AMER SOC TESTING MATERIALS PI W CONSHOHOCKEN PA 100 BARR HARBOR DR, W CONSHOHOCKEN, PA 19428-2959 USA SN 0090-3973 J9 J TEST EVAL JI J. Test. Eval. PD MAY PY 2008 VL 36 IS 3 BP 242 EP 249 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 316KO UT WOS:000256948600004 ER PT J AU Anderson, BE Hughes, WJ Hambric, SA AF Anderson, Brian E. Hughes, W. Jack Hambric, Stephen A. TI On the steering of sound energy through a supercritical plate by a near-field transducer array SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID TRANSMISSION LOSS; OBLIQUE-INCIDENCE; IMPULSE METHOD; WAVE AB The ability to direct sound energy through the flexural vibrations of a submerged plate at various angles of incidence using a near-field transducer array is investigated. An alumina bar is placed in front of a one-dimensional, eight-element transducer array, between the array and the water. Operating in a receive mode, data were taken as a function of angle of incidence and compared to data taken without the presence of the alumina bar. The array was also operated in transmit mode and results were compared to corresponding receive mode data, showing that reciprocity holds. Results show that in fact sound energy can be steered through a plate, and that the measurement method used provides a convenient method of measuring the angular dependence of transmission through a plate, including measurements at frequencies above the plate's critical frequency. Experimental results of sound transmission versus angle of incidence of finite sized plates agree qualitatively with theoretical results from an analysis of the transmission through an unbounded flexible partition. (c) 2008 Acoustical Society of America. C1 [Anderson, Brian E.; Hughes, W. Jack; Hambric, Stephen A.] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA. RP Anderson, BE (reprint author), Los Alamos Natl Lab, Geophys Grp, MS D443, Los Alamos, NM 87545 USA. EM bea@lanl.gov RI Anderson, Brian/G-8819-2012 NR 16 TC 4 Z9 4 U1 0 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAY PY 2008 VL 123 IS 5 BP 2613 EP 2619 DI 10.1121/1.2890738 PN 1 PG 7 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 301FE UT WOS:000255881000020 PM 18529181 ER PT J AU Schneider, JS Moore, DH Mendelsohn, ML AF Schneider, Jeffrey S. Moore, Dan H., II Mendelsohn, Mortimer L. TI Screening program reduced melanoma mortality at the Lawrence Livermore National Laboratory, 1984 to 1996 SO JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY LA English DT Article ID CUTANEOUS MALIGNANT-MELANOMA; AMERICAN JOINT COMMITTEE; EARLY DIAGNOSIS; EMPLOYEES; RISK; SURVIVAL; SURVEILLANCE; POPULATION; CAMPAIGN; SCOTLAND AB Background: Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet shown reduction in mortality. We evaluated results of all educational campaign designed to promote self-examination and targeted screening at the Lawrence Livermore National Laboratory (LLNL). Methods: Thickness and crude incidence of melanomas detected during 3 phases of increasing melanoma surveillance were studied. These periods were: (1) preawareness (1969-1975), (2) early awareness of increased melanoma risk (1976-1984); and (3) screening program (1984-1996). Melanoma mortality was derived from data recorded in the National Death Index search. The expected annual number of deaths from melanoma among LLNL employees was calculated by using California mortality data matched by age, sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. Results: Crude incidence of melanomas thicker than 0.75 mm decreased during the 3 periods from 22.1 to 15.13 to 4.62 cases per 100,000 person-years (P = .001 by chi-square for trend) with the larger decrease from the active screening program. The crude incidence of melanoma Measuring less than 0.75 mm in thickness increased and then decreased slightly without a significant linear trend, and crude incidence of in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period, whereas the expected number of deaths was calculated to be 3.39 deaths (P=.034). Limitations: The study design was not randomized or controlled. The methodology for adjusting expected mortality for the exclusion of employees diagnosed with melanoma before the screening period was devised for this Study. Discussion: Increasing community awareness of melanoma was associated with a progressive decreasing incidence of thicker melanoma. The education, self-examination, and selective program generated the larger reduction in incidence of melanoma thicker than 0.75 mm. This campaign decreased the melanoma-related mortality to zero. The statistically significant decrease ill mortality persisted for at least 3 years after employees retired or otherwise left the laboratory. C1 [Schneider, Jeffrey S.] Kaiser Permanente Med Ctr, San Rafael, CA 94903 USA. [Schneider, Jeffrey S.; Moore, Dan H., II; Mendelsohn, Mortimer L.] Lawrence Livermore Natl Lab, Div Biomed Sci, Livermore, CA 94550 USA. [Moore, Dan H., II] Calif Pacific Med Ctr, Geraldine Brush Canc Res Inst, San Francisco, CA 94115 USA. RP Schneider, JS (reprint author), Kaiser Permanente Med Ctr, 99 Montecillo Rd, San Rafael, CA 94903 USA. NR 31 TC 58 Z9 58 U1 0 U2 1 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0190-9622 J9 J AM ACAD DERMATOL JI J. Am. Acad. Dermatol. PD MAY PY 2008 VL 58 IS 5 BP 741 EP 749 DI 10.1016/j.jaad.2007.10.648 PG 9 WC Dermatology SC Dermatology GA 292VA UT WOS:000255293000002 PM 18068264 ER PT J AU Zimmermann, JW Hilmas, GE Fahrenholtz, WG Dinwiddie, RB Porter, WD Wang, H AF Zimmermann, James W. Hilmas, Gregory E. Fahrenholtz, William G. Dinwiddie, Ralph B. Porter, Wallace D. Wang, Hsin TI Thermophysical properties of ZrB2 and ZrB2-SiC ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article; Proceedings Paper CT Workshop on Ultra-High-Temperature Ceramic Materials CY JUL 23-25, 2007 CL Menlo Pk, CA SP AFOSR ID ZIRCONIUM DIBORIDE; ELECTRICAL-RESISTIVITY; MECHANICAL-PROPERTIES; SILICON-CARBIDE; THERMAL-EXPANSION; TEMPERATURE; OXIDATION; MICROSTRUCTURE; COMPOSITES; RESISTANCE AB Thermophysical properties were investigated for zirconium diboride (ZrB2) and ZrB2-30 vol% silicon carbide (SiC) ceramics. Thermal conductivities were calculated from measured thermal diffusivities, heat capacities, and densities. The thermal conductivity of ZrB2 increased from 56 W (m K)(-1) at room temperature to 67 W (m K)(-1) at 1675 K, whereas the thermal conductivity of ZrB2-SiC decreased from 62 to 56 W (m K)(-1) over the same temperature range. Electron and phonon contributions to thermal conductivity were determined using electrical resistivity measurements and were used, along with grain size models, to explain the observed trends. The results are compared with previously reported thermal conductivities for ZrB2 and ZrB2-SiC. C1 [Zimmermann, James W.; Hilmas, Gregory E.; Fahrenholtz, William G.] Univ Missouri, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Dinwiddie, Ralph B.; Porter, Wallace D.; Wang, Hsin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zimmermann, JW (reprint author), Corning Inc, Corning, NY 14831 USA. EM zimmermajw@corning.com RI Wang, Hsin/A-1942-2013; OI Wang, Hsin/0000-0003-2426-9867; Fahrenholtz, William/0000-0002-8497-0092 NR 40 TC 99 Z9 103 U1 2 U2 36 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2008 VL 91 IS 5 BP 1405 EP 1411 DI 10.1111/j.1551-2916.2008.02268.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 297ZR UT WOS:000255656400004 ER PT J AU Corral, EL Loehman, RE AF Corral, Erica L. Loehman, Ronald E. TI Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article; Proceedings Paper CT Workshop on Ultra-High-Temperature Ceramic Materials CY JUL 23-25, 2007 CL Menlo Pk, CA SP AFOSR ID ZIRCONIUM DIBORIDE; SILICON-CARBIDE; PRECURSORS; BEHAVIOR; XPS AB Carbon-carbon (C-C) composites are attractive materials for hypersonic flight vehicles but they oxidize in air at temperatures > 500 degrees C and need thermal protection systems to survive aerothermal heating. We investigated using multilayers of high-temperature ceramics such as ZrB2 and SiC to protect C-C against oxidation. Our approach combines pretreatment and processing steps to create continuous and adherent high-temperature ceramic coatings from infiltrated preceramic polymers. We tested our protective coatings at temperatures above 2600 degrees C at the National Solar Thermal Testing Facility using controlled cold-wall heat flux profiles reaching a maximum of 680 W/cm(2). C1 [Corral, Erica L.; Loehman, Ronald E.] Sandia Natl Labs, Ceram Proc & Inorgan Mat Dept, Albuquerque, NM 87106 USA. RP Corral, EL (reprint author), Sandia Natl Labs, Ceram Proc & Inorgan Mat Dept, Albuquerque, NM 87106 USA. EM elcorra@sandia.gov NR 28 TC 63 Z9 65 U1 5 U2 48 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2008 VL 91 IS 5 BP 1495 EP 1502 DI 10.1111/j.1551-2916.2008.02331.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 297ZR UT WOS:000255656400017 ER PT J AU El-Awady, JA Biner, SB Ghoniem, NM AF El-Awady, Jaafar A. Biner, S. Bulent Ghoniem, Nasr M. TI A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE dislocations; image field; boundary integral equations; size effects; microcrystals ID SINGLE-CRYSTALS; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION; MESOSCOPIC SCALE; ELASTIC FIELD; HALF-SPACE; DEFORMATION; SIMULATION; DEPENDENCE; STRENGTH AB We present a self-consistent formulation of 3-D parametric dislocation dynamics (PDD) with the boundary element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite Volumes. We develop quantitative measures of the accuracy and convergence of the method by considering a comparison with known analytical solutions. It is shown that the method displays absolute convergence with increasing the number of quadrature points on the dislocation loop and the surface mesh density. The error in the image force on a screw dislocation approaching a free surface is shown to increase as the dislocation approaches the surface, but is nevertheless controllable. For example, at a distance of one lattice parameter from the surface, the relative error is less than 5% for a surface mesh with an element size of 1000 x 2000 (in units of lattice parameter), and 64 quadrature points. The Eshelby twist angle in a finite-length cylinder containing a coaxial screw dislocation is also used to benchmark the method. Finally, large scale 3-D simulation results of single slip behavior in cylindrical microcrystals are presented. Plastic flow characteristics and the stress-strain behavior of cylindrical microcrystals under compression are shown to be in agreement with experimental observations. It is shown that the mean length of dislocations trapped at the surface is the dominant factor in determining the size effects on hardening of single crystals. The influence of surface image fields on the flow stress is finally explored. It is shown that the flow stress is reduced by as much as 20% for small single crystals of size less than 0.15 mu m. (C) 2007 Elsevier Ltd. All rights reserved. C1 [El-Awady, Jaafar A.; Ghoniem, Nasr M.] Univ Calif Los Angeles, Dept Aerosp Engn & Mech, Los Angeles, CA 90095 USA. [Biner, S. Bulent] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP El-Awady, JA (reprint author), Univ Calif Los Angeles, Dept Aerosp Engn & Mech, Los Angeles, CA 90095 USA. EM jelawady@ucla.edu RI El-Awady, Jaafar/A-8020-2010; El-Awady, Jaafar/E-8551-2010 OI El-Awady, Jaafar/0000-0002-5715-2481 NR 32 TC 49 Z9 49 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAY PY 2008 VL 56 IS 5 BP 2019 EP 2035 DI 10.1016/j.jmps.2007.11.002 PG 17 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 300DZ UT WOS:000255805800016 ER PT J AU Nakamura, J Yamada, N Kuroki, K Oguchi, T Okada, K Takano, Y Nagao, M Sakaguchi, I Takenouchi, T Kawarada, H Perera, RCC Ederer, DL AF Nakamura, Jin Yamada, Nobuyoshi Kuroki, Kazuhiko Oguchi, Tamio Okada, Kozo Takano, Yoshihiko Nagao, Masanori Sakaguchi, Isao Takenouchi, Tomohiro Kawarada, Hiroshi Perera, Rupert C. C. Ederer, David L. TI Holes in the valence band of superconducting boron-doped diamond film studied by soft X-ray absorption and emission spectroscopy SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE superconductivity; boron-doped diamond; impurity state; X-rays absorption spectroscopy; X-rays emission spectroscopy ID ELECTRONIC-STRUCTURE; THIN-FILMS; GRAPHITE; STATES AB Carbon- and boron-2p states of superconducting and non-superconducting boron-doped diamond (BDD) samples are measured using soft X-ray emission and absorption spectroscopy (XES and XAS) near C- and B-K edges. The electronic structure of B 2p does not show a marked boron-doping dependence, except that a. considerable amount of in-gap state in empty states is observed. In C-K XAS spectra, two peaks H and I are observed around the Fermi level. The H peak is attributed to 2p state of carbon first-nearest neighboring to the dopant boron atoms (INN-C), and the I peak to 2p state of carbon further than INN-C from an impurity boron. Incoherent (normal-excitation) XES spectra do not show a large chemical shift by B-doping, but its intensity just below the valence band maximum (VBM) decreases with B-doping. It cannot be interpreted within a simple rigid band model. An elastic peak of I-excited C-K XES spectrum and the width of I-peak of C-K XAS spectrum suggest that impurity state is localized in non-superconducting BDD but is not in superconducting BDD. Namely impurity state of superconducting BDD is merged with the valence band, and holes in the merged state play an important role in the occurrence of superconductivity of BDD. C1 [Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko] Univ Electrocommunicat, Dept Appl Phys & Chem, Tokyo 1828585, Japan. [Oguchi, Tamio] Hiroshima Univ, Dept Quantum Matter, ADSM, Hiroshima 7398530, Japan. [Okada, Kozo] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Takano, Yoshihiko; Nagao, Masanori; Sakaguchi, Isao] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Takenouchi, Tomohiro; Kawarada, Hiroshi] Waseda Univ, Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Perera, Rupert C. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Ederer, David L.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. RP Nakamura, J (reprint author), Univ Electrocommunicat, Dept Appl Phys & Chem, Tokyo 1828585, Japan. EM jin@pc.uec.ac.jp RI OKADA, Kozo/B-1464-2011; TAKANO, Yoshihiko/H-2788-2011; OI Takano, Yoshihiko/0000-0002-1541-6928 NR 32 TC 16 Z9 16 U1 1 U2 10 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD MAY PY 2008 VL 77 IS 5 AR 054711 DI 10.1143/JPSJ.77.054711 PG 6 WC Physics, Multidisciplinary SC Physics GA 302VP UT WOS:000255998200036 ER PT J AU Hardouin, A Delmotte, F Ravet, MF Bridou, F Jerome, A Varniere, F Montcalm, C Hedacq, S Gullikson, E Aubert, P AF Hardouin, Aurelie Delmotte, Franck Ravet, Marie Francoise Bridou, Francoise Jerome, Arnaud Varniere, Francoise Montcalm, Claude Hedacq, Sebastien Gullikson, Eric Aubert, Pascal TI Experimental study of Cr/Sc multilayer mirrors for the nitrogen K-alpha-emission line SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID WATER WINDOW; RANGE AB The authors present an experimental study of Cr/Sc multilayer mirrors optimized for the detection of the nitrogen K-alpha-emission line (lambda=3.16 nm) at a grazing incidence around 23 degrees, for electron probe microanalysis applications. The multilayers were deposited onto silicon substrates using a dc magnetron sputtering system. They were characterized with grazing incidence copper K-alpha x-ray reflectometry and atomic force microscopy, as well as with at-wavelength reflectometry using synchrotron radiation. These various characterization methods pointed out that the interfacial roughness of these multilayers increases drastically with the number of bilayers. Growth parameters were then optimized, and it is shown that the structure and reflectivity of such multilayers can be considerably improved by optimizing the sputter gas pressure during the deposition process. Reflectivity higher than 37% were measured at 22.3 degrees grazing angle for the nitrogen K-alpha-emission line. (c) 2008 American Vacuum Society. C1 [Hardouin, Aurelie; Delmotte, Franck; Ravet, Marie Francoise; Bridou, Francoise; Jerome, Arnaud; Varniere, Francoise] Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France. [Hardouin, Aurelie; Montcalm, Claude; Hedacq, Sebastien] Xenocs SA, F-38360 Sassenage, France. [Gullikson, Eric] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Aubert, Pascal] Univ Evry Val Essonne, Lab Multicouches Nanometr, F-91025 Evry, France. RP Delmotte, F (reprint author), Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, Campus Polytech RD128, F-91127 Palaiseau, France. EM franck.delmotte@institutoptique.fr NR 15 TC 4 Z9 4 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY PY 2008 VL 26 IS 3 BP 333 EP 337 DI 10.1116/1.2891248 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 305BR UT WOS:000256153300004 ER PT J AU Ptak, AJ France, R Jiang, CS Reedy, RC AF Ptak, A. J. France, R. Jiang, C. -S. Reedy, R. C. TI Effects of bismuth on wide-depletion-width GaInNAs solar cells SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID MOLECULAR-BEAM EPITAXY; QUANTUM-WELLS; GROWTH; SURFACTANT; TEMPERATURE; LASERS; PHOTOLUMINESCENCE; MICROSCOPY; DIFFUSION; NITROGEN AB GaInNAs solar cells could be useful in next-generation multijunction solar cells if issues surrounding low photocurrents and photovoltages are surmounted. Wide-depletion-width devices generate significant photocurrent using a p-i-n structure grown by molecular beam epitaxy, but these depletion widths are only realized in a region of parameter space that leads to rough surface morphologies. Here, bismuth is explored as a surfactant for the growth of GaInNAs solar cells. Very low fluxes of Bi are effective at maintaining smooth surfaces, even at high growth temperatures and In contents. However, Bi also increases the net donor concentration in these materials, manifested in our n-on-p device structures as a pn-junction that moves deeper into the base layer with increasing Bi fluxes. Quantum efficiency modeling and scanning kelvin probe microscopy measurements confirm the type conversion of the base layer from p type to n type. Bi incorporation in GaAsBi samples shows signs of surface segregation, leading to a finite buildup time, and this effect may lead to slow changes in the electrical properties of the GaInNAs(Bi) devices. Bi also appears to create a defect level, although this defect level is not deleterious enough to increase the dark current in the devices. (C) 2008 American Vacuum Society. C1 [Ptak, A. J.; France, R.; Jiang, C. -S.; Reedy, R. C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aaron_ptak@nrel.gov RI jiang, chun-sheng/F-7839-2012 NR 23 TC 10 Z9 10 U1 0 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2008 VL 26 IS 3 BP 1053 EP 1057 DI 10.1116/1.2837848 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 307FO UT WOS:000256304600029 ER PT J AU Oye, MM Bank, SR Ptak, AJ Reedy, RC Goorsky, MS Holmes, AL AF Oye, Michael M. Bank, Seth R. Ptak, Aaron J. Reedy, Robert C. Goorsky, Mark S. Holmes, Archie L., Jr. TI Role of ion damage on unintentional Ca incorporation during the plasma-assisted molecular-beam epitaxy growth of dilute nitrides using N(2)/Ar source gas mixtures SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID RETARDING-FIELD ANALYZER; DEPLETION-WIDTH GAINNAS; RF PLASMA; SOLAR-CELLS; ENERGY; TEMPERATURE; QUALITY; GAASN; INGAASN; GANAS AB Unintentional Ca incorporation caused by Ca-contaminated substrate surfaces on as-purchased GaAs wafers are known to limit the efficiency of solar cells based on dilute nitride materials. This article focuses on further understanding the conditions and mechanisms by which these Ca impurities incorporate. Plasma-assisted molecular-beam epitaxy utilizing a 1% N(2) in Ar precursor gas mixture was used to grow GaAs at 400 and 580 degrees C, and GaN(0.01)As(0.99) at 400 degrees C. Two plasma operating combinations of rf power and gas flow rate were used to generate different amounts and energies of both ions and other plasma species, while keeping nitrogen incorporation constant. The ions were characterized with a dual-grid, retarding-field ion energy analyzer, and the corresponding ion energy distributions are presented to correlate ions with Ca incorporation. When appropriate, dc-biased deflector plates were used to remove ions during growth. Secondary ion mass spectrometry was used to measure Ca in GaAs and GaN(0.01)As(0.99). Ca incorporation was observed in the dilute nitride samples, but the effects of ions did not exceed other Ca incorporation mechanisms associated with defects due to both low temperature growth and nitrogen incorporation; however, different neutral active nitrogen species (atomic N and metastable N(2)(*)) may be a factor. Ca incorporation measured in GaAs grown at 400 degrees C with a pure Ar plasma is predominantly due to defects associated with low temperature growth, as opposed to plasma damage caused by the ions. GaAs growths at 580 degrees C without a plasma did not exhibit Ca incorporation, but growth at 580 degrees C with ions from a pure Ar plasma caused Ca incorporation. (C) 2008 American Vacuum Society. C1 [Oye, Michael M.; Goorsky, Mark S.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Bank, Seth R.] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Ptak, Aaron J.; Reedy, Robert C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Holmes, Archie L., Jr.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. RP Oye, MM (reprint author), NASA, Ames Res Ctr, M-S 229-1 Moffett Field, Moffett Field, CA 94035 USA. EM moye@arc.nasa.gov NR 37 TC 2 Z9 2 U1 2 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2008 VL 26 IS 3 BP 1058 EP 1063 DI 10.1116/1.2924329 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 307FO UT WOS:000256304600030 ER PT J AU Rowe, MA Gansen, EJ Greene, MB Rosenberg, D Harvey, TE Su, MY Hadfield, RH Nam, SW Mirin, RP AF Rowe, M. A. Gansen, E. J. Greene, M. B. Rosenberg, D. Harvey, T. E. Su, M. Y. Hadfield, R. H. Nam, S. W. Mirin, R. P. TI Designing high electron mobility transistor heterostructures with quantum dots for efficient, number-resolving photon detection SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTOR; CHARGE STORAGE AB We describe the design of the epitaxial layers for an efficient, photon-number-determining detector that utilizes a layer of self-assembled quantum dots as an optically addressable gate in a field-effect transistor. Our design features a dedicated absorption layer where photoexcited holes are produced and directed with tailored electric fields to the quantum dot layer. A barrier layer ensures that the quantum dot layer is located at a two-dimensional potential minimum of the structure for the efficient collection of holes. Using quantum dots as charge traps allows us to contain the photoexcited holes in a well-defined plane. We derive an equation for a uniform size of the photon signal based on this precise geometry. Finally, we show corroborating data with well-resolved signals corresponding to different numbers of photons. (C) 2008 American Vacuum Society. C1 [Rowe, M. A.; Gansen, E. J.; Greene, M. B.; Harvey, T. E.; Su, M. Y.; Nam, S. W.; Mirin, R. P.] Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80305 USA. [Rosenberg, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hadfield, R. H.] Heriot Watt Univ, Edinburgh E 14 4AS, Midlothian, Scotland. RP Rowe, MA (reprint author), Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80305 USA. EM mirin@boulder.nist.gov OI Mirin, Richard/0000-0002-4472-4655 NR 17 TC 3 Z9 3 U1 0 U2 3 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY PY 2008 VL 26 IS 3 BP 1174 EP 1177 DI 10.1116/1.2837839 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 307FO UT WOS:000256304600058 ER PT J AU Shudo, E Ribeiro, RM Perelson, AS AF Shudo, E. Ribeiro, R. M. Perelson, A. S. TI Modelling hepatitis C virus kinetics during treatment with pegylated interferon alpha-2b: errors in the estimation of viral kinetic parameters SO JOURNAL OF VIRAL HEPATITIS LA English DT Article DE hepatitis C virus; modelling; pegylated interferon alpha-2b; pharmacodynamics; pharmacokinetics; viral kinetics ID DYNAMICS IN-VIVO; B-VIRUS; GENOTYPE-1; RIBAVIRIN; CLEARANCE; THERAPY; HCV; INFECTION; EFFICACY; IFN AB Neumann et al. [1] developed a widely used model for the analysis of hepatitis C virus (HCV) dynamics after the initiation of interferon therapy that assumes the effectiveness of therapy in blocking virion production, epsilon, is constant. However, with pegylated interferon alpha-2b (PEG-IFN) given weekly, there are significant changes in drug concentration between doses, leading to changes in drug effectiveness and viral rebounds. To investigate the appropriateness of the constant effectiveness (CE) model [1] for studies involving PEG-IFN, we simulated PEG-IFN treatment, using 294 sets of pharmacokinetic/pharmacodynamic (PK/PD) parameters that span observed ranges and fit the simulated data to the CE model. For most combinations of PK/PD parameters, the fits resulted in an infected cell loss rate, delta, that underestimates the true value used in the simulations and yielded over-estimates of the average effectiveness of PEG-IFN. In the setting of PEG-IFN therapy, the use of the CE model of HCV kinetics has to be reevaluated and the validity of its use depends on the amount of HCV RNA rebound observed between doses. C1 [Shudo, E.; Ribeiro, R. M.; Perelson, A. S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU NCRR NIH HHS [P20 RR018754, P20 RR018754-01, P20-RR18754, R01 RR006555, R01 RR006555-08, RR06555]; NIAID NIH HHS [AI065256, R01 AI065256, R01 AI065256-01A1, R56 AI065256]; NIH HHS [R01 OD011095] NR 23 TC 14 Z9 14 U1 1 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1352-0504 J9 J VIRAL HEPATITIS JI J. Viral Hepatitis PD MAY PY 2008 VL 15 IS 5 BP 357 EP 362 DI 10.1111/j.1365-2893.2007.00954.x PG 6 WC Gastroenterology & Hepatology; Infectious Diseases; Virology SC Gastroenterology & Hepatology; Infectious Diseases; Virology GA 282JH UT WOS:000254563200005 PM 18380660 ER PT J AU Shudo, E Ribeiro, RM Perelson, AS AF Shudo, E. Ribeiro, R. M. Perelson, A. S. TI Modelling the kinetics of hepatitis C virus RNA decline over 4 weeks of treatment with pegylated interferon alpha-2b SO JOURNAL OF VIRAL HEPATITIS LA English DT Article DE hepatitis C virus; modelling; pegylated interferon-alpha 2b; pharmacokinetics and pharmacodynamics; viral kinetics ID VIRAL KINETICS; THERAPY; DYNAMICS; GENOTYPE-1; RIBAVIRIN; EFFICACY AB Viral kinetic models for hepatitis C virus (HCV) have generally assumed that the effectiveness of therapy in blocking virion production, epsilon, is constant. However, with pegylated interferon alpha-2b (PEG-IFN) given weekly, there are significant changes in drug concentration between doses that may lead to changes in drug effectiveness and viral rebounds towards the end of the dosing interval. Here we investigate the effects of using a model that assumes a constant effectiveness for studies involving PEG-IFN. We simulated PEG-IFN treatment in a population of 294 computer simulated 'patients', each characterized by a different set of pharmacokinetic and pharmacodynamic parameters. We then sampled the simulated treatment data over 4 weeks with a schedule similar to that used in viral kinetic studies, and fitted a viral kinetic model assuming constant drug effectiveness, the CE model, to that data. Although the CE model was able to fit to the data well in most cases, the parameter estimates obtained scattered widely both above and below the true values. Thus, this model is less useful to analyse HCV RNA data during therapy with PEG-IFN than with standard IFN given daily. With PEG-IFN accurate estimation of viral dynamic parameters necessitates concomitant measurements of serum viral load and drug concentration. C1 [Shudo, E.; Ribeiro, R. M.; Perelson, A. S.] Los Alamos Natl Lab, MSK Theoret Biol & Biophys 710, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, MSK Theoret Biol & Biophys 710, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU NCRR NIH HHS [P20 RR018754, P20 RR018754-01, P20-RR18754, R01 RR006555, R01 RR006555-09, RR06555]; NIAID NIH HHS [R01 AI065256, AI065256, AI28433, R01 AI028433, R01 AI065256-02, R37 AI028433, R37 AI028433-11, R56 AI065256]; NIH HHS [R01 OD011095] NR 13 TC 10 Z9 10 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1352-0504 J9 J VIRAL HEPATITIS JI J. Viral Hepatitis PD MAY PY 2008 VL 15 IS 5 BP 379 EP 382 DI 10.1111/j.1365-2893.2008.00977.x PG 4 WC Gastroenterology & Hepatology; Infectious Diseases; Virology SC Gastroenterology & Hepatology; Infectious Diseases; Virology GA 282JH UT WOS:000254563200008 PM 18266841 ER PT J AU Prichard, MN Sztul, E Daily, SL Perry, AL Frederick, SL Gill, RB Hartline, CB Streblow, DN Varnum, SA Smith, RD Kern, ER AF Prichard, Mark N. Sztul, Elizabeth Daily, Shannon L. Perry, Amie L. Frederick, Samuel L. Gill, Rachel B. Hartline, Caroll B. Streblow, Daniel N. Varnum, Susan A. Smith, Richard D. Kern, Earl R. TI Human cytomegalovirus UL97 kinase activity is required for the hyperphosphorylation of retinoblastoma protein and inhibits the formation of nuclear aggresomes SO JOURNAL OF VIROLOGY LA English DT Article ID CARBOXYL-TERMINAL DOMAIN; CELLULAR P107 PROTEIN; RNA-POLYMERASE-II; SIMPLEX-VIRUS 1; TRANSCRIPTIONAL REPRESSION; TUMOR-SUPPRESSOR; GENE-PRODUCT; FUNCTIONAL INTERACTION; VIRAL-PROTEINS; INFECTED CELLS AB Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinase-dependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding motif or the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes. C1 [Prichard, Mark N.; Daily, Shannon L.; Perry, Amie L.; Frederick, Samuel L.; Gill, Rachel B.; Hartline, Caroll B.; Kern, Earl R.] Univ Alabama, Sch Med, Dept Pediat, Birmingham, AL 35233 USA. [Sztul, Elizabeth; Gill, Rachel B.] Univ Alabama, Sch Med, Dept Cell Biol, Birmingham, AL 35233 USA. [Streblow, Daniel N.] Oregon Hlth & Sci Univ, Vaccine & Gene Therapy Inst, Portland, OR 97239 USA. [Varnum, Susan A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Prichard, MN (reprint author), 128 Childrens Harbor Bldg,1600 6th Ave S, Birmingham, AL 35233 USA. EM mprichard@peds.uab.edu OI Perry, Amie/0000-0002-6219-9604 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR18522]; NHLBI NIH HHS [HL083194, R01 HL083194]; NIAID NIH HHS [N01AI30049, N01-AI-30049]; NINDS NIH HHS [NS51422, R21 NS051422] NR 72 TC 68 Z9 69 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAY PY 2008 VL 82 IS 10 BP 5054 EP 5067 DI 10.1128/JVI.02174-07 PG 14 WC Virology SC Virology GA 297MA UT WOS:000255619600035 PM 18321963 ER PT J AU Romero-Gomez, P Ho, CK Choi, CY AF Romero-Gomez, P. Ho, C. K. Choi, C. Y. TI Mixing at cross junctions in water distribution systems. I: Numerical study SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE LA English DT Article ID PIPE FLOWS; TURBULENT AB The present study investigates solute mixing phenomena at various flow rates within a cross junction, which is commonly found in municipal drinking water distribution systems. Simulations using computational fluid dynamics are employed to model the solute concentrations leaving the junction when one inlet is comprised of clean water while the other inlet carries a solute at R > 10,000. For a few exemplary cases, the resulting velocity vectors and contours of dimensionless concentration are presented to explain the detailed mixing mechanisms at the impinging interface. The turbulent Schmidt number (Sc-t), an important scaling parameter, is also evaluated. Experimental results were used to assess values of SCt for various flow conditions that accurately captured the detailed mixing processes within the junction. The present study clearly indicates that mixing at pipe cross junctions is far from "perfect." Incomplete mixing results from bifurcating inlet flows that reflect off one another with minimal contact time. Improving the existing water quality model based on accurate mixing data and simulations is important not only to predict concentrations of chemical species such as chlorine in water distribution systems, but also to prepare for potential intentional and accidental contamination events. C1 [Romero-Gomez, P.] Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ 85721 USA. [Ho, C. K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Romero-Gomez, P (reprint author), Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ 85721 USA. EM pedromer@email.arizona.edu; ckho@sandia.gov; cchoi@arizona.edu NR 13 TC 17 Z9 18 U1 0 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 J9 J WATER RES PL-ASCE JI J. Water Resour. Plan. Manage.-ASCE PD MAY-JUN PY 2008 VL 134 IS 3 BP 285 EP 294 DI 10.1061/(ASCE)0733-9496(2008)134:3(285) PG 10 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 293RS UT WOS:000255353000011 ER PT J AU Austin, RG Waanders, BV McKenna, S Choi, CY AF Austin, R. G. Waanders, B. van Bloemen McKenna, S. Choi, C. Y. TI Mixing at cross junctions in water distribution systems. II: Experimental study SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE LA English DT Article AB The present experimental study focuses on the characterization of complex mixing phenomena at pipe intersections within pressurized water distribution networks. To examine the complete mixing assumption at a cross junction, a series of experiments were conducted in the turbulent regime (R > 10,000). The experimental setup consists of a cross junction with various sensors, pumps, and a data acquisition system to accurately measure solute concentration. Selected experimental results are compared to computational fluid dynamics (CFD) results. In addition, the water quality model associated with a standard water distribution network simulator (EPANET) was reevaluated based on CFD and experimental data. Corrections based on experimental results are incorporated into EPANET (AZRED 1.0) for use in a case study. The study concludes that the complete mixing assumption can potentially create considerable errors in water quality modeling. Further, severe errors are likely to occur in systems with many cross type junctions due to bifurcation of the incoming flows. C1 [Austin, R. G.] Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ 85721 USA. [Waanders, B. van Bloemen; McKenna, S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Austin, RG (reprint author), Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ 85721 USA. EM rgaustin@email.arizona.edu; bartv@sandia.gov; samcken@sandia.gov; cchoi@arizona.edu NR 5 TC 18 Z9 19 U1 2 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 J9 J WATER RES PL-ASCE JI J. Water Resour. Plan. Manage.-ASCE PD MAY-JUN PY 2008 VL 134 IS 3 BP 295 EP 302 DI 10.1061/(ASCE)0733-9496(2008)134:3(295) PG 8 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 293RS UT WOS:000255353000012 ER PT J AU Webb, EB Zimmerman, JA Seel, SC AF Webb, Edmund B., III Zimmerman, Jonathan A. Seel, Steven C. TI Reconsideration of continuum thermomechanical quantities in atomic scale simulations SO MATHEMATICS AND MECHANICS OF SOLIDS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; THIN-FILMS; THERMAL-CONDUCTIVITY; STRESS CALCULATION; SHOCK-WAVES; METALS; DISLOCATION; INTERFACE; SOLIDS; MULTILAYERS AB As motivation builds to consider mechanics of nanometer scale objects, it is increasingly advantageous to implement models with finer resolution than standard continuum approaches. For such exercises to prove fruitful, these models must be able to quantify continuum thermomechanical quantities; furthermore, it may be necessary to do so on a sub-system level in order to assess gradients or distributions in a given property. Herein we review the calculation of stress, heat flux, and temperature in atomic scale numerical simulations such as the molecular dynamics method. C1 [Webb, Edmund B., III] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zimmerman, Jonathan A.] Sandia Natl Labs, Livermore, CA USA. [Seel, Steven C.] EMCORE Corp, Albuquerque, NM USA. RP Webb, EB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Zimmerman, Jonathan/A-8019-2012 NR 61 TC 41 Z9 42 U1 2 U2 14 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1081-2865 J9 MATH MECH SOLIDS JI Math. Mech. Solids PD MAY-JUN PY 2008 VL 13 IS 3-4 BP 221 EP 266 DI 10.1177/1081286507086899 PG 46 WC Materials Science, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Materials Science; Mathematics; Mechanics GA 301NZ UT WOS:000255904200003 ER PT J AU Tuckfield, RC McArthur, JV AF Tuckfield, R. Cary McArthur, J. Vaun TI Spatial analysis of antibiotic resistance along metal contaminated streams SO MICROBIAL ECOLOGY LA English DT Article ID MERCURY-RESISTANCE; BACTERIA; GEOSTATISTICS; WATER; TOLERANCE; BIOAVAILABILITY; HETEROGENEITY; ASSOCIATION; GROUNDWATER; COSELECTION AB The spatial pattern of antibiotic resistance in culturable sediment bacteria from four freshwater streams was examined. Previous research suggests that the prevalence of antibiotic resistance may increase in populations via indirect or coselection from heavy metal contamination. Sample bacteria from each stream were grown in media containing one of four antibiotics-tetracycline, chloramphenicol, kanamycin, and streptomycin-at concentrations greater than the minimum inhibitory concentration, plus a control. Bacteria showed high susceptibilities to the former two antibiotics. We summarized the latter two more prevalent (aminoglycoside) resistance responses and ten metals concentrations per sediment sample, by Principal Components Analysis. Respectively, 63 and 58% of the variability was explained in the first principal component of each variable set. We used these multivariate summary metrics [ i. e., first principal component (PC) scores] as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream sampled. Results show a significant and negative correlation between metals PC scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently in sediments than in the water column. Our most important finding comes from geostatistical cross-variogram analysis, which shows that increasing metal concentration scores are spatially associated with decreasing aminoglycoside resistance scores-a negative correlation, but holds for contaminated streams only. We suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or "cocktail effect" from complex combinations of pollution mediated selection agents. C1 [Tuckfield, R. Cary] Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. [McArthur, J. Vaun] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29801 USA. RP Tuckfield, RC (reprint author), Westinghouse Savannah River Co, Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA. EM cary.tuckfield@srnl.doe.gov NR 50 TC 14 Z9 16 U1 0 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD MAY PY 2008 VL 55 IS 4 BP 595 EP 607 DI 10.1007/s00248-007-9303-5 PG 13 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 294ND UT WOS:000255411900004 PM 17899247 ER PT J AU Scott, MJ Dirks, JA Cort, KA AF Scott, Michael J. Dirks, James A. Cort, Katherine A. TI The value of energy efficiency programs for US residential and commercial buildings in a warmer world SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Buildings; Climate change scenarios; Economic benefits; Energy efficiency; Energy modeling; Mitigation; Residential and commercial AB US residential and commercial buildings were responsible for about 41 exajoules (EJ) of primary energy use per year in 2002, accounting for approximately 9% of the world fossil-fuel related anthropogenic carbon (C) emissions of 6.7 Gt that contribute to climate change. US Government-sponsored building energy efficiency research and implementation programs are focused on reducing energy consumption in US residential and commercial buildings and reducing these carbon (C) emissions. Although not specifically intended for adaptation to a warmer climate and less effective than under today's cooler climate, these programs also could help reduce energy demand in a future warmer world. Warming scenarios projected by the United Nations Intergovernmental Panel on Climate Change (IPCC) in 2001 imply net overall decreases in both site energy and primary energy consumption in US residential and commercial buildings, largely because of the reduced need for heating. However, there would be as much as a 25% increase in building space cooling demand and a significant part of the increase could be offset by energy-efficiency improvements in buildings. Overall, in the US, buildings-related energy efficiency programs would reduce site energy consumption in buildings in the US by more than 2 EJ in 2020 and primary energy by more than 3.5 EJ, more than enough to offset the projected growth in cooling energy consumption due to climate change and growth in the US building stock. The savings would have an estimated annual net value at 2005 energy prices of between $45.0 and $47.3 billion to consumers. C1 [Scott, Michael J.; Dirks, James A.; Cort, Katherine A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Scott, MJ (reprint author), Pacific NW Natl Lab, Mail Stop K6-05,POB 999, Richland, WA 99352 USA. EM michael.scott@pnl.gov NR 53 TC 5 Z9 5 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD MAY PY 2008 VL 13 IS 4 BP 307 EP 339 DI 10.1007/s11027-007-9115-4 PG 33 WC Environmental Sciences SC Environmental Sciences & Ecology GA V13JM UT WOS:000207663100001 ER PT J AU Lee, CY Li, XY Hechmer, A Eisen, M Biggin, MD Venters, BJ Jiang, CZ Li, J Pugh, BF Gilmour, DS AF Lee, Chanhyo Li, Xiaoyong Hechmer, Aaron Eisen, Michael Biggin, Mark D. Venters, Bryan J. Jiang, Cizhong Li, Jian Pugh, B. Franklin Gilmour, David S. TI NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID RNA-POLYMERASE-II; IMMUNODEFICIENCY-VIRUS TRANSCRIPTION; ELONGATION-FACTOR NELF; HEAT-SHOCK GENES; IN-VIVO; P-TEFB; CORE PROMOTER; PRODUCTIVE ELONGATION; RESPONSE ELEMENT; HSP70 PROMOTER AB Recent analyses of RNA polymerase II (Pol II) revealed that Pol II is concentrated at the promoters of many active and inactive genes. NELF causes Pol II to pause in the promoter-proximal region of the hsp70 gene in Drosophila melanogaster. In this study, genome-wide location analysis (chromatin immunoprecipitation-microarray chip [ChIP-chip] analysis) revealed that NELF is concentrated at the 5' ends of 2,111 genes in Drosophila cells. Permanganate genomic footprinting was used to determine if paused Pol II colocalized with NELF. Forty-six of 56 genes with NELF were found to have paused Pol II. Pol 11 pauses 30 to 50 nucleotides downstream from transcription start sites. Analysis of DNA sequences in the vicinity of paused Pol II identified a conserved DNA sequence that probably associates with TFIID but detected no evidence of RNA secondary structures or other conserved sequences that might directly control elongation. ChIP-chip experiments indicate that GAGA factor associates with 39% of the genes that have NELF. Surprisingly, NELF associates with almost one-half of the most highly expressed genes, indicating that NELF is not necessarily a repressor of gene expression. NELF-associated pausing of Pol H might be an obligatory but sometimes transient checkpoint during the transcription cycle. C1 [Lee, Chanhyo; Venters, Bryan J.; Jiang, Cizhong; Li, Jian; Pugh, B. Franklin; Gilmour, David S.] Penn State Univ, Ctr Gene Regulat, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Li, Xiaoyong; Hechmer, Aaron; Eisen, Michael; Biggin, Mark D.] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Eisen, Michael] Univ Calif Berkeley, Ctr Integrat Genom, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Gilmour, DS (reprint author), Penn State Univ, Ctr Gene Regulat, Dept Biochem & Mol Biol, 403 S Frear, University Pk, PA 16802 USA. EM dsg11@psu.edu RI Li, Jian/N-7001-2014; OI Eisen, Michael/0000-0002-7528-738X FU NHGRI NIH HHS [HG004160, R01 HG004160]; NIGMS NIH HHS [GM47477, GM704403, R01 GM047477, R01 GM070444] NR 69 TC 120 Z9 122 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD MAY PY 2008 VL 28 IS 10 BP 3290 EP 3300 DI 10.1128/MCB.02224-07 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 297EV UT WOS:000255600800018 PM 18332113 ER PT J AU Masta, SE Boore, JL AF Masta, Susan E. Boore, Jeffrey L. TI Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE tRNA secondary structure; parallel evolution; mitochondrial genome; Arachnida; Chelicerata ID MINIMAL TRANSFER-RNA; TV-REPLACEMENT LOOP; PSI-C ARM; ASCARIS-SUUM; COMPLETE SEQUENCE; CAENORHABDITIS-ELEGANS; PHYLOGENETIC ANALYSIS; DNA-SEQUENCE; NEW-YORK; ARRANGEMENT AB The cloverleaf secondary structure of transfer RNA (tRNA) is highly conserved across all forms of life. Here, we provide sequence data and inferred secondary structures for all tRNA genes from 8 new arachnid mitochondrial genomes, including representatives from 6 orders. These data show remarkable reductions in tRNA gene sequences, indicating that T-arms are missing from many of the 22 tRNAs in the genomes of 4 out of 7 orders of arachnids. Additionally, all opisthothele spiders possess some tRNA genes that lack sequences that could form well-paired aminoacyl acceptor stems. We trace the evolution of T-arm loss onto phylogenies of arachnids and show that a genome-wide propensity to lose sequences that encode canonical cloverleaf structures likely evolved multiple times within arachnids. Mapping of structural characters also shows that certain tRNA genes appear more evolutionarily prone to lose the sequence coding for the T-arm and that once a T-arm is lost, it is not regained. We use tRNA structural data to construct a phylogeny of arachnids and find high bootstrap support for a clade that is not supported in phylogenies that are based on more traditional morphological characters. Together, our data demonstrate variability in structural evolution among different tRNAs as well as evidence for parallel evolution of the loss of sequence coding for tRNA arms within an ancient and diverse group of animals. C1 [Masta, Susan E.] Portland State Univ, Dept Biol, Portland, OR 97207 USA. [Boore, Jeffrey L.] Joint Genome Inst, Dept Evolutionary Genom, Walnut Creek, CA USA. [Boore, Jeffrey L.] Univ Calif Lawrence Berkeley Natl Lab, Walnut Creek, CA USA. [Boore, Jeffrey L.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA USA. RP Masta, SE (reprint author), Portland State Univ, Dept Biol, Portland, OR 97207 USA. EM smasta@pdx.edu NR 60 TC 62 Z9 66 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD MAY PY 2008 VL 25 IS 5 BP 949 EP 959 DI 10.1093/molbev/msn051 PG 11 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 290XJ UT WOS:000255156600016 PM 18296699 ER PT J AU Larroux, C Luke, GN Koopman, P Rokhsar, DS Shimeld, SM Degnan, BM AF Larroux, Claire Luke, Graham N. Koopman, Peter Rokhsar, Daniel S. Shimeld, Sebastian M. Degnan, Bernard M. TI Genesis and expansion of metazoan transcription factor gene classes SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE developmental genes; Amphimedon queenslandica; sponge; homeodomain; Sox; FoX; T-box ID T-BOX GENES; HOMEOBOX GENES; NEMATOSTELLA-VECTENSIS; PHYLOGENETIC POSITION; SEA-ANEMONE; SOX FAMILY; UNICELLULAR RELATIVES; TRICHOPLAX-ADHAERENS; MITOCHONDRIAL GENOME; EVOLUTIONARY ORIGIN AB We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole- genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T- box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains ( such as Paired, POU, and T- box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity. C1 [Larroux, Claire; Degnan, Bernard M.] Univ Queensland, Sch Integrat Biol, Brisbane, Qld, Australia. [Luke, Graham N.] Univ Reading, Sch Biol Sci, Reading, Berks, England. [Koopman, Peter] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia. [Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Shimeld, Sebastian M.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England. RP Degnan, BM (reprint author), Univ Queensland, Sch Integrat Biol, Brisbane, Qld, Australia. EM b.degnan@uq.edu.au RI Koopman, Peter /C-9416-2009; OI Koopman, Peter /0000-0001-6939-0914; Shimeld, Sebastian/0000-0003-0195-7536 FU Biotechnology and Biological Sciences Research Council [G19873/2] NR 86 TC 144 Z9 148 U1 5 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD MAY PY 2008 VL 25 IS 5 BP 980 EP 996 DI 10.1093/molbev/msn047 PG 17 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 290XJ UT WOS:000255156600019 PM 18296413 ER PT J AU Williams, CL Winkelbauer, ME Schafer, JC Michaud, EJ Yoder, BK AF Williams, Corey L. Winkelbauer, Marlene E. Schafer, Jenny C. Michaud, Edward J. Yoder, Bradley K. TI Functional redundancy of the B9 proteins and nephrocystins in Caenorhabditis elegans ciliogenesis SO MOLECULAR BIOLOGY OF THE CELL LA English DT Article ID POLYCYSTIC KIDNEY-DISEASE; MECKEL-GRUBER-SYNDROME; INTRAFLAGELLAR TRANSPORT PROTEIN; RIGHT AXIS DETERMINATION; C-ELEGANS; JOUBERT-SYNDROME; CILIUM FORMATION; JUVENILE NEPHRONOPHTHISIS; SENSORY PERCEPTION; DEFECTIVE-MUTANTS AB Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 ( MKS1), TZA-1 ( B9D2), and TZA-2 ( B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes ( NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS. C1 [Williams, Corey L.; Yoder, Bradley K.] Univ Alabama, Med Ctr, Dept Cell Biol, Birmingham, AL 35294 USA. [Winkelbauer, Marlene E.] Yale Univ, Sch Med, Dept Internal Med Nephrol, New Haven, CT 06520 USA. [Schafer, Jenny C.] Vanderbilt Univ, Sch Med, Dept Surg, Nashville, TN 37232 USA. [Michaud, Edward J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Yoder, BK (reprint author), Univ Alabama, Med Ctr, Dept Cell Biol, Birmingham, AL 35294 USA. EM byoder@uab.edu FU National Institutes of Health [R01 DK65655]; U. S. Department of Energy [DE-AC05-00OR22725]; UAB Recessive Polycystic Kidney Disease Research and Translational Core Center [P30 DK074038] FX We gratefully acknowledge Drs. M. Barr, C. Haycraft, N. Katsanis, and M. Leroux for valuable discussions and critical reading of the manuscript. We thank A. Tousson of the UAB Imaging Facility and J. Lehman for assistance in imaging. We thank J. Davenport for assistance in statistical analysis. We thank M. Croyle and V. Roper for technical assistance. The C. elegans Genome Sequencing Consortium provided sequence information, and the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health, provided some of the C. elegans strains used in this study. We thank the C. elegans Knockout Consortium and the National BioResource Project in Japan for the xbx-7( tm2705), tza-1( tm2452), and tza-2( ok2092) deletion mutants. This work was supported by National Institutes of Health R01 DK65655 to B. K.Y. and sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 to E. J. M. Additional support was provided by the P30 DK074038 UAB Recessive Polycystic Kidney Disease Research and Translational Core Center. NR 74 TC 67 Z9 73 U1 0 U2 1 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 J9 MOL BIOL CELL JI Mol. Biol. Cell PD MAY PY 2008 VL 19 IS 5 BP 2154 EP 2168 DI 10.1091/mbc.E07-10-1070 PG 15 WC Cell Biology SC Cell Biology GA 344UE UT WOS:000258952000032 PM 18337471 ER PT J AU Studer, B Asp, T Frei, U Hentrup, S Meally, H Guillard, A Barth, S Muylle, H Roldan-Ruiz, I Barre, P Koning-Boucoiran, C Uenk-Stunnenberg, G Dolstra, O Skot, L Skot, KP Turner, LB Humphreys, MO Kolliker, R Roulund, N Nielsen, KK Lubberstedt, T AF Studer, Bruno Asp, Torben Frei, Ursula Hentrup, Stephan Meally, Helena Guillard, Aurelie Barth, Susanne Muylle, Hilde Roldan-Ruiz, Isabel Barre, Philippe Koning-Boucoiran, Carole Uenk-Stunnenberg, Gerda Dolstra, Oene Skot, Leif Skot, Kirsten P. Turner, Lesley B. Humphreys, Mervyn O. Kolliker, Roland Roulund, Niels Nielsen, Klaus K. Lubberstedt, Thomas TI Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.) SO MOLECULAR BREEDING LA English DT Article DE comparative mapping; expressed sequence tag (EST); ryegrass (Lolium spp.); simple sequence repeat (SSR) ID REPEAT SSR MARKERS; MULTIFLORUM LAM.; LINKAGE MAP; PLANTS; TRANSFERABILITY; CONSTRUCTION; REVEALS; QTL AB An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was tested in eight genotypes of L. perenne and L. multiflorum representing (grand-) parents of four mapping populations and resulted in 464 successfully amplified EST-SSRs. Three hundred and six primer pairs successfully amplified products in the mapping population VrnA derived from two of the eight genotypes included in the original screening and revealed SSR polymorphisms for 143 ESTs. Here, we report on 464 EST-derived SSR primer sequences of perennial ryegrass established in laboratory assays, providing a dedicated tool for marker assisted breeding and comparative mapping within and among forage and turf grasses. C1 [Studer, Bruno; Asp, Torben; Frei, Ursula; Hentrup, Stephan; Lubberstedt, Thomas] Univ Aarhus, Fac Agr Sci, Res Ctr Flakkebjerg, Dept Genet & Biotechnol, Slagelse 4200, Denmark. [Meally, Helena; Guillard, Aurelie; Barth, Susanne] TEAGASC, Crops Res Ctr Oak Pk, Carlow, Ireland. [Muylle, Hilde; Roldan-Ruiz, Isabel] Inst Agr & Fisheries Res ILVO, Plant Unit, Melle, Belgium. [Barre, Philippe] INRA, Unite Genet & Ameliorat Plantes Fourrageres, Lusignan, France. [Koning-Boucoiran, Carole; Uenk-Stunnenberg, Gerda; Dolstra, Oene] Plant Res Int BV, Wageningen, Netherlands. [Skot, Leif; Skot, Kirsten P.; Turner, Lesley B.; Humphreys, Mervyn O.] Inst Grassland & Environm Res, Plant Genet & Breeding Dept, Aberystwyth, Dyfed, Wales. [Kolliker, Roland] Agroscope Reckenholz Tanikon Res Stn ART, Zurich, Switzerland. [Roulund, Niels; Nielsen, Klaus K.] TRIFOLIUM, DLF, Store Heddinge, Denmark. RP Studer, B (reprint author), Univ Aarhus, Fac Agr Sci, Res Ctr Flakkebjerg, Dept Genet & Biotechnol, Forsogsvej 1, Slagelse 4200, Denmark. EM bruno.studer@agrsci.dk RI Barth, Susanne/P-3366-2014 OI Barth, Susanne/0000-0002-4104-5964 NR 20 TC 21 Z9 28 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-3743 J9 MOL BREEDING JI Mol. Breed. PD MAY PY 2008 VL 21 IS 4 BP 533 EP 548 DI 10.1007/s11032-007-9148-0 PG 16 WC Agronomy; Plant Sciences; Genetics & Heredity; Horticulture SC Agriculture; Plant Sciences; Genetics & Heredity GA 283GP UT WOS:000254625000010 ER PT J AU Pan, C Oda, Y Lankford, PK Zhang, B Samatova, NF Pelletier, DA Harwood, CS Hettich, RL AF Pan, Chongle Oda, Yasuhiro Lankford, Patricia K. Zhang, Bing Samatova, Nagiza F. Pelletier, Dale A. Harwood, Caroline S. Hettich, Robert L. TI Characterization of anaerobic catabolism of p-coumarate in Rhodopseudomonas palustris by integrating transcriptomics and quantitative proteomics SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID FERULIC ACID; SHOTGUN PROTEOMICS; AROMATIC-COMPOUNDS; DEGRADATION; METABOLISM; GENE; IDENTIFICATION; ACIDOVORANS; POLLUTANTS; DIVERSITY AB In this study, the pathway for anaerobic catabolism of p-coumarate by a model bacterium, Rhodopseudomonas palustris, was characterized by comparing the gene expression profiles of cultures grown in the presence of p-coumarate, benzoate, or succinate as the sole carbon sources. Gene expression was quantified at the mRNA level with transcriptomics and at the protein level with quantitative proteomics using N-15 metabolic labeling. Protein relative abundances, along with their confidence intervals for statistical significance evaluation, were estimated with the software ProRata. Both -omics measurements were used as the transcriptomics provided near-full genome coverage of gene expression profiles and the quantitative proteomics ascertained abundance changes of over 1600 proteins. The integrated gene expression data are consistent with the hypothesis that p-coumarate is converted to benzoyl-CoA, which is then degraded via a known aromatic ring reduction pathway. For the metabolism of p-coumarate to benzoyl-CoA, two alternative routes, a beta-oxidation route and a non-beta-oxidation route, are possible. The integrated gene expression data provided strong support for the non-beta-oxidation route in R. palustris. A putative gene was proposed for every step in the non-beta-oxidation route. C1 [Lankford, Patricia K.; Pelletier, Dale A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Pan, Chongle; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pan, Chongle; Zhang, Bing; Samatova, Nagiza F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. [Oda, Yasuhiro] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. RP Pelletier, DA (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. EM pelletierda@ornl.gov; csh5@u.washington.edu; hettichri@ornl.gov RI Pan, Chongle/C-6960-2008; Pelletier, Dale/F-4154-2011; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X NR 38 TC 40 Z9 40 U1 2 U2 13 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD MAY PY 2008 VL 7 IS 5 BP 938 EP 948 DI 10.1074/mcp.M700147-MCP200 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 300NI UT WOS:000255830200009 PM 18156135 ER PT J AU Duffie, C Glenn, TC Hagen, C Parker, P AF Duffie, Caroline Glenn, Travis C. Hagen, Cris Parker, Patricia TI Microsatellite markers isolated from the flightless cormorant (Phalacrocorax harrisi) SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE galapagos; microsatellite markers; pelecaniformes; Phalacrocorax harrisi; population genetics AB Eight polymorphic microsatellite DNA loci were isolated from the flightless cormorant (Phalacrocorax harrisi) for future population genetic studies. Genetic variability was assessed using at least 38 individuals from two populations. Allele numbers ranged from three to nine per locus. Mean observed heterozygosity varied from 0.27 to 0.78. No locus deviated from Hardy-Weinberg (HW) or linkage equilibria in either population. The high levels of detected polymorphism indicate the utility of these markers for population genetic studies of this Galapagos species. C1 [Duffie, Caroline; Parker, Patricia] Univ Missouri, Dept Biol R223, St Louis, MO 63121 USA. [Glenn, Travis C.; Hagen, Cris] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Duffie, C (reprint author), Univ Missouri, Dept Biol R223, 1 Univ Boulevard, St Louis, MO 63121 USA. EM caroline.duffie@gmail.com RI Glenn, Travis/A-2390-2008 NR 6 TC 0 Z9 1 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1471-8278 J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD MAY PY 2008 VL 8 IS 3 BP 625 EP 627 DI 10.1111/j.1471-8286.2007.02024.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 285XU UT WOS:000254810300029 PM 21585852 ER PT J AU Ivanova, N Heinke, CO Rasio, FA Belczynski, K Fregeau, JM AF Ivanova, N. Heinke, C. O. Rasio, F. A. Belczynski, K. Fregeau, J. M. TI Formation and evolution of compact binaries in globular clusters - II. Binaries with neutron stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE stellar dynamics; binaries : close; binaries : general; stars : neutron; pulsars : general; globular clusters : general; X-rays : binaries ID X-RAY BINARIES; ELECTRON-CAPTURE SUPERNOVAE; MILLISECOND RADIO PULSARS; MONTE-CARLO SIMULATIONS; COMMON-ENVELOPE PHASE; INITIAL MASS FUNCTION; WHITE-DWARF BINARIES; ORBITAL EVOLUTION; STELLAR EVOLUTION; MAGNETIC BRAKING AB In this paper, the second of a series, we study the stellar dynamical and evolutionary processes leading to the formation of compact binaries containing neutron stars (NSs) in dense globular clusters. For this study, 70 dense clusters were simulated independently, with a total stellar mass similar to 2 x 10(7) M-circle dot, exceeding the total mass of all dense globular clusters in our Galaxy. We find that, in order to reproduce the empirically derived formation rate of low-mass X-ray binaries (LMXBs), we must assume that NSs can be formed via electron-capture supernovae with typical natal kicks smaller than in core-collapse supernovae. Our results explain the observed dependence of the number of LMXBs on 'collision number' as well as the large scatter observed between different globular clusters. We predict that the number of quiescent LMXBs in different clusters should not have a strong metallicity dependence. We compare the results obtained from our simulations with the observed population of millisecond pulsars (MSPs). We find that in our cluster model the following mass-gaining events create populations of MSPs that do not match the observations (either they are inconsistent with the observed LMXB production rates, or the inferred binary periods or companion masses are not observed among radio bMSPs): (i) accretion during a common-envelope event with a NS formed through electron-capture supernovae (ECSNe), and (ii) mass transfer (MT) from a white dwarf donor. Some processes lead only to a mild recycling - physical collisions or MT in a post-accretion-induced collapse system. In addition, for MSPs, we distinguish low magnetic field (long-lived) and high magnetic field (short-lived) populations, where in the latter NSs are formed as a result of accretion-induced collapse or merger-induced collapse. With this distinction and by considering only those mass-gaining events that appear to lead to NS recycling, we obtain good agreement of our models with the numbers and characteristics of observed MSPs in 47 Tuc and Terzan 5, as well as with the cumulative statistics for MSPs detected in globular clusters of different dynamical properties. We find that significant production of merging double NSs potentially detectable as short gamma-ray bursts occurs only in very dense, most likely core-collapsed clusters. C1 [Ivanova, N.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Heinke, C. O.; Rasio, F. A.; Fregeau, J. M.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Heinke, C. O.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Belczynski, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Belczynski, K.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. RP Ivanova, N (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George, Toronto, ON M5S 3H8, Canada. EM nata@cita.utoronto.ca OI Heinke, Craig/0000-0003-3944-6109 NR 150 TC 107 Z9 107 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2008 VL 386 IS 1 BP 553 EP 576 DI 10.1111/j.1365-2966.2008.13064.x PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 290SM UT WOS:000255142500071 ER PT J AU Johnson, JC Gerth, KA Song, Q Murphy, JE Nozik, AJ AF Johnson, Justin C. Gerth, Kathrine A. Song, Qing Murphy, James E. Nozik, Arthur J. TI Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals SO NANO LETTERS LA English DT Article ID CDSE QUANTUM DOTS; ELECTRONIC-STRUCTURE; SPIN RELAXATION; PBSE; GENERATION; SEMICONDUCTORS; MECHANISM; PHOTON AB The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes. C1 [Johnson, Justin C.; Gerth, Kathrine A.; Song, Qing; Murphy, James E.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM justin_johnson@nrel.gov; arthur_nozik@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 NR 32 TC 24 Z9 24 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2008 VL 8 IS 5 BP 1374 EP 1381 DI 10.1021/nl080126a PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 301OV UT WOS:000255906400020 PM 18376866 ER PT J AU Lee, YJ Ruby, DS Peters, DW McKenzie, BB Hsu, JWP AF Lee, Yun-Ju Ruby, Douglas S. Peters, David W. McKenzie, Bonnie B. Hsu, Julia W. P. TI ZnO nanostructures as efficient antireflection layers in solar cells SO NANO LETTERS LA English DT Article ID SILICON; COATINGS; FILMS; GROWTH; INDEX; TIO2 AB An efficient antireflection coating (ARC) can enhance solar cell performance through increased light coupling. Here, we investigate solution-grown ZnO nanostructures as ARCs for Si solar cells and compare them to conventional single layer ARCs. We find that nanoscale morphology, controlled through synthetic chemistry, has a great effect on the macroscopic ARC performance. Compared with a silicon nitride (SiN) single layer ARC, ZnO nanorod arrays display a broadband reflection suppression from 400 to 1200 nm. For a tapered nanorod array with average tip diameter of 10 nm, we achieve a weighted global reflectance of 6.6%, which is superior to an optimized SiN single layer ARC. Calculations using rigorous coupled wave analysis suggest that the tapered nanorod arrays behave like modified single layer ARCs, where the tapering leads to impedance matching between Si and air through a gradual reduction of the effective refractive index away from the surface, resulting in low reflection particularly at longer wavelengths and eliminating interference fringes through roughening of the air-ZnO interface. According to the calculations, we may further improve ARC performance by tailoring the thickness of the bottom fused ZnO layer and through better control of tip tapering. C1 [Lee, Yun-Ju; Ruby, Douglas S.; Peters, David W.; McKenzie, Bonnie B.; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lee, YJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ylee@sandia.gov NR 27 TC 434 Z9 440 U1 14 U2 209 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2008 VL 8 IS 5 BP 1501 EP 1505 DI 10.1021/nl080659j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 301OV UT WOS:000255906400041 PM 18416581 ER PT J AU Field, D Garrity, G Gray, T Morrison, N Selengut, J Sterk, P Tatusova, T Thomson, N Allen, MJ Angiuoli, SV Ashburner, M Axelrod, N Baldauf, S Ballard, S Boore, J Cochrane, G Cole, J Dawyndt, P De Vos, P dePamphilis, C Edwards, R Faruque, N Feldman, R Gilbert, J Gilna, P Glockner, FO Goldstein, P Guralnick, R Haft, D Hancock, D Hermjakob, H Hertz-Fowler, C Hugenholtz, P Joint, I Kagan, L Kane, M Kennedy, J Kowalchuk, G Kottmann, R Kolker, E Kravitz, S Kyrpides, N Leebens-Mack, J Lewis, SE Li, K Lister, AL Lord, P Maltsev, N Markowitz, V Martiny, J Methe, B Mizrachi, I Moxon, R Nelson, K Parkhill, J Proctor, L White, O Sansone, SA Spiers, A Stevens, R Swift, P Taylor, C Tateno, Y Tett, A Turner, S Ussery, D Vaughan, B Ward, N Whetzel, T Gil, IS Wilson, G Wipat, A AF Field, Dawn Garrity, George Gray, Tanya Morrison, Norman Selengut, Jeremy Sterk, Peter Tatusova, Tatiana Thomson, Nicholas Allen, Michael J. Angiuoli, Samuel V. Ashburner, Michael Axelrod, Nelson Baldauf, Sandra Ballard, Stuart Boore, Jeffrey Cochrane, Guy Cole, James Dawyndt, Peter De Vos, Paul dePamphilis, Claude Edwards, Robert Faruque, Nadeem Feldman, Robert Gilbert, Jack Gilna, Paul Gloeckner, Frank Oliver Goldstein, Philip Guralnick, Robert Haft, Dan Hancock, David Hermjakob, Henning Hertz-Fowler, Christiane Hugenholtz, Phil Joint, Ian Kagan, Leonid Kane, Matthew Kennedy, Jessie Kowalchuk, George Kottmann, Renzo Kolker, Eugene Kravitz, Saul Kyrpides, Nikos Leebens-Mack, Jim Lewis, Suzanna E. Li, Kelvin Lister, Allyson L. Lord, Phillip Maltsev, Natalia Markowitz, Victor Martiny, Jennifer Methe, Barbara Mizrachi, Ilene Moxon, Richard Nelson, Karen Parkhill, Julian Proctor, Lita White, Owen Sansone, Susanna-Assunta Spiers, Andrew Stevens, Robert Swift, Paul Taylor, Chris Tateno, Yoshio Tett, Adrian Turner, Sarah Ussery, David Vaughan, Bob Ward, Naomi Whetzel, Trish Gil, Ingio San Wilson, Gareth Wipat, Anil TI The minimum information about a genome sequence (MIGS) specification SO NATURE BIOTECHNOLOGY LA English DT Article ID REVEALS ADAPTATIONS; ANNOTATION; COLLECTION; SYSTEM AB With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases. C1 [Field, Dawn; Gray, Tanya; Swift, Paul; Tett, Adrian; Turner, Sarah; Wilson, Gareth] NERC, Ctr Ecol & Hydrol, Oxford OX1 3SR, England. [Garrity, George; Baldauf, Sandra; Cole, James] Michigan State Univ, E Lansing, MI 48824 USA. [Morrison, Norman; Stevens, Robert] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Morrison, Norman; Hancock, David] NERC, Environm Bioinformat Ctr, Oxford Ctr Ecol & Hydrol, Oxford OX1 3SR, England. [Selengut, Jeremy; Angiuoli, Samuel V.; Axelrod, Nelson; Haft, Dan; Kagan, Leonid; Kravitz, Saul; Li, Kelvin; Methe, Barbara; Nelson, Karen] J Craig Venter Inst, Rockville, MD 20850 USA. [Sterk, Peter; Cochrane, Guy; Faruque, Nadeem; Hermjakob, Henning; Sansone, Susanna-Assunta; Taylor, Chris; Vaughan, Bob] European Bioinformat Inst, European Mol Biol Lab Outstat, Cambridge CB10 1SD, England. [Tatusova, Tatiana; Mizrachi, Ilene] NIH, Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. [Thomson, Nicholas; Hertz-Fowler, Christiane; Parkhill, Julian] Sanger Inst, Cambridge CB10 1SA, England. [Allen, Michael J.; Gilbert, Jack] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Angiuoli, Samuel V.; White, Owen] Univ Maryland, Sch Med, Dept Epidemiol & Prevent Med, Baltimore, MD 21201 USA. [Angiuoli, Samuel V.; White, Owen] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Ashburner, Michael] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Baldauf, Sandra] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England. [Ballard, Stuart] Univ Cambridge, Dept Earth Sci, Natl Inst Environm eSci, Cambridge CB2 3EQ, England. [Boore, Jeffrey] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Dawyndt, Peter] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium. [De Vos, Paul] Univ Ghent, Microbiol Lab, B-9000 Ghent, Belgium. [De Vos, Paul] Univ Ghent, BCCM LMG Bacteria Collect, B-9000 Ghent, Belgium. [dePamphilis, Claude] Penn State Univ, Mueller Lab 208, University Pk, PA 16802 USA. [Edwards, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert; Maltsev, Natalia] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Feldman, Robert] SymBio Corp, Menlo Pk, CA 94025 USA. [Gilna, Paul] Univ Calif San Diego, Calif Inst Telecommun & Informat Technol, Calit 2, La Jolla, CA 92093 USA. [Gilna, Paul] Univ Calif Irvine Partnership, La Jolla, CA 92093 USA. [Gloeckner, Frank Oliver; Kottmann, Renzo] Univ Bremen, D-28359 Bremen, Germany. [Gloeckner, Frank Oliver; Kottmann, Renzo] Max Planck Inst Marine Microbiol, Microbial Genom Grp, D-28359 Bremen, Germany. [Goldstein, Philip; Guralnick, Robert] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Goldstein, Philip; Guralnick, Robert] Univ Colorado, Nat Hist Museum, Boulder, CO 80309 USA. [Hugenholtz, Phil] US DOE, Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA 94598 USA. [Kane, Matthew; Proctor, Lita] Natl Sci Fdn, Arlington, VA 22230 USA. [Kennedy, Jessie] Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland. [Kowalchuk, George] Netherlands Inst Ecol, Dept Terr Microbial Ecol, Ctr Terr Ecol, NL-6666 ZG Heteren, Netherlands. [Kolker, Eugene] BIATECH Inst, Bothell, WA 98011 USA. Univ Washington, Dept Med Educ & Biomed Informat, Div Biomed & Hlth Informat, Seattle, WA 98195 USA. [Kolker, Eugene] Seattle Childrens Hosp Res Inst, Seattle, WA 98101 USA. [Kyrpides, Nikos] US DOE, Genome Biol Program, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Leebens-Mack, Jim] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Lewis, Suzanna E.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lister, Allyson L.; Lord, Phillip] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Lister, Allyson L.; Wipat, Anil] Newcastle Univ, Newcastle Gen Hosp, Henry Wellcome Lab Biogerontol Res Div, CISBAN, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England. [Markowitz, Victor] Lawrence Berkeley Natl Lab, Computat Res Div, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Martiny, Jennifer] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Moxon, Richard] Weatherall Inst Mol Med, Mol Infect Dis Grp, Oxford OX3 9DU, England. [Moxon, Richard] Univ Oxford, John Radcliffe Hosp, Dept Paediat, Oxford OX3 9DU, England. [Nelson, Karen] Howard Univ, Dept Biol, Washington, DC 20059 USA. [Gil, Ingio San] Univ New Mexico, Dept Biol, LTER Network Off, Albuquerque, NM 87171 USA. [Spiers, Andrew] Univ Abertay Dundee, SIMBIOS Ctr, Dundee DD1 1HG, Scotland. [Tateno, Yoshio] Natl Inst Genet, Res Org Informat & Syst, Ctr Informat Biol & DNA Data Bank Japan, Mishima, Shizuoka 4118540, Japan. [Ussery, David] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Ward, Naomi] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. [Whetzel, Trish] Univ Penn, Sch Med, Ctr Bioinformat, Philadelphia, PA 19104 USA. [Whetzel, Trish] Univ Penn, Sch Med, Dept Genet, Philadelphia, PA 19104 USA. RP Field, D (reprint author), NERC, Ctr Ecol & Hydrol, Oxford OX1 3SR, England. EM dfield@ceh.ac.uk RI Gilna, Paul/I-3608-2016; dePamphilis, Claude/P-6652-2016; Kyrpides, Nikos/A-6305-2014; Guralnick, Rob/E-7767-2010; Spiers, Andrew/I-3535-2012; Field, Dawn/C-1653-2010; Angiuoli, Samuel/H-7340-2014; Allen, Michael (Mike)/C-1248-2011; Kowalchuk, George/C-4298-2011; Parkhill, Julian/G-4703-2011; Hugenholtz, Philip/G-9608-2011; Turner, Sarah/K-4683-2012; Dawyndt, Peter/A-1566-2013; Kolker, Eugene/C-6711-2008; Garrity, George/F-7551-2013; De Vos, Paul/J-5392-2013 OI Lewis, Suzanna/0000-0002-8343-612X; Sterk, Peter/0000-0003-1668-7778; Hermjakob, Henning/0000-0001-8479-0262; Baldauf, Sandra/0000-0003-4485-6671; Dawyndt, Peter/0000-0002-1623-9070; Gilna, Paul/0000-0002-6542-0191; Kyrpides, Nikos/0000-0002-6131-0462; Gray, Tanya/0000-0003-1561-7364; Lister, Allyson/0000-0002-7702-4495; Angiuoli, Samuel/0000-0001-9525-4350; Cochrane, Guy/0000-0001-7954-7057; Sansone, Susanna-Assunta/0000-0001-5306-5690; hugenholtz, philip/0000-0001-5386-7925; Taylor, Christopher/0000-0002-9666-798X; Spiers, Andrew/0000-0003-0463-8629; Allen, Michael (Mike)/0000-0001-8504-7171; Parkhill, Julian/0000-0002-7069-5958; Turner, Sarah/0000-0002-8937-6922; Garrity, George/0000-0002-4465-7034; FU Biotechnology and Biological Sciences Research Council [BB/E025080/1]; Intramural NIH HHS [Z99 LM999999]; Medical Research Council [G8225539]; NHGRI NIH HHS [U54 HG004028] NR 32 TC 721 Z9 723 U1 5 U2 47 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAY PY 2008 VL 26 IS 5 BP 541 EP 547 DI 10.1038/nbt1360 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 299LJ UT WOS:000255756800026 PM 18464787 ER PT J AU Martinez, D Berka, RM Henrissat, B Saloheimo, M Arvas, M Baker, SE Chapman, J Chertkov, O Coutinho, PM Cullen, D Danchin, EGJ Grigoriev, IV Harris, P Jackson, M Kubicek, CP Han, CS Ho, I Larrondo, LF de Leon, AL Magnuson, JK Merino, S Misra, M Nelson, B Putnam, N Robbertse, B Salamov, AA Schmoll, M Terry, A Thayer, N Westerholm-Parvinen, A Schoch, CL Yao, J Barbote, R Nelson, MA Detter, C Bruce, D Kuske, CR Xie, G Richardson, P Rokhsar, DS Lucas, SM Rubin, EM Dunn-Coleman, N Ward, M Brettin, TS AF Martinez, Diego Berka, Randy M. Henrissat, Bernard Saloheimo, Markku Arvas, Mikko Baker, Scott E. Chapman, Jarod Chertkov, Olga Coutinho, Pedro M. Cullen, Dan Danchin, Etienne G. J. Grigoriev, Igor V. Harris, Paul Jackson, Melissa Kubicek, Christian P. Han, Cliff S. Ho, Isaac Larrondo, Luis F. de Leon, Alfredo Lopez Magnuson, Jon K. Merino, Sandy Misra, Monica Nelson, Beth Putnam, Nicholas Robbertse, Barbara Salamov, Asaf A. Schmoll, Monika Terry, Astrid Thayer, Nina Westerholm-Parvinen, Ann Schoch, Conrad L. Yao, Jian Barbote, Ravi Nelson, Mary Anne Detter, Chris Bruce, David Kuske, Cheryl R. Xie, Gary Richardson, Paul Rokhsar, Daniel S. Lucas, Susan M. Rubin, Edward M. Dunn-Coleman, Nigel Ward, Michael Brettin, Thomas S. TI Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) SO NATURE BIOTECHNOLOGY LA English DT Article ID ELECTROPHORETIC KARYOTYPE; CELL-WALL; WILD-TYPE; CELLULASE; EVOLUTIONARY; ENZYMES; PROTEIN; LIGNOCELLULOSE; FUMIGATUS; REVEALS AB Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production. C1 [Martinez, Diego; Chertkov, Olga; Jackson, Melissa; Han, Cliff S.; Misra, Monica; Thayer, Nina; Barbote, Ravi; Detter, Chris; Bruce, David; Kuske, Cheryl R.; Xie, Gary] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM 87545 USA. [Berka, Randy M.; Harris, Paul; de Leon, Alfredo Lopez; Merino, Sandy; Nelson, Beth] Novozymes Inc, Davis, CA 95618 USA. [Henrissat, Bernard; Coutinho, Pedro M.; Danchin, Etienne G. J.] Univ Aix Marseille 1, AFMB, CNRS, UMR 6098,Case 932, F-13288 Marseille, France. [Henrissat, Bernard; Coutinho, Pedro M.; Danchin, Etienne G. J.] Univ Aix Marseille 2, AFMB, CNRS, UMR 6098,Case 932, F-13288 Marseille, France. [Saloheimo, Markku; Arvas, Mikko; Westerholm-Parvinen, Ann] VTT Tech Res Ctr Finland, Espoo 02044, Finland. [Baker, Scott E.; Magnuson, Jon K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chapman, Jarod; Grigoriev, Igor V.; Ho, Isaac; Putnam, Nicholas; Salamov, Asaf A.; Terry, Astrid; Richardson, Paul; Rokhsar, Daniel S.; Lucas, Susan M.; Rubin, Edward M.; Brettin, Thomas S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Cullen, Dan] US Forest Serv, USDA, Forest Prod Lab, Madison, WI 53726 USA. [Kubicek, Christian P.; Schmoll, Monika] Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, A-1060 Vienna, Austria. [Larrondo, Luis F.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Mol Genet & Microbiol, Santiago, Chile. [Larrondo, Luis F.] Millenium Inst Fundamental & Appl Biol, Santiago, Chile. [Robbertse, Barbara; Schoch, Conrad L.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Yao, Jian; Ward, Michael] Genencor Int, Palo Alto, CA 94304 USA. [Dunn-Coleman, Nigel] AlerGenetiCa SL, Tenerife, Spain. [Martinez, Diego; Nelson, Mary Anne] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Martinez, D (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM admar@unm.edu RI Putnam, Nicholas/B-9968-2008; Coutinho, Pedro/C-4473-2008; Arvas, Mikko/A-4757-2011; Barabote, Ravi/B-8727-2011; Henrissat, Bernard/J-2475-2012; Larrondo, Luis/A-2916-2013; Danchin, Etienne/A-6648-2008; Larrondo, Luis/J-1086-2016; Barabote, Ravi/C-1299-2017 OI Schmoll, Monika/0000-0003-3918-0574; xie, gary/0000-0002-9176-924X; Putnam, Nicholas/0000-0002-1315-782X; Arvas, Mikko/0000-0002-6902-8488; Danchin, Etienne/0000-0003-4146-5608; Larrondo, Luis/0000-0002-8832-7109; Barabote, Ravi/0000-0002-0403-246X FU NIGMS NIH HHS [GM060201] NR 49 TC 525 Z9 560 U1 12 U2 176 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAY PY 2008 VL 26 IS 5 BP 553 EP 560 DI 10.1038/nbt1403 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 299LJ UT WOS:000255756800028 PM 18454138 ER PT J AU Turley, EA Veiseh, M Radisky, DC Bissell, MJ AF Turley, Eva A. Veiseh, Mandana Radisky, Derek C. Bissell, Mina J. TI Mechanisms of disease: epithelial-mesenchymal transition - does cellular plasticity fuel neoplastic progression? SO NATURE CLINICAL PRACTICE ONCOLOGY LA English DT Review DE epithelial-mesenchymal transition; extracellular matrix; microenvironment; tumor; ERK1; ERK2 ID FIBROBLAST-GROWTH-FACTOR; HUMAN BREAST-CANCER; GENE-EXPRESSION SIGNATURE; ACTIVATED PROTEIN-KINASE; RAS SIGNALING PATHWAY; TUMOR PROGRESSION; COLORECTAL-CANCER; MYOEPITHELIAL CELLS; BETA-CATENIN; TGF-BETA AB Epithelial-mesenchymal transition (EMT) is a phenotypic conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes, such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, and is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bidirectional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of RAS-controlled signaling mediators, ERK1, ERK2 and phosphatidylinositol 3-kinase, as microenvironmental responsive regulators of EMT. C1 [Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Turley, Eva A.] London Hlth Sci Ctr, London, ON, Canada. [Turley, Eva A.] Univ Western Ontario, London, ON, Canada. [Radisky, Derek C.] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA. RP Bissell, MJ (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,MS 977, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov FU NCI NIH HHS [R01 CA064786-06S1, R01 CA064786, R01 CA064786-04A1, R01 CA064786-05, R01 CA064786-06, R01 CA064786-07, R01 CA064786-07S1, R01 CA064786-08, R01 CA064786-08S1, R01 CA064786-09, R01 CA064786-09S1, R01 CA064786-10, R01 CA064786-10S1, R01 CA064786-11, R01 CA064786-11S1, R01 CA064786-12, R01 CA064786-13, R13 CA098946, R13 CA098946-01, R13 CA113258, R13 CA113258-01, R37 CA064786, R37 CA064786-14, U54 CA126552, U54 CA126552-01, U54 CA126552-010001, U54 CA126552-02, U54 CA126552-020001, U54 CA126552-02S1, U54 CA126552-03, U54 CA126552-030001, U54 CA126552-04, U54 CA126552-040001] NR 92 TC 137 Z9 143 U1 2 U2 16 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1743-4254 J9 NAT CLIN PRACT ONCOL JI Nat. Clin. Pract. Oncol. PD MAY PY 2008 VL 5 IS 5 BP 280 EP 290 DI 10.1038/ncponc1089 PG 11 WC Oncology SC Oncology GA 292TC UT WOS:000255288000010 PM 18349857 ER PT J AU Sutter, PW Flege, JI Sutter, EA AF Sutter, Peter W. Flege, Jan-Ingo Sutter, Eli A. TI Epitaxial graphene on ruthenium SO NATURE MATERIALS LA English DT Article ID CARBON NANOTUBES; GRAPHITE; LEED; GAS AB Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis. C1 [Sutter, Peter W.; Flege, Jan-Ingo; Sutter, Eli A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, PW (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Flege, Jan Ingo/J-6354-2012 OI Flege, Jan Ingo/0000-0002-8346-6863 NR 37 TC 1329 Z9 1368 U1 55 U2 658 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2008 VL 7 IS 5 BP 406 EP 411 DI 10.1038/nmat2166 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 292HR UT WOS:000255257600023 PM 18391956 ER PT J AU Chen, HT O'Hara, JF Azad, AK Taylor, AJ Averitt, RD Shrekenhamer, DB Padilla, WJ AF Chen, Hou-Tong O'Hara, John F. Azad, Abul K. Taylor, Antoinette J. Averitt, Richard D. Shrekenhamer, David B. Padilla, Willie J. TI Experimental demonstration of frequency-agile terahertz metamaterials SO NATURE PHOTONICS LA English DT Article ID SPLIT-RING RESONATORS; MICROWAVE-FREQUENCIES; TRANSMISSION-LINES; INDEX AB Metamaterials exhibit numerous novel effects(1-5) and operate over a large portion of the electromagnetic spectrum(6-10). Metamaterial devices based on these effects include gradient-index lenses(11,12), modulators for terahertz radiation(13-15) and compact waveguides(16). The resonant nature of metamaterials results in frequency dispersion and narrow bandwidth operation where the centre frequency is fixed by the geometry and dimensions of the elements comprising the metamaterial composite. The creation of frequency-agile metamaterials would extend the spectral range over which devices function and, further, enable the manufacture of new devices such as dynamically tunable notch filters. Here, we demonstrate such frequency-agile metamaterials operating in the far-infrared by incorporating semiconductors in critical regions of metallic split-ring resonators. For this first-generation device, external optical control results in tuning of the metamaterial resonance frequency by similar to 20%. Our approach is integrable with current semiconductor technologies and can be implemented in other regions of the electromagnetic spectrum. C1 [Chen, Hou-Tong; O'Hara, John F.; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Averitt, Richard D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Shrekenhamer, David B.; Padilla, Willie J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Padilla, Willie/A-7235-2008; OI Chen, Hou-Tong/0000-0003-2014-7571; Padilla, Willie/0000-0001-7734-8847; Azad, Abul/0000-0002-7784-7432 NR 28 TC 399 Z9 407 U1 15 U2 133 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD MAY PY 2008 VL 2 IS 5 BP 295 EP 298 DI 10.1038/nphoton.2008.52 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 303YT UT WOS:000256077900014 ER PT J AU Won, R Chen, HT AF Won, Rachel Chen, Hou-Tong TI Taming the terahertz SO NATURE PHOTONICS LA English DT Editorial Material C1 [Chen, Hou-Tong] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Won, Pei Chin/0000-0003-3660-006X; Chen, Hou-Tong/0000-0003-2014-7571 NR 0 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD MAY PY 2008 VL 2 IS 5 BP 324 EP 324 DI 10.1038/nphoton.2008.75 PG 1 WC Optics; Physics, Applied SC Optics; Physics GA 303YT UT WOS:000256077900020 ER PT J AU Hajdu, J Maia, FRNC AF Hajdu, Janos Maia, Filipe R. N. C. TI X-ray optics - Clarity through a keyhole SO NATURE PHYSICS LA English DT News Item AB The requirement for an object to be surrounded by empty space when imaged by coherent X-ray diffraction was once thought to be a fundamental limitation. A variant of coherent diffractive imaging proves this not to be the case, and substantially widens its potential use. C1 [Hajdu, Janos] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Hajdu, Janos; Maia, Filipe R. N. C.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. RP Hajdu, J (reprint author), Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Stanford, CA 94305 USA. EM janos@xray.bmc.uu.se; filipe@xray.bmc.uu.se RI Rocha Neves Couto Maia, Filipe/C-3146-2014 OI Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X NR 11 TC 3 Z9 3 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2008 VL 4 IS 5 BP 351 EP 353 DI 10.1038/nphys952 PG 4 WC Physics, Multidisciplinary SC Physics GA 299LF UT WOS:000255756400014 ER PT J AU Williams, GP AF Williams, Gwyn P. TI Radiation sources - Electrons and lasers sing THz tune SO NATURE PHYSICS LA English DT News Item AB Control over the distribution of electrons in a relativistic particle beam enables the realization of a bright, narrow, tunable source of terahertz radiation. C1 Free Elect Laser Div, Jefferson Lab, Newport News, VA 23606 USA. RP Williams, GP (reprint author), Free Elect Laser Div, Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM gwyn@jlab.org NR 7 TC 2 Z9 2 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2008 VL 4 IS 5 BP 356 EP 357 DI 10.1038/nphys958 PG 2 WC Physics, Multidisciplinary SC Physics GA 299LF UT WOS:000255756400017 ER PT J AU Abbey, B Nugent, KA Williams, GJ Clark, JN Peele, AG Pfeifer, MA De Jonge, M McNulty, I AF Abbey, Brian Nugent, Keith A. Williams, Garth J. Clark, Jesse N. Peele, Andrew G. Pfeifer, Mark A. De Jonge, Martin McNulty, Ian TI Keyhole coherent diffractive imaging SO NATURE PHYSICS LA English DT Article ID PHASE RETRIEVAL; MAGNITUDE AB The availability of third-generation synchrotrons and ultimately X-ray free-electron lasers(1) is driving the development of many new methods of microscopy. Among these techniques, coherent diffractive imaging (CDI) is one of the most promising, offering nanometre-scale imaging of non-crystallographic samples. Image reconstruction from a single diffraction pattern has hitherto been possible only for small, isolated samples, presenting a fundamental limitation on the CDI method. Here we report on a form of imaging we term 'keyhole' CDI, which can reconstruct objects of arbitrary size. We demonstrate the technique using visible light and X-rays, with the latter producing images of part of an extended object with a detector-limited resolution of better than 20 nm. Combining the improved resolution of modern X-ray optics with the wavelength-limited resolution of CDI, the method paves the way for detailed imaging of a single quantum dot or of a small virus within a complex host environment. C1 [Abbey, Brian; Nugent, Keith A.; Williams, Garth J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Clark, Jesse N.; Peele, Andrew G.; Pfeifer, Mark A.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. [De Jonge, Martin; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Williams, GJ (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM garthw@unimelb.edu.au RI Pfeifer, Mark/C-4132-2011; de Jonge, Martin/C-3400-2011; Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Abbey, Brian/D-3274-2011; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Abbey, Brian/0000-0001-6504-0503; Nugent, Keith/0000-0002-4281-3478 NR 19 TC 177 Z9 180 U1 4 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2008 VL 4 IS 5 BP 394 EP 398 DI 10.1038/nphys896 PG 5 WC Physics, Multidisciplinary SC Physics GA 299LF UT WOS:000255756400025 ER PT J AU Gureasko, J Galush, WJ Boykevisch, S Sondermann, H Bar-Sagi, D Groves, JT Kuriyan, J AF Gureasko, Jodi Galush, William J. Boykevisch, Sean Sondermann, Holger Bar-Sagi, Dafna Groves, Jay T. Kuriyan, John TI Membrane-dependent signal integration by the Ras activator Son of sevenless SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID GUANINE-NUCLEOTIDE EXCHANGE; PLECKSTRIN HOMOLOGY DOMAIN; RECEPTOR TYROSINE KINASES; NOONAN-SYNDROME; PROTEINS; GRB2; FLUORESCENCE; BINDING; GTP; AUTOINHIBITION AB The kinetics of Ras activation by Son of sevenless (SOS) changes profoundly when Ras is tethered to membranes, instead of being in solution. SOS has two binding sites for Ras, one of which is an allosteric site that is distal to the active site. The activity of the SOS catalytic unit (SOScat) is up to 500-fold higher when Ras is on membranes compared to rates in solution, because the allosteric Ras site anchors SOScat to the membrane. This effect is blocked by the N-terminal segment of SOS, which occludes the allosteric site. We show that SOS responds to the membrane density of Ras molecules, to their state of GTP loading and to the membrane concentration of phosphatidylinositol-4,5-bisphosphate (PIP2), and that the integration of these signals potentiates the release of autoinhibition. C1 [Boykevisch, Sean; Bar-Sagi, Dafna] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA. [Galush, William J.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Groves, Jay T.; Kuriyan, John] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, QB3 Inst, Berkeley, CA 94720 USA. RP Bar-Sagi, D (reprint author), NYU, Sch Med, Dept Biochem, New York, NY 10016 USA. EM dafna.bar-sagi@nyumc.org; jtgroves@lbl.gov; kuriyan@berkeley.edu FU Howard Hughes Medical Institute; NIGMS NIH HHS [T32 GM008295-10, R01 GM078266, R01 GM078266-01A1, T32 GM008295] NR 42 TC 95 Z9 96 U1 4 U2 27 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2008 VL 15 IS 5 BP 452 EP 461 DI 10.1038/nsmb.1418 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 297AO UT WOS:000255587800012 PM 18454158 ER PT J AU Ptacin, JL Nollmann, M Becker, EC Cozzarelli, NR Pogliano, K Bustamante, C AF Ptacin, Jerod L. Nollmann, Marcelo Becker, Eric C. Cozzarelli, Nicholas R. Pogliano, Kit Bustamante, Carlos TI Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID CELL-DIVISION PROTEIN; ESCHERICHIA-COLI; FTSK-TRANSLOCASE; SEGREGATION; SPOIIIE; LOCALIZATION; IDENTIFICATION; MECHANISM; POLARITY; BACTERIA AB In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases. C1 [Bustamante, Carlos] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ptacin, Jerod L.; Nollmann, Marcelo; Cozzarelli, Nicholas R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Becker, Eric C.; Pogliano, Kit] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA. [Bustamante, Carlos] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Bustamante, Carlos] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bustamante, C (reprint author), Univ Calif Berkeley, Dept Phys, 231 Birge Hall, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu FU NIGMS NIH HHS [GM31655, R01 GM031655, R01 GM057045, R01 GM057045-10, R01 GM057045-11] NR 49 TC 69 Z9 70 U1 1 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2008 VL 15 IS 5 BP 485 EP 493 DI 10.1038/nsmb.1412 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 297AO UT WOS:000255587800016 PM 18391964 ER PT J AU Jun, SC George, JS Kim, W Pare-Blagoev, J Plis, S Ranken, DM Schmidt, DM AF Jun, Sung C. George, John S. Kim, Woohan Pare-Blagoev, Juliana Plis, Sergey Ranken, Doug M. Schmidt, David M. TI Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC SO NEUROIMAGE LA English DT Article ID INFERENCE DIPOLE ANALYSIS; INVERSE PROBLEM; BALLOON MODEL; MAGNETOENCEPHALOGRAPHY; EEG; MEG; ACTIVATION; LOCALIZATION; RESPONSES; SIGNALS AB A number of brain imaging techniques have been developed in order to investigate brain function and to develop diagnostic tools for various brain disorders. Each modality has strengths as well as weaknesses compared to the others. Recent work has explored how multiple modalities can be integrated effectively so that they complement one another while maintaining their individual strengths. Bayesian inference employing Markov Chain Monte Carlo (MCMC) techniques provides a straightforward way to combine disparate forms of information while dealing with the uncertainty in each. In this paper we introduce methods of Bayesian inference as a way to integrate different forms of brain imaging data in a probabilistic framework. We formulate Bayesian integration of magnetoencephalography (MEG) data and functional magnetic resonance imaging ( fMRI) data by incorporating fMRI data into a spatial prior. The usefulness and feasibility of the method are verified through testing with both simulated and empirical data. (c) 2007 Elsevier Inc. All rights reserved. C1 [Jun, Sung C.] Gwangju Inst Sci & Technol, Dept Informat & Commun, Kwangju 500712, South Korea. [Jun, Sung C.; George, John S.; Ranken, Doug M.; Schmidt, David M.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA. [Kim, Woohan] Gyeongsang Natl Univ, Dept Earth & Environm Sci, Jinju 660701, South Korea. [Pare-Blagoev, Juliana; Plis, Sergey] MIND Inst, Albuquerque, NM 87131 USA. [Plis, Sergey] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. RP Jun, SC (reprint author), Gwangju Inst Sci & Technol, Dept Informat & Commun, Kwangju 500712, South Korea. EM scjun@gist.ac.kr RI Plis, Elena/F-3310-2010; Ranken, Douglas/J-4305-2012; OI Plis, Sergey/0000-0003-0040-0365; JUN, SUNG CHAN/0000-0001-5357-4436 FU NIBIB NIH HHS [R01 EB000310-08, R01 EB000310-04, R01 EB000310-06, 2 R01 EB000310-05, R01 EB000310, R01 EB000310-05, R01 EB000310-09, R01 EB000310-07] NR 38 TC 10 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD MAY 1 PY 2008 VL 40 IS 4 BP 1581 EP 1594 DI 10.1016/j.neuroimage.2007.12.029 PG 14 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 293PL UT WOS:000255347100016 PM 18314351 ER PT J AU Timchalk, C Poet, TS AF Timchalk, C. Poet, T. S. TI Development of a physiologically based pharmacokinetic and pharmacodynamic model to determine dosimetry and cholinesterase inhibition for a binary mixture of chlorpyrifos and diazinon in the rat SO NEUROTOXICOLOGY LA English DT Article DE cholinesterase; organophosphorus insecticide; chlorpyrifos; diazinon; mixtures ID HUMAN LIVER-MICROSOMES; HUMAN CYTOCHROME-P450 ISOFORMS; BLOOD PARTITION-COEFFICIENTS; IN-VITRO; CHEMICAL-MIXTURES; ADULT RATS; PHARMACOKINETIC/PHARMACODYNAMIC MODEL; ORGANOPHOSPHATE PESTICIDES; INSECTICIDE CHLORPYRIFOS; KINETIC-PARAMETERS AB Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). It is anticipated that these CPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, B-esterases [carboxylesterase (CaE), butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE)] or PON-1 (A-esterase) oxon detoxification. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than DZN, which is consistent with observed in vivo potency (CPF > DZN). Each insecticide inhibited the other's in vitro metabolism in a concentration-dependent manner. The PBPK model code used to describe the metabolism of CPF and DZN was modified to reflect the type of CYP450 inhibition kinetics (i.e. competitive vs. non-competitive), while B-esterase metabolism was described as dose-additive, and no PON-1 interactions were assumed between CPF- and DZN-oxon with the enzyme. The binary model was then evaluated against previously published rodent dosimetry and cholinesterase (ChE) inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single-mixtures (15 mg/kg) vs. binary-mixtures (15 + 15 mg/kg) of CFP and DZN resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites, while cholinesterase inhibition was reasonably described using the dose-additive model. A binary oral dose of CPF + DZN (60 + 60 mg/kg) did result in observable changes in the DZN pharmacokinetics where C-max was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive. (C) 2008 Elsevier Inc. All rights reserved. C1 [Timchalk, C.; Poet, T. S.] Ctr Biol Monitoring & modeling, Pacific NW Div, Richland, WA 99352 USA. RP Timchalk, C (reprint author), Ctr Biol Monitoring & modeling, Pacific NW Div, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM charles.timchalk@pnl.gov FU NIOSH CDC HHS [R01 OH 008173, R01 OH 003629] NR 54 TC 42 Z9 44 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0161-813X J9 NEUROTOXICOLOGY JI Neurotoxicology PD MAY PY 2008 VL 29 IS 3 SI SI BP 428 EP 443 DI 10.1016/j.neuro.2008.02.004 PG 16 WC Neurosciences; Pharmacology & Pharmacy; Toxicology SC Neurosciences & Neurology; Pharmacology & Pharmacy; Toxicology GA 317MV UT WOS:000257025200009 PM 18394709 ER PT J AU Pomeau, Y Le Berre, M Guyenne, P Grilli, S AF Pomeau, Yves Le Berre, Martine Guyenne, Philippe Grilli, Stephan TI Wave-breaking and generic singularities of nonlinear hyperbolic equations SO NONLINEARITY LA English DT Article ID 3-DIMENSIONAL OVERTURNING WAVES; WATER AB Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. C1 [Pomeau, Yves] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Le Berre, Martine] Univ Paris 11, Photophys Mol Lab, F-91405 Orsay, France. [Guyenne, Philippe] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA. [Grilli, Stephan] Univ Rhode Isl, Dept Ocean Engn, Narragansett, RI 02882 USA. RP Pomeau, Y (reprint author), Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RI Grilli, Stephan/L-8737-2014 OI Grilli, Stephan/0000-0001-8615-4585 NR 21 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0951-7715 J9 NONLINEARITY JI Nonlinearity PD MAY PY 2008 VL 21 IS 5 BP T61 EP T79 DI 10.1088/0951-7715/21/5/T01 PG 19 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 303PM UT WOS:000256052800001 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear data sheets for A=166 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; RARE-EARTH NUCLEI; NEUTRON-DEFICIENT ISOTOPES; GAMMA-VIBRATIONAL BAND; PURE E2 TRANSITIONS; ELECTRIC QUADRUPOLE-MOMENTS; PROTON INELASTIC-SCATTERING; RAY EMISSION PROBABILITIES; INTERNAL-CONVERSION LINES; DANS LA DESINTEGRATION AB Nuclear structure data pertaining to all known A=166 nuclides (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt) have been compiled and evaluated, and incorporated into the ENSDF data file. This evaluation for A=166 supersedes the previous publication (E.N. Shurshikov and N.V. Timofeeva, Nuclear Data Sheets 67, 45 (1992) (literature cutoff date 1 October 1990)) and the revision by C.M. Baglin of W-166 (literature cutoff date 16 April 2000). It includes literature available by 1 March 2008. Subsequent to the previous evaluation, Gd-166 has been observed for the first time and the first observations of excited states in Tb-166, Re-166, Os-166 and Ir-166 have been reported; also, knowledge of collective structure in Dy-166, Ho-166, Er-166, Tm-166, (166)yb, Lu-166, Hf-166, and Ta-166 has been considerably expanded. However, the structure suggested here for Re-166 is highly tentative and a further, more detailed study of a decay into (and out of) Re-166 could be informative. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 420 TC 19 Z9 19 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY PY 2008 VL 109 IS 5 BP 1103 EP + DI 10.1016/j.nds.2008.04.001 PG 279 WC Physics, Nuclear SC Physics GA 312EM UT WOS:000256651900001 ER PT J AU Greiner, L Matis, HS Ritter, HG Rose, A Stezelberger, T Sun, X Szelezniak, M Thomas, J Vu, C Wieman, H AF Greiner, L. Matis, H. S. Ritter, H. G. Rose, A. Stezelberger, T. Sun, X. Szelezniak, M. Thomas, J. Vu, C. Wieman, H. TI Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE APS; pixel; vertex detector; MAPS; STAR ID ACTIVE PIXEL SENSORS AB We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment. Published by Elsevier B.V. C1 [Greiner, L.; Matis, H. S.; Ritter, H. G.; Rose, A.; Thomas, J.; Vu, C.; Wieman, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sun, X.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Szelezniak, M.] Inst Plurdisciplinaire Hubert Curien, Strasbourg, France. RP Greiner, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM LCGreiner@lbl.gov OI Thomas, James/0000-0002-6256-4536 NR 4 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2008 VL 589 IS 2 BP 167 EP 172 DI 10.1016/j.nima.2008.02.032 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 310YL UT WOS:000256566800005 ER PT J AU Kim, T Freytsis, M Button-Shafer, J Kadyk, J Vahsen, SE Wenzel, WA AF Kim, T. Freytsis, M. Button-Shafer, J. Kadyk, J. Vahsen, S. E. Wenzel, W. A. TI Readout of TPC tracking chambers with GEMs and pixel chip SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE GEMS; pixel chip; TPC readout ID DETECTOR AB Two layers of GEMS and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC. Published by Elsevier B.V. C1 [Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S. E.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kadyk, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jbutton-shafer@lbl.gov; jakadyk@lbl.gov NR 32 TC 13 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2008 VL 589 IS 2 BP 173 EP 184 DI 10.1016/j.nima.2008.02.049 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 310YL UT WOS:000256566800006 ER PT J AU Kibedi, T Burrows, TW Trzhaskovskaya, MB Davidson, PM Nestor, CW AF Kibedi, T. Burrows, T. W. Trzhaskovskaya, M. B. Davidson, P. M. Nestor, C. W., Jr. TI Evaluation of theoretical conversion coefficients using BrIcc SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE nuclear structure; electromagnetic transitions; internal conversion coefficients; internal pair production; E0 electronic factors ID ELECTRIC-MONOPOLE TRANSITIONS; INTERNAL PAIR CONVERSION; EO-TRANSITIONS; ATOMIC-NUCLEI; HEAVY-NUCLEI; STATES; DECAY AB A new internal conversion coefficient database, BrIcc has been developed which integrates a number of tabulations on internal conversion electron (ICC) and electron-positron pair conversion coefficients (IPC), as well as Omega(E0) electronic factors. A critical review of general formulae and procedures to evaluate theoretical ICC and IPC values are presented, including the treatment of uncertainties in transition energy and mixing ratio in accordance with the Evaluated Nuclear Structure Data File. The default ICC table, based on the Dirac-Fock calculations using the so called "Frozen Orbital" approximation, takes into account the effect of atomic vacancies created in the conversion process. The table has been calculated for all atomic shells and to cover transition energies of 1-6000 keV and atomic numbers of Z = 5-110. The software tools presented here are well suited for basic nuclear structure research and for a range of applications. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kibedi, T.; Davidson, P. M.] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Burrows, T. W.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Trzhaskovskaya, M. B.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Nestor, C. W., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kibedi, T (reprint author), Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, GPO Box 4, Canberra, ACT 0200, Australia. EM Tibor.Kibedi@anu.edu.au RI Kibedi, Tibor/E-8282-2010 OI Kibedi, Tibor/0000-0002-9205-7500 NR 63 TC 364 Z9 364 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2008 VL 589 IS 2 BP 202 EP 229 DI 10.1016/j.nima.2008.02.051 PG 28 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 310YL UT WOS:000256566800009 ER PT J AU White, TA Bredt, OP Schweppe, JE Runkle, RC AF White, Timothy A. Bredt, Ofelia P. Schweppe, John E. Runkle, Robert C. TI Development of a detector model for generation of synthetic radiographs of cargo containers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE cargo inspection; radiographic image simulation; synthetic images; nuclear-threat detection; radiography AB Creation of synthetic cargo-container radiographs that possess attributes of their empirical counterparts requires accurate models of the imaging-system response. Synthetic radiographs serve as surrogate data in studies aimed at determining system effectiveness for detecting target objects when it is impractical to collect a large set of empirical radiographs. In the case where a detailed understanding of the detector system is available, an accurate detector model can be derived from first-principles. In the absence of this detail, it is necessary to derive empirical models of the imaging-system response from radiographs of well-characterized objects. Such a case is the topic of this work, where we demonstrate the development of an empirical model of a gamma-ray radiography system with the intent of creating a detector-response model that translates uncollided photon transport calculations into realistic synthetic radiographs. The detector-response model is calibrated to field measurements of well-characterized objects thus incorporating properties such as system sensitivity, spatial resolution, contrast and noise. (c) 2008 Elsevier B.V. All rights reserved. C1 [White, Timothy A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Bredt, Ofelia P.; Schweppe, John E.; Runkle, Robert C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Runkle, RC (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM robert.runkle@pnl.gov NR 17 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2008 VL 266 IS 9 BP 2079 EP 2089 DI 10.1016/j.nimb.2008.03.184 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 315IY UT WOS:000256873300020 ER PT J AU Tumey, SJ Brown, TA Hamilton, TE Hillegonds, DJ AF Tumey, Scott J. Brown, Thomas A. Hamilton, Terry E. Hillegonds, Darren J. TI Accelerator mass spectrometry of strontium-90 for homeland security, environmental monitoring and human health SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th European Conference on Accelerators in Applied Research and Technology CY SEP 03-07, 2007 CL Florence, ITALY SP Univ Florence, Dept Phys, Ist Nazl Fis Nucl DE AMS; Sr-90; environmental monitoring ID STRONTIUM RANELATE; NONVERTEBRAL FRACTURES; SAMPLES; AMS; WOMEN; RISK AB Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of Sr-90 by accelerator mass spectrometry. Despite a pervasive interference from Zr-90, our initial development has yielded an instrumental background of similar to 10(8) atoms (75 mBq) per sample. Further refinement of our system (e.g. redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring and human health. (C) 2008 Elsevier B.V. All rights reserved. C1 [Tumey, Scott J.; Brown, Thomas A.; Hamilton, Terry E.; Hillegonds, Darren J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Tumey, SJ (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, 700 E Ave,L-397, Livermore, CA 94551 USA. EM tumey2@llnl.gov NR 18 TC 7 Z9 7 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2008 VL 266 IS 10 BP 2242 EP 2245 DI 10.1016/j.nimb.2008.03.088 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 319SZ UT WOS:000257185600035 ER PT J AU Ghisleni, R Lucca, DA Wang, YQ Lee, JK Nastasi, M Dong, J Mehner, A AF Ghisleni, R. Lucca, D. A. Wang, Y. Q. Lee, J. -K. Nastasi, M. Dong, J. Mehner, A. TI Ion irradiation effects on surface mechanical behavior and shrinkage of hybrid sol-gel derived silicate thin films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th European Conference on Accelerators in Applied Research and Technology CY SEP 03-07, 2007 CL Florence, ITALY SP Univ Florence, Dept Phys, Ist Nazl Fis Nucl DE ion irradiation; sol-gel; hybrid organic/inorganic; nanoindentation; hardness ID SI-BASED POLYMERS; COATINGS AB A study of the effects of ion irradiation on the surface mechanical behavior and shrinkage of organic/inorganic modified silicate thin films was performed. The films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. The sol viscosity and the spin velocity were adjusted so that the films produced had a final thickness ranging from 580 to 710 mn after heat treatment. The ion species and incident energies used were selected such that the projected ion range was greater than the film thickness, resulting in fully irradiated films. After heat treatment at 300 degrees C for 10 min, the films were irradiated with 125 keV H+, 250 keV N2+ and 2 MeV Cu+ ions with fluences ranging from 1 x 10(14) to 1 x 10(16) ions/cm(2). Both hardness and reduced elastic modulus were seen to exhibit a monotonic increase with fluence for all three ion species. Also, H loss was found to increase monotonically with increase in fluence, while the film thickness was found to decrease with increase in fluence. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ghisleni, R.; Lucca, D. A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Lee, J. -K.; Nastasi, M.] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Dong, J.; Mehner, A.] Stiftung Inst Werkstofftech, D-28359 Bremen, Germany. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn N, Stillwater, OK 74078 USA. EM lucca@ceat.okstate.edu RI Ghisleni, Rudy/E-7884-2010 NR 13 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2008 VL 266 IS 10 BP 2453 EP 2456 DI 10.1016/j.nimb.2008.03.020 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 319SZ UT WOS:000257185600081 ER PT J AU Lucca, DA Ghisleni, R Lee, JK Wang, YQ Nastasi, M Dong, J Mehner, A AF Lucca, D. A. Ghisleni, R. Lee, J. -K. Wang, Y. Q. Nastasi, M. Dong, J. Mehner, A. TI Effects of ion irradiation on the structural transformation of sol-gel derived TEOS/MTES thin films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th European Conference on Accelerators in Applied Research and Technology CY SEP 03-07, 2007 CL Florence, ITALY SP Univ Florence, Dept Phys, Ist Nazl Fis Nucl DE ion irradiation; sol-gel; hybrid organic/inorganic; FT-IR; Raman spectroscopy ID SI-BASED POLYMERS; HYBRID; SPECTROSCOPY; COATINGS AB Ion beam processing of organic/inorganic thin films has been shown to be an effective means in converting polymeric films into their final ceramic-like state. In this study, hybrid sol-gel derived thin films based on TEOS (tetraethylorthosilicate) Si(OC2H5)(4) and MTES (methyltriethoxysilane) CH3Si(OC2H5)(3) were prepared and deposited on Si substrates by spin coating. After the films were allowed to air dry, they were heat treated at 300 degrees C for 10 min. Ion irradiation was performed at room temperature using 125 keV H+ and 250 keV N2+ ions with fluences ranging from 1 x 10(14) to 5 x 10(16) ions/cm(2). FT-IR and Raman spectroscopies were used to quantify the chemical structural transformations which occurred including the evolution of the organic components, the cross-linking of silica clusters, and the clustering of carbon. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lucca, D. A.; Ghisleni, R.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Lee, J. -K.; Nastasi, M.] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Dong, J.; Mehner, A.] Stiftung Inst Werkstofftech, D-28359 Bremen, Germany. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn N, Stillwater, OK 74078 USA. EM lucca@ceat.okstate.edu RI Ghisleni, Rudy/E-7884-2010 NR 16 TC 6 Z9 6 U1 4 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2008 VL 266 IS 10 BP 2457 EP 2460 DI 10.1016/j.nimb.2008.03.022 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 319SZ UT WOS:000257185600082 ER PT J AU Kennel, SJ Woodward, JD Rondinone, AJ Wall, J Huang, Y Mirzadeh, S AF Kennel, Stephen J. Woodward, Jonathan D. Rondinone, Adam J. Wall, Jonathan Huang, Ying Mirzadeh, Saed TI The fate of MAb-targeted (CdTe)-Te-125m/ZnS nanoparticles in vivo SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE nanoparticles; (CdTe)-Te-125m; SPECT/CT; antibody targeted; clodronate ID MONOCLONAL-ANTIBODY; CARBON NANOTUBES; QUANTUM DOTS; BEARING MICE; BIODISTRIBUTION; CANCER; LUNG; RAT; RADIOIMMUNOTHERAPY; PHARMACOKINETICS AB Introduction: Nanoparticles (NP) have potential as carriers for drugs and radioisotopes. Quantitative measures of NP biodistribution in vivo are needed to determine the effectiveness of these carriers. We have used a model system of radiolabeled quantum dots to document the competition between efficient vascular targeting and interaction of the NP with the reticuloendothelial (RE) system. Methods: We have prepared Te-125m-labeled CdTe NP that are capped with ZnS. Te-125m has a half-life and decay characteristics very similar to those for I-125. The synthesized particles are stable in aqueous solution and are derivatized with mercaptoacetic acid and then conjugated with specific antibody. To evaluate specific targeting, we used the monoclonal antibody MAb 201B that binds to murine thrombomodulin expressed in the lumen of lung blood vessels. The MAb-targeted NP were tested for targeting performance in vivo using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging, tissue autoradiography and standard organ biodistribution techniques. Biodistribution was also determined in mice that had been depleted of phagocytic cells by use of clodronate-loaded liposomes. Results: Cd Te-125m/ZnS NP coupled with MAb 201B retained radioisotope and antibody activity and accumulated in lung (>400% injected dose [ID]/g) within I h of intravenous injection. Control antibody-coupled NP did not accumulate in lung (<10% ID/g) but accumulated in liver and spleen. Images from microSPECT/CT and autoradiography studies of the targeted NP document this specific uptake and demonstrate uniform distribution in lung with minor accumulation in liver and spleen. Within a few hours, a large fraction of lung-targeted NP redistributed to spleen and liver or was excreted. We hypothesized that NP attract phagocytic cells that engulfed and removed them from circulation. This was confirmed by comparing biodistribution of targeted NP in normal mice versus those depleted of phagocytic cells. in mice treated with clodronate liposomes, accumulation of NP in liver was reduced by fivefold, while accumulation in lung at 1 h was enhanced by similar to 50%. By 24 h, loss of the targeted NP from lung was inhibited by several-fold, while accumulation in liver and spleen remained constant. Thus, the treated mice had a much larger accumulation and retention of the NP at the target site and a decrease in dose to other organs except spleen. Conclusion: Nanoparticles composed of CdTe, labeled with Te-125m and capped with ZnS, can be targeted with MAb to sites in the lumen of lung vasculature. In clodronate-treated mice, which have a temporary depletion of phagocytic cells, accumulation in liver was reduced dramatically, whereas that in spleen was not. The targeting to lung was several-fold more efficient in clodronate-treated mice due to larger initial accumulation and better retention of the MAb-targeted NP at that site. This model system indicates that targeting of NP preparations is a competition between the effectiveness of the targeting agent and the natural tendency for RE uptake of the particles. Temporary inhibition of the RE system may enhance the usefulness of NP for drug and radioisotope delivery. (C) 2008 Elsevier Inc. All rights reserved. C1 [Kennel, Stephen J.; Wall, Jonathan; Huang, Ying] Univ Tennessee, Grad Sch Med, Knoxville, TN 37920 USA. [Woodward, Jonathan D.; Rondinone, Adam J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Woodward, Jonathan D.; Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mirzadeh, Saed] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kennel, SJ (reprint author), Univ Tennessee, Grad Sch Med, Knoxville, TN 37920 USA. EM skennel@utmck.edu RI Rondinone, Adam/F-6489-2013 OI Rondinone, Adam/0000-0003-0020-4612 NR 38 TC 34 Z9 37 U1 0 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD MAY PY 2008 VL 35 IS 4 BP 501 EP 514 DI 10.1016/j.nucmedbio.2008.02.001 PG 14 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 305EU UT WOS:000256161400013 PM 18482688 ER PT J AU Kharzeev, DE McLerran, LD Warringa, HJ AF Kharzeev, Dmitri E. McLerran, Lany D. Warringa, Harmen J. TI The effects of topological charge change in heavy ion collisions: "Event by event P and CP violation" SO NUCLEAR PHYSICS A LA English DT Review ID GLUON DISTRIBUTION-FUNCTIONS; WEINBERG-SALAM THEORY; PARITY ODD BUBBLES; HIGH-DENSITY QCD; GAUGE-THEORIES; BARYON-NUMBER; HIGH-ENERGY; HOT QCD; NUCLEAR COLLISIONS; FINITE TEMPERATURE AB Quantum chromodynamics (QCD) contains field configurations which can be characterized by a topological invariant, the winding number Q(w). Configurations with non-zero Qw break the charge-parity (CP) symmetry of QCD. We consider a novel mechanism by which these configurations can separate charge in the presence of a background magnetic field-the "chiral magnetic effect". We argue that sufficiently large magnetic fields are created in heavy ion collisions so that the chiral magnetic effect causes preferential emission of charged particles along the direction of angular momentum. Since separation of charge is CP-odd, any observation of the chiral magnetic effect could provide a clear demonstration of the topological nature of the QCD vacuum. We give an estimate of the effect and conclude that it might be observed experimentally. (c) 2008 Elsevier B.V. All rights reserved. C1 [Kharzeev, Dmitri E.; McLerran, Lany D.; Warringa, Harmen J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Lany D.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Warringa, HJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM warringa@quark.phy.bnl.gov NR 99 TC 656 Z9 666 U1 5 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 1 PY 2008 VL 803 IS 3-4 BP 227 EP 253 DI 10.1016/j.nuclphysa.2008.02.298 PG 27 WC Physics, Nuclear SC Physics GA 296EH UT WOS:000255525800005 ER PT J AU Densmore, JD Evans, TM Buksas, MW AF Densmore, Jeffery D. Evans, Thomas M. Buksas, Michael W. TI A hybrid transport-diffusion algorithm for Monte Carlo radiation-transport Simulations on adaptive-refinement meshes in XY geometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID MEAN FREE PATHS; TIME AB Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. If standard Monte Carlo is employed in such a regime, particle histories will consist of many small steps, a situation that results in a computationally inefficient calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, because DDMC is based on the diffusion approximation, it should yield accurate solutions if used judiciously. In this paper, we present a new DDMC method for linear, steady-state radiation transport on adaptive-refinement meshes in two-dimensional Cartesian geometry. Adaptive-refinement meshes are characterized by local refinement such that a spatial cell may have multiple neighboring cells across each face. We specifically examine the cases of (a) a regular mesh structure without refinement, (b) a refined mesh structure where neighboring cells differ in refinement, and (c) a boundary mesh structure representing the interface between a diffusive region (where DDMC is used) and a nondiffusive region (where standard Monte Carlo is employed). With numerical examples, we demonstrate that our new DDMC technique is accurate and can provide efficiency gains of two orders of magnitude over standard Monte Carlo. C1 [Densmore, Jeffery D.; Evans, Thomas M.; Buksas, Michael W.] Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. RP Densmore, JD (reprint author), Los Alamos Natl Lab, Computat Phys Grp, POB 1663,MS D409, Los Alamos, NM 87545 USA. EM jdd@lanl.gov NR 40 TC 4 Z9 4 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2008 VL 159 IS 1 BP 1 EP 22 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 287IP UT WOS:000254911100001 ER PT J AU Tovesson, F Hill, TS AF Tovesson, F. Hill, T. S. TI Subthreshold fission cross section of (NP)-N-237 SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NUCLEAR-DATA LIBRARY; NP-237; SCIENCE AB An experimental program has been developed at Los Alamos Neutron Science Center to precisely measure fission cross sections relevant to advanced nuclear reactor designs and transmutation concepts. The first completed measurement is of Np-237 (n,f), and the subthreshold part of the measurement is reported here. The JENDL-3.3 evaluation agrees well with the experimental results in the unresolved resonance region, where a discrepancy between the ENDF/B-VI and JENDL-3.3 evaluations exists. C1 [Tovesson, F.; Hill, T. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tovesson, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tovesson@lanl.gov NR 22 TC 12 Z9 12 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2008 VL 159 IS 1 BP 94 EP 101 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 287IP UT WOS:000254911100007 ER PT J AU Simpson, MF AF Simpson, Michael F. TI Introduction to the pyroprocessing special issue SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Idaho Natl Lab, Idaho Falls, ID USA. RP Simpson, MF (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. NR 0 TC 4 Z9 4 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 117 EP 117 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300001 ER PT J AU Vaden, D Li, SX Westphal, BR Davies, KB Johnson, TA Pace, DM AF Vaden, D. Li, S. X. Westphal, B. R. Davies, K. B. Johnson, T. A. Pace, D. M. TI Engineering-scale liquid cadmium cathode experiments SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE electrorefining; LCC; transuranic-recovery AB Recovery of uranium and transuranic (TRU) actinides from spent nuclear fuel by an electrorefining process was investigated as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative. Experiments were performed in a shielded hot cell at the Materials and Fuels Complex at Idaho National Laboratory. The goal of these experiments was to collect, by an electrochemical process, kilogram quantities of uranium and plutonium into what is called a liquid cadmium cathode (LCC). For each experiment, a steel basket loaded with chopped spent nuclear fuel from the Experimental Breeder Reactor H acted as the anode in the electrorefiner. The cathode was a beryllium oxide crucible containing similar to 26 kg of cadmium metal (the LCC). In the three experiments performed to date, between I and 2 kg of heavy metal was collected in the LCC after passing an integrated current between 1.80 and 2.16 MC (500 and 600 A h) from the anode to the cathode. Sample analysis of the processed LCC ingots measured detectable amounts of TRUs and rare earth elements. C1 [Vaden, D.; Li, S. X.; Westphal, B. R.; Davies, K. B.] Idaho Natl Lab, Pyroproc Technol, Idaho Falls, ID 83415 USA. [Johnson, T. A.] Idaho Natl Lab, Nucl Facil Engn Support, Idaho Falls, ID 83415 USA. [Pace, D. M.] Idaho Natl Lab, Human Factors & I&C Syst, Idaho Falls, ID 83415 USA. RP Vaden, D (reprint author), Idaho Natl Lab, Pyroproc Technol, Idaho Falls, ID 83415 USA. EM dee.vaden@inl.gov NR 6 TC 13 Z9 13 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 124 EP 128 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300003 ER PT J AU Li, SX AF Li, Shelly X. TI Experimental observations on the roles of the cadmium pool in the Mark-IV electrorefiner SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE pyrochemical processing; electrorefining spent nuclear fuel; high-temperature molten salt ID MOLTEN-SALTS; SYSTEM AB Idaho National Laboratory and Argonne National Laboratory have developed and demonstrated a pyroprocessing technology for the U.S. Department of Energy to reprocess spent nuclear fuel. One of the key steps in the pyroprocessing was electrorefining the spent fuel in a metal form in a molten LiCl-KCl-UCl3/liquid cadmium (Cd) system using the Mark-IV, an engineering-scale electrorefiner (ER). This paper summarizes experimental observations and engineering aspects for the roles of the Cd in electrorefining spent fuel in the Mark-IV ER. It was found that the Cd pool acted as an intermediate electrode during the electrorefining process. The Cd level gradually decreased because of its high vapor pressure at the ER operating temperature. The low Cd level caused the anode assembly to electrically short with the ER vessel hardware, which resulted in difficulty determining the endpoint of uranium dissolution from the anode baskets and reduced the current efficiency. A reflux Cd vapor trap successfully prevented the Cd level from decreasing and mitigated Cd vapor deposition on the cold metal surface inside the ER. C1 Idaho Natl Lab, Pyroproc Technol Dept, Idaho Falls, ID 83415 USA. RP Li, SX (reprint author), Idaho Natl Lab, Pyroproc Technol Dept, POB 1625, Idaho Falls, ID 83415 USA. EM shelly.li@inl.gov NR 21 TC 4 Z9 4 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 144 EP 152 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300006 ER PT J AU Westphal, BR Bateman, KJ Morgan, CD Berg, JF Crane, PJ Cummings, DG Giglio, JJ Huntley, MW Lind, RP Sell, DA AF Westphal, B. R. Bateman, K. J. Morgan, C. D. Berg, J. F. Crane, P. J. Cummings, D. G. Giglio, J. J. Huntley, M. W. Lind, R. P. Sell, D. A. TI Effect of process variables during the head-end treatment of spent oxide fuel SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE fission product removal; head-end treatment; LWR spent fuel AB The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. The effects of temperature, pressure, oxidative gas, and cladding have been studied with irradiated spent oxide fuel to determine the optimum conditions for process control. Experiments with temperatures ranging from 500 to 1250 degrees C have been performed on spentfuel using either air or oxygen gas for the oxidative reaction. Various flow rates and applications have been tested with the oxidative gases to discern the effects on the process. Tests have also been performed under vacuum conditions, following the oxidation cycle, at high temperatures to improve the removal of fission products. The effects of cladding on fission product removal have also been investigated with released fuel under vacuum and high-temperature conditions. Results from these experiments will be presented as well as operating conditions based on particle size and decladding characteristics. C1 [Westphal, B. R.; Bateman, K. J.; Morgan, C. D.; Berg, J. F.; Crane, P. J.; Cummings, D. G.; Giglio, J. J.; Huntley, M. W.; Lind, R. P.; Sell, D. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Westphal, BR (reprint author), Idaho Natl Lab, MS6180,POB 1625, Idaho Falls, ID 83415 USA. EM brian.westphal@inl.gov OI Giglio, Jeffrey/0000-0002-0877-927X NR 10 TC 9 Z9 9 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 153 EP 157 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300007 ER PT J AU Simpson, MF Herrmann, SD AF Simpson, Michael F. Herrmann, Steven D. TI Modeling the pyrochemical reduction of spent UO2 fuel in a pilot-scale reactor SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE oxide reduction; kinetics; pyroprocessing AB A kinetic model has been derived for the reduction of oxide spent nuclear fuel in a radial flow reactor. In this reaction, lithium dissolved in molten LiCl reacts with UO2 and fission product oxides to form a porous, metallic product. As the reaction proceeds, the depth of the porous layer around the exterior of each fuel particle increases. The observed rate of reaction has been found of to be dependent only upon the rate of diffusion of lithium across this layer, consistent with a classic shrinking core kinetic model. This shrinking core model has been extended to predict the behavior of a hypothetical, pilotscale reactor for oxide reduction. The design of the pilot-scale reactor includes forced flow through baskets that contain the fuel particles. The results of the modeling indicate that this is an essential feature in order to minimize the time needed to achieve full conversion of the fuel. C1 [Simpson, Michael F.; Herrmann, Steven D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Simpson, MF (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM michael.simpson@inl.gov NR 7 TC 9 Z9 9 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 179 EP 183 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300010 ER PT J AU Priebe, S Bateman, K AF Priebe, Stephen Bateman, Ken TI The ceramic waste form process at Idaho national laboratory SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE molten salt; ceramic waste; spent nuclear fuel treatment AB The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all of the transuranic metals and the majority of the fission products, remain in the salt as chlorides and are processed into the CWE The solidified salt is containerized and transferred to the CWF process, where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically fluidized dryer to similar to 0.1 wt% moisture and ground to a particle-size range of 45 to 250 Am. The salt and zeolite are mixed in a V-mixer and heated to 500 degrees C for similar to 18 h to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925 degrees C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation. This paper is intended to provide the current status of the CWF process, focusing on the adaptation to pressureless consolidation. Discussions include impacts of particle size on final waste form and the pressureless consolidation cycle. A model is presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF. C1 [Priebe, Stephen; Bateman, Ken] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Priebe, S (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM stephen.priebe@inl.gov NR 9 TC 9 Z9 9 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 199 EP 207 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300013 ER PT J AU Lee, JH Shim, JB Kim, EH Yoo, JH Park, SW Snyder, CT AF Lee, Jong-Hyeon Shim, Joon-Bo Kim, Eung-Ho Yoo, Jae-Hyung Park, Seong-Won Snyder, Christine T. TI A feasibility study for the development of alternative methods to treat a spent TRISO fuel SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Pyroprocessing Research Conference CY AUG 08-10, 2006 CL Idaho Natl Lab, Idaho Falls, ID HO Idaho Natl Lab DE TRISO; breaching; HTGR ID GRAPHITE; NANOTUBES AB The main objectives of a TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The reported technologies used to treat a spent TRISO fuel are almost identical, involving a final wet chemical process under which crushed TRISO fuel is processed to separate the coating layer fines from the kernel. Also, these processes are mainly powder processes with a secondary waste generation, and they require a corrosive solution as well as complex processing steps. Hence, two innovative processing concepts are proposed in this investigation; namely, a thermal shock and a pyrochemical process to breach the coating layers of the TRISO particle with a minimal amount of secondary waste. The preliminary results showed that the chemical vapor deposition (CVD) SiC layers, as pseudo coating layers of the TRISO fuel, exhibited very robust thermal shock behaviors even at 1300 degrees C of Delta T, but a cyclic thermal shock caused a drastic degradation of their hardness. Also, it was confirmed that the CVD SiC as well as the glassy carbon rod can be breached by a chemical reaction in a molten salt with Mg and Li, respectively. Therefore, the proposed technologies are found to be very promising for treating a spent TRISO fuel without a considerable generation of secondary wastes. C1 [Lee, Jong-Hyeon; Shim, Joon-Bo; Kim, Eung-Ho; Yoo, Jae-Hyung; Park, Seong-Won] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Snyder, Christine T.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Lee, JH (reprint author), Korea Atom Energy Res Inst, 150 Duckjin Dong, Taejon 305353, South Korea. EM jonglee@kaeri.re.kr NR 15 TC 3 Z9 3 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2008 VL 162 IS 2 BP 250 EP 258 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 295RJ UT WOS:000255491300018 ER PT J AU Tang, KH Niebuhr, M Tung, CS Chan, HC Chou, CC Tsai, MD AF Tang, Kuo-Hsiang Niebuhr, Marc Tung, Chang-Shung Chan, Hsiu-chien Chou, Chia-Cheng Tsai, Ming-Daw TI Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways SO NUCLEIC ACIDS RESEARCH LA English DT Article ID X-RAY-SCATTERING; INDUCED-FIT MECHANISM; CRYSTAL-STRUCTURE; BIOLOGICAL MACROMOLECULES; NUCLEOTIDE INCORPORATION; FIDELITY; BINDING; 2-AMINOPURINE; FLUORESCENCE; DIFFRACTION AB Understanding how DNA polymerases control fidelity requires elucidation of the mechanisms of matched and mismatched dNTP incorporations. Little is known about the latter because mismatched complexes do not crystallize readily. In this report, we employed small-angle X-ray scattering (SAXS) and structural modeling to probe the conformations of different intermediate states of mammalian DNA polymerase beta (Pol beta) in its wild-type and an error-prone variant, I260Q. Our structural results indicate that the mismatched ternary complex lies in-between the open and the closed forms, but more closely resembles the open form for WT and the closed form for I260Q. On the basis of molecular modeling, this over-stabilization of mismatched ternary complex of I260Q is likely caused by formation of a hydrogen bonding network between the side chains of Gln(260), Tyr(296), Glu(295) and Arg(258), freeing up Asp(192) to coordinate MgdNTP. These results argue against recent reports suggesting that mismatched dNTP incorporations follow a conformational path distinctly different from that of matched dNTP incorporation, or that its conformational closing is a major contributor to fidelity. C1 [Tang, Kuo-Hsiang; Tsai, Ming-Daw] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Tang, Kuo-Hsiang; Tsai, Ming-Daw] Ohio State Univ, Dept Biochem, Columbus, OH 43210 USA. [Tang, Kuo-Hsiang; Chan, Hsiu-chien; Chou, Chia-Cheng; Tsai, Ming-Daw] Acad Sinica, Genom Res Ctr, Taipei, Taiwan. [Niebuhr, Marc] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Tung, Chang-Shung] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chan, Hsiu-chien] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu, Taiwan. [Tsai, Ming-Daw] Acad Sinica, Inst Biol Chem, Taipei, Taiwan. RP Tsai, MD (reprint author), Ohio State Univ, Dept Chem, 120 W 18th Ave, Columbus, OH 43210 USA. EM jtang@chemistry.ohio-state.edu; tsai@chemistry.ohio-state.edu RI ID, BioCAT/D-2459-2012 FU NIGMS NIH HHS [GM43268, R01 GM043268] NR 40 TC 15 Z9 15 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAY PY 2008 VL 36 IS 9 BP 2948 EP 2957 DI 10.1093/nar/gkn138 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 305JB UT WOS:000256173200020 PM 18385153 ER PT J AU Kjornrattanawanich, B Windt, DL Seely, JF AF Kjornrattanawanich, Benjawan Windt, David L. Seely, John F. TI Normal-incidence silicon-gadolinium multilayers for imaging at 63 nm wavelength SO OPTICS LETTERS LA English DT Article AB Si/Gd multilayers designed as narrowband reflective coatings near 63 nm were developed. The highest peak reflectance of 26.2% at a 5 degrees incident angle was obtained at 62 nm, and the spectral bandwidth was 7.3 nm FWHM. The fits for x-ray and extreme ultraviolet reflectance data of Si/Gd multilayers indicate the possibility of silicide formation at the Si-Gd interfaces. B4C, W, and SiN were deposited as interface barrier layers to improve the reflectance of Si/Gd multilayers. More than an 8% increase in reflectance was observed from the interface-engineered Si/W/Gd and Si/B4C/Gd multilayers. (C) 2008 Optical Society of America. C1 [Kjornrattanawanich, Benjawan] Brookhaven Natl Lab, Univ Space Res Assoc, Upton, NY 11973 USA. [Seely, John F.] USN, Res Lab, Washington, DC 20375 USA. [Windt, David L.] Reflect Xray Opt, New York, NY 10027 USA. RP Kjornrattanawanich, B (reprint author), Brookhaven Natl Lab, Univ Space Res Assoc, Upton, NY 11973 USA. EM benjawan@bnl.gov NR 10 TC 11 Z9 11 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2008 VL 33 IS 9 BP 965 EP 967 DI 10.1364/OL.33.000965 PG 3 WC Optics SC Optics GA 305GU UT WOS:000256166900025 PM 18451954 ER PT J AU Barat, K AF Barat, Ken TI Caution: Beam crossing ahead SO PHOTONICS SPECTRA LA English DT Article C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Barat, K (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM kbarat@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD MAY PY 2008 VL 42 IS 5 BP 85 EP 85 PG 1 WC Optics SC Optics GA 300JN UT WOS:000255820200012 ER PT J AU Erdin, S AF Erdin, Serkan TI Ab initio studies of tetracyanoethylene-based organic magnets SO PHYSICA B-CONDENSED MATTER LA English DT Article DE organic magnets; electronic structure; density functional theory ID SPIN-DRIVEN RESISTANCE; CUBIC TETRACYANOETHYLENE; NEUTRON-DIFFRACTION; DENSITY; EXCHANGE; SEMICONDUCTOR; ENERGIES; COMPLEX; SYSTEMS AB We study electronic and geometric structures of a single tetracyanoethylene (TCNE) and metal-TCNE clusters that constitute a transition metal ion (Mn,V) and an organic molecule in the presence of solvent, CH2Cl2, via density functional theory (DFT) methods. For TCNE, the particular attention is given to its pi -> pi* transition, when the molecule is in -1 valence state. Electronic levels of the molecule obtained from DFT calculations are compared with those obtained from Huckel methods. In the case of metal-TCNE clusters, energetics of magnetic interaction between a metal ion and the organic molecule, electronic structure, onsite Coulomb energies and binding energies are calculated. (c) 2007 Elsevier B.V. All rights reserved. C1 [Erdin, Serkan] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Erdin, Serkan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Erdin, S (reprint author), Baylor Coll Med, Dept Mol & Human Genet, 1 Baylor Plaza, Houston, TX 77030 USA. EM serdin@bcm.tmc.edu RI Erdin, Serkan/B-4988-2008 OI Erdin, Serkan/0000-0001-6587-2625 NR 34 TC 3 Z9 3 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAY 1 PY 2008 VL 403 IS 10-11 BP 1964 EP 1970 DI 10.1016/j.physb.2007.11.006 PG 7 WC Physics, Condensed Matter SC Physics GA 292AI UT WOS:000255238300053 ER PT J AU Kolesnikov, AI Loong, CK de Souza, NR Burnham, C Moravsky, AP AF Kolesnikov, A. I. Loong, C. -K. de Souza, N. R. Burnham, Ct Moravsky, A. P. TI Anomalously soft dynamics of water in carbon nanotubes (vol 385, pg 272, 2006) SO PHYSICA B-CONDENSED MATTER LA English DT Correction C1 [Kolesnikov, A. I.; Loong, C. -K.; de Souza, N. R.] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Burnham, Ct] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Moravsky, A. P.] MER Corp, Tucson, AZ 85706 USA. RP Kolesnikov, AI (reprint author), Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. EM akolesnikov@anl.gov RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 1 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAY 1 PY 2008 VL 403 IS 10-11 BP 1973 EP 1973 DI 10.1016/j.physb.2007.09.082 PG 1 WC Physics, Condensed Matter SC Physics GA 292AI UT WOS:000255238300055 ER PT J AU Zhou, SY Siegel, DA Fedorov, AV Lanzara, A AF Zhou, S. Y. Siegel, D. A. Fedorov, A. V. Lanzara, A. TI Departure from the conical dispersion in epitaxial graphene SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT Symposium on Electron Transport in Low-Dimensional Carbon Structures/Science and Technology of Nanotubes and Nanowires CY MAY 28-JUN 01, 2007 CL Strasbourg, FRANCE SP E-MRS DE graphene; epitaxial graphene; graphene monolayer; gap; Dirac fermions; conical dispersion ID ELECTRONIC-STRUCTURE; INTERFACE FORMATION; DIRAC FERMIONS; GRAPHITE; SUBSTRATE; FILMS; GAS AB The pi bands of epitaxially grown graphene are studied by using high resolution angle resolved photoemission spectroscopy. Clear deviations front the conical dispersion expected for massless Dirac fermions and an anomalous increase of the scattering rate are observed in the vicinity of the Dirac point energy. Possible explanations for such anomalies are discussed in terms of many-body interactions and the opening of a gap. We present detailed experimental evidences in support of the gap scenario. This finding reveals a fundamental intrinsic property of epitaxial graphene and demonstrates the possibility of engineering the band gap in epitaxial graphene. Published by Elsevier B.V. C1 [Zhou, S. Y.; Siegel, D. A.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhou, S. Y.; Siegel, D. A.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhou, SY (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM szhou@lbl.gov RI Zhou, Shuyun/A-5750-2009 NR 34 TC 21 Z9 21 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 EI 1873-1759 J9 PHYSICA E JI Physica E PD MAY PY 2008 VL 40 IS 7 BP 2642 EP 2647 DI 10.1016/j.physe.2007.10.121 PG 6 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 319TH UT WOS:000257186500081 ER PT J AU Ager, JW Miller, N Jones, RE Yu, KM Wu, J Schaff, WJ Walukiewicz, W AF Ager, J. W., III Miller, N. Jones, R. E. Yu, K. M. Wu, J. Schaff, W. J. Walukiewicz, W. TI Mg-doped InN and InGaN - Photoluminescence, capacitance-voltage and thermopower measurements SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 7th International Conference on Nitride Semiconductors (ICNS-7) CY SEP 16-21, 2007 CL Las Vegas, NV SP Aixtron AG, Rohm & Hass Elect Mat LLC, Akzo Nobel High Pur Metalorgan, Cree Inc, IQE, Nitronex, RFMD, Seoul Semicond Co Ltd, Sony Corp, Toyoda Gosei Co Ltd, Kopin Corp, Mitsubishi Chem Corp, Nichia Corp, Taiyo Nippon Sanso Corp, Veeco Instruments, Air Prod & Chem, Osram Opto Semicond GmbH, SAFC Hitech ID PHASE-SEPARATION; SEMICONDUCTORS; SPECTROSCOPY; GAN AB The bandgap range of InGaN extends from the near-IR (InN, 0:65 eV) to the ultraviolet. To exploit this wide tuning range in light generation and conversion applications, pn junctions ate required. The large electron affinity of InN (5.8 eV) leads to preferential formation of native donor defects, resulting, in excess electron concentration in the bulk and at surfaces and interfaces. This creates difficulties for p-type doping and/or measuring of the bulk p-type activity. Capacitance-voltage measurements; which deplete the n-type surface inversion layer, have been used to show that Mg is an active acceptor in InN and InxGa1-xN for 0.2 < x < 1.0, i.e. over the entire composition range. Mg acceptors can be compensated by irradiation-induced native donors. Thermopower measurements were used to provide definitive evidence that Mg-doped InN has mobile holes between 200 K end 300 K. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 [Ager, J. W., III; Miller, N.; Jones, R. E.; Yu, K. M.; Wu, J.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Miller, N.; Jones, R. E.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Schaff, W. J.] Cornell Univ, Dept Elect Engn & Comp Sci, Ithaca, NY 14853 USA. RP Ager, JW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM JWAger@lbl.gov RI Wu, Junqiao/G-7840-2011; Yu, Kin Man/J-1399-2012; OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 NR 23 TC 43 Z9 43 U1 1 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2008 VL 245 IS 5 BP 873 EP 877 DI 10.1002/pssb.200778731 PG 5 WC Physics, Condensed Matter SC Physics GA 306IU UT WOS:000256242300019 ER PT J AU Barabash, RI Ice, GE Haskell, BA Nakamura, S Speck, JS Liu, W AF Barabash, R. I. Ice, G. E. Haskell, B. A. Nakamura, Shuji Speck, J. S. Liu, W. TI White X-ray microdiffraction analysis of defects, strain and tilts in a free standing GaN film SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 7th International Conference on Nitride Semiconductors (ICNS-7) CY SEP 16-21, 2007 CL Las Vegas, NV SP Aixtron AG, Rohm & Hass Elect Mat LLC, Akzo Nobel High Pur Metalorgan, Cree Inc, IQE, Nitronex, RFMD, Seoul Semicond Co Ltd, Sony Corp, Toyoda Gosei Co Ltd, Kopin Corp, Mitsubishi Chem Corp, Nichia Corp, Taiyo Nippon Sanso Corp, Veeco Instruments, Air Prod & Chem, Osram Opto Semicond GmbH, SAFC Hitech ID LATERAL EPITAXIAL OVERGROWTH; CRYSTALLOGRAPHIC TILT; CANTILEVER EPITAXY; PLANE GAN; WING TILT; MICROSCOPY; LAYERS AB A novel white-beam microdifraction analysis of defects, strains and tilts in a free standing m-plane GaN film grown via hydride vapor phase epitaxy is presented. It is shown that misfit dislocations are grouped within cell boundaries creating local lattice rotations (tilts) between the growing cells. Distribution of lattice rotations in the film is not homogenous. Regious of large rotations are seperated by low rotations regions. The dominating rotation axis is parallel [11 (2) over bar0] direction. High in plane shear stress component is observed along [0001]. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 [Barabash, R. I.; Ice, G. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Haskell, B. A.; Nakamura, Shuji; Speck, J. S.] Univ Calif Santa Barbara, Coll Engn, Dept Mat, Santa Barbara, CA 93106 USA. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Speck, James/H-5646-2011 NR 14 TC 2 Z9 2 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2008 VL 245 IS 5 BP 899 EP 902 DI 10.1002/pssb.200778579 PG 4 WC Physics, Condensed Matter SC Physics GA 306IU UT WOS:000256242300027 ER PT J AU Hawkridge, M Cherns, D Liliental-Weber, Z AF Hawkridge, M. Cherns, D. Liliental-Weber, Z. TI Electron irradiation and the equilibrium of open core dislocations in gallium nitride SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 7th International Conference on Nitride Semiconductors (ICNS-7) CY SEP 16-21, 2007 CL Las Vegas, NV SP Aixtron AG, Rohm & Hass Elect Mat LLC, Akzo Nobel High Pur Metalorgan, Cree Inc, IQE, Nitronex, RFMD, Seoul Semicond Co Ltd, Sony Corp, Toyoda Gosei Co Ltd, Kopin Corp, Mitsubishi Chem Corp, Nichia Corp, Taiyo Nippon Sanso Corp, Veeco Instruments, Air Prod & Chem, Osram Opto Semicond GmbH, SAFC Hitech ID SELF-DIFFUSION; GAN AB Under electron irradiation, nanopipes in GaN are found to evolve into the so-called bamboo structure and eventually into a chain of voids [Pailloux et al., Appl. Phys. Lett. 86, 131908 (2005)]. Here, the driving mechanism for this morphological evolution is examined using transmission and scanning transmission electron microscopy studies. of undoped GaN grown by hydride vapor phase epitaxy. Irradiation at varying beats energies shows that morphological evolution occurs below the threshold for direct knock-on damage; and that voids migrate towards the beam. It is proposed that these observations can be . explained by the stimulated diffusion of point defects. In areas relatively unexposed to electrons, a survey of core character diameter and depth into the layer suggests that a similar process occurs by post-growth annealing, i.e. due to point defects mobile at the growth temperature. The implications of these results for understanding dislocation core structures are assessed. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 [Hawkridge, M.; Liliental-Weber, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cherns, D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. RP Hawkridge, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd MS 62R0209, Berkeley, CA 94720 USA. EM mehawkridge@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012 NR 8 TC 0 Z9 0 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2008 VL 245 IS 5 BP 903 EP 906 DI 10.1002/pssb.200778610 PG 4 WC Physics, Condensed Matter SC Physics GA 306IU UT WOS:000256242300028 ER PT J AU Boixo, S Somma, RD AF Boixo, Sergio Somma, Rolando D. TI Parameter estimation with mixed-state quantum computation SO PHYSICAL REVIEW A LA English DT Article ID INFORMATION; LIMIT AB We present a quantum algorithm to estimate parameters at the quantum metrology limit using deterministic quantum computation with one bit. When the interactions occurring in a quantum system are described by a Hamiltonian H=theta H(0), we estimate theta by zooming in on previous estimations and by implementing an adaptive Bayesian procedure. The final result of the algorithm is an updated estimation of 0 whose variance has been decreased in proportion to the time of evolution under H. For the problem of estimating several parameters, we implement dynamical-decoupling techniques and use the results of single parameter estimation. The cases of discrete-time evolution and reference frame alignment are also studied within the adaptive approach. C1 [Boixo, Sergio; Somma, Rolando D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Boixo, Sergio] Univ New Mexico, Albuquerque, NM 87131 USA. RP Boixo, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM boixo@unm.edu; somma@lanl.gov NR 37 TC 18 Z9 18 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2008 VL 77 IS 5 AR 052320 DI 10.1103/PhysRevA.77.052320 PN A PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 317MI UT WOS:000257023900058 ER PT J AU Cheng, KT Chen, MH Johnson, WR AF Cheng, K. T. Chen, M. H. Johnson, W. R. TI Hyperfine quenching of the 2s2p (3)p(0) state of berylliumlike ions SO PHYSICAL REVIEW A LA English DT Article ID HELIUM-LIKE IONS; 2S(1/2)-2P(3/2) LEVELS; OSCILLATOR-STRENGTHS; LAMB SHIFT; ATOMS; LIFETIMES; TRANSITIONS; SEQUENCE; LEVEL; REAL AB The hyperfine-induced 2s2p P-3(0)-2s(2) S-1(0) transition rate for Be-like Ti-47(18+) was recently measured in a storage-ring experiment by Schippers et at. [Phys. Rev. Lett. 98, 033001 (2007)]. The measured value of 0.56(3) s(-1) is almost 60% larger than the theoretical value of 0.356 s(-1) from a multiconfiguration Dirac-Fock calculation by Marques et al. [Phys. Rev. A 47, 929 (1993)]. In this work, we use a large-scale relativistic configuration-interaction method to calculate these hyperfine-induced rates for ions with Z=6-92. Coherent hyperfine-quenching effects between the 2s2p P-1,3(1) states are included in a perturbative as well as a radiation damping approach. Contrary to the claims of Marques et al., contributions from the I P, state are substantial and lead to a hyperfine-induced rate of 0.67 s(-1), in better agreement with, though larger than, the measured value. C1 [Cheng, K. T.; Chen, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Johnson, W. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Cheng, KT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ktcheng@llnl.gov; chen7@llnl.gov; johnson@nd.edu NR 36 TC 52 Z9 53 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2008 VL 77 IS 5 AR 052504 DI 10.1103/PhysRevA.77.052504 PN A PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 317MI UT WOS:000257023900076 ER PT J AU Rohringer, N Santra, R AF Rohringer, Nina Santra, Robin TI Resonant Auger effect at high x-ray intensity (vol 77, art no 053404, 2008) SO PHYSICAL REVIEW A LA English DT Correction C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Rohringer, N (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Rohringer, Nina/B-8030-2012; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014 OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567 NR 1 TC 1 Z9 1 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2008 VL 77 IS 5 AR 059903(E) DI 10.1103/PhysRevA.77.059903 PN B PG 1 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 317MK UT WOS:000257024100075 ER PT J AU Rohringer, N Santra, R AF Rohringer, Nina Santra, Robin TI Resonant Auger effect at high x-ray intensity SO PHYSICAL REVIEW A LA English DT Article ID FREE-ELECTRON LASERS; DECAY; SPECTRA; NE; PULSES; PHOTOEXCITATION; EMISSION; STATE; RAMAN AB The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s -> 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient (similar to 10(18) W/cm(2)) to induce Rabi oscillations between the neon ground state and the is 1s(-1)3p ((1)P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission., Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties. C1 [Rohringer, Nina; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Rohringer, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Rohringer, Nina/B-8030-2012; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014 OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567 NR 43 TC 52 Z9 52 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2008 VL 77 IS 5 AR 053404 DI 10.1103/PhysRevA.77.053404 PN B PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 317MK UT WOS:000257024100007 ER PT J AU Ryu, S Cai, W Caro, A AF Ryu, Seunghwa Cai, Wei Caro, Alfredo TI Quantum entanglement of formation between qudits SO PHYSICAL REVIEW A LA English DT Article ID SEPARABILITY CRITERION; STATES; MATRICES; VOLUME; SET AB We develop a fast algorithm to calculate the entanglement of formation of a mixed state, which is defined as the minimum average entanglement of the pure states that form the mixed state. The algorithm combines conjugat-gradient and steepest-descent algorithms and outperforms both. Using this new algorithm, we obtain the statistics of the entanglement of formation on ensembles of random density matrices of higher dimensions than possible before. The correlation between the entanglement of formation and other quantities that are easier to compute, such as participation ratio and negativity are presented. Our results suggest a higher percentage of zero-entanglement states among zero-negativity states than previously reported. C1 [Ryu, Seunghwa] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Caro, Alfredo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ryu, S (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Ryu, Seunghwa/B-9155-2011; OI Ryu, Seunghwa/0000-0001-9516-5809; Cai, Wei/0000-0001-5919-8734 NR 17 TC 10 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2008 VL 77 IS 5 AR 052312 DI 10.1103/PhysRevA.77.052312 PN A PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 317MI UT WOS:000257023900050 ER PT J AU Belkin, A Novosad, V Iavarone, M Pearson, J Karapetrov, G AF Belkin, A. Novosad, V. Iavarone, M. Pearson, J. Karapetrov, G. TI Superconductor/ferromagnet bilayers: Influence of magnetic domain structure on vortex dynamics SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING FILMS; FERROMAGNET; LATTICES; DEFECTS; HYBRIDS; ARRAY AB We study the magnetically coupled superconductor-ferromagnet bilayers comprised of a ferromagnet with a rotatable periodic stripelike magnetic domain structure with alternating out-of-plane component of magnetization and a MoGe superconductor. We demonstrate a prominent difference in critical current density between cases when magnetic domain stripes are oriented parallel and perpendicular to the superconducting current. The bilayer exhibits pronounced commensurability features that are related to the matching periodicities of the Abrikosov vortex lattice and the magnetic stripe domains. C1 [Belkin, A.; Novosad, V.; Iavarone, M.; Pearson, J.; Karapetrov, G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Belkin, A.] IIT, Div Phys, Chicago, IL 60616 USA. RP Belkin, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM goran@anl.gov RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 NR 22 TC 28 Z9 28 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 180506 DI 10.1103/PhysRevB.77.180506 PG 4 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300016 ER PT J AU Boukhvalov, DW Vergara, LI Dobrovitski, VV Katsnelson, M Lichtenstein, AI Kogerler, P Musfeldt, JL Harmon, BN AF Boukhvalov, D. W. Vergara, L. I. Dobrovitski, V. V. Katsnelson, M. Lichtenstein, A. I. Koegerler, P. Musfeldt, J. L. Harmon, B. N. TI Correlation effects in the electronic structure of the Mn(4) molecular magnet SO PHYSICAL REVIEW B LA English DT Article ID BAND THEORY; SINGLE; MAGNETIZATION; SPECTROSCOPY; NANOMAGNETS; SYSTEM; BR AB We present joint theoretical-experimental study of correlation effects in the electronic structure of (pyH)(3)[Mn(4)O(3)Cl(7)(OAC)(3)]center dot 2MeCN molecular magnet (Mn(4)). Describing the many-body effects by cluster dynamical mean-field theory, we find that Mn(4) is predominantly a Hubbard insulator with strong electron correlations. The calculated electron gap (1.8 eV) agrees well with the results of optical conductivity measurements, while other methods, which neglect many-body effects or treat them in a simplified manner, do not provide such an agreement. Strong electron correlations in Mn(4) may have important implications for possible future applications. C1 [Boukhvalov, D. W.; Katsnelson, M.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. [Boukhvalov, D. W.] Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. [Vergara, L. I.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Dobrovitski, V. V.; Koegerler, P.; Harmon, B. N.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Lichtenstein, A. I.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Koegerler, P.] Univ Aachen, Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. RP Boukhvalov, DW (reprint author), Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. RI Katsnelson, Mikhail/D-4359-2012; Kogerler, Paul/H-5866-2013; Lichtenstein, Alexander/K-8730-2012 OI Kogerler, Paul/0000-0001-7831-3953; Lichtenstein, Alexander/0000-0003-0152-7122 NR 53 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 180402 DI 10.1103/PhysRevB.77.180402 PG 4 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300005 ER PT J AU Cadden-Zimansky, P Bazaliy, YB Litvak, LM Jiang, JS Pearson, J Gu, JY You, CY Beasley, MR Bader, SD AF Cadden-Zimansky, P. Bazaliy, Ya. B. Litvak, L. M. Jiang, J. S. Pearson, J. Gu, J. Y. You, Chun-Yeol Beasley, M. R. Bader, S. D. TI Asymmetric ferromagnet-superconductor-ferromagnet switch SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-TEMPERATURE; MAGNETIZATION; TRILAYERS; BILAYERS; ALLOYS AB In layered ferromagnet-superconductor-ferromagnet (F(1)/S/F(2)) structures, the critical temperature T(c) of the superconductors depends on the magnetic orientation of the ferromagnetic layers F(1) and F(2) relative to each other. So far, the experimentally observed magnitude of change in T(c) for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F(1) and F(2) are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T(c) changes, it may only be possible to detect in structures with thinner ferromagnetic layers. C1 [Cadden-Zimansky, P.; Jiang, J. S.; Pearson, J.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Cadden-Zimansky, P.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Bazaliy, Ya. B.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Bazaliy, Ya. B.] Natl Acad Sci Ukraine, Inst Magnetism, UA-03124 Kiev, Ukraine. [Litvak, L. M.; Beasley, M. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Gu, J. Y.] Calif State Univ Long Beach, Dept Phys & Astron, Long Beach, CA 90840 USA. [You, Chun-Yeol] Inha Univ, Dept Phys, Inchon 402751, South Korea. RP Cadden-Zimansky, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI You, Chun-Yeol/B-1734-2010; Bader, Samuel/A-2995-2013 OI You, Chun-Yeol/0000-0001-9549-8611; NR 36 TC 13 Z9 13 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184501 DI 10.1103/PhysRevB.77.184501 PG 11 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300082 ER PT J AU Collins, BA Chu, YS He, L Zhong, Y Tsui, F AF Collins, B. A. Chu, Y. S. He, L. Zhong, Y. Tsui, F. TI Dopant stability and strain states in Co and Mn-doped Ge (001) epitaxial films SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE FERROMAGNETISM; GE 001; GROWTH; SEMICONDUCTORS AB Systematic investigation of structural, chemical, and magnetic properties of Co and Mn-doped Ge (001) as a function of doping concentration reveals that codoping with Co can dramatically reduce phase separation and diffusion of Mn within the Ge lattice while it magnetically complements Mn. The measured strain states indicate the critical role played by substitutional Co with its strong tendency to dimerize with interstitial Mn. Selecting appropriate codopants that form energetically stable dimers in a semiconductor host is shown to be a viable approach, thus demonstrating the feasibility for engineering stable doped magnetic semiconductors. C1 [Collins, B. A.; He, L.; Tsui, F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Chu, Y. S.; Zhong, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tsui, F (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. EM ftsui@physics.unc.edu RI He, Liang/E-5935-2012; Collins, Brian/M-5182-2013 OI Collins, Brian/0000-0003-2047-8418 NR 21 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 193301 DI 10.1103/PhysRevB.77.193301 PG 4 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600016 ER PT J AU Fransson, J AF Fransson, Jonas TI Subnanosecond switching of local spin-exchange coupled to ferromagnets SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS; DRIVEN; FIELD AB The dynamics of a single spin that is embedded in a tunnel junction between ferromagnetic contacts is strongly affected by the exchange coupling to the tunneling electrons, By using time-dependent equations of motion for the spin, which is under the influence of a spin-polarized tunneling current, it is shown that the magnetic field induced by bias voltage pulses allows for a subnanosecond switching of the local spin and the possibility of spin reversal is illustrated. Furthermore, it is shown that the time evolution of the Larmor frequency sharply peaks around the spin-flip event and it is argued that this feature can be used as an indicator for the spin flip. C1 [Fransson, Jonas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fransson, Jonas] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Fransson, Jonas] Uppsala Univ, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden. RP Fransson, J (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM jonas.fransson@fysik.uu.se RI Fransson, Jonas/A-9238-2009 NR 26 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 205316 DI 10.1103/PhysRevB.77.205316 PG 5 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800072 ER PT J AU Gorelik, LY Kulinich, SI Shekhter, RI Jonson, M Vinokur, VM AF Gorelik, L. Y. Kulinich, S. I. Shekhter, R. I. Jonson, M. Vinokur, V. M. TI Giant shot noise due to mechanical transportation of spin-polarized electrons SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-DOT; BLOCKADE AB We show that single-electron "shuttling" of electrons in a magnetic nanoelectromechanical single-electron transistor device can be an efficient tool for studying electron spin-flip relaxation on quantum dots. The reason is traced to a spin blockade of the mechanically aided shuttle current that occurs in devices with highly polarized and collinearly magnetized leads. This results in giant peaks in the shot-noise spectral function, wherein the peak heights are only limited by the rate of electronic spin flips. Therefore, we show that nanomechanical spectroscopy of the spin-flip rate is possible, allowing spin-flip relaxation times as long as 10 mu s to be detected. C1 [Gorelik, L. Y.; Kulinich, S. I.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Kulinich, S. I.; Shekhter, R. I.; Jonson, M.] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Kulinich, S. I.] BI Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. [Jonson, M.] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gorelik, LY (reprint author), Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. EM goreik@fy.chalmers.se RI Jonson, Mats/D-6545-2011 NR 17 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174304 DI 10.1103/PhysRevB.77.174304 PG 5 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800053 ER PT J AU Guo, HZ Burgess, J Ada, E Street, S Gupta, A Iliev, MN Kellock, AJ Magen, C Varela, M Pennycook, SJ AF Guo, H. Z. Burgess, J. Ada, E. Street, S. Gupta, A. Iliev, M. N. Kellock, A. J. Magen, C. Varela, M. Pennycook, S. J. TI Influence of defects on structural and magnetic properties of multifunctional La2NiMnO6 thin films SO PHYSICAL REVIEW B LA English DT Article ID X-RAY; SPECTROSCOPY; PEROVSKITES; POLARIZATION; CAMNO2.5; NI; CO AB Thin films of the double perovskite La2NiMnO6 (LNMO) have been grown on various lattice-matched substrates (SrTiO3, LaAlO3, NdGaO3, and MgO) by pulsed laser deposition under different oxygen background pressure (25-800 mTorr) conditions. The out-of-plane lattice constant of the LNMO film decreases with increasing pressure, which is likely caused by reduction in the defect concentration and improved structural ordering, before leveling off at higher oxygen concentrations. The scanning transmission electron microscopy results confirm that the films are epitaxial, and the interface is sharp and coherent. While few defects are observed in a film grown at a high oxygen pressure (800 mTorr), a film grown at a lower pressure (100 mTorr) clearly shows the formation of defects that extend throughout the thickness except for a very thin layer near the interface. The Raman spectra of the films are dominated by two broad peaks at around 540 and 685 cm(-1), which are assigned to the antisymmetric stretching and symmetric stretching modes of MnO6 and NiO6 octahedra, respectively. The Raman peaks of the LNMO thin films grown in the 800 mTorr background O-2 are blueshifted in comparison to those of bulk LNMO, and the shift increases with decreasing film thickness, indicating the increased influence of strain. The critical thickness for strain relaxation, as determined from the Raman spectra, is between 40 and 80 nm. However, the strain is observed to have negligible influence on the magnetic properties of films grown at high oxygen pressures. In contrast, films grown at low pressures exhibit degraded magnetic properties, which can be attributed to a combination of increased B-site cation disorder and the concentration of Mn3+ and Ni3+ Jahn-Teller ions caused by oxygen or cation related defects. With increasing oxygen pressure during growth, the paramagnetic-ferromagnetic transition temperature (similar to 280 K) becomes sharper and the saturation magnetization at low temperatures is enhanced. Based on the electron energy loss spectroscopy studies, the Mn and Ni ions in LNMO thin films are determined to be mixed-valent Mn3+/Mn4+, and charge transition disproportionation of the Mn4++Ni2+-> Mn3++Ni3+ type likely occurs with increasing oxygen deficiency. C1 [Guo, H. Z.; Burgess, J.; Ada, E.; Street, S.; Gupta, A.] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Guo, H. Z.; Burgess, J.; Ada, E.; Street, S.; Gupta, A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Iliev, M. N.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Iliev, M. N.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Kellock, A. J.] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. [Magen, C.; Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Guo, HZ (reprint author), Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. EM agupta@mint.ua.edu RI Guo, Haizhong/C-9817-2011; Varela, Maria/H-2648-2012; Magen, Cesar/A-2825-2013; Varela, Maria/E-2472-2014; ILIEV, MILKO/A-5941-2008 OI Varela, Maria/0000-0002-6582-7004; ILIEV, MILKO/0000-0002-9685-542X NR 37 TC 47 Z9 47 U1 3 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174423 DI 10.1103/PhysRevB.77.174423 PG 11 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800077 ER PT J AU Harrison, MJ McGregor, DS Doty, FP AF Harrison, M. J. McGregor, D. S. Doty, F. P. TI Fano factor and nonuniformities affecting charge transport in semiconductors SO PHYSICAL REVIEW B LA English DT Article ID GE RADIATION DETECTORS; PAIR CREATION ENERGY; EPITAXIAL N-GAAS; HOT CARRIERS; X-RAYS; SILICON; GERMANIUM; DEPENDENCE; RESOLUTION; RANGE AB The Fano factor is a measure of the variance in the number of charge carriers produced in materials by ionizing radiation interactions, which determines the ultimate energy resolution achievable by a semiconductor spectrometer. Similar to charge production, charge transport in semiconductors suffers variation due to material nonuniformities. A reanalysis of published data illustrates that the variance in electron drift length, which is typically neglected in the estimation of the Fano factor, is significant for CdZnTe. In fact, at low electric fields, signal variance due to inhomogeneous charge transport can dominate. Our analysis shows that the standard deviation in the electron drift length is on the order of hundreds of microns for the published data. C1 [Harrison, M. J.; McGregor, D. S.] Kansas State Univ, Manhattan, KS 66502 USA. [Doty, F. P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Harrison, MJ (reprint author), Kansas State Univ, Manhattan, KS 66502 USA. NR 31 TC 2 Z9 2 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195207 DI 10.1103/PhysRevB.77.195207 PG 5 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600073 ER PT J AU Hauet, T Gunther, CM Pfau, B Schabes, ME Thiele, JU Rick, RL Fischer, P Eisebitt, S Hellwig, O AF Hauet, T. Guenther, C. M. Pfau, B. Schabes, M. E. Thiele, J. -U. Rick, R. L. Fischer, P. Eisebitt, S. Hellwig, O. TI Direct observation of field and temperature induced domain replication in dipolar coupled perpendicular anisotropy films SO PHYSICAL REVIEW B LA English DT Article ID X-RAY MICROSCOPY AB Dipolar interactions in a soft/Pd/hard [CoNi/Pd](30)/Pd/[Co/Pd](20) multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated. C1 [Hauet, T.; Schabes, M. E.; Thiele, J. -U.; Hellwig, O.] Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. [Guenther, C. M.; Pfau, B.; Eisebitt, S.] BESSY mbH, D-12489 Berlin, Germany. [Rick, R. L.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Rick, R. L.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Fischer, P.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Hauet, T (reprint author), Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012; Pfau, Bastian/B-4953-2014; OI Fischer, Peter/0000-0002-9824-9343; Pfau, Bastian/0000-0001-9057-0346; Gunther, Christian Michael/0000-0002-3750-7556 NR 15 TC 31 Z9 31 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184421 DI 10.1103/PhysRevB.77.184421 PG 4 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300069 ER PT J AU Hillyard, PB Reis, DA Gaffney, KJ AF Hillyard, P. B. Reis, D. A. Gaffney, K. J. TI Carrier-induced disordering dynamics in InSb studied with density functional perturbation theory SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; INDUCED PHASE-TRANSITION; ELECTRON-HOLE PLASMA; LATTICE INSTABILITY; LASER-PULSES; GAAS; SILICON; SI; SEMICONDUCTORS; SCATTERING AB Density functional perturbation theory calculations have been utilized to characterize the carrier density dependent phonon dispersion of InSb. Similar to prior theoretical studies of Si, these calculations predict that a shear instability develops in the crystal at a carrier density of 3.7% of the valence electron density and the entire transverse acoustic phonon branch becomes unstable over a narrow carrier density range of roughly 1%. Unlike calculations for Si, the shear instability appears first at the X point, rather than the L point. We utilize these calculations to interpret recent ultrafast x-ray diffraction measurements of laser-induced disordering in InSb and find that the time scale and laser fluence dependence of the measured disordering dynamics are consistent with these theoretical predictions. The calculations, however, do not reproduce the experimental anisotropy in the root-mean-square displacement. C1 [Hillyard, P. B.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hillyard, P. B.; Reis, D. A.; Gaffney, K. J.] Stanford Univ, PULSE Ctr, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. Univ Michigan, FOCUS Ctr, Dept Phys, Ann Arbor, MI 48109 USA. [Reis, D. A.] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA. RP Hillyard, PB (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM kgaffney@slac.stanford.edu NR 61 TC 12 Z9 12 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195213 DI 10.1103/PhysRevB.77.195213 PG 9 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600079 ER PT J AU Holst, B Redmer, R Desjarlais, MP AF Holst, Bastian Redmer, Ronald Desjarlais, Michael P. TI Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article ID EQUATION-OF-STATE; SHOCKED LIQUID DEUTERIUM; FLUID VARIATIONAL THEORY; GPA 1.4 MBAR; PRESSURE DISSOCIATION; BRILLOUIN-ZONE; METALLIC FLUID; GIANT PLANETS; PLASMA; TRANSITION AB We study the thermophysical properties of warm dense hydrogen by using quantum molecular dynamics simulations. Results are presented for the pair distribution functions, the equation of state, and the Hugoniot curve. From the dynamic conductivity, we derive the dc electrical conductivity and the reflectivity. We compare with available experimental data and predictions of the chemical picture. In particular, we discuss the nonmetal-to-metal transition, which occurs at about 40 GPa in the dense fluid. C1 [Holst, Bastian; Redmer, Ronald] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Desjarlais, Michael P.] Sandia Natl Labs, Pulsed Power Sci Ctr, Albuquerque, NM 87185 USA. RP Holst, B (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RI Holst, Bastian/D-2217-2011; Redmer, Ronald/F-3046-2013 OI Holst, Bastian/0000-0002-2369-3730; NR 68 TC 127 Z9 129 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184201 DI 10.1103/PhysRevB.77.184201 PG 7 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300042 ER PT J AU Hu, XH Cao, JR Li, M Ye, Z Miyawaki, M Ho, KM AF Hu, Xinhua Cao, Jiangrong Li, Ming Ye, Zhuo Miyawaki, Mamoru Ho, Kai-Ming TI Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution SO PHYSICAL REVIEW B LA English DT Article ID SPONTANEOUS EMISSION; NANOCAVITY; LIGHT; AMPLIFICATION; LOCALIZATION; SYSTEM; MEDIA AB We derive a light-intensity-dependent dielectric constant for a gain medium based on the conventional rate equation model. A scattering-matrix method in conjunction with an efficient iteration procedure is proposed to simulate photonic crystal lasers (PCLs). The light output vs pumping (L-I) curve, lasing mode profile, and chirping effect of the lasing wavelength XL can be calculated. We check our method in a one dimensional distributed Bragg reflector laser and simulate a complex three dimensional woodpile PCL to test the capabilities of our model. We found that PCLs with a more uniform field distribution in the gain media will have higher L-I slope efficiencies as well as more stable lasing wavelengths lambda(L). C1 [Hu, Xinhua; Li, Ming; Ye, Zhuo; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Hu, Xinhua; Li, Ming; Ye, Zhuo; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Cao, Jiangrong; Miyawaki, Mamoru] Canon Dev Amer Inc, Irvine, CA 92618 USA. RP Hu, XH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM xhhu@iastate.edu RI Cao, Jiangrong/A-4725-2008; Hu, Xinhua/A-5930-2010; Ye, Zhuo/H-4027-2011; OI Hu, Xinhua/0000-0003-3153-7612; Ye, Zhuo/0000-0002-8958-5740 NR 34 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 205104 DI 10.1103/PhysRevB.77.205104 PG 6 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800021 ER PT J AU Hu, XH Ho, KM Chan, CT Zi, J AF Hu, Xinhua Ho, Kai-Ming Chan, C. T. Zi, Jian TI Homogenization of acoustic metamaterials of Helmholtz resonators in fluid SO PHYSICAL REVIEW B LA English DT Article ID SCATTERING AB By using a two-step homogenization approach, we derive analytical formulas of effective mass density rho(e) and effective bulk modulus B(e) for two- and three-dimensional acoustic metamaterials of Helmholtz resonators (HRs) in fluid. A negative B(e) is found at certain frequencies due to the monopolar resonance, leading to a low-frequency acoustic band gap. A unified picture is presented for metamaterials of HRs and three-component metamaterials of negative rho(e). Our work supports recent observations in a one-dimensional array of HRs [N. Fang et al., Nat. Mater. 5, 452 (2006)] and presents important high-dimensional extensions for exploring more fascinating phenomena. C1 [Hu, Xinhua; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Hu, Xinhua; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chan, C. T.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Zi, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Zi, Jian] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. RP Hu, XH (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM xhhu@iastate.edu RI Hu, Xinhua/A-5930-2010; Zi, Jian/B-5102-2009 OI Hu, Xinhua/0000-0003-3153-7612; NR 27 TC 48 Z9 48 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 172301 DI 10.1103/PhysRevB.77.172301 PG 4 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800006 ER PT J AU Huda, MN Yan, YF Moon, CY Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Moon, Chang-Yoon Wei, Su-Huai Al-Jassim, Mowafak M. TI Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO(3) SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; TUNGSTEN-OXIDE; 1ST-PRINCIPLES CALCULATIONS; DOPED WO3; BASIS-SET; WATER; METALS; FILMS; SEMICONDUCTORS AB The effects of impurities in room-temperature monoclinic WO(3) were studied by using the local density approximation to density-functional theory. Our main focus is on nitrogen impurity in WO(3), where both substitutional and interstitial cases were considered. We have also considered transition-metal atom impurities and some codoping approaches in WO(3). We find that, in general, band gap reduction was a common result due to the formation of impurity bands in the band gap. Also, the changes of band-edge positions, valence-band maxima and conduction-band minima, were found to depend on the electronic properties of the foreign atom and their concentration. Our results therefore provide guidance for making WO(3) a suitable candidate for photoelectrodes for hydrogen generation by water splitting. C1 [Huda, Muhammad N.; Yan, Yanfa; Moon, Chang-Yoon; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM muhammad_huda@nrel.gov RI Huda, Muhammad/C-1193-2008 OI Huda, Muhammad/0000-0002-2655-498X NR 38 TC 59 Z9 59 U1 2 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195102 DI 10.1103/PhysRevB.77.195102 PG 13 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600038 ER PT J AU Jaramillo, R Feng, YJ Lang, JC Islam, Z Srajer, G Ronnow, HM Littlewood, PB Rosenbaum, TF AF Jaramillo, R. Feng, Yejun Lang, J. C. Islam, Z. Srajer, G. Ronnow, H. M. Littlewood, P. B. Rosenbaum, T. F. TI Chromium at high pressures: Weak coupling and strong fluctuations in an itinerant antiferromagnet SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY-WAVE; QUANTUM CRITICAL-POINT; DILUTE CRV ALLOYS; X-RAY-SCATTERING; MAGNETIC EXCITATIONS; NEEL TRANSITION; CONCENTRATION-DEPENDENCE; TEMPERATURE-DEPENDENCE; NEUTRON DIFFRACTION; THERMAL-EXPANSION AB The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are directly measured with nonresonant x-ray diffraction as the system is driven toward its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly coupled BCS-type ground state. Evidence for the coexistence of this weakly coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling. C1 [Jaramillo, R.; Feng, Yejun; Rosenbaum, T. F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Jaramillo, R.; Feng, Yejun; Rosenbaum, T. F.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Feng, Yejun; Lang, J. C.; Islam, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ronnow, H. M.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Jaramillo, R (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tfr@uchicago.edu RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; Feng, Yejun/A-5417-2009; Ronnow, Henrik/A-4953-2009 OI Feng, Yejun/0000-0003-3667-056X; Ronnow, Henrik/0000-0002-8832-8865 NR 67 TC 16 Z9 16 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184418 DI 10.1103/PhysRevB.77.184418 PG 11 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300066 ER PT J AU Julien, JP Zhu, JX Albers, RC AF Julien, Jean-Pierre Zhu, Jian-Xin Albers, R. C. TI Coulomb correlation in the presence of spin-orbit coupling: Application to plutonium SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE; DELTA-PU; SPECTRA; SYSTEMS; METALS; APPROXIMATION; INSULATORS AB Attempts to go beyond the local density approximation (LDA) of the density functional theory (DFT) have been increasingly based on the incorporation of more realistic Coulomb interactions. In their earliest implementations, methods such as LDA+U, LDA+dynamical mean-field theory, and LDA+Gutzwiller used a simple model interaction U. In this paper, we generalize the solution of the full Coulomb matrix involving F-(0)-F-(6) parameters, which is usually presented in terms of an lm(l) basis, into a jm(j) basis of the total angular momentum, where we also include spin-orbit coupling; this type of theory is needed for a reliable description of f-state elements such as plutonium, which we use as an example of our theory. Close attention will be paid to spin-flip terms, which are important in the multiplet theory but have been usually neglected in these kinds of studies. We find that, in a density-density approximation, the jm(j) basis results provide a very good approximation to the full Coulomb matrix result, which is in contrast to the much less accurate results for the more conventional lm(l) basis. C1 [Julien, Jean-Pierre; Zhu, Jian-Xin; Albers, R. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Julien, Jean-Pierre] Univ Grenoble 1, F-38042 Grenoble 9, France. [Julien, Jean-Pierre] CNRS, Inst Neel, F-38042 Grenoble 9, France. RP Julien, JP (reprint author), Los Alamos Natl Lab, Div Theoret, MS B262, Los Alamos, NM 87545 USA. OI Zhu, Jianxin/0000-0001-7991-3918 NR 29 TC 4 Z9 4 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195123 DI 10.1103/PhysRevB.77.195123 PG 11 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600059 ER PT J AU Kaspar, TC Droubay, T Heald, SM Engelhard, MH Nachimuthu, P Chambers, SA AF Kaspar, T. C. Droubay, T. Heald, S. M. Engelhard, M. H. Nachimuthu, P. Chambers, S. A. TI Hidden ferromagnetic secondary phases in cobalt-doped ZnO epitaxial thin films SO PHYSICAL REVIEW B LA English DT Article ID BETA-MANGANESE; SEMICONDUCTORS; OXIDE; SYSTEM AB The origin of ferromagnetism is investigated in epitaxial Co:ZnO thin films which become weakly ferromagnetic after annealing in Zn vapor. Conventional characterization techniques indicate no change after treatment. However, x-ray photoelectron spectroscopy depth profiling clearly indicates the presence of Co(0) in the Zn-treated films; x-ray absorption fine structure is utilized to identify the secondary phase as ferromagnetic CoZn. This work demonstrates that the potential for ferromagnetic secondary phases must be thoroughly discounted, through painstaking materials characterization, before claims of intrinsic ferromagnetism can be made. C1 [Kaspar, T. C.; Droubay, T.; Engelhard, M. H.; Nachimuthu, P.; Chambers, S. A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kaspar, TC (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM tiffany.kaspar@pnl.gov RI Engelhard, Mark/F-1317-2010; Droubay, Tim/D-5395-2016; OI Droubay, Tim/0000-0002-8821-0322; Engelhard, Mark/0000-0002-5543-0812 NR 26 TC 131 Z9 131 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 201303 DI 10.1103/PhysRevB.77.201303 PG 4 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800006 ER PT J AU Kim, JH Kagedan, A Gu, GD Nelson, CS Kim, YJ AF Kim, Jungho Kagedan, A. Gu, G. D. Nelson, C. S. Kim, Young-June TI Magnetic field dependence of charge stripe order in La(2-x)Ba(x)CuO(4) (x approximate to 1/8) SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; SUPERFLUID DENSITY; SPINS; HOLES AB We have carried out a detailed investigation of the magnetic field dependence of charge ordering in La(2-x)Ba(x)CuO(4) (x approximate to 1/8) by utilizing high-resolution x-ray scattering. We find that the charge order correlation length increases as a magnetic field greater than similar to 5 T is applied in the superconducting phase (T=2 K). The observed unusual field dependence of the charge order correlation length suggests that the static charge stripe order competes with the superconducting ground state in this sample. C1 [Kim, Jungho; Kagedan, A.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Gu, G. D.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Nelson, C. S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Kim, JH (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Kim, Young-June /G-7196-2011; Gu, Genda/D-5410-2013 OI Kim, Young-June /0000-0002-1172-8895; Gu, Genda/0000-0002-9886-3255 NR 31 TC 13 Z9 13 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 180513 DI 10.1103/Phy5RevB.77.180513 PG 4 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300023 ER PT J AU Klimov, VI McGuire, JA Schaller, RD Rupasov, VI AF Klimov, V. I. McGuire, J. A. Schaller, R. D. Rupasov, V. I. TI Scaling of multiexciton lifetimes in semiconductor nanocrystals SO PHYSICAL REVIEW B LA English DT Article ID MULTIPLE EXCITON GENERATION; CDSE QUANTUM DOTS; OPTICAL GAIN; CARRIER MULTIPLICATION; SILICON NANOCRYSTALS; AUGER RECOMBINATION; DARK-EXCITON; PBSE; ELECTRON; RELAXATION AB Ultrafast multiexciton decay via Auger recombination is a major impediment for prospective applications of semiconductor nanocrystals (NCs) in lasing and solar cells enabled by carrier multiplication. One important unexplored aspect of Auger recombination is the scaling of multiexciton lifetimes with the number of excitons per NC. To address this question, we analyze multiexciton dynamics in PbSe and CdSe NCs. We observe that these two systems show a distinct difference in scaling of multiexciton lifetimes, which can be explained in terms of a difference in symmetries of high-order multiexcitons resulting from significant disparity in degeneracies of the lowest-energy quantized states. C1 [Klimov, V. I.; McGuire, J. A.; Schaller, R. D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Rupasov, V. I.] ANTEOS Inc, Shrewsbury, MA 01545 USA. [Rupasov, V. I.] LD Landau Theoret Phys Inst, Moscow 117940, Russia. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RI McGuire, John/C-3380-2015; OI McGuire, John/0000-0002-0682-0953; Klimov, Victor/0000-0003-1158-3179 NR 45 TC 112 Z9 112 U1 7 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195324 DI 10.1103/PhysRevB.77.195324 PG 12 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600103 ER PT J AU Kumar, P Singh, NK Suresh, KG Nigam, AK AF Kumar, Pramod Singh, Niraj K. Suresh, K. G. Nigam, A. K. TI Magnetocaloric and magnetotransport properties of R2Ni2Sn compounds (R = Ce, Nd, Sm, Gd, and Tb) SO PHYSICAL REVIEW B LA English DT Article ID KONDO STANNIDE CE2NI2SN; MAGNETIC PHASE-DIAGRAM; TERNARY STANNIDE; ELECTRICAL-RESISTIVITY; HEAT-CAPACITY; ND2NI2SN; MAGNETORESISTANCE; TRANSITION; CRYSTAL; GD-5(SI2GE2) AB We report a detailed magnetic, magnetocaloric, and magnetotransport study on R2Ni2Sn compounds with different rare earths. The magnetic state of these compounds is found to be complex because of the coexistence of ferromagnetic and antiferromagnetic components. These compounds show phenomena such as multiple magnetic transitions, nonsaturation of magnetization, and metamagnetic transitions. Analysis of the zero-field heat capacity data shows that the magnetic entropy is less than the theoretical value, indicating the presence of some moment on Ni. Schottky anomaly is present in the magnetic heat capacity data of Sm2Ni2Sn. The temperature variation of magnetocaloric effect reflects the magnetization behavior. Tb2Ni2Sn and to a less extent Gd2Ni2Sn show oscillatory magnetocaloric effect. The variation of magnetocaloric effect is correlated with the ferromagnetic-antiferromagnetic phase coexistence. The electrical resistivity analysis has shown that the electron-magnon scattering is prominent at low temperature, while phonon scattering modified by the s-d interaction is crucial at high temperatures. The magnetoresistance is very large in Ce2Ni2Sn and shows a quadratic dependence on the field, implying the role of spin fluctuations in determining the transport behavior. Large magnetoresistance has been observed in other compounds as well. C1 [Kumar, Pramod; Singh, Niraj K.; Suresh, K. G.] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India. [Kumar, Pramod] Inst Met Werkstoffe, D-01069 Dresden, Germany. [Nigam, A. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Singh, Niraj K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India. EM suresh@phy.iitb.ac.in NR 46 TC 21 Z9 21 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184411 DI 10.1103/PhysRevB.77.184411 PG 12 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300059 ER PT J AU Lee, GW Gangopadhyay, AK Hyers, RW Rathz, TJ Rogers, JR Robinson, DS Goldman, AI Kelton, KF AF Lee, G. W. Gangopadhyay, A. K. Hyers, R. W. Rathz, T. J. Rogers, J. R. Robinson, D. S. Goldman, A. I. Kelton, K. F. TI Local structure of equilibrium and supercooled Ti-Zr-Ni liquids SO PHYSICAL REVIEW B LA English DT Article ID SHORT-RANGE ORDER; LENNARD-JONES CLUSTERS; MOLECULAR-DYNAMICS; NEUTRON-SCATTERING; UNDERCOOLED MELTS; METALLIC GLASSES; X-RAY; TRANSITION; EVOLUTION; MAGNETISM AB Recently, we reported the results of experimental in situ high-energy x-ray diffraction studies of electrostatically levitated equilibrium and supercooled metallic elements and alloy liquids, showing evidence for icosahedral short-range ordering (ISRO). In this paper, these studies are extended to binary Ti-Zr and ternary Ti-Zr-Ni alloys. From a cluster-based analysis of the x-ray structure factors, it is concluded that ISRO in the binary alloys becomes progressively more dominant, and the coherence length of the order becomes longer, with the addition of Ni, especially near the concentration of 21 at. % Ni. The effect of chemical interactions among Ti/Zr-Ni and the atomic size on the stabilization of the ISRO is discussed. C1 [Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Lee, G. W.] Korea Res Inst Stand & Sci, Taejon 305340, Choongnam, South Korea. [Hyers, R. W.] Univ Massachusetts, Amherst, MA 01003 USA. [Rathz, T. J.] Univ Alabama, Huntsville, AL 35801 USA. [Rogers, J. R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Robinson, D. S.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Robinson, D. S.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lee, GW (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. RI Hyers, Robert/G-3755-2010 NR 53 TC 33 Z9 33 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184102 DI 10.1103/PhysRevB.77.184102 PG 8 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300027 ER PT J AU Li, MZ Wang, CZ Mendelev, MI Ho, KM AF Li, Maozhi Wang, Cai-Zhuang Mendelev, Mikhail I. Ho, Kai-Ming TI Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al SO PHYSICAL REVIEW B LA English DT Article ID LENNARD-JONES LIQUID; BOND-ORIENTATIONAL ORDER; FORMING LIQUIDS; TRANSITION; MOTION; RELAXATION; DIFFUSION; FLUCTUATIONS; SIMULATION; COMPUTER AB Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of 8 relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of 3 relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long time scale. C1 [Li, Maozhi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Li, Maozhi; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ho, Kai-Ming] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Li, MZ (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012 NR 62 TC 21 Z9 21 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184202 DI 10.1103/PhysRevB.77.184202 PG 11 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300043 ER PT J AU Liu, JZ Zunger, A AF Liu, Jefferson Z. Zunger, Alex TI Thermodynamic states and phase diagrams for bulk-incoherent, bulk-coherent, and epitaxially-coherent semiconductor alloys: Application to cubic (Ga,In)N SO PHYSICAL REVIEW B LA English DT Article ID INGAN QUANTUM-WELLS; CHEMICAL-VAPOR-DEPOSITION; RESONANT RAMAN-SCATTERING; FORCE-FIELD MODEL; LONG-RANGE ORDER; MOLECULAR-BEAM; 1ST-PRINCIPLES CALCULATION; DOUBLE HETEROSTRUCTURES; LOCALIZED EXCITONS; TERNARY ALLOY AB The morphology and microstructure of A(1-x)B(x)C semiconductor alloys depend on the type of thermodynamic states established during growth. We distinguish three main cases: (i) bulk-incoherent structures occur when the alloy grows without being coherent with an underlying substrate and when each of the possible alloy species-phase separated AC and BC constituents, random A(1-x)B(x)C alloy, or ordered (AC)(n)/(BC)(m) structures-maintain their own lattice structures and lattice constants, giving up mutual coherence. Bulk incoherence is common in thick films with sufficient dislocations. For cubic (Ga,In)N, bulk-incoherent structures are found to have a positive excess enthalpy Delta H(bulk)(incoh) > 0 and, thus, to phase separate. (ii) Bulk-coherent structures occur when the alloy grows without being coherent with a substrate, but each of the possible species internal to the alloy film is forced to be coherent with the film matrix. Thus, the constituents AC-rich and BC-rich solid solution phases share the same lattice structure at their interface, leading to internal strain that destabilizes the AC+BC separated constituents. This can expose the intermediate (AC),1(BC),, ordered phases as stable structures with respect to the strained constituents, i.e., Delta H(bulk)(coh) < 0. Bulk coherence is applicable to growth when the development of dislocations is inhibited, e.g., small size precipitates in the alloy matrix. For cubic (Ga,In)N alloy, we find that the coherent ground state phases are three ordered superlattice structures: (InN)(2)/(GaN)(2) (=chacolpyrite), (InN)(3)/(GaN)(1), and (InN)(4)/(GaN)(1), along (201) [and its cubic symmetry equivalent, i.e., (102), (210), etc.] crystal direction. (iii) Epitaxially coherent structures occur when the alloy is made coherent with an underlying substrate, e.g., in thin film pseudomorphic growth. Depending on the substrate, the formation enthalpy Delta H(epi) < 0. For cubic (Ga,In)N grown on GaN (001) substrate, we find that the stablest epitaxial phases are chalcopyrite and the (InN)(4)/(GaN)(1) superlattice along the (210) crystal direction. Here, we calculate, from first principles, the formation enthalpies of cubic zinc blende (Ga,In)N alloy under the three forms of thermodynamic states indicated above to establish a cluster expansion, from which we calculate the finite-temperature phase diagrams. This illustrates how the thermodynamic constraints during growth can radically alter the alloy phase behavior and its microstructures. C1 [Liu, Jefferson Z.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Liu, JZ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Liu, Jefferson zhe/B-5916-2008; Zunger, Alex/A-6733-2013 OI Liu, Jefferson zhe/0000-0002-5282-7945; NR 78 TC 52 Z9 52 U1 2 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 205201 DI 10.1103/PhysRevB.77.205201 PG 12 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800046 ER PT J AU Lyo, SK AF Lyo, S. K. TI Bloch oscillations and nonlinear transport in a one-dimensional semiconductor superlattice SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE DIFFERENTIAL CONDUCTIVITY; MINIBAND; ELECTRONS AB We present an exact analytic result for the time-dependent and steady-state current and the distribution function in a nonlinear electric field for an electron gas in a one-dimensional superlattice miniband by employing a relaxation-time approximation for inelastic scattering. Our transparent results clearly show the condition for the onset of the Bloch oscillations, the field for the peak steady-state current, and the distinct roles played by elastic and inelastic scattering for the damped oscillations and the steady-state current. The results are consistent with a recent full microscopic numerical calculation. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lyo, SK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sklyo@sandia.gov NR 22 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195306 DI 10.1103/PhysRevB.77.195306 PG 8 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600085 ER PT J AU Marinopoulos, AG van Benthem, K Rashkeev, SN Pennycook, SJ Pantelides, ST AF Marinopoulos, A. G. van Benthem, K. Rashkeev, S. N. Pennycook, S. J. Pantelides, S. T. TI Impurity segregation and ordering in Si/SiO(2)/HfO(2) structures SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; INTERFACE; DIFFUSION; SILICON; SI-SIO2; MECHANISMS; ENERGETICS; ZIRCONIUM; HAFNIUM AB We use first-principles calculations and experimental data to demonstrate that impurity segregation at heterointerfaces is governed by several factors. In particular, Hf impurities avoid the Si-SiO(2) interface when present in the SiO(2) side, might segregate if present in the Si side, but do not cross into SiO(2). Substitutional Hf impurities in SiO(2), as revealed by a through-focal series of Z-contrast images, act as markers for Si sites, suggesting ordering in the first two Si planes of the amorphous SiO(2). Finally, we show that dopants in Si segregate at the interface by adopting several distinct configurations and also do not cross into SiO(2). C1 [Marinopoulos, A. G.; Pennycook, S. J.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [van Benthem, K.; Rashkeev, S. N.; Pennycook, S. J.; Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [van Benthem, K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Marinopoulos, AG (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Marinopoulos, Apostolos/L-5044-2013 OI Marinopoulos, Apostolos/0000-0002-1951-4832 NR 36 TC 8 Z9 8 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195317 DI 10.1103/PhysRevB.77.195317 PG 6 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600096 ER PT J AU May, SJ Shah, AB Velthuis, SGET Fitzsimmons, MR Zuo, JM Zhai, X Eckstein, JN Bader, SD Bhattacharya, A AF May, S. J. Shah, A. B. Velthuis, S. G. E. te Fitzsimmons, M. R. Zuo, J. M. Zhai, X. Eckstein, J. N. Bader, S. D. Bhattacharya, A. TI Magnetically asymmetric interfaces in a LaMnO(3)/SrMnO(3) superlattice due to structural asymmetries SO PHYSICAL REVIEW B LA English DT Article ID GROWTH AB Polarized neutron reflectivity measurements of a ferromagnetic [(LaMnO(3))(11.8)/(SrMnO(3))(4.4)](6) superlattice reveal a modulated magnetic structure with an enhanced magnetization at the interfaces where LaMnO(3) was deposited on SrMnO(3) (LMO/SMO). However, the opposite interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The magnetic asymmetry is accompanied by a corresponding asymmetry in the lateral structural roughness of the two interfaces observed via electron microscopy, with enhanced ferromagnetism present at the interfaces that are atomically smooth over tens of nanometers. This result demonstrates that atomic-scale roughness can destabilize interfacial phases in complex oxide heterostructures. C1 [May, S. J.; Velthuis, S. G. E. te; Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Shah, A. B.; Zuo, J. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP May, SJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM smay@anl.gov; anand@anl.gov RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011; Lujan Center, LANL/G-4896-2012; Bader, Samuel/A-2995-2013; te Velthuis, Suzanne/I-6735-2013 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860; te Velthuis, Suzanne/0000-0002-1023-8384 NR 18 TC 53 Z9 54 U1 3 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174409 DI 10.1103/PhysRevB.77.174409 PG 5 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800063 ER PT J AU Moca, CP Demler, E Janko, B Zarand, G AF Moca, Catalin Pascu Demler, Eugene Janko, Boldizsar Zarand, Gergely TI Spin-resolved spectra of Shiba multiplets from Mn impurities in MgB(2) SO PHYSICAL REVIEW B LA English DT Article ID LOCAL ELECTRONIC-STRUCTURE; MAGNETIC-IMPURITIES; ATOMIC-SCALE; SUPERCONDUCTOR; BI2SR2CACU2O8+DELTA; SCATTERING; BORON AB We study the effect of magnetic Mn ions on the two-band superconductor MgB(2), and compute both the total and spin-resolved scanning tunneling spectrum in the vicinity of the magnetic impurity. We show that when the internal structure of the Mn ion's d-shell is taken into account, multiple Shiba states appear in the spectrum. The presence of these multiplets could alter significantly the overall interpretation of local tunneling spectra for a wide range of superconducting hosts and magnetic impurities. C1 [Moca, Catalin Pascu; Zarand, Gergely] Budapest Univ Technol & Econ, H-1521 Budapest, Hungary. [Moca, Catalin Pascu] Univ Oradea, Dept Phys, Oradea 410087, Romania. [Demler, Eugene] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Janko, Boldizsar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Janko, Boldizsar] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Moca, CP (reprint author), Budapest Univ Technol & Econ, H-1521 Budapest, Hungary. RI Zarand, Gergely/D-4571-2009; Moca, Catalin Pascu/D-9507-2014 NR 31 TC 13 Z9 13 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174516 DI 10.1103/PhysRevB.77.174516 PG 10 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800104 ER PT J AU Morris, JR Aga, RS Levashov, V Egami, T AF Morris, James R. Aga, Rachel S. Levashov, Valentin Egami, Takeshi TI Many-body effects in bcc metals: An embedded atom model extension of the modified Johnson pair potential for iron SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METALS; FCC METALS; SIMULATION; SYSTEMS; ORDER; SILICON; ALLOYS AB In this work, we generalize a many-body extension of pairwise interatomic potentials originally proposed by Baskes [Phys. Rev. Lett. 83, 2592 (1991)], in particular, showing how a pair potential interacting with multiple near neighbor shells may be extended to an embedded atom form without changing the cohesive energy or lattice constant. This is important for parametric studies of interatomic potentials, particularly how elastic constants affect other properties. Specifically, we apply this to the modified Johnson potential, a pair potential for Fe that has been used extensively for understanding liquid and amorphous metals. C1 [Morris, James R.; Aga, Rachel S.] Oak Ridge Natl Lab, MS&T Div, Oak Ridge, TN 37831 USA. [Morris, James R.; Levashov, Valentin; Egami, Takeshi] Univ Tennessee, Knoxville, TN 37996 USA. RP Morris, JR (reprint author), Oak Ridge Natl Lab, MS&T Div, Oak Ridge, TN 37831 USA. RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 22 TC 6 Z9 6 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174201 DI 10.1103/PhysRevB.77.174201 PG 9 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800046 ER PT J AU Mucha-Kruczynski, M Tsyplyatyev, O Grishin, A McCann, E Fal'ko, VI Bostwick, A Rotenberg, E AF Mucha-Kruczynski, M. Tsyplyatyev, O. Grishin, A. McCann, E. Fal'ko, Vladimir I. Bostwick, Aaron Rotenberg, Eli TI Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission SO PHYSICAL REVIEW B LA English DT Article ID BILAYER GRAPHENE; BAND-STRUCTURE; BERRYS PHASE; INTERCALATION COMPOUNDS; ELECTRONIC-PROPERTIES; DIRAC FERMIONS; GRAPHITE; FILMS; FIELD; LAYER AB We theoretically show how constant-energy maps of the angle-resolved photoemission intensity can be used to test wave function symmetry in graphene. For monolayer graphene, we demonstrate that the observed anisotropy of angle-resolved photoelectron spectroscopy spectra is a manifestation of what has been recently branded as an electronic chirality. For bilayer graphene, we show that the anisotropy of the constant-energy maps may be used to extract information about the magnitude and sign of interlayer coupling parameters and about symmetry breaking inflicted on a bilayer by the underlying substrate. C1 [Mucha-Kruczynski, M.; Tsyplyatyev, O.; Grishin, A.; McCann, E.; Fal'ko, Vladimir I.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Fal'ko, Vladimir I.] Univ Orsay, LPS CNRS, F-91405 Orsay, France. [Bostwick, Aaron; Rotenberg, Eli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Mucha-Kruczynski, M (reprint author), Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; Mucha-Kruczynski, Marcin/K-4063-2015; OI Rotenberg, Eli/0000-0002-3979-8844; Mucha-Kruczynski, Marcin/0000-0002-6597-3888; Fal'ko, Vladimir/0000-0003-0828-0310 NR 46 TC 83 Z9 83 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195403 DI 10.1103/PhysRevB.77.195403 PG 12 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600111 ER PT J AU Noffsinger, J Giustino, F Louie, SG Cohen, ML AF Noffsinger, Jesse Giustino, Feliciano Louie, Steven G. Cohen, Marvin L. TI First-principles study of superconductivity and Fermi-surface nesting in ultrahard transition metal carbides SO PHYSICAL REVIEW B LA English DT Article ID PHONON ANOMALIES; ELECTRONIC-STRUCTURE; WANNIER FUNCTIONS; LATTICE-DYNAMICS; PSEUDOPOTENTIALS; ENERGY; TAC AB Using a recently developed first-principles approach, we show that the variation in the superconducting behavior of group IVb and Vb transition metal carbides is associated with a significant nesting of the Fermi surfaces in group Vb compounds, while their phonon anomalies and density of states at the Fermi level play a minor role. The superconducting pairing arises from the coupling of metal d states to acoustic phonons, and is therefore at variance with the interaction leading to the exceptional mechanical hardness where carbon p states play a substantial role. We provide insight into how to optimize the transition temperature by varying the Fermi surface properties through substitutional doping. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Giustino, Feliciano/F-6343-2013; OI Giustino, Feliciano/0000-0001-9293-1176 NR 31 TC 10 Z9 10 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 180507 DI 10.1103/PhysRevB.77.180507 PG 4 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300017 ER PT J AU Offi, F Mannella, N Pardini, T Panaccione, G Fondacaro, A Torelli, P West, MW Mitchell, JF Fadley, CS AF Offi, Francesco Mannella, Norman Pardini, Tommaso Panaccione, Giancarlo Fondacaro, Andrea Torelli, Piero West, Mark. W. Mitchell, John F. Fadley, Charles S. TI Temperature-dependent electronic structure of the colossal magnetoresistive manganite La(0.7)Sr(0.3)MnO(3) from hard x-ray photoemission SO PHYSICAL REVIEW B LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; VALENCE-BAND; DIFFRACTION; METALS; COPPER; STATES AB We have studied in situ fractured surfaces of single-crystal La(0.7)S(10.3)MnO(3) with hard x-ray photoemission (HXPS) at an excitation energy of 7.7 keV. These more bulk-sensitive measurements reveal low-binding-energy satellites in the Mn 2p(3/2), 3s, and 3p core spectra that are in agreement with previously observed satellites in Mn 2p(3/2) for other strongly correlated materials, and which have been interpreted in terms of nonlocalized screening effects. The Mn 3s spectrum is consistent with recent soft x-ray measurements [N. Mannella et al., Phys. Rev. Lett. 92, 166401 (2004)] in showing an increased multiplet splitting at temperatures 100 K or more above the Curie temperature, although the magnitude of the effect is somewhat reduced. The valence-band spectra exhibit significant enhancement of intensity at such higher temperatures that we interpret as evidence of localization of Mn 3d-derived charge, which is in agreement with the multiplet splitting change and prior soft x-ray work. Additional aspects of HXPS for the study of complex materials are thus demonstrated. C1 [Offi, Francesco] CNISM, I-00146 Rome, Italy. [Offi, Francesco] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy. [Mannella, Norman; West, Mark. W.; Fadley, Charles S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mannella, Norman] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Mannella, Norman] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Pardini, Tommaso; Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Panaccione, Giancarlo] Lab Nazl TASC INFM CNR, I-34012 Trieste, Italy. [Fondacaro, Andrea] ESRF, F-38043 Grenoble, France. [Torelli, Piero] Ctr Univ Paris Sud, LURE, F-91898 Orsay, France. [Mitchell, John F.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mitchell, John F.] Julich Res Ctr, Inst Solid State Res, D-52425 Julich, Germany. [Fadley, Charles S.] Univ Hamburg, Hasylab, D-22761 Hamburg, Germany. RP Offi, F (reprint author), CNISM, I-00146 Rome, Italy. RI Torelli, Piero /F-8940-2010; MSD, Nanomag/F-6438-2012; OI TORELLI, PIERO/0000-0001-9300-9685 NR 38 TC 15 Z9 15 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174422 DI 10.1103/PhysRevB.77.174422 PG 6 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800076 ER PT J AU Ouyang, ZW Nojiri, H Yoshii, S Rao, GH Wang, YC Pecharsky, VK Gschneidner, KA AF Ouyang, Z. W. Nojiri, H. Yoshii, S. Rao, G. H. Wang, Y. C. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Field-induced magnetostructural transition in Gd(5)Ge(4) studied by pulsed magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; GD-5(SIXGE1-X)(4); GD-5(SI2GE2); ALLOYS AB The field-induced magnetostructural transformation in Gd(5)Ge(4) was examined by magnetization measurements in pulsed magnetic fields. The low-temperature irreversibility of the transition can be destroyed by the magnetocaloric effect, and depending on the heat exchange between the sample and its surroundings, the irreversibility (or kinetic arrest) can also be retained. Measurements by using various magnetic-field sweep rates were conducted to examine the dynamic response of the system in the transition region. The critical fields for the magnetostructural transition below 20 K are field sweep rate dependent-the larger the field sweep rate, the higher the critical field. However, this rate dependence is readily suppressed with increasing temperature. C1 [Ouyang, Z. W.; Nojiri, H.; Yoshii, S.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Rao, G. H.; Wang, Y. C.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Mat & Engn Phys Program, Ames Lab, US DOE, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Nojiri, H (reprint author), Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. EM nojiri@imr.tohoku.ac.jp RI Nojiri, Hiroyuki/B-3688-2011 NR 31 TC 11 Z9 12 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184426 DI 10.1103/PhysRevB.77.184426 PG 7 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300074 ER PT J AU Pierce, JP Bartelt, NC Stumpf, R McCarty, KF AF Pierce, J. P. Bartelt, N. C. Stumpf, R. McCarty, K. F. TI Stability of ultrathin alumina layers on NiAl(110) SO PHYSICAL REVIEW B LA English DT Article ID OXIDATION; SURFACE; OXIDE; KINETICS; ENERGY; OXYGEN; FILM; AL AB By observing with low-energy electron microscopy whether individual alumina islands grow or shrink for different substrate temperatures and O(2) pressures, we determine the stability of thin oxide layers on the NiAl(110) surface. At each temperature, a well-defined O(2) pressure exists where islands do not change in size. Yet we conclude that the oxide cannot be in thermodynamic equilibrium With O(2) gas and NiAl bulk, because the O(2) pressures needed to attain this state are 20 orders of magnitude higher than expected. We discuss what kinetic processes can lead to the observed steady state, where the O(2) pressure needed for stability differs greatly from thermodynamic predictions. C1 [Pierce, J. P.; Bartelt, N. C.; Stumpf, R.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Pierce, JP (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM piercejp@gmail.com RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI McCarty, Kevin/0000-0002-8601-079X; NR 29 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195438 DI 10.1103/PhysRevB.77.195438 PG 7 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600146 ER PT J AU Qi, YB Park, JY Hendriksen, BLM Ogletree, DF Salmeron, M AF Qi, Yabing Park, J. Y. Hendriksen, B. L. M. Ogletree, D. F. Salmeron, M. TI Electronic contribution to friction on GaAs: An atomic force microscope study SO PHYSICAL REVIEW B LA English DT Article ID SURFACE; CALIBRATION; OXIDATION; PRESSURE; ADHESION; CONTACT; MOTION AB The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50 nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction. C1 [Qi, Yabing] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Qi, Yabing; Park, J. Y.; Hendriksen, B. L. M.; Ogletree, D. F.; Salmeron, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Salmeron, M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Qi, YB (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. RI Qi, Yabing/A-9243-2010; Park, Jeong Young/A-2999-2008; Hendriksen, Bas/B-8427-2013; Qi, Yabing/O-7807-2014; Ogletree, D Frank/D-9833-2016 OI Qi, Yabing/0000-0002-4876-8049; Ogletree, D Frank/0000-0002-8159-0182 NR 46 TC 25 Z9 25 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184105 DI 10.1103/PhysRevB.77.184105 PG 7 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300030 ER PT J AU Reis, P Fishman, RS Reboredo, FA Moreno, J AF Reis, Peter Fishman, Randy S. Reboredo, Fernando A. Moreno, Juana TI Magnetic compensation in the bimetallic oxalates SO PHYSICAL REVIEW B LA English DT Article ID TETRA-N-BUTYLAMMONIUM; MIXED-VALENCY; M-II; OX; FE; MN; CO; CU; CATIONS; ZN AB Bimetallic oxalates are layered molecule-based magnets with either ferromagnetic or antiferromagnetic interactions between transition metals M(II) and M'(III) on an open-honeycomb lattice. Some Fe(II)Fe(III) bimetallic oxalates exhibit magnetic compensation (MC) at a compensation temperature T(comp) approximate to 30 K below the ferrimagnetic transition temperature T, 45 K. To see if MC is possible in other bimetallic oxalates, we construct a theoretical model for bimetallic oxalates that exhibit antiferromagnetic interactions. By varying the M(II) and M'(111) average orbital angular momentum, which can be controlled by the choice of interlayer cations, we find regions of MC in the families M(II)Mn(III) with M=Fe, Co, or Ni and V(II)M'(III) with M'=Cr or V but not in the family M(II)Ru(III) with M=Fe or Cu. C1 [Reis, Peter; Moreno, Juana] Univ N Dakota, Dept Phys, Grand Forks, ND 58202 USA. [Reis, Peter; Fishman, Randy S.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Reis, P (reprint author), Univ N Dakota, Dept Phys, Grand Forks, ND 58202 USA. RI Reboredo, Fernando/B-8391-2009; Moreno, Juana/D-5882-2012; Fishman, Randy/C-8639-2013 NR 17 TC 11 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174433 DI 10.1103/PhysRevB.77.174433 PG 5 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800087 ER PT J AU Rudin, SP AF Rudin, Sven P. TI Density functional theory prediction of a hysteretic phase transition in InPu crystals SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; GRADIENT APPROXIMATION; DELTA-PLUTONIUM; 5F ELECTRONS; PU AB Elemental plutonium (Pu) transforms between phases with dramatic changes in volume and symmetry, and a pathway connecting the radically different crystal structures was only recently mapped. Density functional theory calculations presented here predict in the indium-plutonium (InPu) alloy an analogous but structurally much simpler phase transition, characterized by a pairing-up of Pu atoms. The transition connects two crystal structures closely related to the experimentally observed theta-InPu; in one structure, pairing of the Pu atoms breaks the crystal symmetry while the other structure is a trigonal distortion of theta-InPu. The calculations predict these structures to stabilize at low temperatures, where uniaxial strain induces the transition between them. The transition shows hysteresis in the character of the electronic state, in the Pu-Pu bond lengths and in the density. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rudin, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 29 TC 1 Z9 1 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 172104 DI 10.1103/PhysRevB.77.172104 PG 4 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800004 ER PT J AU Ruzmetov, D Senanayake, SD Narayanamurti, V Ramanathan, S AF Ruzmetov, Dmitry Senanayake, Sanjaya D. Narayanamurti, Venkatesh Ramanathan, Shriram TI Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; PHASE-TRANSITION; VO2; DIOXIDE AB We correlate electron transport data directly with energy band structure measurements in vanadium oxide thin films with varying V-O stoichiometry across the VO(2) metal-insulator transition. A set of vanadium oxide thin films were prepared by reactive dc sputtering from a V target at various oxygen partial pressures (O(2) p.p.). Metal-insulator transition (MIT) characteristic to VO(2) can be seen from the temperature dependence of electrical resistance of the films sputtered at optimal O(2) p.p. Lower and higher O(2) p.p. result in disappearance of the MIT. The results of the near edge x-ray absorption fine structure spectroscopy of the 0 K edge in identical VO films are presented. Redistribution of the spectral weight from sigma* to pi* bands is found in the vanadium oxide films exhibiting stronger VO(2) MIT. This is taken as evidence of the strengthening of the metal-metal ion interaction with respect to the metal-ligand and indirect V-O-V interaction in vanadium oxide films featuring sharp MIT. We also observe a clear correlation between MIT and the width and area of the lower pi* band, which is likely to be due to the emergence of the d(parallel to) band overlapping with pi*. The strengthening of this d(parallel to) band near the Fermi level only in the vanadium oxide compounds displaying the MIT points out the importance of the role of the d(parallel to) band and electron correlations in the phase transition. C1 [Ruzmetov, Dmitry; Narayanamurti, Venkatesh; Ramanathan, Shriram] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Senanayake, Sanjaya D.] OakRidge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ruzmetov, D (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 NR 22 TC 60 Z9 61 U1 4 U2 66 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195442 DI 10.1103/PhysRevB.77.195442 PG 5 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600150 ER PT J AU Sefat, AS McGuire, MA Sales, BC Jin, RY Howe, JY Mandrus, D AF Sefat, Athena S. McGuire, Michael A. Sales, Brian C. Jin, Rongying Howe, Jane Y. Mandrus, David TI Electronic correlations in the superconductor LaFeAsO(0.89)F(0.11) with low carrier density SO PHYSICAL REVIEW B LA English DT Article ID ZRCUSIAS TYPE-STRUCTURE; UPPER CRITICAL-FIELD; THERMAL-CONDUCTIVITY; CRYSTAL-STRUCTURE; TRANSITION; FILMS AB The crystal structure and numerous normal and superconducting state properties of layered tetragonal (P4/nmm) LaFeAsO, with F doping of approximate to 11%, are reported. Resistivity measurements give an onset transition temperature T(c)=28.2 K, and low field magnetic susceptibility data indicate bulk superconductivity. In applied magnetic field, analysis of the resistive transition results in a critical field H(c2) approximate to 30 T and a coherence length xi(GL) approximate to 35 angstrom. An upper limit for the electron carrier concentration of 1 X 10(21) cm(-3) is inferred from the Hall data just above T(c). Strong electron-electron correlations are suggested from temperature-dependent resistivity, Seebeck coefficient, and thermal conductivity data. Anomalies near T(c) are observed in both Seebeck coefficient and thermal conductivity data. C1 [Sefat, Athena S.; McGuire, Michael A.; Sales, Brian C.; Jin, Rongying; Howe, Jane Y.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Howe, Jane/G-2890-2011; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 NR 24 TC 199 Z9 204 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174503 DI 10.1103/PhysRevB.77.174503 PG 6 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800091 ER PT J AU Singh, DJ AF Singh, D. J. TI Band structure and thermopower of doped YCuO(2) SO PHYSICAL REVIEW B LA English DT Article ID THERMOELECTRIC PROPERTIES; ELECTRONIC-STRUCTURE; DELAFOSSITES; CUYO2; TRANSPORT AB First-principles calculations and Boltzmann transport theory are used to analyze the thermopower and related properties of p-type delafossite structure YCuO(2). We find that the electrical transport properties are only mildly anisotropic in spite of the layered crystal structure and that this compound has high thermopowers indicative of a material that may be a good thermoelectric. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 31 TC 7 Z9 7 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 205126 DI 10.1103/PhysRevB.77.205126 PG 5 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800043 ER PT J AU Sun, T Hu, H Pan, ZX Li, XF Wang, J Dravid, VP AF Sun, Tao Hu, Hao Pan, Zixiao Li, Xuefa Wang, Jin Dravid, Vinayak P. TI In situ real-time investigation of kinetics of nucleation and growth of sol-gel-derived functional oxide thin films SO PHYSICAL REVIEW B LA English DT Article ID SCIENCE-AND-TECHNOLOGY; ORIENTED ATTACHMENT; CRYSTAL-GROWTH; NANOCRYSTALLINE ZNS; CRYSTALLIZATION; MICROSTRUCTURE; DECOMPOSITION; BI2O2CO3; FUTURE AB Early-stage nucleation and growth kinetics of sol-gel-derived multiferroic BiFeO(3) thin films were investigated in situ and in real time by combining transmission electron microscopy and grazing-incidence small-angle x-ray scattering (GISAXS). While the initial phase of the nuclei was identified to be Bi(2)O(2)CO(3), the quantitative GISAXS analysis unambiguously revealed that the early-stage kinetic nucleation growth in the thin films was dominated by an oriented-attachment mechanism as opposed to the conventional Ostwald ripening in metallic and ceramic systems. C1 [Sun, Tao; Li, Xuefa; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sun, Tao; Pan, Zixiao; Dravid, Vinayak P.] Northwestern Univ, Int Inst Nanotechnol, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hu, Hao; Dravid, Vinayak P.] Northwestern Univ, NUANCE, Evanston, IL 60208 USA. RP Wang, J (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM wangj@aps.anl.gov; v.dravid@northwestem.edu RI Dravid, Vinayak/B-6688-2009; Pan, Zixiao/D-5650-2011 NR 29 TC 14 Z9 14 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 205414 DI 10.1103/PhysRevB.77.205414 PG 6 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800100 ER PT J AU Thurmer, K Bartelt, NC AF Thurmer, Konrad Bartelt, Norman C. TI Growth of multilayer ice films and the formation of cubic ice imaged with STM SO PHYSICAL REVIEW B LA English DT Article ID EARTHS ATMOSPHERE; PT(111); SURFACE; CRYSTALLIZATION; DIFFRACTION; ADSORPTION; DYNAMICS; WATER; H2O AB Ice films as many as 30 molecular layers thick can be imaged with scanning tunneling microscopy (STM) when negative sample biases <-6(+/-) V and subpicoamp tunneling currents are used. We observe that water deposited onto Pt(111) below 120 K forms amorphous films, whereas metastable cubic ice appears between 120 and 150 K. To determine the mechanisms of ice growth, we investigate the thickness-dependent film morphology. Cubic ice emerges from screw dislocations in the crystalline ice film that are caused by the mismatch in the atomic Pt- step height and the ice-bilayer separation. C1 [Thurmer, Konrad; Bartelt, Norman C.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Thurmer, K (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 NR 37 TC 38 Z9 38 U1 3 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195425 DI 10.1103/PhysRevB.77.195425 PG 10 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600133 ER PT J AU Unal, B Jenks, CJ Thiel, RA AF Unal, Baris Jenks, C. J. Thiel, R. A. TI Comparison between experimental surface data and bulk structure models for quasicrystalline A1PdMn: Average atomic densities and chemical compositions SO PHYSICAL REVIEW B LA English DT Article ID AL-PD-MN; SCANNING-TUNNELING-MICROSCOPY; ENERGY-ELECTRON DIFFRACTION; 5-FOLD PLANE SURFACE; X-RAY-DIFFRACTION; FIVEFOLD SURFACE; ALPDMN; AL70PD21MN9; ADSORPTION; NUCLEATION AB We have examined bulk structure models for icosahedral A1PdMn in terms of the densities, compositions, and interplanar spacings for the fivefold planes that might represent physical surface terminations. We focus on four models that contain no partial or mixed occupancies, but some comparison is made to a fifth model containing such sites. Each of the four models contains paired planes (layers) that can be separated into two main families on the basis of three features: the relative densities of the two planes, the gap separating the layer from the nearest atomic plane, and the Pd content in the topmost plane. The experimental data and other arguments lead to the conclusion that the family with no Pd in the top plane is favored. Finally, all models show that correlations should be expected between the heights of steps that delineate terraces and average compositional and/or structural features of the terraces. C1 [Unal, Baris; Thiel, R. A.] Iowa State Univ, Dept Mat Sci & Engn, Allies, IA 50011 USA. [Thiel, R. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Unal, Baris; Jenks, C. J.; Thiel, R. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Unal, B (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Allies, IA 50011 USA. EM thiel@ameslab.gov NR 64 TC 25 Z9 25 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195419 DI 10.1103/PhysRevB.77.195419 PG 10 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600127 ER PT J AU Wang, ZQ Beyerlein, IJ AF Wang, Z. Q. Beyerlein, I. J. TI Stress orientation and relativistic effects on the separation of moving screw dislocations SO PHYSICAL REVIEW B LA English DT Article ID CROSS-SLIP; MOLECULAR-DYNAMICS; EXTENDED DISLOCATIONS; PLASTIC-DEFORMATION; FCC CRYSTALS; MOTION; METALS; COPPER; ENERGETICS; SIMULATIONS AB The subsonic motion of a fast-moving, extended screw dislocation in an fcc metal under constant stress is studied using continuum linear elastic dislocation theory and molecular dynamics (MD) simulation. In this regime, many phenomena predicted by the theory are shown to prevail in simulation, in particular, relativistic effects and stress orientation effects. Due to the former, the fault width is found to contract as it moves faster until approximate to 80% of the shear wave speed, beyond which a turning point occurs preventing it from constricting to a perfect one as speed increases further. The stress orientation effect, which is first introduced by Nabarro [Philos. Mag. 14, 861 (1966)], is demonstrated here to manifest when the shear stress resolved in the direction of motion and glide plane becomes high. A simple analytical expression for the steady-state fault width accounting for both stress orientation and relativistic effects is presented. In MD simulation under arbitrary stress states, both the dislocation velocity and separation width achieve a quasisteady state, about which they oscillate with an amplitude and frequency that reduces with speed. The separation width oscillates about a value close-to that predicted by the new analytical expression. The drag coefficient is found to linearly increase with speed for speeds greater than 20% of the shear wave speed. C1 [Wang, Z. Q.; Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, ZQ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM zhiqiang@lanl.gov RI Beyerlein, Irene/A-4676-2011 NR 72 TC 10 Z9 10 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 18 AR 184112 DI 10.1103/PhysRevB.77.184112 PG 14 WC Physics, Condensed Matter SC Physics GA 315MY UT WOS:000256885300037 ER PT J AU Wu, K Zhai, H AF Wu, Kai Zhai, Hui TI Theory of quantum antiferromagnetism of fermions in an optical lattice with a half-filled p band SO PHYSICAL REVIEW B LA English DT Article ID INFINITE DIMENSIONS AB We study Fermi gases in a three-dimensional cubic optical lattice with five fermions per site, i.e., the s band is completely filled and the p band with threefold degeneracy is half filled. We show that for repulsive interaction between fermions, the system will exhibit spin-3/2 antiferromagnetic order at low temperature. This conclusion is obtained both in strong interaction regime by strong coupling expansion and in weak interaction regime by the Hartree-Fock mean-field theory with analysis of the Fermi surface nesting. We also show that in the strongly correlated regime the Neel temperature for p band antiferromagnetism is 2 to 3 orders of magnitudes higher than that of s band, which is much more promising to be attained in cold atom experiments. C1 [Wu, Kai; Zhai, Hui] Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China. [Zhai, Hui] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wu, K (reprint author), Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China. RI Zhai, Hui/H-9496-2012 OI Zhai, Hui/0000-0001-8118-6027 NR 16 TC 27 Z9 27 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 17 AR 174431 DI 10.1103/PhysRevB.77.174431 PG 5 WC Physics, Condensed Matter SC Physics GA 313TV UT WOS:000256763800085 ER PT J AU Xie, CK Budnick, JI Hines, WA Wells, BO He, FZ Moodenbaugh, AR AF Xie, C. K. Budnick, J. I. Hines, W. A. Wells, B. O. He, Feizhou Moodenbaugh, A. R. TI Direct evidence for the suppression of charge stripes in epitaxial La(1.67)Sr(0.33)NiO(4) films SO PHYSICAL REVIEW B LA English DT Article ID ORDER; SUPERCONDUCTIVITY; LA1.6-XND0.4SRXCUO4; LA2-XBAXCUO4; LA2-XSRXNIO4; PRESSURE; HOLES; SPINS AB We have successfully grown epitaxial La(1.67)Sr(0.33)NiO(4) films with a small crystalline mosaic using pulsed laser deposition. With synchrotron radiation, the x-ray-diffraction peaks associated with charge stripes have been successfully observed for relatively thick films. Anomalies due to the charge-ordering transition have been examined using four-point probe resistivity measurements. X-ray scattering provides direct evidence for suppression of the stripe phase in thinner samples; the phase disappears for film thicknesses <= 2600 A. The suppression appears to be a result of shrinking the stripe phase domains. This may reflect the stripe phase progressing from nematic to isotropic. C1 [Xie, C. K.; Budnick, J. I.; Hines, W. A.; Wells, B. O.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [He, Feizhou] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 0X4, Canada. [Moodenbaugh, A. R.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Xie, CK (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RI Xie, Changkun/F-1544-2011; He, Feizhou/G-8493-2015; OI He, Feizhou/0000-0002-3125-1406; Moodenbaugh, Arnold/0000-0002-3415-6762 NR 29 TC 2 Z9 2 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 20 AR 201403 DI 10.1103/PhysRevB.77.201403 PG 4 WC Physics, Condensed Matter SC Physics GA 316TE UT WOS:000256971800012 ER PT J AU Yacoby, Y Brooks, C Schlom, D Cross, JO Walko, DA Cionca, CN Husseini, NS Riposan, A Clarke, R AF Yacoby, Y. Brooks, C. Schlom, D. Cross, J. O. Walko, D. A. Cionca, C. N. Husseini, N. S. Riposan, A. Clarke, R. TI Structural changes induced by metal electrode layers on ultrathin BaTiO(3) films SO PHYSICAL REVIEW B LA English DT Article ID EPITAXIAL FERROELECTRIC HETEROSTRUCTURES; THIN-FILMS; SRTIO3; POLARIZATION; SURFACES; FATIGUE; GROWTH; MBE AB We have investigated the effect of evaporated gold electrodes on the structure of thin BaTiO(3) films grown epitaxially on a SrTiO(3) substrate. Two films, i.e., one five unit cell and the other ten unit cell thick, were studied. X-ray diffraction measurements analyzed by the coherent Bragg rod analysis (COBRA) method and diffuse x-ray scans show that the thinner film is pseudomorphic with respect to the substrate and very highly ordered, while the thicker one exhibits significant disorder and local discommensuration. The results further show that the ten unit cell film has an island morphology. The evaporation of 30 nm of gold had little effect on the thinner film, but it caused interesting and unexpected structural changes in the ten unit cell sample. In that case, the gold film drove the BaTiO(3) film closer to a pseudomorphic state and reduced the amount of disorder in the film. We attribute this behavior to surface tension forces applied by the gold to the BaTiO(3) structure. These results suggest a rather general conclusion, namely, that if the film and the evaporated electrode are smooth, the evaporated electrode has very little effect on the underlying structure. In contrast, if the film has an island-type morphology, the evaporated electrode exerts compressive stress on the islands. C1 [Yacoby, Y.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Brooks, C.; Schlom, D.] Penn State Univ, Dept Mat Sci & Engn, College Park, PA 16802 USA. [Cross, J. O.; Walko, D. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cionca, C. N.; Husseini, N. S.; Riposan, A.; Clarke, R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Yacoby, Y (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM yizhak@vms.huji.ac.il RI Schlom, Darrell/J-2412-2013 OI Schlom, Darrell/0000-0003-2493-6113 NR 27 TC 4 Z9 4 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195426 DI 10.1103/PhysRevB.77.195426 PG 7 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600134 ER PT J AU Yu, SW Tobin, JG AF Yu, S. -W. Tobin, J. G. TI Breakdown of spatial inversion symmetry in core-level photoemission of Pt(001) SO PHYSICAL REVIEW B LA English DT Article ID SPIN-RESOLVED PHOTOEMISSION; LINEARLY POLARIZED RADIATION; PHOTO-ELECTRONS; NORMAL EMISSION; UNPOLARIZED LIGHT; EXPERIMENTAL-VERIFICATION; XENON ATOMS; SURFACES; PHOTOELECTRONS; PT(111) AB We have measured the,spin polarization of the 4d and 4f core-level photoelectrons from Pt(001) by using unpolarized laboratory x-ray sources under a highly bulk sensitive condition. The 4d and 4f photoelectrons are highly spin polarized perpendicular to the reaction plane as defined by the incident photons and the outgoing electrons. The measured spin polarization and a close look at the core-level photoemission process demonstrate that the bulk core-level photoemission with unpolarized light contributes to the measured spin polarization. This result is in contrast to the valence band photoemission from nonmagnetic solids, wherein the bulk cannot contribute to the measured spin polarization due to the existence of spatial inversion symmetry. Thus, the argument based on spatial inversion symmetry does not apply to the core-level photoemission. The measured spin polarization is in good agreement with an atomic model. C1 [Yu, S. -W.; Tobin, J. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yu, SW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yu21@llnl.gov RI Tobin, James/O-6953-2015 NR 33 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 193409 DI 10.1103/PhysRevB.77.193409 PG 4 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600035 ER PT J AU Zhang, L Erni, R Verbeeck, J Van Tendeloo, G AF Zhang, L. Erni, R. Verbeeck, J. Van Tendeloo, G. TI Retrieving the dielectric function of diamond from valence electron energy-loss spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID CVD DIAMOND; MICROSCOPY; SURFACE; EELS AB A data-acquisition and data-processing method is proposed that aims at minimizing the effect of retardation on the Kramers-Kronig analysis of valence electron energy-loss spectra. This method is applied to diamond, which, due to its high dielectric constant, is a material that shows strong retardation effects and thus is a challenging material to be studied by valence electron energy-loss spectroscopy. The results obtained show a significant improvement but still show small discrepancies with respect to optical data, which are most likely due to the residual retardation contributions and the fact that nonzero momentum transfers are measured. C1 [Zhang, L.; Verbeeck, J.; Van Tendeloo, G.] Univ Antwerp, EMAT, B-2000 Antwerp, Belgium. [Erni, R.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zhang, L (reprint author), Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2000 Antwerp, Belgium. EM liang.zhang@ua.ac.be RI Verbeeck, Jo/B-3707-2012; Zhang, Liang/L-4695-2013; Erni, Rolf/P-7435-2014 OI Verbeeck, Jo/0000-0002-7151-8101; Zhang, Liang/0000-0002-9665-2278; Erni, Rolf/0000-0003-2391-5943 NR 12 TC 9 Z9 9 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2008 VL 77 IS 19 AR 195119 DI 10.1103/PhysRevB.77.195119 PG 7 WC Physics, Condensed Matter SC Physics GA 316TC UT WOS:000256971600055 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Bombara, M Bonner, BE Botje, M Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, R Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Hughes, EW Humanic, TJ Lgo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, V Krueger, K Kuhn, C Kumar, A Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Tram, VN Tratmer, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkameev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. -R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, R. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Hughes, E. W. Humanic, T. J. Lgo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Tram, V. N. Tratmer, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkameev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Centrality dependence of charged hadron and strange hadron elliptic flow from root s(NN)=200 GeVAu+Au collisions SO PHYSICAL REVIEW C LA English DT Article ID LEE-YANG ZEROS; RELATIVISTIC NUCLEAR COLLISIONS; ANISOTROPIC FLOW; PHASE-TRANSITION; COLLECTIVE FLOW; SIGNATURE; ENERGY; EXPANSION; QCD AB We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K-S(0) and A. In the relatively low PT region, P-T <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Laue, F.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Potekhin, M.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.; Relyea, D.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Tratmer, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Lgo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Pachr, M.; Sumbera, M.] Acad Sci Czech Republic, Inst Phys Nucl, Prague 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Lab High Energy JINR, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkameev, R.; Zoulkarneeva, Y.] Particle Phys Lab JINR, Dubna, Russia. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Djawotho, P.; He, W.; Jacobs, W. W.; Qattan, I. A.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Rykov, V.; Subba, N. L.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Oldenburg, M.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Schweda, K.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, A.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; De Moura, M. M.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Liu, H.; Lu, Y.; Shao, M.; Tang, Z.; Wang, X. L.; Wu, J.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. -R. Dutta; Ganti, M. S.; Ghosh, R.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; LaPointe, S.; Pruneau, C.; Selyuzhenkov, I.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012 OI Qattan, Issam/0000-0001-5079-9840; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; NR 54 TC 167 Z9 168 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054901 DI 10.1103/PhysRevC.77.054901 PG 17 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600047 ER PT J AU Ahmad, I Kondev, FG Koenig, ZM McHarris, WC Yates, SW AF Ahmad, I. Kondev, F. G. Koenig, Z. M. McHarris, Wm. C. Yates, S. W. TI Two-quasiparticle states in (250)Bk studied by decay scheme and transfer reaction spectroscopy SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB Two-quasiparticle states in (250)Bk were investigated with decay scheme studies and the single-neutron transfer reaction (249)Bk(d, p)(250)Bk. Mass-separated sources of (254)Es were used for alpha singles and alpha-gamma coincidence measurements. These studies, plus previous studies of (254)Es(m) alpha decay and the (249)Bk(n, gamma) reaction, provide spins and parities of the observed levels. The transfer reaction (249)Bk(d, p)(250)Bk was used to deduce neutron single-particle components of the observed bands. Six pairs of singlet and triplet states, formed by the coupling of proton and neutron one-quasiparticle states, were identified. The splitting energies between the triplet and singlet states were found to be in agreement with previous calculations. C1 [Ahmad, I.; Kondev, F. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Koenig, Z. M.; McHarris, Wm. C.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Koenig, Z. M.; McHarris, Wm. C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Yates, S. W.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Yates, S. W.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Ahmad, I (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 33 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054302 DI 10.1103/PhysRevC.77.054302 PG 12 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600012 ER PT J AU Barnes, T Swanson, ES AF Barnes, T. Swanson, E. S. TI Hadron loops: General theorems and application to charmonium SO PHYSICAL REVIEW C LA English DT Article ID ZWEIG-IIZUKA RULE; QUARK-MODEL; STRONG DECAYS; BBBAR QUARKONIUM; PAIR CREATION; HEAVY MESONS; UNITARITY; SPECTRA; STATES; CCBAR AB In this paper, we develop a formalism for incorporating hadron loops into the quark model. We derive expressions for mass shifts, continuum components, and mixing amplitudes of "quenched" quark model states due to hadron loops, as perturbation series in the valence-continuum coupling Hamiltonian. We prove three general theorems regarding the effects of hadron loops, which show that given certain constraints on the external "bare" quark model states, the valence-continuum coupling, and the hadrons summed in the loops, the following results hold: (1) The loop mass shifts are identical for all states within a given N, L multiplet. (2) These states have the same total open-flavor decay widths. (3) Loop-induced valence configuration mixing vanishes provided that Li not equal L(f) or S(i) not equal S(f). The charmonium system is used as a numerical case study, with the (3)P(0) decay model providing the valence-continuum coupling. We evaluate the mass shifts and continuum mixing numerically for all 1S, 1P, and 2S charmonium valence states due to loops of D, D*, D(s)* and D* meson pairs. We find that the mass shifts are quite large but numerically similar for all the low-lying charmonium states, as suggested by the first theorem. Thus, loop mass shifts may have been "hidden" in the valence quark model by a change of parameters. The two-meson continuum components of the physical charmonium states are also found to be large, creating challenges for the interpretation of the constituent quark model. C1 [Barnes, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Swanson, E. S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Barnes, T (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM tbarnes@utk.edu; swansone@pitt.edu NR 56 TC 61 Z9 61 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 055206 DI 10.1103/PhysRevC.77.055206 PG 9 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600056 ER PT J AU Catanesi, MG Radicioni, E Edgecock, R Ellis, M Soler, FJP Gossling, C Bunyatov, S Krasnoperov, A Popov, B Serdiouk, V Tereschenko, V Di Capua, E Vidal-Sitjes, G Artamonov, A Giani, S Gilardoni, S Gorbunov, P Grant, A Grossheim, A Ivanchenko, A Ivanchenko, V Kayis-Topaksu, A Panman, J Papadopoulos, I Tcherniaev, E Tsukerman, I Veenhof, R Wiebusch, C Zucchelli, P Blondel, A Borghi, S Morone, MC Prior, G Schroeter, R Meurer, C Gastaldi, U Mills, GB Graulich, JS Gregoire, G Bonesini, M Ferri, F Kirsanov, M Bagulya, A Grichine, V Polukhina, N Palladino, V Coney, L Schmitz, D Barr, G De Santo, A Bobisut, F Gibin, D Guglielmi, A Mezzetto, M Dumarchez, J Dore, U Orestano, D Pastore, F Tonazzo, A Tortora, L Booth, C Howlett, L Skoro, G Bogomilov, M Chizhov, M Kolev, D Tsenov, R Piperov, S Temnikov, P Apollonio, M Chimenti, P Giannini, G Burguet-Castell, J Cervera-Villanueva, A Gomez-Cadenas, JJ Martin-Albo, J Novella, P Sorel, M Tornero, A AF Catanesi, M. G. Radicioni, E. Edgecock, R. Ellis, M. Soler, F. J. P. Goessling, C. Bunyatov, S. Krasnoperov, A. Popov, B. Serdiouk, V. Tereschenko, V. Di Capua, E. Vidal-Sitjes, G. Artamonov, A. Giani, S. Gilardoni, S. Gorbunov, P. Grant, A. Grossheim, A. Ivanchenko, A. Ivanchenko, V. Kayis-Topaksu, A. Panman, J. Papadopoulos, I. Tcherniaev, E. Tsukerman, I. Veenhof, R. Wiebusch, C. Zucchelli, P. Blondel, A. Borghi, S. Morone, M. C. Prior, G. Schroeter, R. Meurer, C. Gastaldi, U. Mills, G. B. Graulich, J. S. Gregoire, G. Bonesini, M. Ferri, F. Kirsanov, M. Bagulya, A. Grichine, V. Polukhina, N. Palladino, V. Coney, L. Schmitz, D. Barr, G. De Santo, A. Bobisut, F. Gibin, D. Guglielmi, A. Mezzetto, M. Dumarchez, J. Dore, U. Orestano, D. Pastore, F. Tonazzo, A. Tortora, L. Booth, C. Howlett, L. Skoro, G. Bogomilov, M. Chizhov, M. Kolev, D. Tsenov, R. Piperov, S. Temnikov, P. Apollonio, M. Chimenti, P. Giannini, G. Burguet-Castell, J. Cervera-Villanueva, A. Gomez-Cadenas, J. J. Martin-Albo, J. Novella, P. Sorel, M. Tornero, A. CA HARP Collaborat TI Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets SO PHYSICAL REVIEW C LA English DT Article ID ATMOSPHERIC NEUTRINO FLUX; PRODUCTION CROSS-SECTION; OF-FLIGHT SYSTEM; HARP EXPERIMENT; POSITIVE PIONS; CERN PS; BERYLLIUM; PERFORMANCE; GEANT4; CALIBRATION AB Measurements of the double-differential pi(+/-) production cross section in the momentum range 100 <= p <= 800 MeV/c and angle range 0.35 <= theta <= 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum, and proton-lead collisions are presented. The data were taken with the large-acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length. Tracking and identification of the produced particles was performed by using a small-radius cylindrical Time Projection Chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d(2)sigma /(dpd theta) at six incident proton beam momenta [3, 5, 8, and 8.9 GeV/c (Be only) and 12 and 12.9 GeV/c (Al only)]. They are based on a complete correction of static and dynamic distortions of tracks in the HARP TPC, which allows the complete statistics of the collected data set to be used. The results include and supersede our previously published results and are compatible with these. Results are compared with the GEANT4 and MARS Monte Carlo simulation. C1 [Catanesi, M. G.; Radicioni, E.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Edgecock, R.; Ellis, M.; Soler, F. J. P.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Goessling, C.] Univ Dortmund, Inst Phys, D-4600 Dortmund, Germany. [Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Di Capua, E.; Vidal-Sitjes, G.] Univ Ferrara, I-44100 Ferrara, Italy. [Di Capua, E.; Vidal-Sitjes, G.] Sezione Ist Nazl Fis Nucl, Ferrara, Italy. [Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.] CERN, Geneva, Switzerland. [Blondel, A.; Borghi, S.; Morone, M. C.; Prior, G.; Schroeter, R.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Meurer, C.] Forschungszentrum Karlsruhe, Inst Phys, Karlsruhe, Germany. [Gastaldi, U.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Mills, G. B.] Los Alamos Natl Lab, Los Alamos, NM USA. [Graulich, J. S.; Gregoire, G.] UCL, Inst Phys Nucl, Louvain, Belgium. [Bonesini, M.; Ferri, F.] Sezione INFN Milano Bicocca, Milan, Italy. [Kirsanov, M.] Inst Nucl Res, Moscow, Russia. [Bagulya, A.; Grichine, V.; Polukhina, N.] Russian Acad Sci, PN Lebedev Phys Inst FIAN, Moscow, Russia. [Palladino, V.] Univ Naples Federico II, Naples, Italy. [Palladino, V.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Coney, L.; Schmitz, D.] Columbia Univ, New York, NY USA. [Barr, G.; De Santo, A.] Univ Oxford, Nucl & Astrophys Lab, Oxford, England. [Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.] Univ Padua, Padua, Italy. [Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Dumarchez, J.] Univ Paris 06, LPNHE, Paris, France. [Dumarchez, J.] Univ Paris 07, LPNHE, Paris, France. [Dore, U.] Univ Roma La Sapienza, Rome, Italy. [Dore, U.] Sezione INFN Roma 1, Rome, Italy. [Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.] Univ Rome, Rome, Italy. [Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.] Sezione INFN Roma Tre, Rome, Italy. [Booth, C.; Howlett, L.; Skoro, G.] Univ Sheffield, Dept Phys, Sheffield, S Yorkshire, England. [Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia, Bulgaria. [Piperov, S.; Temnikov, P.] Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Apollonio, M.; Chimenti, P.; Giannini, G.] Univ Trieste, Trieste, Italy. [Apollonio, M.; Chimenti, P.; Giannini, G.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.] CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.] Univ Valencia, Valencia, Spain. RP Catanesi, MG (reprint author), Sezione Ist Nazl Fis Nucl, Bari, Italy. EM maurizio.bonesini@mib.infn.it RI Morone, Maria Cristina/P-4407-2016; Temnikov, Petar/L-6999-2016; Booth, Christopher/B-5263-2016; Grichine, Vladimir/M-8526-2015; Polukhina, Natalia/E-1610-2014; Soler, Paul/E-8464-2011; Tcherniaev, Evgueni/G-3453-2016; Graulich, Jean-Sebastien/B-4806-2009; Skoro, Goran/F-3642-2010; Chimenti, Pietro/F-9898-2012; Wiebusch, Christopher/G-6490-2012; Prior, Gersende/I-8191-2013; Bagulya, Alexander/D-4273-2014; Novella, Pau/K-2845-2014; Gomez Cadenas, Juan Jose/L-2003-2014; Skoro, Goran/P-1229-2014 OI Morone, Maria Cristina/0000-0002-0200-0632; Temnikov, Petar/0000-0002-9559-3384; Prior, Gersende/0000-0002-6058-1420; Booth, Christopher/0000-0002-6051-2847; Bonesini, Maurizio/0000-0001-5119-1896; Sorel, Michel/0000-0003-2141-9508; Martin-Albo, Justo/0000-0002-7318-1469; Schmitz, David/0000-0003-2165-7389; Soler, Paul/0000-0002-4893-3729; Tcherniaev, Evgueni/0000-0002-3685-0635; Chimenti, Pietro/0000-0002-9755-5066; Wiebusch, Christopher/0000-0002-6418-3008; Novella, Pau/0000-0002-0923-3172; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Skoro, Goran/0000-0001-7745-9045 NR 51 TC 37 Z9 37 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 055207 DI 10.1103/PhysReVC.77.055207 PG 49 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600057 ER PT J AU Chen, Q Howell, CR Carman, TS Gibbs, WR Gibson, BF Hussein, A Kiser, MR Mertens, G Moore, CF Morris, C Obst, A Pasyuk, E Roper, CD Salinas, F Setze, HR Slaus, I Sterbenz, S Tornow, W Walter, RL Whiteley, CR Whitton, M AF Chen, Q. Howell, C. R. Carman, T. S. Gibbs, W. R. Gibson, B. F. Hussein, A. Kiser, M. R. Mertens, G. Moore, C. F. Morris, C. Obst, A. Pasyuk, E. Roper, C. D. Salinas, F. Setze, H. R. Slaus, I. Sterbenz, S. Tornow, W. Walter, R. L. Whiteley, C. R. Whitton, M. TI Measurement of the neutron-neutron scattering length using the pi(-)d capture reaction SO PHYSICAL REVIEW C LA English DT Article ID DEUTERON BREAKUP EXPERIMENTS; EFFECTIVE-RANGE PARAMETERS; PHOTON SPECTRUM; ENERGY-LEVELS; ANN; PI-D->GAMMA-NN; HYDROGEN; STATE AB We have determined a value for the S-1(0) neutron-neutron scattering length (a(nn)) from high-precision measurements of time-of-flight spectra of neutrons from the H-2(pi(-), n gamma) n capture reaction. The measurements were done at the Los Alamos Meson Physics Facility by the E1286 Collaboration. The high spatial resolution of our gamma-ray detector enabled us to make a detailed assessment of the systematic uncertainties in our techniques. The value obtained in the present work is a(nn) = -18.63 +/- 0.10 (statistical) +/- 0.44 (systematic) +/- 0.30 (theoretical) fm. This result is consistent with previous determinations of a(nn) from the pi(-)d capture reaction. We found that the analysis of the data with calculations that use a relativistic phase-space factor gives a more negative value for a(nn) by 0.33 fm over the analysis done using a nonrelativistic phase-space factor. Combining the present result with the previous ones from pi(-)d capture gives a(nn) = -18.63 +/- 0.27(expt) +/- 0.30 fm (theory). For the first time the combined statistical and systematic experimental uncertainty in a is smaller than the theoretical uncertainty and comparable to the uncertainty in the proton-proton S-1(0) scattering length (a(pp)). This average value of a(nn) when corrected for the magnetic-moment interaction of the two neutrons becomes - 18.9 +/- 0.4 fm, which is 1.6 +/- 0.5 fm different from the recommended value of a(pp), thereby confirming charge symmetry breaking at the 1% confidence level. C1 [Chen, Q.; Howell, C. R.; Kiser, M. R.; Roper, C. D.; Salinas, F.; Setze, H. R.; Tornow, W.; Walter, R. L.] Duke Univ, Durham, NC USA. [Chen, Q.; Howell, C. R.; Kiser, M. R.; Roper, C. D.; Salinas, F.; Setze, H. R.; Tornow, W.; Walter, R. L.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Carman, T. S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gibbs, W. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Gibson, B. F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Hussein, A.] Univ No British Columbia, Prince George, BC V2L 5P2, Canada. [Mertens, G.] Univ Tubingen, Tubingen, Germany. [Moore, C. F.; Whiteley, C. R.] Univ Texas Austin, Austin, TX 78712 USA. [Pasyuk, E.] Joint Inst Nucl Res, Dubna, Russia. [Slaus, I.] Rudjer Boskovic Inst, Zagreb, Croatia. RP Chen, Q (reprint author), MCI, Ashburn, VA USA. OI Morris, Christopher/0000-0003-2141-0255 NR 48 TC 20 Z9 20 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054002 DI 10.1103/PhysRevC.77.054002 PG 19 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600009 ER PT J AU Clark, RM Macchiavelli, AO AF Clark, R. M. Macchiavelli, A. O. TI Exact and collective treatments of the pairing phase transition SO PHYSICAL REVIEW C LA English DT Article AB Results of an exact treatment of the pairing transition from harmonic vibration to deformed rotation are compared to the results of the recently introduced "critical point" description. The exact results provide a microscopic justification for the assumptions used to find relevant analytic solutions of the collective pairing Hamiltonian. The energies and transition intensities from the two approaches are found to be in close agreement. Comparison to available data on the Pb isotopes suggests that (208)Pb is very close to the critical-point of the pairing phase transition. C1 [Clark, R. M.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Clark, RM (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 057301 DI 10.1103/PhysRevC.77.057301 PG 4 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600064 ER PT J AU Ding, HB Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Li, K Liu, SH Luo, YX Rasmussen, JO Goodin, CT Lee, IY Daniel, AV Ter-Akopian, GM Wang, JG Che, XL Gu, L Ma, WC AF Ding, H. B. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Li, K. Liu, S. H. Luo, Y. X. Rasmussen, J. O. Goodin, C. T. Lee, I. Y. Daniel, A. V. Ter-Akopian, G. M. Wang, J. G. Che, X. L. Gu, L. Ma, W. C. TI Identification of the nu 7/2(+)[404] band in neutron-rich Ru-109 SO PHYSICAL REVIEW C LA English DT Article ID COLLECTIVE BANDS; NUCLEUS; FISSION; STATES; ISOTOPES; MO-106 AB The high-spin spectroscopy of neutron-rich Ru-109 is studied by measuring the prompt gamma rays from the spontaneous fission fragments of Cf-252 with 102 Compton-suppressed Ge detectors in the Gammasphere detector array. Previous band structures are confirmed and the ground state band is extended. A positive parity band based on a 332.5 keV level is newly identified. This band is proposed as a single-neutron excitation band built on the 7/2(+)[404] Nilsson orbital. Some band structural characteristics are discussed. C1 [Ding, H. B.; Zhu, S. J.; Wang, J. G.; Che, X. L.; Gu, L.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Li, K.; Liu, S. H.; Luo, Y. X.; Goodin, C. T.; Daniel, A. V.; Ter-Akopian, G. M.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, S. J.; Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Daniel, A. V.; Ter-Akopian, G. M.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. RP Ding, HB (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn NR 31 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 057302 DI 10.1103/PhysRevC.77.057302 PG 4 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600065 ER PT J AU Esbensen, H AF Esbensen, H. TI Coupled-channels calculations of O-16+O-16 fusion SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; COULOMB BARRIER; NUCLEAR-FUSION; SCATTERING; O-16&O-16; O-16; SYSTEM AB Fusion data for O-16 + O-16 are analyzed by coupled-channels calculations. It is shown that the calculated cross sections are sensitive to the couplings to the 2(+) and 3(-) excitation channels even at low energies, where these channels are closed. The sensitivity to the ion-ion potential is investigated by applying a conventional Woods-Saxon potential and the M3Y+repulsion potential, consisting of the M3Y double-folding potential and a repulsive term that simulates the effect of the nuclear incompressibility. The best overall fit to the data is obtained with a M3Y+repulsion potential that produces a shallow potential in the entrance channel. The stepwise increase in measured fusion cross sections at high energies is also consistent with such a shallow potential. The steps are correlated with overcoming the barriers for the angular momenta L = 12, 14, 16, and 18. To improve the fit to the low-energy data requires a shallower potential and this causes a even stronger hindrance of fusion at low energies. It is therefore difficult, based on the existing fusion data, to make an accurate extrapolation to energies that are of interest to astrophysics. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 32 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054608 DI 10.1103/PhysRevC.77.054608 PG 7 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600039 ER PT J AU Krticka, M Firestone, RB McNabb, DP Sleaford, B Agvaanluvsan, U Belgya, T Revay, ZS AF Krticka, M. Firestone, R. B. McNabb, D. P. Sleaford, B. Agvaanluvsan, U. Belgya, T. Revay, Z. S. TI Thermal neutron capture cross sections of the palladium isotopes SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY; DECAY; RESONANCES; PD-103; WIDTHS AB Precise thermal neutron capture gamma-ray cross sections sigma(gamma), were measured for all elements with Z = 1-83, 90, and 92, except for He and Pin, at the Budapest Reactor. These data were evaluated with additional infon-nation from the literature to generate the Evaluated Gamma-ray Activation File (EGAF). Isotopic radiative neutron cross sections can be deduced from the total transition cross section feeding the ground state, sigma(0) = Sigma sigma(gamma)(GS) if the decay scheme is complete. The EGAF file contains partial gamma-ray cross sections for all stable palladium isotopes. None of these decay schemes are complete, although in each case transitions de-exciting low-lying levels are known. We have performed Monte Carlo simulations of the palladium thermal neutron capture decay schemes using the computer code DICEBOX. The simulated populations of low low-lying levels are normalized to the measured ay values from EGAF and the total radiative neutron cross section sigma(0) is obtained. The sigma(0) values derived for the palladium isotopes agree well with previous measurements and were in several cases more precise. Complementary use of gamma-ray cross-section data and Monte Carlo calculations has proven effective in determining both the palladium total radiative cross sections and new nuclear structure information. C1 [Krticka, M.] Charles Univ Prague, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Krticka, M.] N Carolina State Univ, Raleigh, NC 27695 USA. [Firestone, R. B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Belgya, T.; Revay, Z. S.] Ins Isotope & Surface Chem, H-15253 Budapest, Hungary. RP Krticka, M (reprint author), Charles Univ Prague, Fac Math & Phys, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic. OI Firestone, Richard/0000-0003-3833-5546 NR 29 TC 21 Z9 21 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054615 DI 10.1103/PhysRevC.77.054615 PG 14 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600046 ER PT J AU Krticka, M Becvar, F Tomandl, I Rusev, G Agvaanluvsan, U Mitchell, GE AF Krticka, M. Becvar, F. Tomandl, I. Rusev, G. Agvaanluvsan, U. Mitchell, G. E. TI Two-step gamma cascades following thermal neutron capture in (95)Mo SO PHYSICAL REVIEW C LA English DT Article ID PHOTON STRENGTH FUNCTIONS; GAMMA-CASCADES; LEVEL DENSITY; RESONANCE; NUCLEI; WIDTHS AB A strong enhancement of the photon strength function at low gamma-ray energies was recently reported for several Mo isotopes. To study this enhancement further we have measured the spectra of two-step gamma cascades following thermal neutron capture in (95)Mo. These spectra were compared with simulations of the gamma decay of (96)MO performed with the aid of the DICEBOX algorithm. Simulations with a large number of model combinations of photon strength functions for E1, M1, and E2 radiation are not consistent with the strong enhancement observed in the (96)Mo((3)He,(3)He'gamma)(96)Mo and (97)Mo((3)He, alpha gamma)(96)Mo reactions. Predictions based on a combination of E1, M1, and E2 photon strength functions with no enhancement of the photon strength functions at low gamma-ray energies are in good agreement with the two-step gamma cascade data. C1 [Krticka, M.; Becvar, F.] Charles Univ Prague, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Tomandl, I.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Rusev, G.] Forschungszentrum Dresden, Inst Radiat Phys, D-013128 Dresden, Germany. [Agvaanluvsan, U.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mitchell, G. E.] N Carolina State Univ, Raleigh, NC 27708 USA. [Mitchell, G. E.] Triangle Univ, Nucl Lab, Durham, NC 27708 USA. RP Krticka, M (reprint author), Charles Univ Prague, Fac Math & Phys, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic. EM krticka@ipnp.troja.mff.cuni.cz RI Tomandl, Ivo/G-7816-2014 NR 35 TC 19 Z9 19 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054319 DI 10.1103/PhysRevC.77.054319 PG 15 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600029 ER PT J AU Liu, W Fries, RJ AF Liu, W. Fries, R. J. TI Probing nuclear matter with jet conversions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; COLLISIONAL ENERGY-LOSS; HADRON SPECTRA; COLLABORATION; MOMENTUM; PHOTONS; PARTONS; OPACITY; QGP; QCD AB We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum PT. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum PT that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/lambda, while energy loss probes the average squared momentum transfer mu(2)/lambda. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p(T) identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects. C1 [Liu, W.; Fries, R. J.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Liu, W.; Fries, R. J.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Fries, R. J.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Liu, W (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. NR 59 TC 27 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054902 DI 10.1103/PhysRevC.77.054902 PG 10 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600048 ER PT J AU McCutchan, EA Casten, RF AF McCutchan, E. A. Casten, R. F. TI Classes of beta-gamma mixing and E0 transitions in deformed nuclei SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING BOSON MODEL; SPIN NONYRAST STATES; COLLECTIVE STATES; DATA SHEETS; LIMIT; NUMBER AB We investigate the effects of 8-gamma mixing using branching ratios between the 2(gamma)(+) level and the, ground state band in well-deformed nuclei. We find that the deviations from the well-known Alaga rules vary as a function of the energy separation between the 2(gamma)(+) and 2(beta)(+) levels. For-nuclei where these two intrinsic excitations are nearly degenerate, we- find two classes of behavior. For one of those, the s stematics can be reproduced in a simple bandmixing formalism but only with an anomalously strong interaction strength between the 2(gamma)(+) and 2(beta)(+)levels, on the order of tens of keV. This result is supported by X(E0/E2; 2(gamma)(+)-> 2(1)(+)) values that are large for these nuclei (where measured), indicating significant K = 0 components in the 2(gamma)(+) levels. In the other class, there is virtually no mixing. These nuclei have previously been associated with near-SU(3) structure. C1 [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [McCutchan, E. A.; Casten, R. F.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP McCutchan, EA (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 2 Z9 2 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054320 DI 10.1103/PhysRevC.77.054320 PG 5 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600030 ER PT J AU McCutchan, EA Casten, RF Werner, V Williams, E Winkler, R Wolf, A Berant, Z Gurdal, G Qian, J Ai, H Amon, L Beausang, CW Brenner, DS Cakirli, RB Casperson, RJ Fitzpatrick, CR Frank, D Garnsworthy, AB Heinz, A Luttke, R Mertz, AF Oktem, Y Pietralla, N Regan, PH Shoraka, B Terry, JR Thompson, NJ AF McCutchan, E. A. Casten, R. F. Werner, V. Williams, E. Winkler, R. Wolf, A. Berant, Z. Gurdal, G. Qian, J. Ai, H. Amon, L. Beausang, C. W. Brenner, D. S. Cakirli, R. B. Casperson, R. J. Fitzpatrick, C. R. Frank, D. Garnsworthy, A. B. Heinz, A. Luettke, R. Mertz, A. F. Oktem, Y. Pietralla, N. Regan, P. H. Shoraka, B. Terry, J. R. Thompson, N. J. TI Enhanced mixing of intrinsic states in deformed Hf nuclei SO PHYSICAL REVIEW C LA English DT Article ID TUNGSTEN NUCLEI; DECAY; TA-174; BETA; HF-174 AB Excited low-spin, nonyrast states in (170,172,174)Hf were populated in beta(+)/epsilon decay and studied through off-beam, gamma-ray spectroscopy. New coincidence data allowed for a substantial revision of the level schemes (170,174)Hf and a confirmation of the level scheme of (174)Hf. The Hf isotopes represent a unique situation in which a crossing of collective intrinsic excitations occurs, enhancing significantly the effects of mixing. Using branching ratios from excited 2(+) states, this mixing is followed and studied. The resulting mixing matrix elements are found to be similar to 30 keV-an order of magnitude larger than estimated previously for nearby nuclei. In the case of (170)Hf, the 2(beta)(+) and 2(gamma)(+) level are shown to be completely mixed. C1 [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [McCutchan, E. A.; Casten, R. F.; Werner, V.; Williams, E.; Winkler, R.; Wolf, A.; Berant, Z.; Gurdal, G.; Qian, J.; Ai, H.; Casperson, R. J.; Fitzpatrick, C. R.; Frank, D.; Garnsworthy, A. B.; Heinz, A.; Luettke, R.; Mertz, A. F.; Shoraka, B.; Terry, J. R.; Thompson, N. J.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Wolf, A.; Berant, Z.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Gurdal, G.; Brenner, D. S.] Clark Univ, Dept Chem, Worcester, MA 01610 USA. [Amon, L.; Cakirli, R. B.; Oktem, Y.] Univ Istanbul, Dept Phys, Istanbul, Turkey. [Beausang, C. W.] Univ Richmond, Richmond, VA 23173 USA. [Fitzpatrick, C. R.; Garnsworthy, A. B.; Regan, P. H.; Shoraka, B.; Thompson, N. J.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Luettke, R.; Pietralla, N.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. RP McCutchan, EA (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Qian, Jing/F-9639-2010; Heinz, Andreas/E-3191-2014; Williams, Elizabeth/D-3442-2014; Werner, Volker/C-1181-2017; OI Werner, Volker/0000-0003-4001-0150; Fitzpatrick, Catherine/0000-0002-8866-9547 NR 27 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054304 DI 10.1103/PhysRevC.77.054304 PG 14 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600014 ER PT J AU Mei, DM Elliott, SR Hime, A Gehman, V Kazkaz, K AF Mei, D. -M. Elliott, S. R. Hime, A. Gehman, V. Kazkaz, K. TI Neutron inelastic scattering processes as a background for double-beta decay experiments SO PHYSICAL REVIEW C LA English DT Article ID DETECTORS; ENERGIES; GE-76 AB We investigate several Pb(n, n'gamma) and Ge(n, n'gamma) reactions. We measure gamma-ray production from Pb(n, n'gamma) reactions that can be a significant background for double-P decay experiments which use lead as a massive inner shield. Particularly worrisome for Ge-based double-beta decay experiments are the 2041-keV and 3062-keV gamma rays produced via Pb(n, n'gamma). The former is very close to the 76 Ge double-decay endpoint energy and the latter has a double escape peak energy near the. endpoint. We discuss the implications of these gamma rays on past and future double-P decay experiments and estimate the cross section to excite the level that produces the 3062-keV gamma ray. Excitation gamma-ray lines from Ge(n, n'gamma) reactions are also observed. We consider the contribution of such backgrounds and their impact on the sensitivity of next-generation searches for neutrinoless double-beta decay using enriched germanium detectors. C1 [Mei, D. -M.; Elliott, S. R.; Hime, A.; Gehman, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mei, D. -M.] Univ S Dakota, Dept Earth Sci & Phys, Vermillion, SD 57069 USA. [Gehman, V.; Kazkaz, K.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Gehman, V.; Kazkaz, K.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Kazkaz, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mei, DM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 32 TC 20 Z9 20 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054614 DI 10.1103/PhysRevC.77.054614 PG 15 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600045 ER PT J AU Mineo, H Tjon, JA Tsushima, K Yang, SN AF Mineo, H. Tjon, J. A. Tsushima, K. Yang, Shin Nan TI Faddeev calculation of the pentaquark Theta(+) in the Nambu-Jona-Lasinio model-based diquark picture SO PHYSICAL REVIEW C LA English DT Article ID MULTI-QUARK HADRONS; STATIC PROPERTIES; PARTICLE PHYSICS; DYNAMICAL MODEL; BARYONS; NUCLEON; SEARCH; SUPERCONDUCTIVITY; THETA(1540)(+); SCATTERING AB A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark Theta(+) in the diquark picture of Jaffe and Wilczek in which Theta(+) is a diquark-diquark-(s) over bar three-body system. The Nambu-Jona-Lasinio (NJL) model is used to calculate the lowest order diagrams in the two-body scatterings of D and DD. With the use of coupling constants determined from the meson sector, we find that (s) over barD interaction is attractive in s-wave while the DD interaction is repulsive in the p-wave. With only the lowest three-body channel considered, we do not find a bound 1/2(+) pentaquark state. Instead, a bound pentaquark Theta(+) with 1/2(-) is obtained with unphysically strong vector mesonic coupling constants. C1 [Mineo, H.; Tjon, J. A.; Yang, Shin Nan] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Mineo, H.] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Mineo, H.] Natl Taiwan Univ, Inst Appl Mech, Taipei 10617, Taiwan. [Tjon, J. A.] Univ Groningen, KVI, NL-9700 AB Groningen, Netherlands. [Tsushima, K.] Natl Ctr Theoret Sci, Taipei 10617, Taiwan. [Tsushima, K.] Univ Salamanca, Grp Fis Nucl & IUFFyM, E-37008 Salamanca, Spain. [Tsushima, K.] Ctr Theory, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Mineo, H (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. EM mineo@gate.sinica.edu.tw; tsushima@jlab.org RI mineo, hirobumi/N-6750-2014 OI mineo, hirobumi/0000-0002-4835-6634 NR 48 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 055203 DI 10.1103/PhysRevC.77.055203 PG 12 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600053 ER PT J AU Stave, S Ahmed, MW Antolak, AJ Blackston, MA Crowell, AS Doyle, BL Henshaw, SS Howell, CR Kingsberry, P Perdue, BA Rossi, P Prior, RM Spraker, MC Weller, HR AF Stave, S. Ahmed, M. W. Antolak, A. J. Blackston, M. A. Crowell, A. S. Doyle, B. L. Henshaw, S. S. Howell, C. R. Kingsberry, P. Perdue, B. A. Rossi, P. Prior, R. M. Spraker, M. C. Weller, H. R. TI Cross section measurements of the (10)B(d, n(0))(11)C reaction below 160 keV SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON INTERROGATION; EXCITATION-FUNCTIONS; ELASTIC SCATTERING; NUCLEAR-REACTIONS; OPTICAL-MODEL; ENERGY-LEVELS; LIGHT-NUCLEI; B-10(D,N)C-11; C-12(D,N)N-13 AB New data were taken at the Triangle Universities Nuclear Laboratory to investigate the plausibility of using low energy deuterons and the (10)B(d, n)(11)C reaction as a portable source of 6.3 MeV neutrons. Analysis of the data at and below incident deuteron energies of 160 keV indicates an no neutron cross section that is lower than previous estimates by at least three orders of magnitude. In separate runs, deuterons with two different energies (160 and 140 keV) were stopped in a (10)B target. The resulting no neutrons of approximately 6.3 MeV were detected at angles between 0 degrees and 150 degrees. The angle integrated yields were used to determine the astrophysical S factor for this reaction assuming a constant value for the S factor below 160 keV. The cross sections reported between 130 and 160 keV were calculated using the extracted value of the S factor. The measured no cross section is several orders of magnitude smaller than previous results, thus eliminating (10)B(d, n)(11)C as a portable source of intense neutrons with low energy deuteron beams on the order of tens of microamps. In order to gain insight into the reaction dynamics at these low energies the cross section results have been compared with results from calculations using the distorted wave Born approximation (DWBA) and a detailed Hauser-Feshbach calculation performed by the authors. The angular distribution is consistent with the Hauser-Feshbach calculation suggesting a statistical compound nucleus reaction rather than a direct reaction. C1 [Stave, S.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Henshaw, S. S.; Howell, C. R.; Kingsberry, P.; Perdue, B. A.; Spraker, M. C.; Weller, H. R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Stave, S.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Henshaw, S. S.; Howell, C. R.; Kingsberry, P.; Perdue, B. A.; Prior, R. M.; Spraker, M. C.; Weller, H. R.] Triangle Univ, Nucl Lab, Durham, NC 27708 USA. [Antolak, A. J.] Sandia Natl Labs, Livermore, CA 94550 USA. [Doyle, B. L.; Rossi, P.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Prior, R. M.; Spraker, M. C.] N Georgia Coll & State Univ, Dahlonega, GA 30597 USA. RP Stave, S (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. NR 27 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054607 DI 10.1103/PhysRevC.77.054607 PG 6 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600038 ER PT J AU Stoitsov, M Michel, N Matsuyanagi, K AF Stoitsov, M. Michel, N. Matsuyanagi, K. TI New efficient method for performing Hartree-Fock-Bogoliubov calculations for weakly bound nuclei SO PHYSICAL REVIEW C LA English DT Article ID HARMONIC-OSCILLATOR BASIS; BOGOLYUBOV EQUATIONS; DRIP-LINE; ROTATIONAL BANDS; PROGRAM; SYMMETRY; REGION AB We propose a new method to solve the Hartree-Fock-Bogoliubov equations for weakly bound nuclei, which works for both spherical and axially deformed cases. In this approach, the quasiparticle wave functions are expanded in a complete set of analytical Poschl-Teller-Ginocchio and Bessel/Coulomb wave functions. Correct asymptotic properties of the quasiparticle wave functions are endowed in the proposed algorithm. Good agreement is obtained with the results of the Hartree-Fock-Bogoliubov calculation using box boundary condition for a set of benchmark spherical and deformed nuclei. C1 [Stoitsov, M.; Michel, N.; Matsuyanagi, K.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. [Stoitsov, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stoitsov, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stoitsov, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. RP Stoitsov, M (reprint author), Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. EM nicolas-l.michel@cea.fr NR 34 TC 23 Z9 24 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054301 DI 10.1103/PhysRevC.77.054301 PG 12 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600011 ER PT J AU Tonchev, AP Angell, CT Boswell, M Crowell, AS Fallin, B Hammond, S Howell, CR Hutcheson, A Karwowski, HJ Kelley, JH Pedroni, RS Tornow, W Becker, JA Dashdorj, D Kenneally, J Macri, RA Stoyer, MA Wu, CY Bond, E Chadwick, MB Fitzpatrick, J Kawano, T Rundberg, RS Slemmons, A Vieira, DJ Wilhelmy, JB AF Tonchev, A. P. Angell, C. T. Boswell, M. Crowell, A. S. Fallin, B. Hammond, S. Howell, C. R. Hutcheson, A. Karwowski, H. J. Kelley, J. H. Pedroni, R. S. Tornow, W. Becker, J. A. Dashdorj, D. Kenneally, J. Macri, R. A. Stoyer, M. A. Wu, C. Y. Bond, E. Chadwick, M. B. Fitzpatrick, J. Kawano, T. Rundberg, R. S. Slemmons, A. Vieira, D. J. Wilhelmy, J. B. TI Measurement of the (241)Am(n, 2n) reaction cross section from 7.6 MeV to 14.5 MeV SO PHYSICAL REVIEW C LA English DT Article AB The (n, 2n) cross section of the radioactive isotope (241)Am (T(1/2) = 432.6 y) has been measured in the incident neutron energy range from 7.6 to 14.5 MeV in steps of a few MeV using the activation technique. Monoenergetic neutron beams were produced via the (2)H(d, n)(3) He reaction by bombarding a pressurized deuterium gas cell with an energetic deuteron beam at the TUNL 10-MV Van de Graaff accelerator facility. The induced gamma-ray activity of (240)Am was measured with high-resolution HPGe detectors. The cross section was determined relative to Al, Ni, and Au neutron activation monitor foils, measured in the same geometry. Good agreement is obtained with previous measurements at around 9 and 14 MeV, whereas for a large discrepancy is observed when our data are compared to those reported by Perdikakis et aL. near 11MeV. Very good agreement is found with the END-B/VII evaluation, whereas the JENDL-3.3 evaluation is in fair agreement with our data. C1 [Tonchev, A. P.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Tornow, W.] Duke Univ, Durham, NC 27708 USA. [Tonchev, A. P.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Tornow, W.] TUNL, Durham, NC 27708 USA. [Angell, C. T.; Boswell, M.; Hammond, S.; Karwowski, H. J.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Angell, C. T.; Boswell, M.; Hammond, S.; Karwowski, H. J.] TUNL, Chapel Hill, NC 27599 USA. [Kelley, J. H.] N Carolina State Univ, Raleigh, NC 27695 USA. [Kelley, J. H.] TUNL, Raleigh, NC 27695 USA. [Pedroni, R. S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Pedroni, R. S.] TUNL, Greensboro, NC 27411 USA. [Becker, J. A.; Dashdorj, D.; Kenneally, J.; Macri, R. A.; Stoyer, M. A.; Wu, C. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bond, E.; Chadwick, M. B.; Fitzpatrick, J.; Kawano, T.; Rundberg, R. S.; Slemmons, A.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tonchev, AP (reprint author), Duke Univ, Durham, NC 27708 USA. NR 14 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054610 DI 10.1103/PhysRevC.77.054610 PG 7 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600041 ER PT J AU Ukai, M Ajimura, S Akikawa, H Alburger, DE Banu, A Chrien, RE Franklin, GB Franz, J Hashimoto, O Hayakawa, T Hotchi, H Imai, K Kishimoto, T May, M Millener, DJ Minami, S Miura, Y Miyoshi, T Mizunuma, K Nagae, T Nakamura, SN Nakazawa, K Okayasu, Y Pile, P Quinn, BP Rusek, A Sato, Y Sutter, R Takahashi, H Tang, L Tamura, H Tanida, K Zhou, SH AF Ukai, M. Ajimura, S. Akikawa, H. Alburger, D. E. Banu, A. Chrien, R. E. Franklin, G. B. Franz, J. Hashimoto, O. Hayakawa, T. Hotchi, H. Imai, K. Kishimoto, T. May, M. Millener, D. J. Minami, S. Miura, Y. Miyoshi, T. Mizunuma, K. Nagae, T. Nakamura, S. N. Nakazawa, K. Okayasu, Y. Pile, P. Quinn, B. P. Rusek, A. Sato, Y. Sutter, R. Takahashi, H. Tang, L. Tamura, H. Tanida, K. Zhou, S. H. CA E903 01 Collaboration TI gamma-ray spectroscopy of (16)(Lambda)O and (15)(Lambda)N hypernuclei via the (16)O(K(-), pi(-)gamma) reaction SO PHYSICAL REVIEW C LA English DT Article ID BINDING-ENERGY VALUES; LAMBDA-HYPERNUCLEI; P-SHELL; HYPERON-NUCLEON; LIGHT-NUCLEI; 1P SHELL; TRANSITIONS; DECAY; LI-7(LAMBDA); C-12(LAMBDA) AB The bound-state level structures of the (16)(Lambda)O and (15)(Lambda)N hypernuclei were studied by gamma-ray spectroscopy using a germanium detector array (Hyperball) via the (16)O (K(-), pi(-) gamma) reaction. A level scheme for (16)(Lambda)O was determined from the observation of three gamma-ray transitions from the doublet of states (2(-), 1(-)) at similar to 6.7 MeV to the ground-state doublet (1(-), 0(-)). The (15)(Lambda)N hypernuclei were produced via proton emission from unbound states in (16)(Lambda)O. Three gamma rays were observed, and the lifetime of the 1/2(+); 1 state in (15)(Lambda)N was measured by the Doppler shift attenuation method. By comparing the experimental results with shell-model calculations, the spin dependence of the Lambda N interaction is discussed. In particular, the measured (16)(Lambda)O ground-state doublet spacing of 26.4 +/- 1.6 +/- 0.5 keV A determines a small but nonzero strength of the Lambda N tensor interaction. C1 [Ukai, M.; Hashimoto, O.; Miura, Y.; Miyoshi, T.; Mizunuma, K.; Nakamura, S. N.; Okayasu, Y.; Tamura, H.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Ajimura, S.; Hayakawa, T.; Kishimoto, T.; Minami, S.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Akikawa, H.; Imai, K.; Takahashi, H.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Alburger, D. E.; Chrien, R. E.; Hotchi, H.; May, M.; Millener, D. J.; Pile, P.; Rusek, A.; Sutter, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Banu, A.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Franklin, G. B.; Quinn, B. P.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Franz, J.] Univ Freiburg, Dept Phys, D-79104 Freiburg, Germany. [Nagae, T.; Sato, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Tang, L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Tanida, K.] RIKEN, Wako, Saitama 3510198, Japan. [Zhou, S. H.] China Inst Atom Energy, Dept Phys, Beijing 102413, Peoples R China. [Ukai, M.; Nakazawa, K.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. RP Ukai, M (reprint author), Gifu Univ, Dept Phys, Gifu 5011193, Japan. RI Franklin, Gregg/N-7743-2014; Quinn, Brian/N-7343-2014 OI Franklin, Gregg/0000-0003-4176-1378; Quinn, Brian/0000-0003-2800-986X NR 54 TC 36 Z9 36 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054315 DI 10.1103/PhysRevC.77.054315 PG 20 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600025 ER PT J AU Wiedeking, M Fallon, P Macchiavelli, AO Bernstein, LA Gibelin, J Phair, L Burke, JT Bleuel, DL Clark, RM Deleplanque, MA Gros, S Hatarik, R Jeppesen, HB Lee, IY Lyles, BF McMahan, MA Moretto, LG Pavan, J Rodriguez-Vieitez, E Volya, A AF Wiedeking, M. Fallon, P. Macchiavelli, A. O. Bernstein, L. A. Gibelin, J. Phair, L. Burke, J. T. Bleuel, D. L. Clark, R. M. Deleplanque, M-A. Gros, S. Hatarik, R. Jeppesen, H. B. Lee, I-Y. Lyles, B. F. McMahan, M. A. Moretto, L. G. Pavan, J. Rodriguez-Vieitez, E. Volya, A. TI Nuclear structure of (18)N and the neighboring N=11 isotones SO PHYSICAL REVIEW C LA English DT Article ID MAGNETIC-MOMENT; GROUND-STATE; BETA-DECAY; CLOVER; MASS AB The fusion-evaporation reaction (9)Be((11)B,2p) was used to populate excited states in (18)N. New gamma-ray transitions were added to the (18)N level scheme. The mean lifetime of the first excited state was measured to be 582(165) ps and its transition rate to the ground state was determined to be B(M1) = 0.036(10) W.u. Shell model calculations in the full p-sd model space were used to investigate the low-lying configurations in (18)N and in the N = 11 isotones (17)C and (19)O. It was found that the role of the proton-neutron interaction is important in determining the ground state and low-lying excited state properties. The ground state spin inversion in these isotones is attributed to the increased importance of the quadrupole relative to the pairing interaction and is discussed within the framework of a schematic pairing + quadrupole model. C1 [Wiedeking, M.; Fallon, P.; Macchiavelli, A. O.; Gibelin, J.; Phair, L.; Clark, R. M.; Deleplanque, M-A.; Gros, S.; Jeppesen, H. B.; Lee, I-Y.; McMahan, M. A.; Moretto, L. G.; Pavan, J.; Rodriguez-Vieitez, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lyles, B. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hatarik, R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lyles, B. F.; Rodriguez-Vieitez, E.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Moretto, L. G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Wiedeking, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Volya, Alexander/I-9457-2012; Burke, Jason/I-4580-2012 OI Volya, Alexander/0000-0002-1765-6466; NR 29 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2008 VL 77 IS 5 AR 054305 DI 10.1103/PhysRevC.77.054305 PG 6 WC Physics, Nuclear SC Physics GA 315NB UT WOS:000256885600015 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carrillo, S Carlsmith, D Carosi, R Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Cilijak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC DaRonco, S Datta, M D'Auria, S Davies, T Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Doerr, C Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraan, AC Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuno, S Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veramendi, G Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carrillo, S. Carlsmith, D. Carosi, R. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Cilijak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. DaRonco, S. Datta, M. D'Auria, S. Davies, T. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Doerr, C. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraan, A. C. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuno, S. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veramendi, G. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. TI Search for third generation vector leptoquarks in p(p)over-barcollisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID TAU-LEPTONS; COLLISIONS; SYSTEM AB We search for a third generation vector leptoquark (VLQ3) that decays to a b quark and tau lepton using the CDF II detector and 320 pb(-1) of integrated luminosity from the Fermilab Tevatron. Observing a number of events in agreement with standard model expectations, we obtain, assuming Yang-Mills (minimal) couplings, the most stringent upper limit on the VLQ3 pair production cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317 GeV/c(2) (251 GeV/c(2)) at 95% C.L. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Cuevas, J.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Norniella, O.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Margaroli, F.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Mohr, B.; Plager, C.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Neubauer, M. S.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Affolder, T.; Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Krutelyov, V.; Mills, C.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Rusu, V.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Nucl Res Inst, RU-141980 Dubna, Russia. [Antos, J.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Benjamin, D.; Bocci, A.; Coca, M.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Anikeev, K.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Chlachidze, G.; Chlebana, F.; Culbertson, R.; Datta, M.; Dagenhart, D.; Derwent, P. F.; Eusebi, R.; Ginsburg, C.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lin, C. S.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Marginean, R.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Goldschmidt, N.; Jindariani, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Campanelli, M.; Clark, A.; Hamilton, A.; Lefevre, R.; Moed, S.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; D'Auria, S.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Holloway, A.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Pitts, K.; Rogers, E.; Veramendi, G.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Martin, M.; Mumford, R.; Pursley, J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Doerr, C.; Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kemp, Y.; Kerzel, U.; Kreps, M.; Kuhr, T.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Miyamoto, A.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, I.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Belloni, A.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Mazini, R.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Vollrath, I.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Mazini, R.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Vollrath, I.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Tsuno, S.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; DaRonco, S.; Paoli, F. Delli; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.] Univ Padua, Ist Nazl Fis Nucl, Sezione Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, CNRS, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kraan, A. C.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Cilijak, M.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Fedorko, I.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Staveris-Polykalas, A.; Tonelli, D.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Convery, M. E.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sezione Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Jang, D.; Lath, A.; Somalwar, S.; Yamaoka, J.; Zhou, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Aoki, M.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Matsunaga, H.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Gay, C.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI De Cecco, Sandro/B-1016-2012; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Robson, Aidan/G-1087-2011; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133 NR 22 TC 14 Z9 14 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2008 VL 77 IS 9 AR 091105 DI 10.1103/PhysRevD.77.091105 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 307DB UT WOS:000256297000005 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Two-particle momentum correlations in jets produced in p(p)over-barcollisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID QCD ANALYTIC PREDICTIONS; QUARK JETS; GLUON JETS; HADRON SPECTRA; 3-JET EVENTS; SMALL-X; MULTIPLICITY; DISTRIBUTIONS; PARTON; COLLISIONS AB We present the first measurement of two-particle momentum correlations in jets produced in p (p) over bar collisions at root s = 1.96 TeV. Results are obtained for charged particles within a restricted cone with an opening angle of 0.5 radians around the jet axis and for events with dijet masses between 66 and 563 GeV/c(2). A comparison of the experimental data to theoretical predictions obtained for partons within the framework of resummed perturbative QCD in the next-to-leading log approximation shows that the parton momentum correlations survive the hadronization stage of jet fragmentation, giving further support to the hypothesis of local parton-hadron duality. The extracted value of the next-to-leading-log-approximation parton shower cutoff scale Q(eff) set equal to Lambda(QCD) is found to be (1.4(-0.7)(+0.9)) x 100 MeV. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Hlesinki Inst Phys, FIN-0001 Helsinki, Finland. [Chen, Y. C.; Lu, R. -S.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Blair, R. E.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.; Mussini, M.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energt Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Apresyan, A.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Sez Padova Trento, Inst Zazl Fis Nucl, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, CNRS, UMR 7585,LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena & Scula Normale Super, I-56127 Pisa, Italy. [Boudreau, J.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Gibson, K.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, Coll Stn, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 48 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2008 VL 77 IS 9 AR 092001 DI 10.1103/PhysRevD.77.092001 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 307DB UT WOS:000256297000011 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grurnewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Vorwerk, V Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunendahl, S. Grurnewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Vorwerk, V. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for excited electrons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTION; QUARK; LEPTONS; LEP; COMPOSITENESS; FERMIONS; LIMITS; MODEL; HERA AB We present the results of a search for the production of an excited state of the electron, e(*), in proton-antiproton collisions at root s = 1.96 TeV. The data were collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 1 fb(-1). We search for e(*) in the process p (p) over bar -> e(*)e, with the e(*) subsequently decaying to an electron plus photon. No excess above the standard model background is observed. Interpreting our data in the context of a model that describes e(*) production by four-fermion contact interactions and e(*) decay via electroweak processes, we set 95% C.L. upper limits on the production cross section ranging from 8.9 to 27 fb, depending on the mass of the excited electron. Choosing the scale for contact interactions to be Lambda = 1 TeV, excited electron masses below 756 GeV are excluded at the 95% C.L. C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS IN2P3, LPSC, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, IN2P3 CNRS, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, IN2P3 CNRS, LAL, Orsay, France. [Andrieu, B.; Jesus, A. C. S. Assis; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 04, IN2P3 CNRS, LPNHE, Paris, France. [Andrieu, B.; Jesus, A. C. S. Assis; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, IN2P3 CNRS, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.; Vorwerk, V.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Grurnewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Krop, D.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Gavrilov, V.; Melnitchouk, A.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.; Wenger, A.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Asman, B.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Grunendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De la Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Kozelov, A. V.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Fisher, Wade/N-4491-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; NR 27 TC 14 Z9 14 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2008 VL 77 IS 9 AR 091102 DI 10.1103/PhysRevD.77.091102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 307DB UT WOS:000256297000002 ER PT J AU Aoki, S Fukaya, H Hashimoto, S Noaki, J Kaneko, T Matsufuru, H Onogi, T Yamada, N AF Aoki, S. Fukaya, H. Hashimoto, S. Noaki, J. Kaneko, T. Matsufuru, H. Onogi, T. Yamada, N. CA JLQCD Collaboration TI B(K) with two flavors of dynamical overlap fermions SO PHYSICAL REVIEW D LA English DT Article ID EXACTLY MASSLESS QUARKS; NONPERTURBATIVE RENORMALIZATION; LATTICE QCD; OPERATORS AB We present a two-flavor QCD calculation of B(K) on a 16(3)x32 lattice at a similar to 0.12 fm (or equivalently a(-1)=1.67 GeV). Both valence and sea quarks are described by the overlap fermion formulation. The matching factor is calculated nonperturbatively with the so-called RI/MOM scheme. We find that the lattice data are well described by the next-to-leading order (NLO) partially quenched chiral perturbation theory (PQChPT) up to around a half of the strange quark mass (m(s)(phys)/2). The data at quark masses heavier than m(s)(phys)/2 are fitted including a part of next-to-next-to-leading order terms. We obtain B(K)((MS) over bar) (2 GeV)=0.537(4)(40), where the first error is statistical and the second is an estimate of systematic uncertainties from finite volume, fixing topology, the matching factor, and the scale setting. C1 [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Assoc Univ Inc, Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Fukaya, H.] Niels Bohr Int Acad, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Hashimoto, S.; Noaki, J.; Kaneko, T.; Matsufuru, H.; Yamada, N.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Onogi, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. NR 41 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2008 VL 77 IS 9 AR 094503 DI 10.1103/PhysRevD.77.094503 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 307DB UT WOS:000256297000054 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Che, CY Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Wappler, FR Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Che, Ch. Ye Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Measurements of e(+)e(-) -> K+K-eta, K+K-pi(0), and (KsK +/-)-K-0 pi(-/+) cross sections using initial state radiation events SO PHYSICAL REVIEW D LA English DT Article ID NARROW DIP STRUCTURE; DIFFRACTIVE PHOTOPRODUCTION; BHABHA SCATTERING; TAGGED PHOTONS; 1.9 GEV/C(2); MONTE-CARLO; B-FACTORIES; MESON; ANNIHILATION; ENERGIES AB This paper reports measurements of processes: e(+)e(-)->gamma(KSK +/-)-K-0 pi(-/+), e(+)e(-)->gamma K+K-pi(0), e(+)e(-)->gamma phi eta, and e(+)e(-)->gamma phi pi(0). The initial-state radiated photon allows to cover the hadronic final state in the energy range from thresholds up to approximate to 4.6 GeV. The overall size of the data sample analyzed is 232 fb(-1), collected by the BABAR detector running at the PEP-II e(+)e(-) storage ring. From the Dalitz plot analysis of the (KSK +/-)-K-0 pi(-/+) final state, moduli, and relative phase of the isoscalar and the isovector components of the e(+)e(-)-> KK*(892) cross section are determined. Parameters of phi and rho recurrences are also measured, using a global fitting procedure which exploits the interconnection among amplitudes, moduli, and phases of the e(+)e(-)->(KSK +/-)-K-0 pi(-/+), K+K-pi(0), phi eta final states. The cross section for the OZI-forbidden process e(+)e(-)->phi pi(0), and the J/psi branching fractions to KK*(892) and K+K-eta are also measured. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.] Univ Genoa, Dipartmento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wang, W. F.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.] Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Denis Diderot Paris7, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies,Univ Paris 06, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-00