FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Taylor, CD AF Taylor, Christopher D. TI Evaluation of first-principles techniques for obtaining materials parameters of alpha-uranium and the (001)alpha-uranium surface SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; BRILLOUIN-ZONE INTEGRATIONS; VACANCY FORMATION; LIGHT ACTINIDES; WAVE; PSEUDOPOTENTIALS; METALS AB First- principles calculations based on the projector augmented- wave ( PAW ) technique have been applied to the prediction of materials properties of alpha-uranium and its ( 001 ) surface. The results of the PAW calculations are shown to be comparable in accuracy to the full- potential calculations reported elsewhere. In addition to calculating lattice constants and elastic moduli, the vacancy formation energy ( 1.95 eV ), ( 001 ) surface relaxation (- 3.5% for delta(12) and + 1.2% for delta(23) ), (001) surface energy (1.4 J/m(2)), and (001) work function ( 3.6 eV ) were also obtained. The overall agreement with experiment is satisfactory. Using an elastic model for brittle-crack failure, a yield stress of 430 MPa was estimated. Further exploration of materials failure modes ( such as plastic deformation ) awaits a larger- scale atomistic treatment. Full spin- orbit and scalar relativistic calculations were shown to give results with similar levels of accuracy compared to experiment. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Taylor, Christopher/0000-0002-0252-0988 NR 34 TC 50 Z9 51 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 9 AR 094119 DI 10.1103/PhysRevB.77.094119 PG 9 WC Physics, Condensed Matter SC Physics GA 282BL UT WOS:000254542500051 ER PT J AU von Lilienfeld, OA Schultz, PA AF von Lilienfeld, O. Anatole Schultz, Peter A. TI Structure and band gaps of Ga-(V) semiconductors: The challenge of Ga pseudopotentials SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC-STRUCTURE; PRESSURE-DEPENDENCE; GALLIUM NITRIDE; ZINCBLENDE GAN; LOCAL-DENSITY; SOFT ACIDS; ALLOYS; ALN AB Design of gallium pseudopotentials has been investigated for use in density functional calculations of zinc-blende-type cubic phases of GaAs, GaP, and GaN. A converged construction with respect to all-electron results is described. Computed lattice constants, bulk moduli, and band gaps vary significantly depending on pseudopotential construction or exchange-correlation functional. The Kohn-Sham band gap of the Ga-(V) semiconductors exhibits a distinctive and strong sensitivity to lattice constant, with near-linear dependence of gap on lattice constant for larger lattice constants and Gamma-X crossover that changes the slope of the dependence. This crossover occurs at approximate to 98, 101, and 95% deviation from the equilibrium lattice constant for GaAs, GaP, and GaN, respectively. C1 [von Lilienfeld, O. Anatole; Schultz, Peter A.] Multiscale Dynam Materials Modeling Dept, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP von Lilienfeld, OA (reprint author), Multiscale Dynam Materials Modeling Dept, Sandia Natl Labs, Albuquerque, NM 87185 USA. EM paschul@sandia.gov RI von Lilienfeld, O. Anatole/D-8529-2011 NR 66 TC 17 Z9 17 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 115202 DI 10.1103/PhysRevB.77.115202 PG 8 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800083 ER PT J AU Wang, SC Yilmaz, MB Knox, KR Zaki, N Dadap, JI Valla, T Johnson, PD Osgood, RM AF Wang, S. -C. Yilmaz, M. B. Knox, K. R. Zaki, N. Dadap, J. I. Valla, T. Johnson, P. D. Osgood, R. M., Jr. TI Electronic structure of a Co-decorated vicinal Cu(775) surface: High-resolution photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; PHOTOELECTRON-SPECTROSCOPY; STEPPED CU(111); WAVE-FUNCTION; STATES; COBALT; GROWTH; CU; MODULATION; TERRACE AB We measure the electronic structure of low-coverage Co on a Cu(775) stepped substrate using highresolution photoemission spectroscopy with the particular goal of relating the electronic dispersion to the coverage-dependent surface structure. In particular, we follow the evolution of the electronic dispersion of the sp-like Cu surface state and the position of the band minimum as a function of Co coverage. On the bare Cu(775) surface, we observe band folding of this state due to the stepped surface-superlattice array. In addition, we determine that the reference plane, as measured by the position of the band minimum of this state, changes dramatically after addition of just 0.03 ML Co. At 0.06 ML, we observe the formation of a second surface state at a binding energy of 0.68 eV. This feature is attributed to a quantum-well state hybridized with the substrate. C1 [Wang, S. -C.; Yilmaz, M. B.; Dadap, J. I.; Osgood, R. M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Knox, K. R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Zaki, N.; Osgood, R. M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Valla, T.; Johnson, P. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Wang, SC (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Dadap, Jerry/K-2788-2012; Wang, Shancai/F-6162-2013; OI Yilmaz, Mehmet Burak/0000-0002-3450-5395 NR 40 TC 8 Z9 8 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 115448 DI 10.1103/PhysRevB.77.115448 PG 7 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800200 ER PT J AU Whitehead, LW Williams, GJ Quiney, HM Nugent, KA Peele, AG Paterson, D de Jonge, MD McNulty, I AF Whitehead, L. W. Williams, G. J. Quiney, H. M. Nugent, K. A. Peele, A. G. Paterson, D. de Jonge, M. D. McNulty, I. TI Fresnel diffractive imaging: Experimental study of coherence and curvature SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; MICROSCOPY AB A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length. C1 [Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Peele, A. G.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. [Paterson, D.] Australian Synchrotron, Clayton, Vic 3168, Australia. [de Jonge, M. D.; McNulty, I.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Whitehead, LW (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RI de Jonge, Martin/C-3400-2011; Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 NR 18 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 10 AR 104112 DI 10.1103/PhysRevB.77.104112 PG 6 WC Physics, Condensed Matter SC Physics GA 282BN UT WOS:000254542700028 ER PT J AU Yang, A Steger, M Lian, HJ Thewalt, MLW Uemura, M Sagara, A Itoh, KM Haller, EE Ager, JW Lyon, SA Konuma, M Cardona, M AF Yang, A. Steger, M. Lian, H. J. Thewalt, M. L. W. Uemura, M. Sagara, A. Itoh, K. M. Haller, E. E. Ager, J. W., III Lyon, S. A. Konuma, M. Cardona, M. TI High-resolution photoluminescence measurement of the isotopic-mass dependence of the lattice parameter of silicon SO PHYSICAL REVIEW B LA English DT Article ID BOUND EXCITON-TRANSITIONS; CONSTANT; SI; GE AB We have studied the dependence of the lattice parameter of silicon on isotopic mass, using high-resolution photoluminescence spectroscopy to detect splittings of the shallow donor bound exciton transitions in epitaxial layers of either isotopically enriched (28)Si or (30)Si grown on silicon substrates of natural isotopic composition. The slight lattice parameter mismatch between the isotopically enriched epitaxial layer and the natural silicon substrate induces a biaxial strain in the epitaxial layer, which results in a splitting of the hole states in the bound exciton. This can be detected with remarkable precision, especially in the highly enriched (28)Si epilayers, where the bound exciton lines are extremely sharp. C1 [Yang, A.; Steger, M.; Lian, H. J.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Uemura, M.; Sagara, A.; Itoh, K. M.] Keio Univ, Yokohama, Kanagawa 2238522, Japan. [Uemura, M.; Sagara, A.; Itoh, K. M.] CREST JST, Yokohama, Kanagawa 2238522, Japan. [Haller, E. E.; Ager, J. W., III] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Haller, E. E.; Ager, J. W., III] LBNL, Berkeley, CA 94720 USA. [Lyon, S. A.] Princeton Univ, Princeton, NJ 08544 USA. [Konuma, M.; Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. RI Thewalt, Michael/B-3534-2008; Itoh, Kohei/C-5738-2014; OI Thewalt, Michael/0000-0002-5806-0618; Ager, Joel/0000-0001-9334-9751 NR 17 TC 2 Z9 2 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 113203 DI 10.1103/PhysRevB.77.113203 PG 4 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800012 ER PT J AU Zhang, WX Konstantinidis, NP Dobrovitski, VV Harmon, BN Santos, LF Viola, L AF Zhang, Wenxian Konstantinidis, N. P. Dobrovitski, V. V. Harmon, B. N. Santos, Lea F. Viola, Lorenza TI Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot SO PHYSICAL REVIEW B LA English DT Article ID COUPLED ELECTRON; MAGNUS EXPANSION; RELAXATION; CONVERGENCE; SYSTEMS; NANOSTRUCTURES; MAGNETIZATION; ENTANGLEMENT; COMPUTATION; NUCLEI AB The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control nonidealities is also assessed, including the effect of intrabath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control pulse flip angles do not exceed 3%, decoupling protocols can still prolong the coherence time by up to 2 orders of magnitude. C1 [Zhang, Wenxian; Konstantinidis, N. P.; Dobrovitski, V. V.; Harmon, B. N.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Viola, Lorenza] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Santos, Lea F.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. RP Zhang, WX (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RI Zhang, Wenxian/A-4274-2010; Santos, Lea/D-5332-2012 OI Santos, Lea/0000-0001-9400-2709 NR 87 TC 43 Z9 43 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 12 AR 125336 DI 10.1103/PhysRevB.77.125336 PG 15 WC Physics, Condensed Matter SC Physics GA 282BQ UT WOS:000254543000108 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCDB Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kumar, A Kurnadi, P Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Vernet, R Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S. -L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA Star Collaboration TI rho(0) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID TIME PROJECTION CHAMBER; VECTOR-MESON PRODUCTION; DIFFRACTIVE PRODUCTION; PROTON SCATTERING; COMPLEX NUCLEI; PHOTON; HERA; COLLIDERS; ENERGIES; PHYSICS AB Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.; Lamont, M. A. C.; Landgraf, J. M.; Laue, F.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Potekhin, M.; Relyea, D.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Das, D.; Draper, J. E.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Creighton Univ, Omaha, NE 68178 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague 25068, Czech Republic. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Pachr, M.; Sumbera, M.] JINR, Lab High Energy, Dubna, Russia. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] JINR, Particle Phys Lab, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Nandi, B. K.; Varma, R.] Indiana Univ, Bloomington, IN 47408 USA. [Balewski, J.; Djawotho, P.; He, W.; Jacobs, W. W.; Qattan, I. A.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Inst Rech Subatom, Strasbourg, France. [Baudot, J.; Bhasin, A.; Coffin, J. P.; Dogra, S. M.; Estienne, M.; Gupta, A.; Hippolyte, B.; Kuhn, C.; Mangotra, L. K.; Potukuchi, B. V. K. S.; Shabetai, A.; Speltz, J.; Vernet, R.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Rykov, V.; Subba, N. L.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Blyth, S. -L.; Dong, X.; Edwards, W. R.; Hjort, E.; Horner, M. J.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Kowalik, K. L.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; van Leeuwen, M.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, A.; Pruthi, N. K.; Sharma, M.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Hepplemann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77521 USA. [Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Liu, H.; Lu, Y.; Shao, M.; Tang, Z.; Wang, X. L.; Wu, J.; Zhang, Y.] Univ Sci & Technol China, Anhua 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Bouchet, J.; Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Gagliardi, C. A.; Hamed, A.; Henry, T. W.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Markert, C.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; LaPointe, S.; Li, Q.; Pavlinov, A. I.; Pruneau, C.; Selyuzhenkov, I.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Fu, J.; Lin, X.; Liu, F.; Liu, L.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Dogra, Sunil /B-5330-2013; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 46 TC 39 Z9 39 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034910 DI 10.1103/PhysRevC.77.034910 PG 11 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500050 ER PT J AU Beun, J McLaughlin, GC Surman, R Hix, WR AF Beun, J. McLaughlin, G. C. Surman, R. Hix, W. R. TI Fission cycling in a supernova r process SO PHYSICAL REVIEW C LA English DT Article ID NEUTRINO-DRIVEN WINDS; METAL-POOR STARS; CORE-COLLAPSE SUPERNOVAE; BURST ACCRETION DISKS; PROCESS NUCLEOSYNTHESIS; EARLY GALAXY; ELEMENT SYNTHESIS; CAPTURE ELEMENTS; HEAVY-ELEMENTS; RICH AB Recent halo star abundance observations exhibit an important feature of consequence to the r process: the presence of a main r process between the second and third peaks that is consistent among halo stars. We explore fission cycling and steady beta flow as the driving mechanisms behind this feature. The presence of fission cycling during the r process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady beta flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady beta flow in the r process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady beta flow is obtained. C1 [Beun, J.; McLaughlin, G. C.] N Carolina State Univ, Dept Phys, Raleigh, NC 27595 USA. [Surman, R.] Union Coll, Dept Phys, Schenectady, NY 12308 USA. [Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Beun, J (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27595 USA. EM jbbeun@unity.ncsu.edu RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 NR 78 TC 22 Z9 22 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035804 DI 10.1103/PhysRevC.77.035804 PG 10 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500061 ER PT J AU Esch, EI Reifarth, R Bond, EM Bredeweg, TA Couture, A Glover, SE Greife, U Haight, RC Hatarik, AM Hatarik, R Jandel, M Kawano, T Mertz, A O'Donnell, JM Rundberg, RS Schwantes, JM Ullmann, JL Vieira, DJ Wilhelmy, JB Wouters, JM AF Esch, E. -I. Reifarth, R. Bond, E. M. Bredeweg, T. A. Couture, A. Glover, S. E. Greife, U. Haight, R. C. Hatarik, A. M. Hatarik, R. Jandel, M. Kawano, T. Mertz, A. O'Donnell, J. M. Rundberg, R. S. Schwantes, J. M. Ullmann, J. L. Vieira, D. J. Wilhelmy, J. B. Wouters, J. M. TI Measurement of the (237)Np(n, gamma) cross section from 20 meV to 500 keV with a high efficiency, highly segmented 4 pi BaF(2) detector SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON; FISSION; SCATTERING AB The (237)Np(n, gamma) (238)Np cross section has been measured in the neutron energy range from 20 meV to 500 keV using the DANCE array at the Los Alamos National Laboratory. This new facility allows experiments with submilligram samples and is therefore well suited to investigate isotopes with half-lives as low as a few hundred days. In this benchmark measurement, only 0.42 mg of 237Np was sufficient to determine differential cross sections relative to the well-known resonance at 0.5 eV. The thermal cross section was measured to sigma(2200m/s) = 177 +/- 5 barn, sigma(kT= 25.3) meV = 167 +/- 4 barn and the resonance integral to RI = 693 +/- 6 barn. C1 [Esch, E. -I.; Reifarth, R.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Glover, S. E.; Haight, R. C.; Jandel, M.; Kawano, T.; Mertz, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reifarth, R.; Greife, U.; Hatarik, A. M.] Colorado Sch Mines, Golden, CO 80401 USA. RP Esch, EI (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM ernst@lanl.gov RI Schwantes, Jon/A-7318-2009; OI Esch, Ernst/0000-0002-5179-0415 NR 38 TC 29 Z9 29 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034309 DI 10.1103/PhysRevC.77.034309 PG 10 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500018 ER PT J AU Gates, JM Garcia, MA Gregorich, KE Dullmann, CE Dragojevic, I Dvorak, J Eichler, R Folden, CM Loveland, W Nelson, SL Pang, GK Stavsetra, L Sudowe, R Turler, A Nitsche, H AF Gates, J. M. Garcia, M. A. Gregorich, K. E. Duellmann, Ch. E. Dragojevic, I. Dvorak, J. Eichler, R. Folden, C. M., III Loveland, W. Nelson, S. L. Pang, G. K. Stavsetra, L. Sudowe, R. Tuerler, A. Nitsche, H. TI Synthesis of rutherfordium isotopes in the U-238(Mg-26, xn)(264-x)Rf reaction and study of their decay properties SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION PROPERTIES; HALF-LIVES; HEAVIEST NUCLEI; EVAPORATION; KURCHATOVIUM; ELEMENT-112; CHEMISTRY; NEUTRONS; ZR; HF AB Isotopes of rutherfordium ((258-261)Rf) were produced in irradiations of U-238 targets with Mg-26 beams. Excitation functions were measured for the 4n, 5n, and 6n exit channels. Production of (261)Rf in the 3n exit channel with a cross section of 28(-26)(+92) pb was observed. alpha-decay of (258)Rf was observed for the first time with an alpha -particle energy of 9.05 +/- 0.03 MeV and an alpha/total-decay branching ratio of 0.31 +/- 0.11. In (259)Rf, the electron capture/total-decay branching ratio was measured to be 0.15 +/- 0.04. The measured half-lives for (258)Rf, (259)Rf, and (260)Rf were 14.7(-1.0)(+1.2) ms, 2.5(-0.3)(+0.4) s, and 22.2(-2.4)(+3.0) ms, respectively, in agreement with literature data. The systematics of the alpha-decay Q-values and of the partial spontaneous fission half- lives were evaluated for even-even nuclides in the region of the N = 152, Z = 100 deformed shell. The influence of the N = 152 shell on the alpha-decay Q-values for rutherfordium was observed to be similar to that of the lighter elements (96 <= Z <= 102). However, the N = 152 shell does not stabilize the rutherfordium isotopes against spontaneous fission, as it does in the lighter elements (96 <= Z <= 102). C1 [Gates, J. M.; Garcia, M. A.; Gregorich, K. E.; Duellmann, Ch. E.; Dragojevic, I.; Folden, C. M., III; Nelson, S. L.; Stavsetra, L.; Sudowe, R.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gates, J. M.; Garcia, M. A.; Duellmann, Ch. E.; Dragojevic, I.; Folden, C. M., III; Nelson, S. L.; Pang, G. K.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Gesell Schwerionenforsch mbH, Abt Kernchem, D-64291 Darmstadt, Germany. [Dvorak, J.] Tech Univ Munich, Inst Radiochem, D-85748 Garching, Germany. [Eichler, R.] Paul Scherrer Inst, Lab Radio & Umweltchem, CH-5232 Villigen, Switzerland. [Eichler, R.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. [Loveland, W.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. RP Gates, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Garcia, Mitch/G-2413-2010; Eichler, Robert/G-5130-2011; Folden, Charles/F-1033-2015; Turler, Andreas/D-3913-2014 OI Folden, Charles/0000-0002-2814-3762; Turler, Andreas/0000-0002-4274-1056 NR 48 TC 36 Z9 36 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034603 DI 10.1103/PhysRevC.77.034603 PG 7 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500030 ER PT J AU Gezerlis, A Carlson, J AF Gezerlis, Alexandros Carlson, J. TI Strongly paired fermions: Cold atoms and neutron matter SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE INTERACTIONS; SUPERFLUIDITY; GAS; EQUATION; NUCLEI; STARS; STATE; GAPS AB Experiments with cold Fermi atoms can be tuned to probe strongly-interacting fluids that are very similar to the low-density neutron matter found in the crusts of neutron stars. In contrast to traditional superfluids and superconductors, matter in this regime is very strongly paired, with gaps of the order of the Fermi energy. We compute the T = 0 equation of state and pairing gap for cold atoms and low-density neutron matter as a function of the Fermi momentum times the scattering length. Results of quantum Monte Carlo calculations show that the equations of state are very similar. The neutron matter pairing gap at low densities is found to be very large but, except at the smallest densities, significantly suppressed relative to cold atoms because of the finite effective range in the neutron-neutron interaction. C1 [Gezerlis, Alexandros; Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gezerlis, Alexandros] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Gezerlis, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Gezerlis, Alexandros/O-9426-2014; OI Gezerlis, Alexandros/0000-0003-2232-2484; Carlson, Joseph/0000-0002-3163-5565 NR 38 TC 114 Z9 114 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 032801 DI 10.1103/PhysRevC.77.032801 PG 4 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500003 ER PT J AU Gross, F Ramalho, G Pena, MT AF Gross, Franz Ramalho, G. Pena, M. T. TI Fixed-axis polarization states: covariance and comparisons SO PHYSICAL REVIEW C LA English DT Article ID EQUATIONS AB Addressing the recent criticisms of Kvinikhidze and Miller, we prove that the spectator wave functions and currents based on "fixed-axis" polarization states ( previously introduced by us) are Lorentz covariant, and find an explicit connection between them and conventional direction-dependent polarization states. The discussion shows explicitly how it is possible to construct pure S-wave models of the nucleon. C1 [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. [Gross, Franz; Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor & Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Gross, F (reprint author), Coll William & Mary, Williamsburg, VA 23185 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X NR 11 TC 31 Z9 31 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035203 DI 10.1103/PhysRevC.77.035203 PG 8 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500054 ER PT J AU Higa, R Valderrama, MP Arriola, ER AF Higa, R. Valderrama, M. Pavon Arriola, E. Ruiz TI Renormalization of the NN interaction with Lorentz-invariant chiral two-pion exchange SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; PARTIAL-WAVE ANALYSIS; NUCLEAR-FORCES; PERTURBATION-THEORY; 2-NUCLEON SYSTEM; MESON-EXCHANGE; LAGRANGIANS; SCATTERING; REGULARIZATION; POTENTIALS AB The renormalization of the NN interaction with the chiral two-pion exchange potential computed using Lorentz-invariant baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counterterms to about half those in the heavy baryon expansion. Phase shifts and deuteron properties are evaluated with clear improvements in some cases. C1 [Higa, R.] Univ Bonn, HISKP Theorie, D-53115 Bonn, Germany. [Higa, R.] Jefferson Lab, Newport News, VA 23606 USA. [Valderrama, M. Pavon; Arriola, E. Ruiz] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Valderrama, M. Pavon] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. RP Higa, R (reprint author), Univ Bonn, HISKP Theorie, Nussallee 14-16, D-53115 Bonn, Germany. EM higa@itkp.uni-bonn.de; mpavon@ugr.es; earriola@ugr.es RI Ruiz Arriola, Enrique/A-9388-2015; Higa, Renato/M-2300-2016 OI Ruiz Arriola, Enrique/0000-0002-9570-2552; Higa, Renato/0000-0002-6298-8128 NR 58 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034003 DI 10.1103/PhysRevC.77.034003 PG 12 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500006 ER PT J AU Jones, GA Williams, SJ Walker, PM Podolyak, Z Zhu, S Carpenter, MP Carroll, JJ Chakrawarthy, RS Chowdhury, P Cullen, IJ Dracoulis, GD Garnsworthy, AB Hackman, G Janssens, RVF Khoo, TL Kondev, FG Lane, GJ Liu, Z Seweryniak, D Thompson, NJ AF Jones, G. A. Williams, S. J. Walker, P. M. Podolyak, Zs. Zhu, S. Carpenter, M. P. Carroll, J. J. Chakrawarthy, R. S. Chowdhury, P. Cullen, I. J. Dracoulis, G. D. Garnsworthy, A. B. Hackman, G. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Lane, G. J. Liu, Z. Seweryniak, D. Thompson, N. J. TI High-spin, multiparticle isomers in (121,123)Sb SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA SETS; MICROSECOND ISOMERS; NUCLEI; BANDS; INTRUDER; STATES AB Isomers in near-spherical Z = 51, antimony isotopes are reported here for the first time using fusion-fission reactions between (27)Al and a pulsed (178)Hf beam of energy, 1150 MeV. gamma rays were observed from the decay of isomeric states with half-lives, T(1/2) = 200(30) and 52(3) mu s, and angular momenta I = (25/2) and I(pi) = 23(+)/2, in (121,123)Sb, respectively. These states are proposed to correspond to nu(h(11/2))(2) configurations, coupled to an odd d(5/2) or g(7/2) proton. Nanosecond isomers were also identified at I(pi) = 19(-)/2 [T(1/2) = 8.5(5) ns] in (121)Sb and I(pi) = (15(-)/2) [T(1/2) = 37(4) ns] in (123)Sb. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes. C1 [Jones, G. A.; Williams, S. J.; Walker, P. M.; Podolyak, Zs.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Williams, S. J.; Chakrawarthy, R. S.; Hackman, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Carroll, J. J.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Lowell, MA 01854 USA. [Dracoulis, G. D.; Lane, G. J.] Australian Natl Univ, Dept Nucl Phys, RSPhysSE, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Jones, GA (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM gareth.jones2@barcap.com RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 NR 32 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034311 DI 10.1103/PhysRevC.77.034311 PG 11 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500020 ER PT J AU Korgul, A Rykaczewski, KP Gross, CJ Grzywacz, RK Liddick, SN Mazzocchi, C Batchelder, JC Bingham, CR Darby, IG Goodin, C Hamilton, JH Hwang, JK Ilyushkin, SV Krolas, W Winger, JA AF Korgul, A. Rykaczewski, K. P. Gross, C. J. Grzywacz, R. K. Liddick, S. N. Mazzocchi, C. Batchelder, J. C. Bingham, C. R. Darby, I. G. Goodin, C. Hamilton, J. H. Hwang, J. K. Ilyushkin, S. V. Krolas, W. Winger, J. A. TI Toward (100)Sn: Studies of excitation functions for the reaction between (58)Ni and (54)Fe ions SO PHYSICAL REVIEW C LA English DT Article ID ATOMIC MASS EVALUATION; BETA-DECAY; ALPHA-DECAY; IDENTIFICATION AB Production of nuclei above (100)Sn in fusion-evaporation reactions between (58)Ni and (54)Fe ions was studied at Oak Ridge National Laboratory by means of the recoil mass spectrometer and charged particle detection. The beam energy was varied to optimize the yields for the two-, three- and four- particle evaporation channels. Experimental results verified the predictions of the statistical model code HIVAP. The optimum energy for the (54)Fe((58)Ni, 4n)(108)Xe reaction channel that allows one to study the (108)Xe-(104)Te-(100)Sn alpha decay chain is deduced as 240 MeV. C1 [Korgul, A.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Korgul, A.; Winger, J. A.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Korgul, A.; Grzywacz, R. K.; Liddick, S. N.; Mazzocchi, C.; Bingham, C. R.; Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Korgul, A.; Goodin, C.; Hamilton, J. H.; Hwang, J. K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rykaczewski, K. P.; Gross, C. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Mazzocchi, C.] Univ Milan, IFGA, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Batchelder, J. C.; Winger, J. A.] UNIRIB, Oak Ridge Associated, Oak Ridge, TN 37831 USA. [Ilyushkin, S. V.] Dept Phys & Astron, Mississippi State, MS 39762 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RP Korgul, A (reprint author), Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. RI Krolas, Wojciech/N-9391-2013 NR 32 TC 6 Z9 6 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034301 DI 10.1103/PhysRevC.77.034301 PG 5 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500010 ER PT J AU Moretto, LG Dorso, CO Elliott, JB Phair, L AF Moretto, L. G. Dorso, C. O. Elliott, J. B. Phair, L. TI Symmetry entropy and isoscaling SO PHYSICAL REVIEW C LA English DT Article AB We suggest, on general principles, that the isotopic distributions and thus isoscaling are affected by an entropic symmetry term, which is present even when the symmetry energy term is absent. C1 [Moretto, L. G.; Elliott, J. B.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Dorso, C. O.] Univ Buenos Aires, FCEN, Dept Fis, Nunez, Argentina. RP Moretto, LG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 11 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 037603 DI 10.1103/PhysRevC.77.037603 PG 3 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500069 ER PT J AU Tagliente, G Fujii, K Milazzo, PM Moreau, C Aerts, G Abbondanno, U Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Bisterzo, S Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillman, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kaeppeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Koehler, P Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Tagliente, G. Fujii, K. Milazzo, P. M. Moreau, C. Aerts, G. Abbondanno, U. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Bisterzo, S. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillman, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Koehler, P. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron capture cross section of Zr-90: Bottleneck in the s-process reaction flow SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; VALENCE COMPONENT; MASSIVE STARS; ENERGY RANGE; ZR ISOTOPES; N-TOF; NUCLEOSYNTHESIS; EVOLUTION; FACILITY; SYSTEM AB The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus Zr-90, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n, gamma) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Gamma(gamma) widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section for s-process calculations has been improved by more than a factor of 2. C1 [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Fujii, K.; Milazzo, P. M.; Moreau, C.; Abbondanno, U.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.] CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; Dillman, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IReS, Strasbourg, France. [Becvar, F.; Krticka, M.] Univ Karlova Praze, Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10124 Turin, Italy. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Rome, Italy. [Capote, R.] IAEA, NAPC, Nucl Data Sect, Vienna, Austria. [Capote, R.; Lozano, M.] Univ Seville, Seville, Spain. [Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Inst Tecnol & Nucl ITN, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Ferrari, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Ferrari, A.; Stephan, C.; Tassan-Got, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haas, B.] CNRS, IN2P3, CENBG, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, Athens, Greece. [Massimi, C.; Vannini, G.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Mengoni, A.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Fak Phys, A-1010 Vienna, Austria. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Ventura, A.] ENEA, Bologna, Italy. RP Tagliente, G (reprint author), Ist Nazl Fis Nucl, I-70126 Bari, Italy. EM giuseppe.tagliente@ba.infn.it RI Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Gramegna, Fabiana/B-1377-2012; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012 OI Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Cano Ott, Daniel/0000-0002-9568-7508; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gramegna, Fabiana/0000-0001-6112-0602; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; NR 32 TC 24 Z9 25 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035802 DI 10.1103/PhysRevC.77.035802 PG 9 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500059 ER PT J AU Vetter, PA Abo-Shaeer, JR Freedman, SJ Maruyama, R AF Vetter, P. A. Abo-Shaeer, J. R. Freedman, S. J. Maruyama, R. TI Measurement of the beta-nu correlation of Na-21 using shakeoff electrons SO PHYSICAL REVIEW C LA English DT Article ID NEUTRINO ANGULAR-CORRELATION; ALPHA RADIATIVE CORRECTION; DECAY; SPECTRUM; NUCLEAR; PHOTOASSOCIATION; TESTS; AR-32; ATOMS AB The beta-nu correlation coefficient, a(beta nu), is measured in Na-21 by detecting the time of flight of the recoil nucleus detected in coincidence with the atomic electrons shaken off in beta decay. The sample of Na-21 is confined in a magneto-optic trap. High detection efficiency allows low trap density, which suppresses the photoassociation of molecular sodium, which can cause a large systematic error. Suppressing the fraction of trapped atoms in the excited state by using a dark trap also reduces the photoassociation process, and data taken with this technique are consistent. The main remaining systematic uncertainties come from the measurement of the position and size of the atom trap and the subtraction of background. We find a(beta nu) = 0.5502(60), in agreement with the Standard Model prediction of a(beta nu) = 0.553(2), and disagreeing with a previous measurement, which was susceptible to an error introduced by the presence of molecular sodium. C1 [Vetter, P. A.; Abo-Shaeer, J. R.; Freedman, S. J.; Maruyama, R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freedman, S. J.; Maruyama, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Vetter, PA (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Maruyama, Reina/A-1064-2013; OI Maruyama, Reina/0000-0003-2794-512X; Vetter, Paul/0000-0003-3318-1920 NR 34 TC 48 Z9 48 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035502 DI 10.1103/PhysRevC.77.035502 PG 8 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500057 ER PT J AU Zeitlin, C Guetersloh, S Heilbronn, L Miller, J Fukumura, A Iwata, Y Murakami, T Sihver, L Mancusi, D AF Zeitlin, C. Guetersloh, S. Heilbronn, L. Miller, J. Fukumura, A. Iwata, Y. Murakami, T. Sihver, L. Mancusi, D. TI Fragmentation cross sections of medium-energy (35)Cl, (40)Ar, and (48)Ti beams on elemental targets SO PHYSICAL REVIEW C LA English DT Article ID NICKEL PROJECTILES; RELATIVISTIC NEON; TOTAL CHARGE; HYDROGEN; NUCLEI; COLLISIONS; FE-56; PARTICLE; LIGHT; MODEL AB Charge-changing and fragment production cross sections at 0 degrees have been obtained for interactions of 290, 400, and 650 MeV/nucleon (40)Ar beams, 650 and 1000 MeV/nucleon (35)Cl beams, and a 1000 MeV/nucleon (48)Ti beam. Targets of C, CH(2), Al, Cu, Sn, and Pb were used. Using standard analysis methods, we obtained fragment cross sections for charges as low as 8 for Cl and Ar beams and as low as 10 for the Ti beam. Using data obtained with small-acceptance detectors, we report fragment production cross sections for charges as low as 5, corrected for acceptance using a simple model of fragment angular distributions. With the lower-charged fragment cross sections, we can compare the data to predictions from several models (including NUCFRG2, EPAX2, and PHITS) in a region largely unexplored in earlier work. As found in earlier work with other beams, NUCFRG2 and PHITS predictions agree reasonably well with the data for charge-changing cross sections, but these models do not accurately predict the fragment production cross sections. The cross sections for the lightest fragments demonstrate the inadequacy of several models in which the cross sections fall monotonically with the charge of the fragment. PHITS, despite its not agreeing particularly well with the fragment production cross sections on average, nonetheless qualitatively reproduces some significant features of the data that are missing from the other models. C1 [Zeitlin, C.; Guetersloh, S.; Heilbronn, L.; Miller, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fukumura, A.; Iwata, Y.; Murakami, T.] Natl Inst Radiol Sci, Chiba 260, Japan. [Sihver, L.; Mancusi, D.] Chalmers, SE-41296 Gothenburg, Sweden. RP Zeitlin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM cjzeitlin@lbl.gov RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 38 TC 21 Z9 23 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034605 DI 10.1103/PhysRevC.77.034605 PG 21 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500032 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonaalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kagan, M Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kagan, M. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Limits on the production of narrow t(t)over-bar resonances in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We search for evidence of resonant top quark pair production in 955 pb(-1) of p (p) over bar collisions at root s = 1: 96 TeV recorded with the CDF II detector at the Fermilab Tevatron. For fully reconstructed candidate t (t) over bar events triggered on leptons with large transverse momentum and containing at least one identified b-quark jet, we compare the invariant mass spectrum of t (t) over bar pairs to the expected superposition of standard model t (t) over bar, non-t (t) over bar backgrounds, and a simple resonance model based on a sequential Z' boson. We establish upper limits for sigma(p (p) over bar -> Z')center dot Br(Z' -> t (t) over bar) in the Z' mass interval from 450 GeV/c(2) to 900 GeV=c(2). A topcolor leptophobic Z' is ruled out below 720 GeV=c(2), and the cross section of any narrow Z'-like state decaying to t (t) over bar is found to be less than 0.64 pb at 95% C. L. for M(Z') above 700 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Kotwal, A. V.; Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Russ, J.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Campbell, M.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C. P.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Iyutin, B.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Suh, J. S.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Kagan, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sezione Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.] Univ Pisa, Ist Nazl Fis Nucl, Siena & Scoula Normale Super, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sezione Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012 OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399 NR 23 TC 39 Z9 39 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 051102 DI 10.1103/PhysRevD.77.051102 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200002 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lez, OG' Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martiinez, M Martiinez-Ballariin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Muulmenstaadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Lez, O. Gonza ' Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Observation of exclusive dijet production at the Fermilab Tevatron (p)over-bar-p collider SO PHYSICAL REVIEW D LA English DT Article ID DOUBLE-POMERON EXCHANGE; ELECTROMAGNETIC CALORIMETER; DIFFRACTIVE SCATTERING; MONTE-CARLO; HIGGS; COLLISIONS; EVENTS; LHC; PROTON; BOSON AB We present the first observation and cross section measurement of exclusive dijet production in (p) over barp interactions, (p) over barp -> (p) over bar + dijet + p. Using a data sample of 310 pb(-1) collected by the Run II Collider Detector at Fermilab at root s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E-T(jet) >= 10 GeV have been measured as a function of minimum E-T(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb(-1) of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J(z) = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at root s = 14 TeV are discussed. C1 [Blair, R. E.; Blumenfeld, B.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis DAltes Energies, E-08193 Barcelona, Spain. [Catastini, P.; Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; D'Onofrio, M.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Lee, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Nakano, I.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Univ Helsinki, Dept High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Forrester, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Lez, O. Gonza '; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3 CNRS, UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-0018 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Lin, C.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Badgett, W.; Brau, B.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, E. E.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Ivanov, Andrew/A-7982-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Moon, Chang-Seong/0000-0001-8229-7829; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; NR 55 TC 78 Z9 78 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052004 DI 10.1103/PhysRevD.77.052004 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmnstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmnstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for chargino-neutralino production in p(p)over-bar collisions at root s=1.96 TeV with high-p(T) leptons SO PHYSICAL REVIEW D LA English DT Article ID COLLIDER AB We present a search for the associated production of charginos and neutralinos in p (p) over bar collisions at root s = 1.96 TeV. The data were collected at the Collider Detector at Fermilab (CDF II) and correspond to integrated luminosities between 0.7 and 1.0 fb(-1). We look for final states with one high-p(T) electron or muon, and two additional leptons. Our results are consistent with the standard model expectations, and we set limits on the cross section as a function of the chargino mass in three different supersymmetric scenarios. For a specific minimal supersymmetric standard model scenario with no slepton mixing, we set a 95% C. L. limit at 151 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Chertok, M.; Lovas, L.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Campbell, M.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerrito, L.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmnstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, R.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sezione Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06504 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 33 TC 11 Z9 11 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052002 DI 10.1103/PhysRevD.77.052002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200009 ER PT J AU Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Koshio, Y Minamino, A Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Ueshima, K Watanabe, H Yamada, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Nishino, H Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Dunmore, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hartfield, B Hill, J Keig, WE Jang, JS Jeong, IS Kim, JY Lim, IT Scholberg, K Fechner, M Tanimoto, N Walter, CW Wendell, R Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Totsuka, Y Suzuki, AT Nakaya, T Tanaka, H Yokoyama, M Haines, TJ Dazeley, S Svoboda, R Habig, A Fukuda, Y Sato, T Itow, Y Koike, T Tanaka, T Jung, CK Kato, T Kobayashi, K McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Idehara, Y Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Inoue, K Furuse, Y Ishii, H Nishijima, K Watanabe, Y Koshiba, M Chen, S Deng, Z Liu, Y Kielczewska, D Berns, H Shiraishi, KK Thrane, E Wilkes, RJ AF Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Koshio, Y. Minamino, A. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Ueshima, K. Watanabe, H. Yamada, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Nishino, H. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Dunmore, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hartfield, B. Hill, J. Keig, W. E. Jang, J. S. Jeong, I. S. Kim, J. Y. Lim, I. T. Scholberg, K. Fechner, M. Tanimoto, N. Walter, C. W. Wendell, R. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Nakaya, T. Tanaka, H. Yokoyama, M. Haines, T. J. Dazeley, S. Svoboda, R. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Tanaka, T. Jung, C. K. Kato, T. Kobayashi, K. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Inoue, K. Furuse, Y. Ishii, H. Nishijima, K. Watanabe, Y. Koshiba, M. Chen, S. Deng, Z. Liu, Y. Kielczewska, D. Berns, H. Shiraishi, K. K. Thrane, E. Wilkes, R. J. CA Super Kamiokande Collaboration TI Search for matter-dependent atmospheric neutrino oscillations in Super-Kamiokande SO PHYSICAL REVIEW D LA English DT Article AB We consider nu(mu) -> nu(tau) oscillations in the context of the mass varying neutrino (MaVaN) model, where the neutrino mass can vary depending on the electron density along the flight path of the neutrino. Our analysis assumes a mechanism with dependence only upon the electron density, hence ordinary matter density, of the medium through which the neutrino travels. Fully-contained, partially-contained and upward-going muon atmospheric neutrino data from the Super-Kamiokande detector, taken from the entire SK-I period of 1489 live days, are compared to MaVaN model predictions. We find that, for the case of 2-flavor oscillations, and for the specific models tested, oscillation independent of electron density is favored over density dependence. Assuming maximal mixing, the best-fit case and the density-independent case do not differ significantly. C1 [Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S.; Nakahata, M.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takeuchi, Y.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Nakayama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Saji, C.; Takenaga, Y.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Clark, S.; Desai, S.; Dufour, F.; Kearns, E.; Likhoded, S.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Casper, D.; Cravens, J. P.; Dunmore, J.; Kropp, W. R.; Liu, D. W.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.; Haines, T. J.; Wilkes, R. J.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfield, B.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Scholberg, K.; Fechner, M.; Tanimoto, N.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Guillian, G.; Learned, J. G.; Matsuno, S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Messier, M. D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Totsuka, Y.] High Energy Accelerator Res Org, KEK, Tsukuba 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Nakaya, T.; Tanaka, H.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Haines, T. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Dazeley, S.; Svoboda, R.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Fukuda, Y.; Sato, T.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Koike, T.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Kato, T.; Kobayashi, K.; McGrew, C.; Sarrat, A.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Sakuda, M.; Sugihara, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welfare, Dept Informat Social Welfare, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Gando, Y.; Inoue, K.] Tohoku Univ, Res Ctr Neutino Sci, Sendai, Miyagi 9808578, Japan. [Furuse, Y.; Ishii, H.; Nishijima, K.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Watanabe, Y.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Koshiba, M.] Univ Tokyo, Tokyo 1130033, Japan. [Chen, S.; Deng, Z.; Liu, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Berns, H.; Shiraishi, K. K.; Thrane, E.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Abe, K (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. RI Obayashi, Yoshihisa/A-4472-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Koshio, Yusuke/C-2847-2015; Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010 OI Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X; Yokoyama, Masashi/0000-0003-2742-0251; NR 16 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052001 DI 10.1103/PhysRevD.77.052001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200008 ER PT J AU Adler, S Anisimovsky, VV Aoki, M Ardebili, M Artamonov, AV Atiya, M Bassalleck, B Bazarko, AO Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Convery, MR Cooper, PS Diwan, MV Frank, JS Fujiwara, T Haggerty, J Hu, J Inagaki, T Ito, MM Ivashkin, AP Jaffe, DE Kabe, S Kazumori, M Kuno, Y Kuriki, M Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Marlow, DR McPherson, RA Meyers, PD Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Shoemaker, FC Smith, AJS Stone, JR Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Yershov, NV Yoshimura, Y Yoshioka, T AF Adler, S. Anisimovsky, V. V. Aoki, M. Ardebili, M. Artamonov, A. V. Atiya, M. Bassalleck, B. Bazarko, A. O. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I-H. Christidi, I. -A. Convery, M. R. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Haggerty, J. Hu, J. Inagaki, T. Ito, M. M. Ivashkin, A. P. Jaffe, D. E. Kabe, S. Kazumori, M. Kuno, Y. Kuriki, M. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kozhevnikov, A. P. Kudenko, Yu. G. Kushnirenko, A. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Marlow, D. R. McPherson, R. A. Meyers, P. D. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Mukhin, V. A. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Petrenko, S. V. Poutissou, R. Ramberg, E. J. Redlinger, G. Sato, T. Sekiguchi, T. Shinkawa, T. Shoemaker, F. C. Smith, A. J. S. Stone, J. R. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Yershov, N. V. Yoshimura, Y. Yoshioka, T. TI Measurement of the K+->pi(+)nu(nu)over-bar branching ratio SO PHYSICAL REVIEW D LA English DT Article ID RARE KAON DECAYS; ASSISTED TECHNICOLOR MODELS; LONG-DISTANCE CONTRIBUTIONS; STANDARD ELECTROWEAK MODEL; ENDCAP PHOTON DETECTOR; QUARK MASS MATRICES; R-PARITY VIOLATION; CP-VIOLATION; UNITARITY TRIANGLE; PARTICLE PHYSICS AB Experiment E949 at Brookhaven National Laboratory studied the rare decay K+ -> pi(+)nu(nu) over bar and other processes with an exposure of 1.77 x 10(12) K+'s. The data were analyzed using a blind analysis technique yielding one candidate event with an estimated background of 0.30 +/- 0.03 events. Combining this result with the observation of two candidate events by the predecessor experiment E787 gave the branching ratio B(K+ -> pi(+)nu (nu) = 1.47(-0.89)(+1.30) x 10(-10), consistent with the standard model prediction of (0.74 +/- 0.20) x 10(-10). This is a more detailed report of results previously published [V. V. Anisimovsky et al., Phys. Rev. Lett. 93, 031801 (2004)]. C1 [Adler, S.; Atiya, M.; Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Haggerty, J.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Anisimovsky, V. V.; Ivashkin, A. P.; Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Yershov, N. V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Blackmore, E. W.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bazarko, A. O.; Convery, M. R.; Ito, M. M.; Marlow, D. R.; McPherson, R. A.; Meyers, P. D.; Shoemaker, F. C.; Smith, A. J. S.; Stone, J. R.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Artamonov, A. V.; Kozhevnikov, A. P.; Landsberg, L. G.; Patalakha, D. I.; Vavilov, D. V.] Inst High Energy Phys, Moscow 142280, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bryman, D. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.] Tsinghua Univ, Dept Phys & Astron, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Kushnirenko, A.; Ramberg, E. J.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Inagaki, T.; Kabe, S.; Kazumori, M.; Kuno, Y.; Kuriki, M.; Kobayashi, M.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kitching, P.] Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. [Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Bunkyo Ku, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. RP Adler, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Marlow, Daniel/C-9132-2014; Khabibullin, Marat/O-1076-2013; Ivashkin, Alexander/B-9725-2014 OI Ivashkin, Alexander/0000-0003-4595-5866 NR 87 TC 46 Z9 46 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052003 DI 10.1103/PhysRevD.77.052003 PG 40 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200010 ER PT J AU Arnesen, CM Ligeti, Z Rothstein, IZ Stewart, IW AF Arnesen, Christian M. Ligeti, Zoltan Rothstein, Ira Z. Stewart, Iain W. TI Power corrections in charmless nonleptonic B decays: Annihilation is factorizable and real SO PHYSICAL REVIEW D LA English DT Article ID COLLINEAR EFFECTIVE THEORY; QCD FACTORIZATION; CHARMING PENGUINS; MESON DECAYS; CP VIOLATION; OPERATORS; MATRIX; QUARKS AB We classify Lambda(QCD)/m(b) power corrections to nonleptonic B -> M1M2 decays, where M-1,M-2 are charmless nonisosinglet mesons. Using recent developments in soft- collinear effective theory, we prove that the leading contributions to annihilation amplitudes of order alpha(s) (m(b)) Lambda(QCD)/m(b) are real. The leading annihilation amplitudes depend on twist- 2 and twist- 3 three- parton distributions. A complex nonperturbative parameter from annihilation first appears at O[alpha(2)(s) (root Lambda m(b)) Lambda(QCD)/m(b)]. "Chirally enhanced'' contributions are also factorizable and real at lowest order. Thus, incalculable strong phases are suppressed in annihilation amplitudes, unless the alpha(s)(root Lambda m(b)) expansion breaks down. Modeling the distribution functions, we find that (11 +/- 9)% and (15 +/- 11)% of the absolute values of the measured (B) over bar (0) -> K- pi(+) and B- -> K- K-0 penguin amplitudes come from annihilation. This is consistent with the expected size of power corrections. C1 [Arnesen, Christian M.; Ligeti, Zoltan; Stewart, Iain W.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rothstein, Ira Z.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Arnesen, CM (reprint author), MIT, Ctr Theoret Phys, Nucl Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Rothstein, Ira/O-2747-2014 OI Rothstein, Ira/0000-0002-3374-4212 NR 60 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054006 DI 10.1103/PhysRevD.77.054006 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200031 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Soni, N Watson, T Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Soni, N. Watson, T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA BABAR Collaboration TI Measurement of the B -> X-s gamma branching fraction and photon energy spectrum using the recoil method SO PHYSICAL REVIEW D LA English DT Article ID CP VIOLATION; B-DECAYS; ASYMMETRY; PHYSICS; MOMENTS AB We present a measurement of the branching fraction and photon-energy spectrum for the decay B -> X-s gamma using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210 fb(-1), from which approximately 680 000 B (B) over bar events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure B(B -> X-s gamma) = (3.66 +/- 0.85(stat) +/- 0.60(syst)) x 10(-4) for photon energies E-gamma above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters m(b) and mu(2)(pi). In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Soni, N.; Watson, T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Exptphys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Mancinelli, G.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Stoker, D. P.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Petzold, A.; Spaan, B.; Wacker, K.; Summers, D. J.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Napoli Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Denis Diderot Paris 7, Univ Paris 06, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scoula Normal Super, I-56127 Pisa, Italy. [Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Morganti, S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Roodman, A.; Salnikov, A. A.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Della Ricca, Giuseppe/B-6826-2013; Forti, Francesco/H-3035-2011; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Patrignani, Claudia/C-5223-2009; Saeed, Mohammad Alam/J-7455-2012; de Sangro, Riccardo/J-2901-2012; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015 OI Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Strube, Jan/0000-0001-7470-9301; Raven, Gerhard/0000-0002-2897-5323; Della Ricca, Giuseppe/0000-0003-2831-6982; Forti, Francesco/0000-0001-6535-7965; Bellini, Fabio/0000-0002-2936-660X; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Patrignani, Claudia/0000-0002-5882-1747; Saeed, Mohammad Alam/0000-0002-3529-9255; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826 NR 31 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 051103 DI 10.1103/PhysRevD.77.051103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200003 ER PT J AU Barnes, T Li, X Roberts, W AF Barnes, T. Li, X. Roberts, W. TI Evidence for a J/psi p(p)over-bar Pauli strong coupling? SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; BARYON; SPIN AB The couplings of charmonia and charmonium hybrids (generically psi) to p (p) over bar are of great interest in view of future plans to study these states using an antiproton storage ring at GSI. These low to moderate energy psi p (p) over bar couplings are not well understood theoretically, and currently must be determined from experiment. In this paper we note that the two independent Dirac (gamma(mu)) and Pauli (sigma(mu nu)) p (p) over bar couplings of the J/psi and psi' can be constrained by the angular distribution of e(+)e(-) --> (J/psi, psi') --> p (p) over bar on resonance. A comparison of our theoretical results to recent unpolarized data allows estimates of the p (p) over bar couplings; in the better determined J/psi case the data is inconsistent with a pure Dirac (gamma(mu)) coupling, and can be explained by the presence of a sigma(mu nu) term. This Pauli coupling may significantly affect the cross section of the PANDA process p (p) over bar --> pi(0) J/psi near threshold. There is a phase ambiguity that makes it impossible to uniquely determine the magnitudes and relative phase of the Dirac and Pauli couplings from the unpolarized angular distributions alone; we show in detail how this can be resolved through a study of the polarized reactions. C1 [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Barnes, T.; Li, X.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Roberts, W.] Florida State Univ, Dept Phys & Astron, Tallahassee, FL 32306 USA. RP Barnes, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM tbarnes@utk.edu; xli22@utk.edu; wroberts@fsu.edu RI Li, Xiaoguang/F-5135-2010 NR 18 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 056001 DI 10.1103/PhysRevD.77.056001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200078 ER PT J AU Berger, EL Block, MM Mckay, DW Tan, CI AF Berger, Edmond L. Block, Martin M. Mckay, Douglas W. Tan, Chung-I TI Ultrahigh energy neutrino scattering SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTION; TELESCOPE; QCD AB Estimates are made of ultrahigh energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function F(2)(p)(x, Q(2)) over a broad range of the virtuality Q(2). Expressions are obtained for both the neutral current and the charged current cross sections. Comparison with an extrapolation based on perturbative QCD shows good agreement for energies where both fit data, but our rates are as much as a factor of 10 smaller for neutrino energies above 10(9) GeV, with important implications for experiments searching for extragalactic neutrinos. C1 [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Block, Martin M.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Mckay, Douglas W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Tan, Chung-I] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. NR 36 TC 15 Z9 15 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 053007 DI 10.1103/PhysRevD.77.053007 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200018 ER PT J AU Brodsky, SJ de Teramond, GF AF Brodsky, Stanley J. de Teramond, Guy F. TI Light-front dynamics and AdS/QCD correspondence: The pion form factor in the space- and time-like regions SO PHYSICAL REVIEW D LA English DT Review ID PERTURBATIVE QUANTUM CHROMODYNAMICS; WAVE-FUNCTION REPRESENTATION; VIRTUAL COMPTON-SCATTERING; LANDAU GAUGE QCD; ADS/CFT CORRESPONDENCE; EXCLUSIVE PROCESSES; HIGH-ENERGY; MOMENTUM; SUPERGRAVITY; THRESHOLD AB The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of anti-de Sitter (AdS) space z and a specific light-front impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and which allow the computation of decay constants, form factors and other exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory. As specific examples we compute the pion coupling constant f(pi), the pion charge radius < r(pi)(2)> and examine the propagation of the electromagnetic current in AdS space, which determines the space and timelike behavior of the pion form factor and the pole of the rho meson. C1 [Brodsky, Stanley J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [de Teramond, Guy F.] Univ Costa Rica, San Jose, Costa Rica. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 102 TC 236 Z9 237 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 056007 DI 10.1103/PhysRevD.77.056007 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200084 ER PT J AU DeWolfe, O Kachru, S Mulligan, M AF DeWolfe, Oliver Kachru, Shamit Mulligan, Michael TI Gravity dual of metastable dynamical supersymmetry breaking SO PHYSICAL REVIEW D LA English DT Article ID CONFORMAL FIELD-THEORIES; SOFT; ORIENTIFOLDS; TERMS AB Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to (D3) over bar -brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU (N+M) X SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields. C1 [DeWolfe, Oliver] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Kachru, Shamit; Mulligan, Michael] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kachru, Shamit; Mulligan, Michael] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP DeWolfe, O (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. NR 46 TC 60 Z9 60 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 065011 DI 10.1103/PhysRevD.77.065011 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500098 ER PT J AU Dodelson, S Hooper, D Serpico, PD AF Dodelson, Scott Hooper, Dan Serpico, Pasquale D. TI Extracting the gamma ray signal from dark matter annihilation in the galactic center region SO PHYSICAL REVIEW D LA English DT Article ID NEUTRALINO ANNIHILATION; BLACK-HOLE; HALOS; RADIATION; DIRECTION; GALAXIES; SKY AB The GLAST satellite mission will study the gamma ray sky with considerably greater exposure than its predecessor EGRET. In addition, it will be capable of measuring the arrival directions of gamma rays with much greater precision. These features each significantly enhance GLAST's potential for identifying gamma rays produced in the annihilations of dark matter particles. The combined use of spectral and angular information, however, is essential if the full sensitivity of GLAST to dark matter is to be exploited. In this paper, we discuss the separation of dark matter annihilation products from astrophysical backgrounds, focusing on the galactic center region, and perform a forecast for such an analysis. We consider both pointlike and diffuse astrophysical backgrounds and model them using a point-spread-function for GLAST. While the results of our study depend on the specific characteristics of the dark matter signal and astrophysical backgrounds, we find that in many scenarios it is possible to successfully identify dark matter annihilation radiation, even in the presence of significant astrophysical backgrounds. C1 [Dodelson, Scott; Hooper, Dan; Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. NR 66 TC 46 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 063512 DI 10.1103/PhysRevD.77.063512 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500030 ER PT J AU Gronau, M Pirjol, D Soni, A Zupan, J AF Gronau, Michael Pirjol, Dan Soni, Amarjit Zupan, Jure TI Constraint on (rho)over-bar, (eta)over-bar from B -> K*pi SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; CP VIOLATION; WEAK PHASE; DECAYS; EXTRACTION; MATRIX AB A linear relation between Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing parameters, (eta) over bar = tan Phi(3/2) ((rho) over bar- 0.24 +/- 0.03), involving a 1 sigma range for Phi(3/2), 20 degrees < Phi(3/2) < 115 degrees, is obtained from B(0) --> K*pi amplitudes measured recently in Dalitz plot analyses of B(0) --> K(+)pi(-) pi(0) and B(0)(t) --> K(S) pi(+)pi(-). This relation is consistent within the large error on Phi(3/2) with other CKM constraints. We discuss the high sensitivity of this method to a new physics contribution in the Delta S = Delta I = 1 amplitude. C1 [Gronau, Michael] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Pirjol, Dan] Natl Inst Phys & Nucl Engn, Dept Particle Phys, Bucharest 077125, Romania. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zupan, Jure] CERN, Dept Phys, Div Theory, CH-1211 Geneva, Switzerland. [Zupan, Jure] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Zupan, Jure] J Stefan Inst, Ljubljana 1001, Slovenia. RP Gronau, M (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 28 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 057504 DI 10.1103/PhysRevD.77.057504 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200093 ER PT J AU Horava, P Keeler, CA AF Horava, Petr Keeler, Cynthia A. TI M theory through the looking glass: Tachyon condensation in the E-8 heterotic string SO PHYSICAL REVIEW D LA English DT Article ID CONFORMAL FIELD-THEORY; MODELS; DIMENSIONS; DYNAMICS AB We study the spacetime decay to nothing in string theory and M-theory. First we recall a non-supersymmetric version of heterotic M-theory, in which bubbles of nothing-connecting the two E-8 boundaries by a throat-are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E-8 gauge group and a singlet tachyon. We then use world sheet methods to study the tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R-xi gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. NR 35 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 066013 DI 10.1103/PhysRevD.77.066013 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500128 ER PT J AU Schienbein, I Yu, JY Keppel, C Morfin, JG Olness, F Owens, JF AF Schienbein, I. Yu, J. Y. Keppel, C. Morfin, J. G. Olness, F. Owens, J. F. TI Nuclear parton distribution functions from neutrino deep inelastic scattering SO PHYSICAL REVIEW D LA English DT Article ID CHARGE-SYMMETRY VIOLATION; XF(3) STRUCTURE-FUNCTION; ELECTRON-SCATTERING; MUON SCATTERING; HEAVY QUARKS; IRON TARGETS; QCD ANALYSIS; CCFR DATA; DEPENDENCE; LEPTOPRODUCTION AB We study nuclear effects in charged current deep inelastic neutrino- iron scattering in the framework of a X(2) analysis of parton distribution functions ( PDFs). We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea, and strange quark distributions. Our iron PDFs are used to compute x(Bj)- dependent and Q(2)- dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino- nucleus scattering models and correction factors for l(+/-) -iron scattering. We find that, except for very high x(Bj), our correction factors differ in both shape and magnitude from the correction factors of the models and charged- lepton scattering. C1 [Schienbein, I.; Yu, J. Y.; Olness, F.; Owens, J. F.] So Methodist Univ, Dallas, TX 75206 USA. [Schienbein, I.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 St Martin Dheres, France. [Keppel, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23602 USA. [Keppel, C.] Hampton Univ, Hampton, VA 23668 USA. [Morfin, J. G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA. [Olness, F.] CERN, Div Theoret Phys, Dept Phys, CH-1211 Geneva, Switzerland. RP Schienbein, I (reprint author), So Methodist Univ, Dallas, TX 75206 USA. EM schien@lpsc.in2p3.fr; yu@physics.smu.edu; keppel@jlab.org; morfin@fnal.gov; olness@smu.edu; owens@hep.fsu.edu NR 57 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054013 DI 10.1103/PhysRevD.77.054013 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200038 ER PT J AU Simet, M Hooper, D Serpico, PD AF Simet, Melanie Hooper, Dan Serpico, Pasquale D. TI MilkyWay as a kiloparsec-scale axionscope SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC MAGNETIC-FIELD; ENERGY COSMIC-RAYS; VHE GAMMA-RAYS; EXTRAGALACTIC BACKGROUND LIGHT; PKS 2155-304; SN 1987A; DISCOVERY; HESS; TELESCOPE; RADIATION AB Very high energy gamma rays are expected to be absorbed by the extragalactic background light over cosmological distances via the process of electron-positron pair production. Recent observations of cosmologically distant gamma-ray emitters by ground based gamma-ray telescopes have, however, revealed a surprising degree of transparency of the universe to very high energy photons. One possible mechanism to explain this observation is the oscillation between photons and axionlike particles (ALPs). Here we explore this possibility further, focusing on photon-ALP conversion in the magnetic fields in and around gamma-ray sources and in the magnetic field of the Milky Way, where some fraction of the ALP flux is converted back into photons. We show that this mechanism can be efficient in allowed regions of the ALP parameter space, as well as in typical configurations of the galactic magnetic field. As case examples, we consider the spectrum observed from two HESS sources: 1ES1101-232 at redshift z = 0.186 and H 2356-309 at z = 0.165. We also discuss features of this scenario which could be used to distinguish it from standard or other exotic models. C1 [Simet, Melanie] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan; Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Simet, M (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RI Simet, Melanie/A-3415-2016 OI Simet, Melanie/0000-0001-8823-8926 NR 48 TC 74 Z9 74 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 063001 DI 10.1103/PhysRevD.77.063001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500011 ER PT J AU Suzuki, M AF Suzuki, Mahiko TI Inelastic final-state interaction SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; PHYSICS; PHASES; QUARK AB The final- state interaction in multichannel decay processes is systematically studied in the hadronic picture with application to B decay in mind. Since the final- state interaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like " Watson's theorem'' holds for experimentally observed final states. We first solve exactly the two- channel problem as a toy model in order to clarify the issues. The constraints of the two- channel approximation turns out to be too stringent for most B decay modes, but realistic multichannel problems are too complex for useful quantitative analysis at present. To alleviate the stringent constraints of the two- body problem and to cope with complexity beyond it, we introduce a method of approximation that is applicable to the case where one prominent inelastic channel dominates over all others. We illustrate this approximation method with the amplitude of the decay B -> K pi fed by the intermediate states of a charmed- meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonetheless we are able to obtain some insight in the issue and draw useful conclusions on general features on the strong phases. C1 [Suzuki, Mahiko] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Suzuki, Mahiko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Suzuki, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 30 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054021 DI 10.1103/PhysRevD.77.054021 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200046 ER PT J AU Trueman, TL AF Trueman, T. L. TI Spin asymmetries for elastic proton scattering and the spin-dependent couplings of the Pomeron SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY SCATTERING; HADRONIC INTERFERENCE; CROSS-SECTIONS; JET TARGET; POLARIZATION; NUCLEI; AMPLITUDES; MODEL; PP AB This paper serves as a report on the large amount of analysis done in conjunction with the polarized proton program at the Relavitistic Heavy Ion Collider at Brookhaven National Laboratory. This comprises elastic scattering data of protons on protons in colliding beam or fixed target mode and proton beams on carbon targets. In addition to providing a model for the energy dependence of the analyzing power of elastic scattering needed for proton polarimetry, it also provides some significant information about the spin dependence of dominant Regge poles. Most notably, the data indicate that the Pomeron has a significant spin- flip coupling. This allows the exploration of the double- spin flip asymmetry ANN for which some data over a wide energy range are now available, along with a concrete realization of a proposed Odderon search. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Trueman, TL (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 49 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054005 DI 10.1103/PhysRevD.77.054005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200030 ER PT J AU Araujo, NAM Cadilhe, A Privman, V AF Araujo, N. A. M. Cadilhe, A. Privman, Vladimir TI Morphology of fine-particle monolayers deposited on nanopatterned substrates SO PHYSICAL REVIEW E LA English DT Article ID RANDOM-SEQUENTIAL ADSORPTION; CDSE NANOCRYSTALS; MULTILAYER ADSORPTION; SQUARE LATTICE; NONEQUILIBRIUM DEPOSITION; IRREVERSIBLE DEPOSITION; DIFFUSIONAL RELAXATION; CHARGE HETEROGENEITY; PATTERNED SURFACES; ALTERNATIVE ROUTES AB We study the effect of the presence of a regular substrate pattern on the irreversible adsorption of nanosized and colloid particles. Deposition of disks of radius r(0) is considered, with the allowed regions for their center attachment at the planar surface consisting of square cells arranged in a square lattice pattern. We study the jammed state properties of a generalized version of the random sequential adsorption model for different values of the cell size, a, and cell-cell separation, b. The model shows a surprisingly rich behavior in the space of the two dimensionless parameters alpha = a/2r(0) and beta = b/2r(0). Extensive Monte Carlo simulations for system sizes of 500 x 500 square lattice unit cells were performed by utilizing an efficient algorithm, to characterize the jammed state morphology. C1 [Araujo, N. A. M.; Cadilhe, A.] Univ Minho, Ctr Fis, GCEP, P-4710057 Braga, Portugal. [Cadilhe, A.] Los Alamos Natl Lab, T 12 Grp, Los Alamos, NM 87545 USA. [Privman, Vladimir] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA. [Privman, Vladimir] Clarkson Univ, Ctr Adv Mat Proc, Potsdam, NY 13699 USA. RP Araujo, NAM (reprint author), Univ Minho, Ctr Fis, GCEP, P-4710057 Braga, Portugal. EM cadilhe@lanl.gov RI Araujo, Nuno/B-6313-2008; Cadilhe, Antonio/G-1479-2016 OI Araujo, Nuno/0000-0002-1677-6060; Cadilhe, Antonio/0000-0002-0252-6992 NR 93 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031603 DI 10.1103/PhysRevE.77.031603 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700082 PM 18517391 ER PT J AU Baker, GA AF Baker, George A., Jr. TI Equation of state for a partially ionized gas. III SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON-ION SYSTEM; THOMAS-FERMI; PERTURBATION-THEORY; PRESSURE; STABILITY; MATTER; ATOMS AB The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. The results of the Thomas- Fermi model always yield pressures which are less than or equal to that of an ideal Fermi gas. On the other hand, the spherical cellular model shows significant "overpressure" relative to the ideal Fermi gas in certain regions of low density and low temperature. This effect is studied in considerable detail. A nonthermodynamic region, more or less overlapping the regions of overpressure, is found. It is characterized by a negative specific heat at constant volume. An independent electron model within a Z- electron cell is employed. The inadequacy of the wave function in the low- density, lowtemperature nonthermodynamic region is shown to be the cause of this overpressure. Numerical examples of the theory for several elements ( Li, N, Al, K, and Er ) are reported. These results reduce in various limits of temperature and density to the expected behavior, except in the aforementioned region. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Baker, GA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. NR 24 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031120 DI 10.1103/PhysRevE.77.031120 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700033 PM 18517342 ER PT J AU Bandi, MM Connaughton, C AF Bandi, Mahesh M. Connaughton, Colm TI Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence SO PHYSICAL REVIEW E LA English DT Article ID INVERSE CASCADE; FLUCTUATIONS; ENERGY; FLOW AB We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig's XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms. C1 [Bandi, Mahesh M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, MPA 10, Los Alamos, NM 87545 USA. [Bandi, Mahesh M.; Connaughton, Colm] Los Alamos Natl Lab, Ctr Nonlinear Studies, T CNLS, Los Alamos, NM 87545 USA. [Connaughton, Colm] Los Alamos Natl Lab, Complex Syst Grp T 13, Los Alamos, NM 87545 USA. [Connaughton, Colm] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England. [Connaughton, Colm] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England. RP Bandi, MM (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, MPA 10, POB 1663, Los Alamos, NM 87545 USA. EM mbandi@lanl.gov; connaughtonc@gmail.com RI Connaughton, Colm/E-8796-2011 OI Connaughton, Colm/0000-0003-4137-7050 NR 29 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036318 DI 10.1103/PhysRevE.77.036318 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900076 PM 18517522 ER PT J AU Basagaoglu, H Meakin, P Succi, S Redden, GR Ginn, TR AF Basagaoglu, H. Meakin, P. Succi, S. Redden, G. R. Ginn, T. R. TI Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels SO PHYSICAL REVIEW E LA English DT Article ID PARTICULATE SUSPENSIONS; POISEUILLE FLOW; RIGID SPHERES; EQUATION; PARTICLES AB A lattice Boltzmann model was used to simulate the accelerated transport of dense inert particles in low Reynolds number flows in smooth- and rough-walled narrow channels. The simulations showed that, after an initial transient, an initially immobile particle migrated faster than the average fluid velocity. The sensitivity of the particle residence time to wall roughness increased with decreasing Reynolds numbers. The relationship between the exit position and residence time of a particle was sensitive to the release position, flow strength, and the wall roughness. A particle with a density 5% larger than the density of the fluid migrated to an equilibrium position between the centerline and the wall for the slowest flow rates in rough-walled channels, displaying the Segre-Silberberg effect that a rigid neutrally buoyant spherical particle exhibits in small Reynolds number flows. However, a particle that was 35% denser than the density of the fluid drifted to the centerline in the slowest flows due to the gravitational settling effect. The difference in the residence time of the less-dense and dense particles was most sensitive to the surface roughness at the smallest Reynolds number investigated. C1 [Basagaoglu, H.] SW Res Inst, Ctr Nucl Waste Regulatory Anal, San Antonio, TX 78238 USA. [Basagaoglu, H.] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Meakin, P.; Redden, G. R.] Ctr Adv Modeling & Simulat, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Succi, S.] CNR, Inst Appl Calcolo, I-00161 Rome, Italy. [Ginn, T. R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Basagaoglu, H (reprint author), SW Res Inst, Ctr Nucl Waste Regulatory Anal, San Antonio, TX 78238 USA. RI Succi, Sauro/E-4606-2015 OI Succi, Sauro/0000-0002-3070-3079 NR 24 TC 14 Z9 14 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031405 DI 10.1103/PhysRevE.77.031405 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700070 PM 18517379 ER PT J AU Esaulov, AA Bauer, BS Makhin, V Siemon, RE Lindemuth, IR Awe, TJ Reinovsky, RE Struve, KW Desjarlais, MP Mehlhorn, TA AF Esaulov, A. A. Bauer, B. S. Makhin, V. Siemon, R. E. Lindemuth, I. R. Awe, T. J. Reinovsky, R. E. Struve, K. W. Desjarlais, M. P. Mehlhorn, T. A. TI Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field SO PHYSICAL REVIEW E LA English DT Article ID MAGNETIZED TARGET FUSION; REVERSED CONFIGURATION PLASMA; ARRAY Z-PINCHES; IMPLOSION EXPERIMENT; EDDINGTON FACTORS; FIBER ABLATION; FLUX LIMITERS; TUNGSTEN WIRE; SOLID LINER; COMPRESSION AB Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1 MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics. C1 [Esaulov, A. A.; Bauer, B. S.; Makhin, V.; Siemon, R. E.; Lindemuth, I. R.; Awe, T. J.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Reinovsky, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Struve, K. W.; Desjarlais, M. P.; Mehlhorn, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Esaulov, AA (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 41 TC 7 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036404 DI 10.1103/PhysRevE.77.036404 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900084 PM 18517530 ER PT J AU Fukuto, M Gang, O Alvine, KJ Ocko, BM Pershan, PS AF Fukuto, Masafumi Gang, Oleg Alvine, Kyle J. Ocko, Benjamin M. Pershan, Peter S. TI Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: An x-ray reflectivity study SO PHYSICAL REVIEW E LA English DT Article ID LIGHT-SCATTERING; TRANSITION; PHASE; ALKANES; GROWTH; ORDER; FILMS AB We report the results of a synchrotron x-ray reflectivity study of bulk liquid-crystal surfaces that are coated by thin wetting films of an immiscible liquid. The liquid-crystal subphase consisted of the nematic or isotropic phase of 4-octyl-4'-cyanobiphenyl (8CB), and the wetting film was formed by the fluorocarbon perfluoromethylcyclohexane (PFMC), a volatile liquid. The thickness of the wetting film was controlled by the temperature difference Delta T(mu) between the sample and a reservoir of bulk PFMC, contained within the sealed sample cell. Phase information on the interfacial electron density profiles has been extracted from the interference between the scattering from the PFMC-vapor interface and the surface-induced smectic order of the 8CB subphase. The liquid-crystal side of the nematic-liquid (8CB-PFMC) interface is characterized by a density oscillation whose period corresponds to the smectic layer spacing and whose amplitude decays exponentially toward the underlying nematic subphase. The decay length xi of the smectic amplitude is independent of the PFMC film thickness but increases as the nematic-smectic-A transition temperature TNA is approached, in agreement with the longitudinal correlation length xi(parallel to)(T-T(NA))-(0.7) for the smectic fluctuations in the bulk nematic. The results indicate that the homeotropic orientation of the 8CB molecules is preferred at the 8CB-PFMC interface and that the observed temperature dependence of the smectic layer growth is consistent with the critical adsorption mechanism. The observed Delta T(mu) dependence of the PFMC film thickness, L(infinity)(Delta T(mu))(-1/3), implies that PFMC completely wets the 8CB surface and is dominated by the nonretarded dispersion interactions between hydro- and fluorocarbons. The complete wetting behavior of PFMC is nearly independent of the degree of interfacial smectic order in the subphase. C1 [Fukuto, Masafumi; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Alvine, Kyle J.; Pershan, Peter S.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Pershan, Peter S.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Fukuto, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fukuto@bnl.gov NR 48 TC 17 Z9 17 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031607 DI 10.1103/PhysRevE.77.031607 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700086 PM 18517395 ER PT J AU Gallis, MA Torczynski, JR Rader, DJ AF Gallis, M. A. Torczynski, J. R. Rader, D. J. TI Nanoparticle Knudsen layers in gas-filled microscale geometries SO PHYSICAL REVIEW E LA English DT Article ID SMALL LATEX SPHERES; SIMULATION; PARTICLES; EQUATION; FLOW AB Nanoparticles suspended in ambient air within microscale geometries form a Knudsen layer when diffusing in a Brownian fashion toward a solid wall. More specifically, the particle number density adjacent to the wall approaches a nonzero value proportional to the flux. An approximate theory for the coefficient of proportionality as a function of the particle sticking fraction at the wall and the drift velocity normal to the wall is compared to Langevin particle simulations. The resulting boundary condition enables accurate advection-diffusion simulations of nanoparticle-aerosol transport. C1 [Gallis, M. A.; Torczynski, J. R.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Torczynski, JR (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jrtorcz@sandia.gov NR 14 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036302 DI 10.1103/PhysRevE.77.036302 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900060 PM 18517506 ER PT J AU Holm, DD Naraigh, LO Tronci, C AF Holm, Darryl D. Naraigh, Lennon O. Tronci, Cesare TI Emergent singular solutions of nonlocal density-magnetization equations in one dimension SO PHYSICAL REVIEW E LA English DT Article ID AGGREGATION; LITHOGRAPHY; FABRICATION AB We investigate the emergence of singular solutions in a nonlocal model for a magnetic system. We study a modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the length scales of the nonlocal effects. We pass to a coupled density-magnetization model and perform a linear stability analysis, noting the effect of the length scales of nonlocality on the system's stability properties. We carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily analyzed, and thus we classify the different clumpon interactions possible. C1 [Holm, Darryl D.; Naraigh, Lennon O.; Tronci, Cesare] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Tronci, Cesare] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy. RP Naraigh, LO (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London SW7 2AZ, England. EM lennon.o-naraigh@imperial.ac.uk RI Tronci, Cesare/B-7542-2016; OI Tronci, Cesare/0000-0002-8868-8027; Holm, Darryl D/0000-0001-6362-9912 NR 30 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036211 DI 10.1103/PhysRevE.77.036211 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900043 PM 18517489 ER PT J AU Kao, YJ Melko, RG AF Kao, Ying-Jer Melko, Roger G. TI Short-loop algorithm for quantum Monte Carlo simulations SO PHYSICAL REVIEW E LA English DT Article ID SPIN SYSTEMS; MODELS; ICE AB We present an algorithmic framework for a variant of the quantum Monte Carlo operator-loop algorithm, where nonlocal cluster updates are constructed in a way that makes each individual loop smaller. The algorithm is designed to increase simulation efficiency in cases where conventional loops become very large, do not close altogether, or otherwise behave poorly. We demonstrate and characterize some aspects of the short loop on a square lattice spin-1/2 XXZ model where, remarkably, a significant increase in simulation efficiency is observed in some parameter regimes. The simplicity of the model provides a prototype for the use of short loops on more complicated quantum systems. C1 [Kao, Ying-Jer] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Kao, Ying-Jer] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 106, Taiwan. [Melko, Roger G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Melko, Roger G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kao, YJ (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. EM yjkao@phys.ntu.edu.tw; rgmelko@science.uwaterloo.ca RI Kao, Ying Jer/B-5297-2009 OI Kao, Ying Jer/0000-0002-3329-6018 NR 25 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036708 DI 10.1103/PhysRevE.77.036708 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900112 PM 18517558 ER PT J AU Krishnamurthy, VV Mankey, GJ He, B Piao, M Wiest, JM Nikles, DE Porcar, L Robertson, JL AF Krishnamurthy, V. V. Mankey, G. J. He, B. Piao, M. Wiest, J. M. Nikles, D. E. Porcar, L. Robertson, J. L. TI Orientational distributions and nematic order of rodlike magnetic nanoparticles in dispersions SO PHYSICAL REVIEW E LA English DT Article ID ANGLE NEUTRON-SCATTERING; X-RAY-DIFFRACTION; CYLINDRICAL MICELLES; TRANSITION; MICROSTRUCTURE; POLYMERS AB Using small-angle neutron scattering (SANS), we have investigated the orientational order of iron nanoparticles dispersed in cyclohexanone. The particles have rodlike shape and size distributions with an average length of 200 nm and an average diameter of 25 nm. SANS shows an anisotropy, which is a measure of orientational order, in magnetic dispersions with a volume fraction of 3.2% and 3.9% iron particles in shear flow and/or magnetic field. The scattering anisotropy can be fitted by a model assuming an Onsager distribution of the orientation of the particles in shear flow. The orientational distribution of particles oriented by a magnetic field can be described by a different model assuming the Maier-Saupe orientational distribution for uniaxial ferromagnetic particles. The orientational distribution parameter m for the Maier-Saupe distribution or alpha for the Onsager distribution and the orientational order parameter S have been determined at shear rates gamma of to 0-4000 s(-1) and in magnetic fields of 0-18 mT. The S values indicate that the particles start to orient either in a shear flow of 100 s(-1) or in a magnetic field of 6 mT. Applying only shear results in an orientational order, with the dispersion returning to the disordered state when the shear rate is decreased to zero. In sharp contrast, application of magnetic fields greater than 6 mT results in orientational order in the field-increasing cycle, and two-thirds of the orientational order remains when the field is decreased to zero. This shows that the order in a magnetic field is different from the order in a shear flow, the action of magnetizing the particles along a certain direction is irreversible, and the orientational order parameter exhibits hysteresis. C1 [Krishnamurthy, V. V.; Robertson, J. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Mankey, G. J.; He, B.; Piao, M.; Wiest, J. M.; Nikles, D. E.] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Porcar, L.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Krishnamurthy, VV (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Mankey, Gary/G-9110-2011 OI Mankey, Gary/0000-0003-3163-5159 NR 31 TC 1 Z9 1 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031403 DI 10.1103/PhysRevE.77.031403 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700068 PM 18517377 ER PT J AU Ramazanoglu, M Larochelle, S Garland, CW Birgeneau, RJ AF Ramazanoglu, M. Larochelle, S. Garland, C. W. Birgeneau, R. J. TI High-resolution x-ray study of nematic-smectic-A and smectic-A-reentrant-nematic transitions in liquid-crystal-aerosil gels SO PHYSICAL REVIEW E LA English DT Article ID SPIN-GAS MODEL; PHASE-TRANSITIONS; 8OCB-6OCB MIXTURES; CRITICAL-BEHAVIOR; SCATTERING AB We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic-A (N-SmA) and smectic-A to reentrant nematic (SmA-RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB-6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic-A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high-and low-temperature nematic phases (N and RN) are similar to each other. C1 [Ramazanoglu, M.; Larochelle, S.; Birgeneau, R. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Ramazanoglu, M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Garland, C. W.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ramazanoglu, M (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM mehmet@physics.mcmaster.ca; cgarland@mit.edu; chancellor@berkeley.edu NR 30 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031702 DI 10.1103/PhysRevE.77.031702 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700092 PM 18517401 ER PT J AU Roberts, DC AF Roberts, David C. TI Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators SO PHYSICAL REVIEW E LA English DT Article ID LIMIT-CYCLE OSCILLATORS; POPULATION; ARRAY AB The present paper introduces a linear reformulation of the Kuramoto model describing a self- synchronizing phase transition in a system of globally coupled oscillators that in general have different characteristic frequencies. The reformulated model provides an alternative coherent framework through which one can analytically tackle synchronization problems that are not amenable to the original Kuramoto analysis. It allows one to solve explicitly for the synchronization order parameter and the critical point of ( 1 ) the full phase- locking transition for a system with a finite number of oscillators (unlike the original Kuramoto model, which is solvable implicitly only in the mean- field limit ) and (2) a new class of continuum systems. It also makes it possible to probe the system's dynamics as it moves toward a steady state. While discussion in this paper is restricted to systems with global coupling, the formalism introduced by the linear reformulation also lends itself to solving systems that exhibit local or asymmetric coupling. C1 [Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Roberts, DC (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. NR 16 TC 4 Z9 4 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031114 DI 10.1103/PhysRevE.77.031114 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700027 PM 18517336 ER PT J AU Talin, B Calisti, A Dufty, JW Pogorelov, IV AF Talin, Bernard Calisti, Annette Dufty, James W. Pogorelov, Ilya V. TI Electron dynamics at a positive ion SO PHYSICAL REVIEW E LA English DT Article ID STRONGLY COUPLED PLASMAS; FIELD DYNAMICS; NONLINEAR RESPONSE; MOLECULAR-DYNAMICS; NEUTRAL POINT; SIMULATION; SYSTEMS AB The dynamics of electrons in the presence of a positive ion is considered for conditions of weak electron-electron coupling but strong electron-ion coupling. The equilibrium electron density and the electric field time correlation functions are evaluated for semiclassical conditions using a classical statistical mechanics with a regularized electron-ion interaction for molecular dynamics simulation (MD). Results are reported for the autocorrelation function of the electron electric field at the ion for 0 <= Z <= 40, including conditions of strong electron-ion coupling. The electron stopping power and self-diffusion coefficient are determined from these results. Interpretation is provided by a theoretical analysis using the nonlinear Vlasov equation for the equilibrium structure, and a corresponding linear Vlasov equation for time correlation functions. The agreement of a simple mean field model with the semiclassical MD simulation is found to be quite good except for one state condition. C1 [Talin, Bernard; Calisti, Annette] Univ Aix Marseille 1, Ctr St Jerome, UMR6633, F-13397 Marseille 20, France. [Dufty, James W.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Pogorelov, Ilya V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. RP Talin, B (reprint author), Univ Aix Marseille 1, Ctr St Jerome, UMR6633, F-13397 Marseille 20, France. OI Calisti, Annette/0000-0001-6727-9286 NR 35 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036410 DI 10.1103/PhysRevE.77.036410 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900090 PM 18517536 ER PT J AU Wang, ST Fukuto, M Yang, L AF Wang, S. T. Fukuto, M. Yang, L. TI In situ x-ray reflectivity studies on the formation of substrate-supported phospholipid bilayers and monolayers SO PHYSICAL REVIEW E LA English DT Article ID STREPTAVIDIN 2D CRYSTALS; MEMBRANES; SURFACE; CRYSTALLIZATION; FILMS AB We conducted time-dependent, in situ x-ray reflectivity measurements on the formation of substrate-supported lipid monolayers and bilayers at solid-liquid interfaces, buried under an aqueous buffer with various concentrations (5, 10, 20, 40, and 50 mu g/ml) of lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The DOPC bilayer is formed on the hydrophilic surface of a bare Si substrate, while the DOPC monolayer is formed on a hydrophobic octadecylthricholorsilane (OTS) monolayer-coated Si substrate. The evolution of the reflectivity curves from the lipid bilayers is well described by lateral growth of bilayer islands, consistent with the rupture and fusion model for the adsorption of lipid vesicles to solid-liquid interfaces. By contrast, the formation of the lipid monolayer on OTS-coated Si occurs through a relatively fast coverage of the entire interfacial area, followed by an increase in the monolayer thickness. For both monolayers and bilayers, the rate of lipid layer growth increases with increasing lipid concentration in the buffer solution. C1 [Fukuto, M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Fukuto, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fukuto@bnl.gov; lyang@bnl.gov RI Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 NR 33 TC 10 Z9 10 U1 4 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031909 DI 10.1103/PhysRevE.77.031909 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700115 PM 18517424 ER PT J AU Akre, R Dowell, D Emma, P Frisch, J Gilevich, S Hays, G Hering, P Iverson, R Limborg-Deprey, C Loos, H Miahnahri, A Schmerge, J Turner, J Welch, J White, W Wu, J AF Akre, R. Dowell, D. Emma, P. Frisch, J. Gilevich, S. Hays, G. Hering, Ph. Iverson, R. Limborg-Deprey, C. Loos, H. Miahnahri, A. Schmerge, J. Turner, J. Welch, J. White, W. Wu, J. TI Commissioning the Linac coherent light source injector SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GUN TEST FACILITY; LASER; RF AB The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL) project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics. C1 [Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Akre, R (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. OI Loos, Henrik/0000-0001-5085-0562 NR 21 TC 113 Z9 115 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030703 DI 10.1103/PhysRevSTAB.11.030703 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400004 ER PT J AU Borland, M AF Borland, M. TI Modeling of the microbunching instability SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We show that, through careful control of noise sources, it is possible to determine the microbunching gain curve for the FERMI@ELETTRA linac using the particle tracking code ELEGANT. In addition to using a sufficiently large number of particles (60 x 10(6)), use of a low-pass filter is very helpful in controlling noise and providing convenient intrabin interpolation. Gains of up to 1500 are seen for modulation wavelengths down to 25 mu m. Because of the high gain, very small initial modulations are needed to avoid saturation, which further motivates the use of a large number of particles. We also show, for the first time, how the density modulation evolves in detail inside the dipoles of a multichicane system. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Borland, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030701 DI 10.1103/PhysRevSTAB.11.030701 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400002 ER PT J AU Ding, YT Huang, ZR AF Ding, Yuantao Huang, Zhirong TI Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SYNCHROTRON-RADIATION; SIMULATION AB There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed-undulator scheme [K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 445, 329 (2000)] for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that, by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90 degrees rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light with over 80% polarization-near the FEL saturation. C1 [Ding, Yuantao; Huang, Zhirong] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Ding, YT (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. NR 22 TC 20 Z9 22 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030702 DI 10.1103/PhysRevSTAB.11.030702 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400003 ER PT J AU Tan, CY Ranjbar, VH AF Tan, C. Y. Ranjbar, V. H. TI Analytic approximation of the head-tail phase difference from continuous transverse excitation for measuring chromaticity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We will explore a method for measuring chromaticity by continuously kicking the beam transversely. This is called the continuous head-tail method for measuring chromaticity. The complete analytic approximation in terms of trigonometric functions is derived for zero transverse emittance beam. A simple formula for calculating chromaticity from experimental data is also shown. Finally, the theory is compared with experimental data. C1 [Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ranjbar, V. H.] Tech X Corp, Boulder, CO 80303 USA. RP Tan, CY (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM cytan@fnal.gov; ranjbar@txcorp.com NR 12 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 032802 DI 10.1103/PhysRevSTAB.11.032802 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400011 ER PT J AU Venturini, M AF Venturini, Marco TI Models of longitudinal space-charge impedance for microbunching instability SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A 1D model of space-charge impedance, assuming a transversely uniform beam with circular cross section, has been proposed and is being extensively used in the modeling of the microbunching instability of relevance for the beam delivery systems of x-ray free-electron lasers. In this paper we investigate the limitation of the model when applied to studying the effect of shot noise-one of the sources of the microbunching instability. We make comparison with a fully 3D calculation and identify the upper end of the frequency spectrum for applicability of the 1D model. Relaxation of the assumptions regarding axis symmetry and uniformity of the transverse density is also reviewed. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mventurini@lbl.gov NR 17 TC 30 Z9 30 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 034401 DI 10.1103/PhysRevSTAB.11.034401 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400014 ER PT J AU Welch, DR Genoni, TC Rose, DV Bruner, NL Stygar, WA AF Welch, D. R. Genoni, T. C. Rose, D. V. Bruner, N. L. Stygar, W. A. TI Optimized transmission-line impedance transformers for petawatt-class pulsed-power accelerators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We have developed 1D analytic and 2D fully electromagnetic models of radial transmission-line impedance transformers. The models have been used to quantify the power-transport efficiency and pulse sharpening of such transformers as a function of voltage pulse width and impedance profile. For the cases considered, we find that in the limit as Gamma -> 0 ( where Gamma is the ratio of the pulse width to the one-way transit time of the transformer), the transport efficiency is maximized when the impedance profile is exponential. As Gamma increases from zero, the optimum profile gradually deviates from an exponential. A numerical procedure is presented that determines the optimum profile for a given pulse shape and width. The procedure can be applied to optimize the design of impedance transformers used in petawatt-class pulsed-power accelerators. C1 [Welch, D. R.; Genoni, T. C.; Rose, D. V.; Bruner, N. L.] LLC, Voss Sci, Albuquerque, NM 87108 USA. [Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), LLC, Voss Sci, Albuquerque, NM 87108 USA. NR 16 TC 21 Z9 28 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030401 DI 10.1103/PhysRevSTAB.11.030401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400001 ER PT J AU Xu, J Shepard, KW Ostroumov, PN Fuerst, JD Waldschmidt, G Gonin, IV AF Xu, J. Shepard, K. W. Ostroumov, P. N. Fuerst, J. D. Waldschmidt, G. Gonin, I. V. TI Superconducting accelerating structures for very low velocity ion beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB This paper presents designs for four types of very-low-velocity superconducting (SC) accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0: 006 < v/c < 0: 06. Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U. S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0: 008< beta = v/c < 0: 05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications. C1 [Xu, J.; Shepard, K. W.; Ostroumov, P. N.; Fuerst, J. D.; Waldschmidt, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gonin, I. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Xu, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jin_xu@anl.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 032001 DI 10.1103/PhysRevSTAB.11.032001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400008 ER PT J AU Burton, GC AF Burton, Gregory C. TI The nonlinear large-eddy simulation method applied to Sc approximate to 1 and Sc >> 1 passive-scalar mixing SO PHYSICS OF FLUIDS LA English DT Article ID DYNAMIC LOCALIZATION MODEL; FULLY TURBULENT FLOWS; NUMBER MASS-TRANSFER; GRID TURBULENCE; TEMPERATURE; SIMILARITY; TRANSPORT; GRADIENT AB The nonlinear large-eddy simulation (nLES) method is extended here to simulations of Sc approximate to 1 and Sc >> 1 turbulent mixing of passive-scalar fields. These are the first LES studies to reproduce the instantaneous structure of the scalar-energy field phi(-2)(x,t) at viscous-convective scales in the high Schmidt-number regime. The simulations employ a refinement of the nLES method with multifractal modeling first proposed by G. C. Burton and W. J. A. Dahm [Phys. Fluids 17, 075111 (2005)]. In this approach, the nonlinear inertial stresses (u(i)u(j)) over bar in the filtered Navier-Stokes equation and the nonlinear scalar fluxes (u(j)phi) over bar in the filtered advection-diffusion equation are calculated directly, using multifractal models for the subgrid velocity and scalar fields, u(j)(sgs) and phi(sgs). Resolved energy levels are controlled by a new adaptive backscatter limiter that adjusts locally to changing flow conditions consistent with the mechanism governing energy transfer in actual hydrodynamic turbulence. No artificial viscosity or diffusivity closures are applied and no explicit de-aliasing is performed. The nLES approach is shown to simulate accurately Sc approximate to 1 mixing for flows between Re(lambda) approximate to 35 and 4100, the highest Re(lambda) tested. Characteristics of the resulting scalar field are examined, including the turbulence-to-scalar time-scale ratio and total scalar variance , indicating good agreement with prior studies. Simulations between Sc= 8 and 8192 produce the first scalar-energy spectra from an LES that exhibit k(-1) scaling in the viscous-convective range, consistent with the analytical prediction of G. K. Batchelor [J. Fluid Mech. 5, 113 (1959)]. The simulations indicate decreasing scalar anisotropy and increasing intermittency with increasing Schmidt number, also consistent with prior studies. (C) 2008 American Institute of Physics. C1 Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Burton, GC (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. NR 36 TC 14 Z9 14 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 035103 DI 10.1063/1.2840199 PG 14 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600025 ER PT J AU Graham, JP Holm, DD Mininni, PD Pouquet, A AF Graham, Jonathan Pietarila Holm, Darryl D. Mininni, Pablo D. Pouquet, Annick TI Three regularization models of the Navier-Stokes equations SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; CAMASSA-HOLM EQUATIONS; DIRECT NUMERICAL SIMULATIONS; FULLY-DEVELOPED TURBULENCE; EXTENDED SELF-SIMILARITY; ALPHA-MODEL; ISOTROPIC TURBULENCE; AVERAGED LAGRANGIANS; ENERGY-SPECTRUM; FLUID-DYNAMICS AB We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes alpha-model (LANS-alpha) and Leray-alpha, albeit at significantly higher Reynolds number than previous studies, namely, Re approximate to 3300, Taylor Reynolds number of Re lambda approximate to 790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark-alpha as well as its associated k(-1) energy spectrum. At subfilter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-alpha reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-alpha model, increasing the filter width alpha decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of alpha studied Leray-alpha was inadequate as a SGS model. The LANS-alpha energy spectrum similar to k(1), consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar de Karman-Howarth equation). Clark-alpha is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha. (c) 2008 American Institute of Physics. C1 [Graham, Jonathan Pietarila; Mininni, Pablo D.; Pouquet, Annick] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Holm, Darryl D.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Mininni, Pablo D.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. RP Graham, JP (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RI Pietarila Graham, Jonathan/B-5222-2008; OI Pietarila Graham, Jonathan/0000-0003-1862-0526; Mininni, Pablo/0000-0001-6858-6755; Holm, Darryl D/0000-0001-6362-9912 NR 52 TC 19 Z9 19 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 035107 DI 10.1063/1.2880275 PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600029 ER PT J AU Ranjan, D Niederhaus, JHJ Oakley, JG Anderson, MH Bonazza, R Greenough, JA AF Ranjan, Devesh Niederhaus, John H. J. Oakley, Jason G. Anderson, Mark H. Bonazza, Riccardo Greenough, Jeffrey A. TI Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations SO PHYSICS OF FLUIDS LA English DT Article ID ADAPTIVE MESH REFINEMENT; HYPERBOLIC CONSERVATION-LAWS; GAS INTERFACE; WAVES; GENERATION; DYNAMICS; INSTABILITY; DEPOSITION; EQUATIONS; FLOWS AB The interaction of a planar shock wave with a spherical bubble in divergent shock-refraction geometry is studied here using shock tube experiments and numerical simulations. The particular case of a helium bubble in ambient air or nitrogen (A approximate to -0.8) is considered, for 1.4 < M < 3.0. Experimental planar laser diagnostics and three-dimensional multifluid Eulerian simulations clearly resolve features arising as a consequence of divergent shock refraction, including the formation of a long-lived primary vortex ring, as well as counter-rotating secondary and tertiary upstream vortex rings that appear at late times for M >= 2. Remarkable correspondence between experimental and numerical results is observed, which improves with increasing M, and three-dimensional effects are found to be relatively insignificant. Shocked-bubble velocities, length scales, and circulations extracted from simulations and experiments are used successfully to evaluate the usefulness of various analytical models, and characteristic dimensionless time scales are developed that collapse temporal trends in these quantities. Those linked directly to baroclinicity tend to follow time scales based on shock wave speeds, while those linked to interface deformation and vortex- or shear-induced motion tend to follow a time scale based on the postshock flow speed, though no single time scale is found to be universally successful. (c) 2008 American Institute of Physics. C1 [Ranjan, Devesh; Niederhaus, John H. J.; Oakley, Jason G.; Anderson, Mark H.; Bonazza, Riccardo] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ranjan, D (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM devesh.ranjan@gmail.com; bonazza@engr.wisc.edu OI Ranjan, Devesh/0000-0002-1231-9313 NR 46 TC 16 Z9 19 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 036101 DI 10.1063/1.2840198 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600037 ER PT J AU Benisti, D Strozzi, DJ Gremillet, L AF Benisti, Didier Strozzi, David J. Gremillet, Laurent TI Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave SO PHYSICS OF PLASMAS LA English DT Article ID FREQUENCY-SHIFT AB The kinetic nonlinear dispersion relation, and frequency shift delta omega(srs), of a plasma wave driven by stimulated Raman scattering are presented. Our theoretical calculations are fully electromagnetic, and use an adiabatic expression for the electron susceptibility which accounts for the change in phase velocity as the wave grows. When k lambda(D)>= 0.35 (k being the plasma wave number and lambda(D) the Debye length), delta omega(srs) is significantly larger than could be inferred by assuming that the wave is freely propagating. Our theory is in excellent agreement with 1D Eulerian Vlasov-Maxwell simulations when 0.3 <= k lambda(D)<= 0.58, and allows discussion of previously proposed mechanisms for Raman saturation. In particular, we find that no "loss of resonance" of the plasma wave would limit the Raman growth rate, and that saturation through a phase detuning between the plasma wave and the laser drive is mitigated by wave number shifts. (C) 2008 American Institute of Physics. C1 [Benisti, Didier; Gremillet, Laurent] CEA, DAM Ile France, Dept Phys Theor & Appl, F-91287 Arpajon, France. [Strozzi, David J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Benisti, D (reprint author), CEA, DAM Ile France, Dept Phys Theor & Appl, F-91287 Arpajon, France. EM didier.benisti@cea.fr RI Gremillet, Laurent/C-5636-2008; OI Strozzi, David/0000-0001-8814-3791 NR 14 TC 29 Z9 29 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030701 DI 10.1063/1.2888515 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900001 ER PT J AU Birn, J Borovsky, JE Hesse, M AF Birn, J. Borovsky, J. E. Hesse, M. TI Properties of asymmetric magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID CHALLENGE; MAGNETOTAIL; MHD AB Properties of magnetic reconnection are investigated in two-dimensional, resistive magnetohydrodynamic (MHD) simulations of current sheets separating plasmas with different magnetic field strengths and densities. Specific emphasis is on the influence of the external parameters on the reconnection rate. The effect of the dissipation in the resistive MHD model is separated from this influence by evaluating resistivity dependence together with the dependence on the background parameters. Two scenarios are considered, which may be distinguished as driven and nondriven reconnection. In either scenario, the maximum reconnection rate (electric field) is found to depend on appropriate hybrid expressions based on a magnetic field strength and an Alfven speed derived from the characteristic values in the two inflow regions. The scaling compares favorably with an analytic formula derived recently by Cassak and Shay [Phys. Plasmas 14, 102114 (2007)] applied to the regime of fast reconnection. An investigation of the energy flow and conversion in the vicinity of the reconnection site revealed a significant role of enthalpy flux generation, in addition to the expected conversion of Poynting flux to kinetic energy flux. This enthalpy flux generation results from Ohmic heating as well as adiabatic, that is, compressional heating. The latter is found more important when the magnetic field strengths in the two inflow regions are comparable in magnitude. (C) 2008 American Institute of Physics. C1 [Birn, J.; Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Birn, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 15 TC 43 Z9 43 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032101 DI 10.1063/1.2888491 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900005 ER PT J AU Delzanno, GL Finn, JM AF Delzanno, Gian Luca Finn, John M. TI The effect of line-tying on tearing modes SO PHYSICS OF PLASMAS LA English DT Article ID CORONAL LOOPS; STABILITY; GEOMETRY; PLASMA; PINCH AB Cylindrical magnetohydrodynamic (MHD) constant-psi or nonconstant-psi tearing modes that are linearly unstable with periodic axial boundary conditions are studied in a line-tied cylinder. Examples of these two respective classes of modes, with m = 1 and m = 2 (m being the azimuthal mode number), are studied. With a suitable MHD equilibrium, the former modes are marginally stable in ideal MHD for periodic axial boundary conditions, and occur as fast tearing modes (resistive kinks) in the presence of resistivity eta. The latter modes are stable in ideal MHD for periodic axial boundary conditions, and with resistivity occur as constant-psi tearing modes, unstable in a range of parameters. In both cases, the results for the line-tied modes show the expected tearing scaling with mu for very long plasmas, but the scaling becomes gamma proportional to eta for smaller cylinder lengths L. These results are consistent with the following interpretation: For L --> infinity, the modes have a tearing width characteristic of tearing, leading to characteristic tearing mode growth. As L decreases, the modes develop a geometric width, which increases as L decreases; the gamma proportional to eta scaling occurs when L is small enough that the geometric width exceeds the tearing width. (C) 2008 American Institute of Physics. C1 [Delzanno, Gian Luca; Finn, John M.] Los Alamos Natl Lab, Plasma Theory Grp T 15, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Plasma Theory Grp T 15, POB 1663, Los Alamos, NM 87545 USA. EM delzanno@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 NR 17 TC 17 Z9 20 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032904 DI 10.1063/1.2876666 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900033 ER PT J AU Fajans, J Madsen, N Robicheaux, F AF Fajans, J. Madsen, N. Robicheaux, F. TI Critical loss radius in a Penning trap subject to multipole fields SO PHYSICS OF PLASMAS LA English DT Article ID PURE ELECTRON-PLASMA; ANTIHYDROGEN PRODUCTION; CONFINEMENT; TRANSPORT; PARTICLE AB When particles in a Penning trap are subject to a magnetic multipole field, those beyond a critical radius will be lost. The critical radius depends on the history by which the field is applied, and can be much smaller if the particles are injected into a preexisting multipole than if the particles are subject to a ramped multipole. Both cases are relevant to ongoing experiments designed to trap antihydrogen. (C) 2008 American Institute of Physics. C1 [Fajans, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fajans, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madsen, N.] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Fajans, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Madsen, Niels/G-3548-2013; Fajans, Joel/J-6597-2016; Robicheaux, Francis/F-4343-2014 OI Madsen, Niels/0000-0002-7372-0784; Fajans, Joel/0000-0002-4403-6027; Robicheaux, Francis/0000-0002-8054-6040 NR 26 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032108 DI 10.1063/1.2899306 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900012 ER PT J AU Gerhardt, SP Belova, EV Yamada, M Ji, H Ren, Y McGeehan, B Inomoto, M AF Gerhardt, S. P. Belova, E. V. Yamada, M. Ji, H. Ren, Y. McGeehan, B. Inomoto, M. TI Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction SO PHYSICS OF PLASMAS LA English DT Article ID MINIMUM-ENERGY STATE; MAGNETIC RECONNECTION; PLASMA CONFIGURATION; STABILITY PROPERTIES; DECAYING SPHEROMAK; LABORATORY PLASMA; GLOBAL STABILITY; SPHEX SPHEROMAK; FLUX CONSERVER; COMPACT TORUS AB A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n = 2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state. (C) 2008 American Institute of Physics. C1 [Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.] Princeton Plasma Phys Lab, Plainsboro, NJ 08543 USA. [Inomoto, M.] Osaka Univ, Suita, Osaka 5650871, Japan. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, Plainsboro, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 NR 78 TC 2 Z9 2 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032503 DI 10.1063/1.2889428 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900026 ER PT J AU Hooper, EB Cohen, BI McLean, HS Wood, RD Romero-Talamas, CA Sovinec, CR AF Hooper, E. B. Cohen, B. I. McLean, H. S. Wood, R. D. Romero-Talamas, C. A. Sovinec, C. R. TI NIMROD resistive magnetohydrodynamic simulations of spheromak physics SO PHYSICS OF PLASMAS LA English DT Article ID SSPX SPHEROMAK; PLASMA; DRIVEN; SUSTAINMENT AB The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e. g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations. (C) 2008 American Institute of Physics. C1 [Hooper, E. B.; Cohen, B. I.; McLean, H. S.; Wood, R. D.; Romero-Talamas, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sovinec, C. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Hooper, EB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM hooper1@llnl.gov; cohen1@llnl.gov NR 26 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032502 DI 10.1063/1.2890772 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900025 ER PT J AU Kantsyrev, VL Rudakov, LI Safronova, AS Esaulov, AA Chuvatin, AS Coverdale, CA Deeney, C Williamson, KM Yilmaz, MF Shrestha, I Ouart, ND Osborne, GC AF Kantsyrev, V. L. Rudakov, L. I. Safronova, A. S. Esaulov, A. A. Chuvatin, A. S. Coverdale, C. A. Deeney, C. Williamson, K. M. Yilmaz, M. F. Shrestha, I. Ouart, N. D. Osborne, G. C. TI Double planar wire array as a compact plasma radiation source SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; Z-PINCHES; DYNAMICS; ENERGY; YIELD AB Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5 kJ/cm and more than 0.4 TW/cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1 MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3-5 mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research. (C) 2008 American Institute of Physics. C1 [Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Yilmaz, M. F.; Shrestha, I.; Ouart, N. D.; Osborne, G. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Rudakov, L. I.] Icarus Res Inc, Bethesda, MD 20824 USA. [Chuvatin, A. S.] Ecole Polytech, Lab Phys & Technol Plasmas, F-91128 Palaiseau, France. [Coverdale, C. A.] Sandia Natl Labs, Sandia, NM 87123 USA. [Deeney, C.] US DOE, NNSA, Washington, DC 20585 USA. RP Kantsyrev, VL (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 16 TC 37 Z9 39 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030704 DI 10.1063/1.2896577 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900004 ER PT J AU Krommes, JA AF Krommes, John A. TI The remarkable similarity between the scaling of kurtosis with squared skewness for TORPEX density fluctuations and sea-surface temperature fluctuations SO PHYSICS OF PLASMAS LA English DT Article ID REALIZABLE MARKOVIAN CLOSURE; NON-GAUSSIAN STATISTICS; PLASMA TURBULENCE; FIELD; DYNAMICS AB The striking similarity between the statistics of plasma density fluctuations in the TORPEX device [Labit et al., Phys. Rev. Lett. 98, 255002 (2007)] and sea-surface temperature fluctuations [Sura and Sardeshmukh, J. Phys. Oceanogr. 38, 638 (2007)] (SS) is discussed. A nonlinear Langevin theory due to SS is generalized to include linear wave propagation. An interpretation of the nonlinear Langevin equation based on statistical closure theory is proposed. (C) 2008 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451,MS 28, Princeton, NJ 08543 USA. EM krommes@princeton.edu NR 12 TC 22 Z9 22 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030703 DI 10.1063/1.2894560 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900003 ER PT J AU Rygg, JR Frenje, JA Li, CK Seguin, FH Petrasso, RD Marshall, FJ Delettrez, JA Knauer, JP Meyerhofer, DD Stoeckl, C AF Rygg, J. R. Frenje, J. A. Li, C. K. Seguin, F. H. Petrasso, R. D. Marshall, F. J. Delettrez, J. A. Knauer, J. P. Meyerhofer, D. D. Stoeckl, C. TI Observations of the collapse of asymmetrically driven convergent shocks SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; OMEGA; SONOLUMINESCENCE AB The collapse of strong convergent shocks in spherical geometry is observed using measurements of induced nuclear production and x-ray emission. Precise and absolute measurements of the timing and yield of nuclear production induced by the collapse of laser-driven shocks give the same results when shocks are launched by uniform (<2% rms) or nonuniform (up to 32% rms) laser illumination. The observation was repeated for both low-mode (dominated by spherical harmonic modes l = 1-2) and high-mode (l = 31-500) drive asymmetries. For low-mode nonuniform drive, the center of collapse as observed through x-ray emission shifts away from target center toward the direction of low intensity. The x-ray emission brightness is seen to drop precipitously with larger low-mode drive asymmetry, in stark contrast to the drive-uniformity insensitivity of nuclear yields at the time of shock collapse. (C) 2008 American Institute of Physics. C1 [Rygg, J. R.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Dept Phys & Astron, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Dept Mech Engn, Rochester, NY 14623 USA. RP Rygg, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 20 TC 9 Z9 9 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 034505 DI 10.1063/1.2892025 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900054 ER PT J AU Wan, WG Lapenta, G Delzanno, GL Egedal, J AF Wan, Weigang Lapenta, Giovanni Delzanno, Gian Luca Egedal, Jan TI Electron acceleration during guide field magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT SHEETS; MAGNETOTAIL; ISLANDS AB Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed. (C) 2008 American Institute of Physics. C1 [Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca] Los Alamos Natl Lab, Plasma Theory Grp, Los Alamos, NM 87545 USA. [Lapenta, Giovanni] Katholieke Univ Leuven, Dept Wiskunde, Ctr Plasma Astrofys, B-3001 Louvain, Belgium. [Egedal, Jan] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Wan, WG (reprint author), Los Alamos Natl Lab, Plasma Theory Grp, POB 1663, Los Alamos, NM 87545 USA. OI Delzanno, Gian Luca/0000-0002-7030-2683; Lapenta, Giovanni/0000-0002-3123-4024 NR 29 TC 21 Z9 21 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032903 DI 10.1063/1.2876465 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900032 ER PT J AU Yaakobi, O Friedland, L Lindberg, RR Charman, AE Penn, G Wurtele, JS AF Yaakobi, O. Friedland, L. Lindberg, R. R. Charman, A. E. Penn, G. Wurtele, J. S. TI Spatially autoresonant stimulated Raman scattering in nonuniform plasmas SO PHYSICS OF PLASMAS LA English DT Article ID SHORT LASER-PULSES; NONSTATIONARY EXCITATION; WAVES; AMPLIFICATION; EVOLUTION; BEAMS AB New solutions to the coupled three-wave equations in a nonuniform plasma medium are presented that include both space and time dependence of the waves. By including the dominant nonlinear frequency shift of the material wave, it is shown that if the driving waves are sufficiently strong (in relation to the medium gradient), a nonlinearly phase-locked solution develops that is characteristic of autoresonance. In this case, the material (electrostatic) wave develops into a front starting at the linear resonance point and moving with the wave group velocity in a manner such that the intensity increases linearly with the propagation distance. The forms of the other two (electromagnetic) waves follow naturally from the Manley-Rowe relations. (C) 2008 American Institute of Physics. C1 [Yaakobi, O.; Friedland, L.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Yaakobi, O.] Soreq Nucl Res Ctr, IL-81800 Yavne, Israel. [Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Penn, G.; Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Yaakobi, O (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM lazar@vms.huji.ac.il; rlindberg@berkeley.edu RI Yaakobi, Oded/J-4839-2012; Yaakobi, Oded/H-3109-2016; wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 25 TC 12 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032105 DI 10.1063/1.2884717 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900009 ER PT J AU Baltz, AJ Baur, G d'Enterria, D Frankfurt, L Gelis, F Guzey, V Hencken, K Kharlov, Y Klasen, M Klein, SR Nikulin, V Nystrand, J Pshenichnov, IA Sadovsky, S Scapparone, E Seger, J Strikman, M Tverskoy, M Vogt, R White, SN Wiedemann, UA Yepes, P Zhalov, M AF Baltz, A. J. Baur, G. d'Enterria, D. Frankfurt, L. Gelis, F. Guzey, V. Hencken, K. Kharlov, Yu. Klasen, M. Klein, S. R. Nikulin, V. Nystrand, J. Pshenichnov, I. A. Sadovsky, S. Scapparone, E. Seger, J. Strikman, M. Tverskoy, M. Vogt, R. White, S. N. Wiedemann, U. A. Yepes, P. Zhalov, M. TI The physics of ultraperipheral collisions at the LHC SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review ID HEAVY-ION COLLISIONS; POSITRON PAIR PRODUCTION; DEEP-INELASTIC SCATTERING; LARGE-MOMENTUM-TRANSFER; COLOR GLASS CONDENSATE; TOTAL CROSS-SECTION; RELATIVISTIC NUCLEAR COLLISIONS; VECTOR-MESON PRODUCTION; GLUON DISTRIBUTION-FUNCTIONS; WEIZSACKER-WILLIAMS FIELD AB We discuss the physics of large impact parameter interactions at the LHC: ultraperipheral collisions (UPCs). The dominant processes in UPCs are photon-nucleon (nucleus) interactions. The current LHC detector configurations can explore hard phenomena at small x with nuclei and nucleons at photon-nucleon center-of-mass energies above 1 TeV, extending the x range of HERA by a factor of ten. In particular, it will be possible to probe diffractive and inclusive parton densities in nuclei using several processes. The interaction of small dipoles with protons and nuclei can be investigated in elastic and quasi-elastic J/Psi and Gamma production as well as in high t rho(0) production accompanied by a rapidity gap. Several of these phenomena provide clean signatures of the onset of the new high gluon density QCD regime. The LHC is in the kinematic range where nonlinear effects are several times larger than those at HERA. Two-photon processes in UPCs are also studied. In addition, while UPCs play a role in limiting the maximum beam luminosity, they can also be used as a luminosity monitor by measuring mutual electromagnetic dissociation of the beam nuclei. We also review similar studies at HERA and RHIC as well as describe the potential use of the LHC detectors for UPC measurements. (C) 2008 Elsevier B.V. All rights reserved. C1 [Baltz, A. J.; White, S. N.] Assoc Univ Inc, Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Baur, G.] Forschungszentrum, Inst Kernphys, Julich, Germany. [d'Enterria, D.] CERN, Expt Phys Div, Geneva, Switzerland. [Frankfurt, L.] Tel Aviv Univ, Dept Nucl Phys, IL-69978 Tel Aviv, Israel. [Gelis, F.] CEA DSM SPhT, Saclay, France. [Guzey, V.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-4630 Bochum, Germany. [Hencken, K.] Univ Basel, Basel, Switzerland. [Hencken, K.] ABB Corp Res, Baden, Switzerland. [Kharlov, Yu.; Sadovsky, S.] Inst High Energy Phys, Protvino, Russia. [Klasen, M.] Univ Grenoble 1, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Klein, S. R.; Vogt, R.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. [Nikulin, V.; Tverskoy, M.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Nystrand, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Pshenichnov, I. A.] Frankfurt Inst Adv Studies, Frankfurt, Germany. [Pshenichnov, I. A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Scapparone, E.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Seger, J.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Strikman, M.] Penn State Univ, State Coll, Dept Phys, University Pk, PA 16802 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Wiedemann, U. A.] CERN, Div Theory, CH-1211 Geneva, Switzerland. [Yepes, P.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Guzey, V.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Strikman, M (reprint author), Penn State Univ, State Coll, Dept Phys, University Pk, PA 16802 USA. EM strikman@phys.psu.edu RI Pshenichnov, Igor/A-4063-2008; SCAPPARONE, EUGENIO/H-1805-2012; OI Pshenichnov, Igor/0000-0003-1752-4524; Guzey, Vadim/0000-0002-2393-8507 NR 397 TC 150 Z9 151 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAR PY 2008 VL 458 IS 1-3 BP 1 EP 171 DI 10.1016/j.physrep.2007.12.001 PG 171 WC Physics, Multidisciplinary SC Physics GA 286BP UT WOS:000254820700001 ER PT J AU Mathews, GJ Van Bibber, K May, M AF Mathews, Grant J. Van Bibber, Karl May, Michael TI James Ricker Wilson SO PHYSICS TODAY LA English DT Biographical-Item C1 [Mathews, Grant J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Van Bibber, Karl; May, Michael] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Mathews, GJ (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAR PY 2008 VL 61 IS 3 BP 70 EP 72 DI 10.1063/1.2897960 PG 3 WC Physics, Multidisciplinary SC Physics GA 271WT UT WOS:000253820100022 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point a mind of her own SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAR PY 2008 VL 21 IS 3 BP 17 EP 17 PG 1 WC Physics, Multidisciplinary SC Physics GA 274XE UT WOS:000254035300019 ER PT J AU Uehlein, N Otto, B Hanson, DT Fischer, M McDowell, N Kaldenhoff, R AF Uehlein, Norbert Otto, Beate Hanson, David T. Fischer, Matthias McDowell, Nate Kaldenhoff, Ralf TI Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability SO PLANT CELL LA English DT Article ID CARBON-ISOTOPE DISCRIMINATION; PLASMA-MEMBRANE; WATER CHANNELS; INTERNAL CONDUCTANCE; XENOPUS OOCYTES; MESOPHYLL CONDUCTANCE; TRANSGENIC TOBACCO; IN-VIVO; LEAVES; DIFFUSION AB Photosynthesis is often limited by the rate of CO2 diffusion from the atmosphere to the chloroplast. The primary resistances for CO2 diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function. We show that the tobacco (Nicotiana tabacum) plasma membrane and inner chloroplast membranes contain the aquaporin Nt AQP1. RNA interference-mediated decreases in Nt AQP1 expression lowered the CO2 permeability of the inner chloroplast membrane. In vivo data show that the reduced amount of Nt AQP1 caused a 20% change in CO2 conductance within leaves. Our discovery of CO2 aquaporin function in the chloroplast membrane opens new opportunities for mechanistic examination of leaf internal CO2 conductance regulation. C1 [Uehlein, Norbert; Otto, Beate; Fischer, Matthias; Kaldenhoff, Ralf] Tech Univ Darmstadt, Inst Bot, Dept Appl Plant Sci, D-64287 Darmstadt, Germany. [Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Kaldenhoff, R (reprint author), Tech Univ Darmstadt, Inst Bot, Dept Appl Plant Sci, Petersenstr 30, D-64287 Darmstadt, Germany. EM uehlein@bio.tu-darmstadt.de; kaldenhoff@bio.tu-darmstadt.de RI Hanson, David/J-8034-2012; Kodama, Naomi/D-9553-2011 OI Kodama, Naomi/0000-0001-9913-9886 NR 52 TC 161 Z9 175 U1 6 U2 30 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD MAR PY 2008 VL 20 IS 3 BP 648 EP 657 DI 10.1105/tpc.107.054023 PG 10 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 308UM UT WOS:000256415500016 PM 18349152 ER PT J AU Browse, J Howe, GA AF Browse, John Howe, Gregg A. TI New weapons and a rapid response against insect attack SO PLANT PHYSIOLOGY LA English DT Article ID JASMONATE-REGULATED DEFENSE; BOX PROTEIN TIR1; NICOTIANA-ATTENUATA; METHYL JASMONATE; WOUND RESPONSE; PLANT DEFENSE; ARABIDOPSIS MUTANT; INDUCED RESISTANCE; SIGNALING PATHWAY; OXYLIPIN SIGNAL C1 [Howe, Gregg A.] Michigan State Univ, US DOE, Plant Res Lab, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Browse, John] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. RP Howe, GA (reprint author), Michigan State Univ, US DOE, Plant Res Lab, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM howeg@msu.edu OI Browse, John/0000-0002-2554-2821 FU NIGMS NIH HHS [GM 57795, R01 GM057795, R01 GM057795-10] NR 70 TC 117 Z9 132 U1 2 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD MAR PY 2008 VL 146 IS 3 BP 832 EP 838 DI 10.1104/pp.107.115683 PG 7 WC Plant Sciences SC Plant Sciences GA 308TF UT WOS:000256412200006 PM 18316637 ER PT J AU Van Zeeland, MA Heidbrink, WW Nazikian, R Solomon, WM Austin, ME Berk, HL Gorelenkov, NN Holcomb, CT Hyatt, AW Kramer, GJ Lohr, J Makowski, MA Mckee, GR Petty, CC Sharapov, SE Rhodes, TL AF Van Zeeland, M. A. Heidbrink, W. W. Nazikian, R. Solomon, W. M. Austin, M. E. Berk, H. L. Gorelenkov, N. N. Holcomb, C. T. Hyatt, A. W. Kramer, G. J. Lohr, J. Makowski, M. A. Mckee, G. R. Petty, C. C. Sharapov, S. E. Rhodes, T. L. TI Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID DIII-D; PLASMAS; SPECTROSCOPY; SIMULATION; TOKAMAK AB Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor ( q(min)) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production ( S-n) are highly dependent on ECH deposition location relative to q(min). While discharges with ECH stabilization of RSAEs have higher S-n and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced ( up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized. C1 [Van Zeeland, M. A.; Hyatt, A. W.; Lohr, J.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Nazikian, R.; Solomon, W. M.; Gorelenkov, N. N.; Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Berk, H. L.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Holcomb, C. T.; Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Mckee, G. R.] Univ Wisconsin, Madison, WI 53726 USA. [Sharapov, S. E.] UKAEA Euratom Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 NR 30 TC 26 Z9 26 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2008 VL 50 IS 3 AR 035009 DI 10.1088/0741-3335/50/3/035009 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 279MQ UT WOS:000254359700009 ER PT J AU Zakharov, LE Foley, EL Levinton, FM Yuh, HY AF Zakharov, L. E. Foley, E. L. Levinton, F. M. Yuh, H. Y. TI Reconstruction of the q and p profiles in ITER from external and internal measurements SO PLASMA PHYSICS REPORTS LA English DT Article; Proceedings Paper CT 12th All-Russian Conference on Plasma Diagnostics CY JUN 03-09, 2007 CL Troitsk, RUSSIA ID TOKAMAK AB A method is developed for calculating uncertainties in reconstructing the equilibrium profiles of the safety factor q and plasma pressure p in the ITER device from external magnetic measurements and from motional Stark effect line polarization (MSE-LP) and motional Stark effect line shift (MSE-LS) signals from excited NBI atoms inside the plasma core. It is shown that, with MSE-LP signals, as well as with MSE-LS signals (the use of which was recently proposed by Nova Photonics, Inc.), it is possible to substantially improve the reconstruction of the profiles that determine the plasma magnetic configuration. C1 [Zakharov, L. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Foley, E. L.; Levinton, F. M.; Yuh, H. Y.] Nava Photon, Princeton, NJ 08543 USA. RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS-27,POB 451, Princeton, NJ 08543 USA. NR 12 TC 6 Z9 6 U1 1 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD MAR PY 2008 VL 34 IS 3 BP 173 EP 188 DI 10.1134/S1063780X08030021 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 286HG UT WOS:000254836400002 ER PT J AU Nemenman, I Lewen, GD Bialek, W van Steveninck, RRD AF Nemenman, Ilya Lewen, Geoffrey D. Bialek, William van Steveninck, Rob R. De Ruyter TI Neural coding of natural stimuli: Information at sub-millisecond resolution SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID OPTIC FLOW; BLOWFLY FLIGHT; VISUAL CONTROL; SPIKE TRAINS; ENTROPY; CODE; VARIABILITY; PRECISION; BEHAVIOR; SAMPLES AB Sensory information about the outside world is encoded by neurons in sequences of discrete, identical pulses termed action potentials or spikes. There is persistent controversy about the extent to which the precise timing of these spikes is relevant to the function of the brain. We revisit this issue, using the motion-sensitive neurons of the fly visual system as a test case. Our experimental methods allow us to deliver more nearly natural visual stimuli, comparable to those which flies encounter in free, acrobatic flight. New mathematical methods allow us to draw more reliable conclusions about the information content of neural responses even when the set of possible responses is very large. We find that significant amounts of visual information are represented by details of the spike train at millisecond and sub-millisecond precision, even though the sensory input has a correlation time of similar to 55 ms; different patterns of spike timing represent distinct motion trajectories, and the absolute timing of spikes points to particular features of these trajectories with high precision. Finally, the efficiency of our entropy estimator makes it possible to uncover features of neural coding relevant for natural visual stimuli: first, the system's information transmission rate varies with natural fluctuations in light intensity, resulting from varying cloud cover, such that marginal increases in information rate thus occur even when the individual photoreceptors are counting on the order of one million photons per second. Secondly, we see that the system exploits the relatively slow dynamics of the stimulus to remove coding redundancy and so generate a more efficient neural code. C1 [Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Lewen, Geoffrey D.] Hun Sch Princeton, Princeton, NJ USA. [Bialek, William] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Bialek, William] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [van Steveninck, Rob R. De Ruyter] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Nemenman, I (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM nemenman@lanl.gov OI Nemenman, Ilya/0000-0003-3024-4244 NR 50 TC 48 Z9 48 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2008 VL 4 IS 3 AR e1000025 DI 10.1371/journal.pcbi.1000025 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 294MM UT WOS:000255410100024 PM 18369423 ER PT J AU Wu, B Yee, A Huang, YJ Ramelot, TA Cort, JR Semesi, A Jung, JW Lee, W Montelione, GT Kennedy, MA Arrowsmith, CH AF Wu, Bin Yee, Adelinda Huang, Yuanpeng J. Ramelot, Theresa A. Cort, John R. Semesi, Anthony Jung, Jin-Won Lee, Weontae Montelione, Gaetano T. Kennedy, Michael A. Arrowsmith, Cheryl H. TI The solution structure of ribosomal protein S17E from Methanobacterium thermoautotrophicum: A structural homolog of the FF domain SO PROTEIN SCIENCE LA English DT Article DE heteronuclear NMR; Methanobacterium thermoautotrophicum; ribosomal protein S17E; northeast structural genomics consortium ID QUANTITATIVE J-CORRELATION; CRYSTAL-STRUCTURE; TRANSFER-RNA; ANGSTROM RESOLUTION; NMR; SUBUNIT; REVEALS; QUALITY; HOMONUCLEAR; ASSIGNMENTS AB The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family. C1 [Wu, Bin; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Ontario Canc Inst, Div Canc Genom & Proteom, Toronto M5G 2M9, ON, Canada. [Wu, Bin; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada. [Huang, Yuanpeng J.; Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Biotechnol & Med, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Ramelot, Theresa A.; Cort, John R.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45046 USA. [Cort, John R.] Washington State Univ, Richland, WA 99354 USA. [Jung, Jin-Won; Lee, Weontae] Yonsei Univ, Coll Sci, Protein Network Res Ctr, Dept Biochem, Seoul 120749, South Korea. RP Arrowsmith, CH (reprint author), Rm 4-803, TMDT MArs, 101 Coll St, Toronto, ON M5G 1L7, Canada. EM carrow@uhnres.utoronto.ca RI Jung, Jinwon/F-6038-2010; OI Jung, Jinwon/0000-0002-7981-3316 FU NIGMS NIH HHS [U54 GM074958, P50-GM62413-02, P50 GM062413] NR 42 TC 2 Z9 2 U1 1 U2 1 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2008 VL 17 IS 3 BP 583 EP 588 DI 10.1110/ps.073272208 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IK UT WOS:000253427500023 PM 18218711 ER PT J AU Wu, B Lukin, J Yee, A Lemak, A Semesi, A Ramelot, TA Kennedy, MA Arrowsmith, CH AF Wu, Bin Lukin, Jonathan Yee, Adelinda Lemak, Alexander Semesi, Anthony Ramelot, Theresa A. Kennedy, Michael A. Arrowsmith, Cheryl H. TI Solution structure of ribosomal protein L40E, a unique C4 zinc finger protein encoded by archaeon Sulfolobus solfataricus SO PROTEIN SCIENCE LA English DT Article DE heteronuclear NMR; Sulfolobus solfataricus; ribosomal protein L40E; C4 zinc finger protein; northeast structural genomics consortium ID ELONGATION-FACTOR TFIIS; N-TERMINAL DOMAIN; THERMUS-THERMOPHILUS; NMR; SUBUNIT; RNA; MOTIF; TRANSCRIPTION; TRANSLATION; RECOGNITION AB The ribosomal protein L40E from archaeon Sulfolobus solfataricus is a component of the 50S ribosomal subunit. L40E is a 56-residue, highly basic protein that contains a C4 zinc finger motif, CRKC_ X-10_ CRRC. Homologs are found in both archaea and eukaryotes but are not present in bacteria. Eukaryotic genomes encode L40E as a ubiquitin-fusion protein. L40E was absent from the crystal structure of euryarchaeota 50S ribosomal subunit. Here we report the three-dimensional solution structure of L40E by NMR spectroscopy. The structure of L40E is a three-stranded beta-sheet with a simple beta 2 beta 1 beta 3 topology. There are two unique characteristics revealed by the structure. First, a large and ordered beta 2-beta 3 loop twists to pack across the one side of the protein. L40E contains a buried polar cluster comprising Lys19, Lys20, Cys22, Asn29, and Cys36. Second, the surface of L40E is almost entirely positively charged. Ten conserved basic residues are positioned on the two sides of the surface. It is likely that binding of zinc is essential in stabilizing the tertiary structure of L40E to act as a scaffold to create a broad positively charged surface for RNA and/or protein recognition. C1 [Wu, Bin; Lukin, Jonathan; Yee, Adelinda; Lemak, Alexander; Semesi, Anthony; Arrowsmith, Cheryl H.] Ontario Canc Inst, Div Canc Genom & Proteom, Toronto, ON M5G 2M9, Canada. [Wu, Bin; Lukin, Jonathan; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada. [Ramelot, Theresa A.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. RP Arrowsmith, CH (reprint author), Rm 4-803, TMDT MaRS, 101 Coll St, Toronto, ON M5G 1L7, Canada. EM carrow@uhnres.utoronto.ca FU NIGMS NIH HHS [P50-GM62413-02, P50 GM062413] NR 50 TC 6 Z9 6 U1 0 U2 0 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2008 VL 17 IS 3 BP 589 EP 596 DI 10.1110/ps.073273008 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IK UT WOS:000253427500024 PM 18218710 ER PT J AU Anderson, RS Jass, RB Toney, JL Allen, CD Cisneros-Dozal, LM Hess, M Heikoop, J Fessenden, J AF Anderson, R. Scott Jass, Renata B. Toney, Jaime L. Allen, Craig D. Cisneros-Dozal, Luz M. Hess, Marcey Heikoop, Jeff Fessenden, Julianna TI Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change SO QUATERNARY RESEARCH LA English DT Article DE pollen analysis; charcoal analysis; isotope analysis; paleoecology; New Mexico ID SAN-JUAN MOUNTAINS; PAST 21,000 YEARS; ORGANIC-MATTER; VEGETATION HISTORY; CHIHUAHUAN DESERT; BOTRYOCOCCUS-BRAUNII; ISOTOPIC COMPOSITION; CENTRAL COLORADO; ROCKY-MOUNTAINS; MIDDLE HOLOCENE AB Chihuahuenos Bog (2925 in) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahuenos Bog record extends to over 15,000 cat yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cat yr BP when Pinus ponderosa became established. C/N ratios, delta(13)C and delta(15)N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cat yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cat yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cat yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record. (C) 2008 University of Washington. All rights reserved. C1 [Anderson, R. Scott] No Arizona Univ, Ctr Environm Sci & Educ, Flagstaff, AZ 86011 USA. [Anderson, R. Scott; Jass, Renata B.; Toney, Jaime L.] No Arizona Univ, Quaternary Sci Program, Flagstaff, AZ 86011 USA. [Anderson, R. Scott; Jass, Renata B.; Toney, Jaime L.] No Arizona Univ, Bilby Res Ctr, Flagstaff, AZ 86011 USA. [Allen, Craig D.] US Geol Survey, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. [Cisneros-Dozal, Luz M.; Hess, Marcey; Heikoop, Jeff; Fessenden, Julianna] Los Almos Natl Lab, Div Earth & Environm Sci, Hydrol Geochem & Geol Grp, Los Alamos, NM 87545 USA. RP Anderson, RS (reprint author), No Arizona Univ, Ctr Environm Sci & Educ, Box 5694, Flagstaff, AZ 86011 USA. EM Scott.Anderson@nau.edu RI Heikoop, Jeffrey/C-1163-2011; Toney, Jaime/I-5083-2012; OI Toney, Jaime/0000-0003-3182-6887; Heikoop, Jeffrey/0000-0001-7648-3385 NR 86 TC 21 Z9 21 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD MAR PY 2008 VL 69 IS 2 BP 263 EP 275 DI 10.1016/j.yqres.2007.12.002 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 285PB UT WOS:000254787600008 ER PT J AU Tsao, JY Boyack, KW Coltrin, ME Tumley, JG Gauster, WB AF Tsao, J. Y. Boyack, K. W. Coltrin, M. E. Tumley, J. G. Gauster, W. B. TI Galileo's stream: A framework for understanding knowledge production SO RESEARCH POLICY LA English DT Article DE knowledge production; S&T policy; R&D; paradigm creation; disruptive innovation ID TECHNOLOGY POLICY; INNOVATION; SCIENCE; PERSPECTIVE; DIRECTIONS; PARADIGMS; GROWTH; HELIX; MODEL AB We introduce a framework for understanding knowledge production in which: knowledge is produced in stages (along a research to development continuum) and in three discrete categories (science and understanding, tools and technology, and societal use and behavior); and knowledge in the various stages and categories is produced both non-interactively and interactively. The framework attempts to balance: our experiences as working scientists and technologists, our best current understanding of the social processes of knowledge production, and the possibility of mathematical analyses. It offers a potential approach both to improving our basic understanding, and to developing tools for enterprise management, of the knowledge-production process. Published by Elsevier B.V. C1 [Tsao, J. Y.; Boyack, K. W.; Coltrin, M. E.; Tumley, J. G.; Gauster, W. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov OI Boyack, Kevin/0000-0001-7814-8951 NR 54 TC 5 Z9 6 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-7333 J9 RES POLICY JI Res. Policy PD MAR PY 2008 VL 37 IS 2 BP 330 EP 352 DI 10.1016/j.respol.2007.10.004 PG 23 WC Management; Planning & Development SC Business & Economics; Public Administration GA 282WR UT WOS:000254598400010 ER PT J AU Yoshida, PG AF Yoshida, Phyllis Genther TI India emerging (maybe) as major R&D center SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. RP Yoshida, PG (reprint author), US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. EM Phyllis.Yoshida@ee.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAR-APR PY 2008 VL 51 IS 2 BP 2 EP 4 PG 3 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 265WR UT WOS:000253393000001 ER PT J AU Albers, BJ Liebmann, M Schwendemann, TC Baykara, MZ Heyde, M Salmeron, M Altman, EI Schwarz, UD AF Albers, Boris J. Liebmann, Marcus Schwendemann, Todd C. Baykara, Mehmet Z. Heyde, Markus Salmeron, Miquel Altman, Eric I. Schwarz, Udo D. TI Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH MAGNETIC-FIELDS; QUARTZ TUNING FORK; ULTRAHIGH-VACUUM; PROBE MICROSCOPY; QUANTUM CORRALS; IMPURITY ATOMS; GRAPHITE 0001; DYNAMIC-MODE; SURFACE; SENSOR AB We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance. (C) 2008 American Institute of Physics. C1 [Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Schwarz, Udo D.] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA. [Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Altman, Eric I.; Schwarz, Udo D.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Heyde, Markus; Salmeron, Miquel] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altman, Eric I.] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. RP Albers, BJ (reprint author), Yale Univ, Dept Mech Engn, POB 208284, New Haven, CT 06520 USA. EM udo.schwarz@yale.edu RI Liebmann, Marcus/G-6254-2012; Baykara, Mehmet/G-9595-2012; Heyde, Markus/F-9150-2013 OI Liebmann, Marcus/0000-0003-4787-0129; Baykara, Mehmet/0000-0002-0278-6022; Heyde, Markus/0000-0002-7049-0485 NR 72 TC 44 Z9 44 U1 6 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033704 DI 10.1063/1.2842631 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100024 PM 18377012 ER PT J AU Boudin, F Bernard, P Longuevergne, L Florsch, N Larmat, C Courteille, C Blum, PA Vincent, T Kammentaler, M AF Boudin, F. Bernard, P. Longuevergne, L. Florsch, N. Larmat, C. Courteille, C. Blum, P. -A. Vincent, T. Kammentaler, M. TI A silica long base tiltmeter with high stability and resolution SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB In order to be able to provide valuable data in multiparameter measurement field operations, tiltmeters need to have a noise level better or equal than 10(-9) rad for a period range from a few minutes to a few years and a long term stability ranging from 10(-7) to 10(-8) rad/yr. Tiltmeter measurements should also be as much as possible insensitive to thermal disturbances, by taking great care of the horizontality of the base line tube first. Secondly, thermal responses have been assessed. We also took great care of the coupling of our tiltmeters with the bedrock. We've designed a long base tiltmeter with sensors in silica which has a low dilatation coefficient. The linear variable displacement transducer is based on coil coupling (powered by an alternative voltage). Finally we show the results of two 100 m silica water tube tiltmeters which were installed in a mine in the French Vosges massif in the framework of a hydrology research project. These instruments show a remarkably good stability (6.5 x 10(-9) rad/month) and a low noise level (of the order of 10(-11) rad). Toroidal and spheroidal free modes of the Earth were observed after the two last major earthquakes on Sumatra. (C) 2008 American Institute of Physics. C1 [Bernard, P.; Courteille, C.; Blum, P. -A.] Inst Phys Globe, Dept Sismol, F-7252 Paris 05, France. [Longuevergne, L.; Florsch, N.] Univ Paris 06, Sisyphe, F-7252 Paris, France. [Larmat, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kammentaler, M.] Hergauchamps, F-68160 Saintes Maries Aux Mines, France. RP Boudin, F (reprint author), Pl Eugene Bataillon, F-34095 Montpellier, France. EM frederic.boudin@gm.univ-montp2.fr RI Larmat, Carene/B-4686-2011; larzac, Larzac/I-9442-2012; bernard, pascal/B-4828-2015; Longuevergne, Laurent /F-4641-2010; OI Longuevergne, Laurent /0000-0003-3169-743X; Larmat, Carene S/0000-0002-3607-7558 NR 17 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 034502 DI 10.1063/1.2829989 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100045 PM 18377033 ER PT J AU Chen, H Back, NL Bartal, T Beg, FN Eder, DC Link, AJ MacPhee, AG Ping, Y Song, PM Throop, A Van Woerkom, L AF Chen, Hui Back, Norman L. Bartal, Teresa Beg, F. N. Eder, David C. Link, Anthony J. MacPhee, Andrew G. Ping, Yuan Song, Peter M. Throop, Alan Van Woerkom, Linn TI Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range. (C) 2008 American Institute of Physics. C1 [Chen, Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping, Yuan; Song, Peter M.; Throop, Alan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Link, Anthony J.; Van Woerkom, Linn] Ohio State Univ, Columbus, OH 43210 USA. [Bartal, Teresa; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chen33@llnl.gov NR 9 TC 29 Z9 29 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033301 DI 10.1063/1.2885045 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100013 PM 18377001 ER PT J AU Clayhold, JA Kerns, BM Schroer, MD Rench, DW Logvenov, G Bollinger, AT Bozovic, I AF Clayhold, J. A. Kerns, B. M. Schroer, M. D. Rench, D. W. Logvenov, G. Bollinger, A. T. Bozovic, I. TI Combinatorial measurements of Hall effect and resistivity in oxide films SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID COMPOSITION-SPREAD APPROACH; DISCOVERY AB A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m(3)/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. (C) 2008 American Institute of Physics. C1 [Clayhold, J. A.; Kerns, B. M.; Schroer, M. D.; Rench, D. W.; Logvenov, G.] Miami Univ, Dept Phys, Oxford, OH 45056 USA. [Logvenov, G.; Bollinger, A. T.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Clayhold, JA (reprint author), Miami Univ, Dept Phys, Oxford, OH 45056 USA. NR 19 TC 8 Z9 10 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033908 DI 10.1063/1.2901622 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100038 PM 18377026 ER PT J AU Leitner, D Benitez, JY Lyneis, CM Todd, DS Ropponen, T Ropponen, J Koivisto, H Gammino, S AF Leitner, D. Benitez, J. Y. Lyneis, C. M. Todd, D. S. Ropponen, T. Ropponen, J. Koivisto, H. Gammino, S. TI Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID FREQUENCY AB High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency. (C) 2008 American Institute of Physics. C1 [Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ropponen, T.; Ropponen, J.; Koivisto, H.] Univ Jyvaskyla, Accelerator Lab, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Gammino, S.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. RP Leitner, D (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dleitner@lbl.gov RI xin, xp/C-7350-2009 NR 15 TC 20 Z9 20 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033302 DI 10.1063/1.2821137 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100014 PM 18377002 ER PT J AU Reininger, R Kriesel, K Hulbert, SL Sanchez-Hanke, C Arena, DA AF Reininger, Ruben Kriesel, Ken Hulbert, S. L. Sanchez-Hanke, Cecilia Arena, D. A. TI A soft x-ray beamline capable of canceling the performance impairment due to power absorbed on its optical elements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PLANE-GRATING-MONOCHROMATOR; ADVANCED LIGHT-SOURCE; SYNCHROTRON-RADIATION; UNDULATOR BEAMLINE; HIGH-RESOLUTION; DESIGN AB We present an entrance slitless beamline design capable of maintaining its very high performance in terms of energy resolution (>10(4)) and spot size (4 x 4 mu m(2)) at the sample position despite being exposed to more than 2.15 kW of undulator radiation and a maximum power density on the optics of more than 0.9 W/mm(2). Ray tracing simulations of this beamline under the worst-case thermal deformations of the optical element surfaces verify that appropriate focusing corrections are able to cancel the deleterious effects of these deformations. One of the necessary conditions for this cancellation is to illuminate the optical elements with a larger solid angle than the undulator's central cone, which contains the usable photons but is considerably smaller than the angular power distribution. (C) 2008 American Institute of Physics. C1 [Reininger, Ruben] Sci Answers & Solut, Madison, WI 53711 USA. [Kriesel, Ken] Univ Wisconsin, PSL, Stoughton, WI 53589 USA. [Hulbert, S. L.; Sanchez-Hanke, Cecilia; Arena, D. A.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Hulbert, S. L.; Sanchez-Hanke, Cecilia; Arena, D. A.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Reininger, R (reprint author), Sci Answers & Solut, 5708 Restal St, Madison, WI 53711 USA. NR 17 TC 10 Z9 10 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033108 DI 10.1063/1.2897587 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100010 PM 18376998 ER PT J AU von Zimmermann, M Nowak, R Gu, GD Mennerich, C Klauss, HH Hucker, M AF von Zimmermann, M. Nowak, R. Gu, G. D. Mennerich, C. Klauss, H. -H. Huecker, M. TI A clamp-type pressure cell for high energy x-ray diffraction SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SUPERCONDUCTING PROPERTIES; HYDROSTATIC PRESSURES; NEUTRON-DIFFRACTION; PHASE; LA2-XBAXCUO4; TRANSITION; CUGEO3; LA2-XSRXCUO4; TEMPERATURE; ORDER AB We present a clamp-type pressure cell for high energy x-ray diffraction. The pressure cell was specifically designed for studies of weak superstructure reflections at low temperatures in transition metal oxides, resulting from, e. g., charge density modulations. Using a photon energy of E = 100 keV, the bulk properties of single crystals with a volume of typically 2-5 mm(3) can be studied in transmission geometry. To demonstrate the performance of the pressure cell, we present data on the charge stripe order in the high-temperature superconductor La1.875Ba0.125CuO4. (C) 2008 American Institute of Physics. C1 [von Zimmermann, M.; Nowak, R.] Hamburger Synchrontronstrahlungslab HASYLAB, Deutsches Elekt Synchrotron, D-22603 Hamburg, Germany. [Gu, G. D.; Huecker, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mennerich, C.; Klauss, H. -H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys Kondensierten Materie, D-38106 Braunschweig, Germany. RP von Zimmermann, M (reprint author), Hamburger Synchrontronstrahlungslab HASYLAB, Deutsches Elekt Synchrotron, D-22603 Hamburg, Germany. RI Klauss, Hans-Henning/G-4743-2010; Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 NR 48 TC 7 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033906 DI 10.1063/1.2889162 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100036 PM 18377024 ER PT J AU Jager, HI Smith, BT AF Jager, Henriette I. Smith, Brennan T. TI Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE optimization; reservoir operation; hydropower; sustainability; riverine ecosystems; ecological valuation; natural flow regime ID WATER-QUALITY MANAGEMENT; GLEN-CANYON-DAM; RIVER-BASIN; INSTREAM FLOW; ENVIRONMENTAL CONSTRAINTS; FRESH-WATER; SYSTEM; OPTIMIZATION; RESOURCES; CALIFORNIA AB Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow. Published in 2008 by John Wiley & Sons, Ltd. C1 [Jager, Henriette I.; Smith, Brennan T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov OI Jager, Henriette/0000-0003-4253-533X NR 56 TC 88 Z9 95 U1 19 U2 122 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1535-1459 J9 RIVER RES APPL JI River Res. Appl. PD MAR PY 2008 VL 24 IS 3 BP 340 EP 352 DI 10.1002/rra.1069 PG 13 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 292YW UT WOS:000255303000008 ER PT J AU Noy, A AF Noy, Aleksandr TI Strength in numbers: Probing and understanding intermolecular bonding with chemical force microscopy SO SCANNING LA English DT Article DE atomic force microscope/other scanned; probe microscopes; physical sciences; scanned probe ID MOLECULAR ADHESION BONDS; SPECTROSCOPY; ENERGY; ASSEMBLIES; FRICTION; CONTACT; SOLVENT; RUPTURE; SURFACE; RADIUS AB Scanning probe microscopy (SPM) provided researchers with a simple, intuitive, and versatile tool for probing intermolecular interactions using SPM probes functionalized with distinct chemical species. Chemical force microscopy (CFM) was developed as a way to probe and map these interactions in a rational and systematic way. But does the rupture strength of a bond measured in these experiments provide the definitive and useful information about the interaction? The answer to this question is closely linked to understanding the fundamental physics of bond rupture under an external loading force. Even a simple model shows that bond rupture can proceed in a variety of different regimes. I discuss the approaches for extracting quantitative information about the interaction from these experiments and show that even though the measured rupture force is almost never unique for a given bond, force spectroscopy measurements can still determine the essential interaction parameters. C1 [Noy, Aleksandr] Lawrence Livermore Natl Lab, Chem Mat Energy & Life Sci Directorate, Livermore, CA 94550 USA. [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Chem Mat Energy & Life Sci Directorate, Livermore, CA 94550 USA. EM noy1@llnl.gov NR 35 TC 7 Z9 7 U1 1 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 96 EP 105 DI 10.1002/sca.20082 PG 10 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800006 PM 18220259 ER PT J AU Chung, SW Presley, AD Elhadj, S Hok, S Hah, SS Chernov, AA Francis, MB Eaton, BE Feldheim, DL Deyoreo, JJ AF Chung, Sung-Wook Presley, Andrew D. Elhadj, Selim Hok, Saphon Hah, Sang Soo Chernov, Alex A. Francis, Matthew B. Eaton, Bruce E. Feldheim, Daniel L. Deyoreo, James J. TI Scanning probe-based fabrication of 3D nanostructures via affinity templates, functional RNA, and meniscus-mediated surface remodeling SO SCANNING LA English DT Article DE scanning probe microscopy; scanning probe nanolithography; nanostructures; affinity templates; virus; functional RNA; meniscus-mediated surface remodeling ID DIP-PEN NANOLITHOGRAPHY; TOBACCO-MOSAIC-VIRUS; SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; SIZED PROTEIN-PATTERNS; IN-VITRO SELECTION; QUANTUM DOTS; SOLAR-CELLS; NANOIMPRINT LITHOGRAPHY; ELECTRON-MICROSCOPY AB Developing generic platforms to organize discrete molecular elements and nanostructures into deterministic patterns on surfaces is one of the central challenges in the field of nanotechnology. Here we review three applications of the atomic force microscope (AFM) that address this challenge. In the first, we use two-step nanografting to create patterns of self-assembled monolayers (SAMs) to drive the organization of virus particles that have been either genetically or chemically modified to bind to the SAMs. Virus-SAM chemistries are described that provide irreversible and reversible binding, respectively. In the second, we use similar SAM patterns as affinity templates that have been designed to covalently bind oligonucleotides engineered to bind to the SAMs and selected for their ability to mediate the subsequent growth of metallic nanocrystals. In the final application, the liquid meniscus that condenses at the AFM tip-substrate contact is used as a physical tool to both modulate the surface topography of a water soluble substrate and guide the hierarchical assembly of Au nanoparticles into nanowires. All three approaches can be generalized to meet and thereby provide a potential route toward development of a generic platform for molecular and materials organization. C1 [Chung, Sung-Wook; Presley, Andrew D.; Elhadj, Selim; Hok, Saphon; Hah, Sang Soo; Chernov, Alex A.; Deyoreo, James J.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94551 USA. [Presley, Andrew D.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Eaton, Bruce E.; Feldheim, Daniel L.] Univ Calif Berkeley, Dept Chem & Biochem, Berkeley, CA 94720 USA. [Deyoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chung, SW (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA. EM chung20@llnl.gov RI Hah, Sang Soo/D-2621-2011; Chung, Sungwook/H-6248-2012 NR 82 TC 12 Z9 13 U1 3 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 159 EP 171 DI 10.1002/sca.20086 PG 13 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800012 PM 18220254 ER PT J AU Yi, D Senesac, L Thundat, T AF Yi, Dechang Senesac, Larry Thundat, Thomas TI Speciation of energetic materials on a microcantilever using surface reduction SO SCANNING LA English DT Article DE microcantilevers; surface reduction; receptor-free sensing; explosive molecules ID FORCE MICROSCOPE; TRINITROTOLUENE; EXPLOSIVES; ADSORPTION AB Although microcantilevers have been used to detect explosives with extremely high sensitivity using variations in adsorption-induced bending and resonance frequency, obtaining selectivity remains a challenge. Reversible chemoselectivity at ambient temperatures based on receptor-based detection provides only limited selectivity due to the generality of chemical interactions. The oxygen imbalance in secondary explosives presents a means to achieve receptor-free speciation of explosives using surface reduction of adsorbed molecules. We demonstrate highly selective and realtime detection of Trinitrotoluene (TNT) using a copper oxide-coated cantilever with a surface reduction approach. Not only can this technique exclusively differentiate explosives from nonexplosives, but also it has the potential to specify individual explosives such as TNT, pentaerythritol tetranitrate (PETN), and RDX. This technique together with receptor-based detection techniques provides a multimodal approach for achieving very high selectivity. C1 [Yi, Dechang; Senesac, Larry; Thundat, Thomas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Senesac, Larry; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Yi, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ugt@ornl.gov NR 13 TC 2 Z9 2 U1 1 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 208 EP 212 DI 10.1002/sca.20096 PG 5 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800017 PM 18288710 ER PT J AU Wiley, S AF Wiley, Steven TI It's not just about innovation - New ideas are cheap; what we really need are scientists who can see them through SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 3535 MARKET ST, SUITE 200, PHILADELPHIA, PA 19104-3385 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD MAR PY 2008 VL 22 IS 3 BP 33 EP 33 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 265IL UT WOS:000253352200019 ER PT J AU Fixel, DA Hitchon, WNG AF Fixel, D. A. Hitchon, W. N. G. TI Kinetic investigation of electron-electron scattering in nanometer-scale metal-oxide-semiconductor field-effect transistors SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID HOT-CARRIER INJECTION; SHORT-CHANNEL MOSFETS; GATE CURRENT; SUBMICROMETER MOSFETS; SUBSTRATE CURRENT; SILICON DIOXIDE; TRANSPORT; DEGRADATION; SIMULATION; ENERGY AB The effects of electron-electron scattering on the electron energy distribution, as well as substrate and gate currents in short channel MOSFETs ( metal-oxide-semiconductor field-effect transistors) are explored using the convective scheme, or CS, a method of characteristics. Effects of electron-electron scattering are explored for a MOSFET with uniform doping in the channel as well as for an asymmetric device structure, a focused-ion-beam ( FIBMOS) transistor, for both 70 nm and 250 nm channel length devices. Effects of electron-electron scattering on a standard 35 nm channel length MOSFET are also included. The high substrate doping that is required for such short channel length devices leads to large electric fields. The purpose of the FIB implant is to improve hot-carrier reliability by reducing the electric field in the channel. Electron-electron scattering increases the amount of electrons in the tail, despite the fact that the applied potential is significantly below the threshold for injection of electrons into the gate oxide. The ratio of gate-to-substrate current, I(g)/I(sub), is investigated as an indicator of the level of degradation. At such short channel lengths, there are degrading and non-degrading components of gate and substrate current. The non-degrading components of gate and substrate current correlate strongly, so that the ratio of I(g)/I(sub) is an efficient indicator of device degradation. The energy thresholds for impact ionization and for emission of electrons into the gate oxide are crucial in determining the ratio of these currents. The substrate and gate currents obtained indicate that hot-carrier effects continue to be an issue for device performance, even for nanometer-scale devices. The density of electrons is higher at very short channel lengths due to the need to have shallow junctions and leads to a greater amount of Coulomb collisions. Increased Coulomb collisions may lead to strongly reduced lifetimes in nanometer-scale devices. C1 [Fixel, D. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hitchon, W. N. G.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. RP Fixel, DA (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM dafixel@sandia.gov NR 44 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD MAR PY 2008 VL 23 IS 3 AR 035014 DI 10.1088/0268-1242/23/3/035014 PG 13 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 279WM UT WOS:000254385900014 ER PT J AU Jeong, JM Knapp, FFR AF Jeong, Jae Min Knapp, F. F. Russ, Jr. TI Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy SO SEMINARS IN NUCLEAR MEDICINE LA English DT Review ID PRIMARY HEPATOCELLULAR-CARCINOMA; HORMONE PEPTIDE ANALOGS; LIPIODOL SOLUTION; RE-188-LABELED RADIOPHARMACEUTICALS; DIMERCAPTOSUCCINIC ACID; RHEUMATOID-ARTHRITIS; RADIONUCLIDE THERAPY; ALBUMIN MICROSPHERES; HEPATIC-ARTERY; BIODISTRIBUTION AB This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 (W-188)/rhenium-188 (Re-188) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the Re-188-perrhenate bolus and preparation of Re-188-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The W-188/Re-188 generator has a long useful shelf-life of several months and is a convenient on-site Re-188 production system. Re-188 has excellent therapeutic and imaging properties (T-1/2 16.9 hours; E-beta max 2.12 MeV; 155-keV gamma ray, 15%) and is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of Re-188-labeled agents has been demonstrated for. several therapeutic applications. Because of the favorable physical properties of Re-188, several Re-188-labeled agents are being developed and evaluated for the treatment of non resectable/refractory liver cancer. Re-180-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of Re-188-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) W-188/Re-188 generators. The handling of such high levels of Re-188 imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, "As Low As Reasonably Achievable") principles must be followed. The ORNL generator provides consistently high Re-188 yields (>75%) and low W-188 parent breakthrough (<10(-3)%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the Re-188 bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of Re-188-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the Re-188-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandern column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of Re-188-HDD have been optimized and this agent can be obtained in high yield (80%). C1 [Knapp, F. F. Russ, Jr.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Nucl Med Program, Oak Ridge, TN 37831 USA. [Jeong, Jae Min] Seoul Natl Univ Hosp, Dept Nucl Med, Seoul, South Korea. RP Jeong, JM (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Nucl Med Program, POB 2008, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM knappffjr@ornl.gov RI Jeong, Jae Min/E-2102-2012 OI Jeong, Jae Min/0000-0003-2611-6020 NR 77 TC 25 Z9 25 U1 0 U2 2 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0001-2998 J9 SEMIN NUCL MED JI Semin. Nucl. Med. PD MAR PY 2008 VL 38 IS 2 BP S19 EP S29 DI 10.1053/j.semnuclmed.2007.10.003 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 263MJ UT WOS:000253220900012 PM 18243839 ER PT J AU Tao, AR Habas, S Yang, PD AF Tao, Andrea R. Habas, Susan Yang, Peidong TI Shape control of colloidal metal nanocrystals SO SMALL LA English DT Review ID ENHANCED RAMAN-SCATTERING; SURFACE PLASMONIC PROPERTIES; WET CHEMICAL SYNTHESIS; GOLD NANORODS; OPTICAL-PROPERTIES; ASPECT-RATIO; PLATINUM NANOCRYSTALS; SILVER NANOPARTICLES; RHODIUM NANOPARTICLES; ANISOTROPIC GROWTH AB Colloidal metal nanoparticles are emerging as key materials for catalysis, plasmonics, sensing, and spectroscopy. Within these applications, control of nanoparticle shape lends increasing functionality and selectivity. Shape-controlled nanocrystals possess well-defined surfaces and morphologies because their nucleation and growth are controlled at the atomic level. An overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals. General strategies for synthetic control are discussed, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes. C1 [Habas, Susan; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Habas, Susan; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Andrea R.] Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Santa Barbara, CA 93111 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu RI Wei, Zhanhua/D-7544-2013 OI Wei, Zhanhua/0000-0003-2687-0293 NR 115 TC 1336 Z9 1355 U1 156 U2 1503 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD MAR PY 2008 VL 4 IS 3 BP 310 EP 325 DI 10.1002/smll.200701295 PG 16 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 280RP UT WOS:000254444200007 ER PT J AU West, TO Brandt, CC Wilson, BS Hellwinckel, CM Tyler, DD Marland, G Ugarte, DGD Larson, JA Nelson, RG AF West, Tristram O. Brandt, Craig C. Wilson, Bradly S. Hellwinckel, Chad M. Tyler, Donald D. Marland, Gregg Ugarte, Daniel G. De La Torre Larson, James A. Nelson, Richard G. TI Estimating regional changes in soil carbon with high spatial resolution SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID LAND-COVER DATA; ORGANIC-CARBON; UNITED-STATES; AGRICULTURAL MANAGEMENT; CONSERVATION TILLAGE; SEQUESTRATION; IMPACTS; STORAGE; CULTIVATION; MITIGATION AB To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil C and to estimate where these changes are likely to occur at a subcounty (30- by 30-m) resolution. We applied this framework component to a midwestern region of the United States that consists of 679 counties approximately centered around Iowa. We estimated the 1990 baseline soil C to a maximum depth of 3 m for this region to be 4117 Tg. Cumulative soil C accumulation of 70.3 Tg was estimated for this region between 1991 and 2000, of which 33.8 Tg is due to changes in tillage intensity. Without accounting for soil C loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil C associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil C sequestration practices. This C accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently, account for alternating annual trends in land management and associated C stocks and fluxes. C1 [West, Tristram O.; Brandt, Craig C.; Marland, Gregg] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wilson, Bradly S.; Hellwinckel, Chad M.; Ugarte, Daniel G. De La Torre] Univ Tennessee, Agr Policy Anal Ctr, Knoxville, TN 37996 USA. [Tyler, Donald D.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. [Larson, James A.] Univ Tennessee, Dept Agr Econ, Knoxville, TN 37996 USA. [Nelson, Richard G.] Kansas State Univ, Manhattan, KS 66506 USA. RP West, TO (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM westto@ornl.gov RI El Husny, Chafic/G-5410-2012; West, Tristram/C-5699-2013 OI West, Tristram/0000-0001-7859-0125 NR 50 TC 29 Z9 29 U1 1 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2008 VL 72 IS 2 BP 285 EP 294 DI 10.2136/sssaj2007.0113 PG 10 WC Soil Science SC Agriculture GA 275GP UT WOS:000254060200001 ER PT J AU Wohling, T Vrugt, JA Barkle, GF AF Woehling, Thomas Vrugt, Jasper A. Barkle, Gregory F. TI Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID EVOLUTIONARY ALGORITHMS; PARAMETER-ESTIMATION; GLOBAL OPTIMIZATION; HYDROLOGIC-MODELS; AUTOMATIC CALIBRATION; TRANSPORT PARAMETERS; GENETIC ALGORITHM; SOLUTE TRANSPORT; SOIL PARAMETERS; VOLCANIC SOIL AB Inverse modeling has become increasingly popular for estimating effective hydraulic properties across a range of spatial scales. In recent years, many different algorithms have been developed to solve complex multiobjective optimization problems. In this study, we compared the efficiency of the Nondominated Sorting Genetic Algorithm (NSGA-II), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and AMALGAM, a multialgorithm genetically adaptive search method for multiobjective estimation of soil hydraulic parameters. In our analyses, we implemented the HYDRUS-ID model and used observed pressure head data at three different depths from the Spydia experimental field site in New Zealand. Our optimization problem was posed in a multiobjective context by simultaneously using three complementary RMSE criteria at each depth. We analyzed the trade-off between these criteria and the adherent Pareto uncertainty. The results demonstrate that all three algorithms were able to find a good approximation of the Pareto set of solutions, but differed in the rate of convergence to this distribution. Small differences in performance of the various algorithms were observed because of the relative high dimension of the optimization problem in combination with the presence of multiple local optimal solutions within the three-objective search space. The Pareto parameter sets yielded satisfactory results when Simulating the transient tensiometric pressure at predetermined observation points in the investigated vadose zone profile. The overall best parameter set was found by AMALGAM with RMSE values of 0.14, 0.11, and 0.17 m at the 0.4-, 1.0-, and 2.6-m depths, respectively. In contrast, the fit errors were substantially higher at these respective depths, with RMSE values ranging from 0.87 to 1.49 in, when using soil hydraulic parameters derived from laboratory analysis of small vadose zone cores. C1 [Woehling, Thomas] Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Hamilton, New Zealand. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Barkle, Gregory F.] Aqualin Res Ltd, Hamilton, New Zealand. RP Wohling, T (reprint author), Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Hamilton, New Zealand. EM woehling@lvlham.lincoln.ac.nz RI Vrugt, Jasper/C-3660-2008 NR 62 TC 68 Z9 71 U1 4 U2 20 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2008 VL 72 IS 2 BP 305 EP 319 DI 10.2136/sssaj2007.0176 PG 15 WC Soil Science SC Agriculture GA 275GP UT WOS:000254060200003 ER PT J AU Xiao, XL Cheng, YZ Peng, J Wu, MM Chen, DF Hu, ZB Kiyanagi, R Fieramosca, JS Short, S Jorgensen, J AF Xiao, X. L. Cheng, Y. Z. Peng, J. Wu, M. M. Chen, D. F. Hu, Z. B. Kiyanagi, R. Fieramosca, J. S. Short, S. Jorgensen, J. TI Thermal expansion properties of A(2)(MO4)(3) (A = Ho and Tm; M = W and Mo) SO SOLID STATE SCIENCES LA English DT Article DE thermal expansion; high temperature X-ray diffraction; crystal structure ID MOLYBDATES AB Compounds Ho2W3O12, Ho2Mo3O12, Tm2W3O12 and Tm2Mo3O12 have been prepared by conventional solid-state reaction. Their crystal structures and thermal expansion properties were investigated by room temperature and high temperature X-ray diffractions. It is found that, in certain temperature ranges (200-700 degrees C for Ho sample and 200-800 degrees C for the others), Ho2Mo3O12, TM2W3O12 and Tm2Mo3O12 all adopt orthorhombic structure and show negative thermal expansion whereas Ho2W3O12 adopts monoclinic structure and shows positive thermal expansion. The volume thermal expansion coefficients obtained for Ho2W3O12, Ho2Mo3O12, Tm2W3O12 and Tm2Mo3O12 from high temperature XRD are 29.46 x 10(-6)degrees C-1, -34.50 x 10(-6)degrees C-1, -11.85 x 10(-6)degrees C-1 and -12.09 x 10(-6)degrees C-1, respectively. Thermogravimetry was used to study their hygroscopicity in air. (c) 2007 Published by Elsevier Masson SAS. C1 [Xiao, X. L.; Cheng, Y. Z.; Peng, J.; Wu, M. M.; Hu, Z. B.] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. [Chen, D. F.] China Inst Atom Energy, Beijing 102413, Peoples R China. [Kiyanagi, R.; Fieramosca, J. S.; Short, S.; Jorgensen, J.] Argonne Natl Lab, IPNS, MSD, Argonne, IL 60439 USA. RP Hu, ZB (reprint author), Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. EM huzq@gucas.ac.cn NR 14 TC 20 Z9 23 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD MAR PY 2008 VL 10 IS 3 BP 321 EP 325 DI 10.1016/j.solidstatesciences.2007.09.001 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 293RF UT WOS:000255351700010 ER PT J AU Herbst, RS Peterman, DR Tillotson, RD Delmau, LH AF Herbst, R. Scott Peterman, Dean R. Tillotson, Richard D. Delmau, Laetitia H. TI Fundamental chemistry of cesium extraction from acidic media by HCCD in FS-13 SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE extraction; cesium; cesium extraction; chlorinated cobalt dicarbollide; trifluoromethylphenyl sulfone; slope analysis ID SEPARATION; ANIONS AB We previously published a model for cesium extraction from acidic media by the protonated form of the hexachlorinated derivative of the chloro-protected cobalt bis(dicarbollide), HCCD, dissolved in trifluoromethylphenyl sulfone, FS-13. The model indicated that Cs extraction proceeds through a series of ion-paired and/or dissociated extraction equilibria. Additional Cs distribution ratio data has been obtained and the model refined and simplified. It is demonstrated that the equilibrium exclusively involving the exchange of proton for cesium by formation of ion-paired CsCCD models the Cs distribution data very well, particularly for the concentrations of HCCD greater than similar to 0.0005 M (0.5 mM). Finally, activity corrections for the aqueous phase to the Cs distribution data results in good agreement to the theoretical value of -1 for slope (log-log) analysis of the data over a wide range of HNO3 and HCCD concentrations. C1 [Herbst, R. Scott; Peterman, Dean R.; Tillotson, Richard D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Delmau, Laetitia H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Herbst, RS (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM r.herbst@inl.gov NR 11 TC 49 Z9 49 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAR-APR PY 2008 VL 26 IS 2 BP 163 EP 174 DI 10.1080/07366290801925298 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 281TN UT WOS:000254521900006 ER PT J AU Hathcock, CD Haarmann, TK AF Hathcock, Charles D. Haarmann, Timothy K. TI Development of a predictive model for habitat of the Mexican spotted owl in Northern New Mexico SO SOUTHWESTERN NATURALIST LA English DT Article ID NATIONAL-PARK; FORESTS AB The Mexican spotted owl (Strix occidentalis lucida) was listed as a threatened species under the Endangered Species Act in 1993. We developed a predictive, vegetation-based model for habitat of the species in the Jemez Mountains, New Mexico, using logistic-regression modeling techniques and analyzed seven habitat variables with six of the variables included in the final model. A plot analysis using Receiver Operating Characteristics indicated a high performance of the model, and validation of the model confirmed proper function. Compared with random unoccupied sites, the model indicates that owls in the Jemez Mountains prefer habitat with greater diversity, density, and height of trees, canopy cover, and shrub density, which is in agreement with much of the literature on biology of the Mexican spotted owl. This model can be used with fine-scale assessments of habitat for land-management agencies that have a priority to accurately delineate habitat of the Mexican spotted owl. Los Alamos National Laboratory will use this model to re-delineate habitat of owls to reduce assessment costs and to better protect appropriate habitat. C1 [Hathcock, Charles D.] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. RP Hathcock, CD (reprint author), Los Alamos Natl Lab, Ecol Grp, POB 1663, Los Alamos, NM 87545 USA. EM hathcock@lanl.gov NR 18 TC 1 Z9 2 U1 3 U2 19 PU SOUTHWESTERN ASSOC NATURALISTS PI SAN MARCOS PA SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS, TX 78666 USA SN 0038-4909 EI 1943-6262 J9 SOUTHWEST NAT JI Southw. Natural. PD MAR PY 2008 VL 53 IS 1 BP 34 EP 38 DI 10.1894/0038-4909(2008)53[34:DOAPMF]2.0.CO;2 PG 5 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 277FA UT WOS:000254196900005 ER PT J AU Li, H Chavan, M Schindelin, H Lennarz, WJ Li, HL AF Li, Hua Chavan, Manasi Schindelin, Hermann Lennarz, William J. Li, Huilin TI Structure of the oligosaccharyl transferase complex at 12 angstrom resolution SO STRUCTURE LA English DT Article ID SACCHAROMYCES-CEREVISIAE OLIGOSACCHARYLTRANSFERASE; PROTEIN-CONDUCTING CHANNEL; ENDOPLASMIC-RETICULUM; N-GLYCOSYLATION; TRANSLOCATION CHANNEL; SECRETORY PROTEIN; ESCHERICHIA-COLI; MEMBRANE-PROTEIN; ACTIVE-SITE; YEAST AB Oligosaccharyl transferase (OT) catalyzes the transfer of a lipid-linked oligosaccharide to the nascent polypeptide emerging from the translocon. Currently, there is no structural information on the membrane-embedded OT complex, which consists of eight different polypeptide chains. We report a 12 angstrom resolution cryo-electron microscopy structure of OT from yeast. We mapped the locations of four essential OT subunits through a maltose-binding protein fusion strategy. OT was found to have a large domain in the lumenal side of encloplasmic reticulum where the catalysis occurs. The lumenal domain mainly comprises the catalytic Stt3p, the donor substrate-recognizing Wbp1p, and the acceptor substrate-recognizing Ost1p. A prominent groove was observed between these subunits, and we propose that the nascent polypepticle from the translocon threads through this groove while being scanned by the Ost1p subunit for the presence of the glycosylation sequon. C1 [Chavan, Manasi; Lennarz, William J.; Li, Huilin] SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA. [Chavan, Manasi; Lennarz, William J.] SUNY Stony Brook, Dept Biochem, Stony Brook, NY 11794 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Schindelin, Hermann] Univ Wurzburg, Inst Biol Struct, D-97078 Wurzburg, Germany. [Schindelin, Hermann] Univ Wurzburg, Rudolf Virchow Ctr Expt Biomed, D-97078 Wurzburg, Germany. RP Lennarz, WJ (reprint author), SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA. EM wlennarz@notes.cc.sunysb.edu; hli@bnl.gov FU NIGMS NIH HHS [GM33185, GM74985] NR 50 TC 25 Z9 25 U1 2 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAR PY 2008 VL 16 IS 3 BP 432 EP 440 DI 10.1016/j.str.2007.12.013 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 275GQ UT WOS:000254060300015 PM 18334218 ER PT J AU Shchukarev, A Boily, JF AF Shchukarev, Andrey Boily, Jean-Francois TI XPS study of the hematite-aqueous solution interface SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE XPS; adsorption; electrolyte; hematite; solid-liquid interface; surface charge; hydration ID RAY-PHOTOELECTRON-SPECTROSCOPY; RUTILE-WATER INTERFACE; QUICK-FROZEN SOLUTIONS; DOUBLE-LAYER; IN-SITU; SURFACES; ADSORPTION AB The interaction between the surface of hematite colloidal platelets and Na(+) and Cl(-) ions was investigated by XPS using the cryogenic technique. Pastes in ionic strengths of 0 and 10 mm NaCl contained about 10 at. % water and water/NaCl atomic ratios of 3 to 6. These results fall within the range of values obtained for a variety of minerals studied with this technique. Pastes in 100 mm NaCl background electrolyte, however, contained an unusually larger water content of 25 at. %, yielding a Na(+): Cl(-): H(2)O ratio of 1 :1 :2. This result is in strong contrast with other minerals at the same ionic strength, which typically reveal about 10 at. % water. Substituting Na(+) for Cs(+) in the hematite paste with 100 mm CsCl yielded, on the other hand, the same amount of water as in the pastes with 0 and 10 mm NaCl, and underpinned the role of Na+ ions in the large water content of the hematite paste. As surface concentrations of Na(+) and Cl(-) exceeded those of hematite surface structural hydroxyl groups and Na 1s and Cl 2p spectra exhibited energy loss features, the electrolyte ions are proposed to be distributed in a three-dimensional array in the fast-frozen paste, possibly in a hydrohalite-like (NaCl center dot 2H(2)O) phase. In addition, because the fast-frozen solution of 100 mm NaCl yields a water/NaCl ratio of about 70, hematite is proposed to play an important role in the stabilization of this three-dimensional distribution of Na(+) and Cl(-) ions. The role of the neutrally charged {1001} plane, a predominant feature in the hematite particles of this study, is notably discussed in the light of recent molecular models showing that this plane can stabilize several layers of hydrated ions up to 15 angstrom from the surface. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Shchukarev, Andrey] Umea Univ, Dept Chem Environm & Biogeochem, SE-90187 Umea, Sweden. [Boily, Jean-Francois] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shchukarev, A (reprint author), Umea Univ, Dept Chem Environm & Biogeochem, SE-90187 Umea, Sweden. EM andrei.shchukarev@chem.umu.se NR 19 TC 13 Z9 13 U1 5 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 349 EP 353 DI 10.1002/sia.2657 PG 5 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200051 ER PT J AU Samavat, F Gladys, MJ Jenks, CJ Lograsso, TA King, BV O'Connor, DJ AF Samavat, Feridoun Gladys, Michael J. Jenks, Cynthia J. Lograsso, Thomas A. King, Bruce V. O'Connor, D. John TI Study of preferential sputtering and segregation effects on the surface composition of Al-Pd-Mn quasi-crystals SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE preferential sputtering; segregation; Al-Pd-Mn; LEIS ID ENERGY ION-SCATTERING; ALPDMN AB Using 2 keV He+ and Ne+ low-energy ion scattering (LEIS), it was found that the Al/Pd concentration ratio at the surface of a nominally Al69.9Pd20.5Mn9.6 quasi-crystal decreases to a steady-state value under bombardment as a result of preferential sputtering. Sputtering of an annealed surface results in a significant increase in Mn concentration on the surface which remained at annealing temperatures below 575 K. Variations of the Mn/Pd and Al/Pd ratios have been measured by LEIS as a function of temperature in the range 295-975 K for clean-annealed and sputtered surfaces. The results show that Al/Pd ratio does not significantly change from 295 to 575 K for both He+ and Ne+ but increases with sample temperatures up to 875 K. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Samavat, Feridoun] Bu Ali Sina Univ, Dept Phys, Hamadan, Iran. [Jenks, Cynthia J.; Lograsso, Thomas A.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Samavat, Feridoun; Gladys, Michael J.; King, Bruce V.; O'Connor, D. John] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW 2308, Australia. RP Samavat, F (reprint author), Bu Ali Sina Univ, Dept Phys, Hamadan, Iran. EM FSamavat@basu.ac.ir RI OConnor, John/C-4336-2008; Gladys, Michael/C-4144-2011 OI OConnor, John/0000-0003-4427-7733; NR 14 TC 1 Z9 1 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 433 EP 435 DI 10.1002/sia.2769 PG 3 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200068 ER PT J AU Baer, DR Amonette, JE Engelhard, MH Gaspar, DJ Karakoti, AS Kuchibhatla, S Nachimuthu, P Nurmi, JT Qiang, Y Sarathy, V Seal, S Sharma, A Tratnyek, PG Wang, CM AF Baer, D. R. Amonette, J. E. Engelhard, M. H. Gaspar, D. J. Karakoti, A. S. Kuchibhatla, S. Nachimuthu, P. Nurmi, J. T. Qiang, Y. Sarathy, V. Seal, S. Sharma, A. Tratnyek, P. G. Wang, C. -M. TI Characterization challenges for nanomaterials SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE nanomaterials; characterization; surface analysis; XPS; XRD; TEM ID IRON-OXIDE NANOPARTICLES; CORE-SHELL NANOCLUSTERS; MAGNETIC-PROPERTIES; CARBON NANOTUBES; FE NANOPARTICLES; QUANTUM DOTS; PARTICLES; NANOCRYSTALS; SPECTROSCOPY; TEMPERATURE AB Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces, because of their high surface area. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful, and needed analysis. Case studies of measurements on ceria and iron metal-core/oxide-shell nanoparticles are used to introduce some of the issues that frequently need to be addressed during analysis of nanostructured materials. We use a combination of tools for routine analysis including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and x-ray diffraction (XRD) and apply several other methods as needed to obtain essential information. The examples provide an introduction to other issues and complications associated with the analysis of nanostructured materials including particle stability, probe effects, environmental effects, specimen handling, surface coating, contamination, and time. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Baer, D. R.; Engelhard, M. H.; Kuchibhatla, S.; Nachimuthu, P.; Wang, C. -M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Amonette, J. E.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Gaspar, D. J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Karakoti, A. S.; Kuchibhatla, S.] Univ Cent Florida, Mech Mat Aerosp Engn Nanosci & Technol Ctr, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Nurmi, J. T.; Sarathy, V.; Tratnyek, P. G.] Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, Beaverton, OR USA. [Qiang, Y.; Sharma, A.] Univ Idaho, Dept Phys, Moscow, ID 83843 USA. RP Baer, DR (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Box 999,MS K8-87, Richland, WA 99352 USA. EM don.baer@pnl.gov RI Engelhard, Mark/F-1317-2010; Gaspar, Dan/H-6166-2011; Baer, Donald/J-6191-2013; OI Baer, Donald/0000-0003-0875-5961; Gaspar, Daniel/0000-0002-8089-810X; Engelhard, Mark/0000-0002-5543-0812 NR 70 TC 60 Z9 60 U1 5 U2 41 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 529 EP 537 DI 10.1002/sia.2726 PG 9 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200090 ER PT J AU Qin, F Hunt, B Unal, B Jing, D Shen, M Jenks, CJ Gleeson, B Sordelet, DJ Thiel, PA AF Qin, F. Hunt, B. Unal, B. Jing, D. Shen, M. Jenks, C. J. Gleeson, B. Sordelet, D. J. Thiel, P. A. TI Correlations between structure and chemical composition on oxidized (Pt,Ni)(3)Al(111) surfaces SO SURFACE SCIENCE LA English DT Article DE oxidation; nickel aluminide; platinum; scanning tunneling microscopy; low-energy electron diffraction (LEED) ID RAY PHOTOELECTRON-SPECTROSCOPY; OXIDATION BEHAVIOR; INITIAL-STAGES; CORROSION-RESISTANCE; SITE PREFERENCE; NI3AL ALLOY; EARLY-STAGE; SEGREGATION; INTERMETALLICS; 1ST-PRINCIPLES AB We have investigated the fully-oxidized surface that forms on (Pt, Ni)(3)Al(111) at temperatures ranging from 300 to 1000 K and at oxygen pressures of ca. 10(-6) to 10(-7) Torr, using scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Based on X-ray photoelectron spectroscopy data that were published previously, oxidation temperatures below 700 K at these pressures produces a mixture of surface Al2O3 and NiO, with NiO being the predominant oxide. At 800-1000 K, pure Al2O3 exists. In this work, STM data from a sample containing 10 at% Pt show that oxidation causes an increase in roughness, relative to the clean surface. The apparent roughness correlates directly with NiO content, both of which reach a maximum at an oxidation temperature of 500 K. The oxide surface is smoothest when it consists of pure Al2O3, i.e. after oxidation at 800-1000 K. In terms of crystallinity, LEED data show that the Al2O3 which forms at 1000 K is ordered, but its structure on the Pt-containing samples is different than reported previously for the Pt-free surface. This is true despite the structure of the clean surface being unperturbed by Pt, based on STM and LEED. The different structure of the oxide probably relates to the fact that the oxide is also thinner in the presence of Pt. The change in oxide structure undoubtedly correlates with a change in stability and adhesion of the oxide, both of which are of paramount importance in industrial applications. (c) 2008 Elsevier B.V. All rights reserved. C1 [Qin, F.; Unal, B.; Jing, D.; Jenks, C. J.; Gleeson, B.; Sordelet, D. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Qin, F.; Hunt, B.; Jing, D.; Shen, M.; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Unal, B.; Gleeson, B.; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pthiel@iastate.edu RI Shen, Mingmin/A-9293-2012; Jing, Dapeng/M-3455-2014 OI Jing, Dapeng/0000-0001-7600-7071 NR 41 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2008 VL 602 IS 5 BP 1092 EP 1100 DI 10.1016/j.susc.2008.01.004 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 285UN UT WOS:000254801800014 ER PT J AU Ilton, ES Bagus, PS AF Ilton, Eugene S. Bagus, Paul S. TI Ligand field effects on the multiplet structure of the U4f XPS of UO2 SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; uranium oxide; ab initio quantum chemical methods and calculations ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; VACANCY LEVELS; SPECTRA; REDUCTION; OXIDES; STATES; 2P AB Ab initio, fully relativistic four component theory was used to determine atomic and interatomic many-body effects for the U4f X-ray photoelectron spectrum of an embedded UO8-12 Cluster representing UO2, Many-body effects were included through the use of configuration interaction wavefunctions that allow the mixing of XPS allowed and XPS forbidden configurations. Charge transfer configurations were not included. This work extends our earlier studies on simulations of the 4f XPS for the free U4+ cation. While the main XPS features are similar in both cases, ligand field effects changed the multiplet structure in important ways that better simulated experimental data for UO2. Neither initial nor final state covalency significantly reduced the 4f-5f exchange integrals, and the differences between the atom and cluster model were due to ligand field splitting of the 5f band and increased distributions of intensity from XPS allowed to XPS forbidden peaks. The prominent 7 eV satellites associated with UO2 were absent in the simulations, which provided further evidence that these satellites are due to charge transfer and not other interatomic effects. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ilton, Eugene S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99353 USA. [Bagus, Paul S.] Univ N Texas, Denton, TX 76203 USA. RP Ilton, ES (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, 902 Battelle Blvd, Richland, WA 99353 USA. EM Eugene.Ilton@pnl.gov RI Bagus, Paul/M-1273-2015 NR 30 TC 16 Z9 16 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2008 VL 602 IS 5 BP 1114 EP 1121 DI 10.1016/j.susc.2008.01.010 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 285UN UT WOS:000254801800016 ER PT J AU Somorjai, GA Tao, F Park, JY AF Somorjai, Gabor A. Tao, Feng Park, Jeong Young TI The nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics SO TOPICS IN CATALYSIS LA English DT Article DE nanoscience; nanotechnology; colloid science; catalysis; high pressure; scanning tunnelling microscopy ID ELECTRON-BEAM LITHOGRAPHY; SINGLE-CRYSTAL SURFACES; GENERATION VIBRATIONAL SPECTROSCOPY; SIZE-REDUCTION LITHOGRAPHY; MESOPOROUS SBA-15 SILICA; PLATINUM NANOPARTICLES; N-HEXANE; NANOIMPRINT LITHOGRAPHY; ETHYLENE HYDROGENATION; STRUCTURE SENSITIVITY AB The incorporation of nanosciences into catalysis studies has become the most powerful approach to understanding reaction mechanisms of industrial catalysts and designing new-generation catalysts with high selectivity. Nanoparticle catalysts were synthesized via controlled colloid chemistry routes. Nanostructured catalysts such as nanodots and nanowires were fabricated with nanolithography techniques. Catalytic selectivity is dominated by several complex factors including the interface between active catalyst phase and oxide support, particle size and surface structure, and selective blocking of surface sites, etc. The advantage of incorporating nanosciences into the studies of catalytic selectivity is the capability of separating these complex factors and studying them one by one in different catalyst systems. The role of oxide-metal interfaces in catalytic reactions was investigated by detection of continuous hot electron flow in catalytic nanodiodes fabricated with shadow mask deposition technique. We found that the generation mechanism of hot electrons detected in Pt/TiO2 nanodiode is closely correlated with the turnover rate under CO oxidation. The correlation suggests the possibility of promoting catalytic selectivity by precisely controlling hot electron flow at the oxide-metal interface. Catalytic activity of 1.7-7.2 nm monodispersed Pt nanoparticles exhibits particle size dependence, demonstrating the enhancement of catalytic selectivity via controlling the size of catalyst. Pt-Au alloys with different An coverage grown on Pt(I 11) single crystal surface have different catalytic selectivity for four conversion channels of n-hexane, showing that selective blocking of catalytic sites is an approach to tuning catalytic selectivity. In addition, presence and absence of excess hydrogen lead to different catalytic selectivity for isomerization and dehydrocyclization of n-hexane on Pt(111) single crystal surface, suggesting that modification of reactive intermediates by the presence of coadsorbed hydrogen is one approach to shaping catalytic selectivity. Several challenges such as imaging the mobility of adsorbed molecules during catalytic reactions by high pressure STM and removing polymeric capping agents from metal nanoparticles remain. C1 [Somorjai, Gabor A.; Tao, Feng; Park, Jeong Young] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Tao, Feng; Park, Jeong Young] Lawrence Natl Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 40 TC 103 Z9 103 U1 10 U2 95 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2008 VL 47 IS 1-2 BP 1 EP 14 DI 10.1007/s11244-007-9028-1 PG 14 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 284JB UT WOS:000254701600001 ER PT J AU Hook, SE Skillman, AD Gopalan, B Small, JA Schultz, IR AF Hook, Sharon E. Skillman, Ann D. Gopalan, Banu Small, Jack A. Schultz, Irvin R. TI Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture SO TOXICOLOGICAL SCIENCES LA English DT Article DE gene expression; microarrays; chemical mixtures; rainbow trout; toxicokinetics ID FLOUNDER PLATICHTHYS-FLESUS; ONCORHYNCHUS-MYKISS; HEXAVALENT CHROMIUM; COMPLEX-MIXTURES; MICROARRAY DATA; ESTRADIOL; ARRAY; FISH; BETA; 17-ALPHA-ETHYNYLESTRADIOL AB Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p < 0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment. C1 [Hook, Sharon E.; Skillman, Ann D.; Schultz, Irvin R.] Battelle marine Res Operat, Sequim, WA 98382 USA. [Gopalan, Banu; Small, Jack A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schultz, IR (reprint author), Battelle marine Res Operat, W Sequim Bay Rd, Sequim, WA 98382 USA. EM sharon.hook@pnl.gov RI Hook, Sharon/D-9067-2011 FU NIEHS NIH HHS [5R01ES012446-03] NR 56 TC 24 Z9 25 U1 2 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD MAR PY 2008 VL 102 IS 1 BP 42 EP 60 DI 10.1093/toxsci/kfm293 PG 19 WC Toxicology SC Toxicology GA 260PY UT WOS:000253023600005 PM 18084045 ER PT J AU Metz, TO Page, JS Baker, ES Tang, KQ Ding, J Shen, YF Smith, RD AF Metz, Thomas O. Page, Jason S. Baker, Erin S. Tang, Keqi Ding, Jie Shen, Yufeng Smith, Richard D. TI High-resolution separations and improved ion production and transmission in metabolomics SO TRAC-TRENDS IN ANALYTICAL CHEMISTRY LA English DT Article DE electrospray ionization; ion mobility spectroscopy; liquid chromatography; mass spectrometry; metabolomics ID IONIZATION-MASS-SPECTROMETRY; PERFORMANCE LIQUID-CHROMATOGRAPHY; SOLUTION FLOW-RATES; ELECTROSPRAY-IONIZATION; ATMOSPHERIC-PRESSURE; PATTERN-RECOGNITION; FUNNEL INTERFACE; NANOELECTROSPRAY IONIZATION; MOBILITY SPECTROMETRY; PEPTIDE MIXTURES AB The goal of metabolomics analyses is detection and quantitation of as many sample components as reasonably possible in order to identify compounds or "features" that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is important that sample constituents are efficiently separated prior to ion production, in order to reduce complexity and minimize ionization suppression and thereby extend the dynamic range of the measurement, as well as the coverage of the metabolome. Similarly, optimization of the MS inlet and interface can lead to increased measurement sensitivity. This review focuses on the role of high-resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics. We place additional emphasis on the compromise between metabolome coverage and sample-analysis throughput. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Metz, Thomas O.; Page, Jason S.; Baker, Erin S.; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU NCI NIH HHS [R21 CA126191, R21 CA126191-01, R33 CA126191]; NCRR NIH HHS [P41 RR018522, P41 RR018522-05]; NIDDK NIH HHS [R21 DK071283, R33 DK071283, R33 DK071283-03] NR 71 TC 29 Z9 31 U1 2 U2 18 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-9936 J9 TRAC-TREND ANAL CHEM JI Trac-Trends Anal. Chem. PD MAR PY 2008 VL 27 IS 3 BP 205 EP 214 DI 10.1016/j.trac.2007.11.003 PG 10 WC Chemistry, Analytical SC Chemistry GA 298RM UT WOS:000255704800016 PM 19255623 ER PT J AU Zhang, F Jiang, L Yeh, GT Parker, JC AF Zhang, F. Jiang, L. Yeh, G. T. Parker, J. C. TI An adaptive local grid refinement and peak/valley capture algorithm to solve nonlinear transport problems with moving sharp-fronts SO TRANSPORT IN POROUS MEDIA LA English DT Article DE nonlinear advection-dispersion-reaction equations; Lagrangian-Eulerian decoupling method with an adaptive ZOOMing and Peak/valley Capture (LEZOOMPC); Burger equation; multiphase flow; peak/valley capturing; adaptive local grid refinement ID LAGRANGIAN-EULERIAN METHOD; EFFICIENT IMPLEMENTATION; EQUATIONS; SCHEMES AB Highly nonlinear advection-dispersion-reaction equations govern numerous transport phenomena. Robust, accurate, and efficient algorithms to solve these equations hold the key to the success of applying numerical models to field problems. This paper presents the development and verification of a computational algorithm to approximate the highly nonlinear transport equations of reactive chemical transport and multiphase flow. The algorithm was developed based on the Lagrangian-Eulerian decoupling method with an adaptive ZOOMing and Peak/valley Capture (LEZOOMPC) scheme. It consists of both backward and forward node tracking, rough element determination, peak/valley capturing, and adaptive local grid refinement. A second-order tracking was implemented to accurately and efficiently track all fictitious particles. Shanks' method was introduced to deal with slowly converging case. The accuracy and efficiency of the algorithm were verified with the Burger equation for a variety of cases. The robustness of the algorithm to achieve convergent solutions was demonstrated by highly nonlinear reactive contaminant transport and multiphase flow problems. C1 [Zhang, F.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Yeh, G. T.] Univ Cent Florida, Dept Civil & Environm Engn, Orlando, FL 32816 USA. [Parker, J. C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Jiang, L.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. RP Zhang, F (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM zhangf@ornl.gov NR 27 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2008 VL 72 IS 1 BP 53 EP 69 DI 10.1007/s11242-007-9135-2 PG 17 WC Engineering, Chemical SC Engineering GA 258SP UT WOS:000252890100004 ER PT J AU Lu, XJ Sun, YW AF Lu, Xinjian Sun, Yunwei TI A solution of transport in porous media with equilibrium and kinetic reactions SO TRANSPORT IN POROUS MEDIA LA English DT Article DE analytical solution; equilibrium; kinetics; transport; reaction ID MODEL DEVELOPMENT AB A solution is presented to verify numerical computer codes of reactive transport with both equilibrium and kinetic reactions. A synthetic model of A <-> B <-> C -> chain reactions is proposed to describe operator-splitting numerical schemes used in numerical computer codes. A reaction matrix is derived for both the equilibrium and the first-order kinetic reactions and further decoupled as a diagonal matrix. Therefore, the partial differential equations (PDEs) coupled by the reaction matrix can be transformed into independent PDEs, for which closed-form solutions exist or can be derived. The solution derived in this study is compared with numerical results. C1 [Sun, Yunwei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lu, Xinjian] Calif State Univ, E Bay, CA 94542 USA. RP Sun, YW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sun4@llnl.gov RI Sun, Yunwei/C-9751-2010 NR 12 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2008 VL 72 IS 2 BP 199 EP 206 DI 10.1007/s11242-007-9144-1 PG 8 WC Engineering, Chemical SC Engineering GA 263GJ UT WOS:000253205300005 ER PT J AU Garcia, E Chain, P Elliott, JM Bobrov, AG Motin, VL Kirillina, O Lao, V Calendar, R Filippov, AA AF Garcia, Emilio Chain, Patrick Elliott, Jeff M. Bobrov, Alexander G. Motin, Vladimir L. Kirillina, Olga Lao, Victoria Calendar, Richard Filippov, Andrey A. TI Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage SO VIROLOGY LA English DT Article DE Yersinia pestis; plague diagnostic bacteriophage; genome sequencing; tail fiber; H protein; preadsorbtion test; host-specificity ID ESCHERICHIA-COLI; YERSINIA-PESTIS; PASTEURELLA PESTIS; GENOME SEQUENCE; P2-LIKE COLIPHAGES; PROTEIN; P2; EVOLUTION; STRAIN; PHAGE AB Our analysis of the plague diagnostic phage L-413C genome sequence and structure reveals that L-413C is highly similar and collinear with enterobacteriophage P2, though important differences were found. Of special interest was the mosaic nature of the tail fiber protein H in L-413C, given the differentiating specificity of this phage for Yersinia pestis vs. Yersinia pseudotuberculosis. While the N-terminal 207 and C-terminal 137 amino acids of L-413C display significant homology with the P2 H protein, a large (465 amino acid) middle section appears to be derived from a T4-related H protein, with highest similarity to the T6 and RB32 distal tail fibers. This finding along with appropriate preadsorption experiments suggest that the unique H protein of L-413C may be responsible for the specificity of this phage for Y. pestis, and that the Y. pestis receptors that are recognized and bound by L-413C either do not exist in Y. pseudotuberculosis or have a different structure. (C) 2007 Elsevier Inc. All rights reserved. C1 [Garcia, Emilio; Chain, Patrick; Elliott, Jeff M.; Motin, Vladimir L.; Lao, Victoria] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Chain, Patrick] Joint Genome Inst, Microbiol Genome Program, Walnut Creek, CA 94598 USA. [Bobrov, Alexander G.; Kirillina, Olga; Filippov, Andrey A.] Russian Res Antiplague Inst Microbe, Saratov 410005, Russia. [Calendar, Richard] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Garcia, E (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM garcia12@llnl.gov RI Filippov, Andrey/B-2856-2011; chain, patrick/B-9777-2013; Motin, Vladimir/O-1535-2013 NR 85 TC 10 Z9 15 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD MAR 1 PY 2008 VL 372 IS 1 BP 85 EP 96 DI 10.1016/j.virol.2007.10.032 PG 12 WC Virology SC Virology GA 264YC UT WOS:000253325300009 PM 18045639 ER PT J AU Zou, YL Wu, J Giannone, RJ Boucher, L Du, HS Huang, Y Johnson, DK Liu, Y Wang, YS AF Zou, Yonglong Wu, Jun Giannone, Richard J. Boucher, Lorrie Du, Hansen Huang, Ying Johnson, Dabney K. Liu, Yie Wang, Yisong TI Nucleophosmin/B23 negatively regulates GCN5-dependent histone acetylation and transactivation SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CHROMATIN REMODELING ENZYMES; ACETYLTRANSFERASE ACTIVITY; CENTROSOME DUPLICATION; DEPENDENT KINASE; IN-VIVO; PROTEIN; PHOSPHORYLATION; TRANSCRIPTION; GENE; GCN5 AB Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. An in vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr(199) enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation. C1 [Zou, Yonglong; Wu, Jun; Giannone, Richard J.; Huang, Ying; Johnson, Dabney K.; Wang, Yisong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Boucher, Lorrie] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada. [Du, Hansen; Liu, Yie] NIH, NIA, Ctr Gerontol Res, Baltimore, MD 21224 USA. RP Wang, YS (reprint author), Oak Ridge Natl Lab, Biosci Div, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ywa@ornl.gov FU Intramural NIH HHS NR 52 TC 6 Z9 7 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 29 PY 2008 VL 283 IS 9 BP 5728 EP 5737 DI 10.1074/jbc.M709932200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IC UT WOS:000253426700054 PM 18165222 ER PT J AU Xie, SC Boyle, J Klein, SA Liu, XH Ghan, S AF Xie, Shaocheng Boyle, James Klein, Stephen A. Liu, Xiaohong Ghan, Steven TI Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; LARGE-SCALE MODELS; LIQUID WATER PATH; MICROPHYSICAL PROCESSES; RESOLVING SIMULATIONS; STRATIFORM CLOUDS; VERSION-3 CAM3; ICE CLOUDS; PART II; CLIMATE AB Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds. C1 [Xie, Shaocheng; Boyle, James; Klein, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Liu, Xiaohong; Ghan, Steven] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xie, SC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Xie, Shaocheng/D-2207-2013; Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011; Klein, Stephen/H-4337-2016 OI Xie, Shaocheng/0000-0001-8931-5145; Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699; Klein, Stephen/0000-0002-5476-858X NR 57 TC 26 Z9 26 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 29 PY 2008 VL 113 IS D4 AR D04211 DI 10.1029/2007JD009225 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 270JA UT WOS:000253715900009 ER PT J AU Ogden, DE Wohletz, KH Glatzmaier, GA Brodsky, EE AF Ogden, Darcy E. Wohletz, Kenneth H. Glatzmaier, Gary A. Brodsky, Emily E. TI Numerical simulations of volcanic jets: Importance of vent overpressure SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID CALDERA-FORMING ERUPTIONS; MACH-DISK; EXPLOSIVE ERUPTIONS; UNDEREXPANDED JETS; PYROCLASTIC FLOWS; MAGMA COMPOSITION; FLUID-DYNAMICS; WATER-CONTENT; ST-HELENS; AD 79 AB Explosive volcanic eruption columns are generally subdivided into a gas-thrust region and a convection-dominated plume. Where vents have greater than atmospheric pressure, the gas-thrust region is overpressured and develops a jet-like structure of standing shock waves. Using a pseudogas approximation for a mixture of tephra and gas, we numerically simulate the effects of shock waves on the gas-thrust region. These simulations are of free-jet decompression of a steady state high-pressure vent in the absence of gravity or a crater. Our results show that the strength and position of standing shock waves are strongly dependent on the vent pressure and vent radius. These factors control the gas-thrust region's dimensions and the character of vertical heat flux into the convective plume. With increased overpressure, the gas-thrust region becomes wider and develops an outer sheath in which the erupted mixture moves at higher speeds than it does near the column center. The radius of this sheath is linearly dependent on the vent radius and the square root of the overpressure. The sheath structure results in an annular vertical heat flux profile at the base of the convective plume, which is in stark contrast to the generally applied Gaussian or top-hat profile. We show that the magnitude of expansion is larger than that predicted from previous 1D analyses, resulting in much slower average vertical velocities after expansion. These new relationships between vent pressure and plume expansion may be used with observations of plume diameter to constrain the pressure at the vent. C1 [Ogden, Darcy E.; Glatzmaier, Gary A.; Brodsky, Emily E.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Wohletz, Kenneth H.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ogden, DE (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RI Brodsky, Emily/B-9139-2014; OI Brodsky, Emily/0000-0002-6855-6860 NR 60 TC 33 Z9 33 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB 29 PY 2008 VL 113 IS B2 AR B02204 DI 10.1029/2007JB005133 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 270JQ UT WOS:000253717500002 ER PT J AU Sapra, KT Balasubramanian, GP Labudde, D Bowie, JU Muller, DJ AF Sapra, K. Tanuj Balasubramanian, G. Prakash Labudde, Dirk Bowie, James U. Muller, Daniel J. TI Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE atomic force microscopy; energy landscape; Hammond effect; single-molecule force spectroscopy; transition states ID MOLECULE FORCE SPECTROSCOPY; NATIVE BOVINE RHODOPSIN; ANTIMICROBIAL PEPTIDE; TRANSITION-STATE; ALPHA-HELICES; SPEED LIMIT; BACTERIORHODOPSIN; STABILITY; ANTIPORTER; INTERFACES AB Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a Simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wildtype and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Muller, Daniel J.] Tech Univ Dresden, Biotechnol Ctr, D-01307 Dresden, Germany. [Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Bowie, James U.] Univ Calif Los Angeles, DOE Ctr Genom & Proteom, Los Angeles, CA 90095 USA. RP Sapra, KT (reprint author), Tech Univ Dresden, Biotechnol Ctr, Tatzberg 47, D-01307 Dresden, Germany. EM sapra@biotec.tu-dresden.de; mueller@biotec.tu-dresden.de RI Muller, Daniel/A-5967-2010 OI Muller, Daniel/0000-0003-3075-0665 FU NIGMS NIH HHS [R01 GM063919, R01 GM063919-07, R01 GM063919-08] NR 53 TC 32 Z9 32 U1 1 U2 9 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 29 PY 2008 VL 376 IS 4 BP 1076 EP 1090 DI 10.1016/j.jmb.2007.12.027 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 273HI UT WOS:000253920600015 PM 18191146 ER PT J AU Yeamans, CB Silva, GWC Cerefice, GS Czerwinski, KR Hartmann, T Burrell, AK Sattelberger, AP AF Yeamans, Charles B. Silva, G. W. Chinthaka Cerefice, Gary S. Czerwinski, Kenneth R. Hartmann, Thomas Burrell, Anthony K. Sattelberger, Alfred P. TI Oxidative ammonolysis of uranium(IV) fluorides to uranium(VI) nitride SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CRYSTAL-STRUCTURE; MONONITRIDE; HYDROGEN; NITROGEN; DIOXIDE; (NH4)4UF8; AMMONIA; MIXTURE; CARBON; SYSTEM AB Actinide nitrides, in particular UN, are being considered as fuel types for advanced reactor systems. Here, we demonstrate a low-temperature synthesis route on uranium that could be developed into a commercial fabrication process for UN and mixed actinide nitride fuels. UN was successfully synthesized from UO2 by first reacting with NH4HF2 in a ball mill at 20 degrees C to form tetravalent ammonium uranium fluorides. Then, reaction with an ammonia atmosphere at 800 degrees C oxidized tetravalent uranium fluorides to hexavalent UN2. The final product, UN, was obtained by decomposing UN2 at I 100 degrees C under argon to produce UN through an intermediate phase Of U2N3. (C) 2007 Elsevier B.V. All rights reserved. C1 [Silva, G. W. Chinthaka; Cerefice, Gary S.; Czerwinski, Kenneth R.; Hartmann, Thomas; Sattelberger, Alfred P.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Burrell, Anthony K.; Sattelberger, Alfred P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Argonne, IL 60517 USA. [Hartmann, Thomas] Idaho State Univ, INSE, Idaho Falls, ID 83402 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@unlv.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 NR 24 TC 19 Z9 20 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 75 EP 78 DI 10.1016/j.jnucmat.2007.06.022 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900009 ER PT J AU De Diego, N Osetsky, YN Bacon, DJ AF De Diego, N. Osetsky, Yu. N. Bacon, D. J. TI Structure and properties of vacancy and interstitial clusters in alpha-zirconium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPLACEMENT CASCADES; DISLOCATION LOOPS; AB-INITIO; MICROSTRUCTURE EVOLUTION; DEFECT CLUSTERS; HCP METALS; MOBILITY; ZR; IRRADIATION; ALLOYS AB The structure and properties of planar interstitial and vacancy clusters in alpha-zirconium containing up to approximate to 300 defects were studied by atomic-scale computer modelling. Clusters of different shape and habit plane have been simulated at zero temperature. Vacancy clusters were constructed as close-packed platelets of vacancies in (000 1), {11 (2) over bar0} and {11 (0) over bar0} planes. Clusters of self-interstitial atoms were formed as planar arrays of < 11 (2) over bar 0 > crowdions (the most stable configuration for the model potential used) in a {11 (2) over bar0} plane. The most favourable shape for both types in the {11 (2) over bar0} and {1 (1) over bar 00} prism planes is rectangular and clusters relax to perfect dislocation loops with Burgers vector h = 1/3 < 11 (2) over bar0 >. Their stability is increased by dissociation of the sides in basal planes. Vacancy clusters in the (0 0 0 1) basal plane form hexagonal loops enclosing an extrinsic stacking fault with b = 1/2[0001]. Quantitative information is provided on the energy and structure parameters of the clusters. (C) 2007 Elsevier B.V. All rights reserved. C1 [De Diego, N.] Univ Complutense, Fac Ciencias Fis, Dept Fis Mat, E-28040 Madrid, Spain. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP De Diego, N (reprint author), Univ Complutense, Fac Ciencias Fis, Dept Fis Mat, Ciudad Univ, E-28040 Madrid, Spain. EM nievesd@fis.ucm.es NR 21 TC 13 Z9 13 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 87 EP 94 DI 10.1016/j.jnucmat.2007.07.011 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900011 ER PT J AU Miller, GK Petti, DA Maki, JT Knudson, DL AF Miller, Gregory K. Petti, David A. Maki, John T. Knudson, Darrell L. TI Updated solution for stresses and displacements in TRISO-coated fuel particles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB A closed-form solution for stresses and displacements in TRISO-coated fuel particles of a high temperature reactor has been updated to enhance its application in fuel particle analysis. The modified solution is applied incrementally through irradiation, which allows the material properties and irradiation temperature to change with time. It also removes the restriction in the original solution that Poisson's ratio in creep for the pyrocarbon layers be set to 0.5. It is presented in a manner that would enable its application to a system of any number of coating layers, not just the three layers of a TRISO-coated particle. The solution has been implemented in the PARFUME fuel performance code, where it has been demonstrated to perform efficiently in particle failure probability determinations. Published by Elsevier B.V. C1 [Miller, Gregory K.; Petti, David A.; Maki, John T.; Knudson, Darrell L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Miller, GK (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM GregoryK.Miller@inl.gov NR 10 TC 13 Z9 14 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 129 EP 137 DI 10.1016/j.jnucmat.2007.07.016 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900017 ER PT J AU Snow, CS Brewer, LN Gelles, DS Rodriguez, MA Kotula, PG Banks, JC Mangan, MA Browning, JF AF Snow, C. S. Brewer, L. N. Gelles, D. S. Rodriguez, M. A. Kotula, P. G. Banks, J. C. Mangan, M. A. Browning, J. F. TI Helium release and microstructural changes in Er(D,T)(2-x)He-3(x) films SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID METAL-SEMICONDUCTOR TRANSITIONS; BLISTER FORMATION; TRITIDE FILMS; HYDROGEN; BUBBLES; HE-3; DESORPTION; EVOLUTION; SILICON; GROWTH AB Er(D,T)(2-x)He-3(x), erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by transmission electron microscopy, X-ray diffraction, and ion beam analysis to determine variations in film micro-structure as a function of film thickness and age, due to the time-dependent build-up of He-3 in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into 3 He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 mm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film. Published by Elsevier B.V. C1 [Snow, C. S.; Brewer, L. N.; Rodriguez, M. A.; Kotula, P. G.; Banks, J. C.; Mangan, M. A.; Browning, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gelles, D. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Snow, CS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cssnow@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 31 TC 25 Z9 25 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 147 EP 157 DI 10.1016/j.jnucmat.2007.07.021 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900019 ER PT J AU Klueh, RL Sokolov, MA Hashimoto, N AF Klueh, R. L. Sokolov, M. A. Hashimoto, N. TI Mechanical properties of unirradiated and irradiated reduced-activation martensitic steels with and without nickel compared to properties of commercial steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID 12CR-1MOVW STEELS; TENSILE PROPERTIES; IMPACT PROPERTIES; 9CR-1MOVNB; MICROSTRUCTURE; EMBRITTLEMENT; HFIR AB Tensile and Charpy specimens of four normalized-and-tempered martensitic steels were irradiated to 23-33 dpa at 376-405 degrees C in the Experimental Breeder Reactor (EBR-II). The steels were the ORNL reduced-activation steel 9Cr-2WVTa and that containing 2% Ni (9Cr-2WVTa-2Ni), modified 9Cr-lMo (9Cr-2WVTa), and Sandvik HT9 (12Cr-1MoVW). Two tempering conditions were used for 9Cr-2WVTa and 9Cr-2WVTa 2Ni: 1 h at 700 degrees C and 1 h at 750 degrees C. The 9Cr-1MoVNb and 12Cr-1MoVW were tempered 1 h at 760 degrees C. These heat treatments produced tempered-martensite microstructures for all steels except 9Cr-2WVTa-2Ni tempered at 750 degrees C, where a duplex structure of tempered and untempered martensite formed. Based on changes in tensile and Charpy impact properties, the results demonstrated the superiority in strength and ductility of the 9Cr-2WVTa reduced-activation steel over the commercial steels. Comparison of the mechanical properties after irradiation of 9Cr-2WVTa-2Ni and 9Cr-2WVTa steels indicated a favorable effect of nickel that could lead to development of a heat treatment for improved irradiation resistance. Published by Elsevier B.V. C1 [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hashimoto, N.] Hokkaido Univ, Fac & Grad Sch Engn, Sapporo, Hokkaido, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov RI HASHIMOTO, Naoyuki/D-6366-2012 NR 23 TC 6 Z9 6 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 220 EP 228 DI 10.1016/j.jnucmat.2007.08.006 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900028 ER PT J AU Wilson, KV Patterson, BM Phillips, J AF Wilson, Kennard V., Jr. Patterson, Brian M. Phillips, Jonathan TI Microbalance study of the corrosion kinetics of lithium hydride by water SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FUEL-CELL GENERATORS; HYDROGEN STORAGE; HYDROLYSIS; SYSTEM; VAPOR AB The corrosion kinetics of commercial LiH powder (similar to 100 mu m, Alfa Aesar) by gaseous water in a humidified nitrogen stream was found to be constant in time and first order in gas phase water (<1% relative humidity). Data obtained using a customized microbalance system equipped with a precision water saturator, dew point analyzer, and magnetic sectoring mass spectrometer were used to derive a rough empirical rate expression for the corrosion of the powder by water at low (0. 1-0.9%) RH values. The present data are consistent with two models: (i) the tri-layer model [J. Phillips, J. Tanski, Int. Mater. Rev. 50 (2005) 265], and (ii) rate control by diffusion through a barrier layer. Published by Elsevier B.V. C1 [Wilson, Kennard V., Jr.; Patterson, Brian M.; Phillips, Jonathan] Los Alamos Natl Lab, MST 7 Polymers & Coationg Grp, Los Alamos, NM 87545 USA. RP Wilson, KV (reprint author), Los Alamos Natl Lab, MST 7 Polymers & Coationg Grp, POB 1663,MS E549, Los Alamos, NM 87545 USA. EM kvw@lanl.gov RI Phillips, Jonathan/D-3760-2011; OI Patterson, Brian/0000-0001-9244-7376 NR 23 TC 7 Z9 7 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 229 EP 240 DI 10.1016/j.jnuemat.2007.08.007 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900029 ER PT J AU Vasudevamurthy, G Knight, TW Roberts, E Adams, TM AF Vasudevamurthy, Gokul Knight, Travis W. Roberts, Elwyn Adams, Thad M. TI Laboratory production of zirconium carbide compacts for use in inert matrix fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PARTICLES; ZRC; PRECURSORS AB Zirconium carbide is being actively considered for use as an inert matrix material in composite nuclear fuel for gas-cooled fast reactors. ZrC can be produced either by the endothermic carbothermal reduction of zirconium dioxide or by the direct exothermic reaction of pure zirconium and graphite powder mixtures. The exothermic reaction is classified as combustion synthesis or self heating synthesis. Experiments were conducted to demonstrate the combustion synthesis reaction of zirconium and graphite powders and measure the ignition and adiabatic temperatures. The heat released during this short reaction time was sufficient only to partially sinter the compacts to less than 40% theoretical density. Subsequently, compacts of ZrC were similarly produced by combustion synthesis followed by a short, high temperature hold at 2440 degrees C to relieve residual stresses in the compacts following the rapid reaction sintering. External pressures of up to 5.2 MPa were used as an additional driving force for sintering. The effects of reactant particle size and degree of uniaxial pressing on the product density and porosity were also studied. Higher densities in the fabricated compacts were noted for higher uniaxial pressures irrespective of powder size. Also, smaller powder sizes produced compacts up to 92% TD, while larger particle sizes produced compacts up to 84% TD for the same pressure. The compacts were characterized based on composition, microstructure, and density/porosity. Results of the different experiments are presented. (C) 2007 Elsevier B.V. All rights reserved. C1 [Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn] Univ S Carolina, Dept Engn Mech, Columbia, SC 29208 USA. [Adams, Thad M.] Savannah River Ecol Lab, Aiken, SC 29808 USA. RP Knight, TW (reprint author), Univ S Carolina, Dept Engn Mech, 300 Main St, Columbia, SC 29208 USA. EM knighttw@engr.se.edu OI Knight, Travis/0000-0002-8517-7395 NR 24 TC 30 Z9 31 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 241 EP 247 DI 10.1016/j.jnucmat.2007.08.016 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900030 ER PT J AU Tan, L Sridharan, K Allen, TR Nanstad, RK McClintock, DA AF Tan, L. Sridharan, K. Allen, T. R. Nanstad, R. K. McClintock, D. A. TI Microstructure tailoring for property improvements by grain boundary engineering SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INCOLOY ALLOY 800H; CHARACTER-DISTRIBUTION; SUPERALLOYS; DIFFUSION AB Grain boundary engineering (GBE) was employed to improve materials properties such as corrosion resistance and strength by optimizing the grain boundary character distribution. Two high-temperature alloys, designated Incoloy 800H and Inconel 617 were selected in this study due to their potential applications for the Generation IV nuclear power systems. The GBE treatments on the alloys 800H and 617 were accomplished by a series of thermomechanical processing. The effect of the GBE treatments on the corrosion resistance and mechanical properties of the materials were evaluated using supercritical water exposure tests, cyclic oxidation tests, impact tests, and tensile tests. The microstructures of the tested samples were analyzed by means of optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron backscatter diffraction, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. The results indicate that the GBE treatments greatly mitigated the oxide exfoliation of the alloy 800H and reduced the oxidation rate of the alloy 617. The GBE treatment also greatly enhanced the strength of alloy 800H at room temperature (e.g. impact tests) and high-temperatures (e.g. tensile tests after neutron irradiation), but did not significantly impair the material's ductility. (C) 2007 Elsevier B.V. All rights reserved. C1 [Tan, L.; Sridharan, K.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. [Nanstad, R. K.; McClintock, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lizhentan@wisc.edu RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259; McClintock, David/0000-0002-9292-8951 NR 28 TC 69 Z9 69 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 270 EP 280 DI 10.1016/j.jnuemat.2007.08.015 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900032 ER PT J AU Zholents, AA Zolotorev, MS AF Zholents, A. A. Zolotorev, M. S. TI Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction SO NEW JOURNAL OF PHYSICS LA English DT Article ID FIELDS; FEL AB We propose a method of generation of similar to 115 attosecond x-ray pulses in a free electron laser (FEL) by means of producing ultra-fast angular modulation of the electron trajectories prior to entering the FEL. For this modulation, we employ a few-cycle laser pulse in a higher-order Gaussian mode and with carrier-envelope phase stabilization. C1 [Zholents, A. A.; Zolotorev, M. S.] LBNL, Berkeley, CA 94720 USA. RP Zholents, AA (reprint author), LBNL, Berkeley, CA 94720 USA. EM aazholents@lbl.gov NR 22 TC 43 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 29 PY 2008 VL 10 AR 025005 DI 10.1088/1367-2630/10/2/025005 PG 12 WC Physics, Multidisciplinary SC Physics GA 270IE UT WOS:000253713700001 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Akimoto, T Albrow, MG Gonzalez, Ba Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of orbitally excited B(s) mesons SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY MESONS; DETECTOR; QUARK AB We report the observation of two narrow resonances consistent with states of orbitally excited (L=1) B(s) mesons using 1 fb(-1) of p (p) over bar collisions at root s =1.96 TeV collected with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. We use two-body decays into K(-) and B(+) mesons reconstructed as B(+)-> J/psi K(+), J/psi ->mu(+)mu(-) or B(+)->(D) over bar (0)pi(+), (D) over bar (0)-> K(+)pi(-). We deduce the masses of the two states to be m(B(s1))=5829.4 +/- 0.7 MeV/c(2) and m(B(s2)(*))=5839.6 +/- 0.7 MeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torretta, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Naganoma, J.; Okusawa, T.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Grinstein, Sebastian/N-3988-2014; OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; MARTINEZ, MARIO/0000-0002-3135-945X; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414 NR 34 TC 59 Z9 59 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082001 DI 10.1103/PhysRevLett.100.082001 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400014 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, S Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunandahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kaefer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Maettig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, S. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunandahl, S. Grunewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Garzon, G. J. Otero Y. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Observation and properties of the orbitally excited B-s2* meson SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We report the direct observation of the excited L=1 state B-s2* in fully reconstructed decays to B+K-. The mass of the B-s2* meson is measured to be 5839.6 +/- 1.1(stat)+/- 0.7(syst) MeV/c(2), and its production rate relative to the B+ meson is measured to be [1.15 +/- 0.23(stat)+/- 0.13(syst)]%. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Rangel, M. S.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakraborty, D.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kaefer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Schieferdecker, P.; Strom, D.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Alton, A.; Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; van den Berg, P. J.; van Leeuwen, W. M.; Zhou, B.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Garcia, C.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, S.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaste, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christofek, L.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Lewis, P.; Lobo, L.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Owen, M.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, M.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Grunandahl, S.; Gutierrez, G.; Hanagaki, K.; Illingworth, R.; Ito, A. S.; Johnson, C.; Jonckheere, A.; Juste, A.; Kasper, P.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; Nomerotski, A.; O'Dell, V.; Oshima, N.; Garzon, G. J. Otero Y.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Tissandier, F.; Verzocchi, M.; Wang, L.; Weber, G.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Van Kooten, R.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [De la Cruz-Burelo, E.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Kopal, M.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Gadfort, T.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013 OI Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489 NR 17 TC 43 Z9 43 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082002 DI 10.1103/PhysRevLett.100.082002 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400015 ER PT J AU Antonangeli, D Krisch, M Farber, DL Ruddle, DG Fiquet, G AF Antonangeli, Daniele Krisch, Michael Farber, Daniel L. Ruddle, David G. Fiquet, Guillaume TI Elasticity of hexagonal-closed-packed cobalt at high pressure and temperature: A quasiharmonic case SO PHYSICAL REVIEW LETTERS LA English DT Article ID SITU X-RAY; EARTHS INNER-CORE; THERMAL-EXPANSION; EPSILON-IRON; GPA; ANISOTROPY; DIFFRACTION; FE; GIGAPASCALS; TRANSITION AB We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, obtaining 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the quasiharmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities, and elastic anisotropy are minimal at constant density. These results support the validity of Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations. C1 [Antonangeli, Daniele; Farber, Daniel L.; Ruddle, David G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Krisch, Michael] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Fiquet, Guillaume] Univ Paris 06, Inst Minerol & Phys Milieux Condenses, UMR CNRS 7590, Inst Phys Globe Paris, F-75005 Paris, France. [Fiquet, Guillaume] Univ Paris 07, F-75005 Paris, France. RP Antonangeli, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Farber, Daniel/F-9237-2011; Fiquet, Guillaume/H-1219-2011; Fiquet, Guillaume/M-6934-2014 NR 34 TC 21 Z9 21 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 085501 DI 10.1103/PhysRevLett.100.085501 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400032 PM 18352634 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA Babar Collaboration TI Observation of B-0 -> K-*0(K)over-bar(*0) and search for B-0 -> K-*0(K)over-bar(*0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAYS; POLARIZATION; ASYMMETRIES AB We report the observation of the b -> d penguin-dominated decay B-0 -> K-*0(K) over bar (*0) with a sample of 383.2 +/- 4.2 million B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the Stanford Linear Accelerator Center. The measured branching fraction is B(B-0 -> K-*0(K) over bar (*0))=[1.28(-0.30)(+0.35)+/- 0.11]x10(-6) and the fraction of longitudinal polarization is f(L)(B-0 -> K-*0(K) over bar (*0))=0.80(-0.12)(+0.10)+/- 0.06. The first error quoted is statistical and the second systematic. We also obtain an upper limit at the 90% confidence level on the branching fraction for B(B-0 ->(KK*0)-K-*0)< 0.41x10(-6). C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, Phys Particules Lab, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Experimentalphys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chavez, C. A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Ford, W. T.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Paris 11, Lab Accelerateur Lineaire, IN2P3, CNRS,Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lange, D. J.; Wright, D. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Queen Mary Univ London, London E1 4NS, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ Louisville, Louisville, KY 40292 USA. [Brown, D. N.; Davis, C. L.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Maryland, College Pk, MD 20742 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Massachusetts, Amherst, MA 01003 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Moore, T. B.; Salvati, E.; Saremi, S.; Cervelli, A.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Mississippi, University, MS 38677 USA. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Nicholson, H.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, Phys Theor & Hautes Energies Lab, IN2P3, CNRS, F-75252 Paris, France. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Phys Theor & Hautes Energies Lab, IN2P3, CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bianchi, F.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept EMC, E-08028 Barcelona, Spain. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Univ Savoie, Phys Particules Lab, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. RI Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323 NR 30 TC 17 Z9 17 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 081801 DI 10.1103/PhysRevLett.100.081801 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400013 ER PT J AU Beane, SR Detmold, W Luu, TC Orginos, K Savage, MJ Torok, A AF Beane, Silas R. Detmold, William Luu, Thomas C. Orginos, Kostas Savage, Martin J. Torok, Aaron CA NPLQCD Collaboration TI Multipion systems in lattice QCD and the three-pion interaction SO PHYSICAL REVIEW LETTERS LA English DT Article ID HARD SPHERES; BOSE SYSTEM; STATES AB The ground-state energies of 2, 3, 4, and 5 pi(+)'s in a spatial volume V similar to(2.5 fm)(3) are computed with lattice QCD. By eliminating the leading contribution from three-pi(+) interactions, particular combinations of these n-pi(+) ground-state energies provide precise extractions of the pi(+)pi(+) scattering length in agreement with that obtained from calculations involving only two pi(+)'s. The three-pi(+) interaction can be isolated by forming other combinations of the n-pi(+) ground-state energies. We find a result that is consistent with a repulsive three-pi(+) interaction for m(pi)less than or similar to 352 MeV. C1 [Beane, Silas R.; Torok, Aaron] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Beane, Silas R.; Savage, Martin J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Luu, Thomas C.] Lawrence Livermore Natl Lab, N Div, Livermore, CA 94551 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. OI Detmold, William/0000-0002-0400-8363 NR 15 TC 43 Z9 43 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082004 DI 10.1103/PhysRevLett.100.082004 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400017 PM 18352619 ER PT J AU Chou, AS Wester, W Baumbaugh, A Gustafson, HR Irizarry-Valle, Y Mazur, PO Steffen, JH Tomlin, R Yang, X Yoo, J AF Chou, A. S. Wester, W. Baumbaugh, A. Gustafson, H. R. Irizarry-Valle, Y. Mazur, P. O. Steffen, J. H. Tomlin, R. Yang, X. Yoo, J. TI Search for axionlike particles using a variable-baseline photon-regeneration technique SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVISIBLE-AXION AB We report the first results of the GammeV experiment, a search for milli-eV mass particles with axionlike couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10(-7) GeV(-1) (3.5x10(-7) GeV(-1)) in the limit of massless particles. C1 [Chou, A. S.; Wester, W.; Baumbaugh, A.; Irizarry-Valle, Y.; Mazur, P. O.; Steffen, J. H.; Tomlin, R.; Yang, X.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Chou, A. S.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Gustafson, H. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Chou, AS (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Yoo, Jonghee/K-8394-2016 NR 26 TC 101 Z9 101 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 080402 DI 10.1103/PhysRevLett.100.080402 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400002 PM 18352604 ER PT J AU Fistul, MV Vinokur, VM Baturina, TI AF Fistul, M. V. Vinokur, V. M. Baturina, T. I. TI Collective Cooper-pair transport in the insulating state of Josephson-junction arrays SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM PHASE-TRANSITIONS; SUPERCONDUCTOR; DEPENDENCE AB We investigate collective Cooper-pair transport of one- and two-dimensional Josephson-junction arrays. We derive an analytical expression for the current-voltage characteristic revealing thermally activated conductivity at small voltages and threshold voltage depinning. The activation energy and the related depinning voltage represent a dynamic Coulomb barrier for collective charge transfer over the whole system and scale with the system size. We show that both quantities are nonmonotonic functions of the magnetic field. We propose that formation of the dynamic Coulomb barrier and its size scaling are consequences of the mutual Josephson phase synchronization across the system. We apply the results for interpretation of experimental data in disordered films near the superconductor-insulator transition. C1 [Fistul, M. V.] Ruhr Univ Bochum, D-44801 Bochum, Germany. [Vinokur, V. M.; Baturina, T. I.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baturina, T. I.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. RP Fistul, MV (reprint author), Ruhr Univ Bochum, D-44801 Bochum, Germany. NR 24 TC 46 Z9 47 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 086805 DI 10.1103/PhysRevLett.100.086805 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400049 PM 18352651 ER PT J AU Ping, Y Shepherd, R Lasinski, BF Tabak, M Chen, H Chung, HK Fournier, KB Hansen, SB Kemp, A Liedahl, DA Widmann, K Wilks, SC Rozmus, W Sherlock, M AF Ping, Y. Shepherd, R. Lasinski, B. F. Tabak, M. Chen, H. Chung, H. K. Fournier, K. B. Hansen, S. B. Kemp, A. Liedahl, D. A. Widmann, K. Wilks, S. C. Rozmus, W. Sherlock, M. TI Absorption of short laser pulses on solid targets in the ultrarelativistic regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID OVERDENSE PLASMAS; HARMONIC EMISSION; NUCLEAR-FUSION; ELECTRON-BEAMS; INTENSE; TRANSPORT; ULTRASHORT; IGNITION; DRIVEN; LIGHT AB We report the first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime. The data show an enhanced absorption at intensities above 10(20) W/cm(2), reaching 60% for near-normal incidence and 80%-90% for 45 degrees incidence. Two-dimensional particle-in-cell simulations demonstrate that such high absorption is consistent with both interaction with preplasma and hole boring by the intense laser pulse. A large redshift in the second harmonic indicates a surface recession velocity of 0.035c. C1 [Ping, Y.; Shepherd, R.; Lasinski, B. F.; Tabak, M.; Chen, H.; Chung, H. K.; Fournier, K. B.; Hansen, S. B.; Kemp, A.; Liedahl, D. A.; Widmann, K.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rozmus, W.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Sherlock, M.] Rutherford Appleton Lab, Chilton, England. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 33 TC 93 Z9 94 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 085004 DI 10.1103/PhysRevLett.100.085004 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400031 PM 18352633 ER PT J AU Singh, DJ Park, CH AF Singh, D. J. Park, Chul Hong TI Polar behavior in a magnetic perovskite from A-site size disorder: A density functional study SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRICS; TEMPERATURE; SYMMETRY; OXIDES; PBVO3 AB We elucidate a mechanism for obtaining polar behavior in magnetic perovskites based on A-site disorder and demonstrate this mechanism by density functional calculations for the double perovskite (La,Lu)MnNiO(6) with Lu concentrations at and below 50%. We show that this material combines polar behavior and ferromagnetism. The mechanism is quite general and may be applicable to a wide range of magnetic perovskites. C1 [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Park, Chul Hong] Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Pusan 609735, South Korea. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 42 TC 60 Z9 60 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 087601 DI 10.1103/PhysRevLett.100.087601 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400063 PM 18352665 ER PT J AU Stock, C Broholm, C Hudis, J Kang, HJ Petrovic, C AF Stock, C. Broholm, C. Hudis, J. Kang, H. J. Petrovic, C. TI Spin resonance in the d-wave superconductor CeCoIn(5) SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-SCATTERING; FLUCTUATIONS; STATES; UPD2AL3; CEIN3; FIELD AB Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn(5) (T(c)=2.3 K). Superconductivity develops from a state with slow (h Gamma=0.3 +/- 0.15 meV) commensurate [Q(0)=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn(5) is the same as CeIn(3) but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn(5). A sharp spin resonance (h Gamma < 0.07 meV) at h omega=0.60 +/- 0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Delta(q+Q(0))=-Delta(q). C1 [Stock, C.; Broholm, C.; Hudis, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Broholm, C.; Kang, H. J.] NIST, Ctr Neutorn Res, Gaithersburg, MD 20899 USA. [Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stock, C (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Petrovic, Cedomir/A-8789-2009; Broholm, Collin/E-8228-2011 OI Petrovic, Cedomir/0000-0001-6063-1881; Broholm, Collin/0000-0002-1569-9892 NR 33 TC 172 Z9 174 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 087001 DI 10.1103/PhysRevLett.100.087001 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400054 PM 18352656 ER PT J AU Abiade, JT Miao, GX Gupta, A Gapud, AA Kumar, D AF Abiade, J. T. Miao, G. X. Gupta, A. Gapud, A. A. Kumar, D. TI Structural and magnetic properties of self-assembled nickel nanoparticles in a yttria stabilized zirconia matrix SO THIN SOLID FILMS LA English DT Article DE nanomagnetism; self-assembly; nickel; YSZ; pulsed laser deposition (PLD) ID FILMS; NANOCRYSTALLITES; NANOSTRUCTURES; COERCIVITY; SOLIDS AB By controlling the early stages of thin film growth during laser ablation (i.e. Volmer-Weber type growth), we have synthesized magnetic nanocomposites consisting of nickel (Ni) nanoparticulates in multiple layers of yttria stabilized zirconia. The magnetic properties are a strong function of the nickel particle size, showing a clear transition from superparamagnetic to ferromagnetic characteristics. The coercivity at 300 K varies from 0 to nearly 4 A m(-1) (similar to 300 Oe) as the laser ablation time is increased. By applying the Scherrer formula to X-ray diffraction patterns, we estimated the average size of the Ni nanoclusters to be <5 - 20 nm for the four samples. For the superparamagnetic sample, a blocking temperature of similar to 100 K has been estimated by applying a field much lower than the saturation field and measuring magnetization versus temperature in field cooled and zero field cooled modes. (c) 2007 Elsevier B.V All rights reserved. C1 [Abiade, J. T.; Kumar, D.] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem Engn, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Ctr Mat Informat Technol MINT, Tuscaloosa, AL 35487 USA. [Gapud, A. A.] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. [Kumar, D.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Abiade, JT (reprint author), N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, 1601 E Market St, Greensboro, NC 27411 USA. EM jabiade@vt.edu RI Miao, Guo-Xing/A-2411-2008; OI Miao, Guo-Xing/0000-0002-8735-8077; Gapud, Albert/0000-0001-9048-9230 NR 20 TC 8 Z9 10 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 29 PY 2008 VL 516 IS 8 BP 2082 EP 2086 DI 10.1016/j.tsf.2007.10.103 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 272PQ UT WOS:000253872200068 ER PT J AU Demtsu, SH Albin, DS Sites, JR Metzger, WK Duda, A AF Demtsu, S. H. Albin, D. S. Sites, J. R. Metzger, W. K. Duda, A. TI Cu-related recombination in CdS/CdTe solar cells SO THIN SOLID FILMS LA English DT Article DE cadmium telluride; solar cells; photoluminescence; capacitance profiling AB Cu used in the back contact of CdS/CdTe solar cells is known to improve contact behavior and open-circuit voltage. A study of devices made with varying Cu amounts confirmed these observations. However, Cu was also found to be deleterious to current collection. Time-resolved photoluminescence measurements of CdTe devices show that carrier lifetime decreased with increased Cu concentration. Drive-level-capacitance-profiling and low-temperature photoluminescence suggest this decrease in lifetime was associated with increased recombination center density introduced by Cu in the CdTe layer. The resulting impact of increased Cu on device performance was a voltage-dependent collection of photogenerated carriers that reduced fill-factor. (C) 2007 Published by Elsevier B.V. C1 [Demtsu, S. H.; Sites, J. R.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Albin, D. S.; Metzger, W. K.; Duda, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Demtsu, SH (reprint author), Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. EM sdcmtsu@solopower.com NR 13 TC 29 Z9 29 U1 0 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 29 PY 2008 VL 516 IS 8 BP 2251 EP 2254 DI 10.1016/j.tsf.2007.08.035 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 272PQ UT WOS:000253872200094 ER PT J AU Duff, MC Hunter, DB Burger, A Groza, M Buliga, V Black, DR AF Duff, M. C. Hunter, D. B. Burger, A. Groza, M. Buliga, V. Black, D. R. TI Effect of surface preparation technique on the radiation detector performance of CdZnTe SO APPLIED SURFACE SCIENCE LA English DT Article DE radiation detectors; X-ray topography (crystal defects); resistivity; X-ray topographic imaging ID SPECTROMETERS; PASSIVATION; LEAKAGE AB Synthetic CdZnTe (CZT) semiconducting crystals are highly suitable for the room temperature-based detection of gamma radiation. The surface preparation of Au contacts on surfaces of CZT detectors is typically conducted after (1) polishing to remove artifacts from crystal sectioning and (2) chemical etching, which removes residual mechanical surface damage however etching results in a Te rich surface layer that is prone to oxidize. Our studies show that CZT surfaces that are only polished ( as opposed to polished and etched) can be contacted with Au and will yield lower surface currents. Due to their decreased dark currents, these as-polished surfaces can be used in the fabrication of gamma detectors exhibiting a higher performance than polished and etched surfaces with relatively less peak tailing and greater energy resolution. Published by Elsevier B. V. C1 [Duff, M. C.; Hunter, D. B.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, A.; Groza, M.; Buliga, V.] Fisk Univ, Nashville, TN 37208 USA. [Black, D. R.] NIST, Gaithersburg, MD 20899 USA. RP Duff, MC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM martine.duff@srnl.doe.gov NR 12 TC 58 Z9 60 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 28 PY 2008 VL 254 IS 9 BP 2889 EP 2892 DI 10.1016/j.apsusc.2007.10.064 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 277VU UT WOS:000254243600052 ER PT J AU Schofield, SP Garimella, RV Francois, MM Loubere, R AF Schofield, Samuel P. Garimella, Rao V. Francois, Marianne M. Loubere, Raphael TI Material order-independent interface reconstruction using power diagrams SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE volume of fluid; interface reconstruction; material ordering; power diagram ID VOLUME TRACKING; ALGORITHMS; DYNAMICS AB We have developed a new, multi-material, piecewise linear interface reconstruction method that correctly locates the position of each material in the mesh cell and matches the required volume fractions with no material ordering required. This is different from other volume tracking interface reconstruction methods in which an improper material ordering may result in materials being incorrectly located within the cell. The new method utilizes a type of weighted Voronoi diagram, known as a power diagram, to reconstruct the interface from approximate material locations derived either from a particle model or quadrature formula. It works on structured and general polygonal grids, for an arbitrary number of materials and can be naturally extended to three dimensions. Published in 2007 by John Wiley & Sons, Ltd. C1 [Francois, Marianne M.] Los Alamos Natl Lab, Continuum Dynam CCS2, Los Alamos, NM 87545 USA. [Loubere, Raphael] Math Inst Toulouse, UMR 5219, Toulouse, France. [Schofield, Samuel P.; Garimella, Rao V.] Los Alamos Natl Lab, Math Modeling & Anal T7, Los Alamos, NM 87545 USA. RP Schofield, SP (reprint author), Los Alamos Natl Lab, Math Modeling & Anal T7, T-7 MS B284, Los Alamos, NM 87545 USA. EM sams@lanl.gov RI Francois, Marianne/B-2423-2012; OI Garimella, Rao/0000-0002-3812-2105; Francois, Marianne/0000-0003-3062-6234 NR 27 TC 13 Z9 13 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD FEB 28 PY 2008 VL 56 IS 6 BP 643 EP 659 DI 10.1002/fld.1544 PG 17 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 267KF UT WOS:000253507200004 ER PT J AU Bergmann, U Di Cicco, A Wernet, P Principi, E Glatzel, P Nilsson, A AF Bergmann, Uwe Di Cicco, Andrea Wernet, Philippe Principi, Emiliano Glatzel, Pieter Nilsson, Anders TI Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure (vol 127, art no 174504, 2007) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Bergmann, Uwe; Nilsson, Anders] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Di Cicco, Andrea; Principi, Emiliano] Univ Camerino, CNISM, I-62032 Camerino, Italy. [Di Cicco, Andrea; Principi, Emiliano] Univ Camerino, CNR, INFM SOFT, Dipartmento Fis, I-62032 Camerino, Italy. [Wernet, Philippe] BESSY, D-12489 Berlin, Germany. [Glatzel, Pieter] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Nilsson, Anders] Stockholm Univ, Dept Phys Chem, S-10691 Stockholm, Sweden. RP Bergmann, U (reprint author), Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. EM bergmann@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Wernet, Philippe/A-7085-2013 OI Nilsson, Anders/0000-0003-1968-8696; Wernet, Philippe/0000-0001-7011-9072 NR 1 TC 5 Z9 5 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 089902 DI 10.1063/1.2828190 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200063 ER PT J AU Chai, JD Head-Gordon, M AF Chai, Jeng-Da Head-Gordon, Martin TI Systematic optimization of long-range corrected hybrid density functionals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GRADIENT APPROXIMATION FUNCTIONALS; EXCHANGE-CORRELATION FUNCTIONALS; TRANSFER EXCITED-STATES; MANY-ELECTRON SYSTEMS; RARE-GAS DIMERS; THERMOCHEMICAL KINETICS; CORRELATION ENERGIES; IONS; PARAMETRIZATION; DISSOCIATION AB A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some "difficult problems," such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals. (c) 2008 American Institute of Physics. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jdchai@berkeley.edu; mhg@cchem.berkeley.edu RI Chai, Jeng-Da/C-3897-2009 OI Chai, Jeng-Da/0000-0002-3994-2279 NR 85 TC 1029 Z9 1029 U1 16 U2 160 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084106 DI 10.1063/1.2834918 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200006 PM 18315032 ER PT J AU Dawes, R Thompson, DL Wagner, AF Minkoff, M AF Dawes, Richard Thompson, Donald L. Wagner, Albert F. Minkoff, Michael TI Interpolating moving least-squares methods for fitting potential energy surfaces: A strategy for efficient automatic data point placement in high dimensions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NEURAL-NETWORKS; MODEL REPRESENTATIONS; DIRECT DYNAMICS; COMPONENT FUNCTIONS; RS-HDMR; IMPLEMENTATION; APPROXIMATION; MOLECULES; SYSTEMS AB An accurate and efficient method for automated molecular global potential., energy surface (PES) construction and fitting is demonstrated. An interpolating moving least-squares (IMLS) method is developed with the flexibility to fit various ab initio data: (1) energies, (2) energies and gradients, or (3) energies, gradients, and Hessian data. The method is automated and flexible so that a PES can be optimally generated for trajectories, spectroscopy, or other applications. High efficiency is achieved by employing local IMLS in which fitting coefficients are stored at a limited number of expansion points, thus eliminating the need to perform weighted least-squares fits each time the potential is evaluated. An automatic point selection scheme based on the difference in two successive orders of IMLS fits is used to determine where new ab initio data need to be calculated for the most efficient fitting of the PES. A simple scan of the coordinate is shown to work well to identify these maxima in one dimension, but this search strategy scales poorly with dimension. We demonstrate the efficacy of using conjugate gradient minimizations on the difference surface to locate optimal data point placement in high dimensions. Results that are indicative of the accuracy, efficiency, and scalability are presented for a one-dimensional model potential (Morse) as well as for three-dimensional (HCN), six-dimensional (HOCH), and nine-dimensional (CH(4)) molecular PESs. (c) 2008 American Institute of Physics. C1 [Dawes, Richard; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Wagner, Albert F.; Minkoff, Michael] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Dawes, R (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM thompsondon@missouri.edu RI Dawes, Richard/C-6344-2015 NR 49 TC 61 Z9 61 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084107 DI 10.1063/1.2831790 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200007 PM 18315033 ER PT J AU Du, SY Francisco, JS Schenter, GK Garrett, BC AF Du, Shiyu Francisco, Joseph S. Schenter, Gregory K. Garrett, Bruce C. TI Many-body decomposition of the binding energies for OH center dot(H(2)O)(2) and OH center dot(H(2)O)(3) complexes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID AB-INITIO CALCULATIONS; TRANSFERABLE INTERACTION MODELS; ADAPTED PERTURBATION-THEORY; CORRELATED MOLECULAR CALCULATIONS; ORBITAL ANGULAR-MOMENTUM; SMALL WATER CLUSTERS; GAUSSIAN-BASIS SETS; ATMOSPHERIC CHEMISTRY; VIBRATIONAL-SPECTRA; 1ST PRINCIPLES AB We use ab initio electronic structure methods to calculate the many-body decomposition of the binding energies of the OH center dot(H(2)O)(n) (n=2,3) complexes. We employ MP2 and CCSD(T) levels of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets and analyze the significance of the nonpairwise interactions between OH radical and the surrounding water molecules. We also evaluate the accuracy of our newly developed. potential function, the modified Thole-type model, for predicting the many-body terms in these complexes. Our analysis of the many-body contributions to the OH center dot(H(2)O), binding energies clearly shows that they are just as important in the OH interactions with water as they are for interactions in pure water systems. (c) 2008 American Institute of Physics. C1 [Du, Shiyu] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Schenter, Gregory K.; Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Du, SY (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM greg.schenter@pnl.gov RI Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 NR 102 TC 8 Z9 8 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084307 DI 10.1063/1.2828522 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200020 PM 18315046 ER PT J AU Mattsson, AE Armiento, R Paier, J Kresse, G Wills, JM Mattsson, TR AF Mattsson, Ann E. Armiento, Rickard Paier, Joachim Kresse, Georg Wills, John M. Mattsson, Thomas R. TI The AM05 density functional applied to solids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; ELECTRON-GAS; CORRELATION-ENERGY; ADIABATIC-CONNECTION; EXCHANGE-ENERGY; SURFACE-ENERGY; ACCURACY AB We show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al. [J. Chem. Phys. 124, 154709 (2006); 125, 249901 (2006)]. This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. Hartree-Fock hybrid calculations are typically an order of magnitude slower than local or semilocal density functionals such as AM05, which is of a regular semilocal generalized gradient approximation form. The performance of AM05 is on average found to be superior to selecting the best of local density approximation and PBE for each solid. By comparing data from several different electronic-structure codes, we have determined that the numerical errors in this study are equal to or smaller than the corresponding experimental uncertainties. (C) 2008 American Institute of Physics. C1 [Mattsson, Ann E.] Sandia Natl Labs, Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. [Armiento, Rickard] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Paier, Joachim; Kresse, Georg] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Paier, Joachim; Kresse, Georg] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria. [Wills, John M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mattsson, Thomas R.] Sandia Natl Labs, High Energy Dens Phys Theory, Albuquerque, NM 87185 USA. RP Mattsson, AE (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling, MS 1322, Albuquerque, NM 87185 USA. EM aematts@sandia.gov; rickard.armiento@uni-bayreuth.de; joachim.paier@univie.ac.at; georg.kresse@univie.ac.at; jxw@lanl.gov; trmatts@sandia.gov RI Paier, Joachim/E-5850-2012; Mattsson, Thomas/B-6057-2009; Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 NR 66 TC 125 Z9 125 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084714 DI 10.1063/1.2835596 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200053 PM 18315079 ER PT J AU Tao, JM Tretiak, S Zhu, JX AF Tao, Jianmin Tretiak, Sergei Zhu, Jian-Xin TI Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EXCHANGE-CORRELATION POTENTIALS; TRANSFER EXCITED-STATES; COUPLED-CLUSTER METHOD; ADIABATIC APPROXIMATION; LARGE MOLECULES; POLARIZABILITIES; IMPLEMENTATION; COMPLEXES; SPECTRA; MODEL AB It is known that the adiabatic approximation in time-dependent density functional theory usually provides a good description of low-lying excitations of molecules. In the present work, the capability of the adiabatic nonempirical meta-generalized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) to describe atomic and molecular excitations is tested. The adiabatic (one-parameter) hybrid version of the TPSS meta-GGA and the adiabatic GGA of Perdew, Burke, and Ernzerhof (PBE) are also included in the test. The results are compared to experiments and to those obtained with two well-established hybrid functionals PBE0 and B3LYP. Calculations show that both adiabatic TPSS and TPSSh functionals produce excitation energies in fairly good agreement with experiments, and improve upon the adiabatic local spin density approximation and, in particular, the adiabatic PBE GGA. This further confirms that TPSS is indeed a reliable nonhybrid universal functional which can serve as the starting point from which higher-level approximations can be constructed. The systematic underestimate of the low-lying vertical excitation energies of molecules with time-dependent density functionals within the adiabatic approximation suggests that further improvement can be made with nonadiabatic corrections. (c) 2008 American Institute of Physics. C1 [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jtao@lani.gov; jxzhu@lanl.gov RI Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Zhu, Jianxin/0000-0001-7991-3918 NR 58 TC 23 Z9 23 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084110 DI 10.1063/1.2837831 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200010 PM 18315036 ER PT J AU Weber, V VandeVondele, J Hutter, J Niklasson, AMN AF Weber, Valery VandeVondele, Joost Hutter, Juerg Niklasson, Anders M. N. TI Direct energy functional minimization under orthogonality constraints SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; INITIO MOLECULAR-DYNAMICS; SYSTEM-SIZE; DENSITY-MATRIX; CONVERGENCE ACCELERATION; WANNIER FUNCTIONS; HARTREE-FOCK; OPTIMIZATION; ALGORITHM; ITERATION AB The direct energy functional minimization problem in electronic structure theory, where the single-particle orbitals are optimized under the constraint of orthogonality, is explored. We present an orbital transformation based on an efficient expansion of the inverse factorization of the overlap matrix that keeps orbitals orthonormal. The orbital transformation maps the orthogonality constrained energy functional to an approximate unconstrained functional, which is correct to some order in a neighborhood of an orthogonal but approximate solution. A conjugate gradient scheme can then be used to find the ground state orbitals from the minimization of a sequence of transformed unconstrained electronic energy functionals. The technique provides an efficient, robust, and numerically stable approach to direct total energy minimization in first principles electronic structure theory based on tight-binding, Hartree-Fock, or density functional theory. For sparse problems, where both the orbitals and the effective single-particle Hamiltonians have sparse matrix representations, the effort scales linearly with the number of basis functions N in each iteration. For problems where only the overlap and Hamiltonian matrices are sparse the computational cost scales as O(M-2 N), where M is the number of occupied orbitals. We report a single point density functional energy calculation of a DNA decamer hydrated with 4003 water molecules under periodic boundary conditions. The DNA fragment containing a cis-syn thymine dimer is composed of 634 atoms and the whole system contains a total of 12 661 atoms and 103 333 spherical Gaussian basis functions. (c) 2008 American Institute of Physics. C1 [Weber, Valery; VandeVondele, Joost; Hutter, Juerg] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland. [Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Niklasson, Anders M. N.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Weber, V (reprint author), Univ Zurich, Inst Phys Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM vweber@pci.unizh.ch; amn@lanl.gov RI Hutter, Juerg/E-9244-2011; VandeVondele, Joost/L-6420-2013 OI VandeVondele, Joost/0000-0002-0902-5111 NR 48 TC 21 Z9 21 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084113 DI 10.1063/1.2841077 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200013 PM 18315039 ER PT J AU Martin, NI Beeson, WT Woodward, JJ Marletta, MA AF Martin, Nathaniel I. Beeson, William T. Woodward, Joshua J. Marletta, Michael A. TI N-G-aminoguanidines from primary amines and the preparation of nitric oxide synthase inhibitors SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID L-ARGININE ANALOGS; ELECTRON-TRANSFER; SCHIFF-BASES; INACTIVATION; DERIVATIVES; GUANIDINES; ANTICANCER; REACTIVITY; CHEMISTRY; MECHANISM AB A concise, general, and high-yielding method for the preparation of N-G-aminoguanidines from primary amines is reported. Using available and readily prepared materials, primary amines are converted to protected N-G-aminoguanidines in a one-pot procedure. The method has been successfully applied to a number of examples including the syntheses of four nitric oxide synthase (NOS) inhibitors. The inhibitors prepared were investigated as competitive inhibitors and as mechanistic inactivators of the inducible isoform of NOS (iNOS). In addition, one of the four inhibitors prepared, N-G-amino-N-G-2,2,2-trifluoroethyl-L-arginine 19, displays the unique ability to both inhibit NO formation and prevent NADPH consumption by iNOS without irreversible inactivation of the enzyme. C1 [Martin, Nathaniel I.; Beeson, William T.; Woodward, Joshua J.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Mol & Cellular Biol, Berkeley, CA 94720 USA. [Martin, Nathaniel I.; Beeson, William T.; Woodward, Joshua J.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Sci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Mol & Cellular Biol, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu NR 34 TC 17 Z9 18 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD FEB 28 PY 2008 VL 51 IS 4 BP 924 EP 931 DI 10.1021/jm701119v PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 265JB UT WOS:000253353800022 PM 18220331 ER PT J AU Beste, A Buchanan, AC Britt, PF Hathorn, BC Harrison, RJ AF Beste, Ariana Buchanan, A. C., III Britt, Phillip F. Hathorn, Bryan C. Harrison, Robert J. TI Ab initio study of hydrogen abstraction reactions on toluene and tetralin SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM LA English DT Article DE hydrogen abstraction; DFT calculations; reaction barriers; transition states ID DENSITY-FUNCTIONAL THEORY; PHENETHYL PHENYL ETHER; COUPLED ELECTRON-TRANSFER; SELF-EXCHANGE REACTIONS; ATOM-TRANSFER; PYROLYSIS; LIGNIN; MODEL; KINETICS; THERMOCHEMISTRY AB Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are investigated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE pyrolysis through comparison of the reaction barriers with reliable experimental values. We used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. We recomputed selected energy barriers at the B3LYP geometries with the coupled cluster singles and doubles (CCSD) method. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment and the corresponding CCSD energy barriers. The flat potential energy surface around the saddle points causes numerical inaccuracies. We observe the break down of the harmonic approximation in the calculation of low frequencies. (C) 2007 Elsevier B.V. All rights reserved. C1 [Beste, Ariana; Hathorn, Bryan C.; Harrison, Robert J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Buchanan, A. C., III; Britt, Phillip F.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Beste, A (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Bathel Valley Rd, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov OI Beste, Ariana/0000-0001-9132-792X NR 42 TC 6 Z9 7 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-1280 J9 J MOL STRUC-THEOCHEM JI Theochem-J. Mol. Struct. PD FEB 28 PY 2008 VL 851 IS 1-3 BP 232 EP 241 DI 10.1016/j.theochem.2007.11.015 PG 10 WC Chemistry, Physical SC Chemistry GA 271JP UT WOS:000253785000029 ER PT J AU Chang, TM Dang, LX AF Chang, Tsun-Mei Dang, Liem X. TI Computational studies of liquid water and diluted water in carbon tetrachloride SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CONSTRAINED MOLECULAR-DYNAMICS; VAPOR INTERFACE; MEAN FORCE; ION-PAIR; SIMULATION; SOLVENT; MOTION; MODEL AB Molecular dynamics simulations were carried out to study solvent effects on the energetic and dynamical properties of water molecules in liquid water and in carbon tetrachloride (CCl4). In these studies, the free-energy profiles or potentials of mean force (PMF) for water dimers in both solvents were computed. The computed PMF results showed a stable minimum near 3 angstrom for the O-O separation, with a minimum free energy of about -2.8 kcal/mol in CCl4, as compared to a value of -0.5 kcal/mol in liquid water. The difference in free energy in water as compared to that in CCl4 was expected and is the result of competition from surrounding water molecules that are capable of forming hydrogen bonds in the liquid water. This capability is absent in the diluted water found in CCl4. We found that the rotational motions of H2O/D2O were nonisotropic, with the out-of-plane vector correlation times in H2O/D2O varying from 5.6/5.8 ps at 250 K to 0.57/0.56 ps at 350 K and the corresponding OH/OD bond vectors varying from 6.5/7.7 ps to 0.75/0.75 ps. The results compare reasonably well to the available NMR experimental and computer simulation data on the same system (Farrar; Skinner; et al. J. Am. Chem. Soc. 2001, 123, 8047). For diluted water in CCl4, we found the computed rotational correlation times also were nonisotropic and much longer than the corresponding NMR experimental values at the same concentration (Farrar; et al. J. Phys. Chem. A 2007, 111, 6146). Upon analyzing the water hydrogen-bonding patterns as a function of water concentration, we conclude that the differences in the rotational correlation times mainly result from the formation of water hydrogen-bonding networks as the water concentration is increased in liquid CCl4. In addition, we found the rotational correlation times to be substantially faster in liquid CCl4 than in liquid water. C1 [Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Chang, Tsun-Mei] Univ Wisconsin Parkside, Dept Chem, Kenosha, WI 53141 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM liem.dang@pnl.gov NR 18 TC 9 Z9 9 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 28 PY 2008 VL 112 IS 8 BP 1694 EP 1700 DI 10.1021/jp711092v PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265JQ UT WOS:000253355300005 PM 18232676 ER PT J AU Ingham, B Illy, BN Ryan, MP AF Ingham, Bridget Illy, Benoit N. Ryan, Mary P. TI Direct observation of distinct nucleation and growth processes in electrochemically deposited ZnO nanostructures using in situ XANES SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZINC-OXIDE; ELECTRODEPOSITION; FILMS AB In situ synchrotron X-ray absorption was used to study the nucleation and growth of ZnO nanostructures electrochemically deposited from aqueous solutions. A fixed-energy approach was used, which facilitates faster time resolution for systems that are not amenable to transmission measurements and where species-specific information has so far been elusive. Films formed at low potentials (-0.97 V vs Ag/AgCl) show instantaneous nucleation, continued growth, and coalescence of the nanorods. The resultant film is dense with narrow dispersion of rod diameters. At less negative deposition potentials (-0.77 V vs Ag/AgCl), the nucleation is more protracted, resulting in a polydispersed film. In this higher potential region, the growth rates are slower, and there is less evidence of coalescence in the deposited structures, with continued growth along the c-axis only. C1 [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci & Technol, London SW7 2AZ, England. [Ingham, Bridget] Ind Res Ltd, Lower Hutt, New Zealand. [Ingham, Bridget] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ryan, MP (reprint author), Univ London Imperial Coll Sci & Technol, Exhibit Rd, London SW7 2AZ, England. EM m.p.ryan@imperial.ac.uk OI Ryan, Mary/0000-0001-8582-3003 NR 22 TC 12 Z9 12 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2820 EP 2824 DI 10.1021/jp075775+ PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700005 ER PT J AU Liu, J Lee, JY Pan, L Obermyer, RT Simizu, S Zande, B Li, J Sankar, SG Johnson, JK AF Liu, Jinchen Lee, Jeong Yong Pan, Long Obermyer, Richard T. Simizu, Satoru Zande, Brian Li, Jing Sankar, S. G. Johnson, J. Karl TI Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)(0.5)] SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; GAS-ADSORPTION; FORCE-FIELD; STORAGE; SEPARATION; DIFFUSIVITIES; HYDROCARBONS; PRESSURE; SORPTION; DESIGN AB We have experimentally measured hydrogen isotherms at 77 and 298 K up to a hydrogen pressure of 50 bar in a recently developed metal-organic framework material, [Zn(bdc)(ted)(0.5)] (bdc = benzenedicarboxylate, ted = triethylenediamine). This material has a tetragonal structure and relatively small pores. We have used atomically detailed simulations to compute adsorption isotherms of hydrogen over the same temperature and pressure ranges studied experimentally. The agreement between experiments and simulations is very good. We have included quantum effects through the Feynman-Hibbs effective potential approach; quantum effects must be included at 77 K to achieve agreement with experiments. We have used equilibrium molecular dynamics to compute self- and transport diffusivities of hydrogen in [Zn(bdc)(ted)(0.5)] at both 77 and 298 K over a range of pore loadings. Quantum effects are found to decrease the self-diffusivity compared with classical simulations at fixed loading. Conversely, at fixed pressure, quantum effects lead to a lower loading and therefore a higher self-diffusion coefficient compared with classical simulation results. Transport diffusivities with and without quantum corrections are essentially indistinguishable. The diffusivities for H-2 in [Zn(bdc)(ted)(0.5)] are comparable to H-2 in IRMOF-1 at 298 K. C1 [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. [Lee, Jeong Yong; Li, Jing] State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Obermyer, Richard T.; Zande, Brian; Sankar, S. G.] Adv Mat Corp, Pittsburgh, PA 15220 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 41 TC 74 Z9 77 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2911 EP 2917 DI 10.1021/jp710011b PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700018 ER PT J AU Kim, DH Kwak, JH Szanyi, J Cho, SJ Peden, CHF AF Kim, Do Heui Kwak, Ja Hun Szanyi, Janos Cho, Sung June Peden, Charles H. F. TI Roles of Pt and BaO in the sulfation of Pt/BaO/Al2O3 lean NOx trap materials: Sulfur K-edge XANES and Pt L-III XAFS studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION SPECTRA; STORAGE CATALYSTS; EXPOSURE CONDITIONS; REDUCTION CATALYST; GAMMA-ALUMINA; DEACTIVATION; SO2; SPECTROSCOPY; TOLERANCE; OXIDATION AB The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt L-III XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt L-III XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H-2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O-2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur. C1 [Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, BK21 Program, Kwangju 500757, South Korea. [Cho, Sung June] Chonnam Natl Univ, Ctr Funct Nano Fine Chem, BK21 Program, Kwangju 500757, South Korea. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM do.kim@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 27 TC 16 Z9 16 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2981 EP 2987 DI 10.1021/jp077563i PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700027 ER PT J AU Kidder, MK Buchanan, AC AF Kidder, Michelle K. Buchanan, A. C., III TI Effect of pore confinement and molecular orientation on hydrogen transfer during a free-radical reaction in mesoporous silica SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHENYL ETHER; PYROLYSIS; SIZE AB Mesoporous silicas with controllable pore size are providing important platforms finding a multitude of applications such as in catalysis, separations, and as nanoreactors for molecular transformations. In this study, we probe the influence of a coattached hydrogen donor molecule, fluorene, on the free-radical pyrolysis of 1,3-diphenylpropane (DPP) in MCM-41 silica as a function of pore size (1.6-2.8 nm). The influence of surface orientation of the fluorene molecule on the pyrolysis rate is examined through use of isomeric 2-hydroxyfluorene (2-FL) and 3-hydroxyfluorene (3-FL) precursors for surface attachment. The DPP pyrolysis rates are found to be sensitive to both the surface orientation of the fluorene molecule and the pore size. Furthermore, whereas the 2-FL led to faster DPP pyrolysis rates compared with 3-FL on he exterior surface of a nonporous silica nanoparticle (Cabosil), the opposite effect was observed in the mesoporous silica with the smallest pore size. The results are interpreted based on the influence of molecular orientation of the isomeric fluorene molecules on the key bimolecular hydrogen transfer steps to intermediate free-radicals on the surface and suggest that differences in surface curvature: between the Cabosil particles and MCM-41 cylindrical pores may play a key role. C1 [Kidder, Michelle K.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Buchanan, AC (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM buchananac@ornl.gov RI zhang, huidong/B-5667-2011 NR 17 TC 10 Z9 10 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 3027 EP 3031 DI 10.1021/jp7097558 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700032 ER PT J AU Cuoco, A Miele, G Serpico, PD AF Cuoco, A. Miele, G. Serpico, P. D. TI Astrophysical interpretation of the medium scale clustering in the ultrahigh energy sky SO PHYSICS LETTERS B LA English DT Article ID GALACTIC MAGNETIC-FIELD; COSMIC-RAY PROPAGATION; ARRIVAL DIRECTIONS; ANISOTROPY; SPECTRUM AB We compare the clustering properties of the combined dataset of ultra-high energy cosmic rays events, reported by the AGASA, HiRes, Yakutsk and SUGAR Collaborations, with a catalogue of galaxies of the local universe (redshift z less than or similar to 0.06). We find that the data reproduce particularly well the clustering properties of the nearby universe within z less than or similar to 0.02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability drops from O(50%) to O(10%) using the catalogue with a smaller horizon. Also, we discuss the impact on the robustness of the results of deflections in some galactic magnetic field models used in the literature. These results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the UHECRs. The importance of a confirmation of these hints (and of some of their implications) by Auger data is emphasized. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cuoco, A.] Aarhus Univ, Inst Fys Astron, DK-15208000 Aarhus, Denmark. [Miele, G.] Ist Nazl Fis Nucl, I-80125 Naples, Italy. [Miele, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Miele, G.] Univ Valencia, CSIC, Inst Invest, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Serpico, P. D.] Ctr Particle Astrophys, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA. RP Cuoco, A (reprint author), Aarhus Univ, Inst Fys Astron, DK-15208000 Aarhus, Denmark. EM cuoco@phys.au.dk RI Miele, Gennaro/F-3628-2010 OI Miele, Gennaro/0000-0002-2028-0578 NR 41 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 307 EP 314 DI 10.1016/j.physletb.2007.12.054 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700006 ER PT J AU Garnsworthy, AB Regan, PH Caceres, L Pietri, S Sun, Y Rudolph, D Gorska, M Podolyak, Z Steer, S Hoischen, R Heinz, A Becker, F Bednarczyk, P Doornenbal, P Geissel, H Gerl, J Grawe, H Grebosz, J Kelic, A Kojouharov, I Kurz, N Montes, F Prokopowicz, W Saito, T Schaffner, H Tachenov, S Werner-Malento, E Wollersheim, HJ Benzoni, G Blank, BB Brandau, C Bruce, AM Camera, F Catford, WN Cullen, IJ Dombradi, Z Estevez, E Gelletly, W Ilie, G Jolie, J Jones, GA Jungclaus, A Kmiecik, M Kondev, FG Kurtukian-Nieto, T Lalkovski, S Liu, Z Maj, A Myalski, S Pfutzner, M Schwertel, S Shizuma, T Simons, AJ Walker, PM Wielandi, O Xu, FR AF Garnsworthy, A. B. Regan, P. H. Caceres, L. Pietri, S. Sun, Y. Rudolph, D. Gorska, M. Podolyak, Zs. Steer, S. J. Hoischen, R. Heinz, A. Becker, F. Bednarczyk, P. Doornenbal, P. Geissel, H. Gerl, J. Grawe, H. Grebosz, J. Kelic, A. Kojouharov, I. Kurz, N. Montes, F. Prokopowicz, W. Saito, T. Schaffner, H. Tachenov, S. Werner-Malento, E. Wollersheim, H. J. Benzoni, G. Blank, B. B. Brandau, C. Bruce, A. M. Camera, F. Catford, W. N. Cullen, I. J. Dombradi, Zs. Estevez, E. Gelletly, W. Ilie, G. Jolie, J. Jones, G. A. Jungclaus, A. Kmiecik, M. Kondev, F. G. Kurtukian-Nieto, T. Lalkovski, S. Liu, Z. Maj, A. Myalski, S. Pfutzner, M. Schwertel, S. Shizuma, T. Simons, A. J. Walker, P. M. Wielandi, O. Xu, F. R. TI Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei Nb-82(41) and Tc-86(43) SO PHYSICS LETTERS B LA English DT Article ID ODD-ODD; EXCITED-STATES; SHELL-MODEL; IDENTIFICATION; FRAGMENTATION; SYSTEMATICS; ISOTOPES; REGION; ZR-82; BANDS AB The low-lying structures of the self-conjugate (N = Z) nuclei Nb-82(41)41 and Tc-86(43)43 have been investigated using isomeric-decay spectroscopy following the projectile fragmentation of a Ag-107 beam. These represent the heaviest odd-odd N = Z nuclei in which internal decays have been identified to date. The resulting level schemes shed light on the shape evolution along the N = Z line between the doubly-magic systems Ni-56(28) and Sn-100(50) and support a preference for T = 1 states in T-z = 0 odd-odd nuclei at low excitation energies associated with a T = 1 neutron-proton pairing gap. Comparison with Projected Shell Model calculations suggests that the decay in Nb-82 may be interpreted as an isospin-changing K isomer. (C) 2008 Elsevier B.V. All rights reserved. C1 [Garnsworthy, A. B.; Regan, P. H.; Pietri, S.; Podolyak, Zs.; Steer, S. J.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Shizuma, T.; Simons, A. J.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Garnsworthy, A. B.; Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Caceres, L.; Gorska, M.; Hoischen, R.; Becker, F.; Bednarczyk, P.; Doornenbal, P.; Geissel, H.; Gerl, J.; Grawe, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tachenov, S.; Werner-Malento, E.; Wollersheim, H. J.; Brandau, C.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Teor, Madrid, Spain. [Sun, Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sun, Y.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Bednarczyk, P.; Grebosz, J.; Kmiecik, M.; Maj, A.; Myalski, S.] Inst Nucl Phys, PL-31342 Krakow, Poland. [Werner-Malento, E.; Pfutzner, M.] Warsaw Univ, IEP, PL-00681 Hoza, Poland. [Benzoni, G.; Camera, F.; Wielandi, O.] Univ Milan, I-20133 Milan, Italy. [Benzoni, G.; Camera, F.; Wielandi, O.] Ist Nazl Fis Nucl Milano, I-20133 Milan, Italy. [Kurtukian-Nieto, T.] CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Bruce, A. M.] Univ Brighton, Sch Engn, Brighton BN2 4GJ, E Sussex, England. [Dombradi, Zs.] Inst Nucl Res, H-4001 Debrecen, Hungary. [Estevez, E.; Kurtukian-Nieto, T.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Ilie, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lalkovski, S.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia, Bulgaria. [Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-8046 Garching, Germany. [Shizuma, T.] Japan Atom Energy Agcy, Kyoto 6190215, Japan. [Simons, A. J.] AWE Plc, Aldermaston RG7 4PR, Berks, England. [Xu, F. R.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. RP Garnsworthy, AB (reprint author), Univ Surrey, Dept Phys, Surrey GU2 7XH, England. EM a.garnsworthy@surrey.ac.uk RI Rudolph, Dirk/D-4259-2009; Gerl, Juergen/A-3255-2011; Dombradi, Zsolt/B-3743-2012; Xu, Furong/K-4178-2013; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016; Sun, Yang/P-2417-2015 OI Camera, Franco/0000-0003-1731-4834; Rudolph, Dirk/0000-0003-1199-3055; Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517; NR 40 TC 20 Z9 21 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 326 EP 330 DI 10.1016/j.physletb.2008.01.017 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700009 ER PT J AU Lin, T Elster, C Polyzou, WN Glockle, W AF Lin, T. Elster, Ch. Polyzou, W. N. Gloeckle, W. TI Relativistic effects in exclusive pd breakup scattering at intermediate energies SO PHYSICS LETTERS B LA English DT Article DE relativistic quantum mechanics; Faddeev equation; the quantum mechanical three-body problem; n-d scattering ID ANGULAR-MOMENTUM DECOMPOSITION; 3-BODY BOUND-STATE; DEUTERON BREAKUP; FORCES AB The relativistic Faddeev equation for three-nucleon scattering is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. Relativistic invariance is achieved by constructing a dynamical unitary representation of the Poincare group on the three-nucleon Hilbert space. The exclusive breakup reaction at 508 MeV is calculated based on a Malfliet-Tjon type two-body interaction and the cross sections are compared to measured cross sections at this energy. We find that the magnitude of the relativistic effects can be quite large and depends on the configurations considered. In spite of the simple nature of the model interaction, the experimental cross sections are in surprisingly good agreement with the predictions of the relativistic calculations. We also find that although for specific configurations the multiple scattering series converges rapidly, this is in general not the case. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lin, T.; Elster, Ch.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Lin, T.; Elster, Ch.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Lin, T.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Polyzou, W. N.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Gloeckle, W.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Elster, C (reprint author), Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. EM elster@ohiou.edu RI Elster, Charlotte/N-9845-2015 NR 22 TC 25 Z9 25 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 345 EP 349 DI 10.1016/j.physletb.2008.01.012 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700012 ER PT J AU Gordon, CJ Spencer, PJ Hotchkiss, J Miller, DB Hinderliter, PM Pauluhn, J AF Gordon, Christopher J. Spencer, Pamela J. Hotchkiss, Jon Miller, Diane B. Hinderliter, Paul M. Pauluhn, Juergen TI Thermoregulation and its influence on toxicity assessment SO TOXICOLOGY LA English DT Review DE radiotelemetry; core temperature; skin temperature; pesticide; rodent; metabolic rate; inhalation; stress; restraint ID INDUCED HYPOTHERMIA; BODY-TEMPERATURE; LABORATORY RAT; INHALATION; MICE; SENSITIVITY; MODULATION; MECHANISMS; TOLERANCE; EXPOSURE AB The thermoregulatory system of laboratory rodents is susceptible to a variety of chemical toxicants. Because temperature directly affects the reaction of virtually all biological processes, it is critical to consider how changes in the thermoregulatory response to a toxicant may affect physiological, behavioral, and pathological endpoints. Researchers in industry and government laboratories are often faced with addressing how changes in body temperature of their experimental subjects may affect the outcome of a particular toxicity test and/or screening panel. However, many toxicologists are either unaware of the importance or ignore the potential impact of a toxic-induced change in body temperature. This paper endeavors to summarize the importance of thermoregulation in the study of toxicology and propose recommendations for thermometry that researchers may utilize in their toxicological studies. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Gordon, Christopher J.] US EPA, Natl Hlth & Environm Effects Res Lab, Div Neurotoxicol, Res Triangle Pk, NC 27711 USA. [Spencer, Pamela J.; Hotchkiss, Jon] Dow Chem Co USA, Midland, MI 48674 USA. [Miller, Diane B.] NIOSH, Ctr Dis Control & Prevent, Morgantown, WV 26505 USA. [Hinderliter, Paul M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pauluhn, Juergen] Bayer Healthcare, D-42096 Wuppertal, Germany. RP Gordon, CJ (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Div Neurotoxicol, B105-04,109 STW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM gordon.christopher@epa.gov NR 25 TC 25 Z9 25 U1 3 U2 7 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD FEB 28 PY 2008 VL 244 IS 2-3 BP 87 EP 97 DI 10.1016/j.tox.2007.10.030 PG 11 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 273PA UT WOS:000253942700001 PM 18096291 ER PT J AU Hopkins, RJ Desyaterik, Y Tivanski, AV Zaveri, RA Berkowitz, CM Tyliszczak, T Gilles, MK Laskin, A AF Hopkins, Rebecca J. Desyaterik, Yury Tivanski, Alexei V. Zaveri, Rahul A. Berkowitz, Carl M. Tyliszczak, Tolek Gilles, Mary K. Laskin, Alexander TI Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SALT SULFATE; NORTH-ATLANTIC OCEAN; DIMETHYL SULFIDE; METHANESULFONIC-ACID; SEASONAL-VARIATIONS; ARCTIC TROPOSPHERE; NSS SULFATE; GAS-PHASE; ATMOSPHERIC DIMETHYLSULFIDE; CARBON-DISULFIDE AB Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. On the basis of composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea-salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na > 0.10 and CH3SO3-/nss-SO42- > 0.6. C1 [Hopkins, Rebecca J.; Tivanski, Alexei V.; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zaveri, Rahul A.; Berkowitz, Carl M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Desyaterik, Yury; Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Tyliszczak, Tolek] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hopkins, RJ (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM alexander.laskin@pnl.gov; mkgilles@lbl.gov RI Laskin, Alexander/I-2574-2012; OI Laskin, Alexander/0000-0002-7836-8417; Zaveri, Rahul/0000-0001-9874-8807 NR 93 TC 42 Z9 42 U1 4 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2008 VL 113 IS D4 AR D04209 DI 10.1029/2007JD008954 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 270IZ UT WOS:000253715800003 ER PT J AU Masuda, JD Jantunen, KC Ozerov, OV Noonan, KJT Gates, DP Scott, BL Kiplinger, JL AF Masuda, Jason D. Jantunen, Kimberly C. Ozerov, Oleg V. Noonan, Kevin J. T. Gates, Derek P. Scott, Brian L. Kiplinger, Jaqueline L. TI A lanthanide phosphinidene complex: Synthesis, structure, and phospha-Wittig reactivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TERMINAL PHOSPHINIDENE; METAL-COMPLEXES; LOW-COORDINATE; BOND; REAGENTS; BEARING; LIGAND; ALKYL; ABSTRACTION; ACTIVATION AB The first lanthanide complex featuring a phosphinidene functional group has been prepared and isolated. Preliminary reactivity studies demonstrate that the lutetium(III) phosphinidene complex, [{2((t)Pr(2)P)-4-Me-C(6)H(3))(2)NLu](2)(mu-PMes)(2), behaves as a phospha-Wittig reagent with aldehydes and ketones to give the corresponding phosphaalkenes. Attempts to use the bulky phosphine H(2)P-2,4,6-(t)Bu(3)-C(6)H(2) to kinetically stabilize a terminal phosphinidene resulted in C-H activation of an ortho-(t)Bu group and formation of a phosphaindole. C1 [Masuda, Jason D.; Jantunen, Kimberly C.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ozerov, Oleg V.] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA. [Noonan, Kevin J. T.; Gates, Derek P.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lani.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; Ozerov, Oleg/D-4175-2015 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Masuda, Jason/0000-0002-6195-9691; NR 31 TC 81 Z9 82 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2408 EP 2409 DI 10.1021/ja7105306 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900018 PM 18232691 ER PT J AU Xiong, HM van der Lelie, D Gang, O AF Xiong, Huiming van der Lelie, Daniel Gang, Oleg TI DNA linker-mediated crystallization of nanocolloids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article AB Biofunctionalized nanocolloids offer a promising platform for creation of novel materials using addressable interactions. Crystalline phases are of especial interest for the development of novel plasmonic, magnetic, and catalytic metamaterials. When flexible single-stranded linker DNAs are added to the mixture of two types of dispersed, ssDNAs capped gold nanocolloids which are noncomplementary to each other but complementary to the respective ends of the linker DNA, a crystalline phase of body-centered cubic unit cell is formed at the premelting temperature of the system. An evolution of the structure, crystal formation, and thermodynamic path toward equilibrium state have been studied in details using in-situ small-angle X-ray scattering for different DNA linker designs. C1 [Xiong, Huiming; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov NR 19 TC 43 Z9 43 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2442 EP 2443 DI 10.1021/ja710710j PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900035 PM 18247620 ER PT J AU Yotphan, S Bergman, RG Ellman, JA AF Yotphan, Sirilata Bergman, Robert G. Ellman, Jonathan A. TI The stereoselective formation of bicyclic enamines with bridgehead unsaturation via tandem C-H bond activation/alkenylation/electrocyclization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DIELS-ALDER REACTION; ALPHA,BETA-UNSATURATED IMINES; LACTAMS; ACTIVATION; MORPHINE AB Bridgehead bicyclic unsaturated enamines were prepared by a tandem rhodium-catalyzed C-H bond activation/alkenylation/electrocyclizaton of alkyne-tethered unsaturated imines. These strained bicyclic enamines exhibit unique reactivity: for example, they give N-alkylated products upon treatment with alkylating reagents and undergo double-bond isomerization to alleviate ring strain upon reduction. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bergman@cchem.berkeley.edu; jellman@uclink.berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [GM069559, R01 GM069559, R01 GM069559-08] NR 13 TC 27 Z9 27 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2452 EP 2453 DI 10.1021/ja710981b PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900040 PM 18247623 ER PT J AU Lewis, JC Berman, AM Bergman, RG Ellman, JA AF Lewis, Jared C. Berman, Ashley M. Bergman, Robert G. Ellman, Jonathan A. TI Rh(I)-catalyzed arylation of heterocycles via C-H bond activation: expanded scope through mechanistic insight SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PALLADIUM-CATALYZED ARYLATION; OLEFIN METATHESIS; BORANE COMPLEXES; ARYL CHLORIDES; BORONIC ACIDS; ALKENES; HALIDES; EFFICIENT; FUNCTIONALIZATION; HYDROFORMYLATION AB A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(1) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glovebox without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in 2 h. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI 丹丹, 李/D-2431-2010; Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [R01 GM069559, GM069559, R01 GM069559-05] NR 70 TC 177 Z9 178 U1 1 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2493 EP 2500 DI 10.1021/ja0748985 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900049 PM 18251465 ER PT J AU Datta, A Hooker, JM Botta, M Francis, MB Aime, S Raymond, KN AF Datta, Ankona Hooker, Jacob M. Botta, Mauro Francis, Matthew B. Aime, Silvio Raymond, Kenneth N. TI High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNETIC-RESONANCE RELAXATION; FAST WATER EXCHANGE; MODEL-FREE APPROACH; NEXT-GENERATION; GD COMPLEXES; NANOPARTICLES; STABILITY; MACROMOLECULES; SELECTIVITY; LANTHANIDE AB High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a 5-fold increase in relaxivity, leading to a peak relaxivity (per Gd(3+) ion) of 41.6 mM(-1) s(-1) at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (i) there is facile diffusion of water to the interior of capsids and (ii) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2), and the NMRD fittings highlight the differences in the local motion for the internal (tau(RI) = 440 ps) and external (tau(RI) = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups. C1 [Datta, Ankona; Hooker, Jacob M.; Francis, Matthew B.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Botta, Mauro] Univ Piemonte Orientale, Dipartimento Sci Ambiente & Vita, I-15100 Alessandria, Italy. [Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Aime, Silvio] Univ Turin, Dipartimento Chim, IFM, I-10125 Turin, Italy. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu RI Botta, Mauro/E-9049-2011; OI Hooker, Jacob/0000-0002-9394-7708; Botta, Mauro/0000-0003-4192-355X FU NHLBI NIH HHS [HL69832] NR 44 TC 112 Z9 113 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2546 EP 2552 DI 10.1021/ja0765363 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900054 PM 18247608 ER PT J AU Li, SD Zhai, HJ Wang, LS AF Li, Si-Dian Zhai, Hua-Jin Wang, Lai-Sheng TI B-2(BO)(2)(2-) - Diboronyl diborene: A linear molecule with a triple boron-boron bond SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLISION-INDUCED DISSOCIATION; TRANSITION-METAL CLUSTERS; AB-INITIO; PHOTOELECTRON-SPECTROSCOPY; SOLID ARGON; ELECTRONIC-STRUCTURE; OXIDE CLUSTERS; GAS-PHASE; B-13(+) CLUSTERS; INFRARED-SPECTRA AB We have produced and investigated an unique boron oxide cluster, B4O2, using photoelectron spectroscopy and ab initio calculations. Relatively simple and highly vibrationally resolved PIES spectra were obtained at two photon energies (355 and 193 nm). The electron affinity of neutral B4O2 was measured to be 3.160 +/- 0.015 eV. Two excited states were observed for B4O2 at excitation energies of 0.48 and 0.83 eV above the ground state. Three vibrational modes were resolved in the 355 nm spectrum for the ground state of B4O2 with frequencies of 350 +/- 40, 1530 +/- 30, and 2040 +/- 30 cm(-1). Ab initio calculations showed that neutral B4O2 (D-infinity h, (3)Sigma(-)(g)) and anionic B4O2- (D-infinity h, (2)Pi(u)) both possess highly stable linear structures (O B-B = B-B O), which can be viewed as a B-2 dimer bonded to two terminal boronyl groups. The lowest nonlinear structures are at least 1.5 eV higher in energy. The calculated electron detachment energies from the linear B4O2- and the vibrational frequencies agree well with the experimental results. The three observed vibrational modes are due to the B-B, B = B, and B O symmetric stretching vibrations, respectively, in the linear B-2(BO)(2). Chemical bonding analyses revealed that the HOMO of B-2(BO)(2), which is half-filled, is a bonding 7 orbital in the central B-2 unit. Thus, adding two electrons to B-2(BO)(2) leads to a B B triple bond in [O B-B B-B O](2-). Possibilities for stabilizing B-2(BO)(2)(2-) in the form of B-2(BO)(2)Li-2 are considered computationally and compared with other valent isoelectronic, triple bonded species, B2H2-Li-2; B2H22-, and C2H2. The high stability of B-2(BO)(2)(2-) suggests that it may exist as a viable building block in the condensed phase. C1 [Li, Si-Dian] Shanxi Univ, Inst Mol Sci, Taiyuan 030006, Peoples R China. [Li, Si-Dian] Xinzhou Teachers Univ, Xinzhou 034000, Shanxi, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. RP Li, SD (reprint author), Shanxi Univ, Inst Mol Sci, Taiyuan 030006, Peoples R China. EM lisidian@yahoo.com; ls.wang@pnl.gov NR 72 TC 84 Z9 84 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2573 EP 2579 DI 10.1021/ja0771080 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900057 PM 18251470 ER PT J AU Wolf, DM Fontaine-Bodin, L Bischofs, I Price, G Keasling, J Arkin, AP AF Wolf, Denise M. Fontaine-Bodin, Lisa Bischofs, Ilka Price, Gavin Keasling, Jay Arkin, Adam P. TI Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium SO PLOS ONE LA English DT Article AB Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These "memory'' effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to 'remember' 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy. C1 [Wolf, Denise M.; Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA USA. [Keasling, Jay] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA USA. RP Wolf, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM dmwolf@lbl.gov; aparkin@lbl.gov RI Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008 OI Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931 FU National Institutes of Health [R01 GM073010-01]; Department of Energy and the Howard Hughes Medical Institute FX The authors would like to acknowledge the National Institutes of Health (R01 GM073010-01), the Department of Energy and the Howard Hughes Medical Institute for support during the period of this project. NR 81 TC 41 Z9 41 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 27 PY 2008 VL 3 IS 2 AR e1700 DI 10.1371/journal.pone.0001700 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 367XS UT WOS:000260586500044 PM 18324309 ER PT J AU Abreu, IA Hearn, A An, H Nick, HS Silverman, DN Cabelli, DE AF Abreu, Isabel A. Hearn, Amy An, Haiqain Nick, Harry S. Silverman, David N. Cabelli, Diane E. TI The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: A specialized enzyme for the elimination of high superoxide concentrations SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; EXTREME RADIORESISTANCE; PRODUCT INHIBITION; PULSE-RADIOLYSIS; CATALASE KATA; RADIATION; BACTERIUM; PROTEIN; CELLS; GAMMA AB Deinococcus radiodurans (Drad), a bacterium with an extraordinary capacity to tolerate high levels of ionizing radiation, produces only a manganese-containing superoxide dismutase (MnSOD). As MnSOD has been shown to remove superoxide radical with varying efficiency depending upon its cellular origin, a comparison of the Drad MnSOD efficiency with that of both human and Escherichia coli MnSODs was undertaken. Pulse radiolysis studies demonstrate that, under identical ratios of enzyme to superoxide radical, the dismutation efficiencies scaled as Drad MnSOD > E. coli MnSOD > human MnSOD. Further, Drad MnSOD is most effective at high superoxide fluxes found under conditions of high radioactivity. A mechanism is postulated to account for the differences in the activities of the MnSODs that considers the release of peroxide as not always an optimal process. C1 [Abreu, Isabel A.; Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hearn, Amy; An, Haiqain; Nick, Harry S.; Silverman, David N.] Univ Florida, Dept Pharmacol, Gainesville, FL 32610 USA. RP Cabelli, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM cabelli@bnl.gov RI Abreu, Isabel/I-5081-2013 OI Abreu, Isabel/0000-0002-5566-2146 FU NIGMS NIH HHS [GM54903] NR 39 TC 18 Z9 18 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 26 PY 2008 VL 47 IS 8 BP 2350 EP 2356 DI 10.1021/bi7016206 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 264JJ UT WOS:000253283300011 PM 18247479 ER PT J AU Ogale, S Kundaliya, D Mehraeen, S Fu, LF Zhang, SX Lussier, A Dvorak, J Browning, N Idzerda, Y Venkatesan, T AF Ogale, Satishchandra Kundaliya, Darshan Mehraeen, Shareghe Fu, Lian-feng Zhang, Shixiong Lussier, Alexandre Dvorak, Joe Browning, Nigel Idzerda, Yves Venkatesan, Thirumalai TI Chemical inhomogeneity and mixed-state ferromagnetism in diluted magnetic semiconductor Co : TiO2 SO CHEMISTRY OF MATERIALS LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; OXIDE; SPINTRONICS; NANOCRYSTALS; ORIGIN; SYSTEM; MODEL; TIO2 AB Diluted magnetic semiconductors (DMS) are among the most intensely investigated materials in recent times in view of their great application potential. Yet, they are also the most controversial because of the possibility of extrinsic effects attributable to dopant solubility and clustering, point defects, incorporation of unintentional impurities, etc. This has highlighted the central role of materials chemistry in rendering a specific microstate and property response. In this work, we provide a combined window of high-resolution scanning transmission electron microscopy and electron energy-loss spectrometry, X-ray absorption (XAS)/X-ray magnetic circular dichroism (XMCD), and magnetization measurements on epitaxial rutile CoxTi1-xO2 (x = 0-0.06) system (the first discovered oxide-DMS, which continues to be controversial) grown at low temperature (400 degrees C) under different ambient atmospheres. The study brings out a mixed-state scenario of ferromagnetism involving intrinsic DMS (uniform dopant distribution at low dopant concentration) and coupled cluster magnetism, involving cobalt associations within the matrix at higher concentrations. We also show that by matrix valence control during growth, it is possible to realize a uniform embedded cluster state and the related coupled cluster magnetism. C1 [Ogale, Satishchandra] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India. [Kundaliya, Darshan; Zhang, Shixiong; Venkatesan, Thirumalai] Univ Maryland, Ctr Superconduct Res, Dept Phys, College Pk, MD 20742 USA. [Mehraeen, Shareghe; Fu, Lian-feng; Browning, Nigel] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Mehraeen, Shareghe; Fu, Lian-feng; Browning, Nigel] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Lussier, Alexandre; Dvorak, Joe; Idzerda, Yves] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Venkatesan, Thirumalai] Natl Univ Singapore, Singapore 119077, Singapore. RP Ogale, S (reprint author), Natl Chem Lab, Phys & Mat Chem Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India. EM sb.ogale@nct.res.in RI Venkatesan, Thirumalai/E-1667-2013; OI Browning, Nigel/0000-0003-0491-251X NR 47 TC 24 Z9 24 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 26 PY 2008 VL 20 IS 4 BP 1344 EP 1352 DI 10.1021/cm702089z PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 264JN UT WOS:000253283700034 ER PT J AU Suescun, L Dabrowski, B Mais, J Remsen, S Richardson, JW Maxey, ER Jorgensen, JD AF Suescun, Leopoldo Dabrowski, Bogdan Mais, James Remsen, Steven Richardson, James W., Jr. Maxey, Evan R. Jorgensen, James D. TI Oxygen ordered phases in LaxSr1-xMnOy (0 <= x <= 0.2, 2.5 <= y <= 3): An in situ neutron powder diffraction study SO CHEMISTRY OF MATERIALS LA English DT Article ID DEFICIENT MANGANITE PEROVSKITE; DEFECT PEROVSKITE; CRYSTAL; OXIDES AB In situ neutron powder diffraction experiments have been performed on samples of SrMnOy, La0.1Sr0.9MnOy, and La0.2Sr0.8MnOy (2.5 <= y <= 3) to determine the existence of oxygen-vacancy ordering and study order-disorder transformations in the LaxSr1-xMnOy system. The vacancy ordered monoclinic Sr7Mn7O13. tetragonal (LaxSr1-x)(5)Mn5O13 and orthorhombic (LaxSr1-x)(2)Mn2O5 (x = 0, 0.1, and 0.2) phases have been observed, together with already described La0.1Sr0.9MnO2.55. Reversible vacancy order-disorder transitions have been observed for the La-containing (LaxSr1-x)(5)Mn5O13 phases. Oxygen-vacancy disordered cubic or pseudocubic phases have also been observed with increasing stability range in y with increasing x. Preliminary phase diagrams of the system have been derived as a function of temperature and oxygen content. C1 [Suescun, Leopoldo; Dabrowski, Bogdan; Richardson, James W., Jr.; Maxey, Evan R.; Jorgensen, James D.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Suescun, Leopoldo; Dabrowski, Bogdan; Richardson, James W., Jr.; Maxey, Evan R.; Jorgensen, James D.] Argonne Natl Lab, Intense Pulsed Neuron Source Div, Argonne, IL 60439 USA. [Suescun, Leopoldo; Dabrowski, Bogdan; Mais, James; Remsen, Steven] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Suescun, L (reprint author), Argonne Natl Lab, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leopoldo@ant.gov RI Suescun, Leopoldo/A-9697-2008 OI Suescun, Leopoldo/0000-0002-7606-8074 NR 23 TC 16 Z9 16 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 26 PY 2008 VL 20 IS 4 BP 1636 EP 1645 DI 10.1021/cm703139c PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 264JN UT WOS:000253283700070 ER PT J AU Holdych, DJ Noble, DR Secor, RB AF Holdych, David J. Noble, David R. Secor, Robert B. TI Quadrature rules for triangular and tetrahedral elements with generalized functions SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE finite elements; material discontinuity; extended finite elements; enriched finite elements; quadrature; level sets ID LEVEL SETS AB Quadrature rules are developed for exactly integrating products of polynomials and generalized functions over triangular and tetrahedral domains. These quadrature rules greatly simplify the implementation of finite element methods that involve integrals over volumes and interfaces that are not coincident with the element boundaries. Specifically, the integrands considered here consist of a quadratic polynomial multiplied by a Heaviside or Dirac delta function operating on a linear polynomial. This form allows for exact integration of expressions obtained from linear finite elements over domains and interfaces defined by a linear level set function. Exact quadrature rules are derived that involve fixed quadrature point locations with weights that depend continuously on the nodal level set values. Compared with methods involving explicit integration over subdomains, the quadrature rules developed here accommodate degenerate interface geometries without any need for special consideration and provide analytical Jacobian information describing the dependence of the integrals on the nodal level set values. The accuracy of the method is demonstrated for a simple conduction problem with the Neumann and Robin-type boundary conditions. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Holdych, David J.; Noble, David R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Secor, Robert B.] 3M Co, Corp Res Proc Labs, St Paul, MN 55144 USA. RP Noble, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM drnoble@sandia.gov NR 11 TC 21 Z9 21 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB 26 PY 2008 VL 73 IS 9 BP 1310 EP 1327 DI 10.1002/nme.2123 PG 18 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 288VG UT WOS:000255013300006 ER PT J AU Mayer, BP Reimer, JA Maxwell, RS AF Mayer, Brian P. Reimer, Jeffrey A. Maxwell, Robert S. TI A methodology for the indirect determination and spatial resolution of shear modulus of PDMS - Silica Elastomers SO MACROMOLECULES LA English DT Article ID RESIDUAL DIPOLAR COUPLINGS; NUCLEAR-MAGNETIC-RESONANCE; MULTIPLE-QUANTUM NMR; NETWORK STRUCTURE; CHAIN DYNAMICS; RELAXATION; POLYMERS; ORIENTATION; ECHO AB A methodology is described that allows for the spatial resolution of shear modulus in silica-filled PDMS elastomers via (1)H relaxation measurements and stray-field imaging (STRAFI) techniques. Traditional Hahn echoes provide a simple, robust route to the extraction of a proton residual dipolar coupling constant (RDC), a direct measure of chain mobility and a parameter that can be corollated to numerous mechanical properties. Defining a dimensionless RDC eliminates any artifacts associated with low-field measurement and allows the RDC to become independent of field strength. A direct correlation between the NMR determined dimensionless RDC and results from dynamic mechanical analysis are presented, then employed via STRAFI to determine spatial variations in moduli associated with irradiated elastomeric materials. Reliable performance, despite poorly optimized STRAFI conditions, is demonstrated with an error of no more than 22% between the calculated shear modulus and the measured value via DMA. C1 [Mayer, Brian P.; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mayer, BP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. NR 24 TC 6 Z9 6 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 26 PY 2008 VL 41 IS 4 BP 1323 EP 1327 DI 10.1021/ma702007m PG 5 WC Polymer Science SC Polymer Science GA 265AJ UT WOS:000253331200039 ER PT J AU Chongsiriwatana, NP Patch, JA Czyzewski, AM Dohm, MT Ivankin, A Gidalevitz, D Zuckermann, RN Barron, AE AF Chongsiriwatana, Nathaniel P. Patch, James A. Czyzewski, Ann M. Dohm, Michelle T. Ivankin, Andrey Gidalevitz, David Zuckermann, Ronald N. Barron, Annelise E. TI Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antibiotics; peptidomimetics; structure-activity studies ID HOST-DEFENSE PEPTIDES; N-SUBSTITUTED GLYCINES; SOLID-PHASE SYNTHESIS; AROMATIC SIDE-CHAINS; SECONDARY STRUCTURE; SELECTIVE CYTOTOXICITY; BETA-PEPTIDES; OLIGOMERS; ANTIBACTERIAL; MAGAININ AB Antimicrobial peptides (AMPs) and their mimics are emerging as promising antibiotic agents. We present a library of "ampetoids" (antimicrobial peptoid oligomers) with helical structures and biomimetic sequences, several members of which have low-micromolar antimicrobial activities, similar to cationic AMPs like pexiganan. Broad-spectrum activity against six clinically relevant BSL2 pathogens is also shown. This comprehensive structure-activity relationship study, including circular dichroism spectroscopy, minimum inhibitory concentration assays, hemolysis and mammalian cell toxicity studies, and specular x-ray reflectivity measurements shows that the in vitro activities of ampetoids are strikingly similar to those of AMPs themselves, suggesting a strong mechanistic analogy. The ampetoids' antibacterial activity, coupled with their low cytotoxicity against mammalian cells, make them a promising class of antimicrobials for biomedical applications. Peptoids are biostable, with a protease-resistant N-substituted glycine backbone, and their sequences are highly tunable, because an extensive diversity of side chains can be incorporated via facile solid-phase synthesis. Our findings add to the growing evidence that nonnatural foldamers will emerge as an important class of therapeutics. C1 Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Chongsiriwatana, Nathaniel P.; Patch, James A.; Czyzewski, Ann M.; Barron, Annelise E.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Ivankin, Andrey; Gidalevitz, David] IIT, Div Phys, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. RP Chongsiriwatana, NP (reprint author), Stanford Univ, Dept Bioengn, W300B James H Clark Ctr,318 Campus Dr, Stanford, CA 94305 USA. EM aebarron@stanford.edu RI Barron, Annelise/B-7639-2009; Gidalevitz, David/D-6717-2012; Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Dohm, Michelle/0000-0002-4961-501X FU NHLBI NIH HHS [1 R01 HL67984, R01 HL067984]; NIAID NIH HHS [1 R01 AI072666, R01 AI072666, R01 AI073892, R01 AI073892-01A1]; NIGMS NIH HHS [5 T32 GM08382-10, T32 GM008382] NR 54 TC 280 Z9 284 U1 7 U2 146 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 26 PY 2008 VL 105 IS 8 BP 2794 EP 2799 DI 10.1073/pnas.0708254105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 268GQ UT WOS:000253567900011 PM 18287037 ER PT J AU Rajakulendran, T Sahmi, M Kurinov, I Tyers, M Therrien, M Sicheri, F AF Rajakulendran, Thanashan Sahmi, Malha Kurinov, Igor Tyers, Mike Therrien, Marc Sicheri, Frank TI CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE MAPK signaling; RAF activation; sterile alpha-motif; x-ray crystallography ID RNA RECOGNITION; ACTIVATION; DROSOPHILA; PROTEIN; VTS1P; POLYMERIZATION; REFINEMENT; INHIBITORS; SCAFFOLDS; KSR AB RAF kinase functions in the mitogen-activated protein kinase (MAPK) pathway to transmit growth signals to the downstream kinases MEK and ERK. Activation of RAF catalytic activity is facilitated by a regulatory complex comprising the proteins CNK (Connector enhancer of KSR), HYP (Hyphen), and KSR (Kinase Suppressor of Ras). The sterile a-motif (SAM) domain found in both CNK and HYP plays an essential role in complex formation. Here, we have determined the x-ray crystal structure of the SAM domain of CNK in complex with the SAM domain of HYP. The structure reveals a single-junction SAM domain dimer of 1:1 stoichiometry in which the binding mode is a variation of polymeric SAM domain interactions. Through in vitro and in vivo mutational analyses, we show that the specific mode of dimerization revealed by the crystal structure is essential for RAF signaling and facilitates the recruitment of KSR to form the CNK/HYP/KSR regulatory complex. We present two docking-site models to account for how SAM domain dimerization might influence the formation of a higher-order CNK/HYP/KSR complex. C1 [Sahmi, Malha; Therrien, Marc] Univ Montreal, Lab Intracellular Parasite, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada. [Rajakulendran, Thanashan; Tyers, Mike; Sicheri, Frank] Samuel Lunenfeld Res Inst, Ctr Syst Biol, Toronto, ON M5G 1X5, Canada. [Rajakulendran, Thanashan; Tyers, Mike; Sicheri, Frank] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Kurinov, Igor] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Kurinov, Igor] Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA. [Therrien, Marc] Univ Montreal, Dept Pathol & Biol Cellulaire, Montreal, PQ H3C 3J7, Canada. RP Therrien, M (reprint author), Univ Montreal, Lab Intracellular Parasite, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada. EM marc.therrien@umontreal.ca; sicheri@mshri.on.ca RI Sicheri, Frank/F-8856-2013 NR 31 TC 23 Z9 23 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 26 PY 2008 VL 105 IS 8 BP 2836 EP 2841 DI 10.1073/pnas.0709705105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 268GQ UT WOS:000253567900018 PM 18287031 ER PT J AU Cai, XY Padmaperuma, AB Sapochak, LS Vecchi, PA Burrows, PE AF Cai, Xiuyu Padmaperuma, Asanga B. Sapochak, Linda S. Vecchi, Paul A. Burrows, Paul E. TI Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence SO APPLIED PHYSICS LETTERS LA English DT Article ID HOST MATERIAL; DEVICES; EFFICIENT AB We report blue phosphorescent organic light-emitting devices (OLEDs) using an ambipolar host, N-(4-diphenylphosphoryl phenyl) carbazole (MPO12), doped with iridium (111) bis[(4,6-difluorophenyl)-pyridinato-N, C(2)']picolinate (FIrpic). The external quantum efficiency and operating voltage is 9.1(-0.1)% and 4.8 V, respectively, measured at a brightness of 800 cd/m(2) with no outcoupling enhancement. By varying the layer structure of the OLEDs, we show that MPO12 is capable of transporting both electrons and holes, in contrast to previous demonstrations using diphosphine oxides, which only transported electrons. The improved hole transport results in improved device efficiency. (c) 2008 American Institute of Physics. C1 [Cai, Xiuyu; Padmaperuma, Asanga B.; Sapochak, Linda S.; Vecchi, Paul A.; Burrows, Paul E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, XY (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM xiuyu.cai@pnl.gov NR 11 TC 97 Z9 99 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083308 DI 10.1063/1.2885117 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300096 ER PT J AU Cherepy, NJ Hull, G Drobshoff, AD Payne, SA Van Loef, E Wilson, CM Shah, KS Roy, UN Burger, A Boatner, LA Choong, WS Moses, WW AF Cherepy, Nerine J. Hull, Giulia Drobshoff, Alexander D. Payne, Stephen A. Van Loef, Edgar Wilson, Cody M. Shah, Kanai S. Roy, Utpal N. Burger, Arnold Boatner, Lynn A. Choong, Woon-Seng Moses, William W. TI Strontium and barium iodide high light yield scintillators SO APPLIED PHYSICS LETTERS LA English DT Article AB Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu) emits into the Eu(2+) band, centered at 435 nm, with a decay time of 1.2 mu s and a light yield of similar to 90 00 photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662 keV, and exhibits excellent light yield proportionality. BaI(2)(Eu) produces >30 000 photons/MeV into the Eu(2+) band at 420 nm (<1 mu s decay). An additional broad impurity-mediated recombination band is present at 550 nm (>3 mu s decay), unless high-purity feedstock is used. (c) 2008 American Institute of Physics. C1 [Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.] Radiat Monitoring Devices Inc, Boston, MA 02134 USA. [Roy, Utpal N.; Burger, Arnold] Fisk Univ, Ctr Phys & Chem Mat, Nashville, TN 37208 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Choong, Woon-Seng; Moses, William W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cherepy, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepyl@llnl.gov RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 NR 12 TC 162 Z9 165 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083508 DI 10.1063/1.2885728 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300109 ER PT J AU Mirman, B Kalinin, SV AF Mirman, Boris Kalinin, Sergei V. TI Resonance frequency analysis for surface-coupled atomic force microscopy cantilever in ambient and liquid environments SO APPLIED PHYSICS LETTERS LA English DT Article AB Shifts in the resonance frequencies of surface-coupled atomic force microscope (AFM) probes are used as the basis for the detection mechanisms in a number of scanning probe microscopy techniques including atomic force acoustic microscopy (AFAM), force modulation microscopy, and resonance enhanced piezoresponse force microscopy (PFM). Here, we analyze resonance characteristics for AFM cantilever coupled to surface in liquid environment, and derive approximate expressions for resonant frequencies as a function of vertical and lateral spring constant of the tip-surface junction. This analysis provides a simplified framework for the interpretation of AFAM and PFM data in ambient, liquid, and vacuum environments. (c) 2008 American Institute of Physics. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mirman, Boris] Suffolk Univ, Dept Math, Boston, MA 02114 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 8 TC 12 Z9 12 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083102 DI 10.1063/1.2801524 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300072 ER PT J AU Zhao, YH Bingert, JF Zhu, YT Liao, XZ Valiev, RZ Horita, Z Langdon, TG Zhou, YZ Lavernia, EJ AF Zhao, Y. H. Bingert, J. F. Zhu, Y. T. Liao, X. Z. Valiev, R. Z. Horita, Z. Langdon, T. G. Zhou, Y. Z. Lavernia, E. J. TI Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density SO APPLIED PHYSICS LETTERS LA English DT Article ID SEVERE PLASTIC-DEFORMATION; DUCTILITY; STRENGTH; METALS; ALLOYS AB Although there are a few isolated examples of excellent strength and ductility in single-phase metals with ultrafine grained (UFG) structures, the precise role of different microstructural features responsible for these results is not fully understood. Here, we demonstrate that a large fraction of high-angle grain boundaries and a low dislocation density may significantly improve the toughness and uniform elongation of UFG Cu by increasing its strain-hardening rate without any concomitant sacrifice in its yield strength. Our study provides a strategy for synthesizing tough UFG materials. (C) 2008 American Institute of Physics. C1 [Zhao, Y. H.; Bingert, J. F.; Zhu, Y. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Valiev, R. Z.] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia. [Horita, Z.] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Zhao, Y. H.; Zhou, Y. Z.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Zhao, YH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yhzhao@ucdavis.edu; ytzhu@ncsu.edu RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Liao, Xiaozhou/B-3168-2009; Lujan Center, LANL/G-4896-2012; Lavernia, Enrique/I-6472-2013; U-ID, Kyushu/C-5291-2016 OI Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; Lavernia, Enrique/0000-0003-2124-8964; NR 18 TC 104 Z9 104 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 081903 DI 10.1063/1.2870014 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300024 ER PT J AU Schwarz, JA Brokstein, PB Voolstra, C Terry, AY Miller, DJ Szmant, AM Coffroth, MA Medina, M AF Schwarz, Jodi A. Brokstein, Peter B. Voolstra, Christian Terry, Astrid Y. Miller, David J. Szmant, Alina M. Coffroth, Mary Alice Medina, Monica TI Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata SO BMC GENOMICS LA English DT Article ID AMINO-ACID SITES; POSITIVE SELECTION; SEA-ANEMONE; ANCESTRAL COMPLEXITY; AIPTASIA-PULCHELLA; INNATE IMMUNITY; GENE LOSS; EVOLUTION; ACCURACY; FERRITIN AB Background: Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates ( Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results: We generated 14,588 ( Ap) and 3,854 ( Mf) high quality ESTs from five life history/ symbiosis stages ( spawned eggs, early-stage planula larvae, late- stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage- specific clusters, producing 4,980 ( Ap), and 1,732 ( Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis- related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene ( containing 17 cDNAs) with no significant protein- coding region. A significant number of unigenes ( 25) encode potential pattern recognition receptors ( lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses ( toll- like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non- scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion: Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes ( 4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies. C1 [Voolstra, Christian; Medina, Monica] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. [Schwarz, Jodi A.] Vassar Coll, Dept Biol, Poughkeepsie, NY 12604 USA. [Brokstein, Peter B.; Terry, Astrid Y.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Miller, David J.] James Cook Univ N Queensland, Comparat Genom Ctr, Townsville, Qld 4811, Australia. [Szmant, Alina M.] Ctr Marine Sci, Wilmington, NC 28409 USA. [Coffroth, Mary Alice] SUNY Buffalo, Dept Geol Sci, Buffalo, NY 14260 USA. RP Medina, M (reprint author), Univ Calif, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM joschwarz@vassar.edu; pbbrokstein@lbl.gov; cvoolstra@ucmerced.edu; ayterry@lbl.gov; david.miller@jcu.edu.au; szmanta@uncw.edu; coffroth@buffalo.edu; mmedina@ucmerced.edu RI Voolstra, Christian/H-7158-2014 OI Voolstra, Christian/0000-0003-4555-3795 NR 61 TC 78 Z9 81 U1 2 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD FEB 25 PY 2008 VL 9 AR 97 DI 10.1186/1471-2164-9-97 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 287BJ UT WOS:000254891000001 PM 18298846 ER PT J AU Mayrhofer, KJJ Strmcnik, D Blizanac, BB Stamenkovic, V Arenz, M Markovic, NM AF Mayrhofer, K. J. J. Strmcnik, D. Blizanac, B. B. Stamenkovic, V. Arenz, M. Markovic, N. M. TI Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts SO ELECTROCHIMICA ACTA LA English DT Article DE RDE; ORR; Pt; HSA-catalyst; particle size effect ID SINGLE-CRYSTAL ELECTRODES; PARTICLE-SIZE; CO ELECTROOXIDATION; PHOSPHORIC-ACID; PT-NI; PLATINUM; ALLOY; NANOPARTICLES; ELECTROCATALYSTS; STABILITY AB The aim of this report is to scrutinize the thin-film rotating disc electrode (TF-RDE) method for investigating the electrocatalytic activity of high surface area catalysts. Special emphasis is given to the oxygen reduction reaction (ORR) on carbon-supported platinum catalysts. On the basis of measurements on four different Pt catalyst samples with various average particle sizes, it is demonstrated in detail how the intrinsic properties of the catalyst, i.e., the mass activity (A/g(Pt)) and the specific activity (A/m(Pt)(2)), are evaluated. The potential sources of error are critically discussed and guidelines for the measurements are given. Furthermore, the specific ORR activities determined for the different catalyst samples are analyzed and compared to polycrystalline Pt. The previously reported effect of the particle size on the specific activity for the ORR is interpreted on the basis of the shift in the potential of zero total charge and the concomitant alteration of the adsorption properties. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Mayrhofer, K. J. J.; Arenz, M.] Tech Univ Munich, PCI, D-85748 Garching, Germany. [Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Markovic, N. M.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. RP Mayrhofer, KJJ (reprint author), Tech Univ Munich, PCI, Lichtenbergstr 4, D-85748 Garching, Germany. EM karl.mayrhofer@mytum.de RI Mayrhofer, Karl/D-4166-2009; Arenz, Matthias/C-7385-2009; Arenz, Matthias/C-3195-2016 OI Arenz, Matthias/0000-0001-9765-4315; Arenz, Matthias/0000-0001-9765-4315 NR 39 TC 466 Z9 468 U1 40 U2 302 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 25 PY 2008 VL 53 IS 7 BP 3181 EP 3188 DI 10.1016/j.electacta.2007.11.057 PG 8 WC Electrochemistry SC Electrochemistry GA 271QR UT WOS:000253804300020 ER PT J AU Grossman, D Aranson, IS Ben Jacob, E AF Grossman, D. Aranson, I. S. Ben Jacob, E. TI Emergence of agent swarm migration and vortex formation through inelastic collisions SO NEW JOURNAL OF PHYSICS LA English DT Article ID ANIMAL GROUPS; MODEL AB Biologically inspired models of self-propelled interacting agents display a wide variety of collective motion such as swarm migration and vortex formation. In these models, active interactions among agents are typically included such as velocity alignment and cohesive and repulsive forces that represent agents' short- and long-range 'sensing' capabilities of their environment. Here, we show that similar collective behaviors can emerge in a minimal model of isotropic agents solely due to a passive mechanism inelastic collisions among agents. The model dynamics shows a gradual velocity correlation build-up into the collective motion state. The model displays a discontinuous transition of collective motion with respect to noise and exhibits several collective motion types such as vortex formation, swarm migration and also complex spatio-temporal group motion. This model can be regarded as a hybrid model, connecting granular materials and agent-based models. C1 [Grossman, D.; Ben Jacob, E.] Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ben Jacob, E.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. RP Ben Jacob, E (reprint author), Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. EM eshelbj@gmail.com RI Aranson, Igor/I-4060-2013 NR 25 TC 59 Z9 60 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 25 PY 2008 VL 10 AR 023036 DI 10.1088/1367-2630/10/2/023036 PG 11 WC Physics, Multidisciplinary SC Physics GA 270IC UT WOS:000253713500001 ER PT J AU Masuda, JD Jantunen, KC Scott, BL Kiplinger, JL AF Masuda, Jason D. Jantunen, Kimberly C. Scott, Brian L. Kiplinger, Jaqueline L. TI Lutetium alkyls supported by a dearomatized and functionalized terpyridine ligand: Preparation of fluorinated anilide complexes SO ORGANOMETALLICS LA English DT Article ID ALKYLIDENE COMPLEXES; LANTHANIDE COMPLEXES; TITANIUM COMPLEXES; IMIDO COMPLEXES; BOND-CLEAVAGE; ACTIVATION; CHEMISTRY; PHOSPHINIDENE; NICKEL(II); REACTIVITY AB Lutetium alkyl complexes supported by a monoanionic, tridentate ligand system formed by the dearomatization and junctionalization of a 2,2':6',2 ''-terpyridine have been reacted with 2,4,6-triphenylaniline or the fluorinated anilines 4-F-C6H4NH2 and C6F5NH2 to give both terminal mono(amide) and bis(amide) lutetium(III) complexes, which have been fully characterized. Both [Bu-t(3)(2'-Me3SiCH2)tpy]Lu[NH(2,4,6-Ph-3-C6H2)](2) (3) and [Bu-t(3)(2'-Me3SiCH2)tPy](C5Me5)Lu(NHC6F5) (7) have been structurally characterized. The fluorinated anilide complexes [Bu-t(3)(2'-Me3SiCH2)tpy](C5Me5)Lu(NHArF) (Ar-F = 4-F-C6H4 (6), C6F5 (7)) provide rare examples of lutetium organofluorine complexes, with 7 featuring an intramolecular F center dot center dot center dot H-C interaction that is present in both solid state and solution. C1 [Masuda, Jason D.; Jantunen, Kimberly C.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stp J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Masuda, Jason/0000-0002-6195-9691 NR 38 TC 19 Z9 19 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD FEB 25 PY 2008 VL 27 IS 4 BP 803 EP 806 DI 10.1021/om701076n PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 264EG UT WOS:000253268000047 ER PT J AU Pryor, SC Barthelmie, R Schoof, JT Binkowskid, FS Delle Monache, L Stullf, R AF Pryor, S. C. Barthelmie, Rj. Schoof, J. T. Binkowskid, F. S. Delle Monache, L. Stullf, R. TI Modeling the impact of sea-spray on particle concentrations in a coastal city SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE air pollution; sea-spray; aerosol; urban; heterogeneous chemistry ID LOWER FRASER VALLEY; 2001 AIR-QUALITY; PARTICULATE MATTER; CHLORINE EMISSIONS; NUMERICAL SCHEMES; AEROSOL FORMATION; REGIONAL-SCALE; CHEMISTRY; POLLUTION; VARIABILITY AB With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city-Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations. (c) 2007 Elsevier B.V. All rights reserved. C1 [Pryor, S. C.] Indiana Univ, Dept Geog, Atmospher Sci Program, Bloomington, IN 47405 USA. [Barthelmie, Rj.] Univ Edinburgh, Sch Engn & Elect, Inst Energy Syst, Edinburgh, Midlothian, Scotland. [Schoof, J. T.] So Illinois Univ, Dept Geog, Carbondale, IL USA. [Binkowskid, F. S.] Univ N Carolina, Inst Environm, Chapel Hill, NC USA. [Delle Monache, L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stullf, R.] Univ British Columbia, Earth & Ocean Sci Dept, Atmospher Sci Programme, Vancouver, BC V5Z 1M9, Canada. RP Pryor, SC (reprint author), Indiana Univ, Dept Geog, Atmospher Sci Program, Bloomington, IN 47405 USA. EM spryor@indiana.edu OI Barthelmie, Rebecca J/0000-0003-0403-6046; Pryor, S.C./0000-0003-4847-3440 NR 47 TC 6 Z9 6 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 25 PY 2008 VL 391 IS 1 BP 132 EP 142 DI 10.1016/j.scitotenv.2007.10.059 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 255DZ UT WOS:000252638500014 PM 18061242 ER PT J AU Primo, ME Klinke, S Sica, MP Goldbaum, FA Jakoncic, J Poskus, E Ermacora, MR AF Primo, Maria E. Klinke, Sebastian Sica, Mauricio P. Goldbaum, Fernando A. Jakoncic, Jean Poskus, Edgardo Ermacora, Mario R. TI Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SEA MODULE; MACROMOLECULAR STRUCTURES; CLEAVAGE; DOMAIN; TRANSMEMBRANE; IA-2-BETA; ALPHA; INHIBITION; REFINEMENT; EXPRESSION AB IA-2 (insulinoma-associated protein 2) is a protein-tyrosine phosphatase receptor located in secretory granules of neuroendocrine cells. Initially, it attracted attention due to its involvement in the autoimmune response associated to diabetes. Later it was found that upon exocytosis, the cytoplasmic domain of IA-2 is cleaved and relocated to the nucleus, where it enhances the transcription of the insulin gene. A concerted functioning of the whole receptor is to be expected. However, very little is known about the structure and function of the transmembrane and extracellular domains of IA-2. To address this issue, we solved the x-ray structure of the mature ectodomain of IA-2 (meIA-2) to 1.30 A resolution. The fold of meIA-2 is related to the SEA ( sea urchin sperm protein, enterokinase, agrin)) domains of mucins, suggesting its participation in adhesive contacts to the extracellular matrix and providing clues on how this kind of molecule may associate and form homo- and heterodimers. Moreover, we discovered that meIA-2 is self-proteolyzed in vitro by reactive oxygen species, suggesting the possibility of a new shedding mechanism that might be significant in normal function or pathological processes. Knowledge of meIA-2 structure should facilitate the search of its possible ligands and molecular interactions. C1 [Primo, Maria E.; Klinke, Sebastian; Sica, Mauricio P.; Goldbaum, Fernando A.; Poskus, Edgardo; Ermacora, Mario R.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Primo, Maria E.; Poskus, Edgardo] Idehu Conicet UBA, Junin 954, Buenos Aires, DF, Argentina. [Primo, Maria E.; Poskus, Edgardo] Univ Buenos Aires, Fac Farm & Bioquim, Catedra Inmunol, Buenos Aires, DF, Argentina. [Klinke, Sebastian; Goldbaum, Fernando A.] Consejo Nacl Invest Cient & Tecn, IIBBA, Fdn Inst Leloir, RA-1033 Buenos Aires, DF, Argentina. [Sica, Mauricio P.; Ermacora, Mario R.] Univ Nacl Quilmes, Dept Ciencia Tecnol, Buenos Aires, DF, Argentina. [Jakoncic, Jean] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ermacora, MR (reprint author), Consejo Nacl Invest Cient & Tecn, Rivadavia 1917 C1033AAJ,Ciudad Autonoma, RA-1033 Buenos Aires, DF, Argentina. EM ermacora@unq.edu.ar NR 48 TC 11 Z9 14 U1 1 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 22 PY 2008 VL 283 IS 8 BP 4674 EP 4681 DI 10.1074/jbc.M708144200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IA UT WOS:000253426500025 PM 18048354 ER PT J AU VanDemark, AP Xin, H McCullough, L Rawlins, R Bentley, S Heroux, A Stillman, DJ Hill, CP Formosa, T AF VanDemark, Andrew P. Xin, Hua McCullough, Laura Rawlins, Robert Bentley, Shayla Heroux, Annie Stillman, David J. Hill, Christopher P. Formosa, Tim TI Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NUCLEOSOME CORE PARTICLE; DNA-POLYMERASE ALPHA; SACCHAROMYCES-CEREVISIAE; METHIONINE AMINOPEPTIDASE; CREATINE AMIDINOHYDROLASE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; YEAST FACT; REPLICATION; TRANSCRIPTION AB yFACT (heterodimers of Saccharomyces cerevisiae Spt16-Pob3 combined with Nhp6) binds to and alters the properties of nucleosomes. The essential function of yFACT is not disrupted by deletion of the N-terminal domain (NTD) of Spt16 or by mutation of the middle domain of Pob3, but either alteration makes yeast cells sensitive to DNA replication stress. We have determined the structure of the Spt16 NTD and find evidence for a conserved potential peptide-binding site. Pob3-M also contains a putative binding site, and we show that these two sites perform an overlapping essential function. We find that yFACT can bind the N-terminal tails of some histones and that this interaction is important for yFACT-nucleosome binding. However, neither the Spt16 NTD nor a key residue in the putative Pob3-M-binding site was required for interactions with histone N termini or for yFACT-mediated nucleosome reorganization in vitro. Instead, both potential binding sites interact functionally with the C-terminal docking domain of the histone H2A. yFACT therefore appears to make multiple contacts with different sites within nucleosomes, and these interactions are partially redundant with one another. The docking domain of H2A is identified as an important participant in maintaining stability during yFACT-mediated nucleosome reorganization, suggesting new models for the mechanism of this activity. C1 [VanDemark, Andrew P.; Xin, Hua; McCullough, Laura; Rawlins, Robert; Hill, Christopher P.; Formosa, Tim] Univ Utah, Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Bentley, Shayla; Stillman, David J.] Univ Utah, Sch Med, Dept Pathol, Salt Lake City, UT 84112 USA. RP Hill, CP (reprint author), Univ Utah, Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. EM chris@biochem.utah.edu; tim@biochem.utah.edu OI Stillman, David/0000-0002-5268-2416 FU NIGMS NIH HHS [R01 GM076242] NR 49 TC 45 Z9 45 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 22 PY 2008 VL 283 IS 8 BP 5058 EP 5068 DI 10.1074/jbc.M708682200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IA UT WOS:000253426500063 PM 18089575 ER PT J AU Galea, CA Nourse, A Wang, Y Sivakolundu, SG Heller, WT Kriwacki, RW AF Galea, Charles A. Nourse, Amanda Wang, Yuefeng Sivakolundu, Sivashankar G. Heller, William T. Kriwacki, Richard W. TI Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27(Kip1) SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE cell cycle; cyclin-dependent kinase inhibitor; disordered protein; intrinsically unstructured protein; p27(Kip1) ID SMALL-ANGLE SCATTERING; CDK INHIBITOR P27; UBIQUITIN LIGASE; PROTEIN-KINASE; PHASE; DEGRADATION; PROTEOLYSIS; PROGRESSION; COMPLEXES; MODELS AB p27(Kip1) (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a "conduit" for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Galea, Charles A.; Wang, Yuefeng; Sivakolundu, Sivashankar G.; Kriwacki, Richard W.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Nourse, Amanda] St Jude Childrens Res Hosp, Hartwell Ctr Bioinformat & Biotechnol, Memphis, TN 38105 USA. [Heller, William T.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kriwacki, Richard W.] Univ Tennessee, Dept Mol Sci, Memphis, TN 38163 USA. RP Kriwacki, RW (reprint author), St Jude Childrens Res Hosp, Dept Biol Struct, 332 N Lauderdale, Memphis, TN 38105 USA. EM richard.kriwacki@squde.org RI Galea, Charles/C-5074-2013; Galea, Charles/O-8800-2014 OI Galea, Charles/0000-0003-0485-7709; Galea, Charles/0000-0003-2730-1105 FU NCI NIH HHS [2R01CA082491, 5P30CA021765, P30 CA021765, R01 CA082491, R01 CA082491-01A2, R01 CA082491-02, R01 CA082491-03, R01 CA082491-04, R01 CA082491-05, R01 CA082491-06A2] NR 47 TC 68 Z9 69 U1 0 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 22 PY 2008 VL 376 IS 3 BP 827 EP 838 DI 10.1016/j.jmb.2007.12.016 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 265JM UT WOS:000253354900019 PM 18177895 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Vre, RL Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Muelmenstaedt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Rthwein, FW Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Vre, R. Lefe Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Rthwein, F. Wu Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Direct measurement of the W boson width in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; HIGH-PT W; E(+)E(-) COLLISIONS; MASS; DETECTOR; PHYSICS; DECAYS; GLUONS; PHOTOS AB A direct measurement of the total decay width of the W boson Gamma(W) is presented using 350 pb(-1) of data from p (p) over bar collisions at root s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. The width is determined by normalizing predicted signal and background distributions to 230 185 W candidates decaying to e nu and mu nu in the transverse-mass region 50 < M(T) < 90 GeV and then fitting the predicted shape to 6055 events in the high-M(T) region, 90 < M(T) < 200 GeV. The result is Gamma(W) = 2032 +/- 45(stat) +/- 57(syst) MeV, consistent with the standard model expectation. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martin, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Rthwein, F. Wu; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Carrillo, S.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Cabrera, S.; Deng, J.; Glagolev, V.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Fang, H. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Vre, R. Lefe; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Aaltonen, T.; Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Da Costa, J. Guimaraes; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campanelli, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Leonardo, N.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Moon, Chang-Seong/J-3619-2014; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Moon, Chang-Seong/0000-0001-8229-7829; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 30 TC 11 Z9 11 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 071801 DI 10.1103/PhysRevLett.100.071801 PG 7 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900016 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Search for lepton flavor violating decays tau(+/-)-> l(+/-)omega SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY-PHYSICS; TAU-DECAYS; DETECTOR; JETS AB A search for lepton flavor violating decays of a tau to a lighter-mass charged lepton and an omega vector meson is performed using 384.1 fb(-1) of e(+)e(-) annihilation data collected with the BABAR detector at the Stanford Linear Accelerator Center PEP-II storage ring. No signal is found, and the upper limits on the branching ratios are determined to be B(tau(+/-) --> e(+/-)omega) < 1.1 x 10(-7) and B(tau(+/-) --> mu(+/-)omega) < 1.0 x 10(-7) at 90% confidence level. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Lab Annecy Le Vieux Phys Particules, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Nauenberg, U.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, Univ Paris 07, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Wilson, F. F.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Luppi, Eleonora/A-4902-2015; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Luppi, Eleonora/0000-0002-1072-5633; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 NR 26 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 071802 DI 10.1103/PhysRevLett.100.071802 PG 7 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900017 ER PT J AU Kallos, E Katsouleas, T Kimura, WD Kusche, K Muggli, P Pavlishin, I Pogorelsky, I Stolyarov, D Yakimenko, V AF Kallos, Efthymios Katsouleas, Tom Kimura, Wayne D. Kusche, Karl Muggli, Patric Pavlishin, Igor Pogorelsky, Igor Stolyarov, Daniil Yakimenko, Vitaly TI High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches SO PHYSICAL REVIEW LETTERS LA English DT Article ID RELATIVISTIC ELECTRONS; BEAMS; RADIATION; LENGTH AB A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma. C1 [Kallos, Efthymios; Katsouleas, Tom; Muggli, Patric] Univ So Calif, Los Angeles, CA 90089 USA. [Kimura, Wayne D.] STI Optron, Bellevue, WA 98004 USA. [Kusche, Karl; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kallos, E (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. NR 23 TC 28 Z9 28 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 074802 DI 10.1103/PhysRevLett.100.074802 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900037 PM 18352561 ER PT J AU Li, YL Lewellen, JW AF Li, Yuelin Lewellen, John W. TI Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROGRAMMABLE DISPERSIVE FILTER; PHOTOINJECTORS; COMPENSATION; SYSTEMS AB A generic 3D laser-pulse-shaping scheme is proposed towards the generation of a uniform ellipsoidal particle distribution, an ideal distribution due to the linear dependence of the space-charge force on the particle position. The shaping is accomplished via spatiotemporal coupling of the laser dynamics via chromatic aberration in an optical lens. Particle tracking simulations show that the electron beam initiated by such a laser pulse in a high-gradient radio-frequency photoinjector delivers very low emittance, ideal for beam-based light sources such as the x-ray free-electron laser. C1 [Li, Yuelin] Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. [Li, Yuelin; Lewellen, John W.] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. [Lewellen, John W.] Argonne Natl Lab, Argonne ONR Project Off, Argonne, IL 60439 USA. RP Li, YL (reprint author), Argonne Natl Lab, Accelerator Syst Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Li, Yuelin/0000-0002-6229-7490 NR 28 TC 16 Z9 16 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 074801 DI 10.1103/PhysRevLett.100.074801 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900036 PM 18352560 ER PT J AU Perl, ML AF Perl, M. L. TI Essay: The tau lepton and thirty years of changes in elementary particle physics research SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB Starting with the 1975 discovery of the tau lepton, I look back on the last three decades of change in the substance and style of experimental and theoretical research in elementary particle physics. I recount the major accomplishments of those decades and predict a bright future for particle physics in the next two decades. Turning to three problems, I lament the change in theoretical style and taste, I discuss the growth in the complexity, size, and cost of particle physics experiments, and I conclude with a pessimistic comment on the size of particle physics collaborations. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Perl, ML (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM martin@slac.stanford.edu NR 9 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070001 DI 10.1103/PhysRevLett.100.070001 PG 5 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900001 PM 18352525 ER PT J AU Tegenkamp, C Ohta, T McChesney, JL Dil, H Rotenberg, E Pfnur, H Horn, K AF Tegenkamp, C. Ohta, T. McChesney, J. L. Dil, H. Rotenberg, E. Pfnuer, H. Horn, K. TI Coupled Pb chains on Si(557): Origin of one-dimensional conductance SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC STATES; VICINAL SURFACES; MONOLAYER AB The Pb/Si(557) system exhibits a strong anisotropy in conductance below 78 K, with the evolution of a characteristic chain structure. Here we show, using angle-resolved photoemission, that chain ordering results in complete Fermi-like nesting in the direction normal to the chains; in addition, the domain structure along the chains forms split-off valence bands with mesoscopic Fermi wavelengths which induce the 1D conductance without further instabilities at low temperatures. C1 [Tegenkamp, C.; Pfnuer, H.] Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany. [Ohta, T.; McChesney, J. L.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ohta, T.; Dil, H.; Horn, K.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [McChesney, J. L.] Montana State Univ, Bozeman, MT USA. RP Tegenkamp, C (reprint author), Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany. RI Rotenberg, Eli/B-3700-2009; Dil, Hugo/F-6995-2012; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Dil, Hugo/0000-0002-6016-6120; McChesney, Jessica/0000-0003-0470-2088 NR 20 TC 35 Z9 35 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 076802 DI 10.1103/PhysRevLett.100.076802 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900060 PM 18352584 ER PT J AU Umucalilar, RO Zhai, H Oktel, MO AF Umucalilar, R. O. Zhai, Hui Oktel, M. Oe. TI Trapped fermi gases in rotating optical lattices: Realization and detection of the topological Hofstadter insulator SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTIZED HALL CONDUCTANCE; MAGNETIC-FIELDS AB We consider a gas of noninteracting spinless fermions in a rotating optical lattice and calculate the density profile of the gas in an external confinement potential. The density profile exhibits distinct plateaus, which correspond to gaps in the single particle spectrum known as the Hofstadter butterfly. The plateaus result from insulating behavior whenever the Fermi energy lies within a gap. We discuss the necessary conditions to realize the Hofstadter insulator in a cold atom setup and show how the quantized Hall conductance can be measured from density profiles using the Streda formula. C1 [Umucalilar, R. O.; Oktel, M. Oe.] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. [Zhai, Hui] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Umucalilar, RO (reprint author), Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. EM oktel@fen.bilkent.edu.tr RI Zhai, Hui/H-9496-2012; Umucalilar, Onur/A-2869-2014; Oktel, Mehmet /M-7250-2015 OI Zhai, Hui/0000-0001-8118-6027; Oktel, Mehmet /0000-0001-8921-8388 NR 28 TC 67 Z9 67 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070402 DI 10.1103/PhysRevLett.100.070402 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900003 PM 18352527 ER PT J AU Wang, F Vishwanath, A AF Wang, Fa Vishwanath, Ashvin TI Spin phonon induced collinear order and magnetization plateaus in triangular and kagome antiferromagnets: Applications to CuFeO(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID LATTICE ANTIFERROMAGNET; MULTIFERROICS; PHASE; STATE AB We study the effect of spin-lattice coupling on triangular and kagome antiferromagnets and find that even moderate couplings can induce complex collinear orders. On coupling classical Heisenberg spins on the triangular lattice to Einstein phonons, a rich variety of phases emerge including the experimentally observed four sublattice state and the five sublattice 1/5th plateau state seen in the magnetoelectric material CuFeO(2). Also, we predict magnetization plateaus at 1/3, 3/7, 1/2, 3/5, and 5/7 at these couplings. Strong spin-lattice couplings induce a striped collinear state, seen in alpha-NaFeO(2) and MnBr(2). On the kagome lattice, moderate spin-lattice couplings induce collinear order, but an extensive degeneracy remains. C1 [Wang, Fa] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 NR 24 TC 37 Z9 37 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 077201 DI 10.1103/PhysRevLett.100.077201 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900065 PM 18352589 ER PT J AU Wolf, MM Verstraete, F Hastings, MB Cirac, JI AF Wolf, Michael M. Verstraete, Frank Hastings, Matthew B. Cirac, J. Ignacio TI Area laws in quantum systems: Mutual information and correlations SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENTROPY; STATES; ENTANGLEMENT AB The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. In this Letter we show that this phenomenon not only emerges in the search for new Planck-scale laws but also in lattice models of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of degrees of freedom, it may diverge as the inverse temperature in quantum systems. It is shown that an area law is generally implied by a finite correlation length when measured in terms of the mutual information. C1 [Wolf, Michael M.; Cirac, J. Ignacio] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Verstraete, Frank] Univ Vienna, Fak Phys, A-1090 Vienna, Austria. [Hastings, Matthew B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hastings, Matthew B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wolf, MM (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. RI Verstraete, Frank/F-1306-2014; Wolf, Michael/J-8135-2016 OI Verstraete, Frank/0000-0003-0270-5592; Wolf, Michael/0000-0002-1862-6912 NR 33 TC 192 Z9 192 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070502 DI 10.1103/PhysRevLett.100.070502 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900007 PM 18352531 ER PT J AU Breault, RW Guenther, CP Shadle, LJ AF Breault, Ronald W. Guenther, Christopher P. Shadle, Lawrence J. TI Velocity fluctuation interpretation in the near wall region of a dense riser SO POWDER TECHNOLOGY LA English DT Article DE granular temperature; solids dispersion; circulating fluidized bed; particle turbulent kinetic energy ID GRANULAR TEMPERATURE; KINETIC-THEORY; PARTICLE; FLOWS; CFB AB Tests were conducted in a cold flow circulating fluidized bed to gather computational fluid dynamics (CFD) model validation data. Particle velocity measurements were obtained with an LDV system under various operating conditions at locations near the wall to provide data in terms of a time series of particle velocity values. Time scale criteria were developed to characterize the variance of the velocity fluctuations from LDV measurements as either granular temperature or granular turbulent kinetic energy. By applying these criteria to categorize the variations in the velocities for adjacent particles passing the sample volume, the resulting granular temperatures were found to be much smaller than the granular (particle) turbulent kinetic energy. Average values for the granular temperature in this system ranged between 0.02 to 0.1 m(2)/s(2), while the particle turbulent kinetic energy ranged from 0.6 to 0.9 m(2)/s(2). Both were dependent upon solids fraction; decreasing with increasing solids fraction. The velocity fluctuation data was also analyzed using the autocorrelation technique providing axial solids dispersion coefficients. These values range from 0.005 to 0.8 m(2)/s and were found to be a function of both the gas velocity and solids fraction. A method was developed to estimate the local solids fraction with the LDV data. Published by Elsevier B.V. C1 [Breault, Ronald W.; Guenther, Christopher P.; Shadle, Lawrence J.] US DOE, Natl Technol Energy Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Technol Energy Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.Breault@NETL.DOE.gov OI Breault, Ronald/0000-0002-5552-4050; Shadle, Lawrence/0000-0002-6283-3628 NR 18 TC 27 Z9 27 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 22 PY 2008 VL 182 IS 2 BP 137 EP 145 DI 10.1016/j.powtec.2007.08.018 PG 9 WC Engineering, Chemical SC Engineering GA 271ON UT WOS:000253798000003 ER PT J AU Barnett, TP Pierce, DW Hidalgo, HG Bonfils, C Santer, BD Das, T Bala, G Wood, AW Nozawa, T Mirin, AA Cayan, DR Dettinger, MD AF Barnett, Tim P. Pierce, David W. Hidalgo, Hugo G. Bonfils, Celine Santer, Benjamin D. Das, Tapash Bala, Govindasamy Wood, Andrew W. Nozawa, Toru Mirin, Arthur A. Cayan, Daniel R. Dettinger, Michael D. TI Human-induced changes in the hydrology of the western United States SO SCIENCE LA English DT Article ID NORTH-AMERICA; CLIMATE-CHANGE; TRENDS; WATER; MODEL; ATTRIBUTION; STREAMFLOW; SNOWPACK; CYCLE AB Observations have shown that the hydrological cycle of the western United States changed significantly over the last half of the 20th century. We present a regional, multivariable climate change detection and attribution study, using a high- resolution hydrologic model forced by global climate models, focusing on the changes that have already affected this primarily arid region with a large and growing population. The results show that up to 60% of the climate- related trends of river flow, winter air temperature, and snow pack between 1950 and 1999 are human- induced. These results are robust to perturbation of study variates and methods. They portend, in conjunction with previous work, a coming crisis in water supply for the western United States. C1 [Barnett, Tim P.; Pierce, David W.; Hidalgo, Hugo G.; Das, Tapash; Cayan, Daniel R.; Dettinger, Michael D.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Bonfils, Celine; Santer, Benjamin D.; Bala, Govindasamy; Mirin, Arthur A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wood, Andrew W.] Univ Washington, Land Surface Hydrol Res Grp, Seattle, WA 98195 USA. [Nozawa, Toru] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Cayan, Daniel R.; Dettinger, Michael D.] US Geol Survey, La Jolla, CA 92093 USA. RP Barnett, TP (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM tbarnett-ul@ucsd.edu RI Santer, Benjamin/F-9781-2011; Bonfils, Celine/H-2356-2012; Wood, Andrew/L-5133-2013; OI Bonfils, Celine/0000-0002-4674-5708; Wood, Andrew/0000-0002-6231-0085; Hidalgo, Hugo/0000-0003-4638-0742 NR 29 TC 502 Z9 528 U1 31 U2 236 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 22 PY 2008 VL 319 IS 5866 BP 1080 EP 1083 DI 10.1126/science.1152538 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264SW UT WOS:000253311700040 PM 18239088 ER PT J AU Tanaka, S Kerfeld, CA Sawaya, MR Cai, F Heinhorst, S Cannon, GC Yeates, TO AF Tanaka, Shiho Kerfeld, Cheryl A. Sawaya, Michael R. Cai, Fei Heinhorst, Sabine Cannon, Gordon C. Yeates, Todd O. TI Atomic-level models of the bacterial carboxysome shell SO SCIENCE LA English DT Article ID THIOBACILLUS-NEAPOLITANUS; POLYHEDRAL BODIES; ORGANELLES; CYANOBACTERIA; HOMOLOGS; PROTEINS; REVEALS; VIRUSES AB The carboxysome is a bacterial microcompartment that functions as a simple organelle by sequestering enzymes involved in carbon fixation. The carboxysome shell is roughly 800 to 1400 angstroms in diameter and is assembled from several thousand protein subunits. Previous studies have revealed the three- dimensional structures of hexameric carboxysome shell proteins, which self- assemble into molecular layers that most likely constitute the facets of the polyhedral shell. Here, we report the three- dimensional structures of two proteins of previously unknown function, CcmL and OrfA ( or CsoS4A), from the two known classes of carboxysomes, at resolutions of 2.4 and 2.15 angstroms. Both proteins assemble to form pentameric structures whose size and shape are compatible with formation of vertices in an icosahedral shell. Combining these pentamers with the hexamers previously elucidated gives two plausible, preliminary atomic models for the carboxysome shell. C1 [Tanaka, Shiho; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Yeates, Todd O.] Univ Calif Los Angeles, Dept Energy Inst Genom & Proteom, Los Angeles, CA 90095 USA. [Kerfeld, Cheryl A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Cai, Fei; Heinhorst, Sabine; Cannon, Gordon C.] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 NR 26 TC 166 Z9 168 U1 3 U2 44 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 22 PY 2008 VL 319 IS 5866 BP 1083 EP 1086 DI 10.1126/science.1151458 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264SW UT WOS:000253311700041 PM 18292340 ER PT J AU DeWeaver, ET Hunke, EC Holland, MM AF DeWeaver, Eric T. Hunke, Elizabeth C. Holland, Marika M. TI On the reliability of simulated Arctic sea ice in global climate models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Editorial Material ID THICKNESS C1 [DeWeaver, Eric T.] Univ Wisconsin, Ctr Climat Res, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Holland, Marika M.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Hunke, Elizabeth C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP DeWeaver, ET (reprint author), Univ Wisconsin, Ctr Climat Res, Atmospher & Ocean Sci Dept, 1225 W Dayton St, Madison, WI 53706 USA. EM deweaver@aos.wisc.edu NR 4 TC 16 Z9 16 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 21 PY 2008 VL 35 IS 4 AR L04501 DI 10.1029/2007GL031325 PG 2 WC Geosciences, Multidisciplinary SC Geology GA 267TC UT WOS:000253531100001 ER PT J AU Fanourgakis, GS Xantheas, SS AF Fanourgakis, George S. Xantheas, Sotiris S. TI Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CENTROID MOLECULAR-DYNAMICS; TIME-CORRELATION FUNCTIONS; AB-INITIO CALCULATIONS; BINDING-ENERGIES; INFRARED-SPECTRA; 1ST PRINCIPLES; EMPIRICAL POTENTIALS; COMPUTER-SIMULATION; ORDER CORRECTION; PATH-INTEGRALS AB We present a new parametrization of the flexible, polarizable Thole-type model for water [J. Chem. Phys. 116, 5115 (2002); J. Phys. Chem. A 110, 4100 (2006)], with emphasis in describing the vibrational spectra of both water clusters and liquid water. The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations. At the same time it yields accurate redshifts for the OH vibrational stretches of both water clusters and liquid water. (C) 2008 American Institute of Physics. C1 [Fanourgakis, George S.; Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM fanourg@iesl.forth.gr; sotiris.xantheas@pnl.gov RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 NR 78 TC 209 Z9 209 U1 1 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2008 VL 128 IS 7 AR 074506 DI 10.1063/1.2837299 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265CN UT WOS:000253336800025 PM 18298156 ER PT J AU Kamiya, M Hirata, S Valiev, M AF Kamiya, Muneaki Hirata, So Valiev, Marat TI Fast electron correlation methods for molecular clusters without basis set superposition errors SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID HYDROGEN-BOND NETWORK; N-BODY CLUSTERS; APPROXIMATE COMPUTATIONAL METHOD; ADAPTED PERTURBATION-THEORY; POTENTIAL-ENERGY SURFACES; DENSITY-FUNCTIONAL THEORY; WATER HEXAMER CLUSTERS; ORBITAL METHOD; LIQUID WATER; AB-INITIO AB Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly interacting molecular clusters [S. Hirata , Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine-water clusters with an excellent initial performance assessment result. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole-dipole interaction approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of the cluster subunits accurately and also self-consistently with one another in the cluster environment. They have been shown to lead to a dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits such as zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSEs) have been eliminated by combining the Valiron-Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method. A new BSSE-correction scheme has been proposed on this basis, wherein three-body and all higher-order Coulomb effects on BSSE are also estimated. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results within 0.1 kcal/mol. The proposed method is not only more efficient but also significantly more accurate than conventional correlation methods uncorrected of BSSE. (C) 2008 American Institute of Physics. C1 [Kamiya, Muneaki; Hirata, So] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Valiev, Marat] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hirata, S (reprint author), Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. EM hirata@qtp.ufl.edu NR 112 TC 72 Z9 72 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2008 VL 128 IS 7 AR 074103 DI 10.1063/1.2828517 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265CN UT WOS:000253336800005 PM 18298136 ER PT J AU Yuan, TL Li, ZQ Zhang, RY Fan, JW AF Yuan, Tianle Li, Zhanqing Zhang, Renyi Fan, Jiwen TI Increase of cloud droplet size with aerosol optical depth: An observation and modeling study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; CONDENSATION NUCLEI; EFFECTIVE RADIUS; MARINE STRATOCUMULUS; RADIATIVE PROPERTIES; REMOTE SENSORS; SATELLITE DATA; ART.; ALBEDO; MODIS AB Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including the effects of aerosol swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D Goddard Cumulus Ensemble model (GCE) with spectral-bin microphysics which incorporated a reformulation of the Kohler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant cloud condensation nuclei (CCN). Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon. C1 [Yuan, Tianle; Li, Zhanqing] Univ Maryland, Det Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Yuan, Tianle; Li, Zhanqing] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Zhang, Renyi; Fan, Jiwen] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Technol, Nanjing, Jiangsu, Peoples R China. [Fan, Jiwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yuan, TL (reprint author), Univ Maryland, Det Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM zli@atmos.umd.edu RI Zhang, Renyi/A-2942-2011; Yuan, Tianle/D-3323-2011; Fan, Jiwen/E-9138-2011; Li, Zhanqing/F-4424-2010 OI Li, Zhanqing/0000-0001-6737-382X NR 67 TC 55 Z9 57 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 21 PY 2008 VL 113 IS D4 AR D04201 DI 10.1029/2007JD008632 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 267TH UT WOS:000253531600001 ER PT J AU Redington, RL Redington, TE Sams, RL AF Redington, Richard L. Redington, Theresa E. Sams, Robert L. TI Tunneling splittings for "O center dot center dot center dot O Stretching" and other vibrations of tropolone isotopomers observed in the infrared spectrum below 800 cm(-1) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID JET-COOLED TROPOLONE; GROUND-STATE; AROMATIC-MOLECULES; ELECTRONIC-SPECTRA; PROTON-TRANSFER; FTIR SPECTRUM; SPECTROSCOPY; DYNAMICS; MALONALDEHYDE; EXCITATION AB Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and O-18,O-18-tropolone(OH) in the 800 to 300 cm(-1) spectral range. No FTIR absorption was detected in the 300-150 cm(-1) range. The known zeropoint (ZP) tunneling splitting values Delta(0) = 0.974 cm(-1) for tropolone(OH) (Tanaka et al.) and 0.051 cm(-1) for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Delta(nu) to be estimated for fundamentals including three with strong O center dot center dot center dot O stretching displacements [cf. for tropolone(OH) nu(13)(al) = 435.22 cm(-1) with (H)Delta(13) = 1.71 cm(-1) = 1.76 (H)Delta(0), and for tropolone(OD) nu(13)(a(1)) = 429.65 cm(-1) With (D)Delta(13) = 0.32 cm(-1) = 6.27 (D)Delta(0)]. The majority of A, splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta(0) values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing A, splittings and many OH/D and O-18/O-16 isotope effects. Approximate values are obtained for the ZP splittings (88)Delta(0) and (86)Delta(0) of the doubly and singly O-18-labeled isotopomers of tropolone(OH). The diverse values of the observed Delta(nu)/Delta(0) splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction. C1 [Redington, Richard L.; Redington, Theresa E.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Sams, Robert L.] Pacific NW Natl Lab, Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Redington, RL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. NR 49 TC 7 Z9 7 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1480 EP 1492 DI 10.1021/jp0757255 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100014 PM 18217730 ER PT J AU Liu, Y Gibson, ER Cain, JP Wang, H Grassian, VH Laskin, A AF Liu, Y. Gibson, E. R. Cain, J. P. Wang, H. Grassian, V. H. Laskin, A. TI Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID X-RAY-MICROANALYSIS; NITRIC-ACID UPTAKE; KNUDSEN CELL; CALCIUM-CARBONATE; ADSORBED WATER; MINERAL DUST; SEA-SALT; SURFACE; AEROSOL; HYDRATION AB Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N-2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of (D) over bar (P) = 0.85 mu m, particle loading densities 2 x 104 <= N-s <= 6 x 10(6) cm(-2) and free stream HNO3 concentrations of 7, 14, and 25 ppb. The apparent, pseudo first-order rate constant for the reaction was determined from oxygen enrichment in individual particles as a function of particle loading. Quantitative treatment of the data using a diffusion-kinetic model yields a lower limit to the net reaction probability gamma(net) >= 0.06 (x3/divided by 2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gamma(net) >= 0.003 at RH = 10% to 0.21 at 80%. C1 [Liu, Y.; Laskin, A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Gibson, E. R.; Grassian, V. H.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. [Cain, J. P.; Wang, H.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, PO Box 999,MSIN K8-88, Richland, WA 99352 USA. EM vicki-grassian@uiowa.edu; Alexander.Laskin@pnl.gov RI Wang, Hai/A-1292-2009; liu, yong/F-6736-2012; Laskin, Alexander/I-2574-2012 OI Wang, Hai/0000-0001-6507-5503; Laskin, Alexander/0000-0002-7836-8417 NR 57 TC 44 Z9 45 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1561 EP 1571 DI 10.1021/jp076169h PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100024 PM 18232670 ER PT J AU Stare, J Panek, J Eckert, J Grdadolnik, J Mavri, J Hadzi, D AF Stare, Jernej Panek, Jaroslaw Eckert, Juergen Grdadolnik, Joze Mavri, Janez Hadzi, Dusan TI Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, Raman and INS study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PARRINELLO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; GRID HAMILTONIAN METHOD; VIBRATIONAL ASSIGNMENT; SCHRODINGER-EQUATION; AB-INITIO; NEUTRON-SCATTERING; MALONALDEHYDE; SPECTRA; POLARIZABILITY AB Infrared, Raman and INS spectra of picolinic acid N-oxide (PANG) were recorded and examined for the location of the hydronic modes, particularly O-H stretching and COH bending. PANG is representative of strong chelate hydrogen bonds (H-bonds) with its short O center dot center dot center dot O distance (2.425 angstrom). H-bonding is possibly well-characterized by diffraction, NMR and NQR data and calculated potential energy functions. The analysis of the spectra is assisted by DFT frequency calculations both in the gas phase and in the solid state. The Car-Parrinello quantum mechanical solid-state method is also used for the proton dynamics simulation; it shows the hydron to be located about 99% of time in the energy minimum near the carboxylic oxygen; jumps to the N-O acceptor are rare. The infrared spectrum excels by an extended absorption (Zundel's continuum) interrupted by numerous Evans transmissions. The model proton potential functions on which the theories of continuum formation are based do not correspond to the experimental and computed characteristics of the hydrogen bond in PANG, therefore a novel approach has been developed; it is based on crystal dynamics driven hydronium potential fluctuation. The envelope of one hundred 0 -> 1 OH stretching transitions generated by molecular dynamics simulation exhibits a maximum at 1400 cm(-1) and a minor hump at similar to 1600 cm-1. These positions square well with ones predicted for the COH bending and OH, stretching frequencies derived from various one- and two-dimensional model potentials. The coincidences with experimental features have to be considered with caution because the CPMD transition envelope is based solely on the OH stretching coordinate while the observed infrared bands correspond to heavily mixed modes as was previously shown by the normal coordinate analysis of the IR spectrum of argon matrix isolated PANO, the present CPMD frequency calculation and the empirical analysis of spectra. The experimental infrared spectra show some unusual characteristics such as large temperature effects on the intensity of some bands, thus presenting a challenge for theoretical band shape treatments. Our calculations clearly show that the present system is characterized by an asymmetric single well potential with no large amplitudes in the hydronium motion, which extends the existence of Zundel-type spectra beyond the established set of hydrogen bonds with large hydronic vibrational amplitudes. C1 [Stare, Jernej; Grdadolnik, Joze; Mavri, Janez; Hadzi, Dusan] Natl Inst Chem, Ljubljana, Slovenia. [Stare, Jernej; Eckert, Juergen] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Ctr Nonlinear Studies, Los Alamos, NM USA. [Panek, Jaroslaw] Univ Wroclaw, Fac Chem, PL-50138 Wroclaw, Poland. [Eckert, Juergen] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA USA. RP Stare, J (reprint author), Natl Inst Chem, Ljubljana, Slovenia. EM jernej@cmm.ki.si; dusan.hadzi@ki.si NR 63 TC 48 Z9 48 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1576 EP 1586 DI 10.1021/jp077107u PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100026 PM 18225869 ER PT J AU Li, L Hitchcock, AP Cornelius, R Brash, JL Scholl, A Doran, A AF Li, Li Hitchcock, Adam P. Cornelius, Rena Brash, John L. Scholl, Andreas Doran, Andrew TI X-ray microscopy studies of protein adsorption on a phase segregated polystyrene/polymethylmethacrylate surface. 2. Effect of pH on site preference SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID BOVINE SERUM-ALBUMIN; POLYMER SURFACES; FIBRINOGEN; SPECTROMICROSCOPY; TRANSITIONS; RESOLUTION; GLASS AB X-ray photoemission electron microscopy (XPEEM) using synchrotron radiation illumination has been used to study the adsorption of human serum albumin (HSA) onto a phase segregated polystyrene/polymethyl-methacrylate (PS/PMMA) blend surface from solutions of five different pH values. The absolute coverage of albumin on each of three chemically distinct components of the surface, PS domains, PMMA domains, and the interface between the domains, was determined from a quantitative analysis of C is image sequences. At all pH values, the preferred adsorption site is the interface. At neutral pH (7.0), albumin showed a slight preference for PS regions relative to PMMA. At strongly acidic pH (2.0) and strongly basic pH (10.0), similar amounts of albumin adsorb on the PS and PMMA regions. However, at pH 4.0, the amount of albumin adsorbed on PMMA domains is similar to-1.6 times greater than that on PS domains, while at pH 8.6 the amount of albumin adsorbed on PMMA is one-half that adsorbed on PS domains. The pH dependence of the site preference is rationalized in terms of the known changes of albumin conformation with pH [Peters, T., Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: New York, 1995]. We infer from our results that the site preference of albumin adsorption on PS/PMMA blends is related mainly to changes in hydrophobic interactions, which are driven by pH-dependent electrostatic effects, that is, changes to the protein surface structure as the charge on the protein changes. The results provide insight into changes in the secondary structure of albumin in acid and basic media. C1 [Li, Li; Hitchcock, Adam P.; Brash, John L.] McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. [Cornelius, Rena; Brash, John L.] McMaster Univ, Hamilton, ON L8S 4L7, Canada. [Brash, John L.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4K1, Canada. [Scholl, Andreas; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hitchcock, AP (reprint author), McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 NR 32 TC 25 Z9 26 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2150 EP 2158 DI 10.1021/jp076583h PG 9 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300037 PM 18229913 ER PT J AU Vazquez-Mayagoita, A Huertas, O Fuentes-Cabrera, M Sumpter, BG Orozco, M Luque, FJ AF Vazquez-Mayagoita, Alvaro Huertas, Oscar Fuentes-Cabrera, Miguel Sumpter, Bobby G. Orozco, Modesto Luque, F. Javier TI Ab initio study of naphtho-homologated DNA bases SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SIZE-EXPANDED DNA; PAIRED GENETIC HELIX; FORCE-FIELD; ELECTRONIC-PROPERTIES; BUILDING-BLOCKS; FREE-ENERGY; ANALOGS; XDNA; PARAMETRIZATION; TAUTOMERISM AB Naphtho-homologated DNA bases have been recently used to build a new type of size-expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naphtho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like forms of naphthothymine (yyT) and naphtho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naphtho-guanine (yyG) and naphtho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphtho-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naphtho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC. C1 [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Vazquez-Mayagoita, Alvaro] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico. [Huertas, Oscar; Luque, F. Javier] Univ Barcelona, Fac Farm, Dept Fisicoquim, E-08028 Barcelona, Spain. [Huertas, Oscar; Luque, F. Javier] Univ Barcelona, Fac Farm, Inst Biomed, E-08028 Barcelona, Spain. [Orozco, Modesto] Inst Recerca Biomed, Unitat Modelitzacio Mol Bioinformat, E-08028 Barcelona, Spain. [Orozco, Modesto] Univ Barcelona, Fac Biol, Dept Bioquim & Biol Mol, E-08028 Barcelona, Spain. [Orozco, Modesto] Univ Barcelona, Fac Biol, Dept Bioquim, E-08028 Barcelona, Spain. [Orozco, Modesto] Barcelona Supercomp Ctr, Computac Biol Program, Barcelona 08034, Spain. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; fjluque@ub.edu RI Sumpter, Bobby/C-9459-2013; Vazquez-Mayagoitia, Alvaro/A-9755-2010; Fuentes-Cabrera, Miguel/Q-2437-2015; Luque, F. Javier/L-9652-2014; OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Luque, F. Javier/0000-0002-8049-3567; Orozco Lopez, Modesto/0000-0002-8608-3278 NR 49 TC 17 Z9 18 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2179 EP 2186 DI 10.1021/jp7095746 PG 8 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300040 PM 18225888 ER PT J AU Haranczykt, M Lupica, G Dabkowska, I Gutowski, M AF Haranczykt, Maciej Lupica, Giovanni Dabkowska, Iwona Gutowski, Maciej TI Cylindrical projection of electrostatic potential and image analysis tools for damaged DNA: The substitution of thymine with thymine glycol SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID STEREOSELECTIVE EXCISION; TRANSLESION SYNTHESIS; OXIDATIVE DAMAGE; THYMIDINE GLYCOL; DENSITY; LESIONS; BASE; OLIGONUCLEOTIDES; CARCINOGENESIS; MUTAGENESIS AB Changes of electrostatic potential around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through electronic structure computations. Quantum mechanical structural optimizations of fragments of five pairs of nucleotides with thymine or thymine glycol were performed at the density functional level of theory with a B3LYP exchange-correlation functional and 6-31G(d,p) basis sets. The electrostatic potential (EP) around DNA fragments was projected on a cylindrical surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were compared using image analysis methods to identify and measure modifications of the EP that result from the occurrence of thymine glycol. It was found that distortions of phosphate groups and displacements of the accompanying countercations by up to similar to 0.5 angstrom along the axis of DNA are clearly reflected in the EP maps. Modifications of the EP in the major groove of DNA near the damaged site are also reported. C1 [Haranczykt, Maciej; Dabkowska, Iwona; Gutowski, Maciej] Univ Gdansk, Dept Chem, PL-80952 Gdansk, Poland. [Haranczykt, Maciej; Dabkowska, Iwona; Gutowski, Maciej] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Haranczykt, Maciej] Univ Sheffield, Dept Informat Studies, Sheffield S1 4DP, S Yorkshire, England. [Lupica, Giovanni] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England. [Dabkowska, Iwona] Free Univ Berlin, Inst Chem & Biochem Phys & Theoret Chem, D-14195 Berlin, Germany. [Gutowski, Maciej] Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. RP Haranczykt, M (reprint author), Univ Gdansk, Dept Chem, Sobieskiego 18, PL-80952 Gdansk, Poland. EM m.gutowski@hw.ac.uk; maharan@chem.univ.gda.pl NR 49 TC 2 Z9 2 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2198 EP 2206 DI 10.1021/jp709751w PG 9 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300042 PM 18225889 ER PT J AU Pierce, MS Chang, KC Hennessy, DC Komanicky, V Menzel, A You, H AF Pierce, M. S. Chang, K-C Hennessy, D. C. Komanicky, V. Menzel, A. You, H. TI CO-induced lifting of Au(001) surface reconstruction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHASE-TRANSITION; GOLD; PT(100); CHEMISORPTION; ADSORPTION AB We report CO-induced lifting of the hexagonal surface reconstruction on Au(001). Using in situ surface X-ray scattering, we determined a pressure-temperature phase diagram for the reconstruction and measured tine dynamical evolution of the surface structure in real time. Our observations provide evidence that, under certain conditions, even macroscopic Au surfaces, much larger than catalytic Au nanoparticles (Haruta, M. Catal. Today 1997, 36, 153), can exhibit some of the reactive properties and surface transitions observed in systems known to be catalytically active such as Pt(001). C1 [Pierce, M. S.; Chang, K-C; Hennessy, D. C.; Komanicky, V.; Menzel, A.; You, H.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Komanicky, V.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Menzel, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP You, H (reprint author), Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hyou@anl.gov RI Hennessy, Daniel/A-6203-2011; Menzel, Andreas/C-4388-2012; Pierce, Michael/D-5570-2014; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011 OI Menzel, Andreas/0000-0002-0489-609X; Pierce, Michael/0000-0002-9209-8556; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483 NR 25 TC 14 Z9 14 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2231 EP 2234 DI 10.1021/jp7105764 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200001 ER PT J AU Mao, YB Huang, JY Ostroumov, R Wang, KL Chang, JP AF Mao, Yuanbing Huang, Jian Y. Ostroumov, Roman Wang, Kang L. Chang, Jane P. TI Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID UP-CONVERSION LUMINESCENCE; OPTICAL-PROPERTIES; OXIDE NANOTUBES; THIN-FILM; NANOCRYSTALLINE Y2O3-EU; HYDROTHERMAL SYNTHESIS; CALCIUM-CARBONATE; ENERGY-TRANSFER; NANOPARTICLES; PHOTOLUMINESCENCE AB Erbium-doped yttrium oxide nanotubes (Er3+:Y2O3 NTs) with 0-100% doping levels were synthesized by a hydrothermal procedure followed by a dehydration process from Er3+:Y2O3 NTs. The as-synthesized Er3+:Y2O3 nanotubes ranged from 100 to 400 nm in outer diameter and 2 to 5 mu m in length with a hexagonal cross section. A time-dependent nanostructure evolution study was performed under hydrothermal conditions, and the effects of other processing parameters, including pH, concentration, and ionic strength of the precursor solution as well as the time span for adding the alkaline solution, were found to dictate the purity and morphology of the as-synthesized Er3+:Y(OH)(3) nanostructures. A kinetics-controlled dissolution-recrystallization mechanism is proposed to explain the anisotropic growth of these hollow nanotubes from the hexagonal crystal structure of yttrium and erbium hydroxides. Outstanding room-temperature photoluminescence around 1535 nm was demonstrated for these Er3+:Y2O3 NTs, making them promising for optical amplifier, laser, and active waveguide applications in telecommunications. C1 [Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Huang, Jian Y.] Ctr Integrated Nanotechnol, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ostroumov, Roman; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RI Mao, Yuanbing/D-5580-2009; Huang, Jianyu/C-5183-2008 NR 68 TC 89 Z9 92 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2278 EP 2285 DI 10.1021/jp0773738 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200011 ER PT J AU Sarathy, V Tratnyek, PG Nurmi, JT Baer, DR Amonette, JE Chun, CL Penn, RL Reardon, EJ AF Sarathy, Vaishnavi Tratnyek, Paul G. Nurmi, James T. Baer, Donald R. Amonette, James E. Chun, Chan Lan Penn, R. Lee Reardon, Eric J. TI Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-TETRACHLORIDE; TCE DECHLORINATION; POWDER ELECTRODES; GRANULAR IRON; CORROSION; RATES; PARTICLES; EVOLUTION; PURITY AB Aging (or longevity) is one of the most important and potentially limiting factors in the use of nano-Fe-0 to reduce groundwater contaminants. We investigated the aging of Fe-H2 (Toda RNIP-10DS) in water with a focus on changes in (i) the composition and structure of the particles (by XRD, TEM, XPS, and bulk Fe-0 content) and (ii) the reactivity of the particles (by carbon tetrachloride reaction kinetics, electrochemical corrosion potentials, and H-2 production rates). Our results show that Fe-H2 becomes more reactive between 0 and similar to 2 days exposure to water and then gradually loses reactivity over the next few hundred days. These changes in reactivity correlate with evidence for rapid destruction of the original Fe(III) oxide film on Fe-H2 during immersion and the subsequent formation of a new passivating mixed-valence Fe(II)-Fe(III) oxide shell. The effect of aging on the rate of carbon tetrachloride reduction was best described by the corrosion potential of Fe-H2, whereas the yield of chloroform from this reaction correlated best with the rate of H-2 production. The behavior of unaged nano-Fe-0 in the laboratory may be similar to that in field-scale applications for source-zone treatment due to the short reaction times involved. Long-term aged Fe-H2 acquires properties that are relatively stable over weeks or even months. C1 [Sarathy, Vaishnavi; Tratnyek, Paul G.; Nurmi, James T.] Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, Beaverton, OR 97006 USA. [Baer, Donald R.; Amonette, James E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chun, Chan Lan; Penn, R. Lee] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Reardon, Eric J.] Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada. RP Tratnyek, PG (reprint author), Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, 20000 NW Walker Rd, Beaverton, OR 97006 USA. EM tratnyek@ebs.ogi.edu; don.baer@pnl.gov RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 NR 31 TC 104 Z9 107 U1 10 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2286 EP 2293 DI 10.1021/jp0777418 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200012 ER PT J AU Yang, A Shipman, ST Garrett-Roe, S Johns, J Strader, M Szymanski, P Muller, E Harris, C AF Yang, Aram Shipman, Steven T. Garrett-Roe, Sean Johns, James Strader, Matt Szymanski, Paul Muller, Eric Harris, Charles TI Two-photon photoemission of ultrathin film PTCDA morphologies on Ag(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULE-METAL INTERFACES; FIELD-EFFECT TRANSISTORS; ELECTRON DYNAMICS; THIN-FILMS; ORGANIC SEMICONDUCTOR; FEMTOSECOND DYNAMICS; TRANSPORT; SURFACES; LOCALIZATION; TEMPERATURE AB Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n = 1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements. C1 [Harris, Charles] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, C (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Garrett-Roe, Sean/C-6037-2011; Muller, Eric/J-2161-2012 OI Garrett-Roe, Sean/0000-0001-6199-8773; Muller, Eric/0000-0002-9629-1767 NR 42 TC 31 Z9 31 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2506 EP 2513 DI 10.1021/jp076632q PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200044 ER PT J AU Graciani, J Alvarez, LJ Rodriguez, JA Sanz, JF AF Graciani, Jesus Alvarez, Luis Javier Rodriguez, Jos A. Sanz, Javier Fdez. TI N doping of rutile TiO2 (110) surface. A theoretical DFT study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; DOPED TITANIUM-DIOXIDE; VISIBLE-LIGHT; ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; TIO2(110) SURFACE; OXYGEN VACANCIES; 1ST PRINCIPLES; NITROGEN AB A realistic model, consisting of six-layer slabs, and density-functional calculations were used to perform a detailed analysis of the structural and electronic properties of N doped TiO2(110). All the positions examined for adsorption of atomic N are unstable regarding the formation and further escape of N-2(g). The adsorption of atomic N could take place only when having isolated adatoms. In this case, N prefers to bond to O centers located either on the surface or in the interstitial channels of the oxide lattice. These N adatoms probably give rise to the peak seen at similar to 400 eV in N 1s XPS spectra. The coexistence of N with O vacancies and surface reconstructions are explained in terms of cooperative behaviors and the special electronic structure of the TiNxO2-2x(110) system. Here, electrons move from the O vacancies to implanted N to fill up its electronic shell. Such electron transfer yields the normal oxidation state of nitrogen, N3-, and explains a number of things: the easiness to form O vacancies when implanted N is present, the easiness to implant N when O vacancies are present, and the difficulty for the implanted N to escape. It is not likely that N-doping will improve the photocatalytic behavior of TiO2-x(110) surfaces. For these compounds the band gap will be always equal or larger than that of pure stoichiometric TiO2. C1 [Graciani, Jesus; Alvarez, Luis Javier; Sanz, Javier Fdez.] Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. [Rodriguez, Jos A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Sanz, JF (reprint author), Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. RI Graciani, Jesus/B-1136-2009 NR 45 TC 82 Z9 85 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2624 EP 2631 DI 10.1021/jp077417c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200059 ER PT J AU Du, YG Dohnalek, Z Lyubinetsky, I AF Du, Yingge Dohnalek, Zdenek Lyubinetsky, Igor TI Transient mobility of oxygen adatoms upon O-2 dissociation on reduced TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-OXYGEN; TIO2 SURFACES; ADSORPTION; DEFECTS; PHOTOCATALYSIS; CHEMISORPTION; DIFFUSION; VACANCIES; CHLORINE; AL(111) AB Tracking the same region of the reduced TiO2(110) surface by scanning tunneling microscopy before and after oxygen exposure at room temperature (RT) confirms that O-2 molecules dissociate only at the bridging oxygen vacancies, with one O atom healing a vacancy and other O atom bonding at the neighboring Ti site as an adatom. The majority of O adatoms (similar to 81%) are found separated from the original vacancy positions by up to two lattice constants along the [001] direction. Since at RT the thermal diffusivity of O adatoms has been found to be rather small, with an experimentally estimated activation energy of similar to 1.1 eV, we conclude that the observed lateral distribution of the oxygen adatoms is attained through a nonthermal, transient mobility during the course of O-2 dissociation. Unlike for other known cases of the dissociation of diatomic molecules where both "hot" adatoms accommodate at equivalent sites, in the studied system, the oxygen atoms filling the vacancies are locked into the bridging oxygen rows, and only the O adatoms are relatively free to move. The transient motion of the hyperthermal oxygen adatoms on the TiO2(110) surface occurs exclusively along the Ti troughs. C1 [Du, Yingge; Lyubinetsky, Igor] Environm Mol Sci Lab, Richland, WA 99352 USA. [Dohnalek, Zdenek] Fund Sci Directorate, Inst Interfac Catal, Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lyubinetsky, I (reprint author), Environm Mol Sci Lab, Richland, WA 99352 USA. EM igor.lyubinetsky@pnl.gov OI Dohnalek, Zdenek/0000-0002-5999-7867 NR 29 TC 81 Z9 81 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2649 EP 2653 DI 10.1021/jp077677u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200062 ER PT J AU Lu, T Goldfield, EM Gray, SK AF Lu, Tun Goldfield, Evelyn M. Gray, Stephen K. TI Chemical reactivity within carbon nanotubes: A quantum mechanical study of the D+H-2 -> HD+H reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GEOMETRIC PHASE; DYNAMICS; HYDROGEN; SCATTERING; CHEMISTRY; ISOTOPES; STATES AB Chemical reactivity may be significantly altered when reagents are confined to move within a nanoscale environment. Chemical reactions inside carbon nanotubes (CNTs), in particular, have been the focus of some attention. To help lay theoretical foundations for understanding such nanoscale-confined chemistry, we study the quantum dynamics of the D + H-2 -> HD + H exchange reaction, one of the most fundamental reactions in gas-phase chemistry, within a CNT. A five-dimensional Hamiltonian model for the system is developed, and numerous wavepacket calculations are carried out. Quantum reaction probabilities are compared with Gas-phase reaction probabilities. Several different sized CNTs are considered. The smaller CNT diameter reaction probabilities are considerably higher than the gas-phase ones. C1 [Lu, Tun; Goldfield, Evelyn M.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Goldfield, EM (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. EM evi@chem.wayne.edu NR 31 TC 22 Z9 23 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2654 EP 2659 DI 10.1021/jp077737w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200063 ER PT J AU Ohta, T El Gabaly, F Bostwick, A McChesney, JL Emtsev, KV Schmid, AK Seyller, T Horn, K Rotenberg, E AF Ohta, Taisuke El Gabaly, Farid Bostwick, Aaron McChesney, Jessica L. Emtsev, Konstantin V. Schmid, Andreas K. Seyller, Thomas Horn, Karsten Rotenberg, Eli TI Morphology of graphene thin film growth on SiC(0001) SO NEW JOURNAL OF PHYSICS LA English DT Article ID ENERGY-ELECTRON MICROSCOPY; INTERFACE FORMATION; EPITAXIAL GRAPHENE; GRAPHITE; 6H-SIC(0001); SURFACES; PHASE; GAS AB Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as an applications-oriented point of view. Here, we study the emerging morphology of in vacuo prepared graphene films using low-energy electron microscopy (LEEM) and angle-resolved photoemission spectroscopy (ARPES). We obtain an identification of single-layer and bilayer graphene films by comparing the characteristic features in electron reflectivity spectra in LEEM to the pi-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness. C1 [Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Ohta, Taisuke; McChesney, Jessica L.; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, D-1000 Berlin, Germany. [El Gabaly, Farid; Schmid, Andreas K.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Emtsev, Konstantin V.; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, Erlangen, Germany. RP Ohta, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM erotenberg@lbl.gov RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088 NR 30 TC 119 Z9 119 U1 7 U2 100 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 21 PY 2008 VL 10 AR 023034 DI 10.1088/1367-2630/10/2/023034 PG 7 WC Physics, Multidisciplinary SC Physics GA 270IA UT WOS:000253713300006 ER PT J AU Gronlund, T Li, Z Carini, G Li, M AF Gronlund, Tanja Li, Zheng Carini, Gabriella Li, Michael TI Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE silicon detectors; 3D sensors; 3D detectors; device simulation; electric field ID RADIATION DETECTORS; CHARGE AB Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensine electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases. (C) 2007 Elsevier B.V. All rights reserved. C1 [Gronlund, Tanja] Lappeenranta Univ Technol, FIN-53851 Lappeenranta, Finland. [Gronlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gronlund, T (reprint author), Lappeenranta Univ Technol, POB 20, FIN-53851 Lappeenranta, Finland. EM tanja.gronlund@lut.fi NR 11 TC 5 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 180 EP 189 DI 10.1016/j.nima.2007.12.005 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300008 ER PT J AU McKnight, TK Czirr, JB Littrell, K Campbell, BJ AF McKnight, T. K. Czirr, J. B. Littrell, K. Campbell, B. J. TI The flexible embedded-fiber neutron detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron detector; powder diffraction; zinc sulfide scintillator; wavelength-shifting fiber ID SCINTILLATORS; EFFICIENCY AB We present a novel area-detector design, the flexible embedded-fiber detector (FEFD), which combines high-efficiency, low-cost, and very simple signal processing. It consists of wavelength-shifting fibers embedded in a zinc-sulfide lithium-fluoride-based scintillator and a physically flexible binder that allows the detecting surface to be wrapped into circular paths, so that each fiber is concentric with a single Debye-Scherrer cone. The FEFD design has been investigated via Monte Carlo simulations and by efficiency measurements performed using the CHEX instrument at the Intense Pulsed Neutron Source. (C) 2008 Elsevier B.V. All rights reserved. C1 [McKnight, T. K.; Czirr, J. B.] Mission Support Inc, Provo, UT 84606 USA. [McKnight, T. K.; Campbell, B. J.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Littrell, K.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP McKnight, TK (reprint author), Mission Support Inc, 515 East 1860 South, Provo, UT 84606 USA. EM mcknight_thomas@yahoo.com RI Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 NR 9 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 246 EP 250 DI 10.1016/j.nima.2007.11.044 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300016 ER PT J AU Suarez, R Orrell, JL Aalseth, CE Hossbach, TW Miley, HS AF Suarez, R. Orrell, J. L. Aalseth, C. E. Hossbach, T. W. Miley, H. S. TI Real-time digital signal-processor implementation of self-calibrating pulse-shape discriminator for high-purity germanium SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE digital signal processing; pulse-shape analysis; gamma-ray spectroscopy ID BACKGROUND REDUCTION; GE DETECTORS AB Pulse-shape analysis of the ionization signals from germanium gamma-ray spectrometers is a method for obtaining information that can characterize an event beyond just the total energy deposited in the crystal. However, as typically employed, this method is data-intensive requiring the digitization, transfer, and recording of electronic signals from the spectrometer. A hardware realization of a real-time digital signal processor for implementing a parametric pulse shape analysis is presented. Specifically, a previously developed method for distinguishing between single-site and multi-site gamma-ray interactions is demonstrated in an on-line digital signal processor, compared with the original off-line pulse-shape analysis routine, and shown to have no significant difference. Reduction of the amount of the recorded information per event is shown to translate into higher duty-cycle data-acquisition rates while retaining the benefits of additional event characterization from pulse-shape analysis. (C) 2008 Elsevier B.V. All rights reserved. C1 [Suarez, R.; Orrell, J. L.; Aalseth, C. E.; Hossbach, T. W.; Miley, H. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suarez, R (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Reynold.Suarez@pnl.gov RI Orrell, John/E-9313-2015 OI Orrell, John/0000-0001-7968-4051 NR 14 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 276 EP 285 DI 10.1016/j.nima.2007.11.075 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300019 ER PT J AU Martinez, E Marian, J Arsenlis, A Victoria, M Perlado, JM AF Martinez, E. Marian, J. Arsenlis, A. Victoria, M. Perlado, J. M. TI Dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE dislocation dynamics; stacking-fault tetrahedra; irradiation damage; Cu plasticity ID NEUTRON-IRRADIATED COPPER; MOLECULAR-DYNAMICS; ATOMIC-SCALE; FCC METALS; DEFECT INTERACTIONS; POLYCRYSTALLINE METALS; GLISSILE DISLOCATIONS; PLASTIC INSTABILITY; ELASTIC INTERACTION; TENSILE PROPERTIES AB We present a comprehensive dislocation dynamics (DD) study of the strength of stacking fault tetrahedra (SFT) to screw dislocation glide in fee Cu. Our methodology explicitly accounts for partial dislocation reactions in fee crystals, which allows us to provide more detailed insights into the dislocation-SFT processes than previous DD studies. The resistance due to stacking fault surfaces to dislocation cutting has been computed using atomistic simulations and added in the form of a point stress to our DD methodology. We obtain a value of 1658.9 MPa, which translates into an extra force resolved on the glide plane that dislocations must overcome before they can penetrate SFTs. In fact, we see they do not, leading to two well differentiated regimes: (i) partial dislocation reactions, resulting in partial SFT damage, and (ii) impenetrable SFT resulting in the creation of Orowan loops. We obtain SFT strength maps as a function of dislocation glide plane-SFT intersection height, interaction orientation, and dislocation line length. In general SFTs are weaker obstacles the smaller the encountered triangular area is, which has allowed us to derive simple scaling laws with the slipped area as the only variable. These laws suffice to explain all strength curves and are used to derive a simple model of dislocation-SFT strength. The stresses required to break through obstacles in the 2.5-4.8-nm size range have been computed to be 100-300 MPa, in good agreement with some experimental estimations and molecular dynamics calculations. C1 [Martinez, E.; Marian, J.; Arsenlis, A.; Victoria, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Martinez, E.; Victoria, M.; Perlado, J. M.] Univ Politecn Madrid, Inst Fus Nucl, E-28040 Madrid, Spain. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM marian1@llnl.gov NR 67 TC 23 Z9 23 U1 8 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 809 EP 840 DI 10.1080/14786430801986662 PG 32 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400002 ER PT J AU Martinez, E Marian, J Perlado, JM AF Martinez, E. Marian, J. Perlado, J. M. TI A dislocation dynamics study of the strength of stacking fault tetrahedra. Part II: interactions with mixed and edge dislocations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE dislocation dynamics; irradiation damage; stacking-fault tetrahedron; mechanical properties; Cu ID ATOMISTIC SIMULATION; DEFECT INTERACTIONS; IRRADIATED METALS; SCALE; CU; MECHANISMS; CRYSTALS; COPPER AB In this paper we present the sequel to Part I and present a comprehensive dislocation dynamics study of the strength of stacking fault tetrahedra to mixed and edge dislocation glides in fcc Cu. C1 [Martinez, E.; Marian, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Martinez, E.; Perlado, J. M.] Univ Politecn Madrid, Inst Fus Nucl, E-28040 Madrid, Spain. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM marian1@llnl.gov NR 16 TC 10 Z9 10 U1 6 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 841 EP 863 DI 10.1080/14786430801986654 PG 23 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400003 ER PT J AU Khovaylo, V Kainuma, R Ishida, K Omori, T Miki, H Takagi, T Datesman, A AF Khovaylo, V. Kainuma, R. Ishida, K. Omori, T. Miki, H. Takagi, T. Datesman, A. TI New aspects of martensite stabilization in Ni-Mn-Ga high-temperature shape memory alloy SO PHILOSOPHICAL MAGAZINE LA English DT Article DE martensitic transformation; martensite stabilization; Heusler alloys; shape memory alloys; ageing ID RUBBER-LIKE BEHAVIOR; COMPOSITION DEPENDENCE; HEUSLER ALLOYS; POINT-DEFECTS; TRANSFORMATION; SYSTEM AB We report on new aspects of martensite stabilization in high-ternperature shape memory alloys. We show that, due to the difference in activation energies among various structural defects, an incomplete stabilization of martensite can be realized. In material aged at high temperatures, this gives rise to a variety of unusual features which are found to occur in the martensitic transformation. Specifically, it is shown that both forward and reverse martensitic transformations in a Ni-Mn-Ga high-temperature shape memory alloy can occur in two steps. The observed abnormal behaviour is evidence that, in certain circumstances, thermoelastic martensitic transformation can be induced by diffusion. C1 [Khovaylo, V.] RAS, Inst Radioengn & Elect, Moscow 125009, Russia. [Kainuma, R.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Ishida, K.; Omori, T.] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan. [Miki, H.; Takagi, T.] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan. [Datesman, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Khovaylo, V (reprint author), RAS, Inst Radioengn & Elect, Moscow 125009, Russia. EM v-khovaylo@cplire.ru RI Khovaylo, Vladimir/A-9706-2010; Kainuma, Ryosuke/I-6482-2013; Omori, Toshihiro/A-4478-2017; OI Khovaylo, Vladimir/0000-0001-7815-100X; Takagi, Toshiyuki/0000-0003-1283-4320 NR 29 TC 10 Z9 10 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 865 EP 882 DI 10.1080/14786430801986670 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400004 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Machado, AA Magnin, J Massafferri, A De Miranda, JM Pepe, IM Polycarpo, E Dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vasquez, F Agostino, L Cinquini, L Cumalat, JP Frisullo, V O'Reilly, B Segoni, I Stenson, K Tucker, RS Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwaki, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonorni, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Gobel, C Otalora, J Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, J. M. Yager, P. M. Anjos, J. C. Bediaga, I. Castromonte, C. Machado, A. A. Magnin, J. Massafferri, A. De Miranda, J. M. Pepe, I. M. Polycarpo, E. Dos Reis, A. C. Carrillo, S. Casimiro, E. Cuautle, E. Sanchez-Hernandez, A. Uribe, C. Vasquez, F. Agostino, L. Cinquini, L. Cumalat, J. P. Frisullo, V. O'Reilly, B. Segoni, I. Stenson, K. Tucker, R. S. Butler, J. N. Cheung, H. W. K. Chiodini, G. Gaines, I. Garbincius, P. H. Garren, L. A. Gottschalk, E. Kasper, P. H. Kreymer, A. E. Kutschke, R. Wang, M. Benussi, L. Bianco, S. Fabbri, F. L. Zallo, A. Reyes, M. Cawlfield, C. Kim, D. Y. Rahimi, A. Wiss, J. Gardner, R. Kryemadhi, A. Chung, Y. S. Kang, J. S. Ko, B. R. Kwaki, J. W. Lee, K. B. Cho, K. Park, H. Alimonti, G. Barberis, S. Boschini, M. Cerutti, A. D'Angelo, P. DiCorato, M. Dini, P. Edera, L. Erba, S. Inzani, P. Leveraro, F. Malvezzi, S. Menasce, D. Mezzadri, M. Moroni, L. Pedrini, D. Pontoglio, C. Prelz, F. Rovere, M. Sala, S. Davenport, T. F., III Arena, V. Boca, G. Bonorni, G. Gianini, G. Liguori, G. Pegna, D. Lopes Merlo, M. M. Pantea, D. Ratti, S. P. Riccardi, C. Vitulo, P. Goebel, C. Otalora, J. Hernandez, H. Lopez, A. M. Mendez, H. Paris, A. Quinones, J. Ramirez, J. E. Zhang, Y. Wilson, J. R. Handler, T. Mitchell, R. Engh, D. Hosack, M. Johns, W. E. Luiggi, E. Nehring, M. Sheldon, P. D. Vaandering, E. W. Webster, M. Sheaff, M. TI Study of Cabibbo suppressed decays of the D-s(+) charmed-strange meson involving a K-S(0) SO PHYSICS LETTERS B LA English DT Article ID FINAL-STATE INTERACTIONS; FOCUS SPECTROMETER; D+ AB We study the decay of D-s(+) mesons into final states involving a K-S(0) and report the discovery of Cabibbo suppressed decay modes D-s(+) --> K-S(0)pi(-)pi(+)pi(+) (179+/-36 events) and D-s(+) --> K-S(0)pi(+) (113+/-26 events). The branching fraction ratios for the new modes are Gamma(D-s(+) --> K-S(0)pi(-)pi(+)pi(+)) / Gamma(D-s(+) --> K-S(0)pi(-)pi(+)pi(+)) = 0.18+/-0.04+/-0.05 and Gamma(D-s(+) --> K-S(0)pi(+)) / Gamma(D-s(+) --> K-S(0)pi(+)) = 0.104+/-0.024+/-0.014. (C) 2008 Published by Elsevier B.V. C1 [Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Tucker, R. S.] Univ Colorado, Boulder, CO 80309 USA. [Link, J. M.; Yager, P. M.] Univ Calif Davis, Davis, CA 95616 USA. [Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; De Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vasquez, F.] CINVESTAV, Mexico City 07000, DF, Mexico. [Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Reyes, M.] Univ Guanajuato, Guanajuato 37150, Mexico. [Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.] Univ Illinois, Urbana, IL 61801 USA. [Gardner, R.; Kryemadhi, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwaki, J. W.; Lee, K. B.] Korea Univ, Seoul 136701, South Korea. [Cho, K.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Univ Milan, Milan, Italy. [Davenport, T. F., III] Univ N Carolina, Asheville, NC 28804 USA. [Arena, V.; Boca, G.; Bonorni, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Arena, V.; Boca, G.; Bonorni, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Goebel, C.; Otalora, J.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Handler, T.; Mitchell, R.] Univ Tennessee, Knoxville, TN 37996 USA. [Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.] Vanderbilt Univ, Nashville, TN 37235 USA. [Sheaff, M.] Univ Wisconsin, Madison, WI 53706 USA. RP Cumalat, JP (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM john.p.cumalat@colorado.edu RI Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016; Menasce, Dario Livio/A-2168-2016; OI Link, Jonathan/0000-0002-1514-0650; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X; Menasce, Dario Livio/0000-0002-9918-1686; bianco, stefano/0000-0002-8300-4124 NR 13 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 21 PY 2008 VL 660 IS 3 BP 147 EP 153 DI 10.1016/j.physletb.2007.12.050 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 270SF UT WOS:000253739800012 ER PT J AU Oyaizu, H Lima, M Cunha, CE Lin, H Frieman, J Sheldon, ES AF Oyaizu, Hiroaki Lima, Marcos Cunha, Carlos E. Lin, Huan Frieman, Joshua Sheldon, Erin S. TI A galaxy photometric redshift catalog for the sloan digital sky survey Data Release 6 SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; distance scale; galaxies : distances and redshifts; large-scale structure of universe ID SPECTROSCOPIC TARGET SELECTION; EARLY DATA RELEASE; SDSS; SYSTEM; CLASSIFICATION; TELESCOPE; MONITOR; SAMPLE; SPACE; FIELD AB We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6). We use the neural network (NN) technique to calculate photo-z's and the nearest neighbor error (NNE) method to estimate photo-z errors for similar to 77 million objects classified as galaxies in DR6 with r < 22. The photo-z and photo-z error estimators are trained and validated on a sample of similar to 640,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by SDSS, the Two Degree Field, the SDSS Luminous Red Galaxy and Quasi-stellar Object Survey (2SLAQ), the Canada-France Redshift Survey (CFRS), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Team Keck Redshift Survey (TKRS), the Deep Extragalactic Evolutionary Probe (DEEP), and DEEP2. For the two best NN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma(68) = 0.021 or 0.024. After presenting our results and quality tests, we provide a short guide for users accessing the public data. C1 [Oyaizu, Hiroaki; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Oyaizu, Hiroaki; Lima, Marcos; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Lima, Marcos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lin, Huan; Frieman, Joshua] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sheldon, Erin S.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Sheldon, Erin S.] NYU, Dept Phys, New York, NY 10003 USA. RP Oyaizu, H (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RI Lima, Marcos/E-8378-2010 NR 42 TC 116 Z9 116 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 768 EP 783 DI 10.1086/523666 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500012 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI On the virial theorem for interstellar medium SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM : clouds; ISM : kinematics and dynamics; ISM : magnetic fields ID MOLECULAR CLOUDS; MAGNETIC-FIELDS; DARK-MATTER; MILKY-WAY; STARS; MODEL; M16 AB An attempt has been made to derive a version of the virial integral that would describe average properties of the interstellar medium (ISM) at the scale similar to 1 kpc. The role of the dark matter is accounted for only via its effect on the global gravitational potential. It is suggested to eliminate the ( large) contribution of stellar matter by introducing "exclusion zones'' surrounding stars. Such an approach leads to the appearance of several types of additional surface integrals in the general expression. Their contribution depends on the rate of energy and matter exchange between the stars and ISM. If this exchange is weak, one can obtain a desired virial integral for the ISM. However, the presence of intermittent large-scale energetic events significantly constrains the applicability of the virial theorem. If valid, the derived virial integral for the ISM is dominated by cold molecular/atomic clouds, with only a minor contribution from the global magnetic field and low-density warm part. The main message of our study is that one has to be very cautious in applying the virial theorem to the ISM at large scales (of the order of thickness of the spiral arm). C1 [Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutov1@llnl.gov NR 25 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 976 EP 983 DI 10.1086/525521 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500025 ER PT J AU Trilling, DE Bryden, G Beichman, CA Rieke, GH Su, KYL Stansberry, JA Blaylock, M Stapelfeldt, KR Beeman, JW Haller, EE AF Trilling, D. E. Bryden, G. Beichman, C. A. Rieke, G. H. Su, K. Y. L. Stansberry, J. A. Blaylock, M. Stapelfeldt, K. R. Beeman, J. W. Haller, E. E. TI Debris disks around Sun-like stars SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared : stars; planetary systems : formation ID SOLAR-TYPE STARS; MAIN-SEQUENCE STARS; MULTIBAND IMAGING PHOTOMETER; SPITZER MIPS SURVEY; BOLOMETRIC CORRECTIONS; INFRARED PHOTOMETRY; PLANETARY SYSTEM; DWARF STARS; FGK STARS; F-DWARF AB We have observed nearly 200 FGK stars at 24 and 70 mu m with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is 4.2(-1.1)(+2.0)% at 24 mu m for a sample of 213 Sun-like (FG) stars and 16.4(-2.9)(+2.8)% at 70 mu m for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years. C1 [Trilling, D. E.; Rieke, G. H.; Su, K. Y. L.; Stansberry, J. A.; Blaylock, M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Bryden, G.; Beichman, C. A.; Stapelfeldt, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beeman, J. W.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Trilling, DE (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM trilling@as.arizona.edu RI Stapelfeldt, Karl/D-2721-2012; OI Su, Kate/0000-0002-3532-5580 NR 70 TC 184 Z9 185 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 1086 EP 1105 DI 10.1086/525514 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500035 ER PT J AU Padmanabhan, N Schlegel, DJ Finkbeiner, DP Barentine, JC Blanton, MR Brewington, HJ Gunn, JE Harvanek, M Hogg, DW Ivezic, Z Johnston, D Kent, SM Kleinman, SJ Knapp, GR Krzesinski, J Long, D Neilsen, EH Nitta, A Loomis, C Lupton, RH Roweis, S Snedden, SA Strauss, MA Tucker, DL AF Padmanabhan, Nikhil Schlegel, David J. Finkbeiner, Douglas P. Barentine, J. C. Blanton, Michael R. Brewington, Howard J. Gunn, James E. Harvanek, Michael Hogg, David W. Ivezic, Zeljko Johnston, David Kent, Stephen M. Kleinman, S. J. Knapp, Gillian R. Krzesinski, Jurek Long, Dan Neilsen, Eric H., Jr. Nitta, Atsuko Loomis, Craig Lupton, Robert H. Roweis, Sam Snedden, Stephanie A. Strauss, Michael A. Tucker, Douglas L. TI An improved photometric calibration of the sloan digital sky survey imaging data SO ASTROPHYSICAL JOURNAL LA English DT Article DE techniques : photometric ID LUMINOUS RED GALAXIES; LARGE MAGELLANIC CLOUD; DATA RELEASE; STANDARD STARS; CELESTIAL EQUATOR; SYSTEM; TELESCOPE; CATALOG; EXTINCTION; EMISSION AB We present an algorithm to photometrically calibrate wide-field optical imaging surveys, which simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of "relative'' calibrations from that of "absolute'' calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the SDSS imaging data, we achieve similar to 1% relative calibration errors across 8500 deg(2) in griz; the errors are similar to 2% for the u band. These errors are dominated by unmodeled atmospheric variations at Apache Point Observatory. These calibrations, dubbed "uber-calibration,'' are now public with SDSS Data Release 6 and will be a part of subsequent SDSS data releases. C1 [Padmanabhan, Nikhil; Schlegel, David J.] Lawrence Berkeley Natl Labs, Div Phys, Berkeley, CA 94720 USA. [Padmanabhan, Nikhil] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Schlegel, David J.; Finkbeiner, Douglas P.; Gunn, James E.; Johnston, David; Knapp, Gillian R.; Loomis, Craig; Lupton, Robert H.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Finkbeiner, Douglas P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barentine, J. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Barentine, J. C.; Brewington, Howard J.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H., Jr.; Nitta, Atsuko; Loomis, Craig; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Hogg, David W.] NYU, Dept Phys, New York, NY 10003 USA. [Ivezic, Zeljko] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Johnston, David] Jet Prop Lab, Pasadena, CA 91109 USA. [Kent, Stephen M.; Neilsen, Eric H., Jr.; Tucker, Douglas L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kleinman, S. J.] Subaru Telescope, Hilo, HI 96720 USA. [Krzesinski, Jurek] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Nitta, Atsuko] Gemini Observ, Hilo, HI 96720 USA. [Roweis, Sam] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada. RP Padmanabhan, N (reprint author), Lawrence Berkeley Natl Labs, Div Phys, Berkeley, CA 94720 USA. EM npadmanabhan@lbl.gov RI Padmanabhan, Nikhil/A-2094-2012; OI Tucker, Douglas/0000-0001-7211-5729; Hogg, David/0000-0003-2866-9403 NR 54 TC 323 Z9 323 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 1217 EP 1233 DI 10.1086/524677 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500048 ER PT J AU Hong, JM Jeong, MS Kim, JH Kim, BG Holbrook, SR Jang, SB AF Hong, Ji-Man Jeong, Mi Suk Kim, Jae Ho Kim, Boo Gil Holbrook, Stephen R. Jang, Se Bok TI Identification and functional analysis of SEDL-binding and homologue proteins by immobilized GST fusion and motif based methods SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE SEDL-binding proteins; immobilized GST fusion; motif analysis ID SPONDYLOEPIPHYSEAL DYSPLASIA-TARDA; MULTIPLE SEQUENCE ALIGNMENT; CRYSTAL-STRUCTURE; VESICLE DOCKING; MESSENGER-RNA; TRAPP; DATABASE; GOLGI; FORM; INTERACTS AB An X-linked skeletal disorder, SEDT (spondyloepiphyseal dysplasia tarda) is a genetic disease characterized by a disproportionately short trunk and short stature caused by mutations in the SEDL gene. This gene is evolutionarily conserved from yeast to human. The yeast SEDL protein ortholog, Trs20p, has been isolated as a member of a large multi-protein complex called the transport protein particle (TRAPP), which is involved in endoplasmic reticulum (ER)-to-Golgi transport. The interaction between SEDL and partner proteins is important in order to understand the molecular mechanism of SEDL functions. We isolated several SEDL-binding proteins derived from rat cells by an immobilized GST-fusion method. Furthermore, the SEDL-homologue proteins were identified using motif based methods. Common motifs between SEDL-binding proteins and SEDL-homologue proteins were classified into seven types and 78 common motifs were revealed. Sequence similarities were contracted to seven types using phylogenetic trees. In general, types I-III and VI were classified as having the function of acetyl-CoA carboxylase, glycogen phosphorylase, isocitrate dehydrogenase, and enolase, respectively, and type IV was found to be functionally related to the GST protein. Types V and VII were found to contribute to TRAPP vesicle trafficking. C1 [Hong, Ji-Man; Jang, Se Bok] Pusan Natl Univ, Dept Mol Biol, Pusan 609735, South Korea. [Jeong, Mi Suk] Dongseo Univ, Adv Sci & Technol Res Ctr, Pusan 617716, South Korea. [Kim, Jae Ho] Pusan Natl Univ, Dept Physiol, Coll Med, Pusan 602739, South Korea. [Kim, Boo Gil] Dongseo Univ, Div Architecture & Civil Engn, Pusan 617716, South Korea. [Holbrook, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Biol Struct, Phys Biosci Div, Berkeley, CA 94720 USA. RP Jang, SB (reprint author), Pusan Natl Univ, Dept Mol Biol, Pusan 609735, South Korea. EM sbjang@pusan.ac.kr NR 44 TC 3 Z9 3 U1 0 U2 2 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOREAN CHEM SOC JI Bull. Korean Chem. Soc. PD FEB 20 PY 2008 VL 29 IS 2 BP 381 EP 388 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 293OR UT WOS:000255345100020 ER PT J AU Minitti, ME Leshin, LA Dyar, MD Ahrens, TJ Guan, Y Luo, SN AF Minitti, Michelle E. Leshin, Laurie A. Dyar, M. Darby Ahrens, Thomas J. Guan, Yunbin Luo, Sheng-Nian TI Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic amphibole experiments SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; Martian meteorites; amphibole; impact shock; hydrogen isotopes ID IMPLANTED NOBLE-GASES; INDUCED DEVOLATILIZATION; MARTIAN METEORITE; FRACTIONATION; MANTLE; SERPENTINE; MINERALS; EXCHANGE; ROCKS AB To constrain the influence of impact shock on water and hydrogen isotope signatures of Martian meteorite kaersutites, we conducted shock recovery experiments on three terrestrial kaersutite crystals. Homogeneous impact shock to 32 GPa, commensurate with shock levels experienced by Martian meteorite kaersutites, led to increases in kaersutite water contents (Delta H2O-0.25-0.89 wt. %), decreases in Fe3+/Sigma Fe (4-20%), and enrichments in hydrogen isotope composition (Delta D=+66 to +87 parts per thousand) relative to pre-shock values. The latter values represent the largest shock-induced hydrogen isotope fractionations measured to date. These observations are explained most completely by a two-step shock process. First, shock-induced devolatilization led to hydrogen isotope enrichment through preferential loss of H relative to D. Second, reaction of the kaersutite with the ambient atmosphere led to increased water contents and reduced Fe. Fe reduction and water addition via the reaction Fe2+ + OH- <-> Fe3+ + O2- + 1/2H(2) explain the Fe3+/Sigma Fe data and some of the water data, Further water addition mechanisms (irreversible adsorption, shock implantation) are necessary to fully explain the increased water contents. Addition of water from the terrestrial atmosphere, which is isotopically light relative to the experimental kaersutite compositions, means the measured hydrogen isotope enrichments are likely minima. The measured (minimum) levels of hydrogen isotope enrichment are relevant to the hydrogen isotope variability within and among Martian kaersutites, but are minor relative to their absolute delta D values. Alternatively, addition of water from the enriched Martian atmosphere could explain both Martian kaersutite hydrogen isotope variability and absolute 6D values. However, the low Martian kaersutite water contents leave little room for significant water addition. The importance of the ambient atmosphere to the outcome of the shock experiments makes it difficult to translate our results to Mars given the unknown influence of its more tenuous atmosphere on the processes observed in the experiments. Our results suggest that shock is a feasible mechanism for influencing C1 [Minitti, Michelle E.] Arizona State Univ, Res Earth & Space Explorat, Ctr Meteorite Studies, Tempe, AZ 85287 USA. [Leshin, Laurie A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dyar, M. Darby] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Ahrens, Thomas J.; Guan, Yunbin] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Luo, Sheng-Nian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Minitti, ME (reprint author), Arizona State Univ, Res Earth & Space Explorat, Ctr Meteorite Studies, Tempe, AZ 85287 USA. EM minitti@asu.edu RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 NR 29 TC 11 Z9 11 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD FEB 20 PY 2008 VL 266 IS 3-4 BP 288 EP 302 DI 10.1016/j.epsl.2007.11.012 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 271QC UT WOS:000253802800006 ER PT J AU McClarren, RG Holloway, JP Brunner, TA AF McClarren, Ryan G. Holloway, James Paul Brunner, Thomas A. TI On solutions to the P-n equations for thermal radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE thermal radiation transport; P-n approximation; nonlinear solver; implicit time integration ID RIEMANN SOLVERS; DIFFUSION; TRANSPORT; P-1 AB We present results for the spherical harmonics (P-n) method for solving problems of time-dependent thermal radiative transport, We prove a theorem that demonstrates that in the streaming limit, the spatially and temporally continuous P-n equations will allow negative energy densities for any finite order of n. We also develop an implicit numerical method for solving the P-n equations to explore the impact of the theorem. The numerical method uses a high-resolution Riemann solver to produce an upwinded discretization. We employ a quasi-linear approach to integrate the nonlinearites added to make the scheme non-oscillatory. We use the backward Euler method for time integration and treat the material interaction terms fully nonlinearly. Reflecting boundary conditions for the P-n equations are presented and we show how to implement this boundary condition using ghost cells. The implicit method was able to produce robust results to thermal transport problems in one and two dimensions. The numerical method is used to analyze the accuracy of various P-n expansion orders on several problems. In two-dimensional problems the numerical P-n solutions contained negative radiation energy densities as predicted by our theorem. The numerical results showed that the material temperature also became negative, a result outside the scope of the theorem. Our numerical method can handle these negative values, but they would cause problems in a radiation-hydrodynamics calculation. Published by Elsevier Inc. C1 [McClarren, Ryan G.] Los Alamos Natl Lab, Computat Phys & Method Grp, Los Alamos, NM 87545 USA. [Holloway, James Paul] Univ Michigan, Coll Engn, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Brunner, Thomas A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McClarren, RG (reprint author), Los Alamos Natl Lab, Computat Phys & Method Grp, POB 1663,MS D413, Los Alamos, NM 87545 USA. EM ryanmc@lanl.gov NR 21 TC 24 Z9 24 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 20 PY 2008 VL 227 IS 5 BP 2864 EP 2885 DI 10.1016/j.jcp.2007.11.027 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 268SC UT WOS:000253598700007 ER PT J AU Comolli, LR Spakowitz, AJ Siegerist, CE Jardine, PJ Grimes, S Anderson, DL Bustamante, C Downing, KH AF Comolli, Luis R. Spakowitz, Andrew J. Siegerist, Cnistina E. Jardine, Paul J. Grimes, Shelley Anderson, Dwight L. Bustamante, Carlos Downing, Kenneth H. TI Three-dimensional architecture of the bacteriophage phi 29 packaged genome and elucidation of its packaging process SO VIROLOGY LA English DT Article DE DNA packaging; cryo-electron microscopy; bacteriophage structure; Monte Carlo; phi 29 ID DOUBLE-STRANDED DNA; CRYOELECTRON MICROSCOPY; FLOW DICHROISM; VIRAL CAPSIDS; ORGANIZATION; MODEL; PACKING; FORCE; T7; ARRANGEMENT AB The goal of the work reported here is to understand the precise molecular mechanism of the process of DNA packaging in dsDNA bacteriophages. Cryo-EM was used to directly visualize the architecture of the DNA inside the capsid and thus to measure fundamental physical parameters such as inter-strand distances, local curvatures, and the degree of order. We obtained cryo-EM images of bacteriophage that had packaged defined fragments of the genome as well as particles that had partially completed the packaging process. The resulting comparison of structures observed at intermediate and final stages shows that there is no unique, deterministic DNA packaging pathway. Monte Carlo simulations of the packaging process provide insights on the forces involved and the resultant structures. (C) 2007 Elsevier Inc. All rights reserved. C1 [Comolli, Luis R.; Downing, Kenneth H.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Spakowitz, Andrew J.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Siegerist, Cnistina E.] Lawrence Berkeley Natl Lab, Sci Visualizat Grp, Berkeley, CA 94720 USA. [Jardine, Paul J.; Grimes, Shelley; Anderson, Dwight L.] Univ Minnesota, Dept Diagnost & Biol Sci, Minneapolis, MN 55455 USA. [Anderson, Dwight L.] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA. [Bustamante, Carlos] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Downing, KH (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM KHDowning@lbl.gov FU NIDCR NIH HHS [DE03606]; NIGMS NIH HHS [GM051487] NR 41 TC 56 Z9 56 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD FEB 20 PY 2008 VL 371 IS 2 BP 267 EP 277 DI 10.1016/j.virol.2007.07.035 PG 11 WC Virology SC Virology GA 261DV UT WOS:000253060200007 PM 18001811 ER PT J AU Opresko, DM Loiola, LD AF Opresko, D. M. Loiola, L. de Laia TI Two new species of Chrysopathes (Cnidaria : Anthozoa : Antipatharia) from the western Atlantic SO ZOOTAXA LA English DT Article DE Cladopathidae; Chrysopathes oligocrada; Chrysopathes micracantha; Yucatan; Mexico; United States; Brazil AB Two new species of Chrysopathes are described, C. oligocrada from Yucatan and Brazil, and C. micracantha from the southeastern coast of the U. S. and Brazil. Chrysopathes oligocrada is characterized by lateral pinnules mostly 7-8 mm long (to 2 cm); 18-21 primary pinnules per cm; anterior-most primary pinnules with no more than one secondary pinnule (absent on some); some posterior primaries with a single secondary pinnule; lateral primary pinnules usually simple, rarely with a single subpinnule; tertiary pinnules absent; pinnular spines to 0.07 mm. This species is similar to C. formosa Opresko 2003 from the Pacific; the latter species differing in density of pinnulation (15-18 per cm) and size of the spines (to 0.16 mm). Chrysopathes micracantha is characterized by lateral pinnules mostly 5-6 mm long (to 2 cm); 24 33 primary pinnules per cm; anterior and posterior primary pinnules with as many as two subopposite secondary pinnules; lateral primary pinnules usually simple but with subpinnules on the thicker branches and stem; tertiary pinnules rarely present; pinnular spines to 0.1 mm. Chrysopathes micracantha is similar to C. speciosa Opresko 2003 from the Pacific, the latter species differing in a greater number of secondary pinnules per primary (three or more) and in size of the spines (to 0.18 mm). C1 [Opresko, D. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Loiola, L. de Laia] Arraial Dajuda Eco Parque, Projeto Coral Vivo, BR-45816000 Porto Seguro, BA, Brazil. RP Opresko, DM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1060 Commerce Pk, Oak Ridge, TN 37830 USA. EM opreskodm@ornl.gov; livialoiola@hotmail.com NR 9 TC 1 Z9 1 U1 1 U2 3 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND SN 1175-5326 EI 1175-5334 J9 ZOOTAXA JI Zootaxa PD FEB 20 PY 2008 IS 1707 BP 49 EP 59 PG 11 WC Zoology SC Zoology GA 266GZ UT WOS:000253423800004 ER PT J AU Bamba, A Fukazawa, Y Hiraga, JS Hughes, JP Katagiri, H Kokubun, M Koyama, K Miyata, E Mizuno, T Mori, K Nakajima, H Ozaki, M Petre, R Takahashi, H Takahashi, T Tanaka, T Terada, Y Uchiyama, Y Watanabe, S Yamaguch, H AF Bamba, Aya Fukazawa, Yasushi Hiraga, Junko S. Hughes, John P. Katagiri, Hideaki Kokubun, Motohide Koyama, Katsuji Miyata, Emi Mizuno, Tsunefumi Mori, Koji Nakajima, Hiroshi Ozaki, Masanobu Petre, Rob Takahashi, Hiromitsu Takahashi, Tadayuki Tanaka, Takaaki Terada, Yukikatsu Uchiyama, Yasunobu Watanabe, Shin Yamaguch, Hiroya TI Suzaku wide-band observations of SN 1006 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE acceleration of particles; ISM : individual (SN 1006); X-rays : ISM ID SUPERNOVA REMNANT SN-1006; X-RAY-DETECTOR; BOARD SUZAKU; PARTICLE-ACCELERATION; SHOCK ACCELERATION; ELECTRONS; EMISSION; MAXIMUM; CHANDRA; SN1006 AB We report on the wide-band spectra of SN 1006, as observed by Suzaku. Thermal and nonthermal emissions were successfully resolved thanks to the excellent spectral response of Suzaku's X-ray CCD XIS. The nonthermal emission could not be reproduced by a simple power-law model, but needed a roll-off at 5.7 x 10(16) Hz = 0.23 keV. The roll-off frequency is significantly higher in the northeastern rim than in the southwestern rim. We also placed the most stringent upper limit of the flux above 10 keV using the Hard X-ray Detector. C1 [Bamba, Aya; Ozaki, Masanobu; Takahashi, Tadayuki; Uchiyama, Yasunobu; Watanabe, Shin] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Hiraga, Junko S.] RIKEN, Cosm Radiat Grp, Wako, Saitama 3510198, Japan. [Fukazawa, Yasushi; Katagiri, Hideaki] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Koyama, Katsuji; Yamaguch, Hiroya] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. [Miyata, Emi; Nakajima, Hiroshi] Osaka Univ, Fac Sci, Dept Astrophys, Osaka 5600043, Japan. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys, Miyazaki 8892192, Japan. [Petre, Rob] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tanaka, Takaaki] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Terada, Yukikatsu] Saitama Univ, Sch Sci, Dept Phys, Saitama 3388570, Japan. RP Bamba, A (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM bamba@astro.isas.jaxa.jp RI Terada, Yukikatsu/A-5879-2013; Ozaki, Masanobu/K-1165-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 40 TC 30 Z9 30 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S153 EP S161 DI 10.1093/pasj/60.sp1.S153 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700016 ER PT J AU Itoh, T Done, C Makishima, K Madejski, G Awaki, H Gandhi, P Isobe, N Dewangan, GC Griffthis, RE Anabuki, N Okajima, T Reeves, JN Takahashi, T Ueda, Y Eguchi, S Yaqoob, T AF Itoh, Takeshi Done, Chris Makishima, Kazuo Madejski, Grzegorz Awaki, Hisamitsu Gandhi, Poshak Isobe, Naoki Dewangan, Gulab C. Griffthis, Richard E. Anabuki, Naohisa Okajima, Takashi Reeves, James N. Takahashi, Tadayuki Ueda, Yoshihiro Eguchi, Satohi Yaqoob, Tahir TI Suzaku wide-band X-ray spectroscopy of the Seyfert 2 AGN in NGC 4945 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies : active; galaxies : individual (NGC 4945); galaxies : Seyfert; X-rays : galaxies ID ACTIVE GALACTIC NUCLEI; NGC 4945; XMM-NEWTON; ASCA OBSERVATIONS; GALAXY NGC-4945; BOARD SUZAKU; EMISSION; SPECTRA; IRON; BEPPOSAX AB Suzaku observed a nearby Seyfert 2 galaxy, NGC 4945, which hosts one of the brightest active galactic nuclei above 20keV. Combining data from the two detectors aboard Suzaku, the AGN intrinsic nuclear emission and its reprocessed signals were observed simultaneously. The intrinsic emission is highly obscured with an absorbing column of similar to 5 X 10(24) CM-2. The spectrum below 10 keV is dominated by a reflection continuum and emission lines from neutral/ionized material. Along with a neutral iron K alpha line, a neutral iron K alpha line and a neutral nickel Ka line were detected for the first time from this source. The neutral lines and the cold reflection continuum are consistent with both originating in the same location. The Compton down-scattered shoulder in the neutral Fe-K alpha line is similar to 10% in flux of the narrow core, which confirms that the line originates from reflection, rather than transmission. The flux of the intrinsic emission varied by a factor of similar to 2 within similar to 20 ks, which requires the obscuring material to be geometrically thin. Broadband spectral modeling showed that the solid angle of the neutral reflector is less than a few x 10(-2) x 2 pi. All of this evidence regarding the reprocessed signals suggests that a disk-like absorber/reflector is viewed from a near edge-on angle. C1 [Itoh, Takeshi; Makishima, Kazuo] Univ Tokyo, Fac Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Done, Chris] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Makishima, Kazuo; Gandhi, Poshak; Isobe, Naoki] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Madejski, Grzegorz] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Awaki, Hisamitsu] Ehime Univ, Dept Phys & Astron, Matsuyama, Ehime 7908577, Japan. [Dewangan, Gulab C.; Griffthis, Richard E.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Anabuki, Naohisa] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Okajima, Takashi; Reeves, James N.] NASA, Goddard Space Flight Ctr, Explorat Universe Div, Greenbelt, MD 20771 USA. [Okajima, Takashi; Reeves, James N.; Yaqoob, Tahir] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Takahashi, Tadayuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ueda, Yoshihiro; Eguchi, Satohi] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Yaqoob, Tahir] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Itoh, T (reprint author), Univ Tokyo, Fac Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM titoh@amalthea.phys.s.u-tokyo.ac.jp RI XRAY, SUZAKU/A-1808-2009; done, chris/D-4605-2016 OI done, chris/0000-0002-1065-7239 NR 69 TC 37 Z9 37 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S251 EP S261 DI 10.1093/pasj/60.sp1.S251 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700026 ER PT J AU Takahashi, T Tanaka, T Uchiyama, Y Hiraga, JS Nakazawa, K Watanabe, S Bamba, A Hughes, JP Katagiri, H Kataoka, J Kokubun, M Koyama, K Mori, K Petre, R Takahashi, H Tsuboi, Y AF Takahashi, Tadayuki Tanaka, Takaaki Uchiyama, Yasunobu Hiraga, Junko S. Nakazawa, Kazuhiro Watanabe, Shin Bamba, Aya Hughes, John P. Katagiri, Hideaki Kataoka, Jun Kokubun, Motohide Koyama, Katsuji Mori, Koji Petre, Robert Takahashi, Hiromitsu Tsuboi, Yoko TI Measuring the broad-band X-ray spectrum from 400 eV to 40 keV in the southwest part of the supernova remnant RX J1713.7-3946 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE acceleration of particles; ISM : individual (RX J1713.7-3946); ISM : supernova remnants; X-rays : ISM ID DIFFUSIVE SHOCK ACCELERATION; MONTE-CARLO SIMULATOR; MAGNETIC-FIELD; BOARD SUZAKU; COSMIC-RAYS; HIGH-ENERGY; DETECTOR HXD; XMM-NEWTON; SHELL; EMISSION AB We report on results from Suzaku broadband X-ray observations of the southwest part of the galactic supernova remnant (SNR) RX J1713.7-3946 with an energy coverage of 0.4-40keV. The X-ray spectrum, presumably of synchrotron origin, is known to be completely lineless, making this SNR ideally suited for a detailed study of the X-ray spectral shape formed through efficient particle acceleration at high-speed shocks. With a sensitive hard X-ray measurement from the HXD PIN aboard Suzaku, we determined the hard X-ray spectrum in the 12-40 keV range to be described by a power law with photon index of Gamma = 3.2 +/- 0.2, significantly steeper than the soft X-ray index of Gamma = 2.4 +/- 0.05 measured previously with ASCA and other missions. We find that a simple power law fails to describe the full spectral range of 0.4-40 keV, and instead a power-law with an exponential cutoff with a hard index of Gamma = 1.50 +/- 0.09 and a high-energy cutoff of epsilon(c) = 1.2 +/- 0.3 keV formally provides an excellent fit over the full bandpass. If we use the so-called SRCUT model, as an alternative model, it gives a best-fit rolloff energy of epsilon(roll) = 0.95 +/- 0.04 keV. Together with the TeV gamma-ray spectrum, ranging from 0.3 to 100 TeV, recently obtained by HESS observations, our Suzaku observations of RX J1713.7-3946 provide stringent constraints on the highest-energy particles accelerated in a supernova shock. C1 [Takahashi, Tadayuki; Tanaka, Takaaki; Uchiyama, Yasunobu; Watanabe, Shin; Bamba, Aya; Kokubun, Motohide] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Takahashi, Tadayuki; Nakazawa, Kazuhiro; Watanabe, Shin] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Tanaka, Takaaki] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Hiraga, Junko S.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Katagiri, Hideaki; Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Koyama, Katsuji] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kataoka, Jun] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Mori, Koji] Miyazaki Univ, Dept Appl Phys, Miyazaki 8892198, Japan. [Petre, Robert] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Tsuboi, Yoko] Chuo Univ, Dept Phys, Bunkyo Ku, Tokyo 1128551, Japan. RP Takahashi, T (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. RI XRAY, SUZAKU/A-1808-2009 NR 45 TC 32 Z9 32 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S131 EP S140 DI 10.1093/pasj/60.sp1.S131 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700014 ER PT J AU Terada, Y Enoto, T Miyawaki, R Ishisaki, Y Dotani, T Ebisawa, K Ozaki, M Ueda, Y Kuiper, L Endo, M Fukazawa, Y Kamae, T Kawaharada, M Kokubun, M Kuroda, Y Makishinia, K Masukawa, K Mizuno, T Murakami, T Nakazawa, K Nakajima, A Nomach, M Shibayama, N Takahash, T Takahashi, H Tashiro, MS Tamagawa, T Watanabe, S Yamaguchi, M Yamaoka, K Yonetoku, D AF Terada, Yukikatsu Enoto, Teruaki Miyawaki, Ryouhei Ishisaki, Yoshitaka Dotani, Tadayasu Ebisawa, Ken Ozaki, Masanobu Ueda, Yoshihiro Kuiper, Lucien Endo, Manabu Fukazawa, Yasushi Kamae, Tsuneyoshi Kawaharada, Madoka Kokubun, Motohide Kuroda, Yoshikatsu Makishinia, Kazuo Masukawa, Kazunori Mizuno, Tsunefumi Murakami, Toshio Nakazawa, Kazuhiro Nakajima, Atsushi Nomach, Masaharu Shibayama, Naoki Takahash, Tadayuki Takahashi, Hiromitsu Tashiro, Makoto S. Tamagawa, Toru Watanabe, Shin Yamaguchi, Makio Yamaoka, Kazutaka Yonetoku, Daisuke TI In-orbit timing calibration of the hard X-ray detector on board Suzaku SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE space vehicles : instruments; time; X-rays : general ID HXD-II; CRAB PULSAR; PERFORMANCE; ASTRO-E2 AB The hard X-ray detector (HXD) aboard the X-ray satellite Suzaku is designed to have a good timing capability with a 61 its time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and the performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of 1.9 x 10(-9) s s(-1) per day, and the absolute timing was confirmed to be accurate to 360 mu s or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift. C1 [Terada, Yukikatsu; Tashiro, Makoto S.] Saitama Univ, Sch Sci, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Enoto, Teruaki; Miyawaki, Ryouhei; Makishinia, Kazuo; Nakazawa, Kazuhiro] Univ Tokyo, Sch Sci, Dept Phys, Tokyo 1130033, Japan. [Ishisaki, Yoshitaka] Tokyo Metroporitan Univ, Dept Phys, Tokyo 1920397, Japan. [Dotani, Tadayasu; Ebisawa, Ken; Ozaki, Masanobu; Kokubun, Motohide; Takahash, Tadayuki; Watanabe, Shin] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Kuiper, Lucien] SRON, Natl Space Res Lab, NL-3584 CA Utrecht, Netherlands. [Endo, Manabu; Kuroda, Yoshikatsu; Masukawa, Kazunori; Nakajima, Atsushi; Shibayama, Naoki; Yamaguchi, Makio] Mitsubishi Heavy Ind Co Ltd, Aichi 4858561, Japan. [Fukazawa, Yasushi; Mizuno, Tsunefumi; Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Kamae, Tsuneyoshi] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Kawaharada, Madoka; Makishinia, Kazuo; Tamagawa, Toru] RIKEN, Makishima Cosm Radiat Lab, Saitama 3510198, Japan. [Murakami, Toshio; Yonetoku, Daisuke] Kanazawa Univ, Fac Sci, Dept Phys, Kanazawa, Ishikawa 9201192, Japan. [Nomach, Masaharu] Osaka Univ, Grad Sch Sci, Dept Phys, Osaka 5600043, Japan. [Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. RP Terada, Y (reprint author), Saitama Univ, Sch Sci, Dept Phys, Sakura Ku, 255 Shimo Ohkubo, Saitama 3388570, Japan. EM terada@phys.saitama-u.ac.jp RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Ozaki, Masanobu/K-1165-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 17 TC 29 Z9 29 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S25 EP S33 DI 10.1093/pasj/60.sp1.S25 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700003 ER PT J AU Augustine, AJ Kragh, ME Sarangi, R Fujii, S Liboiron, BD Stoj, CS Kosman, DJ Hodgson, KO Hedman, B Solomon, EI AF Augustine, Anthony J. Kragh, Mads Emil Sarangi, Ritimukta Fujii, Satoshi Liboiron, Barry D. Stoj, Christopher S. Kosman, Daniel J. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. TI Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: Allosteric coupling between the T1 and trinuclear Cu sites SO BIOCHEMISTRY LA English DT Article ID COPPER ACTIVE-SITE; MAGNETIC CIRCULAR-DICHROISM; RESONANCE RAMAN-SPECTRA; RAY ABSORPTION-EDGE; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; NATIVE LACCASE; ASCORBATE OXIDASE; IRON UPTAKE; PROTEINS AB The multicopper oxidases catalyze the 4e(-) reduction of O-2 to H2O coupled to the 1e(-) oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O-2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to G1n to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover. C1 [Stoj, Christopher S.; Kosman, Daniel J.] SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA. [Augustine, Anthony J.; Kragh, Mads Emil; Sarangi, Ritimukta; Fujii, Satoshi; Liboiron, Barry D.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Kragh, Mads Emil] Univ Copenhagen, Fac Life Sci, Dept Nat Sci, Copenhagen, Denmark. [Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Kosman, DJ (reprint author), SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA. EM camkos@buffalo.edu; edward.solomon@stanford.edu FU NCRR NIH HHS [RR-01209]; NIDDK NIH HHS [DK31450, DK53820] NR 57 TC 31 Z9 34 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 19 PY 2008 VL 47 IS 7 BP 2036 EP 2045 DI 10.1021/bi7020052 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261TD UT WOS:000253102000021 PM 18197705 ER PT J AU Chylek, P Lohmann, U AF Chylek, Petr Lohmann, Ulrike TI Aerosol radiative forcing and climate sensitivity deduced from the last glacial maximum to Holocene transition SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MODEL; DUST; GCM AB We use the temperature, carbon dioxide, methane, and dust concentration record from the Vostok ice core to deduce the aerosol radiative forcing during the Last Glacial Maximum (LGM) to Holocene transition and the climate sensitivity. A novel feature of our analysis is the use of a cooling period between about 42 KYBP (thousand years before present) and LGM to provide a constraint on the aerosol radiative forcing. We find the change in aerosol radiative forcing during the LGM to Holocene transition to be 3.3 +/- 0.8 W/m(2) and the climate sensitivity between 0.36 and 0.68 K/Wm(-2) with a mean value of 0.49 +/- 0.07 K/ Wm(-2). This suggests a 95% likelihood of warming between 1.3 and 2.3 K due to doubling of atmospheric concentration of CO2. The ECHAM5 model simulation suggests that the aerosol optical depth during the LGM may have been almost twice the current value (increase from 0.17 to 0.32). C1 [Chylek, Petr] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lohmann, Ulrike] ETH, Inst Atmospher & Climate Sci, CH-8093 Zurich, Switzerland. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Lohmann, Ulrike/B-6153-2009 OI Lohmann, Ulrike/0000-0001-8885-3785 NR 21 TC 20 Z9 21 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 19 PY 2008 VL 35 IS 4 AR L04804 DI 10.1029/2007GL032759 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 267TA UT WOS:000253530900006 ER PT J AU Moore, NW Mulder, DJ Kuhl, TL AF Moore, Nathan W. Mulder, Dennis J. Kuhl, Tonya L. TI Adhesion from tethered ligand-receptor bonds with microsecond lifetimes SO LANGMUIR LA English DT Article ID SURFACE FORCES APPARATUS; LONG-RANGE ATTRACTION; MOLECULAR RECOGNITION; ENERGY LANDSCAPES; PDBBIND DATABASE; POLYMER; SPECTROSCOPY; STRENGTH; INTERFEROMETRY; STREPTAVIDIN AB According to classical thermodynamics, biological ligand-receptor bonds should have a median lifetime of about 2 ms, and nearly half should have lifetimes of nanoseconds to microseconds. As a result, it is clear that many "weak" bonds are indispensable for cellular adhesion, signaling, and other critical events. However, the forces required to rupture such weak bonds and the adhesion they provide between surfaces are largely unknown because of their propensity to dissociate rapidly from a measuring probe. To measure such weak bond forces quantitatively, we followed nature's example of adhering surfaces with many weak ligand-receptor bonds. Analogously to how multiplicity promotes stronger adhesion between cellular membranes, multiple bonds created significant adhesion between model cellular surfaces. Specifically, we used an automated surface forces apparatus to measure the adhesion between complementary surfaces bearing dense populations of streptavidin receptors and flexible PEG tethers that each anchored a weakly binding ligand (HABA, or 2-(4-hydroxyphenylazo) benzoic acid). We show that this short-lived bond (< 100 mu s) leads to low forces of dissociation and only a small fraction being simultaneously bound. These results are significant because the HABA-streptavidin bond energy (similar to 10.5k(B)T) is similar to the average found in nature (14.7k(B)T)The measurements exemplify how a single ligand-receptor bond may fall apart and rejoin many times before completing a cellular function yet can still exhibit strength in numbers. C1 [Mulder, Dennis J.; Kuhl, Tonya L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Moore, Nathan W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kuhl, TL (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM tlkuhl@ucdavis.edu NR 54 TC 16 Z9 16 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1212 EP 1218 DI 10.1021/la702202x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900013 PM 18081329 ER PT J AU Blanchette, CD Orme, CA Ratto, TV Longo, ML AF Blanchette, Craig D. Orme, Christine A. Ratto, Timothy V. Longo, Marjorie L. TI Quantifying growth of symmetric and asymmetric lipid bilayer domains SO LANGMUIR LA English DT Article ID GIANT UNILAMELLAR VESICLES; ATOMIC-FORCE MICROSCOPY; LINE TENSION; FLUORESCENCE MICROSCOPY; LATERAL DIFFUSION; CELL-MEMBRANES; PHASE; CHOLESTEROL; MIXTURES; PROTEINS AB Here, we examine by atomic force microscopy (AFM) the kinetics and morphology of lipid domain growth during lipid phase separation by rapid thermal cooling of fully mixed two-component supported lipid bilayers. At the undercooled temperatures chosen, symmetric 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-rich domains favored slower reaction-limited growth whereas asymmetric galactosylceramide (GalCer)-rich domains favored faster diffusion-limited growth, indicated by shape factors and kinetic exponents. Because kinetically limited conditions could be accessed, we were able to estimate the activation energy barrier (similar to 16 kT) and lateral diffusion coefficient (similar to 0.20 mu m(2)/S) of lipid molecular addition to a growing domain. We discuss these results with respect to transition states, obstructed diffusion, and the necessity for coordinating growth in both leaflets in a symmetric lipid domain. C1 [Orme, Christine A.; Longo, Marjorie L.] Univ Calif Davis, Coll Biol Sci, Dept Chem & Mat Engn, Biophys Grad Grp, Davis, CA 95616 USA. [Blanchette, Craig D.; Ratto, Timothy V.] Lawrence Livermore Natl Lab, Biophys & Interfacial Sci Grp, Livermore, CA 94550 USA. RP Longo, ML (reprint author), Univ Calif Davis, Coll Biol Sci, Dept Chem & Mat Engn, Biophys Grad Grp, Davis, CA 95616 USA. EM mllongo@ucdavis.edu RI Orme, Christine/A-4109-2009; Wunder, Stephanie/B-5066-2012; Zdilla, Michael/B-4145-2011 FU NIGMS NIH HHS [T32 GM 08799] NR 26 TC 36 Z9 36 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1219 EP 1224 DI 10.1021/la702364g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900014 PM 18062709 ER PT J AU Chandross, M Lorenz, CD Stevens, MJ Grest, GS AF Chandross, Michael Lorenz, Christian D. Stevens, Mark J. Grest, Gary S. TI Simulations of nanotribology with realistic probe tip models SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATIONS; SCANNING FORCE MICROSCOPY; FRICTIONAL-PROPERTIES; TRIBOLOGICAL PROPERTIES; ALKANE MONOLAYERS; SLIDING FRICTION; CHAIN-LENGTH; SILICON; VELOCITY AB We present the results of massively parallel molecular dynamics simulations aimed at understanding the nanotribological properties of alkylsilane self-assembled monolayers (SAMs) on amorphous silica. In contrast to studies with opposing flat plates, as found in the bulk of the simulation literature, we use a model system with a realistic AFM tip (radius of curvature ranging from 3 to 30 nm) in contact with a SAM-coated silica substrate. We compare the differences, in response between systems in which chains are fully physisorbed, fully chemisorbed, and systems with a mixture of the two. Our results demonstrate that the ubiquitous JKR and DMT models do not accurately describe the contact mechanics of these systems. In shear simulations, we find that the chain length has minimal effects on both the friction force and coefficient. The tip radius affects the friction force only (i.e., the coefficient is unchanged) by a constant shift in magnitude due to the increase in pull-off force with increasing radius. We also find that at extremely low loads, on the order of 10 nN, shearing from the tip causes damage to the physisorbed monolayers by removal of molecules. C1 [Chandross, Michael; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, London WC2R 2LS, England. RP Chandross, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mechand@sandia.gov RI Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 NR 49 TC 81 Z9 83 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1240 EP 1246 DI 10.1021/la702323y PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900017 PM 18184018 ER PT J AU Tomasi, D Chang, L Caparelli, EC Ernst, T AF Tomasi, D. Chang, L. Caparelli, E. C. Ernst, T. TI Sex differences in sensory gating of the thalamus during auditory interference of visual attention tasks SO NEUROSCIENCE LA English DT Article DE acoustic noise; fMRI; gender; connectivity; thalamic; volumetric ID WORKING-MEMORY TASK; FMRI-ACOUSTIC NOISE; GENDER-DIFFERENCES; BRAIN ACTIVATION; 4 TESLA; FUNCTIONAL-ORGANIZATION; SELECTIVE ATTENTION; SPATIAL MEMORY; BOLD FMRI; MECHANISMS AB Men and women have different cognitive abilities that might reflect sex-specific neural organization. Here we studied sex effects on brain function using functional magnetic resonance imaging (fMRI) with variable acoustic noise (AN) to modulate the cognitive challenge and enhance the sensitivity for the detection of sex differences in brain activation. During the performance of a visual attention (VA) task that requires the tracking of multiple moving objects and has graded levels of difficulty, women (n=15) but not men (n=13) had shorter reaction times for "Loud" than for "Quiet" scans. Men activated more than women in the superior prefrontal and occipital cortices and the anterior thalamus. The latent connectivity of the prefrontal cortex was higher with the anterior thalamus but lower with the auditory cortex for men than for women. Increases in activation with visual attention load were larger for men than for women in the superior parietal and auditory cortices. Increased AN reduced brain activation in the parietal cortex and the anterior thalamus for men but not for women. Together, these sex-specific differences in brain activation during the VA task, at different cognitive and acoustic levels suggest differences in auditory gating of the thalamus for men and women. Published by Elsevier Ltd on behalf of IBRO. C1 [Tomasi, D.; Caparelli, E. C.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Chang, L.; Ernst, T.] Univ Hawaii, Dept Med, Honolulu, HI 96813 USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [M01 RR010710, 5-M01-RR-10710]; NIDA NIH HHS [K02 DA016991, K02 DA16991, K24 DA016170, K24 DA16170, R03 DA 017070-01, R03 DA017070, R03 DA017070-01] NR 61 TC 14 Z9 14 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4522 J9 NEUROSCIENCE JI Neuroscience PD FEB 19 PY 2008 VL 151 IS 4 BP 1006 EP 1015 DI 10.1016/j.neuroscience.2007.08.040 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 264PS UT WOS:000253301500008 PM 18201838 ER PT J AU Verpillat, F Ledbetter, MP Xu, S Michalak, DJ Hilty, C Bouchard, LS Antonijevic, S Budker, D Pines, A AF Verpillat, F. Ledbetter, M. P. Xu, S. Michalak, D. J. Hilty, C. Bouchard, L. -S. Antonijevic, S. Budker, D. Pines, A. TI Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE anisotropic magnetoresistance; microfluidics; NMR; adiabatic fast passage ID ATOMIC MAGNETOMETER; NMR; H-1-NMR; SAMPLES; MRI AB We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mu m. An estimate of the sensitivity for an optimized system indicates that approximate to 6 x 10(13) protons in a volume of 1,000 mu m(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers. C1 [Xu, S.; Michalak, D. J.; Hilty, C.; Bouchard, L. -S.; Antonijevic, S.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Verpillat, F.] Ecole Normale Super Lyon, F-69364 Lyon 07, France. [Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Dept Chem, Hildebrand Hall D64, Berkeley, CA 94720 USA. EM pines@berkeley.edu RI Antonov, Alexander/I-2413-2012; Hilty, Christian/C-1892-2015; Budker, Dmitry/F-7580-2016 OI Hilty, Christian/0000-0003-2539-2568; Budker, Dmitry/0000-0002-7356-4814 NR 17 TC 14 Z9 15 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 19 PY 2008 VL 105 IS 7 BP 2271 EP 2273 DI 10.1073/pnas.0712129105 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266XB UT WOS:000253469900006 PM 18268323 ER PT J AU Ledbetter, MP Savukov, IM Budker, D Shah, V Knappe, S Kitching, J Michalak, DJ Xu, S Pines, A AF Ledbetter, M. P. Savukov, I. M. Budker, D. Shah, V. Knappe, S. Kitching, J. Michalak, D. J. Xu, S. Pines, A. TI Zero-field remote detection of NMR with a microfabricated atomic magnetometer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microfluidics; signal-to-noise ratio; mass-limited sample ID MAGNETIC-RESONANCE; SPIN-EXCHANGE; SAMPLES; SPECTROSCOPY; RELAXATION; H-1-NMR; MRI AB We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microchip sensor consisting of a microfluidic channel and a microfabricated vapor cell (the heart of an atomic magnetometer). Detection occurs at zero magnetic field, which allows operation of the magnetometer in the spin-exchange relaxation-free (SERF) regime and increases the proximity of sensor and sample by eliminating the need for a solenoid to create a leading field. We achieve pulsed NMR linewidths of 26 Hz, limited, we believe, by the residence time and flow dispersion in the encoding region. In a fully optimized system, we estimate that for 1 s of integration, 7 x 10(13) protons in a volume of 1 mm(3), prepolarized in a 10-kG field, can be detected with a signal-to-noise ratio of approximate to 3. This level of sensitivity is competitive with that demonstrated by microcoils in 100-kG magnetic fields, without requiring superconducting magnets. C1 [Michalak, D. J.; Xu, S.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ledbetter, M. P.; Savukov, I. M.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shah, V.; Knappe, S.; Kitching, J.] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM pines@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 26 TC 57 Z9 58 U1 2 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 19 PY 2008 VL 105 IS 7 BP 2286 EP 2290 DI 10.1073/pnas.0711505105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266XB UT WOS:000253469900009 PM 18287080 ER PT J AU Guan, JY Molz, FJ Zhou, QL Liu, HH Zheng, CM AF Guan, Jianyong Molz, Fred J. Zhou, Quanlin Liu, Hui Hai Zheng, Chunmiao TI Behavior of the mass transfer coefficient during the MADE-2 experiment: New insights SO WATER RESOURCES RESEARCH LA English DT Article ID MATRIX DIFFUSION-COEFFICIENT; HETEROGENEOUS AQUIFER; MACRODISPERSION EXPERIMENT; SUBSURFACE HYDROLOGY; SOLUTE TRANSPORT; TRACER TESTS; DISPERSION; SCALE; SITE; CONDUCTIVITY AB Using a dual-porosity transport model, a more complete analysis of the MADE-2 experiment, a natural gradient tracer ( tritium) test, is presented. Results show that a first-order, mass transfer rate coefficient is scale-dependent and decreasing with experiment duration. This is in agreement with previous studies and predictions. Factors contributing to the scale-dependency are errors or approximations in boundary conditions, hydraulic conductivity ( K) measurements and interpolations, mass transfer rate expressions and conceptual errors in model development. In order to formulate a self-consistent, dual-porosity model, it was necessary to assume that the injected tracer was trapped hydraulically in the vicinity of the injection site. This was accomplished by lowering all K values near the injection site by a factor of 30, while holding all other K values, boundary conditions and parameters at their measured or estimated magnitudes. Resulting simulations, using the same scale-dependent mass transfer rate coefficient, were then able to reasonably match the movement of the center of mass, overall plume geometry and the anomalous mass recovery ratios observed at each snapshot. The dual-porosity model is conceptually simple, relatively easy to apply mathematically and it simulates differences in advection that are probably the root cause of dispersion in natural heterogeneous sediments. Also, a small more realistic amount of local hydrodynamic dispersion is not precluded. C1 [Guan, Jianyong] Stephens & Assoc Inc, Albuquerque, NM 87111 USA. [Molz, Fred J.] Clemson Univ, Dept Environm Engn & Earth Sci, Anderson, SC USA. [Zhou, Quanlin; Liu, Hui Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zheng, Chunmiao] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA. RP Guan, JY (reprint author), Stephens & Assoc Inc, Albuquerque, NM 87111 USA. EM fredi@clemson.edu RI Zhou, Quanlin/B-2455-2009; Zheng, Chunmiao/I-5257-2014 OI Zhou, Quanlin/0000-0001-6780-7536; Zheng, Chunmiao/0000-0001-5839-1305 NR 35 TC 19 Z9 19 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 19 PY 2008 VL 44 IS 2 AR W02423 DI 10.1029/2007WR006120 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 267UW UT WOS:000253535700003 ER PT J AU Singamaneni, S LeMieux, MC Lang, HP Gerber, C Lam, Y Zauscher, S Datskos, PG Lavrik, NV Jiang, H Naik, RR Bunning, TJ Tsukruk, VV AF Singamaneni, Srikanth LeMieux, Melburne C. Lang, Hans P. Gerber, Christoph Lam, Yee Zauscher, Stefan Datskos, Panos G. Lavrik, Nikolay V. Jiang, Hao Naik, Rajesh R. Bunning, Timothy J. Tsukruk, Vladimir V. TI Bimaterial microcantilevers as a hybrid sensing platform SO ADVANCED MATERIALS LA English DT Review ID SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; STIMULI-RESPONSIVE POLYMERS; MICROFABRICATED CANTILEVER ARRAY; SCHIZOPHRENIC DIBLOCK COPOLYMER; MICROMECHANICAL CANTILEVER; CHEMICAL SENSORS; PIEZORESISTIVE MICROCANTILEVER; SILICON MICROCANTILEVERS; SURFACE STRESS AB Microcantilevers, one of the most common MEMS structures, have been introduced as a novel sensing paradigm nearly a decade ago. Ever since, the technology has emerged to find important applications in chemical, biological and physical sensing areas. Today the technology stands at the verge of providing the next generation of sophisticated sensors (such as artificial nose, artificial tongue) with extremely high sensitivity and miniature size. The article provides an overview of the modes of detection, theory behind the transduction mechanisms, materials employed as active layers, and some of the important applications. Emphasizing the material design aspects, the review underscores the most important findings, current trends, key challenges and future directions of the microcantilever based sensor technology. C1 [Jiang, Hao; Naik, Rajesh R.; Bunning, Timothy J.] Wright Patterson Air Force Base, Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Singamaneni, Srikanth; LeMieux, Melburne C.; Tsukruk, Vladimir V.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Singamaneni, Srikanth; Tsukruk, Vladimir V.] Georgia Inst Technol, Sch Polymer Textile & Fiber Engn, Atlanta, GA 30332 USA. [LeMieux, Melburne C.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Lang, Hans P.; Gerber, Christoph] Univ Basel, Inst Phys, Natl Ctr Competence Res Nanoscale Sci, CH-4056 Basel, Switzerland. [Lam, Yee; Zauscher, Stefan] Duke Univ, Dept Mech Engn & Mat Sci, Ctr Biol Inspired Mat & Mat Syst, Durham, NC 27706 USA. [Datskos, Panos G.; Lavrik, Nikolay V.] Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN USA. [Datskos, Panos G.; Lavrik, Nikolay V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Bunning, TJ (reprint author), Wright Patterson Air Force Base, Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. EM Timothy.Bunning@WPAFB.AF.MIL; vladimir@mse.gatech.edu RI Singamaneni, Srikanth/A-8010-2008; Zauscher, Stefan/C-3947-2008; Lang, Hans Peter/G-3884-2011; Gerber, Christoph/G-4851-2011; Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 NR 258 TC 117 Z9 122 U1 6 U2 64 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 653 EP 680 DI 10.1002/adma.200701667 PG 28 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400001 ER PT J AU Peng, HS Lu, YF AF Peng, Huisheng Lu, Yunfeng TI Squarely mesoporous and functional nanocomposites by self-directed assembly of organosilane SO ADVANCED MATERIALS LA English DT Article ID POLYDIACETYLENE/SILICA NANOCOMPOSITES; ORGANIC GROUPS; ORGANIZATION; FRAMEWORKS; SILICATES; CHANNELS; SIEVES; WALLS AB This work reports the first example to synthesize squarely mesoporous and functional nanocomposites by self-directed assembly of porphyrin-bridged silsesquioxane. Due to the formation of robust silica networks around conjugated porphyrin moieties, the resultant mesoporous materials exhibit excellent optoelectronic properties and good thermal stability, providing unique platforms for many applications. C1 [Peng, Huisheng] Los Alamos Natl Lab, Div Phys Math & Applicat, Los Alamos, NM 87545 USA. [Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RP Peng, HS (reprint author), Los Alamos Natl Lab, Div Phys Math & Applicat, POB 1663, Los Alamos, NM 87545 USA. EM hpeng@lanl.gov RI Peng, Huisheng/G-8867-2011 NR 27 TC 21 Z9 21 U1 1 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 797 EP + DI 10.1002/adma.200701927 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400025 ER PT J AU Kim, JK Chhajed, S Schubert, MF Schubert, EF Fischer, AJ Crawford, MH Cho, J Kim, H Sone, C AF Kim, Jong Kyu Chhajed, Sameer Schubert, Martin F. Schubert, E. Fred Fischer, Arthur J. Crawford, Mary H. Cho, Jaehee Kim, Hyunsoo Sone, Cheolsoo TI Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact SO ADVANCED MATERIALS LA English DT Article ID GLANCING ANGLE DEPOSITION; THIN-FILMS; COATINGS; REFLECTION; GROWTH AB GaInN LEDs with a six-layer graded-refractive-index antireflection coating made entirely of indium tin oxide (ITO) are demonstrated to have 24.3 % higher light output than LEDs with dense ITO coating. The increased light-output of the LEDs with graded-refractive-index antireflection coating is attributed to the virtual elimination of Fresnel reflection and surface roughening of low-refractive index ITO. C1 [Kim, Jong Kyu; Chhajed, Sameer; Schubert, Martin F.; Schubert, E. Fred] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Fischer, Arthur J.; Crawford, Mary H.] Sandia Natl Labs, Semiconductor Mat & Device Sci Dept, Albuquerque, NM 87185 USA. [Cho, Jaehee; Kim, Hyunsoo; Sone, Cheolsoo] Samsung Electromechan Co Ltd, OS Lab, Suwon 443743, South Korea. RP Kim, JK (reprint author), Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 8th St, Troy, NY 12180 USA. EM kimj4@rpi.edu RI Cho, Jaehee/H-3506-2013 OI Cho, Jaehee/0000-0002-8794-3487 NR 19 TC 194 Z9 195 U1 8 U2 85 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 801 EP + DI 10.1002/adma.200701015 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400026 ER PT J AU Rodriguez, JA Langell, M AF Rodriguez, Jose A. Langell, Marjorie TI Special issue - Selected papers from the Proceedings of the 4th San Luis Pan-American Conference on the Study of Surfaces, Interfaces and Catalysis - Preface SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Editorial Material C1 [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Langell, Marjorie] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov; mlangell@unlserve.unl.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD FEB 18 PY 2008 VL 281 IS 1-2 SI SI BP 1 EP 2 DI 10.1016/j.molcata.2008.01.004 PG 2 WC Chemistry, Physical SC Chemistry GA 274SE UT WOS:000254020500001 ER PT J AU Rodriguez, JA Liu, R Hrbek, J Perez, M Evans, J AF Rodriguez, J. A. Liu, R. Hrbek, J. Perez, M. Evans, J. TI Water-gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article; Proceedings Paper CT 4th San Luis Symposium on Surfaces, Interfaces and Catalysis CY APR 14-23, 2007 CL Pan-Amer Adv Studies Inst, Cuernavaca, MEXICO SP State Luis, Argentinean Natl Govt HO Pan-Amer Adv Studies Inst DE copper; gold; molybdenum oxides; carbon monoxide; hydrogen production; water; water-gas shift; CO oxidation ID GOLD; CATALYSTS; CERIA; ACTIVATION; CHEMISTRY; MECHANISM; TITANIA; CU(111); SURFACE; SO2 AB The water-gas shift (WGS, CO + H2O -> H-2 + CO2) reaction was studied on a series of gold/molybdena and copper/molybdena surfaces. Films of MoO2 were grown by exposing a Mo(110) substrate to NO2 at 1000 K. Then, Au and Cu nanoparticles were deposited on the oxide surfaces and their WGS activity was measured in a reaction cell (P-CO = 20 Torr; P-H2O = 10 Torr; T=575-650 K). Although bulk metallic Au is inactive as a catalyst for the WGS and worthless in this respect when compared to bulk metallic Cu, Au nanoparticles supported on MoO2 are a little bit better catalysts than Cu nanoparticles. The WGS activity of the Au and Cu nanoparticles supported on MoO2 is five to eight times larger than that of Cu(100). The apparent activation energies are 7.2 kcal/mol for Au/MoO2, 7.8 kcal/mol for Cu/MoO2, and 15.2 kcal/mol for Cu(100). The Cu/MoO2 surfaces have a catalytic activity comparable to that of Cu/CeO2(111) surfaces and superior to that of Cu/ZnO(000 (1) over bar) surfaces. Post-reaction surface characterization indicates that the admetals in Au/MoO2 and Cu/MoO2 remain in a metallic state, while there is a minor MoO2 -> MoO3 transformation. Formate- and/or carbonate-like species are present on the surface of the catalysts. DFT calculations indicate that the oxide support in Au/MoO2 and Cu/MoO2 is directly involved in the WGS process. (C) 2007 Elsevier B.V. All rights reserved. C1 [Rodriguez, J. A.; Liu, R.; Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Perez, M.; Evans, J.] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013 NR 28 TC 39 Z9 40 U1 4 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD FEB 18 PY 2008 VL 281 IS 1-2 SI SI BP 59 EP 65 DI 10.1016/j.molcata.2007.07.032 PG 7 WC Chemistry, Physical SC Chemistry GA 274SE UT WOS:000254020500009 ER PT J AU Hau-Riege, SP AF Hau-Riege, Stefan P. TI Effect of the coherence properties of self-amplified-spontaneous-emission x-ray free electron lasers on single-particle diffractive imaging SO OPTICS EXPRESS LA English DT Article AB The longitudinal coherence properties of self-amplified-spontaneous-emission x-ray free electron lasers limit the resolution of single-particle diffraction imaging. We found that for the Linac Coherent Light Source (LCLS) at a wavelength of 1.5 angstrom the particles have to be smaller than 500 nm in diameter to achieve atomic-resolution imaging with a resolution length of less than 2 angstrom, suggesting that the longitudinal coherence is sufficient for imaging most biomolecular samples of interest. (c) 2008 Optical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hauriege1@llnl.gov NR 16 TC 7 Z9 7 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 18 PY 2008 VL 16 IS 4 BP 2840 EP 2844 DI 10.1364/OE.16.002840 PG 5 WC Optics SC Optics GA 268BE UT WOS:000253552100060 PM 18542368 ER PT J AU McGrath, LM Parnas, RS King, SH Schroeder, JL Fischer, DA Lenhart, JL AF McGrath, Laura M. Parnas, Richard S. King, Saskia H. Schroeder, John L. Fischer, Daniel A. Lenhart, Joseph L. TI Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites SO POLYMER LA English DT Article DE epoxy; composite; filled polymer ID GLASS-TRANSITION TEMPERATURE; ULTRATHIN POLYMER-FILMS; ANGULAR-SHAPED SILICA; BEAD FILLED EPOXIES; PARTICLE-SIZE; THIN-FILMS; PARTICULATE COMPOSITES; SPHERICAL SILICA; NETWORK FILMS; RESIN AB A combination of dynamic shear rheology, thermomechanical analysis (TMA), scanning electron microscopy (SEM), Near-Edge X-ray Absorption Fine Structure (NEXAFS), and fracture toughness testing was utilized to characterize the thermal, mechanical, chemical, and fracture properties of alumina (alpha-Al2O3)-filled epoxy resins as a function of average filler size, size distribution, particle shape, loading, and epoxy crosslink density. In general the cured properties of the filled composites were robust. Small changes in particle size, shape, and size distribution had little impact on the final properties. Resin crosslink density and filler loading were the most critical variables, causing changes in all properties. However, most applications could likely tolerate small changes in these variables also. SEM and NEXAFS characterization of the fracture surfaces revealed that the fracture occurs at the filler interface and the interfacial epoxy composition is similar to the bulk resin, indicating a weak epoxy-alumina interaction. These results are critical for implementation of particulate-filled polymer composites in practical applications because relaxed material specifications and handling procedures can be incorporated in production environments to improve efficiency. (C) 2007 Elsevier Ltd. All rights reserved. C1 [McGrath, Laura M.; King, Saskia H.; Schroeder, John L.; Lenhart, Joseph L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McGrath, Laura M.; Parnas, Richard S.] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA. [Fischer, Daniel A.] NIST, Div Ceram, Gaithersburg, MD 20899 USA. RP Lenhart, JL (reprint author), Sandia Natl Labs, POB 5800,MS 0888, Albuquerque, NM 87185 USA. EM jllenha@sandia.gov NR 89 TC 89 Z9 91 U1 8 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD FEB 18 PY 2008 VL 49 IS 4 BP 999 EP 1014 DI 10.1016/j.polymer.2007.12.014 PG 16 WC Polymer Science SC Polymer Science GA 272GA UT WOS:000253846700022 ER PT J AU Oden, M Niemi, A Tsang, CF Ohman, J AF Oden, Magnus Niemi, Auli Tsang, Chin-Fu Ohman, Johan TI Regional channelized transport in fractured media with matrix diffusion and linear sorption SO WATER RESOURCES RESEARCH LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; SOLUTE TRANSPORT; CRYSTALLINE ROCK; TRACER TRANSPORT; CONTINUUM REPRESENTATION; SINGLE FRACTURE; FLOW; NETWORKS; MODEL; RETARDATION AB A regional-scale solute transport model with long-range flow channeling is used to study the effect of matrix diffusion and linear sorption on channelized transport. We start from a fracture-network-based block model to build up a large-scale flow and transport model with regional flow channeling, and then incorporate the processes of matrix diffusion and linear sorption. Regional-scale solute transport is then studied by applying the model to the fracture data set from Sellafield, England. The results demonstrate the significant impact that matrix diffusion has on regional-scale solute travel times for different degrees of long-range channeling. With no channeling, a relatively sharp and significantly delayed arrival can be observed, which is the well-known retardation effect of matrix diffusion and linear sorption. However, with increasing regional channeling the delay becomes much smaller while the spread of transit times becomes much larger. The solute breakthrough curves obtained are analyzed with both the traditional advection-dispersion equation (ADE) and a Continuous Time Random Walk (CTRW) method developed for non-Fickian transport. The low beta values obtained from the CTRW model indicate an extremely non-Fickian transport, which is also confirmed by the low Peclet numbers (much less than 1) required for the best fit to the ADE model. In particular, the times for the first arrival of solute are much earlier when regional channeling occurs. In other words, the degree of large-scale channeling is a crucial parameter for determining the first arrival of particles, and it becomes even more important when matrix diffusion and linear sorption are included in the model. C1 [Oden, Magnus; Niemi, Auli] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. [Tsang, Chin-Fu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Ohman, Johan] Golden Assoc AB, Uppsala, Sweden. RP Oden, M (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM magnus.oden@hyd.uu.se; johan_ohman@golder.se NR 69 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 16 PY 2008 VL 44 IS 2 AR W02421 DI 10.1029/2006WR005632 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 263SW UT WOS:000253237800001 ER PT J AU Guo, X Bandyopadhyay, P Schilling, B Young, MM Fujii, N Aynechi, T Guy, RK Kuntz, ID Gibson, BW AF Guo, Xin Bandyopadhyay, Pradipta Schilling, Birgit Young, Malin M. Fujii, Naoaki Aynechi, Tiba Guy, R. Kiplin Kuntz, Irwin D. Gibson, Bradford W. TI Partial acetylation of lysine residues improves intraprotein cross-linking SO ANALYTICAL CHEMISTRY LA English DT Article ID RESONANCE MASS-SPECTROMETRY; TOP-DOWN APPROACH; PROTEIN STRUCTURES; CYTOCHROME-P450; BIOINFORMATICS; IDENTIFICATION; REDUCTASE AB Intramolecular cross-linking coupled with mass spectrometric identification of cross-linked amino acids is a rapid method for elucidating low-resolution protein tertiary structures or fold families. However, previous cross-linking studies on model proteins, such as cytochrome c and ribonuclease A, identified a limited number of peptide cross-links that are biased toward only a few of the potentially reactive lysine residues. Here, we report an approach to improve the diversity of intramolecular protein cross-linking starting with a systematic quantitation of the reactivity of lysine residues of a model protein, bovine cytochrome c. Relative lysine reactivities among the 18 lysine residues of cytochrome c were determined by the ratio of d(0) and acetyl-d(3) groups at each lysine after partial acetylation with sulfosuccinimidyl acetate followed by denaturation and quantitative acetylation of remaining unmodified lysines with acetic-d(6) anhydride. These lysine reactivities were then compared with theoretically derived pK(a) and relative solvent accessibility surface values. To ascertain if partial N-acetylation of the most reactive lysine residues prior to cross-linking can redirect and increase the observable Lys-Lys cross-links, partially acetylated bovine cytochrome c was cross-linked with the amine-specific, bis-functional reagent, bis(sulfosuccinimidyl)suberate. After proteolysis and mass spectrometry analysis, partial acetylation was shown to significantly increase the number of observable peptides containing Lys-Lys cross-links, shifting the pattern from the most reactive lysine residues to less reactive ones. More importantly, these additional cross-linked peptides contained novel Lys-Lys cross-link information not seen in the non-acetylated protein and provided additional distance constraints that were consistent with the crystal structure and facilitated the identification of the proper protein fold. C1 [Guo, Xin; Bandyopadhyay, Pradipta; Fujii, Naoaki; Aynechi, Tiba; Kuntz, Irwin D.; Gibson, Bradford W.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Guo, Xin] Univ Pacific, Dept Pharmacetu & Med Chem, Stockton, CA 95211 USA. [Schilling, Birgit; Gibson, Bradford W.] Buck Inst Age Res, Novato, CA USA. [Young, Malin M.] Sandia Natl Labs, Livermore, CA 94551 USA. [Guy, R. Kiplin] St Jude Childrens Hosp, Memphis, TN 38105 USA. RP Gibson, BW (reprint author), Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. EM bgibson@buckinstitute.org RI Fujii, Naoaki/I-6423-2013; Guy, Rodney/J-7107-2013 OI Guy, Rodney/0000-0002-9638-2060 NR 20 TC 24 Z9 25 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 951 EP 960 DI 10.1021/ac701636w PG 10 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400006 PM 18201069 ER PT J AU Kertesz, V van Berkel, GJ AF Kertesz, Vilmos van Berkel, Gary J. TI Scanning and surface alignment considerations in chemical imaging with desorption electrospray mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID THIN-LAYER-CHROMATOGRAPHY; IONIZATION DESI; AMBIENT CONDITIONS; PHARMACEUTICAL SAMPLES; TISSUE; ALKALOIDS; ANALYTES; PLATES AB The effects of surface scanning mode (raster vs unidirectional scanning) and the constancy of spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances on chemical image quality using desorption electrospray ionization mass spectrometry were investigated. Unidirectional scanning was found to provide a spatially and a quantitatively more precise chemical image of the surface as compared to raster scanning. Maintaining constant spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances during an imaging experiment was found to also be critical. An automation process was implemented using a custom image analysis software (HandsFree Surface Analysis) to keep these distances constant during the surface sampling experiment. Improved chemical image quality afforded through this software control was illustrated by imaging printed objects on normal copy paper. C1 [Kertesz, Vilmos; van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & biol Mass Spect Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Organ & biol Mass Spect Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 20 TC 39 Z9 39 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 1027 EP 1032 DI 10.1021/ac701947d PG 6 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400016 PM 18193892 ER PT J AU Pasilis, SP Kertesz, V Van Berkel, GJ AF Pasilis, Sofie P. Kertesz, Vilmos Van Berkel, Gary J. TI Unexpected analyte oxidation during desorption electrospray ionization-mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID RADICAL PROBE; CAPILLARY; MECHANISMS; EMITTER; DESI AB During the analysis of surface-spotted analytes using desorption electrospray ionization-mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by DESI-MS was studied. Simple exposure of the samples to air and to ambient fighting increased the extent of oxidation. Increased spray voltage also led to increased analyte oxidation, possibly as a result of oxidative species formed electrochemically at the emitter electrode or in the gas phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for the analysis of deposited analyte having a relatively low surface concentration. Increasing the spray solvent flow rate and the addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified, and DESI-MS operational recommendations to avoid these unwanted reactions are suggested. C1 [Pasilis, Sofie P.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 32 TC 47 Z9 47 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 1208 EP 1214 DI 10.1021/ac701791w PG 7 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400040 PM 18183963 ER PT J AU Kolasinski, RD Polk, JE Goebel, D Johnson, LK AF Kolasinski, Robert D. Polk, James E. Goebel, Dan Johnson, Lee K. TI Carbon sputtering yield measurements at grazing incidence SO APPLIED SURFACE SCIENCE LA English DT Article DE sputtering; QCM; thin film; ion beam; carbon ID ENERGY-DEPENDENCE; MONATOMIC SOLIDS; ION-BOMBARDMENT AB In this investigation, carbon sputtering yields were measured experimentally at varying angles of incidence under Xe+ bombardment. The measurements were obtained by etching a coated quartz crystal microbalance (QCM) with a low energy ion beam. The material properties of the carbon targets were characterized with a scanning electron microscope (SEM) and Raman spectroscopy. C sputtering yields measured under Ar+ and Xe+ bombardment at normal incidence displayed satisfactory agreement with previously published data over an energy range of 200 eV-1 keV. For Xe+ ions, the dependence of the yields on angle of incidence theta was determined for 0 degrees <= theta <= 80 degrees. Over this range, an increase in C sputtering yield by a factor of 4.8 was observed, with the peak in yield occurring at 70 degrees. This is a much higher variation compared to Xe+ -> Mo yields under similar conditions, a difference that may be attributed to higher scattering of the incident particles transverse to the beam direction than in the case of Xe+! C. In addition, the variation of the yields with theta was not strongly energy dependent. Trapping of Xe in the surface was observed, in contrast to observations using the QCM technique with metallic target materials. Finally, target surface roughness was characterized using atomic force microscope measurements to distinguish between the effects of local and overall angle of incidence of the target. (c) 2007 Elsevier B. V. All rights reserved. C1 [Kolasinski, Robert D.] CALTECH, Pasadena, CA 91125 USA. [Polk, James E.; Goebel, Dan; Johnson, Lee K.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Kolasinski, RD (reprint author), Sandia Natl Labs, POB 969,MS 9161, Livermore, CA 94551 USA. EM rkolasi@sandia.gov NR 28 TC 14 Z9 14 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 15 PY 2008 VL 254 IS 8 BP 2506 EP 2515 DI 10.1016/j.apsusc.2007.09.082 PG 10 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 277FN UT WOS:000254198200048 ER PT J AU Briknarova, K Zhou, X Satterthwait, A Hoyt, DW Ely, KR Huang, S AF Briknarova, Kldra Zhou, Xin Satterthwait, Arnold Hoyt, David W. Ely, Kathryn R. Huang, Shi TI Structural studies of the SET domain from RIZ1 tumor suppressor SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE SET domain; PR domain; RIZ1; histone lysine methyltransferase; PRDM2 ID ZINC-FINGER PROTEIN; HISTONE METHYLTRANSFERASE; CHEMICAL-SHIFT; PR DOMAIN; NMR; GENE; INACTIVATION; INTERFACE; PROGRAM; QUALITY AB RIZ1 is a transcriptional regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3. It contains a distinct SET domain, sometimes referred to as PR (PRDI-BF1 and RIZ1 homology) domain, that is responsible for its catalytic activity. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenoSyl-L-homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an alpha-helix that points away from the protein face that harbors active site in other SET domains. The SET fold of RIZ1 does not have detectable affinity for SAH but it interacts with a synthetic peptide comprising residues 1-20 of histone H3. (c) 2007 Elsevier Inc. All rights reserved. C1 [Briknarova, Kldra] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Zhou, Xin; Satterthwait, Arnold; Ely, Kathryn R.; Huang, Shi] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Hoyt, David W.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Briknarova, K (reprint author), Univ Montana, Dept Chem, 32 Campus Dr, Missoula, MT 59812 USA. EM klara.briknarova@umontana.edu RI Hoyt, David/H-6295-2013 NR 26 TC 12 Z9 14 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD FEB 15 PY 2008 VL 366 IS 3 BP 807 EP 813 DI 10.1016/j.bbrc.2007.12.034 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 253KZ UT WOS:000252518400033 PM 18082620 ER PT J AU Badireddy, AR Chellam, S Yanina, S Gassman, P Rosso, KM AF Badireddy, Appala Raju Chellam, Shankararaman Yanina, Svetlana Gassman, Paul Rosso, Kevin M. TI Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: Implications for membrane microfiltration SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofilm; extracellular polymeric substances (EPS); membrane filtration; biofouling; bismuth; microfiltration; ultrafiltration ID PSEUDOMONAS-AERUGINOSA; POLYMERIC SUBSTANCES; BACILLUS-SUBTILIS; WASTE-WATER; BIOFILMS; DIMERCAPROL; SPECTROSCOPY; ENHANCEMENT; SURFACTANTS; ADSORPTION AB A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 mu M). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes. C1 [Chellam, Shankararaman] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Badireddy, Appala Raju; Chellam, Shankararaman] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Yanina, Svetlana; Gassman, Paul; Rosso, Kevin M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chellam, S (reprint author), Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. EM chellam@uh.edu NR 43 TC 23 Z9 23 U1 2 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB 15 PY 2008 VL 99 IS 3 BP 634 EP 643 DI 10.1002/bit.21615 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 253IL UT WOS:000252511800016 PM 17705249 ER PT J AU Ding, BS Hong, N Murciano, JC Ganguly, K Gottstein, C Christofidou-Solomidou, M Albelda, SM Fisher, AB Cines, DB Muzykantov', VR AF Ding, Bi-Sen Hong, Nankang Murciano, Juan-Carlos Ganguly, Kumkum Gottstein, Claudia Christofidou-Solomidou, Melpo Albelda, Steven M. Fisher, Aron B. Cines, Douglas B. Muzykantov', Vladimir R. TI Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature SO BLOOD LA English DT Article ID CHIMERIC PLASMINOGEN-ACTIVATOR; SINGLE-CHAIN UROKINASE; TISSUE FACTOR; FUSION PROTEIN; IN-VIVO; ANTIBODY; MICE; FIBRIN; INJURY; TPA AB A recombinant prodrug, single-chain urokinase-type plasminogen activator (scuPA) fused to an anti-PECAM-1 antibody single-chain variable fragment (anti-PECAM scFv/scuPA) targets endothelium and augments thrombolysis in the pulmonary vasculature.(1) To avoid premature activation and inactivation and to limit systemic toxicity, we replaced the native plasmin activation site in scFv/low-molecular-weight (Imw)-scuPA with a thrombin activation site, generating anti-PECAM scFv/uPA-T that (1) is latent and activated by thrombin instead of plasmin; (2) binds to PECAM-1; (3) does not consume plasma fibrinogen; (4) accumulates in mouse lungs after intravenous injection; and (5) resists PA inhibitor PAI-1 until activated by thrombin. In mouse models of pulmonary thrombosis caused by thromboplastin and ischemia-reperfusion (I/R), scFv/uPA-T provided more potent thromboprophylaxis and greater lung protection than plasminsensitive scFv/uPA. Endothelium-targeted thromboprophylaxis triggered by a, prothrombotic enzyme illustrates a novel approach to time- and site-specific regulation of proteolytic reactions that can be modulated for therapeutic benefit. C1 [Ding, Bi-Sen; Muzykantov', Vladimir R.] Univ Penn, Dept Pharmacol, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. [Hong, Nankang; Fisher, Aron B.; Muzykantov', Vladimir R.] Univ Penn, Inst Environm Med, Philadelphia, PA 19104 USA. [Murciano, Juan-Carlos] Ctr Nacl Invest Cardiovasc, Madrid, Spain. [Ganguly, Kumkum] Los Alamos Natl Lab, Los Alamos, NM USA. [Gottstein, Claudia] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Cines, Douglas B.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. RP Ding, BS (reprint author), Univ Penn, Dept Pharmacol, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. FU NCI NIH HHS [CA83121, R01 CA083121]; NHLBI NIH HHS [HL076406, P01 HL079063, R01 HL071174, HL076206, R01 HL076206, P01 HL076406, HL71175, HL071174, HL079063, R01 HL071175] NR 35 TC 33 Z9 33 U1 0 U2 5 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD FEB 15 PY 2008 VL 111 IS 4 BP 1999 EP 2006 DI 10.1182/blood-2007-07-103002 PG 8 WC Hematology SC Hematology GA 263XZ UT WOS:000253251100046 PM 18045968 ER PT J AU Jeon, B Kress, JD Collins, LA Gronbech-Jensen, N AF Jeon, Byoungseon Kress, Joel D. Collins, Lee A. Gronbech-Jensen, Niels TI Parallel TREE code for two-component ultracold plasma analysis SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE uhracold plasma; two-component plasma; TREE; domain decomposition; intermediate granularity; ghost TREE; dynamic memory management; hybrid parallel computing ID ALGORITHM; SIMULATION AB The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies. (C) 2007 Elsevier B.V. All rights reserved. C1 [Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jeon, Byoungseon; Gronbech-Jensen, Niels] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Jeon, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bjeon@ucdavis.edu RI Jeon, ByoungSeon/D-2281-2012 NR 21 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB 15 PY 2008 VL 178 IS 4 BP 272 EP 279 DI 10.1016/j.cpc.2007.09.003 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 277BV UT WOS:000254188600002 ER PT J AU Xu, J Ostroumov, PN Nolen, J AF Xu, J. Ostroumov, P. N. Nolen, J. TI A parallel 3D Poisson solver for space charge simulation in cylindrical coordinates SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE space charge; Poisson equation; Fourier expansion; spectral element method; domain decomposition ID ARBITRARY ORDER ACCURACY; EQUATION; BEAM AB This paper presents the development of a parallel three-dimensional Poisson solver in cylindrical coordinate system for the electrostatic potential of a charged particle beam in a circular tube. The Poisson solver uses Fourier expansions in the longitudinal and azimuthal directions, and Spectral Element discretization in the radial direction. A Dirichlet boundary condition is used on the cylinder wall, a natural boundary condition is used on the cylinder axis and a Dirichlet or periodic boundary condition is used in the longitudinal direction. A parallel 2D domain decomposition was implemented in the (r, theta) plane. This solver was incorporated into the parallel code PTRACK for beam dynamics simulations. Detailed benchmark results for the parallel solver and a beam dynamics simulation in a high-intensity proton LINAC are presented. When the transverse beam size is small relative to the aperture of the accelerator line, using the Poisson solver in a Cartesian coordinate system and a Cylindrical coordinate system produced similar results. When the transverse beam size is large or beam center located off-axis, the result from Poisson solver in Cartesian coordinate system is not accurate because different boundary condition used. While using the new solver, we can apply circular boundary condition easily and accurately for beam dynamic simulations in accelerator devices. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xu, J.; Ostroumov, P. N.; Nolen, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Xu, J (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jin_xu@anl.gov; ostroumov@phy.anl.gov; nolen@anl.gov RI Xu, Jin/C-7751-2014 OI Xu, Jin/0000-0002-1147-7408 NR 16 TC 5 Z9 5 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB 15 PY 2008 VL 178 IS 4 BP 290 EP 300 DI 10.1016/j.cpc.2007.09.008 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 277BV UT WOS:000254188600004 ER PT J AU Cey, BD Hudson, GB Moran, JE Scanlon, BR AF Cey, Bradley D. Hudson, G. Bryant Moran, Jean E. Scanlon, Bridget R. TI Impact of artificial recharge on dissolved noble gases in groundwater in California SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AQUIFER; FLOW; WATER; AIR; ISOTOPE; ENGLAND; BASIN; PALEOCLIMATE; TRACERS; CLIMATE AB Dissolved noble gas concentrations in groundwater can provide valuable information on recharge temperatures and enable H-3-He-3 age-dating with the use of physically based interpretive models. This study presents a large (905 samples) data set of dissolved noble gas concentrations from drinking water supply wells throughout California, representing a range of physiographic, climatic, and water management conditions. Three common interpretive models (unfractionated air, UA; partial re-equilibration, PR; and closed system equilibrium, CE) produce systematically different recharge temperatures or ages; however, the ability of the different models to fit measured data within measurement uncertainty indicates that goodness-of-fit is not a robust indicator for model appropriateness. Therefore caution is necessary when interpreting model results. Samples from multiple locations contained significantly higher Ne and excess air concentrations than reported in the literature, with maximum excess air tending toward 0.05 cm(3) STP g(-1) (Delta Ne similar to 400%). Artificial recharge is the most plausible cause of the high excess air concentrations. The ability of artificial recharge to dissolve greater amounts of atmospheric gases has important implications for oxidation-reduction dependent chemical reactions. Measured gas concentration ratios suggest that diffusive degassing may have occurred. Understanding the physical processes controlling gas dissolution during groundwater recharge is critical for optimal management of artificial recharge and for predicting changes in water quality that can occur following artificial recharge. C1 [Cey, Bradley D.] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Hudson, G. Bryant; Moran, Jean E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Scanlon, Bridget R.] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA. RP Cey, BD (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM bdc@mail.utexas.edu RI Scanlon, Bridget/A-3105-2009 OI Scanlon, Bridget/0000-0002-1234-4199 NR 45 TC 21 Z9 22 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2008 VL 42 IS 4 BP 1017 EP 1023 DI 10.1021/es0706044 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 263XW UT WOS:000253250800013 PM 18351066 ER PT J AU Stephan, CH Sullivan, J AF Stephan, Craig H. Sullivan, John TI Environmental and energy implications of plug-in hybrid-electric vehicles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the short term and new base-load capacity in the long term, Nationwide, there is currently ample spare night-time utility capacity to charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The short-term fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs. C1 [Stephan, Craig H.; Sullivan, John] Ford Motor Co, Dearborn, MI 48121 USA. RP Stephan, CH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cstephan@ani.gov NR 19 TC 80 Z9 90 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2008 VL 42 IS 4 BP 1185 EP 1190 DI 10.1021/es062314d PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 263XW UT WOS:000253250800038 PM 18351091 ER PT J AU van de Lagemaat, J Zhu, K Benkstein, KD Frank, AJ AF van de Lagemaat, Jao Zhu, Kai Benkstein, Kurt D. Frank, Arthur J. TI Temporal evolution of the electron diffusion coefficient in electrolyte-filled mesoporous nanocrystalline TiO2 films SO INORGANICA CHIMICA ACTA LA English DT Article DE dye-sensitized solar cells; TiO2; random walk; dispersive transport; ambipolar diffusion ID SENSITIZED SOLAR-CELLS; NANOSTRUCTURED SEMICONDUCTOR ELECTRODES; NANOPOROUS TIO2; POTENTIAL DISTRIBUTION; ACTIVATION-ENERGIES; AMBIPOLAR DIFFUSION; CHARGE-TRANSPORT; BACK-REACTION; RECOMBINATION; PHOTOCURRENT AB Electron transport in electrolyte-filled mesoporous TiO2-based solar cells is described quantitatively from the perspective of the continuous-time random walk model. An analytical expression is derived for the time-dependent diffusion coefficient of electrons, which transforms at a characteristic ( Fermi) time from strongly time-dependent values (dispersive transport) at short times to relatively time-independent values (nondispersive transport) at long times. At short times, the diffusion coefficient displays a power-law behavior with time. The timescale for the diffusion coefficient to reach its steady-state value is substantially longer than the Fermi time. The Fermi time and the steepness of the distribution of waiting times associated with trap sites have a strong influence on both the steady-state diffusion coefficient of electrons and on the dispersiveness of electron transport. At short timescales, ionic drag, associated with the ambipolar effect, slows electron transport through the TiO2 matrix, whereas at steady state, transport is trap limited. Decreasing the electron density lowers the steady-state limit of the diffusion coefficient and increases the timescale over which transport is dispersive. (c) 2007 Published by Elsevier B.V. C1 [van de Lagemaat, Jao; Zhu, Kai; Benkstein, Kurt D.; Frank, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Frank, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM afrank@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 NR 46 TC 21 Z9 21 U1 3 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD FEB 15 PY 2008 VL 361 IS 3 BP 620 EP 626 DI 10.1016/j.ica.2007.03.051 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 280KV UT WOS:000254426600008 ER PT J AU Eggleston, CM Voros, J Shi, L Lower, BH Droubay, TC Colberg, PJS AF Eggleston, Carrick M. Voeroes, Janos Shi, Liang Lower, Brian H. Droubay, Timothy C. Colberg, Patricia J. S. TI Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system SO INORGANICA CHIMICA ACTA LA English DT Article DE cytochrome; OmcA; adsorption; voltammetry; OWLS; AFM ID SHEWANELLA-ONEIDENSIS MR-1; C-TYPE CYTOCHROMES; MICROBIAL FUEL-CELLS; GEOBACTER-SULFURREDUCENS; PROTEIN ADSORPTION; DISSIMILATORY REDUCTION; HISTORY DEPENDENCE; FE(III) REDUCTION; MN(IV) REDUCTION; GEN. NOV. AB Dissimilatory iron-reducing bacteria transfer electrons to solid ferric respiratory electron acceptors. Outer-membrane cytochromes expressed by these organisms are of interest in both microbial fuel cells and biofuel cells. We use optical waveguide lightmode spectroscopy ( OWLS) to show that OmcA, an 85 kDa decaheme outer-membrane c-type cytochrome from Shewanella oneidensis MR-1, adsorbs to isostructural Al2O3 and Fe2O3 in similar amounts. Adsorption is ionic-strength and pH dependent ( peak adsorption at pH 6.5-7.0). The thickness of the OmcA layer on Al2O3 at pH 7.0 [5.8 +/- 1.1 (2 sigma) nm] from OWLS is similar, within error, to that observed using atomic force microscopy (4.8 +/- 2 nm). The highest adsorption density observed was 334 ng cm(-2) (2.4 x 10(12) molecules cm(-2)), corresponding to a monolayer of 9.9 nm diameter spheres or submonolayer coverage by smaller molecules. Direct electrochemistry of OmcA on Fe2O3 electrodes was observed using cyclic voltammetry, with cathodic peak potentials of -380 to -320 mV versus Ag/AgCl. Variations in the cathodic peak positions are speculatively attributed to redox-linked conformation change or changes in molecular orientation. OmcA can exchange electrons with ITO electrodes at higher current densities than with Fe2O3. Overall, OmcA can bind to and exchange electrons with several oxides, and thus its utility in fuel cells is not restricted to Fe2O3. (c) 2007 Elsevier B.V. All rights reserved. C1 [Eggleston, Carrick M.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Voeroes, Janos] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland. [Shi, Liang] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Lower, Brian H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Droubay, Timothy C.] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. [Colberg, Patricia J. S.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. RP Eggleston, CM (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM carrick@uwyo.edu RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 50 TC 47 Z9 47 U1 10 U2 76 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD FEB 15 PY 2008 VL 361 IS 3 BP 769 EP 777 DI 10.1016/j.ica.2007.07.015 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 280KV UT WOS:000254426600023 ER PT J AU Buttler, WT AF Buttler, W. T. TI Comment on "Accuracy limits and window corrections for photon Doppler velocimetry" [J. Appl. Phys. 101, 013523 (2007)] SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID VELOCITIES; WAVES; LIGHT; FLOW C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Buttler, WT (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA. EM buttler@lanl.gov NR 16 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 046102 DI 10.1063/1.2838238 PG 2 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300088 ER PT J AU Jiang, C Srinivasan, SG Caro, A Maloy, SA AF Jiang, C. Srinivasan, S. G. Caro, A. Maloy, S. A. TI Structural, elastic, and electronic properties of Fe3C from first principles SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GENERALIZED-GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; AB-INITIO; PHONON DISPERSIONS; THERMAL-EXPANSION; YOUNG MODULUS; CEMENTITE; IRON; TEMPERATURE; CONSTANTS AB Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010], and [001] directions. The three methods agree well with each other; the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters. (c) 2008 American Institute of Physics. C1 [Jiang, C.; Srinivasan, S. G.; Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Caro, A.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Maloy, Stuart/A-8672-2009; Jiang, Chao/D-1957-2017 OI Maloy, Stuart/0000-0001-8037-1319; Jiang, Chao/0000-0003-0610-6327 NR 46 TC 61 Z9 61 U1 4 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043502 DI 10.1063/1.2884529 PG 8 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300010 ER PT J AU Rossi, M Mun, BS Enta, Y Fadley, CS Lee, KS Kim, SK Shin, HJ Hussain, Z Ross, PN AF Rossi, Massimiliano Mun, Bongjin S. Enta, Yoshiharti Fadley, Charles S. Lee, Ki-Suk Kim, Sang-Koog Shin, Hyun-Joon Hussain, Zahid Ross, Philip N., Jr. TI In situ observation of wet oxidation kinetics on Si(100) via ambient pressure x-ray photoemission spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID 2P CORE-LEVEL; THERMAL-OXIDATION; SILICON; INTERFACE; GROWTH AB The initial stages of wet thermal oxidation of Si(100)-(2 X 1) have been investigated by in situ ambient pressure x-ray photoemission spectroscopy, including chemical-state resolution via Si 2p core-level spectra. Real-time growth rates of silicon dioxide have been monitored at 100 mTorr of water vapor. This pressure is considerably higher than in any prior study using x-ray photoemission spectroscopy. Substrate temperatures have been varied between 250 and 500 degrees C. Above a temperature of similar to 400 degrees C, two distinct regimes, a rapid and a quasisaturated one, are identified, and growth rates show a strong temperature dependence which cannot be explained by the conventional Deal-Grove model. (C) 2008 American Institute of Physics. C1 [Rossi, Massimiliano; Mun, Bongjin S.; Fadley, Charles S.; Hussain, Zahid] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mun, Bongjin S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyeonggi, South Korea. [Enta, Yoshiharti] Hirosaki Univ, Fac Sci & Technol, Hirosaki, Aomori 0368561, Japan. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Coll Engn, Dept Mat Sci & Engn, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. [Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Coll Engn, Dept Mat Sci & Engn, Nanospintron Lab, Seoul 151744, South Korea. [Shin, Hyun-Joon] POSTECH, Pohang Accelerator Lab, Pohang 790784, Kyungbuk, South Korea. [Ross, Philip N., Jr.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fadley, Charles S.] Forschungszentrum Julich, Inst Solid State Res, DE-52425 Julich, Germany. RP Mun, BS (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM bsmun@lbl.gov; enta@cc.hirosaki-u.ac.jp RI MSD, Nanomag/F-6438-2012; Enta, Yoshiharu/F-6995-2013; Mun, Bongjin /G-1701-2013; Kim, Sang-Koog/J-4638-2014 OI Enta, Yoshiharu/0000-0003-0199-1814; NR 15 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 044104 DI 10.1063/1.2832430 PG 4 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300059 ER PT J AU Xu, ZH Hu, B Howe, J AF Xu, Zhihua Hu, Bin Howe, Jane TI Improvement of photovoltaic response based on enhancement of spinorbital coupling and triplet states in organic solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; EXCITON DIFFUSION; ENERGY-TRANSFER; HIGH-EFFICIENCY; POLYMER; HETEROJUNCTIONS; FILMS; ABSORPTION; PHOTOEXCITATIONS; GENERATION AB This article reports an improvement of photovoltaic response by dilspersing phosphorescent Ir(ppy)(3) molecules in an organic solar cell of poly[2-methoxy-5-(2'-ethylhexyloxy)-1 4-phenylenevinylene] (MEH-PPV) blended with surface-functionalized fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C(61) (PCBM). The magnetic field-dependent photocurrent indicates that the dispersed lr(ppy)(3) molecules increase the spin-orbital coupling strength with the consequence of changing the singlet and triplet ratios through intersystem crossing due to the penetration of the delocalized pi electrons of MEH-PPV into the large orbital magnetic field of Ir(ppy)(3) dopants. The tuning of singlet and triplet exciton ratios can lead to an enhancement of photovoltaic response due to their different contributions to the two different photocurrent generation channels: exciton dissociation and exciton-charge reaction in organic materials. In addition, the photoluminescence temperature dependence reveals that the dispersed Ir(ppy)(3) reduces the recombination of dissociated charge carriers in the PCBM doped MEH-PPV. As a result, adjusting singlet and triplet ratios by introducing heavy-metal complex Ir(ppy)(3) provides a mechanism to improve the photovoltaic response through controlling exciton dissociation, exciton-charge reaction, and recombination of dissociated charge carriers in organic bulk-heterojunction solar cells. (C) 2008 American Institute Of Physics. C1 [Xu, Zhihua; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Howe, Jane] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hu, B (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM bhu@utk.edu RI Xu, Zhihua/G-3956-2011; Howe, Jane/G-2890-2011; Hu, Bin/A-2954-2015 OI Hu, Bin/0000-0002-1573-7625 NR 43 TC 33 Z9 34 U1 1 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043909 DI 10.1063/1.2885349 PG 8 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300051 ER PT J AU Zhou, SQ Potzger, K Kuepper, K Grenzer, J Helm, M Fassbender, J Arenholz, E Denlinger, JD AF Zhou, Shengqiang Potzger, K. Kuepper, K. Grenzer, J. Helm, M. Fassbender, J. Arenholz, E. Denlinger, J. D. TI Ni implanted ZnO single crystals: Correlation between nanoparticle formation and defect structure SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC SEMICONDUCTORS; ALKALI-METALS; GIANT MOMENTS; CS FILMS; FE; CO; MYSTERY AB We show that metallic secondary phase formation inside ZnO(0001) single crystals implant-doped with Ni at an atomic concentration of 5% can be suppressed. All the Ni ions are in the 2(+) valence state after mild postannealing. The suppression is achieved by means of annealing of the crystals in high vacuum prior to implantation and is correlated with the introduction of structural disorder. The observed ferromagnetic properties of the preannealed crystals are evidently induced by defects and not primarily by the Ni doping. They degrade at ambient temperature within several days. (c) 2008 American Institute of Physics. C1 [Zhou, Shengqiang; Potzger, K.; Kuepper, K.; Grenzer, J.; Helm, M.; Fassbender, J.] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. [Arenholz, E.; Denlinger, J. D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Potzger, K (reprint author), Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany. EM k.potzger@fzd.de RI Helm, Manfred/B-2284-2009; Zhou, Shengqiang/C-1497-2009; Fassbender, Juergen/A-8664-2008; Kupper, Karsten/G-1397-2016 OI Zhou, Shengqiang/0000-0002-4885-799X; Fassbender, Juergen/0000-0003-3893-9630; NR 25 TC 25 Z9 26 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043901 DI 10.1063/1.28370581 PG 5 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300043 ER PT J AU Tan, K Duquette, M Liu, JH Shanmugasundaram, K Joachimiak, A Gallagher, JT Rigby, AC Wang, JH Lawler, J AF Tan, Kemin Duquette, Mark Liu, Jin-huan Shanmugasundaram, Kumaran Joachimiak, Andrzej Gallagher, John T. Rigby, Alan C. Wang, Jia-huai Lawler, Jack TI Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID FIBROBLAST-GROWTH-FACTOR; PROMOTES ANGIOGENESIS; CRYSTAL-STRUCTURE; MOLECULAR DIPOLE; COMPLEX REVEALS; TERNARY COMPLEX; BINDING; RECOGNITION; PROTEINS; INTEGRIN AB Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1. C1 [Wang, Jia-huai] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Vasc Biol Res Ctr,Dept Med,Div Mol & Vasc Med, Boston, MA 02215 USA. [Tan, Kemin; Liu, Jin-huan; Wang, Jia-huai] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Duquette, Mark; Lawler, Jack] Beth Israel Deaconess Med Ctr, Dept Pathol, Div Canc Biol & Angiogenesis, Boston, MA 02215 USA. [Tan, Kemin; Liu, Jin-huan] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA. [Lawler, Jack] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Tan, Kemin; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Gem & Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Gallagher, John T.] Univ Manchester, Christie Hosp NHS Trust, Dept Med Oncol, Manchester M20 4BX, Lancs, England. RP Rigby, AC (reprint author), Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Vasc Biol Res Ctr,Dept Med,Div Mol & Vasc Med, 330 Brookline Ave, Boston, MA 02215 USA. EM arigby@bidmc.harvard.edu; jwang@red.dfci.harvard.edu; jlawler@bidmc.harvard.edu FU NHLBI NIH HHS [R01 HL049081-10, HL48675, HL49081, HL68003, P01 HL048675, R01 HL049081, R01 HL068003] NR 51 TC 17 Z9 18 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 15 PY 2008 VL 283 IS 7 BP 3932 EP 3941 DI 10.1074/jbc.M705203200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MO UT WOS:000253083500027 PM 18065761 ER PT J AU Salameh, MA Soares, AS Hockla, A Radisky, ES AF Salameh, Moh'd A. Soares, Alexei S. Hockla, Alexandra Radisky, Evette S. TI Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID HUMAN CATIONIC TRYPSINOGEN; SITE PEPTIDE-BOND; REACTIVE-SITE; ALPHA-CHYMOTRYPSIN; CRYSTAL-STRUCTURE; HUMAN BRAIN; PROTEIN INHIBITORS; ZYMOGEN ACTIVATION; ACTIVE SITE; EXPRESSION AB Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation. C1 [Salameh, Moh'd A.; Hockla, Alexandra; Radisky, Evette S.] Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Radisky, ES (reprint author), 310 Griffin Bldg,4500 San Pablo Rd, Jacksonville, FL 32224 USA. EM radisky.evette@mayo.edu RI Radisky, Evette/C-8526-2012; Soares, Alexei/F-4800-2014 OI Radisky, Evette/0000-0003-3121-109X; Soares, Alexei/0000-0002-6565-8503 NR 54 TC 27 Z9 27 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 15 PY 2008 VL 283 IS 7 BP 4115 EP 4123 DI 10.1074/jbc.M708268200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MO UT WOS:000253083500047 PM 18077447 ER PT J AU Rioux, RM Komor, R Song, H Hoefelmeyer, JD Grass, M Niesz, K Yang, PD Somorjai, GA AF Rioux, Robert M. Komor, Russell Song, Hyunjoon Hoefelmeyer, James D. Grass, Michael Niesz, Krisztian Yang, Peidong Somorjai, Gabor A. TI Kinetics and mechanism of ethylene hydrogenation poisoned by CO on silica-supported monodisperse Pt nanoparticles SO JOURNAL OF CATALYSIS LA English DT Article DE Pt; nanoparticles; monodisperse; ethylene hydrogenation; CO; poisoning; kinetics; mechanism; structure insensitivity ID SUM-FREQUENCY GENERATION; ELECTRON-BEAM LITHOGRAPHY; MESOPOROUS SBA-15 SILICA; CARBON-MONOXIDE; PLATINUM NANOPARTICLES; METHYLCYCLOPROPANE HYDROGENOLYSIS; CATALYTIC-PROPERTIES; VIBRATIONAL-SPECTRA; THERMAL-DESORPTION; PT(111) SURFACE AB The influence of particle size on the poisoning of ethylene hydrogenation by CO was Studied over a series of catalysts composed of nearly monodisperse Pt nanoparticles (1.7-7.1 nm) encapsulated in mesoporous silica (SBA-15). The turnover frequency at 403 K in the presence of 0.5 Torr CO was similar to 2 x 10(-2) s(-1) (compared with similar to 10(2) s(-1) in the absence of CO). The apparent activation energy in the absence and presence of 0.2 Torr CO was similar to 10 and 20 kcal mol(-1), respectively. The pressure dependency changes significantly in the presence of CO; reaction orders in hydrogen were 1/2 in the presence of CO at 403 K and noncompetitive with regard to co-adsorption with C2H4. In the absence of CO at similar temperatures, H-2 adsorption was primarily irreversible (first-order dependence), and H-2 and C2H4 compete for the same sites. Ethylene orders at 403 K were first order in the presence of 0.2 Torr CO and remained unity with increasing CO pressure. At similar reaction conditions in the absence of CO, ethylene had an inhibitory effect (negative reaction order) on the overall hydrogenation reaction. The change in C2H4 and H-2 kinetics suggests strong competitive adsorption between C2H4 and CO for the same type of site, whereas H-2 apparently adsorbs on distinct surface sites due either to steric hindrance or H-2-induced CO desorption. Incorporation of a quasi-equilibrated CO adsorption step into a noncompetitive Langmuir-Hinshelwood mechanism predicts the experimentally observed pressure dependencies and a doubling of the apparent activation energy. Hydrogenation of ethylene in the presence of 1 Torr CO was examined under reaction conditions at 403 K by infrared spectroscopy; the only surface species identified under reaction conditions was linear-bound CO. The hydrogenation of ethylene on clean Pt catalysts was structure-insensitive and remains insensitive in the presence of CO; rates decreased only by a factor of two with increasing particle size. (c) 2007 Elsevier Inc. All rights reserved. C1 [Rioux, Robert M.; Komor, Russell; Song, Hyunjoon; Hoefelmeyer, James D.; Grass, Michael; Niesz, Krisztian; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rioux, Robert M.; Komor, Russell; Song, Hyunjoon; Hoefelmeyer, James D.; Grass, Michael; Niesz, Krisztian; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat & Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Hoefelmeyer, James/B-5278-2011; Song, Hyunjoon/C-1638-2011; OI Song, Hyunjoon/0000-0002-1565-5697; Hoefelmeyer, James/0000-0002-5955-8557 NR 65 TC 35 Z9 35 U1 7 U2 69 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB 15 PY 2008 VL 254 IS 1 BP 1 EP 11 DI 10.1016/j.jcat.2007.10.015 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 269JU UT WOS:000253646100001 ER PT J AU Follstaedt, DM Allerman, AA Lee, SR Michael, JR Bogart, KHA Crawford, MH Missert, NA AF Follstaedt, D. M. Allerman, A. A. Lee, S. R. Michael, J. R. Bogart, K. H. A. Crawford, M. H. Missert, N. A. TI Dislocation reduction in AlGaN grown on patterned GaN SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE dislocations; nanostructures; metalorganic vapor phase epitaxy; nitrides ID EPITAXIAL LATERAL OVERGROWTH; FABRICATION; ALLOYS AB Metalorganic vapor phase epitaxy was used to grow 15 mu m of Al0.26Ga0.74N on GaN that was patterned with trenches 10 mu m wide and I gm deep. The top of the AlGaN showed 4-mu m-wide areas on either side of the trench centerline that had low threading dislocation densities, measured to be less than similar to 1.5 x 10(8) cm(-2). Cross-sectional transmission electron microscopy showed that in the early stages of growth, AlGaN grew at an angle from the corners of the trench and eventually coalesced over the center. These laterally propagating growth sections overgrew the vertical growth in the trench bottom, with the result that low dislocation-density areas formed at the top of the AlGaN. Detailed examination showed that the vertical dislocations from the trench bottom were bent by the angled growth toward the center of the trench where they annihilated with other dislocations, allowing the low dislocation-density areas to form above. Elemental analysis showed that the angled growth sections had slightly lower Al content. The low dislocation-density areas are sufficiently wide to permit optically emitting devices to be grown. (C) 2007 Elsevier B.V. All rights reserved. C1 [Follstaedt, D. M.; Allerman, A. A.; Lee, S. R.; Michael, J. R.; Bogart, K. H. A.; Crawford, M. H.; Missert, N. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Follstaedt, DM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dmfolls@sandia.gov NR 14 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 15 PY 2008 VL 310 IS 4 BP 766 EP 776 DI 10.1016/j.jcrysgro.2007.11.157 PG 11 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 269LH UT WOS:000253650000006 ER PT J AU Vasiljevic, N Viyannalage, LT Dimitrov, N Sieradzki, K AF Vasiljevic, Natasa Viyannalage, Lasantha T. Dimitrov, Nikolay Sieradzki, Karl TI High resolution electrochemical STM: New structural results for underpotentially deposited Cu on Au(111) in acid sulfate solution SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE in situ scanning tunneling microscopy; underpotential deposition; copper; Au(111); sulfate; anion adsorption ID QUARTZ-CRYSTAL MICROBALANCE; RAY-ABSORPTION-SPECTROSCOPY; PHASE-TRANSITIONS; SULFURIC-ACID; COPPER DEPOSITION; SURFACE EXAFS; GOLD; ADSORPTION; ELECTRODE; ADLAYERS AB Adsorption of sulfate assists Cu monolayer underpotential deposition (upd) on Au(111) in a unique way, rendering two distinct structural stages: (i) formation of a low-density Cu phase at coverage of 2/3 ML known as the (root 3 x root 3)R30 degrees or honeycomb phase; (ii) formation of a complete monolayer, i.e., Cu-(1 x 1) phase pseudomorphic with respect to underlying Au(111) substrate. In this paper we present new structural in situ scanning tunneling microscopy (STM) results for this system. We show and discuss the STM imaging of the copper honeycomb superstructure probed underneath the co-adsorbed (\/3- x root 3)R30 degrees sulfate adlayer in the low-density phase. High resolution imaging during the phase transition from the low to high density copper phase unambiguously shows the existence of an ordered sulfate structure p(2 x 2) on the pseudomorphic Cu-(1 x 1) layer. The new structure is seen during the co-existence of two copper phases as well as upon completion of the Cu-(1 x 1) monolayer. While supported by earlier chronocoulometric measurements in the same system, the new structural results raise questions that need to be addressed in a future work. (C) 2007 Elsevier B.V. All rights reserved. C1 [Vasiljevic, Natasa] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Viyannalage, Lasantha T.; Dimitrov, Nikolay] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Sieradzki, Karl] Arizona State Univ, Ira A Fulton Sch Engn, Tempe, AZ 85287 USA. RP Vasiljevic, N (reprint author), Sandia Natl Labs, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM nvasilj@sandia.gov OI Vasiljevic, Natasa/0000-0002-7515-9708 NR 35 TC 12 Z9 12 U1 3 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD FEB 15 PY 2008 VL 613 IS 2 BP 118 EP 124 DI 10.1016/j.jelechem.2007.10.021 PG 7 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 288BX UT WOS:000254962300002 ER PT J AU Lewis, ER AF Lewis, Ernie R. TI An examination of Kohler theory resulting in an accurate expression for the equilibrium radius ratio of a hygroscopic aerosol particle valid up to and including relative humidity 100% SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID THERMODYNAMIC PROPERTIES; HIGH SUPERSATURATION; ORGANIC-COMPOUNDS; WATER-UPTAKE; SIZE; ACTIVATION; ELECTROLYTES; NUCLEI; SUBSTANCES; DENSITIES AB The equilibrium hygroscopic behavior of an aqueous solution drop is investigated using the Kohler model to relate the radius ratio xi r/r (dry), where r(dry) is the volume-equivalent dry radius, and the fractional relative humidity h. The Kohler equation is derived and results obtained from it are presented for three situations: when the effect of surface tension can be neglected, for h = 1, and for cloud-drop activation. The exact solution to this equation is presented, as is an accurate approximate solution for h < 1 that yields insight into the dependences of the equilibrium radius on relative humidity, surface tension, and dry radius. The approximations made in the derivation of the Kohler equation are examined, errors in quantities obtained from this equation are quantified, and the so-called Debye approximation is introduced which allows accurate parameterization of these errors as a function of r(dry). Errors in the radius ratio at activation obtained from the Kohler equation are up to 20% for ammonium sulfate solution drops of the size that typically form cloud drops. Attempts to extend the Kohler model to higher concentrations are examined, and it is seen that the primary cause of inaccuracy in the model is the assumption that the practical osmotic coefficient is unity. On the basis of this analysis, a simple two-parameter expression is presented for the equilibrium radius ratio as a function of h and rdry that is accurate over a wide range of rdry and for h up to and including unity. C1 [Lewis, Ernie R.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Lewis, ER (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. NR 44 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 15 PY 2008 VL 113 IS D3 AR D03205 DI 10.1029/2007JD008590 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 263RJ UT WOS:000253233900001 ER PT J AU Lin, SC Chung, JY Lamothe, B Rajashankar, K Lu, M Lo, YC Lam, AY Darnay, BG Wu, H AF Lin, Su-Chang Chung, Jee Y. Lamothe, Betty Rajashankar, Kanagalaghatta Lu, Miao Lo, Yu-Chih Lam, Amy Y. Darnay, Bryant G. Wu, Hao TI Molecular basis for the unique deubiquitinating activity of the NF-kappa B inhibitor A20 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE A20; crystal structure; deubiquitination; DUB; TRAF6 ID ZINC-FINGER PROTEIN; ENDOTHELIAL-CELL ACTIVATION; DEPENDENT GENE-EXPRESSION; KINASE TAK1; INTERLEUKIN-1 RECEPTOR; SIGNAL-TRANSDUCTION; UBIQUITIN-ALDEHYDE; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; MAP KINASE AB Nuclear factor kappa B (NF-kappa B) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappa B activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappa B activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Lin, Su-Chang; Chung, Jee Y.; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y.; Wu, Hao] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA. [Lamothe, Betty; Darnay, Bryant G.] Univ Texas Houston, Dept Expt Therapeut, MD Anderson Canc Ctr, Houston, TX 77030 USA. [Rajashankar, Kanagalaghatta] Argonne Natl Lab, NE CAT, Argonne NAtl Lab, Argonne, IL 60439 USA. RP Darnay, BG (reprint author), Cornell Univ, Weill Med Coll, Dept Biochem, 1300 York Ave, New York, NY 10021 USA. EM bdarnay@mdanderson.org; haowu@med.cornell.edu OI Lin, Su-Chang/0000-0003-0687-3139 FU NCRR NIH HHS [RR-15301]; NIAID NIH HHS [R01 AI045937, R01 AI045937-07]; NIAMS NIH HHS [R01 AR053540] NR 66 TC 90 Z9 96 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 15 PY 2008 VL 376 IS 2 BP 526 EP 540 DI 10.1016/j.jmb.2007.11.092 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 268CE UT WOS:000253554700020 PM 18164316 ER PT J AU Enomoto, K LaVerne, JA Tandon, L Enriquez, AE Matonic, JH AF Enomoto, Kazuyuki LaVerne, Jay A. Tandon, Lav Enriquez, Alejandro E. Matonic, John H. TI The radiolysis of poly(4-vinylpyridine) quaternary salt ion exchange resins SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HYDROGEN-PEROXIDE PRODUCTION; RADIATION-CHEMISTRY; HYDRATED ELECTRON; AQUEOUS SOLUTIONS; ANION-EXCHANGE; GAMMA-RADIOLYSIS; LIQUID PYRIDINE; HEAVY-IONS; WATER; BENZENE AB The radiation chemical yields of gaseous products, especially molecular hydrogen (H-2), have been determined in the radiolysis of different poly(4-vinylpyridine) quaternary salt ion exchange resins with up to about 30 wt% of absorbed water. Irradiations were performed with 5 MeV He-4 ions to simulate alpha-particle radiolysis and with gamma-rays for comparison. The resins were quaternary salts of chloride and nitrate that are commonly used as matrixes in anion exchange and in plutonium recovery processes. An increase in H-2 yields with increasing water loading was observed for both types of ionizing radiation in all of the resins. The yield of H-2 for the nitrate-form was lower than that for the chloride and the yield of H-2 was lower when the pyridinium nitrogen atom is coordinated to a methyl group rather than to atomic hydrogen. Spectroscopic studies included UV/vis, IR, and Raman and suggested that all the resins exhibit a high radiolytic stability. (c) 2007 Published by Elsevier B.V. C1 [Enomoto, Kazuyuki; LaVerne, Jay A.] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. [LaVerne, Jay A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Tandon, Lav] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Enriquez, Alejandro E.; Matonic, John H.] Los Alamos Natl Lab, PMT 5 Pu 238 Sci & Engn Grp, Los Alamos, NM 87545 USA. RP LaVerne, JA (reprint author), Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. EM laverne.l@nd.edu RI kazuyuki, enomoto/G-8592-2015; OI Matonic, John/0000-0002-6059-1514 NR 49 TC 5 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 103 EP 111 DI 10.1016/j.jnucmat.2007.05.032 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100015 ER PT J AU Hosemann, P Thau, HT Johnson, AL Maloy, SA Li, N AF Hosemann, P. Thau, H. T. Johnson, A. L. Maloy, S. A. Li, N. TI Corrosion of ODS steels in lead-bismuth eutectic SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FERRITIC ALLOYS; ALUMINA SCALES; OXIDATION; DIFFUSION AB Oxide dispersion strengthened (ODS) ferritic steels are advanced materials being developed for high temperature applications. Their properties (high temperature strength, creep resistance, corrosion/oxidation resistance) make them potentially usable for high temperature applications in liquid metal cooled systems like liquid lead-bismuth eutectic cooled reactors and spallation sources. Corrosion tests on five different ODS alloys were performed in flowing liquid lead-bismuth eutectic in the DELTA Loop at the Los Alamos National Laboratory at 535 C for 200 h and 600 h. The tested materials were chromium alloyed ferritic/martensitic steels (12YWT, 14YWT, MA957) and Cr-Al alloyed steels (PM2000, MA956). It was shown that the Al alloyed ODS steel above 5.5 wt% Al (PM2000) is highly resistant to corrosion and oxidation in the conditions examined, and that the corrosion properties of the ODS steels depend strongly on their grain size. (C) 2007 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Maloy, S. A.; Li, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hosemann, P.] Univ Leoben, Leoben, Austria. [Thau, H. T.; Johnson, A. L.] Univ Nevada, Las Vegas, NV 89154 USA. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM peterh@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 14 TC 44 Z9 45 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 246 EP 253 DI 10.1016/j.jnucmat.2007.05.049 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100035 ER PT J AU Zhang, JS Li, N AF Zhang, Jinsuo Li, Ning TI Review of the studies on fundamental issues in LBE corrosion SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID LIQUID LEAD-BISMUTH; FLOWING PB-BI; MOLTEN LEAD; STEEL CORROSION; OXYGEN CONTROL; THERMODYNAMIC PROPERTIES; DIFFUSION-COEFFICIENT; COMPATIBILITY TESTS; REFRACTORY-METALS; EUTECTIC SYSTEMS AB Lead bismuth eutectic (LBE) technology is being developed for applications in advanced nuclear systems and high-power spallation neutron targets. In this paper, the current understanding of corrosion and the fundamental issues relevant to corrosion when using LBE as a heavy liquid metal nuclear coolant are reviewed. Corrosion mechanisms and processes in LBE are examined. Prospective methods to mitigate corrosion are briefly surveyed. We then discuss the oxygen control technique for corrosion mitigation in detail, including the range of oxygen concentrations in LBE, oxygen sensors, and the surface oxidation kinetics. Existing experimental results are summarized and reviewed. Theoretical corrosion models for non-isothermal liquid metal loops are refined and compared each other. The applications of these models to a few practical lead-alloy systems are used to illustrate the corrosion mechanisms and the parameter dependency, and to benchmark. Based on the current state of knowledge, a number of R&D tasks are proposed to fill the gaps and firmly establish the scientific underpinning before LBE nuclear coolant technology is ready for programmatic and industrial applications. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Decis Applicat Div, Int Nucl Syst Engn Grp, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zhang, JS (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Int Nucl Syst Engn Grp, MS K-575, Los Alamos, NM 87545 USA. EM jszhang@lanl.gov RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 117 TC 87 Z9 89 U1 8 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 351 EP 377 DI 10.1016/j.jnucmat.2007.06.019 PG 27 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100049 ER PT J AU Talamo, A AF Talamo, Alberto TI Prediction of TRISO coated particle performances for a one-pass deep burn SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GAS-COOLED REACTORS; FISSION-PRODUCT RELEASE; HIGH-TEMPERATURE; FUEL-PARTICLES; IRRADIATION BEHAVIOR; LAYER; MCB AB In the present studies, TRISO coated particle performances have been investigated for incinerating plutonium and minor actinides by the Gas Turbine-Modular Helium Reactor, whose fresh fuel is fabricated after the uranium extraction (UREX) process applied to Light Water Reactors irradiated fuel. The analyses divide into two parts: in the first part, the latest design of the reactor core proposed by General Atomics, which takes advantage of four fuel rings, has been modeled in deep details by the Monte Carlo MCNP code and a burnup process has been simulated by the MCB code. In the second part, the TRISO coated particle performances have been investigated by the PANAMA code with the goal of verifying the design constraints proposed by General Atomics. During burnup, the refueling and shuffling schedule followed the one-pass deep burn concept, where the fuel is utilized, since fabrication for the Gas Turbine-Modular Helium Reactor, without any reprocessing until the final disposal into the geological repository. During the reactor operation, the fast fluence on all TRISO particles layers has been evaluated and the production of the key fission products monitored. During an hypothetical reactor accident scenario, the TRISO particle failure fraction has been estimated. (C) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 25 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 407 EP 414 DI 10.1016/j.jnucmat.2007.07.001 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100053 ER PT J AU Barnes, LA Rago, NLD Leibowitz, L AF Barnes, L. A. Rago, N. L. Dietz Leibowitz, L. TI Corrosion of ternary carbides by molten lead SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMICS AB Two ternary carbides, TiZAlC and Ti3SiC2 were tested for corrosion in circulating molten lead at 650 degrees C and 800 degrees C for possible application as cladding or structural materials in a lead-cooled fast reactor. The extent of reaction was minimal for both materials. The only observed interaction with the lead was a result of surface cracks and strains in the Ti2AlC produced by machining prior to exposure to the lead. (C) 2007 Elsevier B.V. All rights reserved. C1 [Barnes, L. A.; Rago, N. L. Dietz; Leibowitz, L.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Barnes, LA (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM barnes@cmt.anl.gov NR 7 TC 34 Z9 34 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 424 EP 428 DI 10.1016/j.jnucmat.2007.04.054 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100055 ER PT J AU Ahluwalia, RK Wang, XH AF Ahluwalia, Rajesh K. Wang, Xiaohua. TI Fuel cell systems for transportation: Status and trends SO JOURNAL OF POWER SOURCES LA English DT Article DE fuel cell systems; polymer electrolyte membrane; heat rejection; water management; air management; transportation ID VEHICLES; ECONOMY AB The U.S. program for the development of direct hydrogen-fueled automotive fuel cell systems has established ambitious performance and cost targets for the 2010 and 2015 time frames. These targets include peak and rated power efficiencies of 60% and 50%, respectively, specific power and power densities of 650We kg(-1) and 650 We L-1, and manufactured costs of $45 and 30 kWe(-1) for 80 kWe(-1) net systems in the 2010 and 2015 systems, respectively. In this paper, we discuss the use of fuel cell system models to examine the performance and projected manufactured costs of 2005 systems and the improvements needed to meet the 2010 and 2015 system level targets. It appears possible to meet most of the 2010 performance targets with advances such as the nano-structured thin film electrocatalysts and a modified electrolyte membrane capable of operating at up to 95 degrees C, at least for short periods. To meet the 2015 targets, however, the fuel cell systems may need to operate without pressurization at higher temperatures of up to 120 degrees C without the need to humidify the fuel gas and air, along with several other improvements in stack and balance-of-plant components. Our simulations provide quantitative estimates of the various performance and cost parameters of the near-term and the advanced systems that can achieve the targets set for automotive fuel cell system development. Published by Elsevier B.V. C1 [Ahluwalia, Rajesh K.; Wang, Xiaohua.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@ne.anl.gov NR 18 TC 85 Z9 89 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2008 VL 177 IS 1 BP 167 EP 176 DI 10.1016/j.jpowsour.2007.10.026 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 262YS UT WOS:000253185400024 ER PT J AU Park, SH Kang, SH Belharouak, I Sun, YK Amine, K AF Park, S. -H. Kang, S. -H. Belharouak, I. Sun, Y. K. Amine, K. TI Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 cathode materials SO JOURNAL OF POWER SOURCES LA English DT Article DE carbonate precipitation; Li(Ni1/3Co1/3Mn1/3)O-2; lithium secondary batteries; positive materials; layered materials ID LITHIUM INSERTION MATERIAL; ION BATTERIES; LICO1/3NI1/3MN1/3O2; ELECTRODE; CAPACITY AB A (Ni1/3Co1/3 Mn-1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 (0 <= x <= 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 products were highly uniform, having a narrow particle size distribution (10-mu m average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 cathodes. (c) 2007 Elsevier B.V. All rights reserved. C1 [Park, S. -H.; Kang, S. -H.; Belharouak, I.; Amine, K.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. [Sun, Y. K.] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. RP Amine, K (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@cmt.anl.gov RI Kang, Sun-Ho/E-7570-2010; Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; OI Sun, Yang-Kook/0000-0002-0117-0170; Belharouak, Ilias/0000-0002-3985-0278 NR 21 TC 136 Z9 137 U1 8 U2 130 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2008 VL 177 IS 1 BP 177 EP 183 DI 10.1016/j.jpowsour.2007.10.062 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 262YS UT WOS:000253185400025 ER PT J AU Zhao, YH Horita, Z Langdon, TG Zhu, YT AF Zhao, Y. H. Horita, Z. Langdon, T. G. Zhu, Y. T. TI Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE copper; copper-zinc alloys; high-pressure torsion; severe plastic deformation; stacking fault energy; ultrafine-grained materials ID SEVERE PLASTIC-DEFORMATION; HIGH-PRESSURE TORSION; CENTRED CUBIC METALS; ULTRAHIGH-STRENGTH; DISLOCATION DENSITIES; MECHANICAL-PROPERTIES; PROFILE ANALYSIS; NANOCRYSTALLINE; DUCTILITY; COPPER AB Samples of pure Cu, bronze (Cu-10 wt.% Zn) and brass (Cu-30 wt.% Zn) with stacking fault energies (SFE) of 78,35, and 14 mJ/m(2), respectively, were processed by high-pressure torsion (HPT) and by a combination of HPT followed by cold-rolling (CR). X-ray diffraction measurements indicate that a decrease in SFE leads both to a decrease in crystallite size and to increases in microstrain, dislocation and twin densities for the HPT and HPT + CR processed ultrafine-grained (UFG) samples. Compared with processing by HPT, subsequent processing by CR refines the crystallite size of all samples, increases the twin densities of UFG bronze and brass, and increases the dislocation density in UFG bronze. It also decreases the dislocation density in UFG brass and leads to an unchanged dislocation density in UFG copper. The results suggest there may be an optimum stacking fault energy for dislocation accumulation in UFG Cu-Zn alloys and this has important implications in the production of materials having reasonable strain hardening and good tensile ductility. (C) 2007 Elsevier B.V. All rights reserved. C1 [Zhao, Y. H.; Zhu, Y. T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Horita, Z.] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. RP Zhu, YT (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MS G755,POB 1663, Los Alamos, NM 87545 USA. EM yzhu@lanl.gov RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Lujan Center, LANL/G-4896-2012; U-ID, Kyushu/C-5291-2016 OI Zhu, Yuntian/0000-0002-5961-7422; NR 39 TC 81 Z9 85 U1 8 U2 45 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 15 PY 2008 VL 474 IS 1-2 BP 342 EP 347 DI 10.1016/j.msea.2007.06.014 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 260SK UT WOS:000253030500045 ER PT J AU Wang, GJ Tomasi, D Backus, W Wang, R Telang, F Geliebter, A Korner, J Bauman, A Fowler, JS Thanos, PK Volkow, ND AF Wang, Gene-Jack Tomasi, Dardo Backus, Walter Wang, Ruiliang Telang, Frank Geliebter, Allan Korner, Judith Bauman, Angela Fowler, Joanna S. Thanos, Panayotis K. Volkow, Nora D. TI Gastric distention activates satiety circuitry in the human brain SO NEUROIMAGE LA English DT Article DE amygdala; fMRI; gastric distention; insula ID TEST-MEAL INTAKE; NEURAL RESPONSES; BULIMIC WOMEN; FOOD-INTAKE; GHRELIN; AMYGDALA; CAPACITY; BEHAVIOR; NUCLEUS; RAT AB Gastric distention during meal ingestion activates vagal afferents, which send signals from the stomach to the brain and result in the perception of fullness and satiety. Distention is one of the mechanisms that modulates food intake. We measured regional brain activation during dynamic gastric balloon distention in 18 health subjects using functional magnetic resonance imaging and the blood oxygenation level-dependent (BOLD) responses. The BOLD signal was significantly changed by both inflow and outflow changes in the balloon's volume. For lower balloon volumes, water inflow was associated with activation of sensorimotor cortices and right insula. The larger volume condition additionally activated left posterior amygdala, left posterior insula and the left precuneus. The response in the left amygdala and insula was negatively associated with changes in self-reports of fullness and positively with changes in plasma ghrelin concentration, whereas those in the right amygdala and insula were negatively associated with the subject's body mass index. The widespread activation induced by gastric distention corroborates the influence of vagal afferents on cortical and subcortical brain activity. These findings provide evidence that the left amygdala and insula process interoceptive signals of fullness produced by gastric distention involved in the controls of food intake. Published by Elsevier Inc. C1 [Wang, Gene-Jack; Tomasi, Dardo; Wang, Ruiliang; Bauman, Angela; Fowler, Joanna S.; Thanos, Panayotis K.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA. [Backus, Walter; Bauman, Angela] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Telang, Frank; Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, NIDA, Rockville, MD 20852 USA. [Geliebter, Allan] St Lukes Roosevelt Hosp, New York, NY USA. [Geliebter, Allan; Korner, Judith] Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA. RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, 30 Bell Ave, Upton, NY 11973 USA. EM gjwang@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [M01 RR 10710]; NIAAA NIH HHS [AA 9481, Y1 AA 3009]; NIDA NIH HHS [DA 00280, DA 7092]; NIDDK NIH HHS [DK 072011, R01 DK054318-01A1, R01 DK054318-02, R01 DK054318-03, R01 DK080153-01A2, R01 DK080153-02, R01 DK080153-03, R01 DK080153-04, R03 DK068603-01A2, R03 DK068603-02] NR 49 TC 128 Z9 130 U1 4 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 15 PY 2008 VL 39 IS 4 BP 1824 EP 1831 DI 10.1016/j.neuroimage.2007.11.008 PG 8 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 263UK UT WOS:000253241800031 PM 18155924 ER PT J AU Imry, Y Strongin, M Homes, CC AF Imry, Y. Strongin, M. Homes, C. C. TI An inhomogeneous Josephson phase in thin-film and high-T-c superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Workshop on Fluctuations and Phase Transitions in Superconductors CY JUN 10-14, 2007 CL Nazareth Ilit, ISRAEL DE inhomogenous superconductivity; Josephson phase; (Super)conductor-insulator transition; n(s)-T-c correlations ID HIGH-TEMPERATURE SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; DISORDERED-SYSTEMS; STATE; TRANSITIONS; PSEUDOGAP; LIMIT AB In many cases inhomogeneities are known to exist near the metal (or superconductor)-insulator transition, as follows from well-known domain-wall arguments. If the conducting regions are large enough (i.e. when the T = 0 superconducting gap is much larger than the single-electron level spacing), and if they have superconducting correlations, it becomes energetically favorable for the system to go into a Josephson-coupled zero-resistance state before (i.e. at higher resistance than) becoming a "real" metal. We show that this is plausible by a simple comparison of the relevant coupling constants. For small grains in the above sense, the electronic grain structure is washed out by delocalization and thus becomes irrelevant. When the proposed "Josephson state" is quenched by a magnetic field, an insulating, rather than a metallic, state should appear. This has been shown [J. Tu, M. Strongin, Y. Imry, cond-mat/0405625 (2004)] to be consistent with the existing data on oxide materials as well as ultra-thin-films. We discuss the Uemura correlations versus Homes' law, and derive the former for the large-grain Josephson array (inhomogenous superconductor) model. The small-grain case behaves like a dirty homogenous metal. It should obey Homes' law provided that the system is in the dirty supeconductivity limit. A speculation as to why that is typically the case for d-wave superconductors is presented. (c) 2007 Elsevier B.V. All rights reserved. C1 [Imry, Y.] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. [Strongin, M.; Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Imry, Y (reprint author), Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. EM yoseph.irnry@weizmann.ac.il NR 47 TC 24 Z9 25 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 15 PY 2008 VL 468 IS 4 BP 288 EP 293 DI 10.1016/j.physc.2007.08.021 PG 6 WC Physics, Applied SC Physics GA 286AE UT WOS:000254816500010 ER PT J AU Baturina, TI Bilusic, A Mironov, AY Vinokur, VM Baklanov, MR Strunk, C AF Baturina, T. I. Bilusic, A. Mironov, A. Yu. Vinokur, V. M. Baklanov, M. R. Strunk, C. TI Quantum-critical region of the disorder-driven superconductor-insulator transition SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Workshop on Fluctuations and Phase Transitions in Superconductors CY JUN 10-14, 2007 CL Nazareth Ilit, ISRAEL DE superconductivity; localization; quantum phase transition ID MAGNETIC-FIELD; JOSEPHSON-JUNCTIONS; FILMS; OSCILLATIONS; ONSET AB We investigate low temperature transport properties of thin TiN superconducting films, differing by the degree of disorder. At zero magnetic field we find an extremely sharp separation between the superconducting- and insulating phases, indicating a direct superconductor-insulator transition without an intermediate metallic phase. We show that in the critical region of the transition a peculiar highly inhomogeneous insulating state with superconducting correlations forms. The insulating films exhibit thermally activated conductivity and huge positive magnetoresistance at low magnetic fields. A sharp depinning transition at some voltage V-T is observed in the I-V curves at very low temperatures. We propose a percolation type of depinning with the threshold voltage determined by the Coulomb blockade energy for the Cooper pairs between neighboring self-induced superconducting islands, with VT being the total voltage along the first conduction path. The observed hysteretic behavior of the threshold and steps on the dI/dV vs. V curves support this percolation picture of the depinning transition. (c) 2007 Elsevier B.V. All rights reserved. C1 [Baturina, T. I.; Mironov, A. Yu.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. [Baturina, T. I.; Bilusic, A.; Mironov, A. Yu.; Strunk, C.] Univ Regensburg, Inst Expt & Angew Phys, D-93025 Regensburg, Germany. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Baturina, TI (reprint author), Russian Acad Sci, Inst Semicond Phys, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru RI Bilusic, Ante/H-2101-2012 NR 37 TC 19 Z9 20 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 15 PY 2008 VL 468 IS 4 BP 316 EP 321 DI 10.1016/j.physc.2007.08.023 PG 6 WC Physics, Applied SC Physics GA 286AE UT WOS:000254816500015 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P DeCecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Group, RC Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanit