FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Meyer, G Thiele, JU AF Meyer, G Thiele, JU TI Effective electron-density dependence of the magnetocrystalline anisotropy in highly chemically ordered pseudobinary (Fe1-xMnx)(50)Pt-50 L1(0) alloys SO PHYSICAL REVIEW B LA English DT Article ID PERPENDICULAR MAGNETIC-ANISOTROPY; THIN-FILMS; CIRCULAR-DICHROISM; RECORDING MEDIA; FEPT; MN; MULTILAYERS; LAYERS; COPT AB The magnetic and structural properties of highly chemically ordered epitaxial (Fe1-xMnx)(50)Pt-50 (0 <= x <= 0.68) thin films were investigated. This study complements earlier experimental studies on pseudobinary ternary and quaternary FePt-based alloys, providing a more complete picture of the dependence of the magnetization and magnetocrystalline anisotropy on structural properties and effective electron density in the chemically ordered 3d transition metal-Pt L1(0) alloy system. Maximum anisotropy and magnetization are found for the undoped FePt composition, and increasing Mn additions result in a steady reduction of magnetocrystalline anisotropy and saturation magnetization. Comparing the results of our experimental study to two recent computational first-principles studies of pseudobinary L1(0) alloys, we find a significantly more rapid reduction of magnetization and anisotropy with decreasing effective electron density than predicted by either of the two theories. This reduction may be explained in part by the antiparallel alignment of Fe and Mn moments observed in circular x-ray magnetic dichroism. C1 Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. RP Meyer, G (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. NR 45 TC 19 Z9 19 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 21 AR 214438 DI 10.1103/PhysRevB.73.214438 PG 7 WC Physics, Condensed Matter SC Physics GA 058WV UT WOS:000238696200102 ER PT J AU Nunez, M Nardelli, MB AF Nunez, M Nardelli, MB TI First-principles theory of metal-alkaline earth oxide interfaces SO PHYSICAL REVIEW B LA English DT Article ID SCHOTTKY-BARRIER AB Using calculations from first principles, we discuss the interplay between structure and functionality at metal-insulator interfaces using the paradigmatic example of the junctions between various metals (Ag, Pd, Pt, Ni, Cu, Al) and binary alkaline earth crystalline oxides (BaO, CaO, and SrO). Our results demonstrate that it is possible to tune the Schottky barrier height in a very broad range of values by manipulating the metal at the interface, and elucidate the role of the relative overlap in the density of states of the different components in determining the band alignment. We conclude by stating a "modified Schottky-Mott rule" for this class of metal-insulator heterojunctions. C1 N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Nunez, M (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. RI Buongiorno Nardelli, Marco/C-9089-2009 NR 14 TC 18 Z9 18 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 23 AR 235422 DI 10.1103/PhysRevB.73.235422 PG 6 WC Physics, Condensed Matter SC Physics GA 058WZ UT WOS:000238696600144 ER PT J AU Pantea, C Migliori, A Littlewood, PB Zhao, Y Ledbetter, H Lashley, JC Kimura, T Van Duijn, J Kowach, GR AF Pantea, C. Migliori, A. Littlewood, P. B. Zhao, Y. Ledbetter, H. Lashley, J. C. Kimura, T. Van Duijn, J. Kowach, G. R. TI Pressure-induced elastic softening of monocrystalline zirconium tungstate at 300 K SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; SINGLE-CRYSTALS; ZRW2O8; DIFFRACTION AB The elastic tensor of monocrystalline ZrW2O8 was determined near 300 K as a function of pressure, using pulse-echo ultrasound in a large-volume moissanite anvil cell. An unusual decrease in bulk modulus with increased pressure was observed. A framework-solid-based nonlinear model with many degrees of freedom predicts the observed behavior. We also observe that ReO3, a similar framework solid but lacking the necessary degrees of freedom, fails to display softening. Additionally, the pressure-induced phase transition from alpha-ZrW2O8 (cubic) to gamma-ZrW2O8 (orthorhombic) is found to take place at approximate to 0.5 GPa, a result confirmed by Raman spectroscopy. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Pantea, Cristian/D-4108-2009; Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; Lujan Center, LANL/G-4896-2012; OI Pantea, Cristian/0000-0002-0805-8923; van Duijn, Joost/0000-0003-2283-6477 NR 18 TC 32 Z9 34 U1 1 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 21 AR 214118 DI 10.1103/PhysRevB.73.214118 PG 5 WC Physics, Condensed Matter SC Physics GA 058WV UT WOS:000238696200050 ER PT J AU Pons, T Medintz, IL Sykora, M Mattoussi, H AF Pons, Thomas Medintz, Igor L. Sykora, Milan Mattoussi, Hedi TI Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; PROTEIN; FRET AB The photoluminescence spectrum of a quasimonodisperse semiconductor quantum dot (QD) population is composed of a continuum of extremely narrow single QD spectra. This is due to inhomogeneities in nanocrystal size within a population and the color-size dependency imposed by effects of carrier quantum confinements. We take advantage of this population heterogeneity to gain a unique insight into the fluorescence resonant energy transfer (FRET) process between a QD donor and proximal dye-labeled protein acceptors. Our steady-state, time-resolved ensemble and single-QD studies demonstrate that the spectral dependency of the energy transfer rate matches the acceptor absorption spectrum as predicted by Forster formalism. This allows ratiometric FRET measurements based on the QD donor emission. C1 USN, Res Lab, Opt Sci Div, Washington, DC 20375 USA. Johns Hopkins Univ, Chem & Biomol Engn Dept, Baltimore, MD 21218 USA. USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA. Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA. RP Pons, T (reprint author), USN, Res Lab, Opt Sci Div, 4555 Overlook Ave, Washington, DC 20375 USA. EM Thomas.pons@nrl.navy.mil; hedi.mattoussi@nrl.navy.mil RI Pons, Thomas/A-8667-2008 OI Pons, Thomas/0000-0001-8800-4302 NR 24 TC 45 Z9 45 U1 1 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 24 AR 245302 DI 10.1103/PhysRevB.73.245302 PG 7 WC Physics, Condensed Matter SC Physics GA 058XC UT WOS:000238696900063 ER PT J AU Reyes, SA Tsvelik, AM AF Reyes, SA Tsvelik, AM TI Finite-temperature correlation function for the one-dimensional quantum Ising model: The virial expansion SO PHYSICAL REVIEW B LA English DT Article ID INTEGRABLE MODELS; FIELD; REPRESENTATION; CHAIN AB We rewrite the exact expression for the finite-temperature two-point correlation function for the magnetization as a partition function of some field theory. This removes singularities and provides a convenient form to develop a virial expansion (expansion in powers of the soliton density). C1 SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11790 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Reyes, SA (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11790 USA. NR 18 TC 10 Z9 10 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 220405 DI 10.1103/PhysRevB.73.220405 PG 4 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300007 ER PT J AU Rodriguez, JP AF Rodriguez, J. P. TI Long-range order of vortex lattices pinned by point defects in layered superconductors SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; II SUPERCONDUCTORS; FLUX LATTICES; PHASE; DISORDER; STATES AB How the vortex lattice orders at long range in a layered superconductor with weak point pinning centers is studied through a duality analysis of the corresponding frustrated XY model. Vortex-glass order emerges out of the vortex liquid across a macroscopic number of weakly coupled layers in a perpendicular magnetic field as the system cools down. Further, the naive magnetic-field scale determined by the Josephson coupling between adjacent layers is found to serve as an upper bound for the stability of any possible conventional vortex lattice phase at low temperature in the extreme type-II limit. C1 Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Rodriguez, JP (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. NR 28 TC 3 Z9 3 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 21 AR 214520 DI 10.1103/PhysRevB.73.214520 PG 6 WC Physics, Condensed Matter SC Physics GA 058WV UT WOS:000238696200132 ER PT J AU Sales, BC Jin, RY Mandrus, D Khalifah, P AF Sales, Brian C. Jin, Rongying Mandrus, David Khalifah, Peter TI Anomalous hall effect in three ferromagnetic compounds: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 SO PHYSICAL REVIEW B LA English DT Article ID FILLED SKUTTERUDITES AB The Hall resistivity (rho(xy)), resistivity (rho(xx)), and magnetization of three metallic ferromagnets are investigated as a function of magnetic field and temperature. The three ferromagnets, EuFe4Sb12 (T-c approximate to 84 K), Yb14MnSb11 (T-c approximate to 53 K), and Eu8Ga16Ge30 (T-c approximate to 36 K) are Zintl compounds with carrier concentrations between 1x10(21) and 3.5x10(21) cm(-3). The relative decrease in rho(xx) below T-c [rho(xx)(T-c)/rho(xx)(2 K)] is 28, 6.5, and 1.3 for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30, respectively. The low carrier concentrations coupled with low magnetic anisotropies allow a relatively clean separation between the anomalous (rho(')(xy)), and normal contributions to the measured Hall resistivity. For each compound the anomalous contribution in the zero field limit is fit to a rho(xx)+sigma(xy)rho(2)(xx) for temperatures T < T-c. At T=0 the anomalous Hall conductivity sigma(0)(xy), is -220 +/- 5 (Omega(-1) cm(-1)), -14.7 +/- 1 (Omega(-1) cm(-1)), and 28 +/- 3 (Omega(-1) cm(-1)) for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30, respectively, and is independent of temperature for T < T-c if the change in spontaneous magnetization (order parameter) with temperature is taken into account. These data are consistent with recent theories [T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002); Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-S. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004); I. V. Solovyev, Phys. Rev. B 67, 174406 (2003); Z. Fang, N. Nagosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science 302, 92 (2003); and Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001)] of the anomalous Hall effect that suggest that even for stochiometric ferromagnetic crystals, such as those studied in this article, the intrinsic Hall conductivity is finite at T=0, and is a ground state property that can be calculated from the electronic structure. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. RP Sales, BC (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. RI Mandrus, David/H-3090-2014 NR 39 TC 19 Z9 19 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 224435 DI 10.1103/PhysRevB.73.224435 PG 8 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300081 ER PT J AU Schrier, J Wang, LW AF Schrier, Joshua Wang, Lin-Wang TI Electronic structure of nanocrystal quantum-dot quantum wells SO PHYSICAL REVIEW B LA English DT Article ID CDSE/CDS CORE/SHELL NANOCRYSTALS; EPITAXIAL-GROWTH; NANOSTRUCTURES; ZNS/CDS/ZNS; SYSTEMS; ENERGY; SHELLS AB The electronic states of CdS/CdSe/CdS colloidal nanocrystal quantum-dot quantum wells are studied by large-scale pseudopotential local density approximation (LDA) calculations. Using this approach, we determine the effects of CdS core size, CdSe well thickness, and CdS shell thickness on the band-edge wave functions, band-gap, and electron-hole Coulomb interactions. We find the conduction-band wave function to be less confined to the CdSe well layer than predicted by k(.)p effective-mass theory, which accounts for the previous underestimation of the electron g factor. C1 Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Schrier, J (reprint author), Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RI Schrier, Joshua/B-6838-2009 NR 36 TC 25 Z9 26 U1 2 U2 21 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 24 AR 245332 DI 10.1103/PhysRevB.73.245332 PG 6 WC Physics, Condensed Matter SC Physics GA 058XC UT WOS:000238696900093 ER PT J AU Seel, SC Hoyt, JJ Webb, EB Zimmerman, JA AF Seel, Steven C. Hoyt, Jeffrey J. Webb, Edmund B., III Zimmerman, Jonathan A. TI Modeling metallic island coalescence stress via adhesive contact between surfaces SO PHYSICAL REVIEW B LA English DT Article ID EMBEDDED-ATOM-METHOD; THIN-FILMS; INTERNAL-STRESS; SUBSTRATE-TEMPERATURE; INTRINSIC STRESS; POLYCRYSTALLINE; IMPURITIES; DEPENDENCE; DEPOSITION; GROWTH AB Tensile stress generation associated with island coalescence is almost universally observed in thin films that grow via the Volmer-Weber mode. The commonly accepted mechanism for the origin of this tensile stress is a process driven by the reduction in surface energy at the expense of the strain energy associated with the deformation of coalescing islands during grain boundary formation. In the present work, we have performed molecular statics calculations using an embedded atom interatomic potential to obtain a functional form of the interfacial energy vs distance between two closely spaced free surfaces. The sum of interfacial energy plus strain energy provides a measure of the total system energy as a function of island separation. Depending on the initial separation between islands, we find that in cases where coalescence is thermodynamically favored, gap closure can occur either spontaneously or be kinetically limited due to an energetic barrier. Atomistic simulations of island coalescence using conjugate gradient energy minimization calculations agree well with the predicted stress as a function of island size from our model of spontaneous coalescence. Molecular dynamics simulations of island coalescence demonstrate that only modest barriers to coalescence can be overcome at room temperature. A comparison with thermally activated coalescence results at room temperature reveals that existing coalescence models significantly overestimate the magnitude of the stress resulting from island coalescence. C1 Sandia Natl Labs, Livermore, CA 94551 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Seel, SC (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. RI Zimmerman, Jonathan/A-8019-2012 NR 28 TC 10 Z9 10 U1 0 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 24 AR 245402 DI 10.1103/PhysRevB.73.245402 PG 9 WC Physics, Condensed Matter SC Physics GA 058XC UT WOS:000238696900100 ER PT J AU Sen, C Alvarez, G Motome, Y Furukawa, N Sergienko, IA Schulthess, TC Moreo, A Dagotto, E AF Sen, C Alvarez, G Motome, Y Furukawa, N Sergienko, IA Schulthess, TC Moreo, A Dagotto, E TI One- and two-band models for colossal magnetoresistive manganites studied using the truncated polynomial expansion method SO PHYSICAL REVIEW B LA English DT Article ID DOUBLE-EXCHANGE MODEL; MONTE-CARLO ALGORITHM; ELECTRONIC-STRUCTURE CALCULATIONS; PHASE-SEPARATION; SYSTEM-SIZE; NEUTRON DIFFRACTION; MOLECULAR-DYNAMICS; SPECTRAL FUNCTIONS; SCALING ALGORITHM; QUANTUM DOTS AB Considerable progress has been recently made in the theoretical understanding of the colossal magnetoresistance (CMR) effect in manganites. The existence of inhomogeneous states has been shown to be directly related with this phenomenon, both in theoretical studies and experimental investigations. The analysis of simple models with two competing states and a resistor network approximation to calculate conductances has confirmed that CMR effects can be theoretically reproduced using nonuniform clustered states. However, a direct computational study of the CMR effect in realistic models has been difficult since large clusters are needed for this purpose. In this paper, the recently proposed truncated polynomial expansion method (TPEM) for spin-fermion systems is tested using the double-exchange one-orbital, with finite Hund coupling J(H), and two-orbital, with infinite J(H), models. Two dimensional lattices as large as 48x48 are studied, far larger than those that can be handled with standard exact diagonalization (DIAG) techniques for the fermionic sector. The clean limit (i.e., without quenched disorder) is analyzed here in detail. Phase diagrams are obtained, showing first-order transitions separating ferromagnetic metallic from insulating states. A huge magnetoresistance is found at low temperatures by including small magnetic fields, in excellent agreement with experiments. However, at temperatures above the Curie transition the effect is much smaller confirming that the standard finite-temperature CMR phenomenon cannot be understood using homogeneous states. By comparing results between the two methods, TPEM and DIAG, on small lattices, and by analyzing the systematic behavior with increasing cluster sizes, it is concluded that the TPEM is accurate enough to handle realistic manganite models on large systems. Our results contribute to the next challenge in theoretical studies of manganites, namely a frontal computational attack of the colossal magnetoresistance phenomenon using double-exchange-like models, on large clusters, and including quenched disorder. C1 Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RIKEN, Inst Phys & Chem Res, Saitama 3510198, Japan. Aoyama Gakuin Univ, Dept Phys & Math, Sagamihara, Kanagawa 2298558, Japan. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Sen, C (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. NR 67 TC 10 Z9 10 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 224430 DI 10.1103/PhysRevA.73.224430 PG 14 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300076 ER PT J AU Sen, C Alvarez, G Aliaga, H Dagotto, E AF Sen, Cengiz Alvarez, Gonzalo Aliaga, Horacio Dagotto, Elbio TI Colossal magnetoresistance observed in Monte Carlo simulations of the one- and two-orbital models for manganites SO PHYSICAL REVIEW B LA English DT Article ID PHASE-SEPARATION; DOUBLE-EXCHANGE; FERROMAGNETIC TRANSITION; MANGANESE OXIDES; LA1-XSRXMNO3; TEMPERATURE; CONDUCTANCE; ELECTRONS; SCENARIO; SYSTEMS AB The one- and two-orbital double-exchange models for manganites are studied using Monte Carlo computational techniques in the presence of a robust electron-phonon coupling (but neglecting the antiferromagnetic exchange J(AF) between the localized spins). The focus in this effort is on the analysis of charge transport. Our results for the one-orbital case confirm and extend previous recent investigations that showed the presence of robust peaks in the resistivity versus temperature curves for this model. Quenched disorder substantially enhances the magnitude of the effect, while magnetic fields drastically reduce the resistivity. A simple picture for the origin of these results is presented. It is also shown that even for the case of just one electron, the resistance curves present metallic and insulating regions by varying the temperature, as it occurs at finite electronic density. Moreover, in the present study these investigations are extended to the more realistic two-orbital model for manganites. The transport results for this model show large peaks in the resistivity versus temperature curves, located at approximately the Curie temperature, and with associated large magnetoresistance factors. Overall, the magnitude and shape of the effects discussed here resemble experiments for materials such as La0.70Ca0.30MnO3, and they are in agreement with the current predominant theoretical view that competition between a metal and an insulator, enhanced by quenched disorder, is crucial to understanding the colossal magnetoresistance (CMR) phenomenon. However, it is argued that further work is still needed to fully grasp the experimentally observed CMR effect, since in several other Mn oxides an antiferromagnetic charge-ordered orbital-ordered state is the actual competitor of the ferromagnetic metal. C1 Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Sen, C (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. NR 45 TC 29 Z9 29 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 224441 DI 10.1103/PhysRevB.73.224441 PG 12 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300087 ER PT J AU Shapiro, SM Xu, G Gu, G Gardner, J Fonda, RW AF Shapiro, SM Xu, G Gu, G Gardner, J Fonda, RW TI Lattice dynamics of the high-temperature shape-memory alloy Nb-Ru SO PHYSICAL REVIEW B LA English DT Article ID NIOBIUM-RUTHENIUM ALLOYS; MARTENSITIC-TRANSFORMATION; DISPLACIVE TRANSFORMATIONS; PHASE TRANSFORMATIONS; ELASTIC-CONSTANTS; NI2MNGA AB Nb-Ru is a high-temperature shape-memory alloy that undergoes a martensitic transformation from a parent cubic beta-phase into a tetragonal beta(') phase at T-M similar to 900 degrees C. Measurements of the phonon dispersion curves on a single crystal show that the [110]-TA(2) phonon branch, corresponding in the q=0 limit to the elastic constant C-'=1/2(C-11-C-12) has an anomalous temperature dependence. Nearly the entire branch softens with decreasing temperature as T-M is approached. The temperature dependence of the low-q phonon energies suggests that the elastic constants would approach 0 as T approaches T-M, indicating a second-order transition. No additional lattice modulation is observed in the cubic phase. C1 Brookhaven Natl Lab, Condensed Matter Phys Mat Sci Dept, Upton, NY 11973 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. USN, Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA. RP Shapiro, SM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys Mat Sci Dept, Upton, NY 11973 USA. RI Xu, Guangyong/A-8707-2010 OI Xu, Guangyong/0000-0003-1441-8275 NR 29 TC 17 Z9 18 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 21 AR 214114 DI 10.1103/PhysRevB.73.214114 PG 6 WC Physics, Condensed Matter SC Physics GA 058WV UT WOS:000238696200046 ER PT J AU Suewattana, M Singh, DJ AF Suewattana, Malliga Singh, David J. TI Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method SO PHYSICAL REVIEW B LA English DT Article ID DIFFUSE PHASE-TRANSITION; SINGLE-CRYSTALS; X-RAY; PEROVSKITES; BEHAVIOR; STATES AB We investigated the local structural distortions of PMN(PbMg1/3Nb2/3O3) within the density functional theory using the linearized augmented plane-wave method. Structural relaxations were performed on 30 atom unit cells with B-cations arranged in 1:1 chemical ordering along [111]. The direction and magnitude of Mg and Nb off-centering within O-6 octahedral cages and Pb within its cage as well as electronic structures were examined. The results are discussed in terms of the Nb 4d-O 2p and Pb 6p-O 2p hybridizations and their interplay. A significant role is found for the on-site Ewald potential of different Nb sublattices, which is correlated with the off-centering. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Suewattana, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 35 TC 25 Z9 25 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 224105 DI 10.1103/PhysRevB.73.224105 PG 5 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300020 ER PT J AU Tanaka, K Agterberg, DF Kopu, J Eschrig, M AF Tanaka, K. Agterberg, D. F. Kopu, J. Eschrig, M. TI Effects of ballistic and diffusive motion of quasiparticles on spectral properties around a vortex in a two-band superconductor SO PHYSICAL REVIEW B LA English DT Article ID HEAT; MGB2; EQUATION; MODEL AB Motivated by the recent results on impurity effects in MgB(2), we present a theoretical model for a two-band superconductor in which the character of quasiparticle motion is ballistic in one band and diffusive in the other. We apply our model to calculate the electronic structure in the vicinity of an isolated vortex. We assume that superconductivity in the diffusive (pi) band is induced by that in the clean (sigma) band, as suggested by experimental evidence for MgB(2). We focus our attention to the spatial variation of the order parameter, the current density, and the vortex core spectrum in the two bands. Our results indicate that the coupling to the pi band can lead to the appearance of additional bound states near the gap edge in the sigma band that are absent in the single-band case. C1 Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. Helsinki Univ Technol, Low Temp Lab, FIN-02015 Espoo, Finland. Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany. RP Tanaka, K (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. RI Eschrig, Matthias/B-4786-2009; OI Eschrig, Matthias/0000-0003-4954-5549 NR 34 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 220501 DI 10.1103/PhysRevB.73.220501 PG 4 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300010 ER PT J AU Valone, SM Baskes, MI Martin, RL AF Valone, SM Baskes, MI Martin, RL TI Atomistic model of helium bubbles in gallium-stabilized plutonium alloys SO PHYSICAL REVIEW B LA English DT Article ID EMBEDDED-ATOM-METHOD; PU-GA ALLOYS; METALS; POTENTIALS; SILICON; IRRADIATION; IMPURITIES; EQUATION; BEHAVIOR; DENSITY AB The varying thermodynamic stability of gallium- (Ga-) stabilized plutonium (Pu) alloys with temperature affords a unique setting for the development of self-irradiation damage. Here, fundamental characteristics of helium (He) bubbles in these alloys with respect to temperature, gallium concentration, and He-to-vacancy ratio are modeled at the atomistic level with a modified embedded atom potential that takes account of this varying stability. Aside from the bubbles themselves, the surrounding matrix material is single-crystal metal or alloy. As a function of temperature, with a 2:1 He-to-vacancy ratio in a 5-at. % Ga fcc lattice, a 1.25-nm bubble is very stable up to about 1000 K. At 1000 K, the bubble distorts the surrounding lattice and precipitates a liquid zone, as is consistent with the phase diagram for the model material. Between 300 and 500 K, this same bubble relaxes slightly through interstitial emission. At 300 K, with a 2:1 He-to-vacancy ratio in a 2.5-at. % Ga fcc lattice, the Ga stabilization is less effective in the model to the point where the bubble distorts the local lattice and expands significantly. Similarly, at 300 K, if the He-to-vacancy ratio is increased to 3:1, there is significant local lattice distortion, as well as ejection of some He atoms into the lattice. The formation of new bubbles is not observed, because those events take place on a longer time scale than can be simulated with the present approach. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Valone, SM (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. NR 55 TC 44 Z9 46 U1 2 U2 19 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 21 AR 214209 DI 10.1103/PhysRevB.73.214209 PG 11 WC Physics, Condensed Matter SC Physics GA 058WV UT WOS:000238696200059 ER PT J AU Walsh, A Watson, GW Payne, DJ Edgell, RG Guo, JH Glans, PA Learmonth, T Smith, KE AF Walsh, Aron Watson, Graeme W. Payne, David J. Edgell, Russell G. Guo, Jinghua Glans, Per-Anders Learmonth, Timothy Smith, Kevin E. TI Electronic structure of the alpha and delta phases of Bi2O3: A combined ab initio and x-ray spectroscopy study SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SOLID ELECTROLYTES; LONE-PAIR; BISMUTH OXIDE; DELTA-BI2O3; CONDUCTIVITY; SIMULATION; DISORDER; ORIGIN AB alpha-Bi2O3 is the thermodynamically stable phase of Bi2O3 at room temperature. We have performed a theoretical and experimental investigation of its electronic structure using a combination of gradient corrected density functional theory (DFT), along with x-ray photoemission and O-K shell x-ray absorption and emission spectroscopies. We examine the nature of bonding in alpha-Bi2O3 and in particular explore the nature of the stereochemically active Bi electron lone pair. The Bi 6s states are found to be concentrated at the bottom of the valence band but the states contributing to the lone pair on Bi are derived from the top of the valence band. Mixing between O 2p and Bi 6s states is found to be crucial in producing the asymmetric density on Bi. The role of the lone pair in the fast ion conductor delta-Bi2O3 is also investigated, through calculation of the electronic structure with < 100 >, < 110 >, and < 111 > alignment of oxygen vacancies. Alignment of the vacancies along < 100 > results in the most energetically favorable configuration of the delta phase, contrary to previous force field calculations and electrostatic arguments which favor the < 111 > alignment. C1 Univ Dublin, Sch Chem, Trinity Coll, Dublin 2, Ireland. Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Walsh, A (reprint author), Univ Dublin, Sch Chem, Trinity Coll, Dublin 2, Ireland. EM watsong@tcd.ie RI Walsh, Aron/A-7843-2008; Watson, Graeme/B-4262-2008; Payne, David/C-2117-2011; Payne, David/C-2148-2014; Glans, Per-Anders/G-8674-2016 OI Walsh, Aron/0000-0001-5460-7033; Watson, Graeme/0000-0001-6732-9474; Payne, David/0000-0002-2120-6679; NR 45 TC 108 Z9 109 U1 7 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 23 AR 235104 DI 10.1103/PhysRevB.73.235104 PG 13 WC Physics, Condensed Matter SC Physics GA 058WZ UT WOS:000238696600032 ER PT J AU Ye, F Ren, Y Huang, Q Fernandez-Baca, JA Dai, PC Lynn, JW Kimura, T AF Ye, F. Ren, Y. Huang, Q. Fernandez-Baca, J. A. Dai, Pengcheng Lynn, J. W. Kimura, T. TI Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC PHASE-DIAGRAM; FIELD; CUFE1-XALXO2; POLARIZATION; TRANSITIONS AB We use high-resolution synchrotron x-ray and neutron diffraction to study the geometrically frustrated triangular lattice antiferromagnet CuFeO2. On cooling from room temperature, CuFeO2 undergoes two antiferromagnetic phase transitions with incommensurate and commensurate magnetic order at T-N1=14 K and T-N2=11 K, respectively. The occurrence of these two magnetic transitions is accompanied by second- and first-order structural phase transitions from hexagonal to monoclinic symmetry. Application of a 6.9 T magnetic field lowers both transition temperatures by similar to 1 K, and induces an additional incommensurate structural modulation in the temperature region where the field-driven ferroelectricity occurs. These results suggest that a strong magneto-elastic coupling is intimately related to the multiferroic effect. C1 Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ye, F (reprint author), Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. RI Ye, Feng/B-3210-2010; Dai, Pengcheng /C-9171-2012; Fernandez-Baca, Jaime/C-3984-2014 OI Ye, Feng/0000-0001-7477-4648; Dai, Pengcheng /0000-0002-6088-3170; Fernandez-Baca, Jaime/0000-0001-9080-5096 NR 32 TC 118 Z9 118 U1 7 U2 31 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN PY 2006 VL 73 IS 22 AR 220404 DI 10.1103/PhysRevB.73.220404 PG 4 WC Physics, Condensed Matter SC Physics GA 058WW UT WOS:000238696300006 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Guo, Y Gupta, A Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reid, JG Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Bezverkhny, B. I. Bharadwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, C. O. Blyth, S. -L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Guo, Y. Gupta, A. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Ishihara, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reid, J. G. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Minijet deformation and charge-independent angular correlations on momentum subspace (eta, phi) in Au-Au collisions at root S-NN=130 GeV SO PHYSICAL REVIEW C LA English DT Article ID BY-EVENT FLUCTUATIONS; HADRONIC-INTERACTIONS; AZIMUTHAL ANISOTROPY; NUCLEAR COLLISIONS; SCALE DEPENDENCE; DYNAMICS; AUTOCORRELATIONS; CONDENSATE; PARTICLE; PHYSICS AB Measurements of two-particle correlations on angular difference variables eta(1)-eta(2) (pseudorapidity) and phi(1)-phi(2) (azimuth) are presented for all primary charged hadrons with transverse momentum 0.15 <= p(t)<= 2 GeV/c and vertical bar eta vertical bar <= 1.3 from Au-Au collisions at root s(NN)=130 GeV. Large-amplitude correlations are observed over a broad range in relative angles where distinct structures appear on the same-side and away-side (i.e., relative azimuth less than pi/2 or greater than pi/2). The principal correlation structures include that associated with elliptic flow plus a strong, same-side peak. It is hypothesized that the latter results from correlated hadrons associated with semi-hard parton scattering in the early stage of the heavy-ion collision which produces a jet-like correlation peak at small relative angles. The width of the jet-like peak on eta(1)-eta(2) increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. The new methods of jet analysis introduced here provide access to scattered partons at low transverse momentum well below the kinematic range where perturbative quantum chromodynamics and standard fragmentation models are applicable. C1 Univ Birmingham, Birmingham, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Phys Nucl, Prague 25068, Czech Republic. JINR, Lab High Energy, Dubna, Russia. JINR, Phys Particules Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Phys Engn Inst, Moscow, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, NL-1009 DB Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhua 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. Hua Zhong Normal Univ, Inst Particle Phys, CCNU, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham, W Midlands, England. RI Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 43 TC 153 Z9 154 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064907 DI 10.1103/PhysRevC.73.064907 PG 10 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500035 ER PT J AU Baier, R Romatschke, P Wiedemann, UA AF Baier, Rudolf Romatschke, Paul Wiedemann, Urs Achim TI Dissipative hydrodynamics and heavy-ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; HOT HADRONIC MATTER; ELLIPTIC FLOW; THERMAL EQUILIBRATION; QCD MATTER; THERMODYNAMICS; TRANSPORT; COLLABORATION; NONSTATIONARY AB Recent discussions of RHIC data emphasized the exciting possibility that the matter produced in nucleus-nucleus collisions shows properties of a near-perfect fluid. Here, we aim at delineating the applicability of fluid dynamics, which is needed to quantify the size of corresponding dissipative effects. We start from the equations for dissipative fluid dynamics, which we derive from kinetic theory up to second order (Israel-Stewart theory) in a systematic gradient expansion. In model studies, we then establish that for too early initialization of the hydrodynamic evolution (tau(0)less than or similar to 1 fm/c) or for too high transverse momentum (p(T)less than or similar to 1 GeV) in the final state, the expected dissipative corrections are too large for a fluid description to be reliable. Moreover, viscosity-induced modifications of hadronic transverse momentum spectra can be accommodated to a significant degree in an ideal fluid description by modifications of the decoupling stage. We argue that these conclusions, drawn from model studies, can also be expected to arise in significantly more complex, realistic fluid dynamics simulations of heavy ion collisions. C1 Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Baier, R (reprint author), Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. NR 65 TC 167 Z9 167 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064903 DI 10.1103/PhysRevC.73.064903 PG 11 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500031 ER PT J AU Evans, AO Paul, ES Simpson, J Riley, MA Appelbe, DE Campbell, DB Choy, PTW Clark, RM Cromaz, M Fallon, P Gorgen, A Joss, DT Lee, IY Macchiavelli, AO Nolan, PJ Pipidis, A Ward, D Ragnarsson, I AF Evans, AO Paul, ES Simpson, J Riley, MA Appelbe, DE Campbell, DB Choy, PTW Clark, RM Cromaz, M Fallon, P Gorgen, A Joss, DT Lee, IY Macchiavelli, AO Nolan, PJ Pipidis, A Ward, D Ragnarsson, I TI High-spin structure in Er-157 up to and above band termination SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BANDS; NUCLEI; EXCITATIONS AB The high-spin structure of Er-157 has been greatly expanded using the Gammasphere spectrometer to investigate the Cd-114(Ca-48,5n) reaction at 215 MeV. Many new transitions have been placed in a greatly augmented level scheme up to spin 40h with many collective rotational sequences established. With increasing angular momentum, this nucleus undergoes a Coriolis-induced shape transition from a deformed state of collective rotation to a noncollective configuration. This transition manifests itself as favored band termination near I=45h in three rotational structures. Many weakly populated states lying at high excitation energy that decay into the terminating states have been discovered. Cranked-Nilsson-Strutinsky calculations suggest that the levels that feed the terminating states arise from weakly collective configurations that break the Z=64 semimagic core. C1 Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. CCLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Lund Inst Technol, Dept Math Phys, S-22100 Lund, Sweden. RP Evans, AO (reprint author), Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. NR 26 TC 10 Z9 10 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064303 DI 10.1103/PhysRevC.73.064303 PG 14 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500012 ER PT J AU Grandchamp, L Lumpkins, S Sun, D van Hees, H Rapp, R AF Grandchamp, L. Lumpkins, S. Sun, D. van Hees, H. Rapp, R. TI Bottomonium production at root s(NN)=200 GeV and root s(NN)=5.5 TeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; QCD PHASE-TRANSITION; HADRONIC SPECTRAL FUNCTIONS; SHORT-DISTANCE ANALYSIS; CHARMONIUM SUPPRESSION; UPSILON SUPPRESSION; FINITE-TEMPERATURE; J/PSI SUPPRESSION; HIDDEN CHARM AB Properties of bottomonia (Upsilon,chi(b), and Upsilon ') in the quark-gluon plasma (QGP) are investigated by assessing inelastic reaction rates and their interplay with open-bottom states (b quarks or B mesons) and color screening. The latter leads to vanishing quarkonium-binding energies at sufficiently high temperatures (close to the dissolution point), which, in particular, renders standard gluo-dissociation, g+Upsilon -> b ->(b) over bar, inefficient because of a substantial reduction in final-state phase space. This problem is overcome by invoking a "quasifree" destruction mechanism, g,q,(q) over bar+Upsilon -> g,q,(q) over bar +b+(b) over bar, as previously introduced for charmonia. The pertinent reaction rates are implemented into a kinetic theory framework to evaluate the time evolution of bottomonia in heavy-ion reactions at the Relativistic Heavy Ion Collider and the CERN Large Hadron Collider within an expanding fireball model. Although bottom quarks are assumed to be exclusively produced in primordial nucleon-nucleon collisions, their thermal relaxation times in the QGP, which importantly figure into Upsilon-formation rates, are estimated according to a recent Fokker-Planck treatment. Predictions for the centrality dependence of Upsilon production are given for upcoming experiments at RHIC and LHC. At both energies, Upsilon suppression turns out to be the prevalent effect. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Oklahoma, Norman, OK 73019 USA. Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Grandchamp, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 59 TC 43 Z9 43 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064906 DI 10.1103/PhysRevC.73.064906 PG 16 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500034 ER PT J AU Hagen, G Hjorth-Jensen, M Michel, N AF Hagen, G. Hjorth-Jensen, M. Michel, N. TI Gamow shell model and realistic nucleon-nucleon interactions SO PHYSICAL REVIEW C LA English DT Article ID SHORT-RANGE CORRELATIONS; RESONANT FINAL-STATES; OPTICAL-MODEL; FINITE NUCLEI; CONTINUUM; SYSTEMS; EXPANSIONS; ENERGY; SPACE AB We present a new and efficient method to obtain a Gamow shell-model basis and matrix elements generated by realistic nucleon-nucleon interactions. We derive a self-consistent Hartree-Fock potential from the renormalized (NLO)-L-3 interaction model. The corresponding Gamow one-body eigenstates are generated in a plane wave basis in order to build a Gamow shell-model set of basis states for the closed shell nuclei He-4 and O-16. We address also the problem of representing a realistic nucleon-nucleon interaction in a two-particle Berggren basis in the laboratory frame. To achieve this, an expansion of matrix elements of the residual nucleon-nucleon interaction in a finite set of harmonic oscillator wave functions is used. We show that all loosely bound and narrow resonant states converge surprisingly fast. Even broad resonances in these two-particle valence systems converge within a reasonable number of harmonic oscillator functions. Examples of He-6 and O-18 Gamow shell-model calculations using He-4 and O-16 as closed shell cores are presented. This procedure allows Gamow shell-model calculations to be performed with all realistic nucleon-nucleon interactions and with either momentum or position space representations for the Gamow basis. Perspectives for nuclear structure calculations of dripline nuclei are outlined. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Univ Oslo, Ctr Appl Math, N-0316 Oslo, Norway. RP Hagen, G (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012 OI Hagen, Gaute/0000-0001-6019-1687 NR 60 TC 40 Z9 40 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064307 DI 10.1103/PhysRevC.73.064307 PG 13 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500016 ER PT J AU Hu, B Jones, MK Ulmer, PE Arenhovel, H Baker, OK Bertozzi, W Brash, EJ Calarco, J Chen, JP Chudakov, E Cochran, A Dumalski, S Ent, R Finn, JM Garibaldi, F Gilad, S Gilman, R Glashausser, C Gomez, J Gorbenko, V Hansen, JO Hovebo, J de Jager, CW Jeschonnek, S Jiang, X Keppel, C Klein, A Kozlov, A Kuhn, S Kumbartzki, G Kuss, M LeRose, JJ Liang, M Liyanage, N Lolos, GJ Markowitz, PEC Meekins, D Michaels, R Mitchell, J Papandreou, Z Perdrisat, CF Punjabi, V Roche, R Rowntree, D Saha, A Strauch, S Todor, L Urciuoli, G Weinstein, LB Wijesooriya, K Wojtsekhowski, BB Woo, R AF Hu, B. Jones, M. K. Ulmer, P. E. Arenhoevel, H. Baker, O. K. Bertozzi, W. Brash, E. J. Calarco, J. Chen, J. -P. Chudakov, E. Cochran, A. Dumalski, S. Ent, R. Finn, J. M. Garibaldi, F. Gilad, S. Gilman, R. Glashausser, C. Gomez, J. Gorbenko, V. Hansen, J. -O. Hovebo, J. de Jager, C. W. Jeschonnek, S. Jiang, X. Keppel, C. Klein, A. Kozlov, A. Kuhn, S. Kumbartzki, G. Kuss, M. LeRose, J. J. Liang, M. Liyanage, N. Lolos, G. J. Markowitz, P. E. C. Meekins, D. Michaels, R. Mitchell, J. Papandreou, Z. Perdrisat, C. F. Punjabi, V. Roche, R. Rowntree, D. Saha, A. Strauch, S. Todor, L. Urciuoli, G. Weinstein, L. B. Wijesooriya, K. Wojtsekhowski, B. B. Woo, R. TI Polarization transfer in the H-2((e)over-right-arrow, e(')(p)over-right-arrow)n reaction up to Q(2)=1.61 (GeV/c)(2) SO PHYSICAL REVIEW C LA English DT Article ID ELECTRIC FORM-FACTOR; NEUTRON; ELECTRODISINTEGRATION; COINCIDENCE; SCATTERING; DEUTERON; PROTON AB The recoil proton polarization was measured in the H-2(e,e(')p)n reaction in Hall A of the Thomas Jefferson National Accelerator Facility. The electron kinematics were centered on the quasielastic peak (x(Bj)approximate to 1) and included three values of the squared four-momentum transfer, Q(2)=0.43,1.00 and 1.61 (GeV/c)(2). For Q(2)=0.43 and 1.61 (GeV/c)(2), the missing momentum, p(m), was centered at zero, whereas for Q(2)=1.00 (GeV/c)(2) two values of p(m) were chosen: 0 and 174 MeV/c. At low p(m), the Q(2) dependence of the longitudinal polarization, P-z('), is not well described by a state-of-the-art calculation. Further, at higher p(m), a 3.5 sigma discrepancy was observed in the transverse polarization, P-x('). Understanding the origin of these discrepancies is important to confidently extract the neutron electric form factor from the analogous H-2(e,e(')n)p experiment. C1 Hampton Univ, Hampton, VA 23668 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. MIT, Cambridge, MA 02139 USA. Univ Regina, Regina, SK S4S 0A2, Canada. Univ New Hampshire, Durham, NH 03824 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Sez Sanita, Ist Nazl Fis Nucl, I-00161 Rome, Italy. Ist Super Sanita, Fis Lab, I-00161 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Kharkov Phys & Technol Inst, UA-310108 Kharkov, Ukraine. Ohio State Univ, Lima, OH 45804 USA. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Norfolk State Univ, Norfolk, VA 23504 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Hu, B (reprint author), Hampton Univ, Hampton, VA 23668 USA. RI Kuss, Michael/H-8959-2012 NR 37 TC 19 Z9 19 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064004 DI 10.1103/PhysRevC.73.064004 PG 7 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500009 ER PT J AU Jenkins, DG Meadowcroft, A Lister, CJ Carpenter, MP Chowdhury, P Hammond, NJ Janssens, RVF Khoo, TL Lauritsen, T Seweryniak, D Davinson, T Woods, PJ Jokinen, A Penttila, H Martinez-Pinedo, G Jose, J AF Jenkins, D. G. Meadowcroft, A. Lister, C. J. Carpenter, M. P. Chowdhury, P. Hammond, N. J. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Seweryniak, D. Davinson, T. Woods, P. J. Jokinen, A. Penttila, H. Martinez-Pinedo, G. Jose, J. TI Reevaluation of the P-30(p,gamma)S-31 astrophysical reaction rate from a study of the T=1/2 mirror nuclei, S-31 and P-31 SO PHYSICAL REVIEW C LA English DT Article ID ENERGY-LEVELS; SHELL-MODEL; NOVAE AB The P-30(p,gamma)S-31 reaction rate is expected to be the principal determinant for the endpoint of nucleosynthesis in classical novae. To date, the reaction rate has only been estimated through Hauser-Feschbach calculations and is unmeasured experimentally. This paper aims to remedy this situation. Excited states in S-31 and P-31 were populated in the C-12(Ne-20,n) and C-12(Ne-20,p) reactions, respectively, at a beam energy of 32 MeV, and their resulting gamma decay was detected with the Gammasphere array. Around half the relevant proton unbound states in S-31 corresponding to the Gamow window for the P-30(p,gamma)S-31 reaction were identified. The properties of the unobserved states were inferred from mirror symmetry using our extended data on P-31. The implications of this new spectroscopic information for the P-30(p,gamma)S-31 reaction rate are considered and recommendations for future work with radioactive beams are discussed. C1 Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. ICREA, E-08034 Barcelona, Spain. IEEC, E-08034 Barcelona, Spain. Inst Estudis Espacials Catalunya, E-08034 Barcelona, Spain. UPC, E-08800 Vilanova I La Geltru, Spain. RP Jenkins, DG (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RI Martinez-Pinedo, Gabriel/A-1915-2013; Penttila, Heikki/A-4420-2013; Carpenter, Michael/E-4287-2015; Jokinen, Ari/C-2477-2017 OI Martinez-Pinedo, Gabriel/0000-0002-3825-0131; Carpenter, Michael/0000-0002-3237-5734; Jokinen, Ari/0000-0002-0451-125X NR 23 TC 30 Z9 30 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 065802 DI 10.1103/PhysRevC.73.065802 PG 8 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500043 ER PT J AU Ley, J Duweke, C Emmerich, R Imig, A Schieck, HPG Golak, J Witala, H Epelbaum, E Deltuva, A Fonseca, AC Glockle, W Meissner, UG AF Ley, J. Dueweke, C. Emmerich, R. Imig, A. Schieck, H. Paetz gen. Golak, J. Witala, H. Epelbaum, E. Deltuva, A. Fonseca, A. C. Gloeckle, W. Meissner, U. -G. TI Cross sections and tensor analyzing powers A(yy) of the reaction H-1((d)over-right-arrow, pp)n in "symmetric constant relative energy" geometries at E-d=19 MeV SO PHYSICAL REVIEW C LA English DT Article ID CHARGE-INDEPENDENCE BREAKING; ELASTIC ND SCATTERING; POLARIZED PROTONS; DEUTERON BREAKUP; 3-NUCLEON FORCE; NUCLEAR-FORCES; POTENTIAL MODELS; CHIRAL EXPANSION; MOMENTUM-SPACE; SYSTEM AB We measured the cross sections and tensor analyzing powers of the H-1(d,pp)n breakup reaction at E-d=19 MeV in four symmetric constant relative energy (SCRE) configurations. The data are compared with theoretical predictions from four different approaches: the first based on high-precision (semi)phenomenological potentials alone or, the second, combined with model three-nucleon forces, and the third based on chiral forces up to next-to-next-to-leading order (NNLO) in the chiral expansion. In these cases the Coulomb interaction is not included. In addition, a fourth approach consists in a comparison with predictions based on CD Bonn including the Delta excitation and the Coulomb force. In all cases the measured cross sections are significantly below the theoretical values, whereas the magnitudes of the tensor analyzing powers agree within the error bars in three of the four cases. The apparent discrepancies in the breakup cross sections are similar to the known differences for the space-star breakup. This adds to the data base of unsolved low-energy discrepancies (puzzles). C1 Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. Jefferson Lab, Div Theory, Newport News, VA 23606 USA. Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. Ruhr Univ Bochum, Inst Theoret Phys, D-44780 Bochum, Germany. Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany. RP Schieck, HPG (reprint author), Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany. EM schieck@ikp.uni-koeln.de RI Deltuva, Arnoldas/M-3749-2013; Sa Fonseca, Antonio Carlos/M-3434-2013 OI Deltuva, Arnoldas/0000-0002-0732-7749; Sa Fonseca, Antonio Carlos/0000-0002-5289-1162 NR 62 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064001 DI 10.1103/PhysRevC.73.064001 PG 12 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500006 ER PT J AU Liang, Y Christy, ME Ent, R Keppel, CE AF Liang, Y Christy, ME Ent, R Keppel, CE TI Q(2) evolution of generalized Baldin sum rule for the proton SO PHYSICAL REVIEW C LA English DT Article ID VIRTUAL COMPTON-SCATTERING; ELECTRON-SCATTERING; MAGNETIC MOMENTS; LOCAL DUALITY; ELECTROPRODUCTION; SIGMA(L)/SIGMA(T); POLARIZABILITY; DISPERSION; NUCLEONS; MODEL AB The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral provides an important way to investigate the transition between perturbative QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure function F-1, which until recently had not been measured at low Q(2) and large x, i.e., in the nucleon resonance region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements of the generalized Baldin integral for the proton in the Q(2) range of 0.3 to 4.0 GeV2. C1 Ohio Univ, Athens, OH 45701 USA. Hampton Univ, Hampton, VA 23668 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Liang, Y (reprint author), Ohio Univ, Athens, OH 45701 USA. NR 28 TC 8 Z9 8 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 065201 DI 10.1103/PhysRevC.73.065201 PG 4 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500037 ER PT J AU Navratil, P Bertulani, CA Caurier, E AF Navratil, P. Bertulani, C. A. Caurier, E. TI Be-7(p,gamma)B-8 S factor from ab initio no-core shell model wave functions SO PHYSICAL REVIEW C LA English DT Article ID REACTION CROSS-SECTION; COULOMB DISSOCIATION; PROTON CAPTURE; ENERGY-LEVELS; 1P SHELL; NUCLEI; B-8; LIGHT; BE-7; MEV/NUCLEON AB Nuclear structure of Be-7, B-8, and Li-7,Li-8 is studied within the ab initio no-core shell model (NCSM). Starting from high-precision nucleon-nucleon (NN) interactions, wave functions of Be-7 and B-8 bound states are obtained in basis spaces up to 10h Omega and used to calculate channel cluster form factors (overlap integrals) of the B-8 ground state with Be-7+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon potential solution fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The corrected overlap integrals are then used for the Be-7(p,gamma)B-8 S-factor calculation. We study the convergence of the S factor with respect to the NCSM HO frequency and the model space size. Our S factor results agree with recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the NCSM in describing the momentum distributions in knockout reactions with B-8 projectiles. A good agreement with the available experimental data is also found, attesting to the overall consistency of the calculations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Navratil, P (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. EM navratil1@llnl.gov; bertulani@physics.arizona.edu; etienne.caurier@ires.in2p3.fr NR 56 TC 39 Z9 39 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 065801 DI 10.1103/PhysRevC.73.065801 PG 20 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500042 ER PT J AU Nogga, A Navratil, P Barrett, BR Vary, JP AF Nogga, A. Navratil, P. Barrett, B. R. Vary, J. P. TI Spectra and binding energy predictions of chiral interactions for Li-7 SO PHYSICAL REVIEW C LA English DT Article ID MONTE-CARLO CALCULATIONS; PION-NUCLEON SCATTERING; SHELL-MODEL CALCULATIONS; EFFECTIVE-FIELD THEORY; ELASTIC-SCATTERING; 2-NUCLEON SYSTEM; 3-NUCLEON FORCE; LIGHT-NUCLEI; 3-BODY INTERACTIONS; PERTURBATION-THEORY AB Using the no-core shell model approach, we report on the first results for Li-7 based on the next-to-next-to-leading order chiral nuclear interaction. Both two-nucleon and three-nucleon interactions are taken into account. We show that the p-shell nuclei are sensitive to the subleading parts of the chiral interactions including three-nucleon forces. Though chiral interactions are soft, we do not observe overbinding for this p-shell nucleus and find a realistic description for the binding energy, excitation spectrum, and radius. C1 Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Nogga, A (reprint author), Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. EM a.nogga@fz-juelich.de; navratil1@llnl.gov; bbarrett@physics.arizona.edu; jvary@iastate.edu RI Nogga, Andreas/A-3354-2008 OI Nogga, Andreas/0000-0003-2156-748X NR 70 TC 94 Z9 94 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 064002 DI 10.1103/PhysRevC.73.064002 PG 13 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500007 ER PT J AU Seweryniak, D Starosta, K Davids, CN Gros, S Hecht, AA Hoteling, N Khoo, TL Lagergren, K Lotay, G Peterson, D Robinson, A Vaman, C Walters, WB Woods, PJ Zhu, S AF Seweryniak, D. Starosta, K. Davids, C. N. Gros, S. Hecht, A. A. Hoteling, N. Khoo, T. L. Lagergren, K. Lotay, G. Peterson, D. Robinson, A. Vaman, C. Walters, W. B. Woods, P. J. Zhu, S. TI alpha decay of Te-105 SO PHYSICAL REVIEW C LA English DT Article ID SN-100; IDENTIFICATION; RADIOACTIVITY AB The alpha decay of the neutron-deficient nuclide Te-105 was observed. The Cr-50(Ni-58,3n) reaction was used to produce Te-105 nuclei. The Te-105 residues were selected with the Argonne Fragment Mass Analyzer and implanted into a double-sided Si strip detector where their subsequent alpha decay was detected. An alpha-decay Q value of Q(alpha)=4900(50) keV and a half life of T-1/2=0.70(-0.17+0.25)mu s were measured for Te-105 and a reduced alpha-decay width of W-alpha=3.3(-1.7+2.1) was deduced. The decay properties of Te-105 are compared with those of heavier Te isotopes and theoretical predictions. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. Univ Maryland, College Pk, MD 20742 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Seweryniak, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 12 TC 56 Z9 57 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 061301 DI 10.1103/PhysRevC.73.061301 PG 3 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500001 ER PT J AU Smith, JF Fletcher, AM Chiara, CJ Carpenter, MP Chantler, HJ Davids, CN Durell, JL Fossan, DB Freeman, SJ Janssens, RVF Koike, T Kondev, FG LaFosse, DR Lisle, JC Patel, D Paul, ES Reviol, W Sarantites, DG Seweryniak, D Starosta, K Wadsworth, R Wilson, AN AF Smith, JF Fletcher, AM Chiara, CJ Carpenter, MP Chantler, HJ Davids, CN Durell, JL Fossan, DB Freeman, SJ Janssens, RVF Koike, T Kondev, FG LaFosse, DR Lisle, JC Patel, D Paul, ES Reviol, W Sarantites, DG Seweryniak, D Starosta, K Wadsworth, R Wilson, AN TI First observation of excited states in Cs-114: Spectroscopy of the yrast nu(h(11/2))circle times pi(h(11/2)) band SO PHYSICAL REVIEW C LA English DT Article ID ODD-ODD NUCLEI; SIGNATURE INVERSION; RESIDUAL INTERACTION; SPINS AB Excited states have been observed for the first time in the very neutron-deficient Cs-114(55)59 nucleus. The assignment to Cs-114 was made by detecting gamma rays in coincidence with evaporated charged particles and with recoiling evaporation residues. A rotational band has been observed up to spin 21h (tentatively 25h). Excitation-energy systematics and a study of quasiparticle alignments suggest that the band is based on the nu(h(11/2))circle times pi(h(11/2)) configuration. Unlike bands based on this configuration in heavier cesium isotopes, only one signature partner is observed, and there is no evidence for signature inversion. These observations agree with theoretical calculations which predict that Coriolis-induced signature splitting should dominate at N=59. C1 Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Washington Univ, Dept Chem, St Louis, MO 63130 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RP Smith, JF (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM John.F.Smith@Manchester.ac.uk RI Freeman, Sean/B-1280-2010; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 NR 31 TC 0 Z9 0 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 061303 DI 10.1103/PhysRevC.73.061303 PG 5 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500003 ER PT J AU Stoitcheva, G Satula, W Nazarewicz, W Dean, DJ Zalewski, M Zdunczuk, H AF Stoitcheva, G. Satula, W. Nazarewicz, W. Dean, D. J. Zalewski, M. Zdunczuk, H. TI High-spin intruder states in the fp-shell nuclei and isoscalar proton-neutron correlations SO PHYSICAL REVIEW C LA English DT Article ID SKYRME PARAMETRIZATION; STAR DENSITIES; F(7/2) NUCLEI; HOLE STATES; ORBIT TERM; MODEL; ENERGY; SYSTEMATICS; SUBNUCLEAR; SYMMETRY AB We perform a systematic theoretical analysis of fully-aligned, high-spin f(7/2)(n) seniority isomers and d(3/2)(-1)f(7/2)(n+1) intruder states in the A similar to 44 nuclei from the lower-fp shell. The configuration-interaction calculations, based on the nuclear shell model, are performed in the full sdfp configuration space allowing 1p-1h cross-shell excitations. The density functional theory calculations are carried out within the self-consistent Hartree-Fock approach with the Skyrme energy functional that reproduces empirical Landau parameters. While there is a nice agreement between experimental and theoretical relative energies of fully-aligned states in N > Z nuclei, this is no longer the case for the N=Z systems. The remaining deviation from the data is attributed to the isoscalar proton-neutron correlations. It is also demonstrated that the Coulomb corrections at high spins noticeably depend on the choice of the energy density functional. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RP Stoitcheva, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. OI Dean, David/0000-0002-5688-703X NR 38 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN PY 2006 VL 73 IS 6 AR 061304 DI 10.1103/PhysRevC.73.061304 PG 5 WC Physics, Nuclear SC Physics GA 058XI UT WOS:000238697500004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Coenen, J Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van Den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Coenen, J. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Leonidopoulos, C. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for excited muons in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID QUARKS; PHYSICS; MODEL AB We present the results of a search for the production of an excited state of the muon, mu(*), in proton antiproton collisions at root s =1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb(-1). We search for mu(*) in the process p (p) over bar ->mu(*)mu, with the mu(*) subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes mu(*) production by four-fermion contact interactions and mu(*) decay via electroweak processes, we set a 95% confidence level production cross section upper limit ranging from 0.057 to 0.112 pb, depending on the mass of the excited muon. Choosing the scale for contact interactions to be Lambda=1 TeV, excited muon masses below 618 GeV are excluded. C1 Joint Inst Nucl Res Dubna, Dubna, Russia. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, CR-11636 Prague 1, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. CEA, DAPNIA Serv Phys Particules, Saclay, France. Univ Haute Alsace, Mulhouse, France. Univ Strasbourg, CNRS, IN2P3, IReS, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, NL-1012 WX Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Royal Inst Technol, Stockholm, Sweden. Lund Univ, S-22100 Lund, Sweden. Univ Stockholm, S-10691 Stockholm, Sweden. Uppsala Univ, S-75105 Uppsala, Sweden. Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. Univ Lancaster, Lancaster LA1 4YW, England. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res Dubna, Dubna, Russia. RI Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Coenen, Jan Willem/K-7802-2013; De, Kaushik/N-1953-2013; Coenen, Jan/C-5626-2008; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Coenen, Jan Willem/0000-0002-8579-908X; De, Kaushik/0000-0002-5647-4489; Coenen, Jan/0000-0002-8579-908X; Dudko, Lev/0000-0002-4462-3192; NR 20 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 111102 DI 10.1103/PhysRevD.73.111102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300002 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Bourov, S Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Connolly, A Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cruz, A Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Dominguez, A Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerchtein, E Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Grundler, U da Costa, JG Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Hayward, H Heijboer, A Heinemann, B Heinrich, J Hennecke, M Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karagoz-Unel, M Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, YK Kirby, M Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Kordas, K Korytov, A Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreps, M Kreymer, A Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maksimovic, P Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McGivern, D McIntyre, P McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Mulhearn, M Muller, T Mumford, R Murat, P Nachtman, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Papikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, K Plager, C Pondrom, L Pope, G Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Ryan, D Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sill, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Worm, S Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, Y Yang, C Yang, UK Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bishai, M. Blair, R. E. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Bourov, S. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Connolly, A. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cruz, A. Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Doerr, C. Dominguez, A. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Fujii, Y. Furic, I. Gajjar, A. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerchtein, E. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giolo, K. Giordani, M. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Grundler, U. da Costa, J. Guimaraes Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Hayward, H. Heijboer, A. Heinemann, B. Heinrich, J. Hennecke, M. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Ikado, K. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karagoz-Unel, M. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, Y. K. Kirby, M. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Kordas, K. Korytov, A. Kotwal, A. V. Kovalev, A. Kraus, J. Kravchenko, I. Kreps, M. Kreymer, A. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lecci, C. LeCompte, T. Lee, J. Lee, J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Li, K. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Liu, Y. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maksimovic, P. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McGivern, D. McIntyre, P. McNamara, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Miscetti, S. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Mulhearn, M. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Papikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pitts, K. Plager, C. Pondrom, L. Pope, G. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Rinnert, K. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Ryan, D. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Semeria, F. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sill, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Tafirout, R. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vacavant, L. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vickey, T. Vidal, R. Vila, I. Vilar, R. Vollrath, I. Volobouev, I. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, M. J. Wang, S. M. Warburton, A. Ward, B. Waschke, S. Waters, D. Watts, T. Weber, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Worm, S. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, Y. Yang, C. Yang, U. K. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the helicity of W bosons in top-quark decays SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We measure the branching fraction of the top quark to longitudinally and right-handed polarized W bosons, F-0 and F+, using approximately 200 pb(-1) of (p) over barp collisions collected by the CDF II detector. We analyze two quantities sensitive to the W helicity: the invariant mass of the charged lepton and the bottom-quark jet in the decay t -> Wb ->center dot nu b (where center dot=e or mu), and the transverse momentum of the charged lepton. Constrained fits yield F-0=0.74(-0.34)(+0.22), and F+< 0.27 at the 95% confidence level. These measurements are consistent with the standard model predictions. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res Dubna, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez PadovaTrento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Ivanov, Andrew/A-7982-2013; Connolly, Amy/J-3958-2013; Warburton, Andreas/N-8028-2013; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Grinstein, Sebastian/N-3988-2014; OI Ruiz, Alberto/0000-0002-3639-0368; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Rott, Carsten/0000-0002-6958-6033; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Chu, Pinghan/0000-0003-1372-2910; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Miquel, Ramon/0000-0002-6610-4836; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014 NR 23 TC 18 Z9 18 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 111103 DI 10.1103/PhysRevD.73.111103 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300003 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Kordas, K Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Sung, K Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Kordas, K. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Sung, K. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the top quark mass using template methods on dilepton events in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID CENTRAL ELECTROMAGNETIC CALORIMETER; COLLIDER DETECTOR; PARTON DISTRIBUTIONS; CDF; FERMILAB; UPGRADE; PHYSICS; PERFORMANCE; GENERATION AB We describe a measurement of the top quark mass from events produced in p (p) over bar collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify t (t) over bar candidates where both W bosons from the top quarks decay into leptons (e nu, mu nu, or tau nu) from a data sample of 360 pb(-1). The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t (t) over bar longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. A likelihood fit incorporating these parametrized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 +/- 6.0(stat.)+/- 4.1(syst.) GeV/c(2). C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res Dubna, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. Univ Toronto, Toronto, ON M5S 1A7, Canada. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez PadovaTrento, I-35131 Padua, Italy. Univ Paris 06, IN2P3, CNRS, LPNHE, F-75252 Paris 05, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Warburton, Andreas/N-8028-2013; Levy, Stephen/C-3493-2011; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 43 TC 39 Z9 39 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 112006 DI 10.1103/PhysRevD.73.112006 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300015 ER PT J AU Alford, MG Rajagopal, K Reddy, S Steiner, AW AF Alford, Mark G. Rajagopal, Krishna Reddy, Sanjay Steiner, Andrew W. TI Stability of strange star crusts and strangelets SO PHYSICAL REVIEW D LA English DT Article ID X-RAY OSCILLATIONS; QUARK MATTER; COLOR SUPERCONDUCTIVITY; HIGH-DENSITY; SGR 1806-20; PHASE; QCD; HYPERFLARE; NEUTRALITY; DISCOVERY AB We construct strangelets, taking into account electrostatic effects, including Debye screening, and arbitrary surface tension sigma of the interface between vacuum and quark matter. We find that there is a critical surface tension sigma(crit) below which large strangelets are unstable to fragmentation and below which quark star surfaces will fragment into a crystalline crust made of charged strangelets immersed in an electron gas. We derive a model-independent relationship between sigma(crit) and two parameters that characterize any quark matter equation of state. For reasonable model equations of state, we find sigma(crit) typically of order a few MeV/fm(2). If sigma <=sigma(crit), the size-distribution of strangelets in cosmic rays could feature a peak corresponding to the stable strangelets that we construct. C1 Washington Univ, Dept Phys, St Louis, MO 63130 USA. MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Alford, MG (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. OI Steiner, Andrew/0000-0003-2478-4017 NR 62 TC 54 Z9 56 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 114016 DI 10.1103/PhysRevD.73.114016 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300040 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L De la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Search for the decay tau(-)-> 3 pi(-)2 pi(+)2 pi(0)nu(tau) SO PHYSICAL REVIEW D LA English DT Article AB A search for the decay of the tau lepton to five charged and two neutral pions is performed using data collected by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider. The analysis uses 232 fb(-1) of data at center-of-mass energies on or near the Upsilon(4S) resonance. We observe 10 events with an expected background of 6.5(-1.4)(+2.0) events. In the absence of a signal, we set the limit on the branching ratio B(tau(-)-> 3 pi(-)2 pi(+)2 pi(0)nu(tau))< 3.4x10(-6) at the 90% confidence level. This is a significant improvement over the previously established limit. In addition, we search for the decay mode tau(-)-> 2 omega pi(-)nu(tau). We observe 1 event with an expected background of 0.4(-0.4)(+1.0) events and calculate the upper limit B(tau(-)-> 2 omega pi(-)nu(tau))< 5.4x10(-7) at the 90% confidence level. This is the first upper limit for this mode. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSMDapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288 NR 16 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 112003 DI 10.1103/PhysRevD.73.112003 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300012 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. . A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Measurement of branching fractions and CP-violating charge asymmetries for B-meson decays to D-(*)(D)over-bar((*)), and implications for the Cabibbo-Kobayashi-Maskawa angle gamma SO PHYSICAL REVIEW D LA English DT Article ID SEARCH; CONSTANTS AB We present measurements of the branching fractions and charge asymmetries of B decays to all D-(*)(D) over bar ((*)) modes. Using 232x10(6) B (B) over bar pairs recorded on the Upsilon(4S) resonance by the BABAR detector at the e(+)e(-) asymmetric B factory PEP-II at the Stanford Linear Accelerator Center, we measure the branching fractions B(B-0 -> D*+D*-)=(8.1 +/- 0.6 +/- 1.0)x10(-4), B(B-0 ->(DD -/+)-D-*+/-)=(5.7 +/- 0.7 +/- 0.7)x10(-4), B(B-0 -> D+D-)=(2.8 +/- 0.4 +/- 0.5)x10(-4), B(B+-> D*+(D) over bar (*0))=(8.1 +/- 1.2 +/- 1.2)x10(-4), B(B+-> D*+(D) over bar (0))=(3.6 +/- 0.5 +/- 0.4)x10(-4), B(B+-> D+(D) over bar (*0))=(6.3 +/- 1.4 +/- 1.0)x10(-4), and B(B+-> D+($) over bar (0))=(3.8 +/- 0.6 +/- 0.5)x10(-4), where in each case the first uncertainty is statistical and the second systematic. We also determine the limits B(B-0 -> D-*0(D) over bar (*0))< 0.9x10(-4), B(B-0 -> D-*0(D) over bar (0))< 2.9x10(-4), and B(B-0 -> D-0(D) over bar (0))< 0.6x10(-4), each at 90% confidence level. All decays above denote either member of a charge-conjugate pair. We also determine the CP-violating charge asymmetries A(B-0 ->(DD -/+)-D-*+/-)=0.03 +/- 0.10 +/- 0.02, A(B+-> D*+(D) over bar (*0))=-0.15 +/- 0.11 +/- 0.02, A(B+-> D*+(D) over bar (0))=-0.06 +/- 0.13 +/- 0.02, A(B+-> D+(D) over bar (*0))=0.13 +/- 0.18 +/- 0.04, and A(B+-> D+(D) over bar (0))=-0.13 +/- 0.14 +/- 0.02. Additionally, when we combine these results with information from time-dependent CP asymmetries in B-0 -> D(*)+D(*)- decays and world-averaged branching fractions of B decays to D-s((*))(D) over bar ((*)) modes, we find the Cabibbo-Kobayashi-Maskawa phase gamma is favored to lie in the range (0.07-2.77) radians (with a +0 or +pi radians ambiguity) at 68% confidence level. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-47780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSMDapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Luppi, Eleonora/A-4902-2015; Monge, Maria Roberta/G-9127-2012; Roe, Natalie/A-8798-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Bellini, Fabio/D-1055-2009; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Grancagnolo, Sergio/J-3957-2015; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Forti, Francesco/H-3035-2011; Lusiani, Alberto/A-3329-2016; Lusiani, Alberto/N-2976-2015; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Di Lodovico, Francesca/L-9109-2016; Morandin, Mauro/A-3308-2016; Patrignani, Claudia/C-5223-2009; OI Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Luppi, Eleonora/0000-0002-1072-5633; Monge, Maria Roberta/0000-0003-1633-3195; Saeed, Mohammad Alam/0000-0002-3529-9255; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Della Ricca, Giuseppe/0000-0003-2831-6982; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Cristinziani, Markus/0000-0003-3893-9171; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Grancagnolo, Sergio/0000-0001-8490-8304; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Forti, Francesco/0000-0001-6535-7965; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Morandin, Mauro/0000-0003-4708-4240; Patrignani, Claudia/0000-0002-5882-1747; Cibinetto, Gianluigi/0000-0002-3491-6231; Bettarini, Stefano/0000-0001-7742-2998 NR 45 TC 373 Z9 378 U1 7 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 112004 DI 10.1103/PhysRevD.73.112004 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300013 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, A Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Del Re, D Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Schott, G Arnaud, N Davier, M Grosdidier, G Cker, AH Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cotee, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Maclees, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Der, HS Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Che, CY Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Del Re, D. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. . A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Cker, A. Ho Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Macles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Der, H. Schro Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Che, Ch. Ye Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of time-dependent CP asymmetries in B-0 -> D-(*)+/-pi(-/+)and B-0 -> D-+/-rho(-/+) decays SO PHYSICAL REVIEW D LA English DT Article ID VIOLATION AB We present updated results on time-dependent CP asymmetries in fully reconstructed B-0 -> D-(*)+/-pi(-/+) and B-0 -> D-+/-rho(-/+) decays in approximately 232x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a time-dependent maximum-likelihood fit we obtain for the parameters related to the CP violation angle 2 beta+gamma: a(D pi)=-0.010 +/- 0.023 +/- 0.007, c(lep)(D pi)=-0.033 +/- 0.042 +/- 0.012, a(D*)pi=-0.040 +/- 0.023 +/- 0.010, c(lep)(D*)pi=0.049 +/- 0.042 +/- 0.015,a(D rho)=-0.024 +/- 0.031 +/- 0.009, c(lep)(D rho)=-0.098 +/- 0.055 +/- 0.018, where the first error is statistical and the second is systematic. Using other measurements and theoretical assumptions, we interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle and find parallel to sin(2 beta+gamma)parallel to > 0.64 (0.40) at 68% (90%) confidence level. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Roe, Natalie/A-8798-2012; de Groot, Nicolo/A-2675-2009; Peters, Klaus/C-2728-2008; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Grancagnolo, Sergio/J-3957-2015; Cavallo, Nicola/F-8913-2012; Di Lodovico, Francesca/L-9109-2016; Morandin, Mauro/A-3308-2016; Bellini, Fabio/D-1055-2009; Patrignani, Claudia/C-5223-2009; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; Lista, Luca/C-5719-2008; Forti, Francesco/H-3035-2011; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Mir, Lluisa-Maria/G-7212-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; Martinez Vidal, F*/L-7563-2014; Monge, Maria Roberta/G-9127-2012; Kolomensky, Yury/I-3510-2015; Oyanguren, Arantza/K-6454-2014; Della Ricca, Giuseppe/B-6826-2013; Lo Vetere, Maurizio/J-5049-2012; Kravchenko, Evgeniy/F-5457-2015 OI Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Grancagnolo, Sergio/0000-0001-8490-8304; Di Lodovico, Francesca/0000-0003-3952-2175; Morandin, Mauro/0000-0003-4708-4240; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Mir, Lluisa-Maria/0000-0002-4276-715X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Luppi, Eleonora/0000-0002-1072-5633; Martinez Vidal, F*/0000-0001-6841-6035; Monge, Maria Roberta/0000-0003-1633-3195; Kolomensky, Yury/0000-0001-8496-9975; Oyanguren, Arantza/0000-0002-8240-7300; Della Ricca, Giuseppe/0000-0003-2831-6982; Lo Vetere, Maurizio/0000-0002-6520-4480; NR 16 TC 105 Z9 105 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 111101 DI 10.1103/PhysRevD.73.111101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300001 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, A Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Vetere, ML Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. del Re, D. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Vetere, M. Lo Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. . A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Measurement of the B--> (DK*-)-K-0 branching fraction SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; DECAYS; MODES; GAMMA AB From a sample of 232x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II B Factory in 1999-2004, we measure the B-->(DK*-)-K-0(892) decay branching fraction using events where the K*- is reconstructed in the K-S(0)pi(-) mode and the D-0 in the K-pi(+), K-pi(+)pi(0), and K-pi(+)pi(+)pi(-) channels: B(B-->(DK*-)-K-0(892))=(5.29 +/- 0.30(stat)+/- 0.34(syst))x10(-4). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSMDapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Peters, Klaus/C-2728-2008; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009 OI Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747 NR 23 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 111104(R) DI 10.1103/PhysRevD.73.111104 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300004 ER PT J AU Bhattacharya, T Gupta, R Lee, W Sharpe, SR AF Bhattacharya, Tanmoy Gupta, Rajan Lee, Weonjong Sharpe, Stephen R. TI Scaling behavior of discretization errors in renormalization and improvement constants SO PHYSICAL REVIEW D LA English DT Article ID NONPERTURBATIVE O(A) IMPROVEMENT; CONTINUUM-LIMIT; WILSON FERMIONS; LATTICE QCD; WARD IDENTITIES; VECTOR CURRENT AB Nonperturbative results for improvement and renormalization constants needed for on-shell and off-shell O(a) improvement of bilinear operators composed of Wilson fermions are presented. The calculations have been done in the quenched approximation at beta=6.0, 6.2, and 6.4. To quantify residual discretization errors we compare our data with results from other nonperturbative calculations and with one-loop perturbation theory. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Bhattacharya, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM tanmoy@lanl.gov; rajan@lanl.gov; wlee@snu.ac.kr; sharpe@phys.washington.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Gupta, Rajan/0000-0003-1784-3058 NR 18 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 114507 DI 10.1103/PhysRevD.73.114507 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300059 ER PT J AU Bousso, R Mints, AL AF Bousso, Raphael Mints, Aleksey L. TI Holography and entropy bounds in the plane wave matrix model SO PHYSICAL REVIEW D LA English DT Article ID THERMODYNAMICS AB As a quantum theory of gravity, matrix theory should provide a realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. We present evidence that Bekenstein's entropy bound, which is related to area differences, is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N-2 in units of the mass scale. C1 Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov; mints@socrates.berkeley.edu NR 47 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 126005 DI 10.1103/PhysRevD.73.126005 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900107 ER PT J AU Brodsky, SJ Kopeliovich, B Schmidt, I Soffer, J AF Brodsky, Stanley J. Kopeliovich, Boris Schmidt, Ivan Soffer, Jacques TI Diffractive Higgs production from intrinsic heavy flavors in the proton SO PHYSICAL REVIEW D LA English DT Article ID CHARM PRODUCTION; NUCLEI; ANTIHYDROGEN; ASYMMETRY; STATES; GEV/C; ISR; HADROPRODUCTION; SCATTERING; COLLISIONS AB We propose a novel mechanism for exclusive diffractive Higgs production pp -> pHp in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at the high light-cone momentum fraction x has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Tecn Federico Santo Maria, Dept Fis, Valparaiso, Chile. CNRS, UMR 6207, Ctr Phys Theor, F-13288 Marseille 9, France. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM sjbth@slac.stanford.edu; bzk@mpi-hd.mpg.de; ivan.schmidt@usm.cl; soffer@cpt.univ-mrs.fr RI Schmidt, Ivan/J-5920-2012 NR 61 TC 46 Z9 46 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 113005 DI 10.1103/PhysRevD.73.113005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300023 ER PT J AU Busca, N Hooper, D Kolb, EW AF Busca, Nicolas Hooper, Dan Kolb, Edward W. TI Pierre Auger data, photons, and top-down cosmic ray models SO PHYSICAL REVIEW D LA English DT Article ID ENERGY; SPECTRUM; DECAY; PARTICLE; ANNIHILATION; NEUTRINOS; NUCLEI AB We consider the ultrahigh energy cosmic ray (UHECR) spectrum as measured by the Pierre Auger Observatory. Top-down models for the origin of UHECRs predict an increasing photon component at energies above about 10(19.7) eV. Here we present a simple prescription to compare the Auger data with a prediction assuming a pure proton component or a prediction assuming a changing primary component appropriate for a top-down model. We find that the UHECR spectrum predicted in top-down models is a good fit to the Auger data. Eventually, Auger will measure a composition-independent spectrum and will be capable of either confirming or excluding the quantity of photons predicted in top-down models. C1 Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, Batavia, IL 60510 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Busca, N (reprint author), Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, POB 500, Batavia, IL 60510 USA. NR 37 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 123001 DI 10.1103/PhysRevD.73.123001 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900008 ER PT J AU Dine, M Kitano, R Morisse, A Shirman, Y AF Dine, Michael Kitano, Ryuichiro Morisse, Alexander Shirman, Yuri TI Moduli decays and gravitinos SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING AB One proposed solution of the moduli problem of string cosmology requires that the moduli are quite heavy, their decays reheating the Universe to temperatures above the scale of nucleosynthesis. In many of these scenarios, the moduli are approximately supersymmetric; it is then crucial that the decays to gravitinos are helicity suppressed. In this paper, we discuss situations where these decays are, and are not, suppressed. We also comment on a possible gravitino problem from inflaton decay. C1 Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dine, M (reprint author), Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. NR 22 TC 133 Z9 133 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 123518 DI 10.1103/PhysRevD.73.123518 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900027 ER PT J AU Gerdes, D Murgia, S Carlson, J Blair, RE Houston, J Berebitsky, D AF Gerdes, David Murgia, Simona Carlson, John Blair, Robert E. Houston, Joey Berebitsky, Daniel TI Search for large extra dimensions using dielectron and diphoton events in p(p)over-bar collisions at root s=1.8 TeV SO PHYSICAL REVIEW D LA English DT Article ID (P)OVER-BAR-P COLLISIONS AB Arkani-Hamed, Dimopoulous, and Dvali have proposed a model of low-scale quantum gravity featuring large extra dimensions. In this model, the exchange of Kaluza-Klein towers of gravitons can enhance the production rate of electron and photon pairs at high invariant mass in proton-antiproton collisions. The amount of enhancement is characterized by the parameter M-S, the fundamental Planck scale in the bulk extra dimensions. We have searched for this effect using 100 pb(-1) of diphoton data and 110 pb(-1) of dielectron data collected with the Collider Detector at Fermilab at root s =1.8 TeV during the 1992-1996 run. In the absence of a signal, we place 95% confidence-level limits on M-S of 905 GeV/c(2) and 826 GeV/c(2), for the case of constructive and destructive graviton interference, respectively. C1 Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Gerdes, D (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. NR 18 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 112008 DI 10.1103/PhysRevD.73.112008 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300017 ER PT J AU Halzen, F Hooper, D AF Halzen, Francis Hooper, Dan TI Prospects for detecting dark matter with neutrino telescopes in light of recent results from direct detection experiments SO PHYSICAL REVIEW D LA English DT Article ID PARTICLE; SUN; LIMITS; EARTH AB Direct detection dark matter experiments, lead by the CDMS Collaboration, have placed increasingly stronger constraints on the cross sections for elastic scattering of weakly interacting massive particles (WIMPs) on nucleons. These results impact the prospects for the indirect detection of dark matter using neutrino telescopes. With this in mind, we revisit the prospects for detecting neutrinos produced by the annihilation of WIMPs in the Sun. We find that the latest bounds do not seriously limit the models most accessible to next generation kilometer-scale neutrino telescopes such as IceCube. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes still have the opportunity to play an important as well as complementary role in the search for particle dark matter. C1 Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Halzen, F (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. NR 41 TC 36 Z9 36 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 123507 DI 10.1103/PhysRevD.73.123507 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900016 ER PT J AU Hill, CT AF Hill, Christopher T. TI Exact equivalence of the D=4 gauged Wess-Zumino-Witten term and the D=5 Yang-Mills Chern-Simons term SO PHYSICAL REVIEW D LA English DT Article ID LAGRANGIANS; DIMENSIONS; ANOMALIES; QCD; 4D AB We derive the full Wess-Zumino-Witten term of a gauged chiral Lagrangian in D=4 by starting from a pure Yang-Mills theory of gauged quark flavor in a flat, compactified D=5. The theory is compactified such that there exists a B-5 zero mode, and supplemented with quarks that are "chirally delocalized" with q(L) (q(R)) on the left (right) boundary (brane). The theory then necessarily contains a Chern-Simons term (anomaly flux) to cancel the fermionic anomalies on the boundaries. The constituent quark mass represents chiral symmetry breaking and is a bilocal operator in D=5 of the form: (q) over bar (L)Wq(R)+h.c, where W is the Wilson line spanning the bulk, 0 <= x(5)<= R, and is interpreted as a chiral meson field, W=exp(2i pi/f(pi)), where f(pi)similar to 1/R. The quarks are integrated out, yielding a Dirac determinant which takes the form of a "boundary term" (anomaly flux return), and is equivalent to Bardeen's counterterm that connects consistent and covariant anomalies. The Wess-Zumino-Witten term then emerges straightforwardly, from the Yang-Mills Chern-Simons term, plus boundary term. The method is systematic and allows generalization of the Wess-Zumino-Witten term to theories of extra dimensions, and to express it in alternative and more compact forms. We give a novel form appropriate to the case of (unintegrated) massless fermions. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hill, CT (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM hill@fnal.gov NR 23 TC 22 Z9 22 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 126009 DI 10.1103/PhysRevD.73.126009 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900111 ER PT J AU Hosaka, J Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Namba, T Obayashi, Y Sakurai, N Sarrat, A Shiozawa, M Suzuki, Y Takeuchi, Y Yamada, S Higuchi, I Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okada, A Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Kearns, E Likhoded, S Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Kropp, WR Liu, DW Mine, S Smy, MB Sobel, HW Sterner, CW Vagins, MR Ganezer, KS Hill, J Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Walter, CW Ellsworth, RW Tasaka, S Guillian, G Kibayashi, A Learned, JG Matsuno, S Messier, MD Hayato, Y Ichikawa, AK Ishida, T Ishii, T Iwashita, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Totsuka, Y Suzuki, AT Hasegawa, M Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Kim, BK Lee, KB Hatakeyama, S Svoboda, R Blaufuss, E Goodman, JA Sullivan, GW Turcan, D Cooley, J Habig, A Fukuda, Y Sato, T Itow, Y Jung, CK Kato, T Kobayashi, K Malek, M Martens, K Mauger, C McGrew, C Sharkey, E Yanagisawa, C Tamura, N Sakuda, M Kuno, Y Yoshida, M Kim, SB Yoo, J Okazawa, H Ishizuka, T Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Shirai, J Suzuki, A Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Zalipska, J Berns, HG Gran, R Shiraishi, KK Stachyra, AL Washburnand, K Wilkes, RJ AF Hosaka, J. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Namba, T. Obayashi, Y. Sakurai, N. Sarrat, A. Shiozawa, M. Suzuki, Y. Takeuchi, Y. Yamada, S. Higuchi, I. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okada, A. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Kearns, E. Likhoded, S. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Kropp, W. R. Liu, D. W. Mine, S. Smy, M. B. Sobel, H. W. Sterner, C. W. Vagins, M. R. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Walter, C. W. Ellsworth, R. W. Tasaka, S. Guillian, G. Kibayashi, A. Learned, J. G. Matsuno, S. Messier, M. D. Hayato, Y. Ichikawa, A. K. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Hasegawa, M. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Kim, B. K. Lee, K. B. Hatakeyama, S. Svoboda, R. Blaufuss, E. Goodman, J. A. Sullivan, G. W. Turcan, D. Cooley, J. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Jung, C. K. Kato, T. Kobayashi, K. Malek, M. Martens, K. Mauger, C. McGrew, C. Sharkey, E. Yanagisawa, C. Tamura, N. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yoo, J. Okazawa, H. Ishizuka, T. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Shirai, J. Suzuki, A. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Zalipska, J. Berns, H. G. Gran, R. Shiraishi, K. K. Stachyra, A. L. Washburnand, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Solar neutrino measurements in Super-Kamiokande-I SO PHYSICAL REVIEW D LA English DT Article ID OSCILLATIONS; DETECTOR; MATTER AB The details of Super-Kamiokande-I's solar neutrino analysis are given. Solar neutrino measurement in Super-Kamiokande is a high statistics collection of B-8 solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are presented also. C1 Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. Boston Univ, Dept Phys, Boston, MA 02215 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. Gifu Univ, Dept Phys, Gifu 5011193, Japan. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Niigata Univ, Dept Phys, Niigata 9502181, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Okayama Univ, Dept Phys, Okayama 7008530, Japan. Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Shizuoka Seika Coll, Shizuoka 4258611, Japan. Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Hosaka, J (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. RI Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Kim, Soo-Bong/B-7061-2014; Sakurai, Nobuyuki/M-5009-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Kibayashi, Atsuko/K-7327-2015; Obayashi, Yoshihisa/A-4472-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Martens, Kai/A-4323-2011; Wilkes, R.Jeffrey/E-6011-2013; Yoo, Jonghee/K-8394-2016 OI Yokoyama, Masashi/0000-0003-2742-0251; Sakurai, Nobuyuki/0000-0002-1002-217X; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; NR 27 TC 266 Z9 268 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 112001 DI 10.1103/PhysRevD.73.112001 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300010 ER PT J AU Ji, CR Mishchenko, Y Radyushkin, A AF Ji, Chueng-Ryong Mishchenko, Yuriy Radyushkin, Anatoly TI Higher Fock-state contributions to the generalized parton distribution of pion SO PHYSICAL REVIEW D LA English DT Article ID VIRTUAL COMPTON-SCATTERING; QUANTUM CHROMODYNAMICS; EXCLUSIVE PROCESSES; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; WAVE-FUNCTIONS; FORM-FACTORS; QUARK; QCD; REPRESENTATION AB We discuss the higher Fock-state (q (q) over barg) contributions to the nonzero value of the pion generalized parton distribution (GPD) at the crossover point x=zeta between the DGLAP and ERBL regions. Using the phenomenological light-front constituent quark model, we confirm that the higher Fock-state contributions indeed give a nonzero value of the GPD at the crossover point. Iterating the light-front quark model wave function of the lowest q (q) over bar Fock state with the Bethe-Salpeter kernel corresponding to the one-gluon exchange, we include all possible time-ordered q (q) over barg Fock-state contributions and obtain the pion GPD satisfying necessary sum rules and continuity conditions. C1 N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. JINR, Bogoliubov Lab Theoret Phys, Dubna, Russia. RP Ji, CR (reprint author), N Carolina State Univ, Dept Phys, Box 8202, Raleigh, NC 27695 USA. RI Ji, Chueng/J-2623-2013 NR 51 TC 18 Z9 18 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 114013 DI 10.1103/PhysRevD.73.114013 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300037 ER PT J AU Kain, B AF Kain, Ben TI Cosmological consequences of string axions SO PHYSICAL REVIEW D LA English DT Article ID ISOTHERMAL DENSITY PERTURBATIONS; PROBE WMAP OBSERVATIONS; INFLATIONARY UNIVERSE; GAUGINO CONDENSATION; FINITE TEMPERATURE; INVISIBLE AXION; MASS; FLUCTUATIONS; INSTANTONS; PARTICLES AB Axion fluctuations generated during inflation lead to isocurvature and non-Gaussian temperature fluctuations in the cosmic microwave background radiation. Following a previous analysis for the model independent string axion we consider the consequences of a measurement of these fluctuations for two additional string axions. We do so independent of any cosmological assumptions. The first axion has been shown to solve the strong CP problem for most compactifications of the heterotic string while the second axion, which does not solve the strong CP problem, obeys a mass formula which is independent of the axion scale. We find that if gravitational waves interpreted as arising from inflation are observed by the PLANCK polarimetry experiment with a Hubble constant during inflation of H-inf greater than or similar to 10(13) GeV the existence of the first axion is ruled out and the second axion cannot obey the scale independent mass formula. In an appendix we quantitatively justify the often held assumption that temperature corrections to the zero temperature QCD axion mass may be ignored for temperatures T less than or similar to Lambda(QCD). C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Kain, B (reprint author), Univ Calif Berkeley, Dept Phys, Bldg 50A5I04, Berkeley, CA 94720 USA. EM bkain@berkeley.edu NR 43 TC 3 Z9 3 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 123521 DI 10.1103/PhysRevD.73.123521 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900030 ER PT J AU Kogut, JB Sinclair, DK AF Kogut, J. B. Sinclair, D. K. TI Quantization and simulation of Born-Infeld nonlinear electrodynamics on a lattice SO PHYSICAL REVIEW D LA English DT Article ID FIELD; STRINGS AB Born-Infeld nonlinear electrodynamics arises naturally as a field theory description of the dynamics of strings and branes. Most analyses of this theory have been limited to studying it as a classical field theory. We quantize this theory on a Euclidean 4-dimensional space-time lattice and determine its properties using Monte Carlo simulations. The electromagnetic field around a static point charge is measured using Luscher-Weisz methods to overcome the sign problem associated with the introduction of this charge. The D field appears identical to that of Maxwell QED. However, the E field is enhanced by quantum fluctuations, while still showing the short-distance screening observed in the classical theory. In addition, whereas for the classical theory, the screening increases without bound as the nonlinearity increases, the quantum theory approaches a limiting conformal field theory. C1 Dept Energy, Div High Energy Phys, Washington, DC 20585 USA. Univ Maryland, TQHN, Dept Phys, College Pk, MD 20742 USA. Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Kogut, JB (reprint author), Dept Energy, Div High Energy Phys, Washington, DC 20585 USA. NR 19 TC 1 Z9 1 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 114508 DI 10.1103/PhysRevD.73.114508 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300060 ER PT J AU Mannarelli, M Rajagopal, K Sharma, R AF Mannarelli, Massimo Rajagopal, Krishna Sharma, Rishi TI Testing the Ginzburg-Landau approximation for three-flavor crystalline color superconductivity SO PHYSICAL REVIEW D LA English DT Article ID EFFECTIVE-FIELD THEORY; FLAVOR LOCKED PHASE; DENSE QUARK MATTER; CFL PHASE; QCD; NEUTRALITY; SUPERFLUIDITY; GLUONS; MASSES AB It is an open challenge to analyze the crystalline color superconducting phases that may arise in cold dense, but not asymptotically dense, three-flavor quark matter. At present the only approximation within which it seems possible to compare the free energies of the myriad possible crystal structures is the Ginzburg-Landau approximation. Here, we test this approximation on a particularly simple "crystal" structure in which there are only two condensates < us >similar to Delta exp(iq(2)center dot r) and < ud >similar to Delta exp(iq(3)center dot r) whose position-space dependence is that of two plane waves with wave vectors q(2) and q(3) at arbitrary angles. For this case, we are able to solve the mean-field gap equation without making a Ginzburg-Landau approximation. We find that the Ginzburg-Landau approximation works in the Delta -> 0 limit as expected, find that it correctly predicts that Delta decreases with increasing angle between q(2) and q(3) meaning that the phase with q(2)parallel to q(3) has the lowest free energy, and find that the Ginzburg-Landau approximation is conservative in the sense that it underestimates Delta at all values of the angle between q(2) and q(3). C1 MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Mannarelli, M (reprint author), MIT, Ctr Theoret Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM massimo@lns.mit.edu; krishna@lns.mit.edu; sharma@mit.edu NR 92 TC 41 Z9 41 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 11 AR 114012 DI 10.1103/PhysRevD.73.114012 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XQ UT WOS:000238698300036 ER PT J AU Zhang, PJ AF Zhang, Pengjie TI Testing gravity against the early time integrated Sachs-Wolfe effect SO PHYSICAL REVIEW D LA English DT Article ID DARK ENERGY; PERTURBATIONS; CONSTRAINTS; GALAXIES; SPACE AB A generic prediction of general relativity is that the cosmological linear density growth factor D is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent D can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R) gravity, with the form f(R)=-lambda(1)H(0)(2)exp(-R/lambda H-2(0)2). Such f(R) gravity, even with degenerate expansion history to Lambda CDM, can produce detectable ISW effect at z greater than or similar to 3 and l greater than or similar to 20. Null-detection of such effect would constrain lambda(2) to be lambda(2)> 1000 at > 95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high z will severely challenge general relativity. C1 Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China. Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, Batavia, IL 60510 USA. RP Zhang, PJ (reprint author), Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China. EM pjzhang@shao.ac.cn RI ZHANG, PENGJIE/O-2825-2015 NR 27 TC 143 Z9 143 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN PY 2006 VL 73 IS 12 AR 123504 DI 10.1103/PhysRevD.73.123504 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 058XW UT WOS:000238698900013 ER PT J AU Chertkov, M Chernyak, VY AF Chertkov, Michael Chernyak, Vladimir Y. TI Loop calculus in statistical physics and information science SO PHYSICAL REVIEW E LA English DT Article ID ERROR-CORRECTING CODES AB Considering a discrete and finite statistical model of a general position we introduce an exact expression for the partition function in terms of a finite series. The leading term in the series is the Bethe-Peierls (belief propagation) (BP) contribution; the rest are expressed as loop contributions on the factor graph and calculated directly using the BP solution. The series unveils a small parameter that often makes the BP approximation so successful. Applications of the loop calculus in statistical physics and information science are discussed. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. RP Chertkov, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Chertkov, Michael/O-8828-2015; Chernyak, Vladimir/F-5842-2016; OI Chernyak, Vladimir/0000-0003-4389-4238; Chertkov, Michael/0000-0002-6758-515X NR 14 TC 34 Z9 34 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 065102 DI 10.1103/PhysRevE.73.065102 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200002 PM 16906891 ER PT J AU Dezso, Z Almaas, E Lukacs, A Racz, B Szakadat, I Barabasi, AL AF Dezso, Z. Almaas, E. Lukacs, A. Racz, B. Szakadat, I. Barabasi, A. -L. TI Dynamics of information access on the web SO PHYSICAL REVIEW E LA English DT Article ID WORLD-WIDE-WEB; COMPLEX NETWORKS; DIFFUSION; ORGANIZATION; INTERNET AB While current studies on complex networks focus on systems that change relatively slowly in time, the structure of the most visited regions of the web is altered at the time scale from hours to days. Here we investigate the dynamics of visitation of a major news portal, representing the prototype for such a rapidly evolving network. The nodes of the network can be classified into stable nodes, which form the time-independent skeleton of the portal, and news documents. The visitations of the two node classes are markedly different, the skeleton acquiring visits at a constant rate, while a news document's visitation peaks after a few hours. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power-law distribution, in contrast to the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, our results document the fleeting quality of news and events: while fifteen minutes of fame is still an exaggeration in the online media, we find that access to most news items significantly decays after 36 hours of posting. C1 Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Lawrence Livermore Natl Lab, Biosci Directorate, Microbial Syst Div, Livermore, CA 94551 USA. Hungarian Acad Sci, MTA, SZTAKI, Comp & Automat Res Inst, Budapest, Hungary. Axelero Internet Provider Inc, H-1364 Budapest, Hungary. Harvard Univ, Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA. RP Dezso, Z (reprint author), Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA. EM alb@nd.edu RI Szakadat, Istvan/H-3517-2012; OI Szakadat, Istvan/0000-0002-1960-191X; Almaas, Eivind/0000-0002-9125-326X NR 56 TC 117 Z9 130 U1 1 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066132 DI 10.1103/PhysRevE.73.066132 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200050 PM 16906939 ER PT J AU Dilts, GA AF Dilts, Gary A. TI Consistent thermodynamic derivative estimates for tabular equations of state SO PHYSICAL REVIEW E LA English DT Article ID FLOW AB A valid fluid equation of state (EOS) must satisfy the thermodynamic conditions of consistency (derivation from a free energy) and stability (positive sound speed squared). Numerical simulations of compressible fluid flow for realistic materials require a tabular EOS, but typical software interfaces to such tables based on polynomial or rational interpolants may enforce the stability conditions, but do not enforce the consistency condition and its derivatives. The consistency condition is important for the computation of various dimensionless parameters of an EOS that may involve derivatives of up to second order which are important for the development of more sensitive artificial viscosities and Riemann solvers that accurately model shock structure in regions near phase transitions. We describe a table interface based on the tuned regression method, which is derived from a constrained local least-squares regression technique. It is applied to several SESAME EOS showing how the consistency and stability conditions can be satisfied to round-off while computing first and second derivatives with demonstrated second-order convergence. An improvement of 14 orders of magnitude over conventional derivatives is demonstrated, although the method is apparently two orders of magnitude slower, due to the fact that every evaluation requires solving an 11-dimensional nonlinear system. Application is made to the computation of the fundamental derivative. C1 Los Alamos Natl Lab, Continuum Dynam Grp, Los Alamos, NM 87544 USA. RP Dilts, GA (reprint author), Los Alamos Natl Lab, Continuum Dynam Grp, Mail Stop D413, Los Alamos, NM 87544 USA. NR 17 TC 2 Z9 2 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066704 DI 10.1103/PhysRevE.73.066704 PN 2 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200131 PM 16907020 ER PT J AU Fedotov, AV Galnander, B Litvinenko, VN Lofnes, T Sidorin, A Smirnov, A Ziemann, V AF Fedotov, A. V. Galnander, B. Litvinenko, V. N. Lofnes, T. Sidorin, A. Smirnov, A. Ziemann, V. TI Experimental studies of the magnetized friction force SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON; PHYSICS; CELSIUS AB High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Svedberg Lab, S-75121 Uppsala, Sweden. Joint Inst Nucl Res Dubna, Dubna, Russia. RP Fedotov, AV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 23 TC 1 Z9 1 U1 1 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066503 DI 10.1103/PhysRevE.73.0665036 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200101 ER PT J AU Goh, KI Eom, YH Jeong, H Kahng, B Kim, D AF Goh, K. -I. Eom, Y. -H. Jeong, H. Kahng, B. Kim, D. TI Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions SO PHYSICAL REVIEW E LA English DT Article ID NETWORKS; COMMUNITY; TOPOLOGY; SEARCH AB With the advancement in the information age, people are using electronic media more frequently for communications, and social relationships are also increasingly resorting to online channels. While extensive studies on traditional social networks have been carried out, little has been done on online social networks. Here we analyze the structure and evolution of online social relationships by examining the temporal records of a bulletin board system (BBS) in a university. The BBS dataset comprises of 1908 boards, in which a total of 7446 students participate. An edge is assigned to each dialogue between two students, and it is defined as the appearance of the name of a student in the from- and to-field in each message. This yields a weighted network between the communicating students with an unambiguous group association of individuals. In contrast to a typical community network, where intracommunities (intercommunities) are strongly (weakly) tied, the BBS network contains hub members who participate in many boards simultaneously but are strongly tied, that is, they have a large degree and betweenness centrality and provide communication channels between communities. On the other hand, intracommunities are rather homogeneously and weakly connected. Such a structure, which has never been empirically characterized in the past, might provide a new perspective on the social opinion formation in this digital era. C1 Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea. Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea. Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Goh, KI (reprint author), Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA. RI Jeong, Hawoong/C-1587-2011; Jeong, Hawoong/A-2469-2009 OI Jeong, Hawoong/0000-0002-2491-8620 NR 30 TC 27 Z9 31 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066123 DI 10.1103/PhysRevE.73.066123 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200041 PM 16906930 ER PT J AU Guclu, H Korniss, G Novotny, MA Toroczkai, Z Racz, Z AF Guclu, H. Korniss, G. Novotny, M. A. Toroczkai, Z. Racz, Z. TI Synchronization landscapes in small-world-connected computer networks SO PHYSICAL REVIEW E LA English DT Review ID SELF-ORGANIZED CRITICALITY; NONEQUILIBRIUM SURFACE GROWTH; DISCRETE-EVENT SIMULATIONS; LONG-RANGE INTERACTIONS; WIDTH DISTRIBUTION; ISING-MODEL; COMPLEX NETWORKS; DISTRIBUTED SIMULATION; STATISTICAL-MECHANICS; PARALLEL ALGORITHMS AB Motivated by a synchronization problem in distributed computing we studied a simple growth model on regular and small-world networks, embedded in one and two dimensions. We find that the synchronization landscape (corresponding to the progress of the individual processors) exhibits Kardar-Parisi-Zhang-like kinetic roughening on regular networks with short-range communication links. Although the processors, on average, progress at a nonzero rate, their spread (the width of the synchronization landscape) diverges with the number of nodes (desynchronized state) hindering efficient data management. When random communication links are added on top of the one and two-dimensional regular networks (resulting in a small-world network), large fluctuations in the synchronization landscape are suppressed and the width approaches a finite value in the large system-size limit (synchronized state). In the resulting synchronization scheme, the processors make close-to-uniform progress with a nonzero rate without global intervention. We obtain our results by "simulating the simulations," based on the exact algorithmic rules, supported by coarse-grained arguments. C1 Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. Mississippi State Univ, Ctr Computat Sci, Mississippi State, MS 39762 USA. Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Guclu, H (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. RI Toroczkai, Zoltan/A-3421-2008; Racz, Zoltan/B-5191-2008; Korniss, Gyorgy/A-7360-2011 OI Toroczkai, Zoltan/0000-0002-6602-2849; NR 104 TC 15 Z9 15 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066115 DI 10.1103/PhysRevE.73.066115 PN 2 PG 20 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200033 PM 16906922 ER PT J AU Krinsky, S Li, Y AF Krinsky, S. Li, Y. TI Statistical analysis of the chaotic optical field from a self-amplified spontaneous-emission free-electron laser SO PHYSICAL REVIEW E LA English DT Article ID HIGH-GAIN; FLUCTUATIONS; NOISE; LIGHT AB We use Rice's theory of shot noise random processes to provide a statistical analysis of the evolution of the amplitude and phase of the chaotic optical field from a high-gain, self-amplified, spontaneous-emission (SASE) free-electron laser. The theoretical framework developed is compared with recent frequency-resolved optical-gating measurements of the SASE output at the LEUTL facility at Argonne National Laboratory. C1 Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Krinsky, S (reprint author), Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. NR 23 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066501 DI 10.1103/PhysRevE.73.066501 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200099 PM 16906988 ER PT J AU Lin, JX Reichhardt, C Nussinov, Z Pryadko, LP Reichhardt, CJO AF Lin, J. -X. Reichhardt, C. Nussinov, Z. Pryadko, Leonid P. Reichhardt, C. J. Olson TI Heterogeneities and topological defects in two-dimensional pinned liquids SO PHYSICAL REVIEW E LA English DT Article ID GLASS-TRANSITION; DYNAMICAL HETEROGENEITIES; COOPERATIVE DYNAMICS; HARD-SPHERE AB We simulate a model of repulsively interacting colloids on a commensurate two-dimensional triangular pinning substrate where the amount of heterogeneous motion that appears at melting can be controlled systematically by turning off a fraction of the pinning sites. We correlate the amount of heterogeneous motion with the average topological defect number, time-dependent defect fluctuations, colloid diffusion, and the form of the van Hove correlation function. When the pinning sites are all off or all on, the melting occurs in a single step. When a fraction of the sites are turned off, the melting becomes considerably broadened and signatures of a two-step melting process appear. The noise power associated with fluctuations in the number of topological defects reaches a maximum when half of the pinning sites are removed and the noise spectrum has a pronounced 1/f(alpha) structure in the heterogeneous regime. We find that regions of high mobility are associated with regions of high dislocation densities. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. Washington Univ, Dept Phys, St Louis, MO 63130 USA. RP Lin, JX (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 40 TC 5 Z9 5 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 061401 DI 10.1103/PhysRevE.73.061401 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058VX UT WOS:000238693800028 PM 16906821 ER PT J AU Maloney, CE Lacks, DJ AF Maloney, Craig E. Lacks, Daniel J. TI Energy barrier scalings in driven systems SO PHYSICAL REVIEW E LA English DT Article ID ADHESION BONDS; LIQUIDS; DIFFUSION; PROTEINS; KINETICS AB Energy landscape mappings are performed for two different molecular systems under mechanical loads. Barrier heights are observed to scale as Delta U similar to delta(3/2), where delta is a residual load. Catastrophe theory predicts that this scaling should arise for vanishing delta; however, this region is irrelevant in physical processes at finite temperature because thermal fluctuations cause the system to cross over the barrier before reaching the small-delta regime. Surprisingly, we find that the Delta U similar to delta(3/2) scaling is valid far beyond the vanishing delta regime described by catastrophe theory. We discuss how this scaling will therefore be relevant at finite temperatures and gives corrections to Eyring's theory for transition rates. C1 Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. Lawrence Livermore Natl Lab, CMS, MSTD, Livermore, CA 94550 USA. Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA. RP Maloney, CE (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RI Maloney, Craig/A-1923-2012 NR 27 TC 29 Z9 29 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 061106 DI 10.1103/PhysRevE.73.061106 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058VX UT WOS:000238693800015 PM 16906808 ER PT J AU Nishikawa, T Motter, AE AF Nishikawa, Takashi Motter, Adilson E. TI Synchronization is optimal in nondiagonalizable networks SO PHYSICAL REVIEW E LA English DT Article ID SMALL-WORLD NETWORKS AB We consider maximization of the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. By extending the master stability formalism to all possible network structures, we show that, unless some oscillator is linked to all the others, maximally synchronizable networks are necessarily nondiagonalizable and can always be obtained by imposing unidirectional information flow with normalized input strengths. The results provide insights into hierarchical structures observed in complex networks in which synchronization is important. C1 So Methodist Univ, Dept Math, Dallas, TX 75275 USA. Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nishikawa, T (reprint author), So Methodist Univ, Dept Math, Dallas, TX 75275 USA. RI Nishikawa, Takashi/B-3752-2010 OI Nishikawa, Takashi/0000-0002-2147-0242 NR 30 TC 133 Z9 136 U1 1 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 065106 DI 10.1103/PhysRevE.73.065106 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200006 PM 16906895 ER PT J AU Passian, A Zahrai, S Lereu, AL Farahi, RH Ferrell, TL Thundat, T AF Passian, A. Zahrai, S. Lereu, A. L. Farahi, R. H. Ferrell, T. L. Thundat, T. TI Nonradiative surface plasmon assisted microscale Marangoni forces SO PHYSICAL REVIEW E LA English DT Article ID MULTIPLE-PHOTON ENERGIES; MODULATION AB When a liquid droplet experiences a temperature inhomogeneity along its bounding surface, a surface energy gradient is engendered, which when, in a continuous sense, exceeding a threshold, results in a convective flow dissipating the energy. If the associated temperature gradients are sustained by the interface between the liquid and a supporting substrate, the induced flow can result in the lateral motion of the droplet overcoming the viscosity and inertia. Recently, pico-liter adsorbed and applied droplets were shown experimentally to be transported, and divided by the decay of optically excited surface plasmons into phonons in a thin gold foil. The decaying events locally modify the temperature of the liquid-solid interface, establishing microscale thermal gradients of sufficient magnitude for the droplet to undergo thermocapillary flow. We present experimental evidence of such gradients resulting in local surface modification associated with the excitation of surface plasmons. We show theoretically that the observed effect is due to Marangoni forces, and computationally visualize the flow characteristics for the experimental parameters. As an application based on our results, we propose a method for an all-optical modulation of light by light mediated by the droplet oscillations. Furthermore, the results have important consequences for microfluidics, droplet actuation, and simultaneous surface plasmon resonance sensing and spectroscopy. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Royal Inst Technol, Dept Mech, S-10044 Stockholm, Sweden. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 NR 21 TC 15 Z9 15 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066311 DI 10.1103/PhysRevE.066311 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200091 PM 16906980 ER PT J AU Sherrill, ME Abdallah, J Csanak, G Dodd, ES Faenov, AY Magunov, AI Pikuz, TA Skobelev, IY AF Sherrill, M. E. Abdallah, J., Jr. Csanak, G. Dodd, E. S. Faenov, A. Ya. Magunov, A. I. Pikuz, T. A. Skobelev, I. Yu. TI Spectroscopic characterization of an ultrashort-pulse-laser-driven Ar cluster target incorporating both Boltzmann and particle-in-cell models SO PHYSICAL REVIEW E LA English DT Article ID X-RAY; PLASMA; IRRADIATION; GENERATION; ELECTRON; ENERGY AB A model that solves simultaneously both the electron and atomic kinetics was used to generate a synthetic He-alpha and satellite x-ray spectra to characterize a high intensity ultrashort laser driven Ar cluster target experiment. In particular, level populations were obtained from a detailed collisional-radiative model where collisional rates were computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. In addition, a particle-in-cell simulation was used to model the laser interaction with the cluster target and provided the initial electron energy distribution function (EEDF) for the Boltzmann solver. This study suggests that a high density average, < N-a >(high), of 3.2x10(20) cm(-3) was held by the system for a time, delta tau, of 5.7 ps, and during this time the plasma was in a highly nonequilibrium state in both the EEDF and the ion level populations. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. Japan Energy Res Inst, JAERI, Adv Photon Res Ctr, Kizu, Kyoto 6190215, Japan. VNIIFTRI, Multicharged Ions Spectra Data Ctr, Mendeleyevsk 141570, Moscow Region, Russia. RP Sherrill, ME (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 22 TC 26 Z9 27 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 066404 DI 10.1103/PhysRevE.73.066404 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058WB UT WOS:000238694200096 PM 16906985 ER PT J AU Viamontes, J Narayanan, S Sandy, AR Tang, JX AF Viamontes, Jorge Narayanan, Suresh Sandy, Alec R. Tang, Jay X. TI Orientational order parameter of the nematic liquid crystalline phase of F-actin SO PHYSICAL REVIEW E LA English DT Article ID TOBACCO-MOSAIC-VIRUS; RAY FIBER DIFFRACTION; THERMAL FLUCTUATIONS; FILAMENTS; BIREFRINGENCE; MUSCLE; LENGTH; MODEL; POLYMERIZATION; PURIFICATION AB We measured the orientational order parameter of F-actin traversing the isotropic-nematic phase transition using a combination of techniques, including fluorescence imaging, local birefringence measurements, and small-angle x-ray scattering. The order parameter approaches a saturated value of 0.75 for actin concentrations above the region of the isotropic-nematic phase transition. This result implies a significant extent of misalignment and consequently entanglement among long actin filaments, even in the nematic phase. We determine the specific birefringence of completely aligned F-actin to be Delta n(0)=2.3x10(-5) ml/mg. At concentrations slightly below the isotropic-nematic transition, nonzero values of the order parameter are detected for hours following an initial alignment, indicating extremely slow rotational kinetics of F-actin in the entangled networks. C1 Brown Univ, Dept Phys, Providence, RI 02912 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tang, JX (reprint author), Brown Univ, Dept Phys, Providence, RI 02912 USA. EM Jay_Tang@Brown.edu NR 45 TC 13 Z9 13 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN PY 2006 VL 73 IS 6 AR 061901 DI 10.1103/PhysRevE.73.061901 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 058VX UT WOS:000238693800065 PM 16906858 ER PT J AU Balbekov, V AF Balbekov, V. TI Transverse coherent instability of a bunch in a rectangular potential well SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A theory of transverse instability of a bunch in a rectangular potential well is developed. A series of equations adequately describing the instability is derived and solved both analytically and numerically. The dependence of the instability growth rate and threshold on bunch factor is investigated for various beam coupling impedances. The theory is applied to the Fermilab recycler ring. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Balbekov, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM balbekov@fnal.gov NR 10 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064401 DI 10.1103/PhysRevSTAB.9.064401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900015 ER PT J AU Bernal, S Li, H Kishek, RA Quinn, B Walter, M Reiser, M O'Shea, PG Allen, CK AF Bernal, S. Li, H. Kishek, R. A. Quinn, B. Walter, M. Reiser, M. O'Shea, P. G. Allen, C. K. TI RMS envelope matching of electron beams from "zero" current to extreme space charge in a fixed lattice of short magnets SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EQUATIONS; RING; TRANSPORT AB We present detailed calculations of RMS-envelope matching over a broad range of beam intensities for the University of Maryland Electron Ring (UMER). Containment of beams from zero current to extreme space charge, all without changing the strength of external focusing in the periodic lattice, is possible thanks to the high density of quadrupoles in UMER. In turn, the small-aspect ratio of the UMER magnets results in gradient or field profiles that are "all edges," thus requiring special treatment when constructing accurate hard-edge models. Further, the results of matching calculations, for both symmetric and asymmetric FODO (alternating gradient) schemes, are compared with calculations from simple general expressions valid in the uniform-focusing approximation of the periodic lattice. Finally, some aspects of the source-to-FODO matching calculation/optimization problem are discussed, together with sensitivity studies of the matching solutions under realistic conditions. The examples from the UMER project, which include experimental results, emphasize the practical aspects of beam envelope matching. C1 Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. RP Bernal, S (reprint author), Microsoft Corp, Redmond, WA 98052 USA. RI Bernal, Santiago/B-8167-2017 OI Bernal, Santiago/0000-0001-8287-6601 NR 40 TC 9 Z9 9 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064202 DI 10.1103/PhysRevSTAB.9.064202 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900014 ER PT J AU Covo, MK Molvik, AW Friedman, A Westenskow, G Barnard, JJ Cohen, R Seidl, PA Kwan, JW Logan, G Baca, D Bieniosek, F Celata, CM Vay, JL Vujic, JL AF Covo, Michel Kireeff Molvik, Arthur W. Friedman, Alex Westenskow, Glen Barnard, John J. Cohen, Ronald Seidl, Peter A. Kwan, Joe W. Logan, Grant Baca, David Bieniosek, Frank Celata, Christine M. Vay, Jean-Luc Vujic, Jasmina L. TI Beam energy scaling of ion-induced electron yield from K+ impact on stainless steel SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HEAVY-IONS; SECONDARY ELECTRONS; CLEAN METALS; EMISSION; SOLIDS; DEPENDENCE; SURFACE; ANGLE AB Electron clouds limit the performance of many major accelerators and storage rings. Significant quantities of electrons result when halo ions are lost to beam tubes, generating gas which can be ionized and ion-induced electrons that can multiply and accumulate, causing degradation or loss of the ion beam. In order to understand the physical mechanisms of ion-induced electron production, experiments studied the impact of 50 to 400 keV K+ ions on stainless steel surfaces near grazing incidence, using the 500 kV ion source test stand (STS-500) at LLNL. The experimental electron yield scales with the electronic component (dE(e)/dx) of the stopping power and its angular dependence does not follow 1/cos(theta). A theoretical model is developed, using TRIM code to evaluate dE(e)/dx at several depths in the target, to estimate the electron yield, which is compared with the experimental results. The experiment extends the range of energy from previous works and the model reproduces the angular dependence and magnitude of the electron yield. C1 Lawrence Livermore Natl Lab, Heavy Ion Fus Sci Virtual Natl Lab, Livermore, CA 94550 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Heavy Ion Fus Sci Virtual Natl Lab, Berkeley, CA 94720 USA. RP Covo, MK (reprint author), Lawrence Livermore Natl Lab, Heavy Ion Fus Sci Virtual Natl Lab, Livermore, CA 94550 USA. NR 40 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 063201 DI 10.1103/PhysRevSTAB.9.063201 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900009 ER PT J AU Douglas, DR Jordan, KC Merminga, L Pozdeyev, EG Tennant, CD Wang, HP Smith, TI Simrock, S Bazarov, IV Hoffstaetter, GH AF Douglas, David R. Jordan, Kevin C. Merminga, Lia Pozdeyev, Eduard G. Tennant, Christopher D. Wang, Haipeng Smith, Todd I. Simrock, Stefan Bazarov, Ivan V. Hoffstaetter, Georg H. TI Experimental investigation of multibunch, multipass beam breakup in the Jefferson Laboratory Free Electron Laser Upgrade Driver SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID LINACS AB In recirculating accelerators, and, in particular, energy-recovery linacs, the maximum current can be limited by multipass, multibunch beam breakup (BBU), which occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on the accelerating pass and again on the energy recovering pass. This effect is of particular concern in the design of modern high average current energy-recovery accelerators utilizing superconducting rf technology. Experimental characterization and observations of the instability at the Jefferson Laboratory 10 kW free electron laser (FEL) are presented. Measurements of the threshold current for the instability are made under a variety of beam conditions and compared to the predictions of several BBU simulation codes. This represents the first time in which the codes have been experimentally benchmarked. With BBU posing a threat to high current beam operation in the FEL driver, several suppression schemes were developed. These include direct damping of the dangerous HOM using cavity feedback and modifying the electron beam optics so as to reduce the coupling between the beam and mode. Both methods were shown to increase the threshold current for stability. Beam optical suppression techniques, in particular, have proved to be so effective that they are routinely used in the normal operations of the FEL Upgrade Driver. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. DESY, D-22603 Hamburg, Germany. Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. RP Tennant, CD (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM tennant@jlab.org OI Simrock, Stefan/0000-0002-1116-5316 NR 21 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064403 DI 10.1103/PhysRevSTAB.9.064403 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900017 ER PT J AU Dowell, DH King, FK Kirby, RE Schmerge, JF Smedley, JM AF Dowell, D. H. King, F. K. Kirby, R. E. Schmerge, J. F. Smedley, J. M. TI In situ cleaning of metal cathodes using a hydrogen ion beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Metal photocathodes are commonly used in high-field rf guns because they are robust, straightforward to implement, and tolerate relatively poor vacuum compared to semiconductor cathodes. However, these cathodes have low quantum efficiency (QE) even at UV wavelengths, and still require some form of cleaning after installation in the gun. A commonly used process for improving the QE is laser cleaning. In this technique the UV-drive laser is focused to a small diameter close to the metal's damage threshold and then moved across the surface to remove contaminants. This method does improve the QE, but can produce nonuniform emission and potentially damage the cathode. Ideally, an alternative process which produces an atomically clean, but unaltered, surface is needed. In this paper we explore using a hydrogen ion (H-ion) beam to clean a copper cathode. We describe QE measurements over the wavelength range of interest as a function of integrated exposure to an H-ion beam. We also describe the data analysis to obtain the work function and derive a formula of the QE for metal cathodes. Our measured work function for the cleaned sample is in good agreement with published values, and the theoretical QE as a function of photon wavelength is in excellent agreement with the cleaned copper experimental results. Finally, we propose an in situ installation of an H-ion gun compatible with existing s-band rf guns. C1 SLAC, Menlo Pk, CA 94025 USA. BNL, Upton, NY USA. RP Dowell, DH (reprint author), SLAC, Menlo Pk, CA 94025 USA. EM dowell@slac.stanford.edu NR 20 TC 39 Z9 40 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 063502 DI 10.1103/PhysRevSTAB.9.063502 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900011 ER PT J AU Fubiani, G Qiang, J Esarey, E Leemans, WP Dugan, G AF Fubiani, G. Qiang, J. Esarey, E. Leemans, W. P. Dugan, G. TI Space charge modeling of dense electron beams with large energy spreads SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COLLIDING LASER-PULSES; ACCELERATION; WAKEFIELD; BUNCHES; GENERATION; SIMULATION; RADIATION; CHANNEL; FIELDS; CODE AB Theoretical and numerical studies of the transport in vacuum of multi-nC, multi-MeV electron beams are performed using several methods, including envelope models, a novel semianalytic approach using ellipsoidal shell decomposition, a modified electrostatic particle-in-cell method, and a point-to-point interaction model. The effects of space-charge forces on the longitudinal and transverse bunch properties are evaluated for various bunch lengths, energies, energy spreads, and charges. An evaluation of the various methods for studying space-charge effects in large energy spread, high charge beams is summarized. Examples are given for beam distributions typical of those generated by plasma-based accelerators. It is found that, for the highly correlated beams produced in the self-modulated regime, the high energy portion of the beam can gain significant energy while propagating in vacuum due to space-charge effects. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Cornell Univ, Ithaca, NY 14853 USA. Univ Paris 11, F-91405 Orsay, France. Univ Nevada, Reno, NV 89557 USA. RP Fubiani, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 43 TC 14 Z9 14 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064402 DI 10.1103/PhysRevSTAB.9.064402 PG 31 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900016 ER PT J AU Hansknecht, J Poelker, M AF Hansknecht, J. Poelker, M. TI Synchronous photoinjection using a frequency-doubled gain-switched fiber-coupled seed laser and ErYb-doped fiber amplifier SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PHOTOCATHODES AB Light at 1560 nm from a gain-switched fiber-coupled diode laser and ErYb-doped fiber amplifier was frequency doubled to obtain over 2 W average power at 780 nm with similar to 40 ps pulses and pulse repetition rate of 499 MHz. This light was used to drive the 100 kV DC high voltage GaAs photoemission gun at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory to produce a high average current beam (100 mu A) of highly spin-polarized electrons (>80%). This new drive-laser system represents a significant advance over laser systems used previously, providing significantly higher power and enhanced reliability. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Hansknecht, J (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM hansknec@jlab.org NR 17 TC 9 Z9 9 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 063501 DI 10.1103/PhysRevSTAB.9.063501 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900010 ER PT J AU Hassanein, A Insepov, Z Norem, J Moretti, A Qian, Z Bross, A Torun, Y Rimmer, R Li, D Zisman, M Seidman, DN Yoon, KE AF Hassanein, A. Insepov, Z. Norem, J. Moretti, A. Qian, Z. Bross, A. Torun, Y. Rimmer, R. Li, D. Zisman, M. Seidman, D. N. Yoon, K. E. TI Effects of surface damage on rf cavity operation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRICAL BREAKDOWN; VACUUM; FIELD AB We describe a model of damage in rf cavities and show how this damage can limit cavity operation. We first present a review of mechanisms that may or may not affect the ultimate fields that can be obtained in rf cavities, assuming that mechanical stress explains the triggers of rf breakdown events. We present a method of quantifying the surface damage caused by breakdown events in terms of the spectrum of field enhancement factors, beta, for asperities on the surface. We then model an equilibrium that can develop between damage and conditioning effects, and show how this equilibrium can determine cavity performance and show experimental evidence for this mechanism. We define three functions that quantify damage, and explain how the parameters that determine performance can be factored out and measured. We then show how this model can quantitatively explain the dependence of cavity performance on material, frequency, pulse length, gas, power supply, and other factors. The examples given in this paper are derived from a variety of incomplete data sets, so we outline an experimental program that should improve these predictions, provide mechanisms for comparing data from different facilities, and fill in many gaps in the existing data. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. IIT, Chicago, IL 60616 USA. Jefferson Lab, Newport News, VA 23606 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Northwestern Univ, Evanston, IL 60208 USA. RP Hassanein, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM norem@anl.gov RI Seidman, David/B-6697-2009; Insepov, Zinetula/L-2095-2013; OI Insepov, Zinetula/0000-0002-8079-6293; Torun, Yagmur/0000-0003-2336-6585 NR 44 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 062001 DI 10.1103/PhysRevSTAB.9.062001 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900006 ER PT J AU Lund, SM Chilton, SH Lee, EP AF Lund, Steven M. Chilton, Sven H. Lee, Edward P. TI Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID QUADRUPOLE LATTICE; SPACE-CHARGE AB A new iterative method is developed to numerically calculate the periodic, matched beam envelope solution of the coupled Kapchinskij-Vladimirskij equations describing the transverse edge trajectory of a beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is straightforward. It is highly convergent and can be applied to all usual parametrizations of the matched envelope solutions. The method is applicable to all classes of linear focusing lattices without skew couplings, and also applies to all physically achievable system parameters - including cases where the matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system parameters. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lund, SM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM smlund@llnl.gov NR 17 TC 8 Z9 8 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064201 DI 10.1103/PhysRevSTAB.9.064201 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900013 ER PT J AU Ng, KY AF Ng, K. Y. TI Stability of barrier buckets with small or zero rf-barrier separations SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, a large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets once used in the process of momentum mining at the Fermilab Recycler Ring. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ng, KY (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM ng@fnal.gov NR 3 TC 1 Z9 1 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 064001 DI 10.1103/PhysRevSTAB.9.064001 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900012 ER PT J AU Penn, G Reinsch, M Wurtele, JS AF Penn, G. Reinsch, M. Wurtele, J. S. TI Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RADIATION; FEL AB One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica(R) package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Penn, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 19 TC 7 Z9 7 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN PY 2006 VL 9 IS 6 AR 060702 DI 10.1103/PhysRevSTAB.9.060702 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 065DZ UT WOS:000239140900003 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HW Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Pacetti, S Zallo, A Reyes, M Cawlfield, C Kim, D Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Gobel, C Otalora, J Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, J. M. Yager, P. M. Anjos, J. C. Bediaga, I. Castromonte, C. Machado, A. A. Magnin, J. Massafferri, A. de Miranda, J. M. Pepe, I. M. Polycarpo, E. dos Reis, A. C. Carrillo, S. Casimiro, E. Cuautle, E. Sanchez-Hernandez, A. Uribe, C. Vazquez, F. Agostino, L. Cinquini, L. Cumalat, J. P. O'Reilly, B. Segoni, I. Stenson, K. Butler, J. N. Cheung, H. Wk. Chiodini, G. Gaines, I. Garbincius, P. H. Garren, L. A. Gottschalk, E. Kasper, P. H. Kreymer, A. E. Kutschke, R. Wang, M. Benussi, L. Bertani, M. Bianco, S. Fabbri, F. L. Pacetti, S. Zallo, A. Reyes, M. Cawlfield, C. Kim, D. Y. Rahimi, A. Wiss, J. Gardner, R. Kryemadhi, A. Chung, Y. S. Kang, J. S. Ko, B. R. Kwak, J. W. Lee, K. B. Cho, K. Park, H. Alimonti, G. Barberis, S. Boschini, M. Cerutti, A. D'Angelo, P. DiCorato, M. Dini, P. Edera, L. Erba, S. Inzani, P. Leveraro, F. Malvezzi, S. Menasce, D. Mezzadri, M. Moroni, L. Pedrini, D. Pontoglio, C. Prelz, F. Rovere, M. Sala, S. Davenport, T. F., III Arena, V. Boca, G. Bonomi, G. Gianini, G. Liguori, G. Pegna, D. Lopes Merlo, M. M. Pantea, D. Ratti, S. P. Riccardi, C. Vitulo, P. Gobel, C. Otalora, J. Hernandez, H. Lopez, A. M. Mendez, H. Paris, A. Quinones, J. Ramirez, J. E. Zhang, Y. Wilson, J. R. Handler, T. Mitchell, R. Engh, D. Hosack, M. Johns, W. E. Luiggi, E. Moore, J. E. Nehring, M. Sheldon, P. D. Vaandering, E. W. Webster, M. Sheaff, M. CA FOCUS Collaboration TI New measurement of BR(D+->rho(0)mu(+))/BR(D+-> K-*0 mu+nu) branching ratio SO PHYSICS LETTERS B LA English DT Article ID EXCLUSIVE SEMILEPTONIC DECAYS; B-MESON; SPECTROMETER; PHYSICS; VECTOR; CHARM; HEAVY; FOCUS AB Using data collected by the FOCUS experiment at Fermilab, we present a new measurement of the charm semileptonic branching ratio [GRAPHICS] From a sample of 320 +/- 44 and 11372 +/- 161 D+ -> rho(0)mu(+)upsilon and D+ -> K-pi(+)mu(+)upsilon events respectively, we find [GRAPHICS] = 0.041 +/- 0.006 (stat) +/- 0.004 (syst). (c) 2006 Elsevier B.V. All rights reserved. C1 Vanderbilt Univ, Nashville, TN 37235 USA. Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. Univ Guanajuato, Leon 37150, Guanjuato, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Luiggi, E (reprint author), Vanderbilt Univ, Nashville, TN 37235 USA. EM eduardo.e.luiggi@vanderbilt.edu RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016 OI Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X NR 26 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2006 VL 637 IS 1-2 BP 32 EP 38 DI 10.1016/j.physletb.2006.04.002 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 049HQ UT WOS:000238007500007 ER PT J AU Brodsky, SJ Pirner, HJ Raufeisen, J AF Brodsky, SJ Pirner, HJ Raufeisen, J TI Scaling properties of high (PT) inclusive hadron production SO PHYSICS LETTERS B LA English DT Article ID LARGE-TRANSVERSE-MOMENTUM; CROSS-SECTIONS; QCD; COLLISIONS; ENERGIES; SPECTRA; QUARK; LAWS; PP AB We analyze the scaling properties of inclusive hadron production in proton-proton and in heavy ion collisions from fixed target to collider energies. At large transverse momentum PT, the invariant cross section exhibits a power-like behavior E d(3)sigma/d(3) alpha p(T)(-n) at fixed transverse x, x(T) = 2 vertical bar(P) over barT vertical bar/root S and fixed center-of-mass scattering angle theta(cm). Knowledge of the exponent n allows one to draw conclusions about the production mechanisms of hadrons, which are poorly known, even at high p(T). We find that high-(T) hadrons are produced by different mechanisms at fixed-target and collider energies. For pions, higher-twist subprocesses where the pion is produced directly dominate at fixed target energy, while leading-twist partonic scattering plus fragmentation is the most important mechanism at collider energies. High-(T) baryons on the other hand appear to be produced by higher-twist mechanisms at all available energies. The higher-twist mechanism of direct proton production can be verified experimentally by testing whether high-p(T) protons are produced as single hadrons without accompanying secondaries. In addition, we find that medium-induced gluon radiation in heavy ion collisions can violate scaling. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Heidelberg, Inst Theoret Phys, D-69120 Heidelberg, Germany. Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Pirner, HJ (reprint author), Univ Heidelberg, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany. EM pir@tphys.uni-heidelberg.de NR 34 TC 16 Z9 16 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2006 VL 637 IS 1-2 BP 58 EP 63 DI 10.1016/j.physletb.2006.03.079 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 049HQ UT WOS:000238007500012 ER PT J AU Karsch, F Kharzeev, D Satz, H AF Karsch, F. Kharzeev, D. Satz, H. TI Sequential charmonium dissociation SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTUM DEPENDENCE; NUCLEAR COLLISIONS; J/PSI SUPPRESSION; 300-GEV/C PROTON; PSI'; LATTICE; PI+/; QCD AB Finite temperature lattice QCD indicates that the charmonium ground state J/psi can survive in a quark-gluon plasma up to 1.5T(c) or more, while the excited states chi(c) and psi' are dissociated just above T-c. We assume that the chi(c) suffers the same form of suppression as that observed for the psi' in SPS experiments, and that the directly produced J/psi is unaffected at presently available energy densities. This provides a parameter-free description of J/psi and psi' suppression which agrees quite well with that observed in SPS and RHIC data. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal. RP Kharzeev, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kharzeev@bnl.gov NR 48 TC 145 Z9 145 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2006 VL 637 IS 1-2 BP 75 EP 80 DI 10.1016/j.physletb.2006.03.078 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 049HQ UT WOS:000238007500015 ER PT J AU Fairlie, DB Zachos, CK AF Fairlie, DB Zachos, CK TI An atavistic Lie algebra SO PHYSICS LETTERS B LA English DT Article ID INFINITE-DIMENSIONAL ALGEBRAS; OCCUPATION NUMBER SPACE; COHERENT; STATES AB An infinite-dimensional Lie algebra is proposed which includes, in its subalgebras and limits, most Lie algebras routinely utilized in physics. It relies on the finite oscillator Lie group, and appears applicable to twisted noncommutative QFT and CFT. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. Univ Durham, Dept Math Sci, Durham DH1 3LE, England. RP Zachos, CK (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM david.fairlie@durham.ac.uk; zachos@anl.gov RI zachos, cosmas/C-4366-2014 OI zachos, cosmas/0000-0003-4379-3875 NR 27 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 1 PY 2006 VL 637 IS 1-2 BP 123 EP 127 DI 10.1016/j.physletb.2006.04.013 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 049HQ UT WOS:000238007500025 ER PT J AU Clark, DS Tabak, M AF Clark, DS Tabak, M TI Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces SO PHYSICS OF FLUIDS LA English DT Article ID INERTIAL CONFINEMENT FUSION; NATIONAL IGNITION FACILITY; INSTABILITY GROWTH; HYDRA SIMULATIONS; TARGETS; COMPRESSION; SATURATION; GEOMETRY; DESIGNS; PHYSICS AB Recent attention has focused on the effect of spherical convergence on the nonlinear phase of Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 056308 (2005)]. However, this model is limited in assuming a self-similar background implosion history as well as only addressing growth from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single mode growth was considered and not the multimode growth of interest in applications. Here, these deficiencies are remedied. First, the connection of the recent nonlinear results (including convergence) to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the case of multimode growth with convergence, the recent nonlinear single mode results are combined with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence in the nonlinear regime is found not to modify substantially the multimode predictions of Haan's original model. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Clark, DS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM clark90@llnl.gov NR 41 TC 1 Z9 1 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUN PY 2006 VL 18 IS 6 AR 064106 DI 10.1063/1.2212989 PG 10 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 059KK UT WOS:000238731500016 ER PT J AU Carreras, BA Lynch, VE van Milligen, BP Sanchez, R AF Carreras, BA Lynch, VE van Milligen, BP Sanchez, R TI On the use of critical gradient models in fusion plasma transport studies SO PHYSICS OF PLASMAS LA English DT Article ID ASDEX-UPGRADE; CONFINEMENT; TURBULENCE; LAW AB Transport models for tokamak devices are often based on transport coefficients involving a critical threshold condition. In this paper, it is argued that the validation of such models against experimental data requires special care when the system profiles are close to this threshold (at some locations), due to the contribution of fluctuations to transport. The arguments presented here could have implications for the understanding and modeling of heat transport in tokamaks, since the large stiffness of the temperature profile observed in experimental points to a near-critical situation over much of the radius. The difficulties are illustrated by means of a simplified transport model, and a possible way to ameliorate this issue is proposed. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. CIEMAT, EURATOM Assoc, Lab Nacl Fus, E-28040 Madrid, Spain. RP Carreras, BA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Sanchez, Raul/C-2328-2008; Lynch, Vickie/J-4647-2012; van Milligen, Boudewijn/H-5121-2015 OI Lynch, Vickie/0000-0002-5836-7636; van Milligen, Boudewijn/0000-0001-5344-6274 NR 19 TC 8 Z9 8 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062301 DI 10.1063/1.2205196 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000015 ER PT J AU In, Y Kim, JS Edgell, DH Strait, EJ Humphreys, DA Walker, ML Jackson, GL Chu, MS Johnson, R La Haye, RJ Okabayashi, M Garofalo, AM Reimerdes, H AF In, Y Kim, JS Edgell, DH Strait, EJ Humphreys, DA Walker, ML Jackson, GL Chu, MS Johnson, R La Haye, RJ Okabayashi, M Garofalo, AM Reimerdes, H TI Model-based dynamic resistive wall mode identification and feedback control in the DIII-D tokamak SO PHYSICS OF PLASMAS LA English DT Article ID EXTERNAL-MODES; STABILIZATION; ROTATION; PLASMAS; DISCRIMINATION; GEOMETRY AB A new model-based dynamic resistive wall mode (RWM) identification and feedback control algorithm has been developed. While the overall RWM structure can be detected by a model-based matched filter in a similar manner to a conventional sensor-based scheme, it is significantly influenced by edge-localized-modes (ELMs). A recent study suggested that such ELM noise might cause the RWM control system to respond in an undesirable way. Thus, an advanced algorithm to discriminate ELMs from RWM has been incorporated into this model-based control scheme, dynamic Kalman filter. Specifically, the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] resistive vessel wall was modeled in two ways: picture frame model or eigenmode treatment. Based on the picture frame model, the first real-time, closed-loop test results of the Kalman filter algorithms during DIII-D experimental operation are presented. The Kalman filtering scheme was experimentally confirmed to be effective in discriminating ELMs from RWM. As a result, the actuator coils (I-coils) were rarely excited during ELMs, while retaining the sensitivity to RWM. However, finding an optimized set of operating parameters for the control algorithm requires further analysis and design. Meanwhile, a more advanced Kalman filter based on a more accurate eigenmode model has been developed. According to this eigenmode approach, significant improvement in terms of control performance has been predicted, while maintaining good ELM discrimination. (c) 2006 American Institute of Physics. C1 FAR TECH Inc, San Diego, CA 92121 USA. Gen Atom Co, San Diego, CA 92186 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Columbia Univ, New York, NY 10027 USA. RP In, Y (reprint author), FAR TECH Inc, 10350 Sci Ctr Dr, San Diego, CA 92121 USA. OI Walker, Michael/0000-0002-4341-994X NR 25 TC 30 Z9 30 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062512 DI 10.1063/1.2214637 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000038 ER PT J AU Koh, WS Ang, LK Kwan, TJT AF Koh, WS Ang, LK Kwan, TJT TI Multidimensional short-pulse space-charge-limited flow SO PHYSICS OF PLASMAS LA English DT Article ID CHILD-LANGMUIR-LAW; INITIAL VELOCITY; RF GUN; CURRENTS; PHOTOCATHODES; PHOTOINJECTOR; EMITTER; VACUUM; LENGTH; DIODES AB The two-dimensional models of the space-charge-limited (SCL) current density at the short pulse limit for which the electron pulse length is comparable or smaller than the electron transit time across the gap (i.e., X-CL <= 1) have been developed. In particular, the scaling laws for short-pulse SCL electron emission in a planar diode with a circular emitting strip and a cylindrical diode with a finite length have been obtained and verified with particle-in-cell simulation. It is found that the enhancement (in terms of the long-pulse SCL current density) is proportional to X-CL(-1) for small X-CL for both planar and cylindrical cases. The enhancement of the cylindrical short-pulse SCL current density is also found to be larger for the convergent flow (cathode outside) than divergent flow (cathode inside). Multidimensional effects are important only for small emitting strips with size comparable to the effective penetration distance (into the gap) of the short-pulse electron beam. Smooth transition between the short-pulse regime and the long pulse (steady-state) regime is demonstrated. (c) 2006 American Institute of Physics. C1 Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. Inst High Performance Comp, Singapore 117528, Singapore. Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Koh, WS (reprint author), Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. EM elkang@ntu.edu.sg RI Koh, Wee Shing/B-2201-2008; ANG, Lay Kee/F-8115-2015 OI ANG, Lay Kee/0000-0003-2811-1194 NR 32 TC 9 Z9 9 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 063102 DI 10.1063/1.2208086 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000051 ER PT J AU Mynick, HE Boozer, AH Ku, LP AF Mynick, HE Boozer, AH Ku, LP TI Improving confinement in quasi-axisymmetric stellarators SO PHYSICS OF PLASMAS LA English DT Article ID TRANSPORT AB The confinement characteristics of some related quasi-axisymmetric stellarator (QA) designs are compared to gain more physical understanding of what causes the differences in their transport. From this, some general rules are found for features of QA magnetic geometries that are deleterious or helpful for confinement. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Mynick, HE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 6 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 064505 DI 10.1063/1.2213960 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000076 ER PT J AU Startsev, EA Davidson, RC AF Startsev, Edward A. Davidson, Ronald C. TI Two-stream instability for a longitudinally compressing charged particle beam SO PHYSICS OF PLASMAS LA English DT Article ID HEAVY-ION BEAM; NEUTRALIZATION; SIMULATIONS; TRANSPORT; PLASMA AB The electrostatic two-stream instability for a cold, longitudinally compressing charged particle beam propagating through a background plasma has been investigated both analytically and numerically. Small-signal coupled equations describing the evolution of the perturbations are derived, and the asymptotic solutions are obtained. The results are confirmed by direct numerical solution of the linearized fluid equations. It is found that the longitudinal beam compression strongly modifies the space-time development of the instability. In particular, the dynamic compression leads to a significant reduction in the growth rate of the two-stream instability compared to the case without an initial velocity tilt. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. NR 16 TC 16 Z9 16 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062108 DI 10.1063/1.2212807 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000010 ER PT J AU Uzdensky, DA Kulsrud, RM AF Uzdensky, DA Kulsrud, RM TI Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID KINETIC STRUCTURE; RESISTIVITY; DISSIPATION; PLASMA; FLUID; SHEET AB A quadrupole pattern of the out-of-plane component of the magnetic field inside a reconnection region is seen as an important signature of the Hall-magnetohydrodynamic regime of reconnection. It has been first observed in numerical simulations and just recently confirmed in the Magnetic Reconnection Experiment [Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsin, Phys. Rev. Lett. 95, 055003 (2005)] and also seen in spacecraft observations of Earth's magnetosphere. In this study, the physical origin of the quadrupole field is analyzed and traced to a current of electrons that flows along the lines in and out of the inner reconnection region to maintain charge neutrality. The role of the quadrupole magnetic field in the overall dynamics of the reconnection process is discussed. In addition, the bipolar poloidal electric field is estimated and its effect on ion motions is emphasized. C1 Princeton Univ Observ, Princeton, NJ 08544 USA. Princeton Univ, Plasma Phys Lab, CMSO, Princeton, NJ 08544 USA. RP Uzdensky, DA (reprint author), Princeton Univ Observ, Princeton, NJ 08544 USA. EM uzdensky@astro.princeton.edu; rmk@pppl.gov NR 27 TC 55 Z9 55 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062305 DI 10.1063/1.2209627 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000019 ER PT J AU Waisman, EM Cuneo, ME Stygar, WA Sasorov, PV Yu, EP AF Waisman, EM Cuneo, ME Stygar, WA Sasorov, PV Yu, EP TI A model for ablated-plasma distribution and width for wire-array Z-pinch implosions SO PHYSICS OF PLASMAS LA English DT Article ID DYNAMICS AB A one-dimensional radial magnetohydrodynamic model of the plasma ablated from a multi-MA wire-array Z pinch is developed. The model is used to compute the mass weighted-density width delta of the plasma at the end of the ablation phase. The wire-array cores are represented as a prescribed source of plasma injection. The plasma, beyond a thin boundary layer, is approximated as a perfect conductor experiencing only magnetic forces and negligible pressure gradients. Assuming that the current driving the Z-pinch implosion increases linearly with time t during the ablation phase, and that the mass-ablation rate varies as t(nu), it is shown that the density width delta is a function of the dimensionless parameter lambda=u(a)(t(a))t(a)/r(0), where u(a) is the ablation velocity, t(a) is the total ablation time, and r(0) is the initial wire-array radius. The velocity u(a) is defined such that its product with the mass-ablation rate equals the magnetic force at r(0), which is assumed to be the mass injection point. A solution is obtained for the plasma flow in semianalytical form when the current is an exponential function of time, and u(a) is constant. The ablated plasma density width delta obtained under these two sets of conditions is compared. In addition, assuming that the plasma sheath at stagnation is proportional to the width delta, scaling relationships for the peak x-ray power radiated when the pinch stagnates on axis are suggested. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Inst Theoret & Expt Phys, Moscow 117218, Russia. RP Waisman, EM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 16 TC 9 Z9 10 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062702 DI 10.1063/1.2202173 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000040 ER PT J AU Welch, DR Rose, DV Cuneo, ME Campbell, RB Mehlhorn, TA AF Welch, DR Rose, DV Cuneo, ME Campbell, RB Mehlhorn, TA TI Integrated simulation of the generation and transport of proton beams from laser-target interaction SO PHYSICS OF PLASMAS LA English DT Article ID IN-CELL SIMULATIONS; PLASMA INTERACTION; CONDUCTIVITY; ELECTRONS; IGNITION; MATTER AB High current, energetic protons are produced by irradiating thin metal foils with intense lasers. Here, the laser plasma interaction produces relativistic electrons at the critical surface. These electrons propagate through the foil and create a space-charge cloud that accelerates proton contaminants on the back side. Self-consistent electromagnetic simulations of this process using a hybrid particle-in-cell code show the importance of detailed modeling of the electron production and transport, as well as the distributed acceleration and spatial distribution of the protons well off the foil surface. The protons become neutralized by energetic electrons resupplied by the expanding plume of the back surface, not by energetic electrons thermalizing within the proton cloud. Details of the laser-plasma interaction simulation techniques and implications for ion-driven fast ignition are also discussed. C1 Voss Sci, Albuquerque, NM 87108 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci, Albuquerque, NM 87108 USA. NR 31 TC 102 Z9 102 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 063105 DI 10.1063/1.2207587 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000054 ER PT J AU Zhang, YT Shu, CW Zhou, Y AF Zhang, YT Shu, CW Zhou, Y TI Effects of shock waves on Rayleigh-Taylor instability SO PHYSICS OF PLASMAS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITIES; EFFICIENT IMPLEMENTATION; HIGH-ORDER; SCHEMES; SIMULATIONS; DYNAMICS AB A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process. (c) 2006 American Institute of Physics. C1 Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA. Brown Univ, Div Appl Math, Providence, RI 02912 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zhang, YT (reprint author), Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA. EM zyt@math.uci.edu; shu@dam.brown.edu; zhou3@llnl.gov RI Shu, Chi-Wang/A-3216-2013 OI Shu, Chi-Wang/0000-0001-7720-9564 NR 27 TC 4 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUN PY 2006 VL 13 IS 6 AR 062705 DI 10.1063/1.2201063 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 059KP UT WOS:000238732000043 ER PT J AU Goldston, RJ Hazeltine, RD AF Goldston, RJ Hazeltine, RD TI Proper performance prediction for ITER SO PHYSICS TODAY LA English DT Letter C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Texas, Inst Fus Studies, Austin, TX 78712 USA. RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rgoldston@pppl.gov; rdh@physics.utexas.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUN PY 2006 VL 59 IS 6 BP 11 EP 12 DI 10.1063/1.2218530 PG 2 WC Physics, Multidisciplinary SC Physics GA 050GS UT WOS:000238076100009 ER PT J AU Cohen, ML AF Cohen, Marvin L. TI Looking back and ahead at condensed matter physics SO PHYSICS TODAY LA English DT Article ID FERMI LIQUID; SEMICONDUCTORS; NANOTUBES; SILICON C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Cohen, ML (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 18 TC 4 Z9 4 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD JUN PY 2006 VL 59 IS 6 BP 48 EP 53 DI 10.1063/1.2218555 PG 6 WC Physics, Multidisciplinary SC Physics GA 050GS UT WOS:000238076100027 ER PT J AU Bucksbam, PH AF Bucksbam, PH TI Photon science and quantum control SO PHYSICS TODAY LA English DT Article C1 Stanford Univ, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Stanford Univ, PULSE Ctr, Stanford, CA 94305 USA. RP Bucksbam, PH (reprint author), Stanford Univ, Stanford, CA 94305 USA. NR 1 TC 4 Z9 4 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUN PY 2006 VL 59 IS 6 BP 57 EP 59 DI 10.1063/1.2218557 PG 3 WC Physics, Multidisciplinary SC Physics GA 050GS UT WOS:000238076100029 ER PT J AU Lindemuth, IR Mokhov, VN Reinovsky, RE AF Lindemuth, IR Mokhov, VN Reinovsky, RE TI Vladimir Konstantinovich Chernyshev SO PHYSICS TODAY LA English DT Biographical-Item C1 All Russian Sci Res Inst Expt Phys, Sarov, Russia. Los Alamos Natl Lab, Los Alamos, NM USA. RP Lindemuth, IR (reprint author), All Russian Sci Res Inst Expt Phys, Sarov, Russia. NR 0 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUN PY 2006 VL 59 IS 6 BP 78 EP 79 DI 10.1063/1.2218567 PG 2 WC Physics, Multidisciplinary SC Physics GA 050GS UT WOS:000238076100031 ER PT J AU Crease, RP AF Crease, RP TI Critical point just a theory SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUN PY 2006 VL 19 IS 6 BP 16 EP 16 PG 1 WC Physics, Multidisciplinary SC Physics GA 053RP UT WOS:000238323000019 ER PT J AU Dirks, B Goodstein, DM Hellsten, U Moseyko, N Rokhsar, DS AF Dirks, B. Goodstein, D. M. Hellsten, U. Moseyko, N. Rokhsar, D. S. TI 'Zomes: Tools for phylogenomic exploration and analysis of plants, fungi, and animals SO PHYTOPATHOLOGY LA English DT Meeting Abstract C1 [Goodstein, D. M.; Hellsten, U.; Rokhsar, D. S.] DoE Joint Genome Inst, Walnut Creek, CA USA. [Dirks, B.; Moseyko, N.; Rokhsar, D. S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2006 VL 96 IS 6 SU S BP S160 EP S161 PG 2 WC Plant Sciences SC Plant Sciences GA V44GP UT WOS:000202991501375 ER PT J AU Donahoo, RS Martin, J Tripathy, S Naswa, S Hurtado-Gonzales, OP Lamour, KH AF Donahoo, R. S. Martin, J. Tripathy, S. Naswa, S. Hurtado-Gonzales, O. P. Lamour, K. H. TI Heterozygous bases from sequenced isolates of Phytophthora sojae and P ramorum provide useful single nucleotide polymorphism markers SO PHYTOPATHOLOGY LA English DT Meeting Abstract C1 [Martin, J.] Joint Genome Inst, Berkeley, CA USA. [Donahoo, R. S.; Naswa, S.; Hurtado-Gonzales, O. P.; Lamour, K. H.] Univ Tennessee, Knoxville, TN USA. [Tripathy, S.] Virginia Bioinformat Inst, Blacksburg, VA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2006 VL 96 IS 6 SU S BP S30 EP S31 PG 2 WC Plant Sciences SC Plant Sciences GA V44GP UT WOS:000202991500194 ER PT J AU Kachroo, P Shanklin, J Venugopal, S Whittle, E Lapchyk, L Kachroo, A AF Kachroo, P. Shanklin, J. Venugopal, S. Whittle, E. Lapchyk, L. Kachroo, A. TI A role for fatty acid metabolism in host defense signaling SO PHYTOPATHOLOGY LA English DT Meeting Abstract C1 [Shanklin, J.; Whittle, E.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Kachroo, P.; Venugopal, S.; Lapchyk, L.; Kachroo, A.] Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X J9 PHYTOPATHOLOGY JI Phytopathology PD JUN PY 2006 VL 96 IS 6 SU S BP S57 EP S57 PG 1 WC Plant Sciences SC Plant Sciences GA V44GP UT WOS:000202991500367 ER PT J AU Sakuragi, Y Maeda, H DellaPenna, D Bryant, DA AF Sakuragi, Y Maeda, H DellaPenna, D Bryant, DA TI alpha-tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp PCC 6803 that is independent of its antioxidant function SO PLANT PHYSIOLOGY LA English DT Article ID SP STRAIN PCC-6803; ALTERNATIVE SIGMA FACTORS; VITAMIN-E; GENE-EXPRESSION; PHYCOBILISOME DEGRADATION; LIPID-PEROXIDATION; NITROGEN STRESS; HIGH LIGHT; CO2 UPTAKE; PCC 7002 AB alpha-Tocopherol is synthesized exclusively in oxygenic phototrophs and is known to function as a lipid-soluble antioxidant. Here, we report that alpha-tocopherol also has a novel function independent of its antioxidant properties in the cyanobacterium Synechocystis sp. PCC 6803. The photoautotrophic growth rates of wild type and mutants impaired in a-tocopherol biosynthesis are identical, but the mutants exhibit elevated photosynthetic activities and glycogen levels. When grown photomixotrophically with glucose ( Glc), however, these mutants cease growth within 24 h and exhibit a global macronutrient starvation response associated with nitrogen, sulfur, and carbon, as shown by decreased phycobiliprotein content ( 35% of the wild-type level) and accumulation of the nblA1-nblA2, sbpA, sigB, sigE, and sigH transcripts. Photosystem II activity and carboxysome synthesis are lost in the tocopherol mutants within 24 h of photomixotrophic growth, and the abundance of carboxysome gene ( rbcL, ccmK1, ccmL) and ndhF4 transcripts decreases to undetectable levels. These results suggest that a-tocopherol plays an important role in optimizing photosynthetic activity and macronutrient homeostasis in Synechocystis sp. PCC 6803. Several lines of evidence indicate that increased oxidative stress in the tocopherol mutants is unlikely to be the underlying cause of photosystem II inactivation and Glc-induced lethality. Interestingly, insertional inactivation of the pmgA gene, which encodes a putative serine-threonine kinase similar to RsbW and RsbT in Bacillus subtilis, results in a similar increase in glycogen and Glc-induced lethality. Based on these results, we propose that alpha-tocopherol plays a nonantioxidant regulatory role in photosynthesis and macronutrient homeostasis through a signal transduction pathway that also involves PmgA. C1 Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. Michigan State Univ, Cell & Mol Biol Program, E Lansing, MI 48824 USA. Michigan State Univ, US Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Bryant, DA (reprint author), Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. EM dab14@psu.edu RI Maeda, Hiroshi/G-4172-2010; Sakuragi, Yumiko/E-9707-2012; OI Sakuragi, Yumiko/0000-0002-9405-5197; Penna, Maria Pietronilla/0000-0002-0982-3893 NR 61 TC 43 Z9 45 U1 1 U2 10 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUN PY 2006 VL 141 IS 2 BP 508 EP 521 DI 10.1104/pp.105.074765 PG 14 WC Plant Sciences SC Plant Sciences GA 051NW UT WOS:000238168800026 PM 16565298 ER PT J AU Cernac, A Andre, C Hoffmann-Benning, S Benning, C AF Cernac, A Andre, C Hoffmann-Benning, S Benning, C TI WRI1 is required for seed germination and seedling establishment SO PLANT PHYSIOLOGY LA English DT Article ID ACID BETA-OXIDATION; ARABIDOPSIS-THALIANA; ABSCISIC-ACID; GENE-EXPRESSION; DIACYLGLYCEROL ACYLTRANSFERASE; RESERVE MOBILIZATION; GLYOXYLATE CYCLE; SUGAR; GLUCOSE; GROWTH AB Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 gene encodes an APETALA2/ethylene-responsive element-binding protein transcription factor involved in the control of metabolism, particularly glycolysis, in the developing seeds. Here we investigate the role of this regulatory factor in seed germination and seedling establishment by comparing the wri1-1 mutant, transgenic lines expressing the WRI1 wild-type cDNA in the wri1-1 mutant background, and the wild type. Plants altered in the expression of the WRI1 gene showed different germination responses to the growth factor abscisic acid (ABA), sugars, and fatty acids provided in the medium. Germination of the mutant was more sensitive to ABA, sugars, and osmolites, an effect that was alleviated by increased WRI1 expression in transgenic lines. The expression of ABA-responsive genes AtEM6 and ABA-insensitive 3 (ABI3) was increased in the wri1-1 mutant. Double-mutant analysis between abi3-3 and wri1-1 suggested that WRI1 and ABI3, a transcription factor mediating ABA responses in seeds, act in parallel pathways. Addition of 2-deoxyglucose inhibited seed germination, but did so less in lines overexpressing WRI1. Seedling establishment was decreased in the wri1-1 mutant but could be alleviated by sucrose. Apart from a possible signaling role in germination, sugars in the medium were required as building blocks and energy supply during wri1-1 seedling establishment. C1 Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. Michigan State Univ, US Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Benning, C (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM benning@msu.edu NR 61 TC 62 Z9 79 U1 1 U2 24 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUN PY 2006 VL 141 IS 2 BP 745 EP 757 DI 10.1104/pp.106.079574 PG 13 WC Plant Sciences SC Plant Sciences GA 051NW UT WOS:000238168800048 PM 16632590 ER PT J AU Korber, B LaBute, M Yusim, K AF Korber, Bette LaBute, Montiago Yusim, Karina TI Immunoinformatics comes of age SO PLOS COMPUTATIONAL BIOLOGY LA English DT Review ID MHC CLASS-I; MAJOR HISTOCOMPATIBILITY COMPLEX; T-CELL EPITOPES; DISTINCT PROTEOLYTIC PROCESSES; ARTIFICIAL NEURAL-NETWORK; BINDING PEPTIDES; PROTEASOMAL CLEAVAGE; QUANTITATIVE PREDICTIONS; ENVELOPE GLYCOPROTEIN; SPECIFICITY MATRICES AB With the burgeoning immunological data in the scientific literature, scientists must increasingly rely on Internet resources to inform and enhance their work. Here we provide a brief overview of the adaptive immune response and summaries of immunoinformatics resources, emphasizing those with Web interfaces. These resources include searchable databases of epitopes and immune-related molecules, and analysis tools for T cell and B cell epitope prediction, vaccine design, and protein structure comparisons. There is an agreeable synergy between the growing collections in immune-related databases and the growing sophistication of analysis software; the databases provide the foundation for developing predictive computational tools, which in turn enable more rapid identification of immune responses to populate the databases. Collectively, these resources contribute to improved understanding of immune responses and escape, and evolution of pathogens under immune pressure. The public health implications are vast, including designing vaccines, understanding autoimmune diseases, and de. ning the correlates of immune protection. C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Korber, B (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. EM btk@lanl.gov RI Chiang, Vincent, Ming-Hsien/D-4312-2016; OI Chiang, Vincent, Ming-Hsien/0000-0002-2029-7863; Korber, Bette/0000-0002-2026-5757 FU PHS HHS [Y1-A1-1500-08] NR 97 TC 77 Z9 94 U1 3 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUN PY 2006 VL 2 IS 6 BP 484 EP 492 AR e71 DI 10.1371/journal.pcbi.0020071 PG 9 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 070AZ UT WOS:000239494000002 PM 16846250 ER PT J AU Price, MN Arkin, AP Alm, EJ AF Price, Morgan N. Arkin, Adam P. Alm, Eric J. TI The life-cycle of operons SO PLOS GENETICS LA English DT Article ID PROKARYOTIC GENOME ORGANIZATION; MULTIPLE SEQUENCE ALIGNMENT; HORIZONTAL GENE-TRANSFER; ESCHERICHIA-COLI; SHEWANELLA-ONEIDENSIS; TRANSCRIPTOME ANALYSIS; NUCLEOTIDE-SEQUENCE; MICROBIAL GENOMES; BACTERIAL GENOMES; OVERLAPPING GENES AB Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution may be driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although genes within operons are usually closely spaced because of a neutral bias toward deletion and because of selection against large overlaps, genes in highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution may be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif San Francisco, Virtual Inst Microbial Stress & Survival, San Francisco, CA 94143 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Alm, EJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM ejalm@mit.edu RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 NR 78 TC 86 Z9 87 U1 2 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUN PY 2006 VL 2 IS 6 BP 859 EP 873 AR e96 DI 10.1371/journal.pgen.0020096 PG 15 WC Genetics & Heredity SC Genetics & Heredity GA 070BG UT WOS:000239494700009 PM 16789824 ER PT J AU Gillen, KT Assink, R Bernstein, R Celina, M AF Gillen, KT Assink, R Bernstein, R Celina, M TI Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE aging; chlorosulfonated polyethylene; condition monitoring; modulus; NMR relaxation; solvent uptake ID DIFFUSION-LIMITED OXIDATION; THERMAL-DEGRADATION; ARRHENIUS; EXTRAPOLATION; INDENTATION; INSULATION; PROFILES; SAMPLES; RUBBER; MODEL AB Three promising polymer material condition monitoring (CM) methods were applied to eight commercial chlorosulfonated polyethylene cable jacket materials aged under both elevated temperature and high-energy radiation conditions. The CM methods examined, cross-sectional modulus profiling, solvent uptake and NMR T-2 relaxation time measurements of solvent-swelled samples, are closely related since they are all strongly influenced by the changes in overall crosslink density of the materials. Each approach was found to correlate well with ultimate tensile elongation measurements, the most widely used method for following degradation of elastomeric materials. In addition approximately universal failure criteria were found to be applicable for the modulus profiling and solvent uptake measurements, independent of the CSPE material examined and its degradation environment. For an arbitrarily assumed elongation "failure" criterion of 50% absolute, the CSPE materials typically reached "failure" when the modulus increased to similar to 35 MPa and the uptake factor in p-xylene decreased to similar to 1.6. (c) 2005 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Gillen, KT (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800,Mail Stop 1411, Albuquerque, NM 87185 USA. EM ktgille@sandia.gov NR 31 TC 12 Z9 13 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD JUN PY 2006 VL 91 IS 6 BP 1273 EP 1288 DI 10.1016/j.polymdegradstab.2005.09.002 PG 16 WC Polymer Science SC Polymer Science GA 034HE UT WOS:000236919000008 ER PT J AU Cady, CM Blumenthal, WR Gray, GT Idar, DJ AF Cady, CM Blumenthal, WR Gray, GT Idar, DJ TI Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature SO POLYMER ENGINEERING AND SCIENCE LA English DT Article ID HOPKINSON PRESSURE BAR; BEHAVIOR; DEFORMATION; DEPENDENCE; POLYMERS AB Compression measurements were conducted on three explosive formulation binders, extruded Estane, plasticized Estane, and plasticized hydroxyl-terminated polybutadiene, as a function of temperature and strain rate. The mechanical response of the Estane was found to exhibit the strongest dependency on strain rate and temperature and higher flow strength for similar test conditions of the three materials tested. Plasticized Estane was less sensitively dependent on strain rate and temperature, followed by the plasticized HTPB. The viscoelastic recovery of all three binders is seen to dominate the mechanical behavior at temperatures above the glass transition temperature (T-g). There is a pronounced shift in the apparent T-g to higher temperatures as the strain rate is increased. Two distinct behaviors are observed in the binders below the T-g. At low strain rates, the binders exhibit a yield behavior, followed by a drop in the flow stress, which may or may not recover. At high strain rates, the load drop does not occur and the flow stresses either gradually increase, as in plasticized HTPB, or it levels out as seen in the Estane-based binders. C1 Los Alamos Natl Lab, Struct Propety Relat, Los Alamos, NM 87544 USA. RP Cady, CM (reprint author), Los Alamos Natl Lab, Struct Propety Relat, MST-8,MS-G755, Los Alamos, NM 87544 USA. EM cady@lanl.gov NR 17 TC 28 Z9 31 U1 4 U2 15 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0032-3888 J9 POLYM ENG SCI JI Polym. Eng. Sci. PD JUN PY 2006 VL 46 IS 6 BP 812 EP 819 DI 10.1002/pen.20540 PG 8 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 046WK UT WOS:000237841600012 ER PT J AU Frazer, CS Rodriguez, MA Tissot, RG AF Frazer, CS Rodriguez, MA Tissot, RG TI Three-dimensional Interactive Data-Language pole figure visualization SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO ID TEXTURE AB The Interactive Data Language has been used to produce a software program capable of advanced three-dimensional visualizations of pole figure and theta-2 theta data. The data can also be used to calculate quantitative properties such as strain level and to minimize the peak-height texture effects in individual theta-2 theta scans. The collection of the large data sets necessary for the analyses is facilitated by use of a position sensitive detector or area detector. (c) 2006 International Centre for Diffraction Data. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Frazer, CS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM csfraze@sandia.gov NR 6 TC 3 Z9 3 U1 0 U2 1 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 102 EP 104 DI 10.1154/1.2204955 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400005 ER PT J AU Fawcett, TG Faber, J Needham, F Kabekkodu, SN Hubbard, CR Kaduk, JA AF Fawcett, TG Faber, J Needham, F Kabekkodu, SN Hubbard, CR Kaduk, JA TI Developments in formulation analyses by powder diffraction analysis SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO AB Developments in X-ray analysis hardware and software have combined to dramatically improve the throughput, speed, and accuracy of formulation analyses. We will focus on a complimentary development, the growth and application of a comprehensive database based on the Powder Diffraction File (TM) (PDFO). The PDF is an edited and standardized combination of several crystallographic databases with similar to 497 000 published entries. The comprehensive nature of this database, combined with phase identification and digital pattern simulations, was used to identify complex formulations with crystalline and noncrystalline ingredients. We will show how these parallel developments enhance the ability to correctly identify complex formularies. (c) 2006 International Centre for Diffraction Data. C1 Int Ctr Diffract Data, Newtown Sq, PA 19073 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Innovene USA LLC, Naperville, IL 60563 USA. RP Fawcett, TG (reprint author), Int Ctr Diffract Data, Newtown Sq, PA 19073 USA. EM fawcett@icdd.com NR 5 TC 3 Z9 3 U1 0 U2 0 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 105 EP 110 DI 10.1154/1.2204958 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400006 ER PT J AU Volz, HM Vogel, SC Necker, CT Roberts, JA Lawson, AC Williams, DJ Daemen, LL Lutterotti, L Pehl, J AF Volz, HM Vogel, SC Necker, CT Roberts, JA Lawson, AC Williams, DJ Daemen, LL Lutterotti, L Pehl, J TI Rietveld texture analysis by neutron diffraction of highly absorbing materials SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO AB We discuss the impact of strong absorption for thermal neutrons on data analysis and compare absorption corrections in the GSAS and MAUD Rietveld codes for texture and structural parameter refinement. Diffraction data were collected on the neutron powder diffractometer HIPPO at LANSCE from dysprosium and erbium, which are moderate-to-strong absorbers for thermal neutrons with absorption cross sections of 159 barns for Er and 994 barns for Dy at lambda= 1.8 angstrom. Both elements have hexagonal-close-packed (hcp) crystal structures, and the samples were various thicknesses of rolled foils. The orientation distribution functions (ODF) were fit to the same neutron time-of-flight data sets using two very different full pattern Rietveld analysis procedures. Spherical harmonics functions were fit to the textured data using GSAS. These data were also analyzed by the modified direct method E-WIMV using MAUD. The resulting pole figures from the ODFs determined by both Rietveld analysis packages are qualitatively similar, and the textures were confirmed by X-ray diffraction. Additionally, data from orthorhombic dysprosium and erbium fluoride powders show that atomic positions are not sensitive to absorption. We address inconsistencies and methodologies in data analysis when strong absorption is present. (c) 2006 International Centre for Diffraction Data. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Trent, Dipartimento Ingn Mat & Tecnol Ind, I-38050 Trento, Italy. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Volz, HM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012; Lutterotti, Luca/E-2426-2014; OI Lutterotti, Luca/0000-0002-0949-8322; Vogel, Sven C./0000-0003-2049-0361 NR 10 TC 1 Z9 1 U1 1 U2 7 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 114 EP 117 DI 10.1154/1.2204058 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400008 ER PT J AU Benedikt, B Lewis, M Rangaswamy, P AF Benedikt, B Lewis, M Rangaswamy, P TI Measurement and modeling of internal stresses at microscopic and. mesoscopic levels using micro-Raman spectroscopy and X-ray diffraction SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO ID RESIDUAL THERMAL-STRESSES; COMPOSITES; INCLUSIONS AB In this study, we use X-ray diffraction (XRD) and micro-Raman spectroscopy (MRS) to measure internal strains in sensors embedded in polymer matrix composites. Two types of strain sensors embedded in either chopped graphite fiber/epoxy matrix composite (MRS) or unidirectional graphite fiber/polyimide matrix composite (XRD) were investigated. For XRD measurements, the sensors were in the form of spherical aluminum inclusions with diameters ranging from 1 to 20 mu m. Due to large cross section area of an incident X-ray beam, only average stresses are reported using the XRD approach. Complementary to XRD experiments, MRS was pursued to measure internal strains in Kevlar-49 fibers embedded in chopped graphite fiber/epoxy matrix composite. In recent years, MRS as an experimental tool for microstrain measurements has drawn considerable attention mostly due to its excellent spatial resolution. The resolution of MRS typically ranges between 1 and 10 mu m, which means that strains can be measured in individual sensors. The principle of this method relies on a change of certain molecular vibration frequencies as a result of an applied stress. Several examples are presented and discussed to demonstrate the potential of combining micro and macrostrain measurements and modeling to capture the stress distribution in heterogeneous materials. (c) 2006 International Centre for Diffraction Data. C1 Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA. RP Benedikt, B (reprint author), Los Alamos Natl Lab, Engn Sci & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. NR 11 TC 1 Z9 1 U1 1 U2 9 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 118 EP 121 DI 10.1154/1.2204062 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400009 ER PT J AU Worley, CG Wiltshire, SS Miller, TC Havrilla, GJ Majidi, V AF Worley, CG Wiltshire, SS Miller, TC Havrilla, GJ Majidi, V TI Detection of visible and latent fingerprints by micro-X-ray fluorescence SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO AB Numerous methods are available to forensic scientists for detecting fingerprints in which the prints are treated with various agents to enhance the visual contrast between the print and the surface. In the present work, the spatial elemental imaging capabilities of micro-X-ray fluorescence (MXRF) were used to visualize fingerprint patterns based on inorganic elements present in the prints. A major advantage of using MXRF is that the prints are left unaltered for other analyses, such as deoxyribonucleic acid extraction or for archiving. Most of the fingerprints which were examined were imaged from the potassium and chlorine present in the print residue. Among the various prints studied, lower count rates were also observed in the elemental maps of Ca, Al, Na, Mg, Si, P, S, and the X-ray source scatter. A sebaceous oily fingerprint left by one subject was successfully imaged by MXRF, but sebaceous prints left by a different person were undetectable, indicating that print elemental composition may be person and/or diet dependent. Prints containing substances that might be found in real-world cases were also visualized including sweat, lotion, saliva, and sunscreen. 0 2006 International Centre for Diffraction Data. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Worley, CG (reprint author), Los Alamos Natl Lab, Mail Stop G740, Los Alamos, NM 87545 USA. OI Havrilla, George/0000-0003-2052-7152 NR 11 TC 6 Z9 6 U1 3 U2 8 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 136 EP 139 DI 10.1154/1.2204065 PG 4 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400013 ER PT J AU Sparks, CM Hastings, EP Havrilla, GJ Beckstead, M AF Sparks, CM Hastings, EP Havrilla, GJ Beckstead, M TI Characterizing process semiconductor thin films with a confocal micro X-ray fluorescence microscope SO POWDER DIFFRACTION LA English DT Article; Proceedings Paper CT Denver X-Ray Conference CY AUG 01-05, 2005 CL Colorado Springs, CO AB The versatility of confocal micro X-ray fluorescence (MXRF) in analyzing thin films on semiconductor wafers is demonstrated. Unlike conventional MXRF, confocal MXRF can depth profile sample layers and reduce spectral background. Nondestructive quantification of the silicon dioxide concentration in hafnium silicate thin films is an example of one application demonstrating the advantage of confocal MXRF. Additionally, the growth of titanium nitride films on various highk gate dielectric substrates was analyzed with confocal MXRF due to its ability to detect sub-nm film thickness changes. (c) 2006 International Centre for Diffraction Data. C1 ATDF, Austin, TX 78712 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sparks, CM (reprint author), ATDF, 2706 Montopolis Dr, Austin, TX 78712 USA. OI Havrilla, George/0000-0003-2052-7152 NR 6 TC 3 Z9 3 U1 0 U2 4 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD JUN PY 2006 VL 21 IS 2 BP 145 EP 147 DI 10.1154/1.2204069 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA 059PT UT WOS:000238745400015 ER PT J AU Fthenakis, VM Wang, W AF Fthenakis, VM Wang, W TI Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE photovoltaics; recycling; cadmium; tellurium; ion-exchange; leaching AB The extraction and separation of cadmium, tellurium, and copper from CdTe PV module scrap was investigated. Several leaching technologies were assessed and the extraction of CdTe from samples of PV modules was optimized for maximum efficiency and minimum cost. A dilute aqueous solution of hydrogen peroxide and sulfuric acid was sufficient to completely leach out cadmium and tellurium from these samples. The same method successfully removed cadmium and tellurium from actual manufacturing scrap; copper was partially extracted. Subsequently, cation-exchange resins were used to separate cadmium and copper from tellurium. Complete separation (ie., 99,99%) of Cd from Te was accomplished. The estimated costs of these processes for 10 MW/year processing are about 2 cents per W. Copyright (C) 2006 John Wiley & Sons, Ltd. C1 Brookhaven Natl Lab, Dept Environm Sci, Photovoltaic Environm Hlth & Safety Res Ctr, Upton, NY 11973 USA. RP Fthenakis, VM (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Photovoltaic Environm Hlth & Safety Res Ctr, Upton, NY 11973 USA. EM vmf@bnl.gov NR 10 TC 18 Z9 18 U1 2 U2 13 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUN PY 2006 VL 14 IS 4 BP 363 EP 371 DI 10.1002/pip.676 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 054IM UT WOS:000238370000009 ER PT J AU Tappan, BC Ali, AN Son, SF Brill, TB AF Tappan, BC Ali, AN Son, SF Brill, TB TI Decomposition and ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT) SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE high-nitrogen; laser ignition; explosives; combustion; decomposition ID LASER IGNITION; SOLID-FUEL; EXPLOSIVES; PYROLYSIS; MODEL AB The high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT) belongs to a class of C, H and N compounds that are free of both oxygen and metal, but retain energetic material properties as a result of their high heat of formation. Its decomposition thus lacks secondary oxidation reactions of carbon and hydrogen. The fact that TAGzT is over 80% nitrogen makes it potentially useful as a gas generant and energetic material with a low flame temperature to increase the impulse in gun or rocket propellants. The burning rate, laser ignition and flash pyrolysis (T-jump/FTIR spectroscopy) characteristics were determined. It was found that TAGzT exhibits one of the fastest low-pressure burning rates yet measured for an organic compound. Both the decomposition and ignition behavior of TAGzT are dominated by condensed phase reactions. T-Jump/FTIR spectroscopy indicates that condensed phase reactions release about 65% of the energy, which helps to explain the high burning rate at low pressure. C1 Los Alamos Natl Lab, Dynam Experimentat Div, DX 2 High Explos Sci & Technol, Los Alamos, NM 87545 USA. Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. RP Tappan, BC (reprint author), Los Alamos Natl Lab, Dynam Experimentat Div, DX 2 High Explos Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM btappan@lanl.gov OI Son, Steven/0000-0001-7498-2922 NR 19 TC 28 Z9 30 U1 4 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2006 VL 31 IS 3 BP 163 EP 168 DI 10.1002/prep.200600023 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 059PD UT WOS:000238743800001 ER PT J AU Weese, RK Burnham, AK AF Weese, RK Burnham, AK TI Properties of CP: Coefficient of thermal expansion, decomposition kinetics, reaction to spark, friction and impact SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE TMA; CTE; high explosive; energetic materials; CP ID PERCHLORATE AB The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 68.95 MPa and analyzed over a dynamic temperature range of -20 degrees C to 70 degrees C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 degrees C min(-1) in perforated pans and of 0.1-1.0 degrees C min(-1) in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 degrees C and 240 degrees C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity. C1 Lawrence Livermore Natl Lab, Energet Mat Lab, Livermore, CA 94550 USA. RP Weese, RK (reprint author), Lawrence Livermore Natl Lab, Energet Mat Lab, 7000 E Ave, Livermore, CA 94550 USA. EM weese2@llnl.gov NR 16 TC 6 Z9 6 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2006 VL 31 IS 3 BP 239 EP 245 DI 10.1002/prep.200600033 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 059PD UT WOS:000238743800012 ER PT J AU Donnelly, MI Zhou, M Millard, CS Clancy, S Stols, L Eschenfeldt, WH Collart, FR Joachimiak, A AF Donnelly, MI Zhou, M Millard, CS Clancy, S Stols, L Eschenfeldt, WH Collart, FR Joachimiak, A TI An expression vector tailored for large-scale, high-throughput purification of recombinant proteins SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE high-throughput; structural genomics; maltose-binding protein; TVMV protease; ligation-independent cloning ID ETCH VIRUS PROTEASE; ESCHERICHIA-COLI; FUSION PROTEINS; AUTOINDUCTION MEDIUM; CLEAVAGE SITE; PROTEOMICS; BOTTLES AB Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his(6)-tag-maltose-binding protein (MBP), intended to facilitate purification and enhance proteins' solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his(6)-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his(6)-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his(6)-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his(6)-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his(6)-tag. (c) 2006 Elsevier Inc. All rights reserved. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Donnelly, MI (reprint author), Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. EM mdonnelly@anl.gov OI Collart, Frank/0000-0001-6942-4483 FU NIGMS NIH HHS [GM62414-01, P50 GM062414, P50 GM062414-01] NR 26 TC 101 Z9 112 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD JUN PY 2006 VL 47 IS 2 BP 446 EP 454 DI 10.1016/j.pep.2005.12.011 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 053AX UT WOS:000238277000015 PM 16497515 ER PT J AU Jacobsen, RB Sale, KL Ayson, MJ Novak, P Hong, JH Lane, P Wood, NL Kruppa, GH Young, MM Schoeniger, JS AF Jacobsen, RB Sale, KL Ayson, MJ Novak, P Hong, JH Lane, P Wood, NL Kruppa, GH Young, MM Schoeniger, JS TI Structure and dynamics of dark-state bovine rhodopsin revealed by chemical cross-linking and high-resolution mass spectrometry SO PROTEIN SCIENCE LA English DT Article DE bovine rhodopsin; cross-linking; distance constraints; LC-MS; Q-Tof; FT-ICR; tandem mass spectrometry ID INTEGRAL MEMBRANE-PROTEINS; DISULFIDE BOND FORMATION; 4TH CYTOPLASMIC LOOP; APOLIPOPROTEIN-A-I; TOP-DOWN APPROACH; MOLECULAR-DYNAMICS; TERTIARY STRUCTURE; COUPLED RECEPTORS; LIGHT ACTIVATION; LINKED PEPTIDES AB Recent work using chemical cross-linking to define interresidue distance constraints in proteins has shown that these constraints are useful for testing tertiary structural models. We applied this approach to the G-protein-coupled receptor bovine rhodopsin in its native membrane using lysine- and cysteine-targeted bifunctional cross-linking reagents. Cross-linked proteolytic peptides of rhodopsin were identified by combined liquid chromatography and FT-ICR mass spectrometry with automated data-reduction and assignment software. Tandem mass spectrometry was used to verify cross-link assignments and locate the exact sites of cross-link attachment. Cross-links were observed to form between 10 pairs of residues in dark-state rhodopsin. For each pair, cross-linkers with a range of linker lengths were tested to determine an experimental distance-of-closest-approach (DCA) between reactive side-chain atoms. In all, 28 cross-links were identified using seven different cross-linking reagents. Molecular mechanics procedures were applied to published crystal structure data to calculate energetically achievable theoretical DCAs between reactive atoms without altering the position of the protein backbone. Experimentally measured DCAs are generally in good agreement with the theoretical DCAs. However, a cross-link between C316 and K325 in the C-terminal region cannot be rationalized by DCA simulations and suggests that backbone reorientation relative to the crystal coordinates occurs on the timescale of cross-linking reactions. Biochemical and spectroscopic data from other studies have found that the C-terminal region is highly mobile in solution and not fully represented by X-ray crystallography data. Our results show that chemical cross-linking can provide reliable three-dimensional structural information and insight into local conformational dynamics in a membrane protein. C1 Sandia Natl Labs, Biosyst Dept, Livermore, CA 94551 USA. RP Schoeniger, JS (reprint author), Sandia Natl Labs, 7111 E Ave,Bldg 929,MS 9292, Livermore, CA 94550 USA. EM jsschoe@sandia.gov RI Novak, Petr/F-9655-2014 OI Novak, Petr/0000-0001-8688-529X NR 60 TC 40 Z9 40 U1 0 U2 6 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUN PY 2006 VL 15 IS 6 BP 1303 EP 1317 DI 10.1110/ps.052040406 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 048DN UT WOS:000237927900008 PM 16731966 ER PT J AU Verspoor, K Cohn, J Mniszewski, S Joslyn, C AF Verspoor, Karin Cohn, Judith Mniszewski, Susan Joslyn, Cliff TI A categorization approach to automated ontological function annotation SO PROTEIN SCIENCE LA English DT Article DE protein function prediction; Gene Ontology; GO; prediction evaluation metrics ID PROTEIN FUNCTION; GENE ONTOLOGY; DATABASE AB Automated function prediction (AFP) methods increasingly use knowledge discovery algorithms to map sequence, structure, literature, and/or pathway information about proteins whose functions are unknown into functional ontologies, typically (a portion of) the Gene Ontology (GO). While there are a growing number of methods within this paradigm, the general problem of assessing the accuracy of such prediction algorithms has not been seriously addressed. We present first an application for function prediction from protein sequences using the POSet Ontology Categorizer (POSOC) to produce new annotations by analyzing collections of GO nodes derived from annotations of protein BLAST neighborhoods. We then also present hierarchical precision and hierarchical recall as new evaluation metrics for assessing the accuracy of any predictions in hierarchical ontologies, and discuss results on a test set of protein sequences. We show that our method provides substantially improved hierarchical precision (measure of predictions made that are correct) when applied to the nearest BLAST neighbors of target proteins, as compared with simply imputing that neighborhood's annotations to the target. Moreover, when our method is applied to a broader BLAST neighborhood, hierarchical precision is enhanced even further. In all cases, such increased hierarchical precision performance is purchased at a modest expense of hierarchical recall (measure of all annotations that get predicted at all). C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Verspoor, K (reprint author), Los Alamos Natl Lab, POB 1663,MS B256, Los Alamos, NM 87545 USA. EM verspoor@lanl.gov RI Verspoor, Karin/B-8173-2009; Verspoor, Karin/G-6034-2016; OI Verspoor, Karin/0000-0002-8661-1544; Verspoor, Karin/0000-0002-8661-1544; Cohn, Judith/0000-0002-1333-3395; Mniszewski, Susan/0000-0002-0077-0537 NR 12 TC 32 Z9 33 U1 0 U2 2 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUN PY 2006 VL 15 IS 6 BP 1544 EP 1549 DI 10.1110/ps.062184006 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 048DN UT WOS:000237927900034 PM 16672243 ER PT J AU Ni, S Forouhar, F Bussiere, DE Robinson, H Kennedy, MA AF Ni, S Forouhar, F Bussiere, DE Robinson, H Kennedy, MA TI Crystal structure of VC0702 at 2.0 angstrom: Conserved hypothetical protein from Vibrio cholerae SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE Vibrio cholerae; VC0702; biofilm regulation; dNTPase; pyrophosphatase; VC0703; MbaA; dUTPase ID LIKELIHOOD DENSITY MODIFICATION; IDENTIFICATION; SEQUENCE; PROGRAM AB VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a three-gene operon containing the MbaA gene that encodes for a GGDEF and EAL domain-containing protein which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0 angstrom and refined to R-work = 22.8% and R-free = 26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C222(1) space group with dimensions of a = 66.61 angstrom, b = 88.118 angstrom, and c = 118.35 angstrom with a homodimer in the asymmetric unit. VC0702, which forms a mixed alpha + beta three-layered alpha beta alpha sandwich, belongs to the Pfam DUF84 and COG1986 families of proteins. Sequence conservation within the DUF84 and COG1986 families was used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeschii, which has been identified as a novel NTPase that binds NTP in a deep cleft similarly located to the conserved patch of surface residues that define an analogous cleft in VC0702. Collectively, the data suggest that VC0702 may have a biochemical function that involves NTP binding and phosphatase activity of some kind, and is likely involved in regulation of the signaling pathway that controls biofilm formation and maintenance in Vibrio cholerae. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. Chiron Corp, Emeryville, CA 94608 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Kennedy, MA (reprint author), Pacific NW Natl Lab, Div Biol Sci, EMSL 2569,K8-98,3335 Q Ave, Richland, WA 99352 USA. EM ma_kennedy@pnl.gov FU NIGMS NIH HHS [P50-GM62413] NR 16 TC 2 Z9 5 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 733 EP 741 DI 10.1002/prot.20919 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100003 PM 16498616 ER PT J AU Seetharaman, J Kumaran, D Bonanno, JB Burley, SK Swaminathan, S AF Seetharaman, J Kumaran, D Bonanno, JB Burley, SK Swaminathan, S TI Crystal structure of a putative HTH-type transcriptional regulator yxaF from Bacillus subtilis SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID TET REPRESSOR; ANTIBIOTIC-RESISTANCE; PROTEIN; DNA; COMPLEX; REFINEMENT; RESOLUTION; RESIDUES; BINDING; SYSTEM C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. SGX Pharmaceut Inc, San Diego, CA USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NCRR NIH HHS [P41 RR012408]; NIGMS NIH HHS [GM62529, P50 GM062529] NR 27 TC 4 Z9 4 U1 1 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1087 EP 1091 DI 10.1002/prot.20924 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100035 PM 16475182 ER PT J AU Seetharaman, J Rajashankar, KR Solorzano, V Kniewel, R Lima, CD Bonanno, JB Burley, SK Swaminathan, S AF Seetharaman, J Rajashankar, KR Solorzano, V Kniewel, R Lima, CD Bonanno, JB Burley, SK Swaminathan, S TI Crystal structures of two putative phosphoheptose isomerases SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID GLUCOSAMINE 6-PHOSPHATE SYNTHASE; PROTEIN STRUCTURES; RESOLUTION; DOMAIN; CRYSTALLOGRAPHY; REFINEMENT; PROGRAM; BINDING C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Mem Sloan Kettering Canc Ctr, New York, NY 10021 USA. SGX Pharmaceut Inc, San Diego, CA USA. SGX Pharmaceut Inc, San Diego, CA USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov OI Lima, Christopher/0000-0002-9163-6092 FU NCRR NIH HHS [P41 RR012408]; NIGMS NIH HHS [GM62529, P50 GM062529] NR 25 TC 8 Z9 11 U1 0 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1092 EP 1096 DI 10.1002/prot.20908 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100036 PM 16477602 ER PT J AU Kim, Y Maltseva, N Dementieva, I Collart, F Holzle, D Joachimiak, A AF Kim, Y Maltseva, N Dementieva, I Collart, F Holzle, D Joachimiak, A TI Crystal structure of hypothetical protein YfiH from Shigella flexneri at 2 angstrom-resolution SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID YEAST CYTOSINE DEAMINASE; COMPLETE GENOME SEQUENCE; REFINEMENT; EVOLUTION; GROWTH C1 Argonne Natl Lab, Biosci Div, Midw Ctr Struct Gen, Argonne, IL 60439 USA. Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Biosci Div, Midw Ctr Struct Gen, 9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@ani.gov FU NIGMS NIH HHS [GM62414-01, P50 GM062414-01, P50 GM062414] NR 27 TC 4 Z9 5 U1 0 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1097 EP 1101 DI 10.1002/prot.20589 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100037 PM 16498617 ER PT J AU Nocek, B Cuff, M Evdokimova, E Edwards, A Joachimiak, A Savchenko, A AF Nocek, B Cuff, M Evdokimova, E Edwards, A Joachimiak, A Savchenko, A TI 1.6 angstrom-crystal structure of a PA2721 protein from Pseudomonas aeruginosa - A potential drug-resistance protein SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID REFINEMENT; RESIDUES; SEQUENCE; SITE C1 Argonne Natl Lab, Biosci Div, Midw Ctr Struct Gen, Argonne, IL 60439 USA. Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. Univ Hlth Network, Clin Gen Ctr, Toronto, ON, Canada. Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Biosci Div, Midw Ctr Struct Gen, 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM andrzeij@anl.gov FU NIGMS NIH HHS [P50 GM062414-02, GM62414, P50 GM062414] NR 21 TC 2 Z9 2 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1102 EP 1105 DI 10.1002/prot.20659 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100038 PM 16493657 ER PT J AU Mathews, II Krishna, SS Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Spraggon, G Stevens, RC van den Bedem, H Velasquez, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA AF Mathews, II Krishna, SS Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Levin, I Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Spraggon, G Stevens, RC van den Bedem, H Velasquez, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of phosphoribosylformylglycinamidine synthase II (smPurL) from Thermotoga maritima at 2.15 angstrom-resolution SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID FORMYLGLYCINAMIDE RIBONUCLEOTIDE AMIDOTRANSFERASE; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; SYNTHETASE; COMPLEX; MODEL C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. San Diego Supercomp Ctr, La Jolla, CA USA. Novartis Res Fdn, Gen Inst, San Diego, CA USA. Univ Calif San Diego, La Jolla, CA 92093 USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009 OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411, U54 GM074898] NR 20 TC 6 Z9 7 U1 1 U2 10 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1106 EP 1111 DI 10.1002/prot.20650 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100039 PM 16544324 ER PT J AU Jin, KK Krishna, SS Schwarzenbacher, R McMullan, D Abdubek, P Agarwalla, S Ambing, E Axelrod, H Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Feuerhelm, J Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Haugen, J Hornsby, M Jaroszewski, L Klock, HE Knuth, MW Koesema, E Kreusch, A Kuhn, P Lesley, SA Miller, MD Moy, K Nigoghossian, E Okach, L Oommachen, S Paulsen, J Quijano, K Reyes, R Rife, C Stevens, RC Spraggon, G van den Bedem, H Velasquez, J White, A Wolf, G Han, GW Xu, Q Hodgson, KO Wooley, J Wilson, IA AF Jin, Kevin Kai Krishna, S. Sri Schwarzenbacher, Robert McMullan, Daniel Abdubek, Polat Agarwalla, Sanjay Ambing, Eileen Axelrod, Herbert Canaves, Jaume M. Chiu, Hsiu-Ju Deacon, Ashley M. DiDonato, Michael Elsliger, Marc-Andre Feuerhelm, Julie Godzik, Adam Grittini, Carina Grzechnik, Slawomir K. Hale, Joanna Hampton, Eric Haugen, Justin Hornsby, Michael Jaroszewski, Lukasz Klock, Heath E. Knuth, Mark W. Koesema, Eric Kreusch, Andreas Kuhn, Peter Lesley, Scott A. Miller, Mitchell D. Moy, Kin Nigoghossian, Edward Okach, Linda Oommachen, Silvya Paulsen, Jessica Quijano, Kevin Reyes, Ron Rife, Chris Stevens, Raymond C. Spraggon, Glen van den Bedem, Henry Velasquez, Jeff White, Aprilfawn Wolf, Guenter Han, Gye Won Xu, Qingping Hodgson, Keith O. Wooley, John Wilson, Ian A. TI Crystal structure of TM1367 from Thermotoga maritima at 1.90 angstrom resolution reveals an atypical member of the cyclophilin (peptidylprolyl isomerase) fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID HIGHLY DISTORTED FORM; PROTEIN; CALCINEURIN; BINDING; IMMUNOPHILINS; COMPLEXES; DATABASE; MODEL; SITE C1 Scripps Res Inst, JCSG, La Jolla, CA 92037 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Novartis Res Fdn, Gen Inst, San Diego, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, JCSG, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM Wilson@scripps.edu RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009 OI subramanian, srikrishna/0000-0002-3263-1048; Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411, U54 GM074898] NR 29 TC 6 Z9 6 U1 0 U2 5 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1112 EP 1118 DI 10.1002/prot.20894 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100040 PM 16544291 ER PT J AU Liu, JY Oganesyan, N Shin, DH Jancarik, J Yokota, H Kim, R Kim, SH AF Liu, JY Oganesyan, N Shin, DH Jancarik, J Yokota, H Kim, R Kim, SH TI Structural characterization of an iron-sulfur cluster assembly protein IscU in a zinc-bound form (vol 59, pg 875, 2005) SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Correction C1 Lawrence Berkeley Lab, Berkeley Struct Gen Ctr, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Lawrence Berkeley Lab, Berkeley Struct Gen Ctr, Berkeley, CA 94720 USA. EM SHKim@cchem.berkeley.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUN 1 PY 2006 VL 63 IS 4 BP 1137 EP 1137 DI 10.1002/prot.20856 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047ER UT WOS:000237863100045 ER PT J AU Schiffer, WK Lee, DE Alexoff, DL Ferrieri, R Brodie, JD Dewey, SL AF Schiffer, WK Lee, DE Alexoff, DL Ferrieri, R Brodie, JD Dewey, SL TI Metabolic correlates of toluene abuse: decline and recovery of function in adolescent animals SO PSYCHOPHARMACOLOGY LA English DT Article DE abuse; brain imaging; PET; deoxyglucose; animal model; inhalant abuse ID CENTRAL-NERVOUS-SYSTEM; CONDITIONED PLACE PREFERENCE; D-ASPARTATE RECEPTORS; WHITE-MATTER CHANGES; METHYL-D-ASPARTATE; RAT-BRAIN; LOCOMOTOR-ACTIVITY; EXPOSURE; MICE; INHALATION AB Rationale: Children and adolescents will readily abuse household products that contain solvents such as toluene. It is likely that reinforcing exposures to toluene alter brain glucose metabolism. Objective: Using an animal model of drug reinforcement, we sought to identify a metabolic signature of toluene abuse in the adolescent rodent brain. Small animal PET (microPET), in combination with the glucose analog radiotracer, (18)FDG, were used to evaluate the metabolic consequences of inhaled toluene. Methods: The exposure protocol paralleled our previously established method for assessing the conditioned reinforcing effects of toluene (5,000 ppm) using the conditioned place preference (CPP) paradigm. Animals were scanned at baseline and 2 h after the last exposure. Follow-up (18)FDG scans occurred 1 day, 3 weeks, and 2 months later. Results: After six pairings, 38% of the animals preferred the toluene paired chamber and 25% were averse. The immediate metabolic effect in toluene-exposed animals was a 20% decline in whole brain (18)FDG uptake. Twenty-four hours following the last exposure, the whole brain decline was 40%, and 2 months later, the decline was 30% of pretoluene levels. A region-by-region analysis demonstrated significant additional decreases in the pons, cerebellum, striatum, midbrain, temporal cortex, and hippocampus. Two months after toluene cessation, regions of complete metabolic recovery were the thalamus and cerebellum; however, the temporal cortex did not recover. Conclusions: Brain uptake of (18)FDG appears to be a useful tool for examining the metabolic impact of toluene abuse, which include a profound decline followed by region-specific recovery after cessation. C1 NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Schiffer, WK (reprint author), NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. EM wynne@bnl.gov OI Brodie, Jonathan/0000-0002-2254-8654 FU NIDA NIH HHS [T32-DA07316, DA15041, DA16025, DA15082] NR 44 TC 10 Z9 11 U1 2 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0033-3158 J9 PSYCHOPHARMACOLOGY JI Psychopharmacology PD JUN PY 2006 VL 186 IS 2 BP 159 EP 167 DI 10.1007/s00213-006-0359-6 PG 9 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 042XC UT WOS:000237562900004 PM 16703400 ER PT J AU Fadeyev, V Aldering, G Perlmutter, S AF Fadeyev, V. Aldering, G. Perlmutter, S. TI Improvements to the image processing of Hubble Space Telescope NICMOS observations with multiple readouts SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID COSMIC-RAY REJECTION; DETECTORS; PERFORMANCE; REDUCTION; ARRAYS AB We report on improvements made to the standard NICMOS processing pipeline. The calculation of the uncertainties on the signal accumulation rate has been modified to include the statistical correlations between the consecutive readouts. This leads to a similar to 30% correction in the photometric weight of individual pixels containing faint objects. In order to correct a problem with the existing cosmic-ray rejection algorithm, we have developed and implemented a joint fit procedure, where the accumulating signal is fit as linear functions of time with the same rate both before and after the cosmic-ray (CR) impact. This procedure leads to significantly smaller uncertainty in the count rate for pixels affected by CRs. We also show that regions neighboring CRs found by the standard NICMOS pipeline are systematically brighter. This interpixel correlation substantially increases the footprint of CR impacts and is treated for the first time by our new pipeline. The new processing is most relevant for photometry from deep observations of faint targets, for which accurate, optimal, and unbiased uncertainty estimates are important. We present examples of these improvements for deep NIC2 images of a high-redshift supernova from the Supernova Cosmology Project. The net improvement is a factor of 2 reduction in the number of 3 sigma photometric outliers. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Fadeyev, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vafadeyev@lbl.gov; galdering@lbl.gov; saul@lbl.gov RI Perlmutter, Saul/I-3505-2015 OI Perlmutter, Saul/0000-0002-4436-4661 NR 24 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2006 VL 118 IS 844 BP 907 EP 919 DI 10.1086/506480 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 057XS UT WOS:000238629100016 ER PT J AU Graves, T Hamada, M AF Graves, T Hamada, M TI Biased reduced sampling: Detectability of an attribute and estimation of prevalence SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian methods; extended-hypergeometric and hypergeometric distributions; MCMC AB In surveilling a population, detection of systems with all attribute of interest and estimation of the prevalence of the attribute in the population are two main goals. Due to cost constraints, only a subset of all components of sampled systems may be fully tested. Biasing the sampling to increase the probability of choosing a component with all attribute of interest ameliorates the impact of reduced sampling. In this paper, we consider the impact of biased reduced sampling oil detection and propose an approach for estimating the prevalence of the attribute in the population which properly accounts for the biasing. The proposed method is illustrated with a simulated example. Copyright (C) 2005 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Graves, T (reprint author), Los Alamos Natl Lab, MS F600, Los Alamos, NM 87545 USA. EM tgraves@lanl.gov NR 10 TC 1 Z9 1 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD JUN PY 2006 VL 22 IS 4 BP 385 EP 392 DI 10.1002/qre.716 PG 8 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 055RF UT WOS:000238467300003 ER PT J AU Belkacem, A Sorensen, AH AF Belkacem, A Sorensen, AH TI The pair-production channel in atomic processes SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE pair production; atomic processes ID HEAVY-ION COLLISIONS; ELECTRON-POSITRON PAIRS; HIGH-ENERGY; MOMENTUM-SPACE; BOUND-ELECTRON; GEV PHOTONS; L-SHELL; ELECTROMAGNETIC PROCESSES; CROSS-SECTIONS; STOPPING POWER AB Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in atomic collisions when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy ion collisions. We review some of these studies. (c) 2005 Published by Elsevier Ltd. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Lawrence Berkeley Natl Lab, Mail Stop 2R0300,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM abelkacem@lbl.gov NR 84 TC 7 Z9 7 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD JUN PY 2006 VL 75 IS 6 BP 656 EP 695 DI 10.1016/j.radphyschem.2005.03.003 PG 40 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 030QL UT WOS:000236649300006 ER PT J AU Klein, SR AF Klein, SR TI e(+)e(-) pair production from 10 GeV to 10 ZeV SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article ID PATH-INTEGRAL APPROACH; ENERGY COSMIC-RAYS; SULFUR IONS; PERIPHERAL COLLISIONS; COULOMB COLLISIONS; HEAVY-IONS; BREMSSTRAHLUNG; ELECTRON; SUPPRESSION; PHOTOPRODUCTION AB At very high energies, pair production (gamma -> e(+)e(-)) exhibits many interesting features. The momentum transfer from the target is very small, so the reaction probes the macroscopic properties of the target, rather than individual nuclei. Interference between interactions with different atoms reduces the pair production cross section considerably below the Bethe-Heitler values. At very high energies, photonuclear interactions may outnumber pair production. In contrast, in crystals, the interaction amplitudes may add coherently, greatly increasing the cross sections. Pair production in matter-free magnetic fields is also possible. The highest energy pair production occurs at high-energy particle colliders. This article will compare pair production in these very different regimes. (c) 2005 Elsevier Ltd. All rights reserved. C1 Lawrence Berkeley Natl Lab, Nucl Sci Div 70R319, Berkeley, CA 94720 USA. RP Klein, SR (reprint author), Lawrence Berkeley Natl Lab, Nucl Sci Div 70R319, Berkeley, CA 94720 USA. EM srklein@lbl.gov NR 87 TC 15 Z9 15 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD JUN PY 2006 VL 75 IS 6 BP 696 EP 711 DI 10.1016/j.radphyschem.2005.09.005 PG 16 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 030QL UT WOS:000236649300007 ER PT J AU Anderson, SG Heeter, RF Booth, R Emig, J Fulkerson, S McCarville, T Norman, D Young, BKF AF Anderson, SG Heeter, RF Booth, R Emig, J Fulkerson, S McCarville, T Norman, D Young, BKF TI Broadband high-resolution elliptical crystal x-ray spectrometer for high energy density physics experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FRAMING CAMERAS; REGION; PLASMA; SPECTROSCOPY; SPECTROGRAPH AB The spectroscopic investigation of high temperature laser produced plasmas in general, and x-ray opacity experiments in particular, often requires instruments with both a broad coverage of x-ray energies and high spectral, spatial, and temporal resolution. We analyze the design, model the response, and report the commissioning of a spectrometer using elliptical crystals in conjunction with a large format, gated microchannel plate detector. Measurements taken with this instrument at the Janus laser facilities demonstrate the designed spectral range of 0.24-5.8 keV and spectral resolution E/Delta E > 400, resulting in two to three times more spectral data than achieved by previous spectrometer designs. The observed 100 ps temporal resolution and 35 mu m spatial resolution are consistent with the requirements of high energy density opacity experiments. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Anderson, SG (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM anderson131@llnl.gov NR 15 TC 6 Z9 10 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2006 VL 77 IS 6 AR 063115 DI 10.1063/1.2214688 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 059KX UT WOS:000238732800015 ER PT J AU Arhatari, BD Peele, AG Nugent, KA De Carlo, F AF Arhatari, BD Peele, AG Nugent, KA De Carlo, F TI Quality of the reconstruction in x-ray phase contrast tomography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROTOMOGRAPHY; IMAGE; RESOLUTION; RETRIEVAL; FORMULAS AB We develop an analytical model for three dimensional phase contrast tomography for a pure phase object. The model incorporates an extended source, which is suitable for a laboratory based microfocus x-ray source. From the modeled intensities for the tomographic data set we obtain a model reconstruction and define a reconstruction quality factor that allows us to optimize the tomographic reconstruction for given feature sizes in an object. (c) 2006 American Institute of Physics. C1 La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Arhatari, BD (reprint author), La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. RI Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 NR 27 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2006 VL 77 IS 6 AR 063709 DI 10.1063/1.2214667 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 059KX UT WOS:000238732800035 ER PT J AU Fister, TT Seidler, GT Wharton, L Battle, AR Ellis, TB Cross, JO Macrander, AT Elam, WT Tyson, TA Qian, Q AF Fister, TT Seidler, GT Wharton, L Battle, AR Ellis, TB Cross, JO Macrander, AT Elam, WT Tyson, TA Qian, Q TI Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic x-ray scattering SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DYNAMIC STRUCTURE FACTOR; NEAR-EDGE STRUCTURE; RAMAN-SCATTERING; FINE-STRUCTURE; ABSORPTION-SPECTRA; COMPTON-SCATTERING; BONDING CHANGES; SPECTROSCOPY; GRAPHITE; LITHIUM AB Nonresonant x-ray Raman scattering (XRS) is the inelastic scattering of hard x rays from the K shell of low-Z elements or the less tightly bound shells of heavier elements. In the limit of low momentum transfer q, XRS is determined by the same transition matrix element as is measured by x-ray absorption spectroscopies. However, XRS at higher q can often access higher order multipole transitions which help separate the symmetry of various contributions to the local density of states. The main drawback of XRS is its low cross section-a problem that is compounded for a q-dependent study. To address this issue, we have constructed a multielement spectrometer to simultaneously measure XRS at ten different values of q. By means of example, we report new measurements of the XRS from the L- and K-edges of Mg. This instrument is now available to general users at the Advanced Photon Source as the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer. (c) 2006 American Institute of Physics. C1 Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Univ Washington, Appl Phys Labs, Seattle, WA 98195 USA. New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. NJ XRSTECH Co, Bloomfield, NJ 07003 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 NR 50 TC 68 Z9 68 U1 4 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2006 VL 77 IS 6 AR 063901 DI 10.1063/1.2204581 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 059KX UT WOS:000238732800039 ER PT J AU Gushenets, VI Nikolaev, AG Oks, EM Vintizenko, LG Yushkov, GY Oztarhan, A Brown, IG AF Gushenets, VI Nikolaev, AG Oks, EM Vintizenko, LG Yushkov, GY Oztarhan, A Brown, IG TI Simple and inexpensive time-of-flight charge-to-mass analyzer for ion beam source characterization SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ACCELERATORS; IMPLANTATION AB We describe the design, electronics, and test results of a simple and low-cost time-of-flight ion charge-to-mass analyzer that is suitable for ion source characterization. The method selects a short-time sample of the beam whose charge-to-mass composition is then separated according to ion velocity and detected by a remote Faraday cup. The analyzer is a detachable device that has been used for rapid analysis of charge-to-mass composition of ion beams accelerated by voltages of up to about 100 kV. C1 Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. Ege Univ, TR-35100 Izmir, Turkey. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oks, EM (reprint author), Russian Acad Sci, Inst High Current Elect, 2-3 Akad Ave, Tomsk 634055, Russia. EM oks@opee.hcei.tsc.ru RI Oks, Efim/A-9409-2014; Yushkov, Georgy/O-8024-2015; Nikolaev, Alexey/R-2154-2016 OI Oks, Efim/0000-0002-9323-0686; Yushkov, Georgy/0000-0002-7615-6058; Nikolaev, Alexey/0000-0003-2724-3697 NR 16 TC 42 Z9 48 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2006 VL 77 IS 6 AR 063301 DI 10.1063/1.2206778 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 059KX UT WOS:000238732800019 ER PT J AU Sedlacek, AJ AF Sedlacek, AJ TI Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin interferometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ABSORPTION CROSS-SECTIONS; OPTICAL HETERODYNE SPECTROSCOPY; LIGHT-ABSORPTION; TRACE DETECTION; ANTHROPOGENIC SULFATE; RADIATION BUDGET; LASER-DIODE; NO2; TEMPERATURE; NM AB Work in our laboratory has been directed at the development of a new class of instrumentation that can directly measure ambient aerosol absorption through photothermal interferometry. The hallmark of this approach is its ability to directly measure aerosol absorption without interference from aerosol scattering since the signal originates from the thermal dissipation of the spectrally absorbed energy. While the principle of the photothermal technique for the detection of aerosols was demonstrated in the mid-1980s, this interferometric technique remains a laboratory technique largely due to sensitivity to mechanical vibrations and other environmental factors that result in unwanted signal interference and commensurate reduction in detection sensitivity. In order to realize its application outside the laboratory, a folded Jamin interferometer design has replaced both the traditional Mach-Zehnder and unfolded Jamin configurations. The folded Jamin affords many advantages, which include high degree of common mode noise rejection, insensitivity to rotation and translation of optical components, inherent double pass configuration, and compact size. In this article, we report on the performance of this optical configuration and present representative data for both absorbing and nonabsorbing aerosols. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. RP Sedlacek, AJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. EM sedlacek@bnl.gov NR 44 TC 12 Z9 17 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2006 VL 77 IS 6 AR 064903 DI 10.1063/1.2205623 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 059KX UT WOS:000238732800053 ER PT J AU Wiley, HS AF Wiley, HS TI Systems biology SO SCIENTIST LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; EPITHELIAL-CELLS; MODEL; EGF C1 Pacific NW Natl Lab, Biomol Syst Initiat, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Biomol Syst Initiat, Richland, WA 99352 USA. EM hswiley@the-scientist.com OI Wiley, Steven/0000-0003-0232-6867 NR 10 TC 1 Z9 1 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 3535 MARKET ST, SUITE 200, PHILADELPHIA, PA 19104-3385 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD JUN PY 2006 VL 20 IS 6 BP 52 EP 57 PG 6 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 046DE UT WOS:000237790800019 ER PT J AU Woo, W Choo, H Brown, DW Liaw, PK Feng, Z AF Woo, W Choo, H Brown, DW Liaw, PK Feng, Z TI Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy SO SCRIPTA MATERIALIA LA English DT Article DE neutron diffraction; texture; tensile test; magnesium alloys; friction stir welding ID NEUTRON-DIFFRACTION; WELD; DUCTILITY; ALUMINUM; FLOW AB Friction-stir processing (FSP) induces significant texture variations in magnesium alloys. Diffraction peak intensities measured using spatially-resolved neutron-diffraction scanning provide the quantitative changes in the texture across the processing line. The relationship between the texture distribution and the tensile behavior of a FSP AZ31B Mg alloy is discussed. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Choo, H (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 319 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM hchoo@utk.edu RI Choo, Hahn/A-5494-2009; Feng, Zhili/H-9382-2012; OI Choo, Hahn/0000-0002-8006-8907; Feng, Zhili/0000-0001-6573-7933; WOO, Wanchuck/0000-0003-0350-5357 NR 23 TC 138 Z9 141 U1 5 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 11 BP 1859 EP 1864 DI 10.1016/j.scriptamat.2006.02.019 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 031JI UT WOS:000236700300006 ER PT J AU Heuer, AH Reddy, A Hovis, DB Veal, B Paulikas, A Vlad, A Ruhle, M AF Heuer, AH Reddy, A Hovis, DB Veal, B Paulikas, A Vlad, A Ruhle, M TI The effect of surface orientation on oxidation-induced growth strains in single crystal NiAl: An in situ synchrotron study SO SCRIPTA MATERIALIA LA English DT Article DE oxidation; residual stresses; synchrotron radiation; confocal photo-stimulated microspectroscopy ID THERMAL BARRIER COATINGS; ALUMINA SCALES; TRANSIENT OXIDATION; STRESS MEASUREMENTS; ELASTIC-CONSTANTS; NICKEL-ALUMINIDES; TEMPERATURE; MECHANISMS; TRANSFORMATION; MICROSCOPY AB The evolution of oxidation-induced growth stresses in single crystal stoichiometric NiAl has been studied; it is specimen dependent and also depends on crystallographic orientation. Epitaxial issues at the NiAl/Al2O3 interface appear to govern initial fort-nation of gamma- or theta-Al2O3 and its subsequent transformation to the stable and denser alpha-Al2O3 polymorph. This transformation generates tensile stresses in alpha-Al2O3, which relax with further oxidation. Room temperature residual stresses are large, similar to 3.3 GPa, and compressive. Confocal photostimulated microspectroscopy studies of these residual compressive stresses have revealed large spatial variabilities, which are also attributed to epitaxial issues at the NiAl/Al2O3 interfaces. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Max Planck Inst Met Res, D-70569 Stuttgart, Germany. RP Heuer, AH (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, 10900 Euclid Ave White 418, Cleveland, OH 44106 USA. EM heuer@case.edu NR 31 TC 24 Z9 25 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 11 BP 1907 EP 1912 DI 10.1016/j.scriptamat.2006.02.021 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 031JI UT WOS:000236700300015 ER PT J AU Radmilovic, V Miller, MK Mitlin, D Dahmen, U AF Radmilovic, V Miller, MK Mitlin, D Dahmen, U TI Strain-compensated nano-clusters in Al-Si-Ge alloys SO SCRIPTA MATERIALIA LA English DT Article DE Al-Si-Ge; clustering; precipitation; atom probe tomography; HREM ID AL-(SI,GE) ALLOYS; SHAPE REFINEMENT; PRECIPITATION; CU; TEMPERATURE; EVOLUTION; ALUMINUM; ZONES; ZN AB Atom probe tomography and high resolution transmission electron microscopy have been employed to reveal clustering of Si and Ge atoms in ternary Al-Si-Ge. No such clusters were observed in binary Al-Si. The clusters were on the order of five nanometers in diameter and contained Si, Ge and Al. This confirms a previous hypothesis that postulates the existence of such clusters due to atomic mismatch strain compensation between the Si and Ge atoms in an Al solid solution. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada. RP Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, MS-72,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM VRRadmilovic@lbl.gov RI Mitlin , David /M-5328-2016 OI Mitlin , David /0000-0002-7556-3575 NR 29 TC 6 Z9 6 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 11 BP 1973 EP 1978 DI 10.1016/j.scriptamat.2006.01.046 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 031JI UT WOS:000236700300026 ER PT J AU Kaibyshev, R Avtokratova, E Apollonov, A Davies, R AF Kaibyshev, R Avtokratova, E Apollonov, A Davies, R TI High strain rate superplasticity in an Al-Mg-Sc-Zr alloy subjected to simple thermomechanical processing SO SCRIPTA MATERIALIA LA English DT Article DE superplasticity; thermomechanical processing; aluminum alloy; mechanical properties ID CONTINUOUS DYNAMIC RECRYSTALLIZATION; BEHAVIOR; DEFORMATION; EVOLUTION AB Superior superplastic ductility of 2300% was achieved at 520 degrees C and. = 5.6 x 10(-2) s(-1) in an Al-5%Mg-0.2%Sc alloy produced by traditional chill casting followed by cold rolling with a total reduction of 80%. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Inst Met Sperplastic Problems, Ufa 450001, Russia. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kaibyshev, R (reprint author), Inst Met Sperplastic Problems, Khalturina 39, Ufa 450001, Russia. EM rustam@anrb.ru; lena@imsp.da.ru RI Kaibyshev, Rustam/G-8804-2011 NR 15 TC 36 Z9 40 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 12 BP 2119 EP 2124 DI 10.1016/j.scriptamat.2006.03.020 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 037QW UT WOS:000237163000026 ER PT J AU Fan, GJ Fu, LF Qiao, DC Choo, H Liaw, PK Browning, ND AF Fan, GJ Fu, LF Qiao, DC Choo, H Liaw, PK Browning, ND TI Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation SO SCRIPTA MATERIALIA LA English DT Article DE nanocrystalline materials; grain growth; mechanical properties ID MOLECULAR-DYNAMICS SIMULATION; THERMAL-STABILITY; ULTRAHIGH-STRENGTH; METALS; COPPER; AL; NICKEL; TEMPERATURE; MECHANISMS; ALUMINUM AB A bulk nanocrystalline Co-P alloy was subjected to tensile tests. Grain growth from approximately 12 nm in the as-deposited state to about 25 run after the tensile test was observed. Grain growth was not observed when the deforming volume was increased, or when the specimen was annealed at 433 K or above prior to the tensile tests. (c) 2006 Acta Materialia. Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Fan, GJ (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM gfan@utk.edu RI Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Browning, Nigel/0000-0003-0491-251X NR 33 TC 47 Z9 49 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 12 BP 2137 EP 2141 DI 10.1016/j.scriptamat.2006.02.041 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 037QW UT WOS:000237163000029 ER PT J AU Xu, H Xu, LD Zhang, SJ Han, Q AF Xu, H Xu, LD Zhang, SJ Han, Q TI Effect of the alloy composition on the grain refinement of aluminum alloys SO SCRIPTA MATERIALIA LA English DT Article DE aluminum alloys; solidification; grain size; undercooling ID SOLIDIFICATION; CASTINGS; GROWTH; MODEL; SIZE AB Experiments were carried out to evaluate the effect of solute elements on grain refinement in aluminum based hypoeutectic alloys. Grain sizes of the as-cast structures were measured. The measured grain sizes were plotted vs. the undercooling parameter, P, the growth restriction factor, Q, and the solidification interval, Delta T, of the alloys. The results indicated that grain sizes decrease monotonically with increasing Delta T over the whole range of the hypoeutectic compositions whereas the relationships between the grain size and P or Q are "V" type curves. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Georgia Inst Technol, Dept Engn Mech, Atlanta, GA 30332 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Han, Q (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM hanq@ornl.gov NR 15 TC 29 Z9 31 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUN PY 2006 VL 54 IS 12 BP 2191 EP 2196 DI 10.1016/j.scriptamat.2006.02.035 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 037QW UT WOS:000237163000039 ER PT J AU Silvestri, HH Bracht, H Hansen, JL Larsen, AN Haller, EE AF Silvestri, HH Bracht, H Hansen, JL Larsen, AN Haller, EE TI Diffusion of silicon in crystalline germanium SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID SELF-DIFFUSION; IMPURITY DIFFUSION; SOLUBILITY; COPPER; SI; GE AB We report the determination of the diffusion coefficient of Si in crystalline Ge over the temperature range of 550 to 900 degrees C. A molecular beam epitaxy (MBE) grown buried Si layer in an epitaxial Ge layer on a crystalline Ge substrate was used as the source for the diffusion experiments. For samples annealed at temperatures above 700 degrees C, a 50 nm thick SiO2 cap layer was deposited to prevent decomposition of the Ge surface. The temperature dependence of the diffusion coefficient can be described by a single activation energy (3.32 +/- 0.03 eV) and pre-factor (42(-14)(+21) cm(2) s(-1)) over the entire temperature range studied. Our diffusivity data extend former measurements by two orders of magnitude at the low temperature end. The diffusion of the isovalent Si in Ge is slower than Ge self-diffusion over the full temperature range and reveals an activation enthalpy that is higher than that of self-diffusion. This points to a reduced interaction potential between the Si atom and the native defect mediating the diffusion process. For Si, which is smaller in size than the Ge self-atom, a reduced interaction is expected for a Si-vacancy (Si-V-Ge) pair. Therefore we conclude that Si diffuses in Ge via the vacancy mechanism. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. Aarhus Univ, Inst Phys & Astron, DK-8000 Aarhus C, Denmark. RP Silvestri, HH (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. NR 20 TC 50 Z9 50 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD JUN PY 2006 VL 21 IS 6 BP 758 EP 762 DI 10.1088/0268-1242/21/6/008 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 055EX UT WOS:000238433900010 ER PT J AU Kuhl, AL AF Kuhl, AL TI Oppenheim Antoni ("Tony") Kazimierz (1915*) - Polish-borne US aeronautical engineer, gas dynamicist and combustion specialist - On the occasion of his 90th birthday SO SHOCK WAVES LA English DT Biographical-Item C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kuhl, AL (reprint author), Lawrence Livermore Natl Lab, L-30 7000 East Ave, Livermore, CA 94550 USA. EM kuhl2@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD JUN PY 2006 VL 15 IS 2 BP 69 EP 71 DI 10.1007/s00193-006-0012-7 PG 3 WC Mechanics SC Mechanics GA 051DF UT WOS:000238140200001 ER PT J AU Winter, RE Sorber, SS Salisbury, DA Taylor, P Gustavsen, R Sheffield, S Alcon, R AF Winter, RE Sorber, SS Salisbury, DA Taylor, P Gustavsen, R Sheffield, S Alcon, R TI Experimental study of the shock response of an HMX-based explosive SO SHOCK WAVES LA English DT Article DE explosive; shock; detonation AB Experiments have been fired in which the HMX-based explosive EDC37 was subjected to one-dimensional shocks generated by plate impact. The response of the explosive to sustained shocks, double shocks and a short-pulse shock was monitored using embedded particle velocity gauges and shock tracker gauges. The final stages of the growth to detonation process were similar for all of the different input profiles. A strong reactive wave grows and accelerates to overtake and dominate the initial shock. It is shown that the curves showing the growth of the shock and the reactive wave in the sustained shock experiments can be normalised to give universal curves. These curves provides a reference against which to compare the explosive's response, not only to single sustained shocks, but also to double shock and short-pulse inputs. The treatment provides an empirical route for predicting the effects of sustained and more complex shocks on EDC37. C1 AWE, Hydrodynam Dept, Reading RG7 4PR, Berks, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Winter, RE (reprint author), AWE, Hydrodynam Dept, Reading RG7 4PR, Berks, England. EM ron.winter@awe.co.uk OI Gustavsen, Richard/0000-0002-2281-2742 NR 15 TC 12 Z9 13 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD JUN PY 2006 VL 15 IS 2 BP 89 EP 101 DI 10.1007/s00193-006-0010-9 PG 13 WC Mechanics SC Mechanics GA 051DF UT WOS:000238140200004 ER PT J AU Boal, AK Tellez, H Rivera, SB Miller, NE Bachand, GD Bunker, BC AF Boal, AK Tellez, H Rivera, SB Miller, NE Bachand, GD Bunker, BC TI The stability and functionality of chemically crosslinked microtubules SO SMALL LA English DT Article DE crosslinking; microtubules; nanotechnology; structure-property relationships ID KINESIN; TUBULIN; TRANSPORT; PROTEINS; CALCIUM; TAXOL AB A variety of bifunctional crosslinking agents have been explored for stabilizing microtubule shuttles used for the active transport of nanomaterials in artificial environments. Crosslinking agents that target amine residues form intertubulin crosslinks that produce crosslinked microtubules (CLMTs) with structural and functional lifetimes that can be up to four times as long as those achieved with taxol stabilization. Such CLMTs are stable at temperatures down to -10 degrees C, are resistant to depolymerization induced by metal ions such as Ca2+, and yet continue to be adsorbed and transported by self-assembled monolayers containing the motor protein kinesin. However, crosslinkers that target cysteine residues depolymerize the MTs, probably by interfering with the guanosine triphosphate binding site. The impact of crosslink attributes, including terminal group chemistry, chain length, crosslink density, and specific location on the tubulin surface, on microtubule stability and functionality are discussed. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bunker, BC (reprint author), Sandia Natl Labs, MS 1413,POB 5800, Albuquerque, NM 87185 USA. EM bcbunke@sandia.gov OI Bachand, George/0000-0002-3169-9980 NR 24 TC 24 Z9 24 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD JUN PY 2006 VL 2 IS 6 BP 793 EP 803 DI 10.1002/smll.200500381 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 041SB UT WOS:000237474900016 PM 17193124 ER PT J AU Christiansen, JH Altaweel, M AF Christiansen, JH Altaweel, M TI Simulation of natural and social process interactions - An example from Bronze Age Mesopotamia SO SOCIAL SCIENCE COMPUTER REVIEW LA English DT Article DE multimodel; simulations; agent-based; holistic; environment; social; interaction ID MODEL AB New multimodel simulations of Bronze Age Mesopotamian settlement system dynamics, using advanced object-based simulation frameworks, are addressing fine-scale interaction of natural processes (crop growth, hydrology, etc.) and social processes (kinship-driven behaviors, farming and herding practices, etc.) on a daily basis across multi-enerational model runs. Key components of these simulations are representations of initial settlement populations that are demographically and socially plausible, and detailed models of social mechanisms that can produce and maintain realistic textures of social structure and dynamics over time. The simulation engine has broad applicability and is also being used to address modern problems such as agroeconomic sustainability in Southeast Asia. This article describes the simulation framework and presents results of initial studies, highlighting some social system representations. C1 Argonne Natl Lab, Adv Simulat Technol Ctr, Argonne, IL 60439 USA. Argonne Natl Lab, ENKIMDU, Argonne, IL 60439 USA. RP Christiansen, JH (reprint author), Argonne Natl Lab, Adv Simulat Technol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jhc@anl.gov; maltaweel@anl.gov NR 26 TC 8 Z9 8 U1 1 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0894-4393 J9 SOC SCI COMPUT REV JI Soc. Sci. Comput. Rev. PD SUM PY 2006 VL 24 IS 2 BP 209 EP 226 DI 10.1177/0894439305281500 PG 18 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Social Sciences, Interdisciplinary SC Computer Science; Information Science & Library Science; Social Sciences - Other Topics GA 034XT UT WOS:000236964900007 ER PT J AU Blanco-Canqui, H Lal, R Post, WM Izaurralde, RC Owens, LB AF Blanco-Canqui, Humerto Lal, R. Post, W. M. Izaurralde, R. C. Owens, L. B. TI Rapid changes in soil carbon and structural properties due to stover removal from no-till corn plots SO SOIL SCIENCE LA English DT Article DE stover removal; no-till; bulk density; soil organic carbon; tensile strength; aggregate stability ID AGGREGATE-TENSILE-STRENGTH; ORGANIC-MATTER; CROP RESIDUE; PHYSICAL-PROPERTIES; INCREASING AMOUNTS; MANAGEMENT; FRIABILITY; TURNOVER; DYNAMICS; NITROGEN AB Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg ha(-1) of stover, respectively, were studied for their total SOC concentration, bulk density (rho(b)), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced > 4.75-mm macroaggregates and increased microaggregates (P < 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with rho(b) and positively with MWD and LogTS. Stover removal at rates as low as 1. 25 Mg ha(-1) reduced SOC and degraded soil structure even within I year, but further monitoring is needed to establish threshold levels of stover removal in relation to changes in soil quality. C1 Ohio State Univ, Sch Nat Resources, Carbon Management & Sequestrat Ctr, FAES,OARDC, Columbus, OH 43210 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Joint Global Change Res Inst, College Pk, MD 20740 USA. USDA ARS, Coshocton, OH 43812 USA. RP Blanco-Canqui, H (reprint author), 210 Kottman Hall,2021 Coffey Rd, Columbus, OH 43210 USA. EM blanco.16@osu.edu RI Post, Wilfred/B-8959-2012; Izaurralde, Roberto/E-5826-2012; Lal, Rattan/D-2505-2013 NR 38 TC 47 Z9 49 U1 3 U2 29 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0038-075X J9 SOIL SCI JI Soil Sci. PD JUN PY 2006 VL 171 IS 6 BP 468 EP 482 DI 10.1097/01.ss.0000209364.85816.1b PG 15 WC Soil Science SC Agriculture GA 060WD UT WOS:000238831500004 ER PT J AU Shukla, MK Lal, R Ebinger, M AF Shukla, MK Lal, R Ebinger, M TI Determining soil quality indicators by factor analysis SO SOIL & TILLAGE RESEARCH LA English DT Article DE soil bulk density; water stable aggregation; mean weight diameter; water infiltration; hydraulic conductivity; soil quality indicator; factor analysis; discriminant analysis ID RECLAIMED MINESOILS; SOUTHEASTERN OHIO; TILLAGE; IDENTIFICATION; ILLINOIS AB Soil quality indicators (SQIs) can be used to evaluate sustainability of land use and soil management practices in agroecosystems. The objective of this study was to identify appropriate SQI from factor analysis (FA) of five treatments: no-till corn (Zee mays) without manure (NT), no-till corn with manure (NTM), no-till corn-soybean (Glycine max) rotation (NTR), conventional tillage corn (CT), and meadow (M) in Coshocton, Ohio. Soil properties were grouped into five factors (eigenvalues > 1) for the 0-10 cm depth as: (Factor 1) water transmission, (Factor 2) soil aeration, (Factor 3) soil pore connection 1, (Factor 4) soil texture and (Factor 5) moisture status. Factor 2 was the most dominant, with soil organic carbon (SOC) the most dominant measured soil attribute contributing to this factor. For the 10-20 cm depth, factors identified were: (Factor 6) soil aggregation, (Factor 7) soil pore connection 2, (Factor 8) soil macropore, and (Factor 9) plant production. At 1020 cm depth, Factor 6 was most dominant with SOC the most dominant measured soil attribute. Management x sample and slope position x sample interactions were significant among some factors for both depths. Overall, SOC was the most dominant measured soil attribute as a SQI for both depths. Other key soil attributes were field water capacity, air-filled porosity, pH and soil bulk density for the 0-10 cm depth, and total N and mean weight diameter of aggregates for the 10-20 depth. Therefore, SOC could play an important role for monitoring soil quality. (c) 2005 Elsevier B.V. All rights reserved. C1 Ohio State Univ, Carbon Management & Sequestrat Ctr, OARDC FAES, Sch Nat Resources, Columbus, OH 43210 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shukla, MK (reprint author), New Mexico State Univ, Dept Plant & Environm Sci, MSC 3Q,POB 30003, Las Cruces, NM 88003 USA. EM shuklamk@nmsu.edu RI Lal, Rattan/D-2505-2013 NR 46 TC 149 Z9 177 U1 9 U2 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-1987 J9 SOIL TILL RES JI Soil Tillage Res. PD JUN PY 2006 VL 87 IS 2 BP 194 EP 204 DI 10.1016/j.still.2005.03.011 PG 11 WC Soil Science SC Agriculture GA 032BF UT WOS:000236748200007 ER PT J AU Birn, J Hesse, M Schindler, K AF Birn, J. Hesse, M. Schindler, K. TI Modeling of the magnetospheric response to the dynamic solar wind SO SPACE SCIENCE REVIEWS LA English DT Review DE magnetotail; thin current sheets; solar wind/magnetosphere interaction ID TEST PARTICLE ORBITS; MAGNETIC RECONNECTION; MAGNETOHYDRODYNAMIC SIMULATION; MAGNETOTAIL EQUILIBRIUM; CURRENT SHEETS; INJECTIONS; FIELDS; ONSET AB We discuss quasi-static and dynamic models of the magnetotail response to perturbations imposed by the solar wind, focusing particularly on the formation of thin current sheets, their structure and breakup. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Ruhr Univ Bochum, D-4630 Bochum, Germany. RP Birn, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 24 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2006 VL 124 IS 1-4 BP 103 EP 116 DI 10.1007/s11214-006-9100-3 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 137VD UT WOS:000244319800008 ER PT J AU Lu, ZM Zhang, DX AF Lu, ZM Zhang, DX TI Accurate, efficient quantification of uncertainty for flow in heterogeneous reservoirs using the KLME approach SO SPE JOURNAL LA English DT Article; Proceedings Paper CT 2005 SPE Reservoir Simulation Symposium CY JAN 31-FEB 02, 2005 CL Houston, TX SP Soc Petr Engineers ID MOMENT-EQUATION APPROACH; POROUS-MEDIA; SIMULATIONS AB Accurate modeling of flow in oil/gas reservoirs requires a detailed description of reservoir properties such as permeability and porosity. However, such reservoirs are inherently heterogeneous and exhibit a high degree of spatial variability in medium properties. Significant spatial heterogeneity and a limited number of measurements lead to uncertainty in characterization of reservoir properties and thus to uncertainty in predicting flow in the reservoirs. As a result, the equations that govern flow in such reservoirs are treated as stochastic partial differential equations. The current industrial practice is to tackle the problem of uncertainty quantification by Monte Carlo simulations (MCS). This entails generating a large number of equally likely random realizations of the reservoir fields with parameter statistics derived from sampling, solving deterministic flow equations for each realization., and post-processing the results over all realizations to obtain sample moments of the solution. This approach has the advantages of applying to a broad range of both linear and nonlinear flow problems, but it has a number of potential drawbacks. To properly resolve high-frequency space-time fluctuations in random parameters, it is necessary to employ fine numerical grids in space-time. Therefore, the computational effort for each realization is usually large, especially for large-scale reservoirs. As a result, a detailed assessment of the uncertainty associated with flow-performance predictions is rarely performed. In this work, we develop an accurate yet efficient approach for solving flow problems in heterogeneous reservoirs. We do so by obtaining higher-order solutions of the prediction and the associated uncertainty of reservoir flow quantities using the moment-equation approach based on Karhunen-Loeve decomposition (KLME). The KLME approach is developed on the basis of the Karhunen-Loeve (KL) decomposition, polynomial expansion, and perturbation methods. We conduct MCS and compare these results against different orders of approximations from the KLME method. The 3D computational examples demonstrate that this KLME method is computationally more efficient than both Monte Carlo simulations and the conventional moment-equation method. The KLME approach allows us to evaluate higher-order terms that are needed for highly heterogeneous reservoirs. In addition. like the Monte Carlo method, the KLME approach can be implemented with existing simulators in a straightforward manner and they are inherently parallel. The efficiency of the KLME method makes it possible to simulate fluid flow in large-scale heterogeneous reservoirs. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Univ Oklahoma, Norman, OK 73019 USA. RP Lu, ZM (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM zhiming@lanl.gov RI Zhang, Dongxiao/D-5289-2009; OI Zhang, Dongxiao/0000-0001-6930-5994; Lu, Zhiming/0000-0001-5800-3368 NR 12 TC 6 Z9 6 U1 0 U2 3 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD JUN PY 2006 VL 11 IS 2 BP 239 EP 247 PG 9 WC Engineering, Petroleum SC Engineering GA 057IG UT WOS:000238588900011 ER PT J AU Ma, BH Balachandran, U AF Ma, Beihai Balachandran, U. (Balu) TI Prospects for the fabrication of low aspect ratio coated conductors by inclined substrate deposition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID BEAM-ASSISTED DEPOSITION; CRITICAL-CURRENT DENSITY; OXIDE THIN-FILMS; YBCO FILMS; AC LOSS; SUPERCONDUCTING TAPES; FILAMENTARY; LOSSES AB Inclined substrate deposition (ISD) is an effective method for the fast production of highly textured template films for YBa2Cu3Ox (YBCO) coated conductors (CCs). By electron-beam evaporation of MgO targets, we deposited biaxially textured ISD-MgO films with f-scan full-width at half maximum (FWHM) of approximate to 10 degrees on flat metallic tapes. Cube-on-cube epitaxial growth was demonstrated for YBCO grown on ISD-MgO buffered metallic tapes with an SrRuO3 buffer. A transport critical current density of J(c) > 1.6 x 10(6) A cm(-2) was measured at 77 K in self-field on short-length flat-tape CCs produced with the ISD architecture. We have grown biaxially textured ISD-MgO template films on round wire surfaces. An in-plane FWHM of 18 degrees was measured on ISD-MgO deposited on cylindrical surfaces. CC wires with a low aspect ratio and, therefore, low AC losses, are highly desirable in order to facilitate cable winding without compromising the mechanical integrity or engineering current density of the CCs. This work discusses the prospects of using the ISD process to produce low aspect ratio round-wire CCs. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 NR 22 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2006 VL 19 IS 6 BP 497 EP 502 DI 10.1088/0953-2048/19/6/015 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063GS UT WOS:000239006900019 ER PT J AU Hanisch, J Cai, C Stehr, V Huhne, R Lyubina, J Nenkov, K Fuchs, G Schultz, L Holzapfel, B AF Haenisch, J. Cai, C. Stehr, V. Huehne, R. Lyubina, J. Nenkov, K. Fuchs, G. Schultz, L. Holzapfel, B. TI Formation and pinning properties of growth-controlled nanoscale precipitates in YBa2Cu3O7-delta/transition metal quasi-multilayers SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; COATED CONDUCTORS; THIN-FILMS; COLUMNAR DEFECTS; TRANSPORT; NANODOTS; CREEP AB To study the possibility of enhancing the pinning forces in YBa2Cu3O7-delta films through the introduction of nanosized precipitates, quasi-multilayers of YBa2Cu3O7-delta and a transition metal ( TM = Ti, Zr, Hf) were deposited on single-crystal SrTiO3 substrates using pulsed laser deposition. The transition metal layer thickness was chosen to be less than one unit cell, resulting in separated nanoscale islands that form inclusions with perovskite structure BaTMO3 during film growth. These inclusions grow biaxially textured within the film. Whereas the Ti-doped films show a very strong decrease in the critical temperature T-c and, hence, a strong decrease in the critical current density J(c) with increasing TM amount for all temperatures, Hf and Zr doping show an increase in J(c) for the smallest amounts of doping. An irreversibility field as high as 10.3 T at 77 K was observed in the case of low Hf content. C1 IFW Dresden, Inst Met Mat, D-01171 Dresden, Germany. Tech Univ Dresden, Inst Solid State Phys, Dept Phys, D-01062 Dresden, Germany. RP Hanisch, J (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM haenisch@lanl.gov; b.holzapfel@ifw-dresden.de RI Holzapfel, Bernhard/D-3669-2009; Schultz, Ludwig/B-3383-2010; Hanisch, Jens/D-8503-2011; Huhne, Ruben/E-5017-2011 NR 27 TC 40 Z9 40 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2006 VL 19 IS 6 BP 534 EP 540 DI 10.1088/0953-2048/19/6/021 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063GS UT WOS:000239006900025 ER PT J AU Wilke, RHT Bud'ko, SL Canfield, PC Finnemore, DK Suplinskas, RJ Farmer, J Hannahs, ST AF Wilke, R. H. T. Bud'ko, S. L. Canfield, P. C. Finnemore, D. K. Suplinskas, Raymond J. Farmer, J. Hannahs, S. T. TI Effects of neutron irradiation on carbon doped MgB2 wire segments SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SUPERCONDUCTORS AB We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B0.962C0.038)(2) wire segments as a function of post-exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, H-c2( T = 0), approximately scales with T-c, starting with an undamaged T-c near 37 K and H-c2( T = 0) near 32 T. Up to an annealing temperature of 400 degrees C the recovery of T-c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 degrees C a decrease in ordering along the c-direction coincides with an increase in resistivity, but no apparent change in the evolution of T-c and H-c2. To a first order approximation, it appears that carbon doping and neutron damage affect the superconducting properties of MgB2 independently. C1 US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Specialty Mat Inc, Lowell, MA 01851 USA. Univ Missouri, Res Reactor, Columbia, MO 65211 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Wilke, RHT (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Hannahs, Scott/B-1274-2008; Canfield, Paul/H-2698-2014 OI Hannahs, Scott/0000-0002-5840-7714; NR 19 TC 6 Z9 6 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2006 VL 19 IS 6 BP 556 EP 563 DI 10.1088/0953-2048/19/6/024 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063GS UT WOS:000239006900028 ER PT J AU Chen, LH Claus, H Paulikas, AP Zheng, H Veal, BW Peng, FZ AF Chen, Lihua Claus, Helmut Paulikas, A. P. Zheng, Hong Veal, Boyd W. Peng, Fang Z. TI Healing macrocracks in YBCO bulk superconductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID MELT-TEXTURED YBCO; OXYGENATION; CRACKING AB We report a simple and effective method for healing macrocracks in YBCO bulk superconductors. The samples with cracks were processed in a furnace in flowing oxygen to eliminate problems caused by nitrogen entrapment during the healing process. Samples were heated several degrees above their decomposition temperature to seal the cracks. The results demonstrate that cracks which form during sample growth or subsequent mechanical processing can be successfully repaired. Multiple domains formed by macrocracks are rejoined into a single domain. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Chen, LH (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chenlih2@msu.edu NR 11 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUN PY 2006 VL 19 IS 6 BP 648 EP 651 DI 10.1088/0953-2048/19/6/039 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063GS UT WOS:000239006900043 ER PT J AU Zinovev, AV Moore, JF Hryn, J Pellin, MJ AF Zinovev, AV Moore, JF Hryn, J Pellin, MJ TI Etching of hexagonal SiC surfaces in chlorine-containing gas media at ambient pressure SO SURFACE SCIENCE LA English DT Article DE silicon carbide; single-crystal surface; chlorine; carbon; X-ray photoelectron spectroscopy; Raman spectroscopy; SEM; LEED ID AMORPHOUS-CARBON FILMS; SILICON-CARBIDE; THIN-FILMS; SPECTROSCOPY; OXIDATION; GROWTH; INTERFACES AB The modification of the silicon carbide (4H-SiC) single-crystal surface in a chlorine-containing gas mixture at high temperature (800-1000 degrees C) and ambient pressure was investigated. The results of silicon carbide chlorination are found to strongly depend on the hexagonal surface orientation. Due to the thermodynamically more favorable reaction of chlorine with silicon rather than carbon, the C-terminated side (0001) clearly undergoes considerable changes, resulting in coverage by a black-colored carbon film, whereas the Si-side (000(1) over bar) surprisingly remains visually untouched. With using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS and SEM it is shown that this drastic change in behavior is associated with a different structure of oxicarbide/silicate adlayer formed on the G and Si-terminated sides of silicon carbide surface during experimental pre-treatment and air exposure. The presence of oxygen bridges connecting the silicate adlayer with the bulk SiC in the case of Si-side inhibits the chlorination reaction and makes this surface strongly resistant to chlorine attack. Only some places on the Si-terminated side demonstrate traces of chlorine etching in the form of hexagonal-shaped voids, which are possibly initiated by distortion of the initial crystalline structure by micropipes. In contrast, a thin carbon layer resulted on the C-terminated side as a consequence of the chlorination process. XPS, ARXPS, SEM and Raman spectroscopy study of created film allows us to argue that it consists mainly of sp2-bonded carbon, mostly in the form of nanoscale graphene sheets. The absence of a protective oxygen bridge between the silicate adlayer and the bulk silicon carbide crystal leads to unlimited growth of carbon film on the SiC(000(1) over bar) side. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Mat Sci Div & Energy Syst Div, Argonne, IL 60439 USA. RP Zinovev, AV (reprint author), Argonne Natl Lab, Mat Sci Div & Energy Syst Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zinovev@anl.gov RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 23 TC 16 Z9 17 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2006 VL 600 IS 11 BP 2242 EP 2251 DI 10.1016/j.susc.2006.03.011 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058CT UT WOS:000238642800006 ER PT J AU Trelenberg, TW Glade, SC Tobin, JG Hamza, AV AF Trelenberg, T. W. Glade, S. C. Tobin, J. G. Hamza, A. V. TI The production and oxidation of uranium nanoparticles produced via pulsed laser ablation SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; ultraviolet photoelectron spectroscopy; adsorption kinetics; chemisorption; oxidation; uranium; uranium oxide; photoelectron emission; ultraviolet; laser ablation; photoemission; UPS ID PHOTOELECTRON-SPECTROSCOPY; ELECTRON-SPECTROSCOPY; DEPOSITION; ADSORPTION; FILMS; GAAS; O-2; CO2; PU AB Depleted uranium samples were ablated using five nanosecond pulses from a Nd:YAG laser and produced films of similar to 1600 angstrom thickness that were deposited with an angular distribution typical of a completely thermal ablation (cos' 0). The films remained contiguous for many months in vacuum but blistered due to tensile stress induced in the films several days after being brought into air. While under vacuum (2 x 10(-10) Torr base pressure) the films were allowed to oxidize from the residual gases, of which water vapor was found to be the primary oxidizer. During the oxidation, the samples were monitored with both X-ray and ultraviolet photoemission spectroscopy (XPS and UPS) and were found to oxidize following Langmuir kinetics. That a 2D-surface growth model described the oxidation indicates that, even at these low pressures, oxygen accumulation on the surface is a much faster process than diffusion into the bulk. While bulk diffusion did occur, the oxygen present at the surface saturated the measurements taken using photoemission and diffusion was difficult to observe. A method for determining oxide concentration via photoemission from the valence level, as opposed to the more conventional core levels, is also presented. Published by Elsevier B.V. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Trelenberg, TW (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM trelenberg1@llnl.gov RI mandava, pramod/G-2608-2012; Tobin, James/O-6953-2015 NR 27 TC 5 Z9 5 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2006 VL 600 IS 11 BP 2338 EP 2348 DI 10.1016/j.susc.2006.03.028 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058CT UT WOS:000238642800018 ER PT J AU Wang, L Zhou, GW Eastman, JA Yang, JC AF Wang, L Zhou, GW Eastman, JA Yang, JC TI Initial oxidation kinetics and energetics of Cu0.5Au0.5 (001) film investigated by in situ ultrahigh vacuum transmission electron microscopy SO SURFACE SCIENCE LA English DT Article DE Cu-Au alloy; Cu2O; nano-oxidation; in situ UHV-TEM; thin film; surface ID THERMAL BARRIER COATINGS; OXIDE NANOSTRUCTURES; OXYGEN-CHEMISORPTION; SURFACE SEGREGATION; THIN-FILMS; X-RAY; ALLOYS; CU2O; CU(001); ORDER AB The initial oxidation behavior of CU0.5Au0.5 (001) thin film was investigated by in situ ultrahigh vacuum transmission electron microscopy to model nano-oxidation of alloys with one active component and one noble component. The formation of irregular-shaped octahedron Cu2O islands with cube-on-cube crystallographic orientation to the substrate film was observed at all temperature studied. The energetics of Cu2O nucleation for Cu and CU(0.5)AU(0.5) oxidation was compared. CU0.5Au0.5 oxidation has lower nucleation activation energy due to the reduced mismatch strain between Cu2O and Cu0.5Au0.5 films. On the other hand, the reaction kinetics for Cu0.5Au0.5 alloy oxidation is slower due to the higher diffusion activation energy of Cu. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Dept Mat Sci & Engn, Pittsburgh, PA 15261 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wang, L (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM lwang20@uiuc.edu RI Eastman, Jeffrey/E-4380-2011 NR 40 TC 8 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 1 PY 2006 VL 600 IS 11 BP 2372 EP 2378 DI 10.1016/j.susc.2006.03.044 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058CT UT WOS:000238642800022 ER PT J AU Flynn, DF Goans, RE AF Flynn, Daniel F. Goans, Ronald E. TI Nuclear terrorism: Triage and medical management of radiation and combined-injury casualties SO SURGICAL CLINICS OF NORTH AMERICA LA English DT Article ID EARLY DOSE ASSESSMENT; RADIOLOGICAL CASUALTIES; EXPOSURE; INCIDENTS; AWARENESS AB This article addresses the medical effects of nuclear explosions and other forms of radiation exposure, assessment of radiation dose, triage of victims, definitive treatment of radiation and combined-injury casualties, and planning for emergency services after a terrorist attack involving a nuclear device. It reviews historical events of mass radiation-induced casualties and fatalities at Hiroshima, Chernobyl, and Goiania, and discusses various scenarios for nuclear terrorism. C1 USA, Reserves Med Corp, Off Command Surg, Reg Readiness Command 94, Devens, MA 01434 USA. Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr, Oak Ridge, TN 37831 USA. Holy Family Hosp, Dept Radiat Oncol, NERTA, Methuen, MA 01844 USA. MJW Corp, Amherst, NY 14228 USA. Tulane Univ, Sch Publ Hlth & Trop Med, Ctr Appl Environm Publ Hlth, New Orleans, LA 70112 USA. RP Flynn, DF (reprint author), Holy Family Hosp, Dept Radiat Oncol, NERTA, 70 East St, Methuen, MA 01844 USA. EM daniel_f_flynn_md@cchcs.org NR 52 TC 44 Z9 48 U1 1 U2 10 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA INDEPENDENCE SQUARE WEST CURTIS CENTER, STE 300, PHILADELPHIA, PA 19106-3399 USA SN 0039-6109 J9 SURG CLIN N AM JI Surg. Clin.-North Am. PD JUN PY 2006 VL 86 IS 3 BP 601 EP + DI 10.1016/j.suc.2006.03.005 PG 37 WC Surgery SC Surgery GA 064TR UT WOS:000239112500008 PM 16781272 ER PT J AU Fu, H Zu, XT Shen, TD AF Fu, H Zu, XT Shen, TD TI Structure and phase transformation of melt-spun Gd5Si2Ge2 SO THERMOCHIMICA ACTA LA English DT Article DE magnetocaloric materials; Gd5Si2Ge2 alloy; X-ray powder diffraction; differential scanning calorimetry ID GD5SI4-GD5GE4; TRANSITION; SYSTEM AB Gd5Si2Ge2 materials were prepared by rapid solidification at different wheel speeds. The crystal phase and phase transformation of the rapidly solidified materials have been investigated by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The materials contained mainly a Gd5Si2Ge2-type single phase at a wheel speed of 20 m/s; a Gd5Si4-type major phase and a Gd5Si2Ge2-type minor phase at 30 m/s; a Gd5Si4-type single phase at 40 m/s; and Gd5Si4-type and Gd5Si2Ge2-type double phase at 50 m/s. A first-order phase transformation occurred at approximately 273 K in the materials prepared at a wheel speed of 20 m/s whereas a second-order phase transformation appeared at approximately 290 K in the materials prepared at other wheel speeds. Furthermore, we observed some exothermic peaks located at similar to 250-300 degrees C in the DSC curves for all the melt-spun samples. These exothermic reactions can be attributed to the crystallization of a small amount of glassy phase. The presence of glassy phase has been confirmed by both the electron diffraction pattern observed in the TEM observation and the glass transition found in the DSC scan. (c) 2006 Published by Elsevier B.V. C1 Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110015, Peoples R China. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com NR 11 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD JUN 1 PY 2006 VL 445 IS 1 BP 53 EP 56 DI 10.1016/j.tca.2006.04.003 PG 4 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 056JN UT WOS:000238518900010 ER PT J AU Fasano, WJ Carpenter, SC Gannon, SA Snow, TA Stadler, JC Kennedy, GL Buck, RC Korzeniowski, SH Hinderliter, PM Kemper, RA AF Fasano, WJ Carpenter, SC Gannon, SA Snow, TA Stadler, JC Kennedy, GL Buck, RC Korzeniowski, SH Hinderliter, PM Kemper, RA TI Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat SO TOXICOLOGICAL SCIENCES LA English DT Article DE 8-2 fluorotelomer alcohol; absorption; distribution; metabolism; and elimination (ADME); glutathione conjugates; perfluorinated carboxylic acids; perfluorooctanoate; peroxisome proliferation; pharmacokinetics ID PEROXISOMAL BETA-OXIDATION; TELOMER-B ALCOHOL; FLUOROTELOMER ALCOHOLS; PERFLUOROOCTANOIC ACID; FLUOROALKYLETHANOL MIXTURE; DEVELOPMENTAL TOXICITY; DEPENDENT DIFFERENCES; ALPHA-OXIDATION; FATTY-ACIDS; FEMALE RATS AB The absorption, distribution, metabolism, and elimination of [3-C-14] 8-2 fluorotelomer alcohol (8-2 FTOH, (C7F15CF2CH2CH2OH)-C-14) following a single oral dose at 5 and 125 mg/kg in male and female rats have been determined. Following oral dosing, the maximum concentration of 8-2 FTOH in plasma occurred by 1 h postdose and cleared rapidly with a half-life of less than 5 h. The internal dose to 8-2 FTOH, as measured by area under the concentration-time curve to infinity, was similar for male and female rats and was observed to increase in a dose-dependent fashion. The majority of the C-14 8-2 FTOH (> 70%) was excreted in feces, and 37-55% was identified as parent. Less than 4% of the administered dose was excreted in urine, which contained low concentrations of perfluorooctanoate (similar to 1% of total C-14). Metabolites identified in bile were principally composed of glucuronide and glutathione conjugates, and perfluorohexanoate was identified in excreta and plasma, demonstrating the metabolism of the parent FTOH by sequential removal of multiple CF2 groups. At 7 days postdose, 4-7% of the administered radioactivity was present in tissues, and for the majority, C-14 concentrations were greater than whole blood with the highest concentration in fat, liver, thyroid, and adrenals. Distribution and excretion of a single 125-mg/kg [3-C-14] 8-2 FTOH dermal dose following a 6-h exposure in rats was also determined. The majority of the dermal dose either volatilized from the skin (37%) or was removed by washing (29%). Following a 6-h dermal exposure and a 7-day collection period, excretion of total radioactivity via urine (< 0.1%) and feces (< 0.2%) was minor, and radioactivity concentrations in most tissues were below the limit of detection. Systemic availability of 8-2 FTOH following dermal exposure was negligible. C1 DuPont Co Inc, Haskell Lab Hlth & Envirom Sci, Newark, DE 19714 USA. DuPont Chem Solut Enterprise, Wilmington, DE 19880 USA. Battelle Pacific NW, Richland, WA 99352 USA. Boehringer Ingelheim Pharmaceut Inc, Ridgefield, CT 06877 USA. RP Fasano, WJ (reprint author), DuPont Co Inc, Haskell Lab Hlth & Envirom Sci, Newark, DE 19714 USA. EM william.j.fasano@usa.dupont.com OI Buck, Robert/0000-0002-2604-8905 NR 40 TC 79 Z9 85 U1 9 U2 30 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD JUN PY 2006 VL 91 IS 2 BP 341 EP 355 DI 10.1093/toxsci/kfj160 PG 15 WC Toxicology SC Toxicology GA 044UG UT WOS:000237697300004 PM 16543293 ER PT J AU Chowell, G Diaz-Duenas, P Bustos-Saldana, R Mireles, AA Fet, V AF Chowell, G Diaz-Duenas, P Bustos-Saldana, R Mireles, AA Fet, V TI Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000-2001) SO TOXICON LA English DT Article DE scorpion envenoming; patient delay; antivenom; Colima; Mexico ID ENVENOMATION; CHILDREN AB We analyzed 13,223 clinical records of patients treated for scorpion sting in hospitals of the Mexican Institute Of Public Health and the Ministry of Health in the state of Colima, Mexico, during the years 2000-2001. A database containing demographic, epidemiological and clinical information was constructed and analyzed retrospectively. Patients were classified in the categories as mild (49.2%), moderate (33.8%) and severe (17.0%) according to commonly accepted standards. Most common symptoms recorded were local pain (94.7%), local paresthesia (67.2%), pruritus/itching (54.3%). sensation of a lump or hair in the throat (47.3%), and sialorrhoea (27.7%). The median time front sting to admission to the emergency room (patient delay) was 33 min (interquartile range: 12-60). We found that older and clinically severe patients were significantly associated with longer times of admission to the emergency room. Age was significantly associated with clinical severity: the age group 0-10 years included a higher proportion of severe cases than the group I I years and older. In four cases, patients died. An educational campaign to inform the population about the importance of receiving prompt attention following a scorpion sting has potential value in reducing complications in the emergency room. (c) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Hosp Gen Med Familiar 1, IMSS, Colima 28010, Col, Mexico. Univ Guadalajara, Fac Med, Ciudad Guzman, Jalisco, Mexico. Marshall Univ, Dept Biol Sci, Huntington, WV 25755 USA. RP Chowell, G (reprint author), Los Alamos Natl Lab, Mail Stop B284, Los Alamos, NM 87545 USA. EM chowell@lanl.gov RI Chowell, Gerardo/A-4397-2008; Chowell, Gerardo/F-5038-2012 OI Chowell, Gerardo/0000-0003-2194-2251 NR 24 TC 25 Z9 27 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0041-0101 J9 TOXICON JI Toxicon PD JUN 1 PY 2006 VL 47 IS 7 BP 753 EP 758 DI 10.1016/j.toxicon.2006.02.004 PG 6 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 055QV UT WOS:000238466300005 PM 16574179 ER PT J AU Zheng, L Enyo, H Goto, Y Tojo, J Akiba, Y Nouicer, R Deshpande, AL Boyle, K Cianciolo, V AF Zheng, L Enyo, H Goto, Y Tojo, J Akiba, Y Nouicer, R Deshpande, AL Boyle, K Cianciolo, V TI First large scale application of novel Si stripixel detector in real large experiment: SiVTX in PHENIX upgrade at RHIC SO TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA LA English DT Article; Proceedings Paper CT 5th International Forum on Advanced Material Science and Technology CY JUN 14-17, 2006 CL Zhangxiajie, PEOPLES R CHINA SP Natl Nat Sci Fdn China, Xiangtan Univ, Key Lab Adv Mat & Rheol* Properties, Minist Educ China DE Si strip detector; Si stripixel detector; vertex detector; 2D Si detector; 2D position sensitivity; AC coupling ID PROTOTYPE AB 2D position sensitive, single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) in Brookhaven National Laboratory (BNL). This is the first large scale application of the novel Si stripixel detector in a real large experiment after many years of research and development at BNL. The first and second prototype fabrication runs of the SVX stripixel detectors were carried out successfully in BNL's Si detector development and processing Lab. The processing of these stripixel detectors is similar to that for the standard single-sided strip detectors: one-sided processing, single implant for the pixel (strip) electrodes, etc. The only additional processing step is the double metal process, a technology that is simple and well matured by many Si detector processing industries and labs, including BNL. The laser and beam tests on those prototype detectors show the 2D position sensitivity and good position resolution in both X and U coordinates (about 25 mu m for 80 mu m pitch). For the mass production of 400 sensors needed for the Si SVX, the processing technology has been successfully transferred to the industrial: Hamamatsu Photonics (HPK). HPK has produced a pre-production run of stripixel sensors with the full PHENIX SVX specification on 150 mm diameter wafers. The laser tests on these pre-production wafers show good signal to noise ratio (about 20:1). C1 RIKEN BNL Rse Ctr, Upton, NY 11973 USA. BNL Instrumentat Div, Upton, NY 11973 USA. RIKEN, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Stony Brook Univ, Dept Phys & Astron, Stony Brook, NY 11794 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zheng, L (reprint author), RIKEN BNL Rse Ctr, Upton, NY 11973 USA. EM zhengl@bnl.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 1003-6326 J9 T NONFERR METAL SOC JI Trans. Nonferrous Met. Soc. China PD JUN PY 2006 VL 16 SI 1 BP S141 EP S145 PN A PG 5 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 055IB UT WOS:000238442400033 ER PT J AU Zhou, QL Liu, HH Bodvarsson, GS Molz, FJ AF Zhou, QL Liu, HH Bodvarsson, GS Molz, FJ TI Evidence of multi-process matrix diffusion in a single fracture from a field tracer test SO TRANSPORT IN POROUS MEDIA LA English DT Article DE matrix diffusion; fractured rock; tracer test; heterogeneity; groundwater flow and transport ID SOLUTE TRANSPORT; ROCK; FLOW; MODEL; BASIN AB Compared to values inferred from laboratory tests on matrix cores, many field tracer tests in fractured rock have shown enhanced matrix diffusion coefficient values (obtained using a single-process matrix-diffusion model with a homogeneous matrix diffusion coefficient). To investigate this phenomenon, a conceptual model of multi-process matrix diffusion in a single-fracture system was developed. In this model, three matrix diffusion processes of different diffusion rates were assumed to coexist: (1) diffusion into stagnant water and infilling materials within fractures, (2) diffusion into a degraded matrix zone, and (3) further diffusion into an intact matrix zone. The validity of the conceptual model was then demonstrated by analyzing a unique tracer test conducted using a long-time constant-concentration injection. The tracer-test analysis was conducted using a numerical model capable of tracking the multiple matrix-diffusion processes. The analysis showed that in the degraded zone, a diffusion process with an enhanced diffusion rate controlled the steep rising limb and decay-like falling limb in the observed breakthrough curve, whereas in the intact matrix zone, a process involving a lower diffusion rate affected the long-term middle platform of slowly increasing tracer concentration. The different matrix-diffusion-coefficient values revealed from the field tracer test are consistent with the variability of matrix diffusion coefficient measured for rock cores with different degrees of fracture coating at the same site. By comparing to the matrix diffusion coefficient calibrated using single-process matrix diffusion, we demonstrated that this multi-process matrix diffusion may contribute to the enhanced matrix-diffusion-coefficient values for single-fracture systems at the field scale. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Clemson Univ, Dept Environm Sci & Engn, Clemson, SC 29634 USA. RP Zhou, QL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM qzhou@eticeng.com RI Zhou, Quanlin/B-2455-2009 OI Zhou, Quanlin/0000-0001-6780-7536 NR 20 TC 20 Z9 20 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD JUN PY 2006 VL 63 IS 3 BP 473 EP 487 DI 10.1007/s11242-005-1123-9 PG 15 WC Engineering, Chemical SC Engineering GA 035BM UT WOS:000236974800006 ER PT J AU Qu, J Truhan, JJ Dai, S Luo, H Blau, PJ AF Qu, J. Truhan, J. J. Dai, S. Luo, H. Blau, P. J. TI Ionic liquids with ammonium cations as lubricants or additives SO TRIBOLOGY LETTERS LA English DT Article DE ionic liquids; ammonium; lubricant; additives; friction; wear; aluminum; steel ID FLUORINE-CONTAINING OILS; TRIBOLOGICAL BEHAVIOR; STEEL CONTACT; CERAMICS; FRICTION; WEAR; STABILITY AB A new class of more effective lubricants could lead to huge energy savings. Limited recent literature has suggested potential for using room-temperature ionic liquids as lubricants, however, only a few out of millions (or more) of species possible have been evaluated. In this study, a series of new protic alkylammonium ionic liquids were synthesized by neutralization and metathesis reactions, and have demonstrated promising lubricating properties as neat lubricants or lubricant additives, particularly for use with difficult-to-lubricate metals like aluminum. More than a 30% friction reduction was observed with ammonium-based ionic liquids compared to conventional hydrocarbon oils in reciprocating sliding tests of 52100 bearing steel on aluminum alloy 6061-T6511. The inherent polarity of ionic liquids is believed to provide strong adsorption to contact surfaces and can form a boundary lubricating film leading to friction and wear reductions. Other advantages of ionic liquids include (1) negligible volatility, (2) high thermal stability, (3) non-flammability, and (4) better intrinsic properties that may eliminate the need for more complex and expensive additive packages. With very flexible molecular structures, this new class of lubricants, particularly ammonium-based ionic liquids, can be tailored to fit a variety of applications. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Ctr Mat Proc, Knoxville, TN USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Qu, Jun/0000-0001-9466-3179 NR 28 TC 134 Z9 137 U1 4 U2 50 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD JUN PY 2006 VL 22 IS 3 BP 207 EP 214 DI 10.1007/s11249-006-9081-0 PG 8 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 089AO UT WOS:000240852500001 ER PT J AU Allison, DP AF Allison, D. P. TI SPM 2005 - Proceedings of the Seventh International Conference on Scanning Probe Microscopy, Sensors and Nanostructures - Cancun, Mexico, June 5-8, 2005 - Preface SO ULTRAMICROSCOPY LA English DT Editorial Material C1 Univ Tennessee, ORNL, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. RP Allison, DP (reprint author), Univ Tennessee, ORNL, Grad Sch Genome Sci & Technol, 10515 Res Dr,Suite A100, Knoxville, TN 37996 USA. EM allisond@utk.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP V EP V DI 10.1016/j.ultramic.2006.03.004 PG 1 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600001 ER PT J AU Beckmann, MA Venkataraman, S Doktycz, MJ Nataro, JP Sullivan, CJ Morrell-Falvey, JL Allison, DP AF Beckmann, M. A. Venkataraman, S. Doktycz, M. J. Nataro, J. P. Sullivan, C. J. Morrell-Falvey, J. L. Allison, D. P. TI Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE atomic force microscopy; enteroaggregative E. coli; force distance spectroscopy; bacteria; immobilization; live cell imaging ID ATOMIC-FORCE MICROSCOPY; LACTIC-ACID BACTERIA; MECHANICAL-PROPERTIES; MICROBIAL SURFACES; CALIBRATION; PROTEIN; TIPS AB Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (1713) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Grad Sch Genome Sci & Technol, ORNL, Knoxville, TN 37996 USA. Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. Univ Maryland, Sch Med, Dept Pediat, Baltimore, MD 21201 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Mol Imaging Inc, Tempe, AZ 85282 USA. RP Allison, DP (reprint author), Univ Tennessee, Grad Sch Genome Sci & Technol, ORNL, Knoxville, TN 37996 USA. EM allisond@utk.edu RI Doktycz, Mitchel/A-7499-2011; Morrell-Falvey, Jennifer/A-6615-2011 OI Doktycz, Mitchel/0000-0003-4856-8343; Morrell-Falvey, Jennifer/0000-0002-9362-7528 FU NIAID NIH HHS [R01 AI-33096]; NIGMS NIH HHS [1R41GM071143-01] NR 34 TC 33 Z9 34 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 695 EP 702 DI 10.1016/j.ultramic.2006.02.006 PG 8 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600010 PM 16682120 ER PT J AU Checco, A Cai, YG Gang, O Ocko, BM AF Checco, Antonio Cai, Yuguang Gang, Oleg Ocko, Benjamin M. TI High resolution non-contact AFM imaging of liquids condensed onto chemically nanopatterned surfaces SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE non-contact AFM; wetting; liquids; contact angle; line tension; chemical patterns; self-assembled monolayers ID SCANNING FORCE MICROSCOPY; TAPPING-MODE; MORPHOLOGICAL TRANSITIONS; WETTING MORPHOLOGIES; FILMS; DROPLETS; WATER; GOLD; NANOSTRUCTURES; MONOLAYERS AB The wetting of ethanol and octane on chemically nanopatterned surfaces has been investigated using Atomic Force Microscopy (AFM) under controlled environmental conditions. The patterns were generated on a methyl-terminated, organic monolayer using an AFM electro-oxidation process. The subsequent wetting of the organic liquids was studied using non-contact mode AFM under equilibrium conditions with the vapor. This study of condensed nanoliquids provides the first reliable measurements of sub 100 nm liquid profile shapes. The derived contact angles give an estimate of the line tension. Published by Elsevier B.V. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Checco, A (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM checco@bnl.gov NR 38 TC 33 Z9 34 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 703 EP 708 DI 10.1016/j.ultramic.2005.11.009 PG 6 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600011 PM 16713678 ER PT J AU Lee, I Sarveswaran, V Lieberman, M Greenbaum, E AF Lee, I. Sarveswaran, V. Lieberman, M. Greenbaum, E. TI Characterization of a single molecular QCA cell by Q-control enhanced amplitude modulation atomic force microscopy SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE atomic force microscopy; quality factor control; quantum-dot cellular automata; silicon phthalocyanine ID AUTOMATA; DNA; BEHAVIOR AB Major technical challenges for reduction of device sizes for computation and memory are the interconnection and power dissipation problems. Molecular quantum-dot cellular automata (QCA) have been proposed as solutions to this problem. Silicon phthalocyanine (SiPc) is a possible candidate for a molecular QCA element. Therefore, it is important to develop an in situ observation technique to visualize individual SiPc molecules. We report here the first image of a single SiPc dimer in air by using quality factor control (Q-control) enhanced amplitude modulation atomic force microscopy (AFM) and an investigation of the interaction forces between the tip and SiPc dimer. The AFM was operated at 0% relative humidity in an ultrapure nitrogen environment either with or without, Q-control. Theoretical simulations using the point-mass description of the AFM, demonstrated that Q-enhancement reduced the force exerted from the tip to the sample surface. Our results, consistent with theory, demonstrated that the image force was reduced and a greater height and a larger size were measured. The advantages of this method can be extended to the AFM observation of other "soft" structures, and these results can be useful for a wider community. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Lee, I (reprint author), Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. EM leei@ornl.gov NR 16 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 735 EP 741 DI 10.1016/j.ultramic.2005.12.008 PG 7 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600014 PM 16678348 ER PT J AU Dareing, DW Tian, F Thundat, T AF Dareing, Don W. Tian, Fang Thundat, Thomas TI Effective mass and flow patterns of fluids surrounding microcantilevers SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE microantilever sensors; damping; induced mass; cantilever resonance ID VISCOUS-FLUID; CANTILEVERS AB An analytical approach to determine the streamlines of fluid flow adjacent to the surfaces of vibrating cantilevers is presented. Fluid flow over the top and bottom surfaces of a microcantilever is established by solving two-dimensional Navier-Stokes equations for viscous flow. The x and y velocity components are used to establish streamlines for absolute fluid motion. These streamlines show a central stagnation core perpendicular and central to the cantilever surface extending along the full length of cantilevers, which most likely accounts for the added mass effect (induced mass) of fluid media around vibrating microcantilevers. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dareing, DW (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM ddareing@utk.edu NR 10 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 789 EP 794 DI 10.1016/j.ultramic.2005.11.011 PG 6 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600022 PM 16650934 ER PT J AU Desikan, R Lee, I Thundat, T AF Desikan, Ramya Lee, Ida Thundat, Thomas TI Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE microcantilever sensor; self-assembled monolayers; alkanethiols; AFM ID MICROCANTILEVER SENSORS; CANTILEVERS; GOLD AB Microcantilevers undergo quasi-static bending due to adsorption-induced stress when adsorption is confined to a single surface. Understanding the origin of surface stress is crucial for optimizing sensor performance. We have investigated the effect of surface morphology of gold-coated cantilevers on the adsorption characteristics of self-assembled monolayers of alkanethiols. Self-assembly of alkanethiols from liquid phase closely follows Langmuir-type kinetics up to a single monolayer assembly. Our results indicate that alkanethiol adsorption-induced surface stress is largely unaffected by surface roughness of the cantilever. Unlike prior reports that suggest surface roughness enhances adsorption-induced stress, we observe that nanometer-size roughness slightly decreases surface stress and adsorption kinetics. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. RP Lee, I (reprint author), Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. EM leei@ornl.gov; thundattg@ornl.gov NR 21 TC 30 Z9 31 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 795 EP 799 DI 10.1016/j.ultramic.2005.11.012 PG 5 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600023 PM 16678968 ER PT J AU Farahi, RH Passian, A Zahrai, S Lereu, AL Ferrell, TL Thundat, T AF Farahi, R. H. Passian, A. Zahrai, S. Lereu, A. L. Ferrell, T. L. Thundat, T. TI Microscale Marangoni actuation: All-optical and all-electrical methods SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE surface plasmons; Marangoni forces; microfluidic ID SURFACE; FORCES AB We present experimental results from an all-optical microfluidic platform that may be complimented by a thin film all-electrical network. Using these configurations we have studied the microfluidic convective flow systems of silicone oil, glycerol, and 1,3,5-trinitrotoluene on open surfaces through the production of surface tension gradients derived from thermal gradients. We show that sufficient localized thermal variation can be created utilizing surface plasmons and/or engaging individually addressable resistive thermal elements. Both studies manipulate fluids via Marangoni forces, each having their unique exploitable advantages. Surface plasmon excitation in metal foils are the driving engine of many physical-, chemical-, and bio-sensing applications. Incorporating, for the first time, the plasmon concept in microfluidics, our results thus demonstrate great potential for simultaneous fluid actuation and sensing. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Royal Inst Technol, Dept Mech, S-10044 Stockholm, Sweden. Univ Bourgogne, Dept Phys, F-21011 Dijon, France. RP Passian, A (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd,Bldg 4500 S,MS 6123, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 NR 16 TC 14 Z9 15 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 815 EP 821 DI 10.1016/j.ultramic.2005.12.018 PG 7 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600026 PM 16765516 ER PT J AU Venkataraman, S Allison, DP Qi, H Morrell-Falvey, JL Kallewaard, NL Crowe, JE Doktycz, MJ AF Venkataraman, S. Allison, D. P. Qi, H. Morrell-Falvey, J. L. Kallewaard, N. L. Crowe, J. E., Jr. Doktycz, M. J. TI Automated image analysis of atomic force microscopy images of rotavirus particles SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 7th International Conferene on Scanning Probe Microscopy, Sensors and Nanostructures CY JUN 05-08, 2005 CL Cancun, MEXICO DE atomic force microscopy; automated image analysis; feature extraction; rotavirus particles. ID DNA-MOLECULES; PLASMID DNA; CELLS; SURFACE; MDCK; ELASTICITY; DYNAMICS; BACTERIA; LIQUID; MOTION AB A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. Vanderbilt Univ, Med Ctr, Nashville, TN 37232 USA. Mol Imaging Inc, Tempe, AZ 85282 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Crowe, James/B-5549-2009; Doktycz, Mitchel/A-7499-2011; Morrell-Falvey, Jennifer/A-6615-2011 OI Crowe, James/0000-0002-0049-1079; Doktycz, Mitchel/0000-0003-4856-8343; Morrell-Falvey, Jennifer/0000-0002-9362-7528 FU NIAID NIH HHS [R01 AI-57933] NR 35 TC 12 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUN-JUL PY 2006 VL 106 IS 8-9 BP 829 EP 837 DI 10.1016/j.ultramic.2006.01.014 PG 9 WC Microscopy SC Microscopy GA 066LI UT WOS:000239230600028 PM 16730407 ER PT J AU Peles, JD Glenn, TC Brant, HA Wall, AK Jagoe, CH AF Peles, JD Glenn, TC Brant, HA Wall, AK Jagoe, CH TI Mercury concentrations in largemouth bass (Micropterus salmoides) from five South Carolina reservoirs SO WATER AIR AND SOIL POLLUTION LA English DT Article DE mercury; South Carolina; largemouth bass; Micropterus salmoides; southeastern United States ID SAVANNA RIVER; FISH; LAKES; BIOACCUMULATION; CONTAMINATION; IMPACTS; OREGON; USA AB Mercury concentrations in largemouth bass (Micropterus salmoides) bass were compared among five reservoirs in South Carolina. Three of these reservoirs (Lake Russell, Lake Thurmond, and Lake Marion) are accessible to the public and two (L-Lake and Par Pond) are located on the U.S. Department of Energy's Savannah River Site (SRS), which is closed to public access. Age-adjusted mercury concentrations were significantly higher in SRS bass compared to the offsite reservoirs. In addition, mercury concentrations were significantly higher in bass from Par Pond compared to L-Lake and in bass from Lakes Russell and Thurmond compared to Lake Marion. No mercury concentrations in excess of the U.S. Food and Drug Administration action level (1.0 mg.kg(-1)) were found in any bass from the public-accessible reservoirs. However, the majority of fish from these reservoirs had mercury concentrations that fall into or exceed the U.S. Environmental Protection Agency consumption category of "no more than one per week". In addition, most fish from these reservoirs had mercury levels in excess of those believed to be detrimental to sensitive avian species. C1 Penn State Univ, McKeesport, PA 15132 USA. Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Peles, JD (reprint author), Penn State Univ, 4000 Univ Dr, McKeesport, PA 15132 USA. EM jdp12@psu.edu RI Glenn, Travis/A-2390-2008; OI Kennedy, Angel/0000-0002-3491-6901 NR 26 TC 6 Z9 6 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUN PY 2006 VL 173 IS 1-4 BP 151 EP 162 DI 10.1007/s11270-005-9034-5 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 051DN UT WOS:000238141100010 ER PT J AU Kracher, A AF Kracher, A TI Meta-humans and Metanoia: The moral dimension of extraterrestrials SO ZYGON LA English DT Article DE extraterrestrial aliens; C. S!Lewis; morality; original sin; science fiction AB Although we do not know whether intelligent extraterrestrials exist, they are a permanent fixture of literature and philosophical argument. Part of their appeal is that they watch us from above and thus serve as a metaphor for human self-reflexivity. This makes fictional aliens especially useful when moral issues are at stake. In order to evaluate stories about aliens with respect to moral conclusions two conditions must be fulfilled. First, the stories have to be detailed enough that we can understand the circumstances of the aliens' moral choices. Therefore science fiction often is more useful than arguments involving aliens in short technical papers. Second, their fictional lives need to be possible in our own universe, or very nearly so, in order to be relevant for our own moral conduct. Taking as an example the unfallen aliens in C. S. Lewis's novels Out of the Silent Planet (1938) and Perelandra (1943), we can acknowledge the theological interest and literary subtlety. Nonetheless, the stories fail as moral parables in one important respect: The aliens depicted could not be a product of evolution in our universe, at least as we currently understand its scientific laws. This realization has important consequences for our self-understanding and thus underlines how fictional aliens can be useful in making sense of the complexities involved in moral argumentation. C1 Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA. RP Kracher, A (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM akracher@iastate.edu NR 34 TC 3 Z9 3 U1 0 U2 7 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0591-2385 J9 ZYGON JI Zygon PD JUN PY 2006 VL 41 IS 2 BP 329 EP 346 DI 10.1111/j.1467-9744.2005.00741.x PG 18 WC Social Issues; Religion SC Social Issues; Religion GA 045GS UT WOS:000237731200006 ER PT J AU Rahman, S Lipert, RJ Porter, MD AF Rahman, S Lipert, RJ Porter, MD TI Rapid screening of pathogenic bacteria using solid phase concentration and diffuse reflectance spectroscopy SO ANALYTICA CHIMICA ACTA LA English DT Article DE rapid detection; pathogenic bacteria; E. coli O157 : H7; solid phase extraction; diffuse reflectance spectroscopy ID ESCHERICHIA-COLI O157-H7; POLYMERASE-CHAIN-REACTION; IN-GROUND BEEF; REAL-TIME PCR; IMMUNOMAGNETIC SEPARATION; CYANINE DYE; E. COLI; FOOD; IMMUNOSENSOR; EXTRACTION AB A new methodology to rapidly screen for pathogenic bacteria in various liquids (e.g., potable water and juice) is described. It combines the selectivity of dye-labeled antibodies, the sample concentration capability of solid phase membrane filtration, and the facile readout of the concentrated, dye-labeled microorganisms by diffuse reflectance spectroscopy (DRS). Details about the selection of the most effective membrane filter, detection of target bacteria in different types of liquids, and evaluation of assay specificity in screening for E. coli O157:H7 are discussed. For this pathogen, the technique has a working range of 5 x 10(5) to 5 x 10(8) cells/mL and an overall work up time of similar to 45 min. The amount of captured bacteria is directly determined in only 2 s by using a hand-held DRS instrument via comparisons to a calibration curve based on the Kubelka-Munk function. Overall, this assay system offers high speed, simplicity, and low cost, making it a potential alternative for screening of several types of bacterial contaminated samples in almost any location. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ Sci & Technol, Ames Lab, US DOE, Inst Combinatorial Discovery, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Biol & Chem Engn, Ames, IA 50011 USA. RP Porter, MD (reprint author), Iowa State Univ Sci & Technol, Ames Lab, US DOE, Inst Combinatorial Discovery, Ames, IA 50011 USA. EM mporter@porterl.ameslab.gov RI Lipert, Robert/A-8571-2009; Rahman, Sharif/D-3229-2009 NR 48 TC 5 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD MAY 31 PY 2006 VL 569 IS 1-2 BP 83 EP 90 DI 10.1016/j.aca.2006.03.083 PG 8 WC Chemistry, Analytical SC Chemistry GA 049ZL UT WOS:000238056700010 ER PT J AU Chen, K Vo-Dinh, KC Yan, F Wabuyele, MB Vo-Dinh, T AF Chen, Kui Vo-Dinh, Kim-Chi Yan, Fei Wabuyele, Musundi B. Vo-Dinh, Tuan TI Direct identification of alizarin and lac dye on painting fragments using surface-enhanced Raman scattering SO ANALYTICA CHIMICA ACTA LA English DT Article DE surface-enhanced Raman scattering; alizarin; painting; art and archaeology ID ANTHRAQUINONE; TEXTILES; PIGMENTS; ART AB A surface-enhanced Raman scattering (SERS) based procedure was investigated for potential applications in the direct identification of selected anthraquinone dyes on works of art objects. The simplicity and effectiveness of this procedure was demonstrated in a proof-of-concept experiment. A microscopic fragment containing alizarin or lac dye was removed from a painting. A layer of silver nanoparticles was thermally evaporated directly on the fragment to induce SERS effect. SERS spectra were collected directly from the Ag-nanoparticle-coated sample fragments with a Raman microscope. Based on their characteristic SERS spectra, the presence of alizarin or lac dye in the sample fragments can be detected. The applicability of this procedure for potential applications in minimally invasive analysis of color layer from artwork objects is discussed. Finally, the thickness of the Ag nanoparticle layer was optimized. (c) 2006 Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Adv Biomed Sci & Technol Grp, Oak Ridge, TN 37831 USA. RP Vo-Dinh, T (reprint author), Duke Univ, Fitzpatrick Inst Photon, 136 Hudson Hall,Box 90281, Durham, NC 27708 USA. EM tuan.vodinh@duke.edu RI Yan, Fei/P-1330-2014 OI Yan, Fei/0000-0001-5983-143X NR 17 TC 39 Z9 40 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 EI 1873-4324 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD MAY 31 PY 2006 VL 569 IS 1-2 BP 234 EP 237 DI 10.1016/j.aca.2006.03.060 PG 4 WC Chemistry, Analytical SC Chemistry GA 049ZL UT WOS:000238056700030 ER PT J AU Blenda, A Scheffler, J Scheffler, B Palmer, M Lacape, JM Yu, JZ Jesudurai, C Jung, S Muthukumar, S Yellambalase, P Ficklin, S Staton, M Eshelman, R Ulloa, M Saha, S Burr, B Liu, SL Zhang, TZ Fang, DQ Pepper, A Kumpatla, S Jacobs, J Tomkins, J Cantrell, R Main, D AF Blenda, Anna Scheffler, Jodi Scheffler, Brian Palmer, Michael Lacape, Jean-Marc Yu, John Z. Jesudurai, Christopher Jung, Sook Muthukumar, Sriram Yellambalase, Preetham Ficklin, Stephen Staton, Margaret Eshelman, Robert Ulloa, Mauricio Saha, Sukumar Burr, Ben Liu, Shaolin Zhang, Tianzhen Fang, Deqiu Pepper, Alan Kumpatla, Siva Jacobs, John Tomkins, Jeff Cantrell, Roy Main, Dorrie TI CMD: a Cotton Microsatellite Database resource for Gossypium genomics SO BMC GENOMICS LA English DT Article ID EST-DERIVED MICROSATELLITES; ALLOTETRAPLOID COTTON; MAP; MARKERS; LOCI AB Background: The Cotton Microsatellite Database (CMD) http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. Description: At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. Conclusion: The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp. C1 Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA. ARS, Crop Genet & Prod Res Unit, Stoneville, MS USA. ARS, MSA, Genom Lab, Stoneville, MS USA. Clemson Univ, Genom Inst, Biosyst Res Ctr, Clemson, SC 29634 USA. Ctr Int Rech Agron Dev, CIRAD, F-34398 Montpellier, France. USDA ARS, So Plains Agr Res Ctr, College Stn, TX 77845 USA. USDA ARS, WICS Res Unit, Cotton Enhancement Program, Shafter, CA 93263 USA. USDA ARS, Crop Sci Res Lab, Mississippi State, MS 39762 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Monsanto Co, St Louis, MO 63167 USA. Nanjing Agr Univ, Cotton Res Inst, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Peoples R China. Delta & Pine Land Co, Winterville, MS 38782 USA. Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. Dow AgroSci LLC, Indianapolis, IN 46268 USA. Bayer BioSci NV, B-9052 Ghent, Belgium. Cotton Inc, Cary, NC 27513 USA. Washington State Univ, Dept Hort & Landscape Architecture, Pullman, WA 99164 USA. RP Blenda, A (reprint author), Clemson Univ, Dept Biochem & Genet, 51 New Cherry St, Clemson, SC 29634 USA. EM blenda@clemson.edu; jscheffler@msa-stoneville.ars.usda.gov; bscheffler@msa-stoneville.ars.usda.gov; mbp@clemson.edu; marc.lacape@cirad.fr; zyu@qutun.tamu.edu; jcdr@genome.clemson.edu; sookjc@gmail.com; kmsriram@gmail.com; preetham@genome.clemson.edu; stephen@genome.clemson.edu; mestato@yahoo.com; robert@genome.clemson.edu; mulloa@pw.ars.usda.gov; ssaha@msa-msstate.ars.usda.gov; burr@bnl.gov; shaolin.liu@monsanto.com; cotton@njau.edu.cn; Deqiu.Fang@deltaandpine.com; apepper@mail.bio.tamu.edu; spkumpatla@dow.com; j.jacobs@bayercropscience.com; jtmkns@clemson.edu; RCantrell@cottoninc.com; dorrie@wsu.edu RI Lacape, Jean-Marc/B-4326-2008; OI fang, david/0000-0003-0036-5459; Scheffler, Brian/0000-0003-1968-8952 NR 28 TC 80 Z9 88 U1 2 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD MAY 31 PY 2006 VL 7 AR 132 DI 10.1186/1471-2164-7-132 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 073TQ UT WOS:000239765900001 PM 16737546 ER PT J AU Thompson, JR Wiens, RC Barefield, JE Vaniman, DT Newsom, HE Clegg, SM AF Thompson, JR Wiens, RC Barefield, JE Vaniman, DT Newsom, HE Clegg, SM TI Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INDUCED PLASMA SPECTROSCOPY; X-RAY SPECTROMETER; MARS; ROCKS; EXPLORATION; DIVERSITY; CHEMISTRY; ANDESITE; OLIVINE AB Laser-induced breakdown spectroscopy (LIBS) was recently selected to provide active remote sensing compositional information on the Mars Science Laboratory (MSL) rover. The ability of LIBS to remotely determine differences between basaltic rock types on Mars is investigated by analyzing two Martian basaltic shergottite meteorites whose compositions differ slightly and which also differ slightly in texture. Using 14 analysis spots of similar to 400 mm diameter on Dar al Gani (DaG) 476 and 9 analysis spots on Zagami, the LIBS technique at a 5.4 m standoff distance clearly distinguished the olivine-phyric (DaG 476) from the basaltic (Zagami) shergottite on the basis of MgO and CaO. Mean elemental abundances agreed with literature values for these meteorites to within similar to 12% for most of the major elements. The ability of LIBS to remotely distinguish between basaltic and andesitic compositions in a Martian environment was also investigated by analyzing a known andesite standard and comparing its spectra to the Martian basaltic shergottite spectra, yielding agreement with the literature andesite composition within 9%. The data presented here demonstrate the ability of LIBS to provide reasonable estimates of whole rock composition as well as determine relatively subtle differences in rock types from a distance. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. RP Thompson, JR (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87544 USA. EM rwiens@lanl.gov; sclegg@lanl.gov OI Barefield, James/0000-0001-8674-6214; Clegg, Sam/0000-0002-0338-0948 NR 26 TC 31 Z9 31 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 31 PY 2006 VL 111 IS E5 AR E05006 DI 10.1029/2005JE002578 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 050FM UT WOS:000238072900001 ER PT J AU Tyryshkin, AM Morton, JJL Benjamin, SC Ardavan, A Briggs, GAD Ager, JW Lyon, SA AF Tyryshkin, AM Morton, JJL Benjamin, SC Ardavan, A Briggs, GAD Ager, JW Lyon, SA TI Coherence of spin qubits in silicon SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID QUANTUM COMPUTATION; RESONANCE EXPERIMENTS; SPECTRAL DIFFUSION; DOPED SILICON; RELAXATION; COMPUTER; DECAY; GATES; DOTS; SOLIDS AB Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer. C1 Dept Elect Engn, Princeton, NJ 08544 USA. Univ Oxford, Dept Mat, Oxford OX1 3PH, England. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lyon, SA (reprint author), Dept Elect Engn, Princeton, NJ 08544 USA. EM lyon@princeton.edu RI Tyryshkin, Alexei/A-5219-2008; Morton, John/I-3515-2013; Benjamin, Simon/A-8673-2008; Briggs, Andrew/A-6890-2011; OI Benjamin, Simon/0000-0002-7766-5348; Ager, Joel/0000-0001-9334-9751 NR 45 TC 77 Z9 78 U1 1 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 31 PY 2006 VL 18 IS 21 SI SI BP S783 EP S794 DI 10.1088/0953-8984/18/21/S06 PG 12 WC Physics, Condensed Matter SC Physics GA 057JO UT WOS:000238592300007 ER PT J AU Chapman, KW Chupas, PJ Kepert, CJ AF Chapman, Karena W. Chupas, Peter J. Kepert, Cameron J. TI Compositional dependence of negative thermal expansion in the Prussian blue analogues (MPtIV)-Pt-II(CN)(6) (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ENERGY X-RAYS; REFLECTION INTENSITIES; COORDINATION POLYMERS; INCOMPLETE ABSORPTION; CRYSTAL-STRUCTURES; DIFFRACTION; ZRW2O8; ZN(CN)(2); CHEMISTRY; ZEOLITES AB The effect of M-II substitution on the magnitude of the negative thermal expansion (NTE) behavior within a series of Prussian Blue analogues, (MPtIV)-Pt-II(CN)(6) for M-II = Mn, Fe, Co, Ni, Cu, Zn, Cd, has been investigated using variable-temperature powder X-ray diffraction (100-400 K). The NTE behavior varies widely with MII substitution, from near zero thermal expansion in NiPt(CN)(6) (alpha = dIII dT = -1.02(11) x 10(-6) K-1) up to a maximum in CdPt(CN)(6) (alpha = -10.02(11) x 10(-6) K-1). The trend in the magnitude of the NTE behavior, with increasing atomic number (Z) of the M-II ion, follows the order Mn-II > Fe-II > Co-II > Ni-II < Cu-II > Zn-II > Cd-II, which correlates with the trends for MII cation size, the lattice parameter, and structural flexibility as indicated by the temperature-dependent structural refinements and Raman spectroscopy. Analysis of the temperature dependence of the average structures suggests that the differences in the thermal expansion are due principally to the different strengths of the metal-cyanide binding interaction and, accordingly, the different energies of transverse vibration of the cyanide bridge, with enhanced NTE behavior for more flexible lattices. C1 Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM c.kepert@chem.usyd.edu.au RI Chapman, Karena/G-5424-2012 NR 46 TC 107 Z9 109 U1 9 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 31 PY 2006 VL 128 IS 21 BP 7009 EP 7014 DI 10.1021/ja060916r PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 046MS UT WOS:000237816300045 PM 16719481 ER PT J AU Beckman, SP Chrzan, DC AF Beckman, SP Chrzan, DC TI Structure of glide-set 90 degrees partial dislocation cores in diamond cubic semiconductors (vol 340, pg 990, 2003) SO PHYSICA B-CONDENSED MATTER LA English DT Correction C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Beckman, SP (reprint author), Univ Texas, Inst Computat Engn Sci, 201 E 24 St,1 Univ Stn C0200 ACES, Austin, TX 78712 USA. EM sbeckman@ices.utexas.edu NR 1 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAY 31 PY 2006 VL 381 IS 1-2 BP 306 EP 306 DI 10.1016/j.physb.2006.01.497 PG 1 WC Physics, Condensed Matter SC Physics GA 058KR UT WOS:000238664400051 ER PT J AU Dong, CL Chen, CL Chen, YY Asokan, K Lee, JF Guo, JH Chang, CL AF Dong, CL Chen, CL Chen, YY Asokan, K Lee, JF Guo, JH Chang, CL TI Electronic structure of CeAl2 thin films studied by X-ray absorption spectroscopy SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 8th International Conference on Atomically Controlled Surfaces, Interfaces, and Nanostructures/13th International Congress on Thin Films CY JUN 20-23, 2005 CL Stockholm, SWEDEN SP Swedish Res Council, Royal Swedish Acad Sci, Nobel Comm Phys & Chem, Swedish Fdn Strateg Res DE XANES; mixed valence; surface; thin film ID SIZE; NANOPARTICLES; CLUSTERS; CE AB We report X-ray absorption near edge structures (XANES) study of CeAl2 thin films of various thicknesses, 40-120 nm, at Al K- and Ce L-3-edges. The threshold of the absorption features at the Al K-edge shifts to the higher photon energy side as film thickness decreases, implying a decreased in Al p-orbital charges. On the other hand, from Ce L-3-edge spectra, we observed a decrease in the 5d4f occupancy as the surface-to-bulk ratio increases. The valence of Ce in these thin films, as revealed by the Cc L-3-edge spectral results, is mainly trivalent. From a more detailed analysis we found a small amount of Ce4+ contribution, which increases with decreasing film thickness. Our results indicate that the surface-to-bulk ratio is the key factor which affects the electronic structure of CeAl2 thin films. The above observations also suggest that charge transfer from Al to Cc is associated with the decrease of the film thickness. (c) 2005 Elsevier B.V. All rights reserved. C1 Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Ctr Nucl Sci, New Delhi 110067, India. Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chang, CL (reprint author), Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan. EM clchang@mail.tku.edu.tw RI Chen, Chi Liang/F-4649-2012; Kandasami, Asokan/A-6035-2009; OI Kandasami, Asokan/0000-0002-0613-219X; Chang, Ching-Lin/0000-0001-8547-371X; Kandasami, Asokan/0000-0002-1602-765X NR 9 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAY 30 PY 2006 VL 252 IS 15 BP 5372 EP 5375 DI 10.1016/j.apsusc.2005.12.042 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 057VM UT WOS:000238623300032 ER PT J AU Magnuson, M Butorin, SM Werme, L Nordgren, J Ivanov, KE Guo, JH Shuh, DK AF Magnuson, M. Butorin, S. M. Werme, L. Nordgren, J. Ivanov, K. E. Guo, J. -H. Shuh, D. K. TI Uranium oxides investigated by X-ray absorption and emission spectroscopies SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 8th International Conference on Atomically Controlled Surfaces, Interfaces, and Nanostructures/13th International Congress on Thin Films CY JUN 20-23, 2005 CL Stockholm, SWEDEN SP Swedish Res Council, Royal Swedish Acad Sci, Nobel Comm Phys & Chem, Swedish Fdn Strateg Res DE actinides; X-ray emission; X-ray absorption ID PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE AB X-ray absorption and resonant X-ray emission measurements at the O 1s edge of the uranium oxides UO2, U3O8 and UO3 are presented. The spectral shapes of the O K alpha X-ray emission spectra of UO3 exhibit significant excitation energy dependence, from an asymmetric to a symmetric form, which differs from those of UO2 and U3O8. This energy dependence is attributed to a significant difference in the oxygen-uranium hybridization between two different sites in the crystal structure of UO3. The spectral shapes of UO2 and U3O8 are also found to be different but without significant energy dependence. The experimental spectra of the valence and conduction bands of the uranium oxides are compared to the results of electronic structure calculations available in the literature. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RRC Kurchatov Inst, Moscow, Russia. RP Magnuson, M (reprint author), Univ Uppsala, Dept Phys, POB 530, S-75121 Uppsala, Sweden. EM Martin.Magnuson@fysik.uu.se RI Magnuson, Martin/F-5145-2012 OI Magnuson, Martin/0000-0002-0317-0190 NR 13 TC 19 Z9 19 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD MAY 30 PY 2006 VL 252 IS 15 BP 5615 EP 5618 DI 10.1016/j.apsusc.2005.12.131 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 057VM UT WOS:000238623300091 ER PT J AU de la Garza, L Saponjic, ZV Rajh, T Dimitrijevic, NM AF de la Garza, L Saponjic, ZV Rajh, T Dimitrijevic, NM TI Photoelectroactivity of a hybrid system constructed by immobilization of avidin onto biotinylated TiO2 electrodes SO CHEMISTRY OF MATERIALS LA English DT Article ID CHARGE-TRANSFER; HORSERADISH-PEROXIDASE; SURFACE-STATES; SOLAR-CELLS; PROTEINS; NANOPARTICLES; STREPTAVIDIN; LIPOSOMES; DEVICES; COMPLEX AB Immobilization of avidin onto thin film nanocrystalline TiO2 on ITO was obtained through avidin-biotin binding. In the construction of hybrid systems, dopamine was used as the TiO2 surface-active ligand, providing a conductive lead to covalently linked biotin. The assembled hybrids were characterized using electrochemical techniques of chronopotentiometry, cyclic voltammetry, and photocurrent action spectroscopy. With each layer of a biomolecule (dopamine, biotin, and avidin) attached onto the TiO2 film, an increase in overpotential (eta) for the oxidation of ferrocyanide was detected by chronopotentiometric measurements. An increase in overpotential of Delta eta similar to 400 mV was measured for the monolayer of avidin bonded to biotinylated electrodes. The absorption of light by semiconductor nanocrystallites results in charge separation, holes being localized on avidin. The photoinduced charge separation and oxidation of avidin yields to the dissociation of the avidin-biotin complex, promoting changes in the photoelectroactivity of avidin-modified electrodes. The dissociation of this strong noncovalent complex was confirmed by measuring changes in chemiluminescence produced in a reaction of beta-galactosidase-labeled avidin and 4-methylumbelliferyl-beta-D-galactopyranoside. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dimitrijevic@anl.gov NR 34 TC 10 Z9 10 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 30 PY 2006 VL 18 IS 11 BP 2682 EP 2688 DI 10.1021/cm060140t PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 045DE UT WOS:000237722000010 ER PT J AU Singh, DJ Rai, RC Musfeldt, JL Auluck, S Singh, N Khalifah, P McClure, S Mandrus, DG AF Singh, DJ Rai, RC Musfeldt, JL Auluck, S Singh, N Khalifah, P McClure, S Mandrus, DG TI Optical properties and electronic structure of spinel ZnRh2O4 SO CHEMISTRY OF MATERIALS LA English DT Article ID AMORPHOUS OXIDE SEMICONDUCTOR; SPECTRUM; STATE; WATER AB The electronic structure of normal spinel structure ZnRh2O4 is investigated using combined optical properties measurements and density functional calculations. We find semiconducting behavior with an indirect band gap between crystal field split Rh 4d levels, with a t(2g) valence band and an e(g) conduction band. The band gap is found to be similar to 1.2 eV based on a comparison of the calculated and measured optical conductivities. The results are discussed in terms of potential photoelectrochemical applications. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. Indian Inst Technol, Dept Phys, Roorkee 247667, Uttar Pradesh, India. Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Singh, Nirpendra/B-4781-2008; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014 NR 24 TC 30 Z9 32 U1 6 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 30 PY 2006 VL 18 IS 11 BP 2696 EP 2700 DI 10.1021/cm060160v PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 045DE UT WOS:000237722000012 ER PT J AU Birkholzer, JT AF Birkholzer, JT TI A temperature-pro file method for estimating flow in geologic heat pipes SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE hydrogeology; heat pipes; temperature ID SATURATED FRACTURED TUFF; THERMOHYDROLOGIC CONDITIONS; HYDRAULIC CONDUCTIVITY; SIMILARITY SOLUTION; POROUS-MEDIA; ROCK AB Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing radioactive wastes, may induce strong liquid and gas flow processes in porous subsurface environments. The magnitude of these flow processes is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat-pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface. (c) 2006 Elsevier B.V. All rights reserved. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Birkholzer, JT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 NR 22 TC 3 Z9 5 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD MAY 30 PY 2006 VL 85 IS 3-4 BP 89 EP 117 DI 10.1016/j.jconhyd.2005.12.009 PG 29 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 049CJ UT WOS:000237992800001 PM 16516337 ER PT J AU Scruggs, NR Kornfield, JA Lal, J AF Scruggs, NR Kornfield, JA Lal, J TI Using the "switchable" quality of liquid crystal solvents to mediate segregation between coil and liquid crystalline polymers SO MACROMOLECULES LA English DT Article ID ASYMMETRIC BLOCK-COPOLYMERS; PHASE-BEHAVIOR; CONCENTRATED-SOLUTIONS; VARYING SELECTIVITY; POLYSTYRENE; 5CB AB The discontinuous change in solvent quality of a liquid crystal (LC) solvent, 5CB, at the nematic-isotropic phase transition produces abrupt changes in the phase behavior of solutions of coil and LC polymers and in the self-assembly of coil-LC block copolymers. Nematic 5CB is strongly selective for a side-group liquid crystal polymer (SGLCP), and isotropic 5CB is a good solvent for both SGLCP and a random coil ( polystyrene, PS). In nematic 5CB, unfavorable LC-PS interactions drive phase separation in SGLCP-PS-LC ternary solutions and drive micellization of PS-SGLCP diblocks. In isotropic 5CB, rich phase behavior occurs in both ternary solutions and block copolymer solutions. Despite the fact that isotropic 5CB is a good solvent for both SGLCP and PS, segregation can occur due to the asymmetric solvent effect (i.e., the preference of the solvent for the SGLCP). In concentrated isotropic solutions, unfavorable SGLCP-PS interactions become dominant. C1 CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Kornfield, JA (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. EM jak@cheme.caltech.edu RI Carty, Neal/N-6449-2013; Kornfield, Julia/F-1484-2016 OI Kornfield, Julia/0000-0001-6746-8634 NR 30 TC 7 Z9 7 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 30 PY 2006 VL 39 IS 11 BP 3921 EP 3926 DI 10.1021/ma052414o PG 6 WC Polymer Science SC Polymer Science GA 045CV UT WOS:000237721100030 ER PT J AU Bulusu, S Li, X Wang, LS Zeng, XC AF Bulusu, Satya Li, Xi Wang, Lai-Sheng Zeng, Xiao Cheng TI Evidence of hollow golden cages SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE anion photoelectron spectroscopy; density functional calculation; hollow gold cages; lowest-energy clusters ID TRANSITION-METAL CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; MOLECULES; FULLERENE; C-60; CHEMISTRY; NONPLANAR; PLANAR; AU-32 AB The fullerenes are the first "free-standing" elemental hollow cages identified by spectroscopy experiments and synthesized in the bulk. Here, we report experimental and theoretical evidence of hollow cages consisting of pure metal atoms, Au-n(-) (n = 16-18); to our knowledge, free-standing metal hollow cages have not been previously detected in the laboratory. These hollow golden cages ("bucky gold") have an average diameter > 5.5 angstrom, which can easily accommodate one guest atom inside. C1 Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. Univ Nebraska, Ctr Mat & Nanosci, Lincoln, NE 68588 USA. Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Chem Sci Div, Richland, WA 99352 USA. RP Wang, LS (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM ls.wang@pnl.gov; xczeng@phase2.unl.edu NR 33 TC 252 Z9 253 U1 9 U2 52 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 30 PY 2006 VL 103 IS 22 BP 8326 EP 8330 DI 10.1073/pnas.0600637103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 052BX UT WOS:000238206800007 PM 16714382 ER PT J AU Katz, AK Li, XM Carrell, HL Hanson, BL Langan, P Coates, L Schoenborn, BP Glusker, JP Bunick, GJ AF Katz, AK Li, XM Carrell, HL Hanson, BL Langan, P Coates, L Schoenborn, BP Glusker, JP Bunick, GJ TI Locating active-site hydrogen atoms in D-xylose isomerase: Time-of-flight neutron diffraction SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amino acid ionization states; enzyme mechanism; x-ray diffraction; deuterium/hydrogen in proteins; proton transfer ID ALDOSE-KETOSE INTERCONVERSION; PROTEIN CRYSTALLOGRAPHY; SERINE PROTEASES; SPALLATION NEUTRONS; CRYSTAL-STRUCTURE; DRUG DESIGN; RESOLUTION; MECHANISM; PROGRAM; ENZYME AB Time-of-flight neutron diffraction has been used to locate hydrogen atoms that define the ionization states of amino acids in crystals Of D-Xylose isomerase. This enzyme, from Streptomyces rubiginosus, is one of the largest enzymes studied to date at high resolution (1.8 angstrom) by this method. We have determined the position and orientation of a metal ion-bound water molecule that is located in the active site of the enzyme; this water has been thought to be involved in the isomerization step in which D-Xylose is converted to D-xylulose or D-glucose to D-fructose. It is shown to be water (rather than a hydroxyl group) under the conditions of measurement (pH 8.0). Our analyses also reveal that one lysine probably has an -NH2-terminal group (rather than NH3+). The ionization state of each histidine residue also was determined. High-resolution x-ray studies (at 0.94 angstrom) indicate disorder in some side chains when a truncated substrate is bound and suggest how some side chains might move during catalysis. This combination of time-of-flight neutron diffraction and x-ray diffraction can contribute greatly to the elucidation of enzyme mechanisms. C1 Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. Univ Toledo, Instrumentat Ctr, Toledo, OH 43606 USA. Los Alamos Natl Lab, Life Sci Div, Biosci Div, Los Alamos, NM 87545 USA. Univ Tennessee, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA. Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. Univ Tennessee, Ctr Excellence Struct Biol, Knoxville, TN 37996 USA. RP Bunick, GJ (reprint author), Fox Chase Canc Ctr, 333 Cottman Ave, Philadelphia, PA 19111 USA. EM gjbunick@utk.edu RI Hanson, Bryant Leif/F-8007-2010; li, xinmin/C-6173-2011; Langan, Paul/N-5237-2015; OI Hanson, Bryant Leif/0000-0003-0345-3702; Langan, Paul/0000-0002-0247-3122; Coates, Leighton/0000-0003-2342-049X FU NCI NIH HHS [CA 06927, CA 10925, P30 CA006927]; NIGMS NIH HHS [GM 29818, R01 GM029818] NR 32 TC 50 Z9 50 U1 1 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 30 PY 2006 VL 103 IS 22 BP 8342 EP 8347 DI 10.1073/pnas.0602598103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 052BX UT WOS:000238206800010 PM 16707576 ER PT J AU Bowen, M Brunger, AT AF Bowen, M Brunger, AT TI Conformation of the synaptobrevin transmembrane domain SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Fourier-transform infrared spectroscopy; membrane fusion; membrane protein; neuotransmission ID SYNAPTIC VESICLE CYCLE; TRANSFORM INFRARED-SPECTROSCOPY; CIRCULAR-DICHROISM SPECTRA; MEMBRANE-PROTEIN STRUCTURE; ALPHA-HELICAL PEPTIDES; SNARE COMPLEX; SECONDARY STRUCTURE; FUSION PEPTIDE; LIPID-BILAYERS; STRUCTURAL-CHANGES AB The synaptic vesicle protein synaptobrevin (also called VAMP, vesicle-associated membrane protein) forms part of the SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, which is essential for vesicle fusion. Additionally, the synaptobrevin transmembrane domain can promote lipid mixing independently of complex formation. Here, the conformation of the transmembrane domain was studied by using circular dichroism and attenuated total reflection Fourier-transform infrared spectroscopy. The synaptobrevin transmembrane domain has an a-helical structure that breaks in the juxtamembrane region, leaving the cytoplasmic domain unstructured. In phospholipid bilayers, infrared dichroism data indicate that the transmembrane domain adopts a 36 degrees angle with respect to the membrane normal, similar to that reported for viral fusion peptides. A conserved aromatic/basic motif in the juxtamembrane region may be causing this relatively high insertion angle. C1 Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. Stanford Univ, Dept Neurol Sci, Stanford, CA 94305 USA. Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. RP Brunger, AT (reprint author), SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. EM axel.brunger@stanford.edu OI Brunger, Axel/0000-0001-5121-2036 NR 67 TC 47 Z9 47 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 30 PY 2006 VL 103 IS 22 BP 8378 EP 8383 DI 10.1073/pnas.0602644103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 052BX UT WOS:000238206800016 PM 16709671 ER PT J AU Cang, H Wong, CM Xu, CS Rizvi, AH Yang, H AF Cang, H Wong, CM Xu, CS Rizvi, AH Yang, H TI Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts SO APPLIED PHYSICS LETTERS LA English DT Article ID PARTICLE TRACKING AB We present an apparatus that noninvasively tracks a moving nanoparticle in three dimensions while providing concurrent sequential spectroscopic measurements. The design, based on confocal microscopy, uses a near-infrared laser and a dark-field condenser for illumination of a gold nanoparticle. By monitoring the scattered light from the nanoparticle and using a piezoelectric stage, the system was able to continuously bring the diffusive particle in a glycerol/water solution back to the focal volume with spatial resolution and response time of less than 210 nm and a millisecond, respectively. C1 Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cang, H (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM nawyang@berkeley.edu OI Yang, Haw/0000-0003-0268-6352 NR 8 TC 57 Z9 58 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 29 PY 2006 VL 88 IS 22 AR 223901 DI 10.1063/1.2204652 PG 3 WC Physics, Applied SC Physics GA 049FR UT WOS:000238001900092 ER PT J AU Pao, CW Babu, PD Tsai, HM Chiou, JW Ray, SC Yang, SC Chien, FZ Pong, WF Tsai, MH Hsu, CW Chen, LC Chen, CC Chen, KH Lin, HJ Lee, JF Guo, JH AF Pao, CW Babu, PD Tsai, HM Chiou, JW Ray, SC Yang, SC Chien, FZ Pong, WF Tsai, MH Hsu, CW Chen, LC Chen, CC Chen, KH Lin, HJ Lee, JF Guo, JH TI Electronic structures of group-III-nitride nanorods studied by x-ray absorption, x-ray emission, and Raman spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMITTING DIODES; FIELD-EMISSION; OPTICAL-PROPERTIES; BAND-GAP; INN; GROWTH; NANOWIRES; NANOTIPS; SPECTRA AB Nitrogen (N) and metal (Al, Ga, and In) K-edge x-ray absorption near-edge structure (XANES), x-ray emission spectroscopy (XES), and Raman scattering measurements were performed to elucidate the electronic structures of group-III-nitride nanorods and thin films of AlN, GaN, and InN. XANES spectra show slight increase of the numbers of unoccupied N p states in GaN and AlN nanorods, which may be attributed to a slight increase of the degree of localization of conduction band states. The band gaps of AlN, GaN, and InN nanorods are determined by an overlay of XES and XANES spectra to be 6.2, 3.5, and 1.9 eV, respectively, which are close to those of AlN and GaN bulk/films and InN polycrystals. C1 Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan. Natl Taiwan Univ, Ctr Condensed Mater Sci, Taipei 106, Taiwan. Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan. Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan. Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Pong, WF (reprint author), Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. EM wfpong@mail.tku.edu.tw RI Chen, Kuei-Hsien/F-7924-2012; Chen, Chia-Chun/F-7939-2012; Hsu, Chih-Wei/L-6801-2015; Chen, Li-Chyong/B-1705-2015 OI Hsu, Chih-Wei/0000-0002-6661-2603; Chen, Li-Chyong/0000-0001-6373-7729 NR 32 TC 11 Z9 11 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 29 PY 2006 VL 88 IS 22 AR 223113 DI 10.1063/1.2207836 PG 3 WC Physics, Applied SC Physics GA 049FR UT WOS:000238001900079 ER PT J AU Yang, B Liu, CT Nieh, TG AF Yang, B. Liu, C. T. Nieh, T. G. TI Unified equation for the strength of bulk metallic glasses SO APPLIED PHYSICS LETTERS LA English DT Article ID SOFT-MAGNETIC PROPERTIES; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; AMORPHOUS-ALLOYS; FORMING ABILITY; BUBBLE RAFT; ZR-TI; FLOW; BEHAVIOR; TEMPERATURE AB In the present study, a conceptual approach to evaluate the strength of metallic glass systems is proposed from a free volume point of view. Based on the physical analogy between the plastic deformation and glass transition, the strength of amorphous structures was found to depend on both the localized shear mechanism and the atomic cohesive energy. Interestingly, we find that the strength at the ambient temperature (T-0) can be determined by the glass transition temperature (T-g) and molar volume (V), and can be specifically predicted by a unified parameter of (T-g-T-0)/V. The predicted strength was unambiguously verified from experimental data reported for a number of metallic glass systems. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Nieh, TG (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. EM tnieh@utk.edu RI Nieh, Tai-Gang/G-5912-2011 OI Nieh, Tai-Gang/0000-0002-2814-3746 NR 43 TC 129 Z9 133 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 29 PY 2006 VL 88 IS 22 AR 221911 DI 10.1063/1.2206099 PG 3 WC Physics, Applied SC Physics GA 049FR UT WOS:000238001900029 ER PT J AU Zhou, JF Koschny, T Zhang, L Tuttle, G Soukoulis, CM AF Zhou, Jiangfeng Koschny, Thomas Zhang, Lei Tuttle, Gary Soukoulis, Costas M. TI Experimental demonstration of negative index of refraction SO APPLIED PHYSICS LETTERS LA English DT Article ID SPLIT-RING RESONATORS; MAGNETIC RESPONSE; OPTICAL METAMATERIALS; PHOTONIC CRYSTALS; FREE-SPACE; LENS AB We introduce an improved and simplified structure made of periodic arrays of pairs of H-shaped metallic wires that offer a potentially simpler approach in building negative-index materials. Using simulations and microwave experiments, we have investigated the negative-index n properties of these structures. We have measured experimentally both the transmittance and the reflectance properties and found unambiguously that a negative refractive index with Re(n)< 0 and Im(n)< Re(n). The same is true for epsilon and mu. Our results show that H-shaped wire pairs can be used very effectively in producing materials with negative refractive indices. (c) 2006 American Institute of Physics. C1 Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Elect & Comp Engn, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Microelect Res Ctr, Ames, IA 50011 USA. RP Soukoulis, CM (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Zhou, Jiangfeng/0000-0002-6958-3342 NR 27 TC 127 Z9 132 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 29 PY 2006 VL 88 IS 22 AR 221103 DI 10.1063/1.2208264 PG 3 WC Physics, Applied SC Physics GA 049FR UT WOS:000238001900003 ER PT J AU Textor, C Schulz, M Guibert, S Kinne, S Balkanski, Y Bauer, S Berntsen, T Berglen, T Boucher, O Chin, M Dentener, F Diehl, T Easter, R Feichter, H Fillmore, D Ghan, S Ginoux, P Gong, S Kristjansson, JE Krol, M Lauer, A Lamarque, JF Liu, X Montanaro, V Myhre, G Penner, J Pitari, G Reddy, S Seland, O Stier, P Takemura, T Tie, X AF Textor, C. Schulz, M. Guibert, S. Kinne, S. Balkanski, Y. Bauer, S. Berntsen, T. Berglen, T. Boucher, O. Chin, M. Dentener, F. Diehl, T. Easter, R. Feichter, H. Fillmore, D. Ghan, S. Ginoux, P. Gong, S. Kristjansson, J. E. Krol, M. Lauer, A. Lamarque, J. F. Liu, X. Montanaro, V. Myhre, G. Penner, J. Pitari, G. Reddy, S. Seland, O. Stier, P. Takemura, T. Tie, X. TI Analysis and quantification of the diversities of aerosol life cycles within AeroCom SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Review ID GENERAL-CIRCULATION MODEL; GLOBAL 3-DIMENSIONAL MODEL; CHEMICAL-TRANSPORT MODEL; SEA-SALT AEROSOL; DRY DEPOSITION PARAMETERIZATION; SIZE-SEGREGATED SIMULATION; TROPOSPHERIC SULFUR CYCLE; COMMUNITY CLIMATE MODEL; AIR-QUALITY MODELS; LARGE-SCALE MODELS AB Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The differences among the results (model diversities) for sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface. Processes and parameters are identified which deserve further research. The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO4, POM, and BC. The all-models-average residence time is shortest for SS with about half a day, followed by SO4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO4 and SS. It is the dominant sink for SO4, BC, and POM, and contributes about one third to the total removal of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and other dry deposition processes. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain. Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for the individual species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times. C1 Lab Sci Climat & Environm, Gif Sur Yvette, France. Max Planck Inst Meteorol, Hamburg, Germany. Columbia Univ, GISS, New York, NY 10027 USA. Univ Oslo, Dept Geophys, Oslo, Norway. Univ Sci & Technol Lille, CNRS, Opt Atmospher Lab, Villeneuve Dascq, France. EC, Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, Ispra, Italy. NCAR, Boulder, CO USA. Battelle Mem Inst, Pacific NW Natl Lab, Richland, WA 99352 USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. ARQM Meteorol Serv Canda, Toronto, ON, Canada. DLR Oberpfaffenhofen, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. Univ Michigan, Ann Arbor, MI 48109 USA. Univ Aquila, I-67100 Laquila, Italy. Kyushu Univ, Fukuoka 812, Japan. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. Met Off, Hadley Ctr, Exeter, Devon, England. RP Textor, C (reprint author), Lab Sci Climat & Environm, Gif Sur Yvette, France. EM christiane.textor@cea.fr RI Lamarque, Jean-Francois/L-2313-2014; Bauer, Susanne/P-3082-2014; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Kyushu, RIAM/F-4018-2015; Balkanski, Yves/A-6616-2011; Myhre, Gunnar/A-3598-2008; Stier, Philip/B-2258-2008; Krol, Maarten/B-3597-2010; Takemura, Toshihiko/C-2822-2009; Ginoux, Paul/C-2326-2008; Boucher, Olivier/J-5810-2012; Chin, Mian/J-8354-2012; Boucher, Olivier/K-7483-2012; Penner, Joyce/J-1719-2012; Krol, Maarten/E-3414-2013; Liu, Xiaohong/E-9304-2011 OI Lamarque, Jean-Francois/0000-0002-4225-5074; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Pitari, Giovanni/0000-0001-7051-9578; Balkanski, Yves/0000-0001-8241-2858; Myhre, Gunnar/0000-0002-4309-476X; Stier, Philip/0000-0002-1191-0128; Takemura, Toshihiko/0000-0002-2859-6067; Ginoux, Paul/0000-0003-3642-2988; Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; Liu, Xiaohong/0000-0002-3994-5955 NR 208 TC 524 Z9 530 U1 16 U2 118 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD MAY 29 PY 2006 VL 6 BP 1777 EP 1813 PG 37 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 046XY UT WOS:000237845600002 ER PT J AU Kinne, S Schulz, M Textor, C Guibert, S Balkanski, Y Bauer, SE Berntsen, T Berglen, TF Boucher, O Chin, M Collins, W Dentener, F Diehl, T Easter, R Feichter, J Fillmore, D Ghan, S Ginoux, P Gong, S Grini, A Hendricks, JE Herzog, M Horowitz, L Isaksen, I Iversen, T Kirkavag, A Kloster, S Koch, D Kristjansson, JE Krol, M Lauer, A Lamarque, JF Lesins, G Liu, X Lohmann, U Montanaro, V Myhre, G Penner, JE Pitari, G Reddy, S Seland, O Stier, P Takemura, T Tie, X AF Kinne, S. Schulz, M. Textor, C. Guibert, S. Balkanski, Y. Bauer, S. E. Berntsen, T. Berglen, T. F. Boucher, O. Chin, M. Collins, W. Dentener, F. Diehl, T. Easter, R. Feichter, J. Fillmore, D. Ghan, S. Ginoux, P. Gong, S. Grini, A. Hendricks, J.E. Herzog, M. Horowitz, L. Isaksen, I. Iversen, T. Kirkavag, A. Kloster, S. Koch, D. Kristjansson, J. E. Krol, M. Lauer, A. Lamarque, J. F. Lesins, G. Liu, X. Lohmann, U. Montanaro, V. Myhre, G. Penner, J. E. Pitari, G. Reddy, S. Seland, O. Stier, P. Takemura, T. Tie, X. TI An AeroCom initial assessment - optical properties in aerosol component modules of global models SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OCEAN; AERONET; DEPTH; RETRIEVALS; PERIOD; LAND AB The AeroCom exercise diagnoses multicomponent aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space ( satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds). C1 Max Planck Inst Meteorol, Hamburg, Germany. Lab Sci Climat & Environm, Gif Sur Yvette, France. Columbia Univ, Earth Inst, New York, NY USA. Univ Oslo, Dept Geosci, Oslo, Norway. USTL, CNRS, Opt Atmospher Lab, Villeneuve Dascq, France. Met Off, Hadley Ctr, Exeter, Devon, England. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NCAR, Boulder, CO USA. EC, Joint Res Ctr, IES, Climate Change Unit, Ispra, Italy. UMBC, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. Battelle Mem Inst, Pacific NW Natl Lab, Richland, WA 99352 USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. ARQM Mateorol Serv Canada, Toronto, ON, Canada. DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. Univ Michigan, Ann Arbor, MI 48109 USA. Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. Dalhousie Univ, Halifax, NS, Canada. ETH, Zurich, Switzerland. Univ Aquila, I-67100 Laquila, Italy. Kyushu Univ, Fukuoka 812, Japan. RP Kinne, S (reprint author), Max Planck Inst Meteorol, Hamburg, Germany. EM stefan.kinne@zmaw.de RI Balkanski, Yves/A-6616-2011; Collins, William/J-3147-2014; Lamarque, Jean-Francois/L-2313-2014; Bauer, Susanne/P-3082-2014; Lohmann, Ulrike/B-6153-2009; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Kyushu, RIAM/F-4018-2015; Ginoux, Paul/C-2326-2008; Myhre, Gunnar/A-3598-2008; Stier, Philip/B-2258-2008; Boucher, Olivier/J-5810-2012; Chin, Mian/J-8354-2012; Boucher, Olivier/K-7483-2012; Penner, Joyce/J-1719-2012; Krol, Maarten/E-3414-2013; Horowitz, Larry/D-8048-2014; Liu, Xiaohong/E-9304-2011; Krol, Maarten/B-3597-2010; Herzog, Michael/B-4722-2010; Takemura, Toshihiko/C-2822-2009 OI Balkanski, Yves/0000-0001-8241-2858; Collins, William/0000-0002-4463-9848; Lamarque, Jean-Francois/0000-0002-4225-5074; Lohmann, Ulrike/0000-0001-8885-3785; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Pitari, Giovanni/0000-0001-7051-9578; Ginoux, Paul/0000-0003-3642-2988; Myhre, Gunnar/0000-0002-4309-476X; Stier, Philip/0000-0002-1191-0128; Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; Horowitz, Larry/0000-0002-5886-3314; Liu, Xiaohong/0000-0002-3994-5955; Takemura, Toshihiko/0000-0002-2859-6067 NR 18 TC 354 Z9 359 U1 5 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD MAY 29 PY 2006 VL 6 BP 1815 EP 1834 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 046XY UT WOS:000237845600003 ER PT J AU George, SD Huang, KW Waymouth, RM Solomon, EI AF George, SD Huang, KW Waymouth, RM Solomon, EI TI Metal and ligand K-edge XAS of titanium-TEMPO complexes: Determination of oxidation states and insights into Ti-O bond homolysis SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; OLEFIN POLYMERIZATION; CATALYSTS; STYRENE; ENERGY; APPROXIMATION; COORDINATION; SPECTROSCOPY; RADICALS; ETHYLENE AB Ti-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) provides a means for generating Ti(III) complexes by homolysis of the Ti-O bond. It has been determined that bis-Cp-Ti-TEMPO complexes readily undergo homolytic cleavage while the mono-Cp-Ti-TEMPO complexes do not. Here Ti K- and Cl K-edge XAS are applied to directly determine the oxidation state of TiCl3TEMPO, TiCpCl2TEMPO, and TiCp2ClTEMPO, with reference to Ti(III) and Ti(IV) complexes of known oxidation state. The Ti K- edge data show that Ti(III) complexes exhibit a pre-edge feature similar to 1 eV lower than any of the Ti(IV) complexes; while the Cl K- edges show that Ti(III) complexes have a Cl K- pre-edge feature to similar to 1 eV higher energy than any of the Ti(IV) complexes. Taken together, the Ti and Cl K- edge data indicate that the Ti-TEMPO complexes are best described as Ti(IV)-TEMPO anions (rather than Ti(III)-nitroxyl radicals). In addition, the Cl K- edges indicate that replacement of Cl by Cp weakens the bonding with the remaining ligands, with the Cl 3p covalency decreasing from 25% to 21% to 17% on going from TiCl3TEMPO to TiCpCl2TEMPO to TiCp2ClTEMPO. DFT calculations also show that the electronic structures of the Ti -TEMPO complexes are modulated by the replacement of chloride by Cp. The effect of the Cp on the ancillary ligation is one factor that contributes to facile Ti-O bond homolysis in TiCp2ClTEMPO. However, the results indicate the primary contribution to the energetics of Ti-O bond homolysis in TiCp2ClTEMPO is stabilization of the three-coordinate product by Cp. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP George, SD (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. EM serena@slac.stanford.edu; waymouth@stanford.edu; edward.solomon@stanford.edu RI Huang, Kuo-Wei/H-2303-2011; DeBeer, Serena/G-6718-2012; OI Huang, Kuo-Wei/0000-0003-1900-2658; Waymouth, Robert/0000-0001-9862-9509 NR 32 TC 15 Z9 15 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 29 PY 2006 VL 45 IS 11 BP 4468 EP 4477 DI 10.1021/ic060402t PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 044RS UT WOS:000237690700029 ER PT J AU Aitchison, IJR Close, FE Gal, A Millener, DJ AF Aitchison, IJR Close, FE Gal, A Millener, DJ TI The scientific publications of Richard Henry Dalitz, FRS (1925-2006) SO NUCLEAR PHYSICS A LA English DT Biographical-Item AB Professor Richard H. Dalitz passed away on January 13, 2006. He was almost 81 years old and his outstanding contributions are intimately connected to some of the major breakthroughs of the 20th century in particle and nuclear physics. The first comprehensive list of scientific publications by R.H. Dalitz, is hereby presented. It is divided into two categories: the first, main part comprises Dalitz's research papers and reviews, including topics in the history of particle physics, biographies and reminiscences; the second pan lists book reviews, public lectures and obituaries authored by Dalitz, and books edited by him. (c) 2006 Published by Elsevier B.V. C1 Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Aitchison, IJR (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, S Parks Rd, Oxford OX1 3NP, England. EM i.aitchison1@physics.ox.ac.uk; f.close@physics.ox.ac.uk; avragal@vms.huji.ac.il; millener@bnl.gov NR 1 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 29 PY 2006 VL 771 BP 8 EP 25 DI 10.1016/j.nuclphysa.2006.03.008 PG 18 WC Physics, Nuclear SC Physics GA 048IO UT WOS:000237941000002 ER PT J AU Omenetto, FG Wolchover, NA Wehner, MR Ross, M Efimov, A Taylor, AJ Kumar, VVRK George, AK Knight, JC Joly, NY Russell, PSJ AF Omenetto, FG Wolchover, NA Wehner, MR Ross, M Efimov, A Taylor, AJ Kumar, VVRK George, AK Knight, JC Joly, NY Russell, PSJ TI Spectrally smooth supercontinuum from 350 nm to 3 mu m in sub-centimeter lengths of soft-glass photonic crystal fibers. SO OPTICS EXPRESS LA English DT Article ID MICROSTRUCTURED FIBERS; CONTINUUM GENERATION; FREQUENCY-SHIFT; PULSE; LASER; BAND AB The conversion of light fields in photonic crystal fibers ( PCFs) capitalizes on the dramatic enhancement of several optical nonlinearities. We present here spectrally smooth, highly broadband supercontinuum radiation in a short piece of high-nonlinearity soft-glass PCF. This supercontinuum spans several optical octaves, with a spectral range extending from 350 nm to beyond 3000 nm. The selection of an appropriate propagation-length determines the spectral quality of the supercontinuum generated. Experimentally, we clearly identify two regimes of nonlinear pulse transformation: when the fiber length is much shorter than the dispersion length, soliton propagation is not important and a symmetric supercontinuum spectrum arises from almost pure self-phase modulation. For longer fiber lengths the supercontinuum is formed by the breakup of multiple Raman-shifting solitons. In both regions very broad supercontinuum radiation is produced. (c) 2006 Optical Society of America. C1 Tufts Univ, Dept Biomed Engn, Dept Phys, Medford, MA 02155 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Bath, Ctr Photon & Photon Mat, Bath BA2 7A, Avon, England. Univ Erlangen Nurnberg, Max Planck Res Grp, Inst Opt Informat & Photon, D-91058 Erlangen, Germany. RP Omenetto, FG (reprint author), Tufts Univ, Dept Biomed Engn, Dept Phys, 4 Colby St, Medford, MA 02155 USA. EM fiorenzo.omenetto@tufts.edu RI Knight, Jonathan/D-3879-2011; Russell, Philip/G-5132-2012; Ross, Matthew/D-6812-2013; Joly, Nicolas/D-3715-2011; OI Knight, Jonathan/0000-0002-0802-8804; Russell, Philip/0000-0002-8972-2477; Ross, Matthew/0000-0002-0434-544X; Efimov, Anatoly/0000-0002-5559-4147 NR 23 TC 62 Z9 65 U1 1 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAY 29 PY 2006 VL 14 IS 11 BP 4928 EP 4934 DI 10.1364/OE.14.004928 PG 7 WC Optics SC Optics GA 051OL UT WOS:000238170300043 PM 19516652 ER PT J AU Faulhaber, AE Gascooke, JR Hoops, AA Neumark, DM AF Faulhaber, AE Gascooke, JR Hoops, AA Neumark, DM TI Photodissociation dynamics of the HCNN radical SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACES; TRANSITION-STATE-THEORY; SPIN-FORBIDDEN REACTION; AB-INITIO; REACTION CH(X2-PI)+N2(X1-SIGMA-G+)->HCN(X1-SIGMA+)+N(4S); TEMPERATURE-DEPENDENCE; RATE CONSTANTS; CH MOLECULE; BAND SYSTEM; PROMPT NO AB The photodissociation dynamics of the diazomethyl (HCNN) radical have been studied using fast radical beam photofragment translational spectroscopy. A photofragment yield spectrum was obtained for the range of 25 510-40 820 cm(-1), and photodissociation was shown to occur for energies above 25 600 cm(-1). The only product channel observed was the formation of CH and N-2. Fragment translational energy and angular distributions were obtained at several energies in the range covered by the photofragment yield spectrum. The fragment translational energy distributions showed at least two distinct features at energies up to 4.59 eV, and were not well fit by phase space theory at any of the excitation energies studied. A revised C-N bond dissociation energy and heat of formation for HCNN, D-0(HC-NN)=1.139 +/- 0.019 eV and Delta H-f(0)(HCNN)=5.010 +/- 0.023 eV, were determined. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Gascooke, Jason/0000-0002-3236-2247 NR 54 TC 6 Z9 6 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2006 VL 124 IS 20 AR 204303 DI 10.1063/1.2196890 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 048JX UT WOS:000237944500025 PM 16774328 ER PT J AU Khaliullin, RZ Head-Gordon, M Bell, AT AF Khaliullin, RZ Head-Gordon, M Bell, AT TI An efficient self-consistent field method for large systems of weakly interacting components SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FUNCTIONAL THEORY CALCULATIONS; INITIO MOLECULAR-DYNAMICS; FAST MULTIPOLE METHOD; J-MATRIX ENGINE; CONVERGENCE ACCELERATION; TENSOR FORMULATION; BASIS-SETS; DENSITY; ORBITALS; ALGORITHM AB An efficient method for removing the self-consistent field (SCF) diagonalization bottleneck is proposed for systems of weakly interacting components. The method is based on the equations of the locally projected SCF for molecular interactions (SCF MI) which utilize absolutely localized nonorthogonal molecular orbitals expanded in local subsets of the atomic basis set. A generalization of direct inversion in the iterative subspace for nonorthogonal molecular orbitals is formulated to increase the rate of convergence of the SCF MI equations. Single Roothaan step perturbative corrections are developed to improve the accuracy of the SCF MI energies. The resulting energies closely reproduce the conventional SCF energy. Extensive test calculations are performed on water clusters up to several hundred molecules. Compared to conventional SCF, speedups of the order of (N/O)(2) have been achieved for the diagonalization step, where N is the size of the atomic orbital basis, and O is the number of occupied molecular orbitals. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Khaliullin, RZ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rustam@khaliullin.com; m_headgordon@berkeley.edu; alexbell@berkeley.edu RI Khaliullin, Rustam/B-2672-2009; OI Khaliullin, Rustam/0000-0002-9073-6753; Bell, Alexis/0000-0002-5738-4645 NR 43 TC 87 Z9 87 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2006 VL 124 IS 20 AR 204105 DI 10.1063/1.2191500 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 048JX UT WOS:000237944500014 PM 16774317 ER PT J AU Melnichenko, YB Wignall, GD Cole, DR Frielinghaus, H AF Melnichenko, YB Wignall, GD Cole, DR Frielinghaus, H TI Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POROUS VYCOR GLASS; VAPOR CRITICAL-BEHAVIOR; CARBON-DIOXIDE; GAS-ADSORPTION; ACTIVATED CARBON; SILICA AEROGEL; X-RAY; CRITICAL-POINT; WATER; ISOTHERMS AB Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2)similar to 0 to 0.9 g/cm(3). The intensity of scattering from CO2-saturated Vycor porous glass can be described by a two-phase model which suggests that CO2 does not adsorb on the pore walls and fills the pore space uniformly. In CO2-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO2 is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density similar to 1.07 g/cm(3), close to the density corresponding to closely packed van der Waals volume of CO2. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction phi(3) of the adsorbed phase as a function of the fluid density, and gave phi(3)similar to 0.78 in the maximum adsorption regime around rho(CO2)similar to 0.374 g/cm(3). The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Forschunszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, POB 2008, Oak Ridge, TN 37831 USA. EM yui@ornl.gov RI Frielinghaus, Henrich/K-6017-2013 OI Frielinghaus, Henrich/0000-0002-8812-8783 NR 50 TC 22 Z9 22 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2006 VL 124 IS 20 AR 204711 DI 10.1063/1.2202324 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 048JX UT WOS:000237944500065 PM 16774368 ER PT J AU Wang, DY AF Wang, DY TI A full dimensional, nine-degree-of-freedom, time-dependent quantum dynamics study for the H-2+C2H reaction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RATE CONSTANTS; REDUCED DIMENSIONALITY; SCATTERING; STATE; STEREODYNAMICS; ATMOSPHERE; CHEMISTRY AB A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H-2+C2H -> H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H-2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features. (c) 2006 American Institute of Physics. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Wang, DY (reprint author), Pacific NW Natl Lab, POB 999 MSIN,K8-91, Richland, WA 99352 USA. EM dunyou.wang@pnl.gov NR 34 TC 31 Z9 31 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2006 VL 124 IS 20 AR 201105 DI 10.1063/1.2206180 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 048JX UT WOS:000237944500005 PM 16774308 ER PT J AU Zhang, C Wang, LL Cheng, HP Zhang, XG Xue, Y AF Zhang, C. Wang, L. -L. Cheng, H. -P. Zhang, X. -G. Xue, Y. TI Spin-dependent transport through a magnetic carbon nanotube-molecule junction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TUNNELING CURRENT; ROOM-TEMPERATURE; ELECTRONICS; MAGNETORESISTANCE; CONDUCTION; NANOWIRES; DEVICES; WIRES AB The electronic structure and spin-dependent conductance of a magnetic junction consisting of two Fe-doped carbon nanotubes and a C-60 molecule are investigated using a first-principles approach that combines the density functional theory with the nonequilibrium Greens function technique. The tunneling magnetoresistance ratio is found to be 11%. The density of states and transmission coefficient through the molecular junction are analyzed and compared to layered magnetic tunneling junctions. Our findings suggest new possibilities for experiments and for future technology. (c) 2006 American Institute of Physics. C1 Univ Florida, Dept Phys, Gainesville, FL 32611 USA. Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. RP Cheng, HP (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM cheng@qtp.ufl.edu RI Zhang, Chun/F-7638-2012 OI Zhang, Chun/0000-0002-1581-5806 NR 40 TC 7 Z9 7 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2006 VL 124 IS 20 AR 201107 DI 10.1063/1.2202739 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 048JX UT WOS:000237944500007 PM 16774310 ER PT J AU Ianeselli, S Menotti, C Smerzi, A AF Ianeselli, Sara Menotti, Chiara Smerzi, Augusto TI Beyond the Landau criterion for superfluidity SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article; Proceedings Paper CT International Workshop on Theory of Quantum Gas and Quantum Coherence CY OCT 29-NOV 02, 2005 CL Cortona, ITALY ID BOSE-EINSTEIN CONDENSATION; BRAGG SPECTROSCOPY; ATOMS; LATTICES; GAS AB According to the Landau criterion for superfluidity, a Bose-Einstein condensate flowing with a group velocity smaller than the sound velocity is energetically stable in the presence of perturbing potentials. We found that this is strictly correct only for vanishingly small perturbations. The superfluid critical velocity strongly depends on the strength and shape of the defect. We quantitatively study, both numerically and with an approximate analytical model, the dynamical response of a condensate flowing against an instantaneously raised spatially periodic defect. We found that the critical velocity v(c) decreases by increasing the strength of the defect V-0, up to a critical value of the defect intensity where the critical velocity vanishes. C1 Univ Trent, INFM, BEC, CNR, I-38050 Trento, Italy. Univ Trent, Dipartimento Fis, I-38050 Trento, Italy. ICFO, Inst Photon Sci, Catelldefels 08860, Barcelona, Spain. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ianeselli, S (reprint author), Univ Trent, INFM, BEC, CNR, I-38050 Trento, Italy. NR 25 TC 13 Z9 13 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 28 PY 2006 VL 39 IS 10 SI SI BP S135 EP S142 DI 10.1088/0953-4075/39/10/S13 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 054LM UT WOS:000238378200014 ER PT J AU Chen, W Huang, G Lu, HB McCready, DE Joly, AG Bovin, JO AF Chen, W Huang, G Lu, HB McCready, DE Joly, AG Bovin, JO TI Utilizing nanofabrication to construct strong, luminescent materials SO NANOTECHNOLOGY LA English DT Article ID NANOINDENTATION; INDENTATION; MANGANESE AB Luminescent materials have been utilized widely in applications from lighting to sensing. The new development of technologies based on luminescence requires the materials to have high luminescence efficiency and mechanical strength. In this paper, we report the fabrication of luminescent materials possessing high mechanical strength by nanofabrication with polyvinyl alcohol used as a stabilizer or coupling agent. X-ray diffraction and high-resolution transmission microscope observations reveal that the nanocomposite sample contains ZnS and ZnO nanoparticles as well as kozoite and sodium nitrate. The mechanical strength and hardness of these nanocomposites are reasonably high, higher than polycarbonate and some carbon nanotube reinforced nanocomposites. Strong luminescence is observed in the new nanocomposites and the luminescence intensity does not degrade following up to 30 min of x-ray irradiation. Our results indicate that nanofabrication may provide a good method to improve the mechanical strength of luminescent materials for some applications in which high-strength luminescent materials are needed. C1 Nomad Inc, Stillwater, OK 74074 USA. Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Lund Univ, Ctr Chem & Chem Engn, SE-22100 Lund, Sweden. RP Chen, W (reprint author), Nomad Inc, 1024 S Innovat Way, Stillwater, OK 74074 USA. EM wchen@nomadics.com NR 19 TC 5 Z9 5 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 28 PY 2006 VL 17 IS 10 BP 2595 EP 2601 DI 10.1088/0957-4484/17/10/025 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 052JD UT WOS:000238229100025 PM 21727510 ER PT J AU Kubo, A Kiefer, B Shen, GY Prakapenka, VB Cava, RJ Duffy, TS AF Kubo, Atsushi Kiefer, Boris Shen, Guoyin Prakapenka, Vitali B. Cava, Robert J. Duffy, Thomas S. TI Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ORTHO-PYROXENE; LOWER MANTLE; D''-LAYER; MGSIO3; POLYMORPHS; TRANSITION; SILICATES; SPECTROSCOPY; TEMPERATURE; GERMANATE AB The stability and equation of state of the post-perovskite phase in MgGeO3 were investigated to 2 Mbar by in situ x-ray diffraction experiments using the laser-heated diamond cell as well as by theoretical calculations using density functional theory. The stability of the phase was demonstrated at 92-201 GPa during laser heating. By using the Birch-Murnaghan equation of state, we obtained a zero-pressure volume (V-0) of 179.2 +/- 0.7 angstrom(3), bulk modulus (K-0) of 207 +/- 5 GPa with a pressure derivative (K'(0)) of 4.4 from experiments at room temperatures, and V-0 = 178.02 angstrom(3), K-0 = 201.9 GPa, K'(0) = 4.34 from theoretical calculations at 0 K. The relative axial compressibilities of the silicate and germanate post-perovskite phases are similar although MgSiO3 is more anisotropic than MgGeO3. C1 Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. Univ Chicago, Argonne Natl Lab, CARS, Argonne, IL 60439 USA. Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Kubo, A (reprint author), Princeton Univ, Dept Geosci, Guyot Hall, Princeton, NJ 08544 USA. EM akudo@princeton.edu RI Shen, Guoyin/D-6527-2011; Duffy, Thomas/C-9140-2017 OI Duffy, Thomas/0000-0002-5357-1259 NR 31 TC 23 Z9 23 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 27 PY 2006 VL 33 IS 12 AR L12S12 DI 10.1029/2006GL025686 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 049TS UT WOS:000238040600001 ER PT J AU AchutaRao, KM Santer, BD Gleckler, PJ Taylor, KE Pierce, DW Barnett, TP Wigley, TML AF AchutaRao, K. M. Santer, B. D. Gleckler, P. J. Taylor, K. E. Pierce, D. W. Barnett, T. P. Wigley, T. M. L. TI Variability of ocean heat uptake: Reconciling observations and models SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID DATA ASSIMILATION ANALYSIS; GENERAL-CIRCULATION MODEL; CLIMATE-CHANGE; WORLDS OCEANS; SIMULATIONS; UNCERTAINTIES; TRANSPORTS; SURFACE; SYSTEM; TRENDS AB [1] This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas ( available at http:// www. nodc.noaa.gov/OC5/indprod. html, hereinafter referred to as WOA-2004) compiled by Levitus et al., 2005. Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test bed for studying the effects of sparse, space-varying and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 m of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations. C1 Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP AchutaRao, KM (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, L-103,POB 808, Livermore, CA 94550 USA. EM achutarao1@llnl.gov RI Taylor, Karl/F-7290-2011; Santer, Benjamin/F-9781-2011; Gleckler, Peter/H-4762-2012 OI Taylor, Karl/0000-0002-6491-2135; Gleckler, Peter/0000-0003-2816-6224 NR 36 TC 33 Z9 33 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 27 PY 2006 VL 111 IS C5 AR C05019 DI 10.1029/2005JC003136 PG 20 WC Oceanography SC Oceanography GA 049UQ UT WOS:000238043300003 ER PT J AU Wu, G Nie, L Zhang, WW AF Wu, G Nie, L Zhang, WW TI Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: Combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE sequences; correlation; expression ID SULFATE-REDUCING BACTERIA; SYNONYMOUS CODON USAGE; COLI K-12 GENOME; ESCHERICHIA-COLI; GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; MULTIPLE-REGRESSION; ADAPTATION INDEX; YEAST PROTEOME; BIAS AB The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused either on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRNA abundance and non-random features in coding sequences (e.g., codon usage and amino acid usage). In this study Multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together. Using the AlignACE program, 442 over-represented motifs were identified from the upstream 100 bp region of 293 genes located in the known regulons. Regression of mRNA expression data against the measures of coding and non-coding sequence features indicated that 54.1% of the variations in mRNA abundance can be explained by the presence Of upstream motifs, while coding sequences alone contribute to 29.7% of the variations in mRNA abundance. Interestingly, most of contribution from coding sequences is overlapping with that from upstream motifs; thereby a total of 60.3%, of the variations in mRNA abundance can be explained when coding and non-coding information was included. This result demonstrates that upstream regulatory motifs and coding sequence information contribute to the overall mRNA expression in a combinatorial rather than an additive manner. (c) 2006 Elsevier Inc. All rights reserved. C1 Pacific NW Natl Lab, Dept Microbiol, Richland, WA 99352 USA. Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA. Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA. RP Zhang, WW (reprint author), Pacific NW Natl Lab, Dept Microbiol, POB 999,Mail Stop P7-50, Richland, WA 99352 USA. EM Weiwen.Zhang@pnl.gov NR 43 TC 6 Z9 6 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD MAY 26 PY 2006 VL 344 IS 1 BP 114 EP 121 DI 10.1016/j.bbrc.2006.03.124 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 040VE UT WOS:000237408000018 PM 16603130 ER PT J AU Torn, MS Harte, J AF Torn, Margaret S. Harte, John TI Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CARBON-CYCLE; CLIMATE SENSITIVITY; ICE-CORE; TEMPERATURE; MAGNITUDE; DIOXIDE; MODEL AB Historical evidence shows that atmospheric greenhouse gas (GhG) concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantified this feedback for CO2 and CH4 by combining the mathematics of feedback with empirical ice-core information and general circulation model (GCM) climate sensitivity, finding that the warming of 1.5-4.5 degrees C associated with anthropogenic doubling of CO2 is amplified to 1.6-6.0 degrees C warming, with the uncertainty range deriving from GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Moreover, a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed toward higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Torn, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM mstorn@lbl.gov; jharte@berkeley.edu RI Torn, Margaret/D-2305-2015 NR 23 TC 41 Z9 43 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 26 PY 2006 VL 33 IS 10 AR L10703 DI 10.1029/2005GL025540 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 049TA UT WOS:000238038500002 ER PT J AU Lavraud, B Thomsen, MF Lefebvre, B Schwartz, SJ Seki, K Phan, TD Wang, YL Fazakerley, A Reme, H Balogh, A AF Lavraud, B. Thomsen, M. F. Lefebvre, B. Schwartz, S. J. Seki, K. Phan, T. D. Wang, Y. L. Fazakerley, A. Reme, H. Balogh, A. TI Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; LATITUDE BOUNDARY-LAYER; KINETIC ALFVEN WAVES; EARTHS MAGNETOSPHERE; CUSP RECONNECTION; PLASMA TRANSPORT; SOLAR-WIND; CLUSTER; ELECTRON; SIMULATION AB [ 1] We analyze the structure of the high-latitude magnetopause under steady interplanetary magnetic field ( IMF). We use 56 magnetopause encounters of Cluster spacecraft from 2001 to 2003 to explore the statistical properties of the magnetosheath electron boundary layer, observed outside the high-latitude dayside magnetopause. We focus on the occurrence of low absolute parallel heat flux in this layer and its dependence on the magnetic field clock angle simultaneously measured by Cluster. The low absolute parallel heat fluxes result from the presence of bidirectional heated electrons in the magnetosheath electron boundary layer and are primarily observed when the local magnetic field is northward. The bidirectional heated electrons are interpreted as the signature of newly closed magnetosheath field lines that have reconnected at the high-latitude magnetopause, tailward of the cusp, in both hemispheres. This study strongly suggests that double high-latitude reconnection is a tenable mechanism for the formation of the low-latitude boundary layer and potentially of the cold, dense plasma sheet under northward IMF. Although the efficiency ( in terms of mass and energy transfer) of this mechanism is still to be investigated, it is an obvious way of capturing solar wind plasma under northward IMF. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Imperial Coll, Blackett Lab, London SW7 2BW, England. Nagoya Univ, Solar Terr Environm Lab, Aichi 4428507, Japan. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. RP Lavraud, B (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM lavraud@lanl.gov NR 29 TC 68 Z9 69 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 26 PY 2006 VL 111 IS A5 AR A05211 DI 10.1029/2005JA011266 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 049VP UT WOS:000238045900001 ER PT J AU Richardson, IG Webb, DF Zhang, J Berdichevsky, DB Biesecker, DA Kasper, JC Kataoka, R Steinberg, JT Thompson, BJ Wu, CC Zhukov, AN AF Richardson, IG Webb, DF Zhang, J Berdichevsky, DB Biesecker, DA Kasper, JC Kataoka, R Steinberg, JT Thompson, BJ Wu, CC Zhukov, AN TI Major geomagnetic storms (Dst <=-100 nT) generated by corotating interaction regions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; INTERPLANETARY MAGNETIC-FIELD; HELIOSPHERIC PLASMA SHEET; WIND STREAM INTERFACES; SOLAR-WIND; SEMIANNUAL VARIATION; ALFVEN WAVES; ELECTRONS; IDENTIFICATION; DISTURBANCES AB [ 1] Seventy-nine major geomagnetic storms ( minimum Dst <= - 100 nT) observed in 1996 to 2004 were the focus of a "Living with a Star'' Coordinated Data Analysis Workshop ( CDAW) in March 2005. In nine cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material ( interplanetary coronal mass ejections (ICMEs)). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst similar to - 40 nT but is subject to a prominent seasonal variation of similar to 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction toward or away from the Sun. The O'Brien and McPherron ( 2000) equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst similar to 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September to November 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst <= - 100 nT storms in 1972 - 1995, is ( Dst = - 161 nT). This is consistent with the maximum storm strength ( Dst similar to - 180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind electric fields associated with CIRs. This suggests that CIRs alone are unlikely to generate geomagnetic storms that exceed these levels. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Maryland, Dept Astron, College Pk, MD USA. Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. George Mason Univ, Sch Computat Sci, Fairfax, VA 22030 USA. L3 Govt Serv Inc, Chantilly, VA USA. NOAA, Space Environm Ctr, Boulder, CO 80305 USA. MIT, Space Res Ctr, Cambridge, MA 02139 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL USA. Royal Observ Belgium, B-1180 Brussels, Belgium. Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM richardson@lheavx.gsfc.nasa.gov; david.webb.ctr@hanscom.af.mil; jierz@scs.gmu.edu; dberdich@pop600.gsfc.nasa.gov; doug.biesecker@noaa.gov; jck@mit.edu; ryuho@nict.go.jp; jsteinberg@lanl.gov; barbara.j.thompson@nasa.gov; wuc@cspar.uah.edu; andrei.zhukov@oma.be RI Kasper, Justin/D-1152-2010; Thompson, Barbara/C-9429-2012; OI Kasper, Justin/0000-0002-7077-930X; Richardson, Ian/0000-0002-3855-3634 NR 49 TC 74 Z9 74 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 26 PY 2006 VL 111 IS A7 AR A07S09 DI 10.1029/2005JA011476 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 049VS UT WOS:000238046300001 ER PT J AU Brown-Hayes, M Brownell, JH Dalvit, DAR Kim, WJ Lambrecht, A Lombard, FC Mazzitelli, FD Middleman, SM Nesvizhevsky, VV Onofrio, R Reynaud, S AF Brown-Hayes, M Brownell, JH Dalvit, DAR Kim, WJ Lambrecht, A Lombard, FC Mazzitelli, FD Middleman, SM Nesvizhevsky, VV Onofrio, R Reynaud, S TI Thermal and dissipative effects in Casimir physics SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article; Proceedings Paper CT 7th Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT05) CY SEP 05-09, 2005 CL Barcelona, SPAIN ID ATOMIC-FORCE MICROSCOPY; MU-M RANGE; COSMOLOGICAL CONSTANT; PARAMETRIC-EXCITATION; ELECTROMAGNETIC-FIELD; OSCILLATING BOUNDARY; ATTRACTIVE FORCES; QUANTUM VACUUM; CAVITY; RADIATION AB We report on current efforts to detect the thermal and dissipative contributions to the Casimir force. For the thermal component, two experiments are in progress at Dartmouth and at the Institute Laue Langevin in Grenoble. The first experiment will seek to detect the Casimir force at the largest explorable distance using a cylinder-plane geometry which offers various advantages with respect to both sphere-plane and parallel-plane geometries. In the second experiment, the Casimir force in the parallel-plane configuration is measured with a dedicated torsional balance, up to 10 mu m. Parallelism of large surfaces, critical for this configuration, is maintained through the use of inclinometer technology already implemented at Grenoble for the study of gravitationally bound states of ultracold neutrons. For the dissipative component of the Casimir force, we discuss detection techniques based upon the use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although quite challenging, this triad of experimental efforts, if successful, will give us a better knowledge of the interplay between quantum and thermal fluctuations of the electromagnetic field and of the nature of dissipation induced by the motion of objects in a quantum vacuum. C1 Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Paris 06, Lab Kastler Brossel, F-75252 Paris, France. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. RP Brown-Hayes, M (reprint author), Dartmouth Coll, Dept Phys & Astron, 6127 Wilder Lab, Hanover, NH 03755 USA. EM roberto.onofrio@dartmouth.edu RI Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 NR 98 TC 17 Z9 17 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD MAY 26 PY 2006 VL 39 IS 21 BP 6195 EP 6208 DI 10.1088/0305-4470/39/21/S10 PG 14 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 054NM UT WOS:000238384200011 ER PT J AU Dalvit, DAR Mazzitelli, FD Millan, XO AF Dalvit, DAR Mazzitelli, FD Millan, XO TI The dynamical Casimir effect for different geometries SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article; Proceedings Paper CT 7th Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT05) CY SEP 05-09, 2005 CL Barcelona, SPAIN ID RADIATION; CAVITY; BOUNDARY; POTENTIALS; RESONANCE AB We consider the problem of motion-induced photon creation from quantum vacuum inside closed, perfectly conducting cavities with time-dependent geometries. These include one-dimensional Fabry-Perot resonators with Dirichlet or Neumann boundary conditions,. three-dimensional cylindrical waveguides, and a spherical shell. The number of Casimir TE, TM and TEM photons is computed. We also present a classical mechanical analogue of the one-dimensional dynamical Casimir effect. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. EM dalvit@lanl.gov; fmazzi@df.uba.ar; xorsi@df.uba.ar NR 30 TC 11 Z9 11 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD MAY 26 PY 2006 VL 39 IS 21 BP 6261 EP 6270 DI 10.1088/0305-4470/39/21/S17 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 054NM UT WOS:000238384200018 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Bourov, S Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Connolly, A Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cruz, A Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'onofrio, M Dagenhart, D DeBarbaro, P De Cecco, S De Lentdecker, G Dell'Orso, M Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Dominguez, A Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, L Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerchtein, E Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Grundler, U Da Costa, JG Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Hayward, H Heijboer, A Heinemann, B Heinrich, J Hennecke, M Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karagoz-Unel, M Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, YK Kirby, M Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Kordas, K Korytov, A Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreps, M Kreymer, A Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maksimovic, P Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McGivern, D McIntyre, P McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Mulhearn, M Muller, T Mumford, R Murat, P Nachtman, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Papikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, K Plager, C Pondrom, L Pope, G Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Ryan, D Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sill, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Worm, S Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, Y Yang, C Yang, UK Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bishai, M. Blair, R. E. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Bourov, S. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Connolly, A. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cruz, A. Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'onofrio, M. Dagenhart, D. DeBarbaro, P. De Cecco, S. De Lentdecker, G. Dell'Orso, M. Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Dominguez, A. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Fujii, Y. Furic, I. Gajjar, A. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerchtein, E. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giolo, K. Giordani, M. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Grundler, U. Da Costa, J. Guimaraes Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B.-Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Hayward, H. Heijboer, A. Heinemann, B. Heinrich, J. Hennecke, M. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Ikado, K. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karagoz-Unel, M. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, Y. K. Kirby, M. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Kordas, K. Korytov, A. Kotwal, A. V. Kovalev, A. Kraus, J. Kravchenko, I. Kreps, M. Kreymer, A. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lecci, C. LeCompte, T. Lee, J. Lee, J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Li, K. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Liu, Y. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maksimovic, P. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McGivern, D. McIntyre, P. McNamara, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Miscetti, S. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Mulhearn, M. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Papikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pitts, K. Plager, C. Pondrom, L. Pope, G. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Rinnert, K. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Ryan, D. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Semeria, F. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sill, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Tafirout, R. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vacavant, L. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vickey, T. Vidal, R. Vila, I. Vilar, R. Vollrath, I. Volobouev, I. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, M. J. Wang, S. M. Warburton, A. Ward, B. Waschke, S. Waters, D. Watts, T. Weber, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Worm, S. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, Y. Yang, C. Yang, U. K. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using missing E(T) + jets events with secondary vertex b tagging SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a measurement of the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV which uses events with an inclusive signature of significant missing transverse energy and jets. This is the first measurement which makes no explicit lepton identification requirements, so that sensitivity to W ->tau nu decays is maintained. Heavy flavor jets from top quark decay are identified with a secondary vertex tagging algorithm. From 311 pb(-1) of data collected by the Collider Detector at Fermilab, we measure a production cross section of 5.8 +/- 1.2(stat)(-0.7)(+0.9)(syst) pb for a top quark mass of 178 GeV/c(2), in agreement with previous determinations and standard model predictions. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Canelli, Florencia/O-9693-2016; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Connolly, Amy/J-3958-2013; Warburton, Andreas/N-8028-2013 OI Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 17 TC 9 Z9 9 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 202002 DI 10.1103/PhysRevLett.96.202002 PG 7 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000013 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Bourov, S Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Carter, A Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Connolly, A Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cruz, A Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'onofrio, M Dagenhart, D de Barbaro, P de Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, J DiTuro, P Dorr, C Dominguez, A Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallinaro, M Galyardt, J Garcia, JE Sciverez, MG Garfinkel, AF Gay, C Gerberich, H Gerchtein, E Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Grundler, U da Costa, JG Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Hayward, H Heijboer, A Heinemann, B Heinrich, J Hennecke, M Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karagoz-Unel, M Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, YK Kirby, M Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Kordas, K Korytov, A Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreps, M Kreymer, A Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maksimovic, P Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McGivern, D McIntyre, P McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Mulhearn, M Muller, T Mumford, R Murat, P Nachtman, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Papikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, K Plager, C Pondrom, L Pope, G Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Ryan, D Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schieferdecker, P Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sill, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Dennis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Worm, S Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, Y Yang, C Yang, UK Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bishai, M. Blair, R. E. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Bourov, S. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Carter, A. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Connolly, A. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cruz, A. Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'onofrio, M. Dagenhart, D. de Barbaro, P. de Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. DiTuro, P. Doerr, C. Dominguez, A. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Fujii, Y. Furic, I. Gajjar, A. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciverez, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerchtein, E. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giolo, K. Giordani, M. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Grundler, U. da Costa, J. Guimaraes Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Hayward, H. Heijboer, A. Heinemann, B. Heinrich, J. Hennecke, M. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Ikado, K. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karagoz-Unel, M. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, Y. K. Kirby, M. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Kordas, K. Korytov, A. Kotwal, A. V. Kovalev, A. Kraus, J. Kravchenko, I. Kreps, M. Kreymer, A. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lecci, C. LeCompte, T. Lee, J. Lee, J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Li, K. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Liu, Y. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maksimovic, P. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McGivern, D. McIntyre, P. McNamara, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Miscetti, S. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Mulhearn, M. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Papikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pitts, K. Plager, C. Pondrom, L. Pope, G. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Rinnert, K. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Ryan, D. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schieferdecker, P. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Semeria, F. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sill, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Dennis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Tafirout, R. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vacavant, L. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vickey, T. Vidal, R. Vila, I. Vilar, R. Vollrath, I. Volobouev, I. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, M. J. Wang, S. M. Warburton, A. Ward, B. Waschke, S. Waters, D. Watts, T. Weber, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Worm, S. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, Y. Yang, C. Yang, U. K. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Direct search for dirac magnetic monopoles in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We search for pair-produced Dirac magnetic monopoles in 35.7 pb(-1) of proton-antiproton collisions at root s = 1.96 TeV with the Collider Detector at Fermilab (CDF). We find no monopole candidates corresponding to a 95% confidence-level cross-section limit sigma < 0.2 pb for a monopole with mass between 200 and 700 GeV/c(2). Assuming a Drell-Yan pair-production mechanism, we set a mass limit m > 360 GeV/c(2). C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Div High Energy Phys, Dept Phys, Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 558, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Rome 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Connolly, Amy/J-3958-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 23 TC 18 Z9 18 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 201801 DI 10.1103/PhysRevLett.96.201801 PG 7 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000011 ER PT J AU Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arisawa, T Arguin, F Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Bacchetta, N Bachocou, H Badgett, W Barbaro-Galtieri, A Barker, GJ Barnes, VE Barnett, BA Baroiant, S Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Berry, T Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Bolla, G Bolshov, A Bortoletto, D Boudreau, J Bourov, S Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Casarsa, M Carlsmith, D Carosi, R Carron, S Cavalli-, M Castro, A Catastini, P Cauz, D Cerri, A Cerrito, L Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chuang, S Chung, K Chung, WH Chung, YS Cijliak, M Ciobanu, CI Ciocci, MA Clark, AG Clark, D Coca, M Connolly, A Convery, M Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cranshaw, J Cuevas, J Cruz, A Culbertson, R Currat, C Cyr, D Dagenhart, D Da Ronco, S D'Auria, S De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Demers, S Demortier, L Deninno, M DePedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Rr, CD Dominguez, A Donati, S Donega, M Donini, J D'Onofrio, M Dorigo, T Ebina, K Efron, J Ehlers, J Erbacher, R Erdmann, M Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, RD Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallinaro, M Galyardt, J Garcia-, M Garfinkel, AF Gay, C Gerberich, H Gerdes, DW Gerchtein, E Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, D Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Lez, OG' Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grosso-, C Grundler, U Da Costa, JG Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harr, RF Harris, RM Hartmann, F Hatakeyama, K Hauser, J Hays, C Hayward, H Heinemann, B Heinrich, J Hennecke, M Herndon, M Hill, C Hirschbuehl, D Hocker, A Hoffman, KD Holloway, A Hou, S Houlden, MA Huffman, BT Huang, Y Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Issever, C Ivanov, A Iwata, Y Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, T Kamon, T Kang, J Unel, MK Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, YK Kirby, M Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kong, DJ Kondo, K Konigsberg, J Kordas, K Korn, A Korytov, A Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreymer, A Kroll, J Kruse, M Krutelyov, V Kuhlmann, SE Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, R Lannon, K Lath, A Latino, G Lazzizzera, I Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Vre, RL Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E MacQueen, D Madrak, R Maeshima, K Maksimovic, P Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, M Martin, V Nez, MM' Maruyama, T Matsunaga, H Mattson, M Mazzanti, P McFarland, KS McGivern, D McIntyre, PM McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, L Miller, R Miller, JS Mills, C Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PAM Muelmenstaedt, J Mukherjee, A Mulhearn, M Muller, T Mumford, R Munar, A Murat, P Nachtman, J Nahn, S Nakano, I Napier, A Napora, R Naumov, D Necula, V Nielsen, J Nelson, T Neu, C Neubauer, MS Nigmanov, T Nodulman, L Norniella, O Ogawa, T Oh, SH Oh, YD Ohsugi, T Okusawa, T Oldeman, R Orava, R Orejudos, W Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, D Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, KT Plager, C Pondrom, L Pope, G Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Rademacker, J Rahaman, MA Rakitine, A Rappoccio, S Ratnikov, F Ray, H Reisert, B Rekovic, V Renton, P Rescigno, M Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rolli, S Roser, R Rossin, R Rott, C Russ, J Rusu, V Ruiz, A Ryan, D Saarikko, H Sabik, S Safonov, A Denis, RS Sakumoto, WK Salamanna, G Saltzberg, D Sanchez, C Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sill, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, SV Spalding, J Spezziga, M Spinella, F Squillacioti, P Stadie, H Stanitzki, M Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takano, H Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tesarek, RJ Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Nnesmann, MT Torre, S Torretta, D Trischuk, W Tsuchiya, R Tsuno, S Tsybychev, D Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Varganov, A Iii, SV Velev, G Veszpremi, V Veramendi, G Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I Von der Mey, M Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolter, M Worcester, M Worm, S Wright, T Wu, X Rthwein, FW Wyatt, A Yagil, A Yamashita, T Yamamoto, K Yamaoka, J Yang, C Yang, UK Yao, W Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, I Yu, S Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhou, J Zucchelli, S AF Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arisawa, T. Arguin, F. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Bacchetta, N. Bachocou, H. Badgett, W. Barbaro-Galtieri, A. Barker, G. J. Barnes, V. E. Barnett, B. A. Baroiant, S. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bishai, M. Blair, R. E. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Bourov, S. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Casarsa, M. Carlsmith, D. Carosi, R. Carron, S. Cavalli-, M. Castro, A. Catastini, P. Cauz, D. Cerri, A. Cerrito, L. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chuang, S. Chung, K. Chung, W-H. Chung, Y. S. Cijliak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. G. Clark, D. Coca, M. Connolly, A. Convery, M. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cranshaw, J. Cuevas, J. Cruz, A. Culbertson, R. Currat, C. Cyr, D. Dagenhart, D. Da Ronco, S. D'Auria, S. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Demers, S. Demortier, L. Deninno, M. DePedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Rr, C. Do Dominguez, A. Donati, S. Donega, M. Donini, J. D'Onofrio, M. Dorigo, T. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Erdmann, M. Errede, D. Errede, S. Eusebi, R. Fang, H-C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. D. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Fujii, Y. Furic, I. Gajjar, A. Gallinaro, M. Galyardt, J. Garcia-, M. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. W. Gerchtein, E. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giolo, K. Giordani, M. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, D. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Lez, O. Gonza ' Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grosso-, C. Grundler, U. Da Costa, J. Guimaraes Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B-Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harris, R. M. Hartmann, F. Hatakeyama, K. Hauser, J. Hays, C. Hayward, H. Heinemann, B. Heinrich, J. Hennecke, M. Herndon, M. Hill, C. Hirschbuehl, D. Hocker, A. Hoffman, K. D. Holloway, A. Hou, S. Houlden, M. A. Huffman, B. T. Huang, Y. Hughes, R. E. Huston, J. Ikado, K. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Issever, C. Ivanov, A. Iwata, Y. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. Kamon, T. Kang, J. Unel, M. Karagoz Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, Y. K. Kirby, M. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kong, D. J. Kondo, K. Konigsberg, J. Kordas, K. Korn, A. Korytov, A. Kotwal, A. V. Kovalev, A. Kraus, J. Kravchenko, I. Kreymer, A. Kroll, J. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lecci, C. LeCompte, T. Lee, J. Lee, J. Lee, S. W. Vre, R. Lefe Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Li, K. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Liu, Y. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. MacQueen, D. Madrak, R. Maeshima, K. Maksimovic, P. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, M. Martin, V. Nez, M. Marti ' Maruyama, T. Matsunaga, H. Mattson, M. Mazzanti, P. McFarland, K. S. McGivern, D. McIntyre, P. M. McNamara, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, L. Miller, R. Miller, J. S. Mills, C. Miquel, R. Miscetti, S. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. A. Movilla Muelmenstaedt, J. Mukherjee, A. Mulhearn, M. Muller, T. Mumford, R. Munar, A. Murat, P. Nachtman, J. Nahn, S. Nakano, I. Napier, A. Napora, R. Naumov, D. Necula, V. Nielsen, J. Nelson, T. Neu, C. Neubauer, M. S. Nigmanov, T. Nodulman, L. Norniella, O. Ogawa, T. Oh, S. H. Oh, Y. D. Ohsugi, T. Okusawa, T. Oldeman, R. Orava, R. Orejudos, W. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pitts, K. T. Plager, C. Pondrom, L. Pope, G. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Rademacker, J. Rahaman, M. A. Rakitine, A. Rappoccio, S. Ratnikov, F. Ray, H. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Rimondi, F. Rinnert, K. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rolli, S. Roser, R. Rossin, R. Rott, C. Russ, J. Rusu, V. Ruiz, A. Ryan, D. Saarikko, H. Sabik, S. Safonov, A. Denis, R. St. Sakumoto, W. K. Salamanna, G. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sato, K. Savard, P. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Semeria, F. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sill, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. V. Spalding, J. Spezziga, M. Spinella, F. Squillacioti, P. Stadie, H. Stanitzki, M. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Tafirout, R. Takano, H. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tesarek, R. J. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tollefson, K. Tomura, T. Tonelli, D. Nnesmann, M. To Torre, S. Torretta, D. Trischuk, W. Tsuchiya, R. Tsuno, S. Tsybychev, D. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vacavant, L. Vaiciulis, A. Varganov, A. Iii, S. Vejcik Velev, G. Veszpremi, V. Veramendi, G. Vickey, T. Vidal, R. Vila, I. Vilar, R. Vollrath, I. Volobouev, I. Von der Mey, M. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, M. J. Wang, S. M. Warburton, A. Ward, B. Waschke, S. Waters, D. Watts, T. Weber, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolter, M. Worcester, M. Worm, S. Wright, T. Wu, X. Rthwein, F. Wu Wyatt, A. Yagil, A. Yamashita, T. Yamamoto, K. Yamaoka, J. Yang, C. Yang, U. K. Yao, W. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, I. Yu, S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of bottom-quark hadron masses in exclusive J/psi decays with the CDF detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAMBDA(B) BARYON; PARTICLE PHYSICS AB We measure the masses of b hadrons in exclusively reconstructed final states containing a J/psi ->mu(-)mu(+) decay using 220 pb(-1) of data collected by the CDF II experiment. We find: m(B+)=5279.10 +/- 0.41((stat.))+/- 0.36((sys.)) MeV/c(2), m(B-0)=5279.63 +/- 0.53((stat.))+/- 0.33((sys.)) MeV/c(2), m(B-s(0))=5366.01 +/- 0.73((stat.))+/- 0.33((sys.)) MeV/c(2), m(Lambda(0)(b))=5619.7 +/- 1.2((stat.))+/- 1.2((sys.)) MeV/c(2). m(B+)-m(B-0)=-0.53 +/- 0.67((stat.))+/- 0.14((sys.)) MeV/c(2), m(B-s(0))-m(B-0)=86.38 +/- 0.90((stat.))+/- 0.06((sys.)) MeV/c(2), m(Lambda(0)(b))-m(B-0)=339.2 +/- 1.4((stat.))+/- 0.1((sys.)) MeV/c(2). The measurements of the B-s(0), Lambda(0)(b) mass, m(B-s(0))-m(B-0) and m(Lambda(0)(b))-m(B-0) mass difference are of better precision than the current world averages. C1 Univ Florida, Gainesville, FL 32611 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Fermilab Natl Accelerator Lab, Durham, NC 27708 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Hiroshima Univ, Higashihiroshima 724, Japan. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 305, Japan. Seoul Natl Univ, Seoul 151742, South Korea. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Texas Tech Univ, Lubbock, TX 79409 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Acosta, D (reprint author), Univ Florida, Gainesville, FL 32611 USA. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Wang, Chi/G-9004-2011; De Cecco, Sandro/B-1016-2012; Wolter, Marcin/A-7412-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Connolly, Amy/J-3958-2013; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; ciocci, maria agnese /I-2153-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Osterberg, Kenneth/0000-0003-4807-0414; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 NR 19 TC 70 Z9 71 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 202001 DI 10.1103/PhysRevLett.96.202001 PG 7 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000012 PM 16803166 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Amirikas, R Aphecetche, L Aronson, SH Averbeck, R Awes, TC Azmoun, R Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bazilevsky, A Belikov, S Berdnikov, Y Bhagavatula, S Boissevain, JG Borel, H Borenstein, S Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chai, JS Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choi, J Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Constantin, P d'Enterria, D David, G Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drapier, O Drees, A du Rietz, R Durum, A Dutta, D Efremenko, YV El Chenawi, K Enokizono, A En'yo, H Esumi, S Ewell, L Fields, DE Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fung, SY Garpman, S Ghosh, TK Glenn, A Gogiberidze, G Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Guryn, W Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hayano, R Hayashi, N He, X Heffner, M Hemmick, TK Heuser, JM Hibino, M Hiejima, H Hill, JC Holzmann, W Homma, K Hong, B Hoover, A Ichihara, T Ikonnikov, VV Imai, K Isenhower, D Ishihara, M Issah, M Isupov, A Jacak, BV Jang, WY Jeong, Y Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kametani, S Kamihara, N Kang, JH Kapoor, SS Katou, K Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, DW Kim, E Kim, GB Kim, HJ Kistenev, E Kiyomichi, A Kiyoyama, K Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Koehler, D Kohama, T Kopytine, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kurita, K Kuroki, Y Kweon, MJ Kwon, Y Kyle, GS Lacey, R Ladygin, V Lajoie, JG Lebedev, A Leckey, S Lee, DM Lee, S Leitch, MJ Li, XH Lim, H Litvinenko, A Liu, MX Liu, Y Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Marx, MD Masui, H Matathias, F Matsumoto, T McGaughey, PL Melnikov, E Messer, F Miake, Y Milan, J Miller, TE Milov, A Mioduszewski, S Mischke, RE Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Muhlbacher, F Mukhopadhyay, D Muniruzzaman, M Murata, J Nagamiya, S Nagle, JL Nakamura, T Nandi, BK Nara, M Newby, J Nilsson, P Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, K Ono, M Onuchin, V Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Parmar, A Pate, SF Peitzmann, T Peng, JC Peresedov, V Pinkenburg, C Pisani, RP Plasil, F Purschke, ML Purwar, AK Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosnet, P Ryu, SS Sadler, ME Sahlmueller, B Saito, N Sakaguchi, T Sakai, M Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shaw, MR Shea, TK Shibata, TA Shigaki, K Shiina, T Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Sivertz, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagui, EM Taketani, A Tamai, M Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Tarjan, P Tepe, JD Thomas, TL Tojo, J Torii, H Towell, RS Tserruya, I Tsuruoka, H Tuli, SK Tydesjo, H Tyurin, N van Hecke, HW Velkovska, J Velkovsky, M Veszpremi, V Villatte, L Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Wohn, FK Woody, CL Xie, W Yang, Y Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zhou, SJ Zolin, L AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Amirikas, R. Aphecetche, L. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, R. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bazilevsky, A. Belikov, S. Berdnikov, Y. Bhagavatula, S. Boissevain, J. G. Borel, H. Borenstein, S. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chai, J. -S. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choi, J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Constantin, P. d'Enterria, D. David, G. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drapier, O. Drees, A. du Rietz, R. Durum, A. Dutta, D. Efremenko, Y. V. El Chenawi, K. Enokizono, A. En'yo, H. Esumi, S. Ewell, L. Fields, D. E. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fung, S. -Y. Garpman, S. Ghosh, T. K. Glenn, A. Gogiberidze, G. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Guryn, W. Gustafsson, H. - . Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hayano, R. Hayashi, N. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hibino, M. Hiejima, H. Hill, J. C. Holzmann, W. Homma, K. Hong, B. Hoover, A. Ichihara, T. Ikonnikov, V. V. Imai, K. Isenhower, D. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jang, W. Y. Jeong, Y. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kametani, S. Kamihara, N. Kang, J. H. Kapoor, S. S. Katou, K. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, D. W. Kim, E. Kim, G. -B. Kim, H. J. Kistenev, E. Kiyomichi, A. Kiyoyama, K. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Koehler, D. Kohama, T. Kopytine, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kurita, K. Kuroki, Y. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Ladygin, V. Lajoie, J. G. Lebedev, A. Leckey, S. Lee, D. M. Lee, S. Leitch, M. J. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Liu, Y. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Marx, M. D. Masui, H. Matathias, F. Matsumoto, T. McGaughey, P. L. Melnikov, E. Messer, F. Miake, Y. Milan, J. Miller, T. E. Milov, A. Mioduszewski, S. Mischke, R. E. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Muhlbacher, F. Mukhopadhyay, D. Muniruzzaman, M. Murata, J. Nagamiya, S. Nagle, J. L. Nakamura, T. Nandi, B. K. Nara, M. Newby, J. Nilsson, P. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, K. Ono, M. Onuchin, V. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Parmar, A. Pate, S. F. Peitzmann, T. Peng, J. -C. Peresedov, V. Pinkenburg, C. Pisani, R. P. Plasil, F. Purschke, M. L. Purwar, A. K. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosnet, P. Ryu, S. S. Sadler, M. E. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, M. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shaw, M. R. Shea, T. K. Shibata, T. -A. Shigaki, K. Shiina, T. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Sivertz, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagui, E. M. Taketani, A. Tamai, M. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarjan, P. Tepe, J. D. Thomas, T. L. Tojo, J. Torii, H. Towell, R. S. Tserruya, I. Tsuruoka, H. Tuli, S. K. Tydesjo, H. Tyurin, N. van Hecke, H. W. Velkovska, J. Velkovsky, M. Veszpremi, V. Villatte, L. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Wohn, F. K. Woody, C. L. Xie, W. Yang, Y. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zhou, S. J. Zolin, L. CA PHENIX Coll TI Common suppression pattern of eta and pi(0) mesons at high transverse momentum in Au plus Au collisions at root SNN=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROMPT PHOTON PRODUCTION; PARTON ENERGY-LOSS; LEADING ORDER; MATTER; QCD AB Inclusive transverse momentum spectra of eta mesons have been measured within p(T)=2-10 GeV/c at midrapidity by the PHENIX experiment in Au+Au collisions at root s(NN) = 200 GeV. In central Au+Au the eta yields are significantly suppressed compared to peripheral Au+Au, d+Au, and p+p yields scaled by the corresponding number of nucleon-nucleon collisions. The magnitude, centrality, and p(T) dependence of the suppression is common, within errors, for eta and pi(0). The ratio of eta to pi(0) spectra at high p(T) amounts to 0.40 < R-eta/pi(0)< 0.48 for the three systems, in agreement with the world average measured in hadronic and nuclear reactions and, at large scaled momentum, in e(+)e(-) collisions. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Univ Calif Riverside, Riverside, CA 92521 USA. China Inst Atom Energy, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. Debrecen Univ, H-4010 Debrecen, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. Inst High Energy Phys, State Res Ctr Russian Federat, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. KAERI, Cyclotron Applicat Lab, Seoul, South Korea. Kangnung Natl Univ, Kangnung 210702, South Korea. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr, IV Kurchatov Atom Energy Inst, Moscow, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regi, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Stony Brook Univ, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Stony Brook Univ, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zajc@nevis.columbia.edu RI seto, richard/G-8467-2011; Peitzmann, Thomas/K-2206-2012; du Rietz, Rickard/I-3794-2013; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017 OI Peitzmann, Thomas/0000-0002-7116-899X; du Rietz, Rickard/0000-0002-9884-9058; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; NR 38 TC 292 Z9 294 U1 13 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 202301 DI 10.1103/PhysRevLett.96.202301 PG 6 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000014 PM 16486687 ER PT J AU Brodsky, SJ de Teramond, GF AF Brodsky, SJ de Teramond, GF TI Hadronic spectra and light-front wave functions in holographic QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHIRAL-SYMMETRY BREAKING; GAUGE-THEORY; SUPERGRAVITY; MODEL AB We show how the string amplitude Phi(z) defined on the fifth dimension in AdS(5) space can be precisely mapped to the light-front wave functions of hadrons in physical space-time. We find an exact correspondence between the holographic variable z and an impact variable zeta, which represents the measure of transverse separation of the constituents within the hadrons. In addition, we derive effective four dimensional Schrodinger equations for the bound states of massless quarks and gluons which exactly reproduce the anti-de Sitter conformal field theory results and give a realistic description of the light-quark meson and baryon spectrum as well as the form factors for spacelike Q(2). Only one parameter which sets the mass scale, Lambda(QCD), is introduced. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Costa Rica, San Jose, Costa Rica. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 42 TC 249 Z9 250 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 201601 DI 10.1103/PhysRevLett.96.201601 PG 4 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000009 PM 16803163 ER PT J AU Moore, KT Soderlind, P Schwartz, AJ Laughlin, DE AF Moore, KT Soderlind, P Schwartz, AJ Laughlin, DE TI Symmetry and stability of delta plutonium: The influence of electronic structure SO PHYSICAL REVIEW LETTERS LA English DT Article ID ALUMINUM; ALLOYS AB Using first-principles density-functional theory, we calculate the bond strengths between the 12 nearest neighbors in delta plutonium for both pure Pu and a Pu-3.7 at. % Ga alloy. Our results for pure Pu reveal a structure with the monoclinic space group Cm rather than face-centered cubic Fm3m, showing that the anomalously large anisotropy of delta plutonium is a consequence of greatly varying bond strengths between the 12 nearest neighbors. Further results for a Pu-3.7 at. % Ga alloy show that the nearest-neighbor bond strengths around a Ga atom are more uniform. Hence, our calculations address (i) why the ground state of Pu is monoclinic, (ii) why distortions of the delta phase are viable, with considerable implications for the behavior of the material as it ages due to anisotropic response to self-irradiation, and (iii) why Ga stabilizes face-centered cubic delta-Pu. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Moore, KT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM moore78@llnl.gov NR 27 TC 27 Z9 28 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 206402 DI 10.1103/PhysRevLett.96.206402 PG 4 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000037 PM 16803191 ER PT J AU Persson, BNJ Zhao, K Zhang, ZY AF Persson, BNJ Zhao, K Zhang, ZY TI Chemical contribution to surface-enhanced Raman scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPHERICAL METAL PARTICLES; LARGE AG NANOCRYSTALS; SILVER ELECTRODE; MATRIX ENVIRONMENT; SPECTROSCOPY; POLARIZABILITY; EXCITATIONS; RESISTIVITY; VIBRATIONS; MOLECULES AB We present a new mechanism for the chemical contribution to surface-enhanced Raman scattering (SERS). The theory considers the modulation of the polarizability of a metal nanocluster or a flat metal surface by the vibrational motion of an adsorbed molecule. The modulated polarization of the substrate coupled with the incident light will contribute to the Raman scattering enhancement. We show that for a metal cluster and for a flat metal surface this new chemical contribution may enhance the Raman scattering intensity by a factor of similar to 10(2) and similar to 10(4), respectively. The new SERS process is determined by the electric field parallel to the surface of the metal substrate at the molecular binding site. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. FZ Julich, IFF, D-52425 Julich, Germany. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Persson, BNJ (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RI Persson, Bo Nils Johan/I-1548-2013 OI Persson, Bo Nils Johan/0000-0003-1535-738X NR 32 TC 104 Z9 106 U1 7 U2 56 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 207401 DI 10.1103/PhysRevLett.96.207401 PG 4 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000050 PM 16803204 ER PT J AU Silhanek, AV Ebihara, T Harrison, N Jaime, M Tezuka, K Fanelli, V Batista, CD AF Silhanek, A. V. Ebihara, Takao Harrison, N. Jaime, M. Tezuka, Koji Fanelli, V. Batista, C. D. TI Nonlocal magnetic field-tuned quantum criticality in cubic CeIn3-xSnx (x=0.25) SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-FERMION COMPOUNDS; CRITICAL-POINT; SPIN FLUCTUATIONS; TRANSITION; BEHAVIOR; METALS AB We show that antiferromagnetism in lightly (approximate to 8%) Sn-doped CeIn3 terminates at a critical field mu H-0(c)=42 +/- 2 T. Electrical transport and thermodynamic measurements reveal the effective mass m(*) not to diverge, suggesting that cubic CeIn3 is representative of a critical spin-density wave (SDW) scenario, unlike the local quantum critical points reported in anisotropic systems such as CeCu6-xAux and YbRh2Si2-xGex. The existence of a maximum in m(*) at a lower field mu H-0(x)=30 +/- 1 T may be interpreted as a field-induced crossover from local moment to SDW behavior as the Neel temperature falls below the Fermi temperature. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. RP Silhanek, AV (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. RI Fanelli, Victor/A-4375-2015; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016; OI Jaime, Marcelo/0000-0001-5360-5220; Harrison, Neil/0000-0001-5456-7756 NR 28 TC 12 Z9 12 U1 0 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 206401 DI 10.1103/PhysRevLett.96.206401 PG 4 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000036 PM 16803190 ER PT J AU Yan, Y Noufi, R Al-Jassim, MM AF Yan, fa Yan Noufi, R. Al-Jassim, M. M. TI Grain-boundary physics in polycrystalline CuInSe2 revisited: Experiment and theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID CU(IN,GA)SE-2 THIN-FILMS; INITIO MOLECULAR-DYNAMICS; SOLAR-CELLS; QUASI-CRYSTALS; SEMICONDUCTOR; PSEUDOPOTENTIALS; TRANSITION; SILICON; SURFACE AB Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composition of (112) GBs in Cu(In,Ga)Se-2 (CIGS) using high-resolution Z-contrast imaging and nanoprobe x-ray energy-dispersive spectroscopy. We show that the theoretically predicted Cu-vacancy rows are not observed in (112) GBs in CIGS. Our first-principles modeling further reveals that the (112) GBs in CIS do not act as hole barriers. Our results suggest that the superior performance of polycrystalline CIS should not be explained solely by the GB behaviors. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, Y (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Albe, Karsten/F-1139-2011 NR 32 TC 74 Z9 75 U1 3 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 26 PY 2006 VL 96 IS 20 AR 205501 DI 10.1103/PhysRevLett.96.205501 PG 4 WC Physics, Multidisciplinary SC Physics GA 046YM UT WOS:000237847000027 PM 16803181 ER PT J AU Wang, ZW Zhao, YS AF Wang, ZW Zhao, YS TI High-pressure microscopy SO SCIENCE LA English DT Editorial Material ID CARBON NANOTUBES; DIAMOND; PHASES C1 Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Wang, ZW (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663, Los Alamos, NM 87545 USA. EM z_wang@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 12 TC 10 Z9 10 U1 1 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 26 PY 2006 VL 312 IS 5777 BP 1149 EP 1150 DI 10.1126/science.1127181 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 048OW UT WOS:000237957400032 ER PT J AU Dimiduk, DM Woodward, C LeSar, R Uchic, MD AF Dimiduk, DM Woodward, C LeSar, R Uchic, MD TI Scale-free intermittent flow in crystal plasticity SO SCIENCE LA English DT Article ID DISLOCATION AVALANCHES; DEFORMATION; DYNAMICS; SIZE; BEHAVIOR; NOISE AB Under stress, crystals irreversibly deform through complex dislocation processes that intermittently change the microscopic material shape through isolated slip events. These underlying processes can be revealed in the statistics of the discrete changes. Through ultraprecise nanoscale measurements on nickel microcrystals, we directly determined the size of discrete slip events. The sizes ranged over nearly three orders of magnitude and exhibited a shock-and-aftershock, earthquake-like behavior over time. Analysis of the events reveals power-law scaling between the number of events and their magnitude, or scale-free flow. We show that dislocated crystals are a model system for studying scale-free behavior as observed in many macroscopic systems. In analogy to plate tectonics, smooth macroscopic-scale crystalline glide arises from the spatial and time averages of disruptive earthquake-like events at the nanometer scale. C1 USAF, Res Lab, Mat & Mfg Directorate, AFRL MLLM, Wright Patterson AFB, OH 45433 USA. Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Dimiduk, DM (reprint author), USAF, Res Lab, Mat & Mfg Directorate, AFRL MLLM, Wright Patterson AFB, OH 45433 USA. EM dennis.dimiduk@wpafb.af.mil RI LeSar, Richard/G-1609-2012 NR 30 TC 294 Z9 296 U1 6 U2 78 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 26 PY 2006 VL 312 IS 5777 BP 1188 EP 1190 DI 10.1126/science.1123889 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 048OW UT WOS:000237957400046 PM 16728635 ER PT J AU De Gobbi, M Viprakisit, V Hughes, JR Fisher, C Buckle, VJ Ayyub, H Gibbons, RJ Vernimmen, D Yoshinaga, Y de Jong, P Cheng, JF Rubin, EM Wood, WG Bowden, D Higgs, DR AF De Gobbi, M Viprakisit, V Hughes, JR Fisher, C Buckle, VJ Ayyub, H Gibbons, RJ Vernimmen, D Yoshinaga, Y de Jong, P Cheng, JF Rubin, EM Wood, WG Bowden, D Higgs, DR TI A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter SO SCIENCE LA English DT Article ID GLOBIN GENES; HUMAN GENOME; CLUSTER; REGION; POLYMORPHISMS; ACTIVATION; SEQUENCES; COMPLEX; GATA-1; ZETA AB We describe a pathogenetic mechanism underlying a variant form of the inherited blood disorder a thalassemia. Association studies of affected individuals from Melanesia localized the disease trait to the telomeric region of human chromosome 16, which includes the alpha-globin gene cluster, but no molecular defects were detected by conventional approaches. After resequencing and using a. combination of chromatin immunoprecipitation and expression analysis on a tiled oligonucleotide array, we identified a gain-of-function regulatory single-nucleotide polymorphism (rSNP) in a nongenic region between the alpha-globin genes and their upstream regulatory elements. The rSNP creates a new promoterlike element that interferes with normal activation of at[ downstream alpha-like globin genes. Thus, our work illustrates a strategy for distinguishing between neutral and functionally important rSNPs, and it also identifies a pathogenetic mechanism that could potentially underlie other genetic diseases. C1 John Radcliffe Hosp, Weatherall Inst Mol Med, MRC, Mol Haematol Unit, Oxford OX3 9DS, England. Mahidol Univ, Siriraj Hosp, Dept Pediat, Bangkok 10700, Thailand. Childrens Hosp, Oakland Res Inst, BACPAC Resources, Oakland, CA 94609 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Monash Univ, Dept Anat & Cell Biol, Melbourne, Vic 3004, Australia. RP Higgs, DR (reprint author), John Radcliffe Hosp, Weatherall Inst Mol Med, MRC, Mol Haematol Unit, Oxford OX3 9DS, England. EM doug.higgs@imm.ox.ac.uk RI De Gobbi, Marco/E-8136-2013; OI De Gobbi, Marco/0000-0003-4261-7642 FU Medical Research Council [MC_U137961143, MC_U137961145, MC_U137961147] NR 16 TC 148 Z9 163 U1 4 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 26 PY 2006 VL 312 IS 5777 BP 1215 EP 1217 DI 10.1126/science.1126431 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 048OW UT WOS:000237957400054 PM 16728641 ER PT J AU Squire, JP Chang-Diaz, FR Glover, TW Jacobson, VT McCaskill, GE Winter, DS Baity, FW Carter, MD Goulding, RH AF Squire, JP Chang-Diaz, FR Glover, TW Jacobson, VT McCaskill, GE Winter, DS Baity, FW Carter, MD Goulding, RH TI High power light gas helicon plasma source for VASIMR SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Joint Meeting of the 7th Asia Pacific Conference on Plasma Science and Technology/17th Symposium on Plasma Science for Materials (APCPST/SPSM) CY JUN 29-JUL 02, 2004 CL Fukuoka, JAPAN SP 153rd Comm Plasma Mat Sci DE experimental methods; helicon; plasma propulsion AB In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 M Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 M, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition. (c) 2005 Elsevier B.V. All rights reserved. C1 NASA, Lyndon B Johnson Space Ctr, ASPL, Houston, TX 77059 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Squire, JP (reprint author), NASA, Lyndon B Johnson Space Ctr, ASPL, 13000 Space Ctr Blvd, Houston, TX 77059 USA. RI Goulding, Richard/C-5982-2016 OI Goulding, Richard/0000-0002-1776-7983 NR 9 TC 14 Z9 14 U1 2 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAY 26 PY 2006 VL 506 BP 579 EP 582 DI 10.1016/j.tsf.2005.08.061 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 034ME UT WOS:000236932300124 ER PT J AU Yoshitaka, M Hideki, N Baity, FW Goulding, RH Carter, MD Sparks, DO AF Yoshitaka, M Hideki, N Baity, FW Goulding, RH Carter, MD Sparks, DO TI Focusing magnetic field contribution for helicon plasma on Mini-RFTF SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Joint Meeting of the 7th Asia Pacific Conference on Plasma Science and Technology/17th Symposium on Plasma Science for Materials (APCPST/SPSM) CY JUN 29-JUL 02, 2004 CL Fukuoka, JAPAN SP 153rd Comm Plasma Mat Sci DE helicon plasma; hydrogen; helium; non-uniformity AB The Mini-Radio Frequency Test Facility (Mini-RFTF) has contributed to helicon plasma source optimization for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In this paper, we report how the source, using hydrogen and helium, can be optimized for non-uniform geometries that are constrained to be suitable for VASIMR. The behavior of the density transition into high-density helicon operation was found to significantly depend on the magnetic field geometry. Operation indicates that a strongly focused magnetic geometry produces a continuously increasing density with increasing net power. For helium operation, mirror confinement effects possibly explain the observed plasma sustainment on upstream and downstream for several magnetic field geometries. (c) 2005 Published by Elsevier B.V. C1 Kyushu Univ, Kasuga, Fukuoka 816, Japan. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Yoshitaka, M (reprint author), Kyushu Univ, Kasuga, Fukuoka 816, Japan. EM yositaka@aees.kyushu-u.ac.jp RI Goulding, Richard/C-5982-2016 OI Goulding, Richard/0000-0002-1776-7983 NR 9 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAY 26 PY 2006 VL 506 BP 583 EP 587 DI 10.1016/j.tsf.2005.08.063 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 034ME UT WOS:000236932300125 ER PT J AU Hook, SE Skillman, AD Small, JA Schultz, IR AF Hook, Sharon E. Skillman, Ann D. Small, Jack A. Schultz, Irvin R. TI Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants SO AQUATIC TOXICOLOGY LA English DT Article DE rainbow trout; Oncorhynchus mykiss; xeno-estrogen; gene expression; microarrays; genomics ID BASS MICROPTERUS-SALMOIDES; FLOUNDER PLATICHTHYS-FLESUS; DNA MICROARRAYS; STRESS-RESPONSE; ARRAY TECHNOLOGY; DIPHENYL ETHERS; FATHEAD MINNOW; TOXICOLOGY; RECEPTOR; TOXICOGENOMICS AB The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol. (xeno-estrogen), 2,2,4,4'-tetrabrornodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid;'I model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. (c) 2006 Elsevier B.V. All rights reserved. C1 Battelle Mem Inst, Marine Res Operat, Sequim, WA 98382 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hook, SE (reprint author), Battelle Mem Inst, Marine Res Operat, Sequim, WA 98382 USA. EM Sharon.Hook@pnl.gov RI Hook, Sharon/D-9067-2011 FU NIEHS NIH HHS [5R01ES012446-03, R01 ES012446, R01 ES012446-03] NR 57 TC 94 Z9 94 U1 3 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD MAY 25 PY 2006 VL 77 IS 4 BP 372 EP 385 DI 10.1016/j.aquatox.2006.01.007 PG 14 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA 046LP UT WOS:000237813400004 PM 16488489 ER PT J AU Kurien, S Smith, L Wingate, B AF Kurien, S Smith, L Wingate, B TI On the two-point correlation of potential vorticity in rotating and stratified turbulence SO JOURNAL OF FLUID MECHANICS LA English DT Article ID 3-DIMENSIONAL TURBULENCE; STATISTICS; HELICITY; DYNAMICS; MOMENTS AB A framework is developed to describe the two-point statistics of potential vorticity in rotating and stratified turbulence as described by the Boussinesq equations. The Karman-Howarth equation for the dynamics of the two-point correlation function of potential vorticity reveals the possibility of inertial-range dynamics in certain regimes in the Rossby, Froude, Prandtl and Reynolds number parameters. For the case of large Rossby and Froude numbers, and for the case of quasi-geostrophic dynamics, a linear scaling law with 2/3 prefactor is derived for the third-order mixed correlation between potential vorticity and velocity, a result that is analogous to the Kolmogorov 4/5-law for the third-order velocity structure function in turbulence theory. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Wisconsin, Dept Mat & Engn Phys, Madison, WI 53706 USA. Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. RP Kurien, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 28 TC 8 Z9 8 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 40 WEST 20TH ST, NEW YORK, NY 10011-4211 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAY 25 PY 2006 VL 555 BP 131 EP 140 DI 10.1017/S0022112006009116 PG 10 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 052LW UT WOS:000238236200006 ER PT J AU Holm, DD Nitsche, M Putkaradze, V AF Holm, DD Nitsche, M Putkaradze, V TI Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion SO JOURNAL OF FLUID MECHANICS LA English DT Article ID ROLL-UP; SINGULARITY FORMATION; FLUID; EQUATIONS; DYNAMICS; FLOWS; MODEL AB The Euler-alpha and the vortex blob model are two different regularizations of incompressible ideal fluid flow. Here, a regularization is a smoothing operation which controls the fluid velocity in a stronger norm than L-2. The Euler-alpha model is the inviscid version of the Lagrangian averaged Navier-Stokes-alpha turbulence model. The vortex blob model was introduced to regularize vortex flows. This paper presents both models within one general framework, and compares the results when applied to planar and axisymmetric vortex filaments and sheets. By certain measures, the Euler-alpha model is closer to the unregularized flow than the vortex blob model. The differences that result in circular vortex filament motion, vortex sheet linear stability properties, and core dynamics of spiral vortex sheet roll-up are discussed. C1 Los Alamos Natl Lab, Computat & Comp Sci Div, Los Alamos, NM 87545 USA. Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. RP Holm, DD (reprint author), Los Alamos Natl Lab, Computat & Comp Sci Div, MS D413, Los Alamos, NM 87545 USA. OI Holm, Darryl D/0000-0001-6362-9912 NR 37 TC 14 Z9 14 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 40 WEST 20TH ST, NEW YORK, NY 10011-4211 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAY 25 PY 2006 VL 555 BP 149 EP 176 DI 10.1017/S00322112006008846 PG 28 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 052LW UT WOS:000238236200008 ER PT J AU Kang, QJ Lichtner, PC Zhang, DX AF Kang, Qinjun Lichtner, Peter C. Zhang, Dongxiao TI Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID NAVIER-STOKES EQUATION; CHEMICAL-REACTIONS; GAS AUTOMATA; DISSOLUTION; SIMULATION; PRECIPITATION; DEPOSITION; FRACTURES; SYSTEMS; FLUID AB [ 1] In this work, a multicomponent lattice Boltzmann ( LB) model is presented for simulating reactive transport in porous media at the pore scale. In the model, a set of distribution functions is introduced to simulate fluid flow and solute transport. The model takes into account advection, diffusion, homogeneous reactions among multiple aqueous species, and heterogeneous reactions between the aqueous solution and minerals, as well as changes in solid and pore geometry. Homogeneous reactions are described through local equilibrium mass action relations. Mineral reactions are treated kinetically through boundary conditions at the mineral surface. The LB equation for flow recovers the correct pore-scale continuity and Navier-Stokes equations. The LB equations for solute transport are modified to recover advection-diffusion equations for total concentrations at the pore scale. The model is applied to a hypothetical three-component system with two aqueous complexes and two mineral reactions in a simple pore geometry. The effects of advection, diffusion, reaction rate constants, equilibrium constants of both homogeneous and heterogeneous reactions, and chemical compositions on mineral alteration of the porous medium and solute concentration are analyzed. C1 Los Alamos Natl Lab, Geochem & Geol Grp, Los Alamos, NM 87545 USA. Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA. RP Kang, QJ (reprint author), Los Alamos Natl Lab, Geochem & Geol Grp, POB 1663, Los Alamos, NM 87545 USA. EM qkang@lanl.gov RI Zhang, Dongxiao/D-5289-2009; Kang, Qinjun/A-2585-2010 OI Zhang, Dongxiao/0000-0001-6930-5994; Kang, Qinjun/0000-0002-4754-2240 NR 31 TC 95 Z9 98 U1 8 U2 49 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD MAY 25 PY 2006 VL 111 IS B5 AR B05203 DI 10.1029/2005JB003951 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 049VC UT WOS:000238044500001 ER PT J AU Zubarev, DY Boldyrev, AI Li, X Wang, LS AF Zubarev, Dmitry Yu. Boldyrev, Alexander I. Li, Xi Wang, Lai-Sheng TI Observation of triatomic species with conflicting aromaticity: AlSi2- and AlGe2- SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SILICON-CONTAINING MOLECULES; METAL ANTIAROMATIC MOLECULE; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; CLUSTERS; SI2H2; SIGMA; AL; ANALOGS AB We created mixed triatomic clusters, AlCGe-, AlSi2-, and AlGe2-, and studied their electronic structure and chemical bonding using photoelectron spectroscopy and ab initio calculations. Excellent agreement between theoretical and experimental photoelectron spectra confirmed the predicted global minimum structures for these species. Chemical bonding analysis revealed that the AlSi2- and AlGe2- anions can be described as species with conflicting (sigma-antiaromatic and pi-aromatic) aromaticity. The AlCGe- anion represents an interesting example of chemical species which is between classical and aromatic. C1 Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. Washington State Univ, Dept Phys, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Boldyrev, AI (reprint author), Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. EM boldyrev@cc.usu.edu; ls.wang@pnl.gov RI Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 NR 34 TC 7 Z9 7 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 25 PY 2006 VL 110 IS 20 BP 9743 EP 9746 DI 10.1021/jp060690e PG 4 WC Chemistry, Physical SC Chemistry GA 043UB UT WOS:000237626400002 PM 16706418 ER PT J AU Mei, Q Siewenie, JE Benmore, CJ Ghalsasi, P Yarger, JL AF Mei, Q. Siewenie, J. E. Benmore, C. J. Ghalsasi, P. Yarger, J. L. TI Orientational correlations in the glacial state of triphenyl phosphite SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-DIFFRACTION; LIQUID-LIQUID TRANSITION; NEUTRON-DIFFRACTION; POLYAMORPHISM SITUATION; SUPERCOOLED LIQUIDS; GLASS-TRANSITION; MOLECULAR LIQUID; PHASE; SPECTROSCOPY; FRUSTRATION AB Spallation neutron and high-energy X-ray diffraction experiments have been performed to investigate the local structure of the glacial and supercooled liquid states in triphenyl phosphite. The observed diffraction patterns have been interpreted using a Reverse Monte Carlo modeling technique. The results show that the glacial state forms unusually weak intermolecular hydrogen bonds between an oxygen atom connected to a phenyl ring and an adjacent phenyl ring aligned in an approximately antiparallel configuration. The structure is very different from the hexagonal crystal which is characterized by two weaker hydrogen bonds between linear arrays of molecules which are offset from each other and packed in a hexamer arrangement. C1 Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Argonne Natl Lab, APS Div, Argonne, IL 60439 USA. Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Benmore, CJ (reprint author), Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RI Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 NR 27 TC 12 Z9 12 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 25 PY 2006 VL 110 IS 20 BP 9747 EP 9750 DI 10.1021/jp060692z PG 4 WC Chemistry, Physical SC Chemistry GA 043UB UT WOS:000237626400003 PM 16706419 ER PT J AU Shipman, ST Garrett-Roe, S Szymanski, P Yang, AR Strader, ML Harris, CB AF Shipman, ST Garrett-Roe, S Szymanski, P Yang, AR Strader, ML Harris, CB TI Determination of band curvatures by angle-resolved two-photon photoemission in thin films of C-60 on Ag(111) SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; ICOSAHEDRAL C-60; SOLID C-60; METAL; SURFACE; GAP; DIFFRACTION; INTERFACE AB The thickness-dependent interfacial band structure was determined for thin films of C-60 on Ag(111) by angle-resolved two-photon photoemission spectroscopy. Dispersions of molecular-orbital derived bands ( HOMO, LUMO+1, and LUMO+2) were acquired, and limits were placed on their possible effective masses. A group theoretic approach is also incorporated to further understand the properties of these states. The HOMO, LUMO+1, and LUMO+2 bands possess ( best-fit) effective masses of - 7 m(e), - 7 m(e), and - 12 m(e), respectively. These values are consistent with theoretical calculations, averaged over the closely spaced subbands for each state, and provide practical limits on the effective fundamental charge-transport properties of C-60 films. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Garrett-Roe, Sean/C-6037-2011 OI Garrett-Roe, Sean/0000-0001-6199-8773 NR 48 TC 10 Z9 10 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 25 PY 2006 VL 110 IS 20 BP 10002 EP 10010 DI 10.1021/jp055042u PG 9 WC Chemistry, Physical SC Chemistry GA 043UB UT WOS:000237626400043 PM 16706459 ER PT J AU Bratlie, KM Flores, LD Somorjai, GA AF Bratlie, KM Flores, LD Somorjai, GA TI In situ sum frequency generation vibrational spectroscopy observation of a reactive surface intermediate during high-pressure benzene hydrogenation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PT(111) CRYSTAL-SURFACE; CATALYTIC-REACTIONS; C-6 HYDROCARBONS; ADSORPTION; DEHYDROGENATION; CYCLOHEXENE; TOLUENE; SYSTEM; 1,4-CYCLOHEXADIENE; TEMPERATURE AB Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to identify a reactive surface intermediate in situ during hydrogenation of benzene on a Pt( 111) single crystal surface at Torr pressures. Upon adsorption at 310 K, both chemisorbed and physisorbed benzene coexist on the surface, a result which has not previously been observed. Kinetic measurements show a linear compensation effect for the production of both cyclohexane and cyclohexene. From these data the isokinetic temperature was identified and correlated to the chemisorbed benzene species, which were probed by means of vibrational spectroscopy. Additionally, chemisorbed benzene was determined to be a reactive intermediate, which is critical for hydrogenation. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Bratlie, Kaitlin/A-1133-2009 NR 36 TC 21 Z9 21 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 25 PY 2006 VL 110 IS 20 BP 10051 EP 10057 DI 10.1021/jp0612735 PG 7 WC Chemistry, Physical SC Chemistry GA 043UB UT WOS:000237626400048 PM 16706464 ER PT J AU Levitas, VI Henson, BF Smilowitz, LB Asay, BW AF Levitas, Valery I. Henson, Bryan F. Smilowitz, Laura B. Asay, Blaine W. TI Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID STABLE INTERMEDIATE STATE; NITRAMINE OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; INELASTIC MATERIAL; STRUCTURAL-CHANGES; TRANSITION; NUCLEATION; KINETICS; GROWTH AB We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta -> delta PT and from 520 to 400 K for the beta phase during the delta -> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <-> delta cycles, as predicted by theory; (f), beta <-> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta -> alpha and alpha -> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Texas Tech Univ, Dept Mech Engn, Ctr Mechanochem & Synth New Mat, Lubbock, TX 79409 USA. RP Levitas, VI (reprint author), Texas Tech Univ, Dept Mech Engn, Ctr Mechanochem & Synth New Mat, Lubbock, TX 79409 USA. EM valery.levitas@ttu.edu NR 40 TC 33 Z9 34 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 EI 1520-5207 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 25 PY 2006 VL 110 IS 20 BP 10105 EP 10119 DI 10.1021/jp057438b PG 15 WC Chemistry, Physical SC Chemistry GA 043UB UT WOS:000237626400056 PM 16706472 ER PT J AU Poltavets, VV Lokshin, KA Egami, T Greenblatt, M AF Poltavets, VV Lokshin, KA Egami, T Greenblatt, M TI The oxygen deficient Ruddlesden-Popper La3Ni2O7-delta (delta=0.65) phase: Structure and properties SO MATERIALS RESEARCH BULLETIN LA English DT Article DE oxides; chemical synthesis; neutron scattering; thermogravimetric analysis; crystal structure ID NEUTRON-DIFFRACTION; SODIUM HYDRIDE; OXIDE AB La3Ni2O7-delta (delta = 0.65) was synthesized by hydrogen reduction of the parent La3Ni2O7 Ruddlesden-Popper nickelate. The crystal structure of La3Ni2O6.35 (space group: I4/mmm, a = 3.8742 (1) angstrom and c = 20.055 (1) angstrom) has been determined from powder neutron diffraction data by the Rietveld method for the first time. The oxygen vacancies are located in the LaOx planes between two of the NiO2 layers. Removal of these oxygen atoms from the parent phase results in a significant (similar to 0.4 angstrom) shrinkage of the perovskite block along c-direction and splitting of the Ni position. The major part of Ni cations is surrounded by five oxygen atoms forming square pyramids, while the rest are coordinated to six octahedrally arranged oxygen atoms. Over the 170-400 K temperature range, the conductivity of La3Ni2O6.35 follows Mott's variable range hopping model modified for a 2D case. (C) 2006 Elsevier Ltd. All rights reserved. C1 Rutgers State Univ, Dept Chem & Biol Chem, Piscataway, NJ 08854 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Greenblatt, M (reprint author), Rutgers State Univ, Dept Chem & Biol Chem, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM martha@rutchem.rutgers.edu OI Poltavets, Viktor/0000-0001-5086-7743 NR 15 TC 16 Z9 16 U1 4 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD MAY 25 PY 2006 VL 41 IS 5 BP 955 EP 960 DI 10.1016/j.materresbull.2006.01.028 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 050VK UT WOS:000238116800008 ER PT J AU Melot, B Rodriguez, E Proffen, T Hayward, MA Seshadri, R AF Melot, B Rodriguez, E Proffen, T Hayward, MA Seshadri, R TI Displacive disorder in three high-k bismuth oxide pyrochlores SO MATERIALS RESEARCH BULLETIN LA English DT Article DE electronic materials; dielectric properties ID DIELECTRIC-PROPERTIES; THIN-FILMS; RELAXATION AB We use time-of-flight neutron powder diffraction to examine static displacive disorder in three different pyrochlore A(2)B(2)O(6)O' compounds with Bi on the A site. The compounds (Bi1.5Zn0.5)(Nb1.5Zn0.5)O6O' (BZN), (Bi1.5Zn0.5)(Ta1.5Zn0.5)O6O' (BZT), and (Bi1.5Zn0.5)(Sb1.5Zn0.5)O6O' (BZS), are of interest - particularly BZN - for their high dielectric constants in the absence of any phase transition from the cubic high temperature phase. The local structures of the three compounds is characterized by displacive disorder from the ideal pyrochlore positions for both the A and O' sites, with the precise nature of the disorder being quite similar. However the extent of displacive disorder is different, despite the B-O networks being nearly identical in the three compounds. The reported dielectric constants of the three compounds are related to the extent of local displacement, and BZN, with the largest extent of local atomic displacement of A and O', is also reported to have the largest dielectric constant at 1 MHz. The dielectric constants are also related to the magnitudes of the thermal parameters of the different ions. The strongest correlation is found to involve the thermal parameter on the B site (Nb, Ta, or Sb). (C) 2006 Elsevier Ltd. All rights reserved. C1 Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr LANSCE 12, Los Alamos, NM 87545 USA. Univ Oxford, Inorgan Chem Lab, Dept Chem, Oxford OX1 3QR, England. RP Seshadri, R (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM seshadri@mrl.ucsb.edu RI Melot, Brent/B-6456-2008; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Rodriguez, Efrain/N-1928-2013; Proffen, Thomas/B-3585-2009; OI Melot, Brent/0000-0002-7078-8206; Seshadri, Ram/0000-0001-5858-4027; Rodriguez, Efrain/0000-0001-6044-1543; Proffen, Thomas/0000-0002-1408-6031; Hayward, Michael/0000-0002-6248-2063 NR 20 TC 29 Z9 29 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD MAY 25 PY 2006 VL 41 IS 5 BP 961 EP 966 DI 10.1016/j.materresbull.2006.02.004 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 050VK UT WOS:000238116800009 ER PT J AU Adams, TM Korinko, P Duncan, A AF Adams, TM Korinko, P Duncan, A TI Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE oxidation; hydrogen permeation; duplex stainless steels ID EMBRITTLEMENT; TRANSPORT; ALUMINUM; BARRIER; COATINGS; ELEMENTS; FERRITE; METALS; FILMS AB As the national hydrogen economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Al-oxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with At in concentration from 0.5 to 3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 degrees C, 30 min) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al. the At stabilizes the ferrite phase in these steels thus producing duplex austenitc-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels. (c) 2006 Elsevier B.V. All rights reserved. C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Adams, TM (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. EM thad.adams@srnl.doe.gov NR 24 TC 11 Z9 14 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2006 VL 424 IS 1-2 BP 33 EP 39 DI 10.1016/j.msea.2006.02.025 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 055TG UT WOS:000238472700005 ER PT J AU Perez, MG Kenik, EA O'Keefe, MJ Miller, FS Johnson, B AF Perez, MG Kenik, EA O'Keefe, MJ Miller, FS Johnson, B TI Identification of phases in zinc alloy powders using electron backscatter diffraction SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE electron backscatter diffraction; structural characterization; zinc powders; alkaline batteries; hydrogen gassing; EBSD sample preparation AB Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of < 1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were < 03 mu m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases > 1 mu m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn2 phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram. (c) 2006 Elsevier B.V. All fights reserved. C1 Univ Missouri, Grad Ctr Mat Res, Rolla, MO 65409 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP O'Keefe, MJ (reprint author), Univ Missouri, Grad Ctr Mat Res, Rolla, MO 65409 USA. EM mjokeefe@umr.edu NR 26 TC 7 Z9 9 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2006 VL 424 IS 1-2 BP 239 EP 250 DI 10.1016/j.msea.2006.03.015 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 055TG UT WOS:000238472700028 ER PT J AU Bhambri, Y Sikka, VK Porter, WD Loria, EA Carneiro, T AF Bhambri, Y Sikka, VK Porter, WD Loria, EA Carneiro, T TI Effect of composition and cooling rate on the transformation of alpha to gamma phase in TiAl alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE TiAl; phase transformations; cooling rate; differential scanning calorimeter (DSC); interlamellar spacing AB Microstructure controls mechanical properties of TiAl-based alloys and it does so in three ways: alloy composition, thermomechanical (dynamic), and static heat treatments. This study considers the effect of composition and cooling rate in the transformation temperature from hcp-alpha phase to fct-gamma phase in the alpha and gamma phase field. The data for three Ti-46Al-4-8Nb alloys show that alpha and gamma transformation temperature varies by 70 degrees C by changing the cooling rate over a factor of 40. Compared to the effects of cooling rate, the effect of composition on the alpha-gamma transformation is minimal. Microstructural examination following A change in cooling rate from the post-extrusion heat treatment reveals differences in the desired lamellar structure and suggests the alloy composition and heat treatment cooling rate for optimal properties. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Met Consultant, Pittsburgh, PA 15241 USA. Ref Met Co Inc, Bridgeville, PA 15017 USA. RP Sikka, VK (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008, Oak Ridge, TN 37831 USA. EM sikkavk@ornl.gov NR 6 TC 5 Z9 5 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 25 PY 2006 VL 424 IS 1-2 BP 361 EP 365 DI 10.1016/j.msea.2006.03.030 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 055TG UT WOS:000238472700042 ER PT J AU Fruchter, AS Levan, AJ Strolger, L Vreeswijk, PM Thorsett, SE Bersier, D Burud, I Ceron, JMC Castro-Tirado, AJ Conselice, C Dahlen, T Ferguson, HC Fynbo, JPU Garnavich, PM Gibbons, RA Gorosabel, J Gull, TR Hjorth, J Holland, ST Kouveliotou, C Levay, Z Livio, M Metzger, MR Nugent, PE Petro, L Pian, E Rhoads, JE Riess, AG Sahu, KC Smette, A Tanvir, NR Wijers, RAMJ Woosley, SE AF Fruchter, A. S. Levan, A. J. Strolger, L. Vreeswijk, P. M. Thorsett, S. E. Bersier, D. Burud, I. Castro Ceron, J. M. Castro-Tirado, A. J. Conselice, C. Dahlen, T. Ferguson, H. C. Fynbo, J. P. U. Garnavich, P. M. Gibbons, R. A. Gorosabel, J. Gull, T. R. Hjorth, J. Holland, S. T. Kouveliotou, C. Levay, Z. Livio, M. Metzger, M. R. Nugent, P. E. Petro, L. Pian, E. Rhoads, J. E. Riess, A. G. Sahu, K. C. Smette, A. Tanvir, N. R. Wijers, R. A. M. J. Woosley, S. E. TI Long gamma-ray bursts and core-collapse supernovae have different environments SO NATURE LA English DT Article ID HOST GALAXIES; LOW METALLICITY; MASSIVE STARS; IA SUPERNOVAE; REDSHIFT; AFTERGLOW; PROGENITORS; RATES; SPECTROSCOPY; CONSTRAINTS AB When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way. C1 Space Telescope Sci Inst, Baltimore, MD 21218 USA. Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. Western Kentucky Univ, Bowling Green, KY 42101 USA. European So Observ, Santiago 19, Chile. Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. Norwegian Meteorol Inst, N-0313 Oslo, Norway. Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. CALTECH, Pasadena, CA 91125 USA. Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Extraterr Planets & Stellar Astrophys Explorat Un, Greenbelt, MD 20771 USA. NASA, George C Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. Renaissance Technol Corp, E Setauket, NY 11733 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. RP Fruchter, AS (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM fruchter@stsci.edu RI Gull, Theodore/D-2753-2012; Conselice, Christopher/B-4348-2013; Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; OI Gull, Theodore/0000-0002-6851-5380; Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Thorsett, Stephen/0000-0002-2025-9613; Castro-Tirado, A. J./0000-0003-2999-3563; Petro, Larry/0000-0001-8879-528X; Wijers, Ralph/0000-0002-3101-1808 NR 50 TC 472 Z9 475 U1 1 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 25 PY 2006 VL 441 IS 7092 BP 463 EP 468 DI 10.1038/nature04787 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 045YP UT WOS:000237778900040 PM 16688183 ER PT J AU Hirano, T Heinz, U Kharzeev, D Lacey, R Nara, Y AF Hirano, Tetsufumi Heinz, Ulrich Kharzeev, Dmitri Lacey, Roy Nara, Yasushi TI Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions SO PHYSICS LETTERS B LA English DT Article ID QUARK-GLUON PLASMA; HIGH-DENSITY QCD; NUCLEAR COLLISIONS; HIGH-ENERGY; COLLABORATION; ANISOTROPY; SIGNATURE; MOMENTUM; MODELS; MATTER AB We study the elliptic flow coefficient v(2) (eta, b) in Au + Au collisions at root s = 200 A GeV as a function of pseudorapidity eta and impact parameter b. Using a hybrid approach which combines early ideal fluid dynamical evolution with late hadronic rescattering, we demonstrate strong dissipative effects from the hadronic rescattering stage on the elliptic flow. With Glauber model initial conditions, hadronic dissipation is shown to be sufficient to fully explain the differences between measured v(2) values and ideal hydrodynamic predictions. Initial conditions based on the Color Glass Condensate model generate larger elliptic flow and seem to require additional dissipation during the early quark-gluon plasma stage in order to achieve agreement with experiment. (c) 2006 Elsevier B. V. All rights reserved. C1 Columbia Univ, Dept Phys, New York, NY 10027 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Hirano, T (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM hirano@phys.columbia.edu NR 63 TC 315 Z9 316 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAY 25 PY 2006 VL 636 IS 6 BP 299 EP 304 DI 10.1016/j.physletb.2006.03.060 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 045XC UT WOS:000237775000002 ER PT J AU Shinar, R Zhou, ZQ Choudhury, B Shinar, J AF Shinar, R Zhou, ZQ Choudhury, B Shinar, J TI Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen SO ANALYTICA CHIMICA ACTA LA English DT Article DE oxygen gas sensors; dissolved oxygen sensors; organic light emitting devices; OLEDs; structurally integrated oxygen sensors ID COMBINATORIAL FABRICATION; RUTHENIUM(II) COMPLEXES; SENSING MATERIAL; EFFICIENCY; EMISSION; POLYMER; FILM; ELECTROLUMINESCENCE; GLUCOSE; PROBES AB A compact photoluminescence (PL)-based O-2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-1,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq(3)), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The 02 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O-2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and 02 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S-g tau(0% O-2)/tau(100% O-2), at 23 degrees C, were similar to 35 to similar to 50 for the [Alq(3) OLED[/[PtOEP dye] pair; S-g exceeded 200 for the Alq(3)/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, SDO (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was similar to 9.5 and similar to 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O-2 and multianalyte detection are also discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Ctr Microelect Res, Ames, IA 50011 USA. Integrated Sensor Technol Inc, Ames, IA 50014 USA. Iowa State Univ, Ames Lab, US DOE, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Shinar, R (reprint author), Iowa State Univ, Ctr Microelect Res, Ames, IA 50011 USA. EM rshinar@iastate.edu; shinar@ameslab.gov NR 42 TC 49 Z9 49 U1 1 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD MAY 24 PY 2006 VL 568 IS 1-2 BP 190 EP 199 DI 10.1016/j.aca.2006.01.050 PG 10 WC Chemistry, Analytical SC Chemistry GA 050HY UT WOS:000238079300021 PM 17761260 ER PT J AU Lapenta, G Krauss-Varban, D Karimabadi, H Huba, JD Rudakov, LI Ricci, P AF Lapenta, Giovanni Krauss-Varban, D. Karimabadi, H. Huba, J. D. Rudakov, L. I. Ricci, Paolo TI Kinetic simulations of x-line expansion in 3D reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COLLISIONLESS MAGNETIC RECONNECTION; SHEET; FIELD; WIND AB The dynamics of x-line formation and evolution in 3D magnetic reconnection is studied using a fully kinetic approach. An x-line of small length is initialized using a perturbation localized in the current direction. The electrons and ions drift diamagnetically along the current direction of the initial x-line and are further accelerated by the reconnection electric field. The electron and ion motion is in opposite directions and each species extends one end of the x-line. Several predictions based on this picture are formulated and studied and confirmed under parameter variation. Expansion can proceed at a significant fraction of the Alfven speed, in both directions. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. USN, Res Lab, Washington, DC 20375 USA. Berkeley Scholars Inc, Springfield, VA 22150 USA. Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Lapenta, G (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lapenta@lanl.gov OI Lapenta, Giovanni/0000-0002-3123-4024 NR 20 TC 21 Z9 21 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 24 PY 2006 VL 33 IS 10 AR L10102 DI 10.1029/2005GL025124 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 049SX UT WOS:000238038200001 ER PT J AU Elliott, DC Hart, TR Neuenschwander, GG AF Elliott, DC Hart, TR Neuenschwander, GG TI Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ORGANICS DESTRUCTION; SUPERCRITICAL WATER AB Improved catalyst formulations have been developed and tested for hydrothermal gasification of wet organics. A high-pressure ( about 20 MPa) and high-temperature ( about 350 degrees C) liquid water processing environment was used to treat organic chemical model compounds. The organic feedstocks were converted primarily to methane and carbon dioxide in the presence of a heterogeneous catalyst. Test results with different catalyst formulations showed that catalyst composition could be tailored for the hydrothermal environment to effectively process wet wastes and wastewater and to recover useful fuel gas. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM DougC.Elliott@pnl.gov OI Hart, Todd/0000-0001-8013-0689 NR 13 TC 79 Z9 79 U1 4 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAY 24 PY 2006 VL 45 IS 11 BP 3776 EP 3781 DI 10.1021/ie060031o PG 6 WC Engineering, Chemical SC Engineering GA 043TU UT WOS:000237625400002 ER PT J AU Boyles, KR Chajkowski, SM Disselkamp, RS Peden, CHF AF Boyles, KR Chajkowski, SM Disselkamp, RS Peden, CHF TI An examination of the H/D isotope substitution effect on selectivity and activity in the cavitating ultrasound hydrogenation of aqueous 3-buten-2-ol and 1,4-pentadien-3-ol on Pd-black SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB In this study, cavitating ultrasound ( CUS) processing is compared to the traditional (stirred/silent, SS) method in the aqueous phase hydrogenation, via H/D isotope substitution of 3-buten-2-ol (3B2OL) and 1,4-pentadien-3- ol (14PD3OL) using a Pd-black catalyst, all at 298 K. The products that are formed include 2-butanol and 2-butanone for 3B2OL, and 3-pentanol and 3-pentanone for 14PD3OL. The H and D isotope-dependent chemistries are accomplished using H-2-versus D-2-mediated H/D addition, as well as H2O versus D2O solvents for alcohol - OH and - OD isotope substitution. Several conclusions are presented. For example, the H-2-CUS processing of 3B2OL in water compared to D2O reveals ketone selectivities that are twice as large. This suggests that the alcohol-dependent enol tautomerization to ketone reaction is slower with deuterium, and possibly a rate-controlling event. In addition, for CUS processing of both 3B2OL and 14PD3OL in water, the similarity in ketone selectivities ( all similar to 17%) for H-2 compared to D-2 addition suggests that adsorbed H and D isotopes have comparable surface diffusion rates and, hence, result in almost-equal selectivities. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Disselkamp, RS (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 3335 Q Ave,POB 999,MS K8-93, Richland, WA 99352 USA. EM robert.disselkamp@pnl.gov OI Peden, Charles/0000-0001-6754-9928 NR 9 TC 1 Z9 1 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAY 24 PY 2006 VL 45 IS 11 BP 4015 EP 4018 DI 10.1021/ie051347j PG 4 WC Engineering, Chemical SC Engineering GA 043TU UT WOS:000237625400030 ER PT J AU Tappan, BC Huynh, MH Hiskey, MA Chavez, DE Luther, EP Mang, JT Son, SF AF Tappan, BC Huynh, MH Hiskey, MA Chavez, DE Luther, EP Mang, JT Son, SF TI Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COHERENT EXPANDED AEROGELS; BEHAVIOR AB The synthesis of low-density, nanoporous materials has been an active area of study in chemistry and materials science dating back to the initial synthesis of aerogels. These materials, however, are most often limited to metal oxides, e. g., silica and alumina, and organic aerogels, e. g., resorcinol/ formaldehyde, or carbon aerogels, produced from the pyrolysis of organic aerogels. The ability to form monolithic metallic nanocellular porous materials is difficult and sometimes elusive using conventional methodology. Here we report a relatively simple method to access unprecedented ultralow-density, nanostructured, monolithic, transition- metal foams, utilizing self-propagating combustion synthesis of novel transition- metal complexes containing high nitrogen energetic ligands. During the investigation of the decomposition behavior of the high- nitrogen transition metal complexes, it was discovered that nanostructured metal monolithic foams were formed in a post flame-front dynamic assembly having remarkably low densities down to 0.011 g cm(-3) and extremely high surface areas as high as 270 m(2) g(-1). We have produced monolithic nanoporous metal foams via this method of iron, cobalt, copper, and silver metals. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tappan, BC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM btappan@lanl.gov OI Son, Steven/0000-0001-7498-2922 NR 17 TC 117 Z9 119 U1 3 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 24 PY 2006 VL 128 IS 20 BP 6589 EP 6594 DI 10.1021/ja056550k PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 043HG UT WOS:000237590500030 PM 16704258 ER PT J AU Marr, LC Dzepina, K Jimenez, JL Reisen, F Bethel, HL Arey, J Gaffney, JS Marley, NA Molina, LT Molina, MJ AF Marr, L. C. Dzepina, K. Jimenez, J. L. Reisen, F. Bethel, H. L. Arey, J. Gaffney, J. S. Marley, N. A. Molina, L. T. Molina, M. J. TI Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AEROSOL MASS-SPECTROMETER; AERODYNAMIC DIAMETER MEASUREMENTS; OXYGENATED ORGANIC AEROSOLS; RELATIVE RATE CONSTANTS; DENSITY CHARACTERIZATION; HETEROGENEOUS REACTIONS; CARBONACEOUS PARTICLES; ATMOSPHERIC AEROSOLS; PARTICULATE MATTER; GAS-CHROMATOGRAPHY AB Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are ( 1) collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/ mass spectrometry; ( 2) aerosol photoionization for fast detection of PAHs on particles' surfaces; and ( 3) aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at similar to 110 ng m(-3) during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions. C1 Virginia Polytech Inst & State Univ, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA. MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. Univ Calif Riverside, Air Pollut Res Ctr, Riverside, CA 92521 USA. Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Marr, LC (reprint author), Virginia Polytech Inst & State Univ, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA. EM lmarr@vt.edu RI Jimenez, Jose/A-5294-2008; Marr, Linsey/C-9698-2010; Reisen, Fabienne/A-7883-2011; Lucas, Elizabeth/E-2733-2010; Dzepina, Katja/A-1372-2014 OI Jimenez, Jose/0000-0001-6203-1847; Marr, Linsey/0000-0003-3628-6891; NR 71 TC 89 Z9 90 U1 0 U2 26 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD MAY 23 PY 2006 VL 6 BP 1733 EP 1745 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 046FS UT WOS:000237797400001 ER PT J AU Xiong, YL AF Xiong, Yongliang TI Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): Interaction coefficients involving Cl, OH- and Ac- up to 200 degrees C and 400 bars SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID ELECTROMOTIVE-FORCE MEASUREMENTS; AQUEOUS CALCIUM-CHLORIDE; RARE-EARTH CHLORIDES; THERMODYNAMIC PROPERTIES; OSMOTIC COEFFICIENTS; STRONG ELECTROLYTES; SODIUM-CHLORIDE; ISOPIESTIC MOLALITIES; POTASSIUM HYDROXIDE; PITZER FORMALISM AB In this study, a series of interaction coefficients of the Bronsted-Guggenheim-Scatchard specific interaction theory ( SIT) have been estimated up to 200 C and 400 bars. The interaction coefficients involving Cl- estimated include epsilon(H+, Cl-), epsilon(Na+, Cl-), epsilon(Ag+, Cl-), epsilon(Na+, AgCl2-), epsilon(Mg2+, Cl-), epsilon(Ca2+, Cl-), epsilon(Sr2+, Cl-), epsilon(Ba2+, Cl-), epsilon(Sm3+, Cl-), epsilon(Eu3+, Cl-), epsilon(Gd3+, Cl-), and epsilon(GdAc2+, Cl-). The interaction coefficients involving OH- estimated include epsilon(Li+, OH-), epsilon(K+, OH-), epsilon(Na+, OH-), epsilon(Cs+, OH-), epsilon(Sr2+, OH-), and epsilon(Ba2+, OH-). In addition, the interaction coefficients of epsilon(Na+, Ac-) and epsilon(Ca2+, Ac-) have also been estimated. The bulk of interaction coefficients presented in this study has been evaluated from the mean activity coefficients. A few of them have been estimated from the potentiometric and solubility studies. The above interaction coefficients are tested against both experimental mean activity coefficients and equilibrium quotients. Predicted mean activity coefficients are in satisfactory agreement with experimental data. Predicted equilibrium quotients are in very good agreement with experimental values. Based upon its relatively rapid attainment of equilibrium and the ease of determining magnesium concentrations, this study also proposes that the solubility of brucite can be used as a pH (pcH) buffer/sensor for experimental systems in NaCl solutions up to 200 C by employing the predicted solubility quotients of brucite in conjunction with the dissociation quotients of water and the first hydrolysis quotients of Mg2+, all in NaCl solutions. C1 Sandia Natl Labs, Carlsbad Programs Grp, Carlsbad, NM 88220 USA. RP Xiong, YL (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov NR 92 TC 16 Z9 16 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD MAY 23 PY 2006 VL 7 BP 1 EP 19 AR 4 DI 10.1186/1467-4866-7-4 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 058GO UT WOS:000238653700001 PM 16759370 ER PT J AU Parthasarathy, R Yu, CH Groves, JT AF Parthasarathy, Raghuveer Yu, Cheng-han Groves, Jay T. TI Curvature-modulated phase separation in lipid bilayer membranes SO LANGMUIR LA English DT Article ID INTRAMEMBRANE DOMAINS; PHYSICAL-PROPERTIES; VESICLES; MICROSCOPY; RESONANCE; JUNCTIONS; COMPONENT; BEHAVIOR; FISSION; SILICON AB Cellular membranes exhibit a variety of controlled curvatures, with filopodia, microvilli, and mitotic cleavage furrows being only a few of many examples. Coupling between local curvature and chemical composition in membranes could provide a means of mechanically controlling the spatial organization of membrane components. Although this concept has surfaced repeatedly over the years, controlled experimental investigations have proven elusive. Here, we introduce an experimental platform, in which microfabricated surfaces impose specific curvature patterns onto lipid bilayers, that allows quantification of mechanochemical couplings in membranes. We find that, beyond a critical curvature value, membrane geometry governs the spatial ordering of phase-separated domain structures in membranes composed of cholesterol and phospholipids. The curvature-controlled ordering, a consequence of the distinct mechanical properties of the lipid phases, makes possible a determination of the bending rigidity difference between cholesterol-rich and cholesterol-poor lipid domains. These observations point to a strong coupling between mechanical bending and chemical organization that should have wide-reaching consequences for biological membranes. Curvature-mediated patterning may also be useful in controlling complex fluids other than biomembranes. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM JTGroves@lbl.gov RI Parthasarathy, Raghuveer/A-5958-2008; Wunder, Stephanie/B-5066-2012; Yu, Cheng-han/K-8732-2013; Zdilla, Michael/B-4145-2011 OI Parthasarathy, Raghuveer/0000-0002-6006-4749; FU NIGMS NIH HHS [1 R01 GM64900-01] NR 38 TC 133 Z9 134 U1 2 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 23 PY 2006 VL 22 IS 11 BP 5095 EP 5099 DI 10.1021/la060390o PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 043HZ UT WOS:000237593000034 PM 16700599 ER PT J AU Angelini, TE Golestanian, R Coridan, RH Butler, JC Beraud, A Krisch, M Sinn, H Schweizer, KS Wong, GCL AF Angelini, TE Golestanian, R Coridan, RH Butler, JC Beraud, A Krisch, M Sinn, H Schweizer, KS Wong, GCL TI Counterions between charged polymers exhibit liquid-like organization and dynamics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electrostatics; inelastic x-ray scattering; like-charge attraction; polyelectrolytes; liquids ID X-RAY-SCATTERING; RODLIKE POLYELECTROLYTES; DNA; ATTRACTION; IONS; WATER AB Current understanding of electrostatics in water is based on mean-field theories like the Poisson-Boltzmann formalism and its approximations, which are routinely used in colloid science and computational biology. This approach, however, breaks down for highly charged systems, which exhibit counterintuitive phenomena such as overcharging and like-charge attraction. Models of counterion correlations have been proposed as possible explanations, but no experimental comparisons are available. Here, collective dynamics of counterions that mediate like-charge attraction between F-actin filaments have been directly observed in aqueous solution using high-resolution inelastic x-ray scattering down to molecular length-scales. We find a previously undescribed acoustic-like phonon mode associated with correlated counterions. The excitation spectra at high wave-vector Q reveal unexpected dynamics due to ions interacting with their "cages" of nearest neighbors. We examine this behavior in the context of intrinsic charge density variations on F-actin. The measured speed of sound and collective relaxation rates in this liquid agree surprisingly well with simple model calculations. C1 Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wong, GCL (reprint author), Univ Illinois, Dept Engn, 1304 W Green St, Urbana, IL 61801 USA. EM gclwong@uiuc.edu NR 28 TC 47 Z9 48 U1 1 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 23 PY 2006 VL 103 IS 21 BP 7962 EP 7967 DI 10.1073/pnas.0601435103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 047BD UT WOS:000237853900007 PM 16690742 ER PT J AU Li, DM McDaniel, AH Bastasz, R Medlin, JW AF Li, DM McDaniel, AH Bastasz, R Medlin, JW TI Effects of a polyimide coating on the hydrogen selectivity of MIS sensors SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE metal-insulator-semiconductor; MIS; coating thickness; hydrogen; hydrogen sensor; transformer; polyimide membrane ID SENSITIVE MOS-STRUCTURES; FIELD-EFFECT DEVICES; OXYGEN MIXTURES; ADSORPTION; PALLADIUM; PD; ETHYLENE; CO; ACETYLENE; PERMSELECTIVITY AB To enhance the selectivity of metal-insulator-semiconductor (MIS) sensors for hydrogen detection in mixed-hydrocarbon streams, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements indicate that PI-coated sensors inhibit the effect of gases, such as carbon monoxide, acetylene, ethylene, and methane on H-2 response, dramatically improving selectivity to hydrogen. The effect of coated layer thickness on sensor response is also evaluated, and it is found that the sensor response rate strongly depends on PI film thickness. The modified performance of the PI coated sensor to hydrogen in gas mixtures is explained by both the permselective properties of the membrane and metal surface modification resulting from the PI coating. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Colorado, Dept Biol & Chem Engn, ECCH 111, UCB 424, Boulder, CO 80309 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Medlin, JW (reprint author), Univ Colorado, Dept Biol & Chem Engn, ECCH 111, UCB 424, Boulder, CO 80309 USA. EM will.medlin@colorado.edu NR 29 TC 12 Z9 12 U1 4 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 23 PY 2006 VL 115 IS 1 BP 86 EP 92 DI 10.1016/j.snb.2005.08.025 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 034KY UT WOS:000236929100013 ER PT J AU Wolfrum, EJ Meglen, RM Peterson, D Sluiter, J AF Wolfrum, EJ Meglen, RM Peterson, D Sluiter, J TI Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE electronic nose; air quality; metal oxide sensor; sensor array; multivariate calibration; VOC sensor ID ELECTRONIC NOSE AB Sensor arrays were constructed using commercially available heated metal oxide sensors (Figaro TGS2602). These arrays were exposed to several volatile organic compounds (VOCs') in air streams at concentrations levels in the range 0.01-0.30 parts-per-million (ppmv), a range typical of indoor air quality studies. Partial least squares (PLS-2) calibration models were developed using the steady-state sensor array responses. These PLS-2 calibration models were able to detect, differentiate, and quantify different VOCs at concentration typical of indoor environments. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. Latent Struct LLC, Boulder, CO 80303 USA. RP Wolfrum, EJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd MS 3322, Golden, CO 80401 USA. OI Wolfrum, Edward/0000-0002-7361-8931 NR 14 TC 42 Z9 45 U1 1 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 23 PY 2006 VL 115 IS 1 BP 322 EP 329 DI 10.1016/j.snb.2005.09.026 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 034KY UT WOS:000236929100045 ER PT J AU Satyanarayana, S McCormick, DT Majumdar, A AF Satyanarayana, S McCormick, DT Majumdar, A TI Parylene micro membrane capacitive sensor array for chemical and biological sensing SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE parylene polymer; micro membrane; surface stress sensor; capacitive; microfluidics ID MICROCANTILEVER SENSORS; GOLD AB The need for high-throughput label-free multiplexed sensors for chemical and biological sensing has increased tremendously in the last decade with new applications in the areas of genetics, diagnostics, drug discovery, as well as security and threat evaluation. Surface stress-based sensors are a relatively new class of sensors that has immense potential to satisfy the demand, and has been investigated extensively in the recent years. In this paper we present the design and fabrication of a novel parylene micro membrane surface stress sensor that exploits the low mechanical stiffness of polymers. The salient features of the sensor are that it: (i) is label-free; (ii) is a universal platform suitable for both chemical and biological sensing; (iii) uses electronic (capacitive detection) readout; (iv) has integrated microfluidics for addressing individual sensors on the chip; (v) is capable of handling both liquid and gas samples; (vi) is made using standard low temperature microfabrication processes (< 120 degrees C); (vii) can readily be scaled and multiplexed. The first generation sensor arrays were fabricated and the sensor response to organic vapors like isopropyl alcohol and toluene were measured. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Dept Elect Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu NR 25 TC 55 Z9 60 U1 4 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 23 PY 2006 VL 115 IS 1 BP 494 EP 502 DI 10.1016/j.snb.2005.10.013 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 034KY UT WOS:000236929100071 ER PT J AU Jeon, S Thundat, T Braiman, Y AF Jeon, Sangmin Thundat, Thomas Braiman, Yehuda TI Effect of normal vibration on friction in the atomic force microscopy experiment SO APPLIED PHYSICS LETTERS LA English DT Article ID NORMAL LOAD MODULATION; LUBRICATION AB We studied the effect of periodic normal (out-of-plane) surface vibrations on friction in an atomic force microscope experiment. Vibration frequency was varied in the range of 1-100 kHz, and vibration amplitude was varied in the range of a few nanometers. We observed a reduction of a few orders of magnitude in friction coefficient due to the periodic vibrations. Friction reduction is over a wide range of vibration frequencies and amplitudes. Very low values (of the order of 0.01) of friction coefficient were measured. Our numerical simulation based on a minimalist modeling qualitatively agrees with the experimental results. Based on numerical simulations, a mechanism of friction reduction and/or increase with normal vibrations is proposed. (c) 2006 American Institute of Physics. C1 Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea. Oak Ridge Natl Lab, Ctr Engn Sci Adv Res, Div Life Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Engn Sci Adv Res, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Jeon, S (reprint author), Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, South Korea. EM braimany@ornl.gov NR 16 TC 26 Z9 26 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 22 PY 2006 VL 88 IS 21 AR 214102 DI 10.1063/1.2203741 PG 3 WC Physics, Applied SC Physics GA 046YK UT WOS:000237846800101 ER PT J AU Wang, H Xu, Z Eres, G AF Wang, H Xu, Z Eres, G TI Order in vertically aligned carbon nanotube arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID ANGLE NEUTRON-SCATTERING AB We report the direct measurements on the bulk morphology of vertically aligned multiwalled carbon nanotube (CNT) arrays using small angle neutron scattering (SANS). SANS measurements at different heights of CNT arrays corresponding to different stages of the growth reveal increasing alignment order along the thickness and two distinctly different CNT morphologies. The observations suggest that the evolution of the macroscopic CNT morphologies be driven by competing collective growth and spatial constraints. (c) 2006 American Institute of Physics. C1 Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Wang, H (reprint author), Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. EM wangh@mtu.edu RI Eres, Gyula/C-4656-2017 OI Eres, Gyula/0000-0003-2690-5214 NR 9 TC 26 Z9 26 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 22 PY 2006 VL 88 IS 21 AR 213111 DI 10.1063/1.2206152 PG 3 WC Physics, Applied SC Physics GA 046YK UT WOS:000237846800080 ER PT J AU Bates, TS Anderson, TL Baynard, T Bond, T Boucher, O Carmichael, G Clarke, A Erlick, C Guo, H Horowitz, L Howell, S Kulkarni, S Maring, H McComiskey, A Middlebrook, A Noone, K O'Dowd, CD Ogren, J Penner, J Quinn, PK Ravishankara, AR Savoie, DL Schwartz, SE Shinozuka, Y Tang, Y Weber, RJ Wu, Y AF Bates, T. S. Anderson, T. L. Baynard, T. Bond, T. Boucher, O. Carmichael, G. Clarke, A. Erlick, C. Guo, H. Horowitz, L. Howell, S. Kulkarni, S. Maring, H. McComiskey, A. Middlebrook, A. Noone, K. O'Dowd, C. D. Ogren, J. Penner, J. Quinn, P. K. Ravishankara, A. R. Savoie, D. L. Schwartz, S. E. Shinozuka, Y. Tang, Y. Weber, R. J. Wu, Y. TI Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Review ID EXPERIMENT ACE 1; TRACE-P EXPERIMENT; ANTHROPOGENIC SULFATE AEROSOLS; LOWER TROPOSPHERIC AEROSOL; GREENSTEIN PHASE FUNCTION; SINGLE SCATTERING ALBEDO; MARINE BOUNDARY-LAYER; LONG-RANGE TRANSPORT; SEA-SALT AEROSOLS; CARBONACEOUS AEROSOLS AB The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave ( solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers ( North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models ( STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region ( mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD ( 34 +/- 8%), top of atmosphere (TOA) DRE ( 32 +/- 12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) ( 37 +/- 7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is - 3.3 +/- 0.47, - 14 +/- 2.6, - 6.4 +/- 2.1W m(-2) for the NIO, NWP, and NWA, respectively. With the use of constrained quantities ( extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing. C1 NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. NOAA, Earth Syst Res Lab, Boulder, CO USA. Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. Met Off, Climate Chem & Ecosyst Team, Exeter, Devon, England. Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA. Hebrew Univ Jerusalem, Dept Atmospher Sci, Jerusalem, Israel. Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. NASA Headquarters, Radiat Sci Program, Washington, DC USA. NOAA, Climate Monitoring & Diagnost Lab, Boulder, CO 80303 USA. Int Geosphere Biosphere Program, Stockholm, Sweden. Natl Univ Ireland, Dept Expt Phys, Galway, Ireland. Natl Univ Ireland, Environm Change Inst, Galway, Ireland. Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Bates, TS (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM tim.bates@noaa.gov RI Quinn, Patricia/R-1493-2016; Manager, CSD Publications/B-2789-2015; Horowitz, Larry/D-8048-2014; O'Dowd , Colin/K-8904-2012; Tang, Youhua/D-5205-2016; Bates, Timothy/L-6080-2016; Middlebrook, Ann/E-4831-2011; Boucher, Olivier/J-5810-2012; Boucher, Olivier/K-7483-2012; Bond, Tami/A-1317-2013; Schwartz, Stephen/C-2729-2008; McComiskey, Allison/I-3933-2013; Ravishankara, Akkihebbal/A-2914-2011; Penner, Joyce/J-1719-2012; Guo, Huan/D-8282-2014 OI Quinn, Patricia/0000-0003-0337-4895; Horowitz, Larry/0000-0002-5886-3314; O'Dowd , Colin/0000-0002-3068-2212; Tang, Youhua/0000-0001-7089-7915; Middlebrook, Ann/0000-0002-2984-6304; Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; Bond, Tami/0000-0001-5968-8928; Schwartz, Stephen/0000-0001-6288-310X; McComiskey, Allison/0000-0002-6125-742X; NR 243 TC 92 Z9 95 U1 3 U2 38 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD MAY 22 PY 2006 VL 6 BP 1657 EP 1732 DI 10.5194/acp-6-1657-2006 PG 76 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 044TS UT WOS:000237695900003 ER PT J AU Schultz, AK Zhang, M Leitner, T Kuiken, C Korber, B Morgenstern, B Stanke, M AF Schultz, Anne-Kathrin Zhang, Ming Leitner, Thomas Kuiken, Carla Korber, Bette Morgenstern, Burkhard Stanke, Mario TI A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes SO BMC BIOINFORMATICS LA English DT Article ID HEPATITIS-C VIRUS; SEQUENCE ALIGNMENT; TYPE-1; AFRICA; DONORS; SUPERINFECTION; POPULATIONS; GENOTYPES; CRF02-AG; HOMOLOGY AB Background: Jumping alignments have recently been proposed as a strategy to search a given multiple sequence alignment A against a database. Instead of comparing a database sequence S to the multiple alignment or profile as a whole, S is compared and aligned to individual sequences from A. Within this alignment, S can jump between different sequences from A, so different parts of S can be aligned to different sequences from the input multiple alignment. This approach is particularly useful for dealing with recombination events. Results: We developed a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach. Given a partition of the aligned input sequence family into known sequence subtypes, our model can jump between states corresponding to these different subtypes, depending on which subtype is locally most similar to a database sequence. Jumps between different subtypes are indicative of intersubtype recombinations. We applied our method to a large set of genome sequences from human immunodeficiency virus (HIV) and hepatitis C virus (HCV) as well as to simulated recombined genome sequences. Conclusion: Our results demonstrate that jumps in our jumping profile HMM often correspond to recombination breakpoints; our approach can therefore be used to detect recombinations in genomic sequences. The recombination breakpoints identified by jpHMM were found to be significantly more accurate than breakpoints defined by traditional methods based on comparing single representative sequences. C1 Univ Gottingen, Inst Microbiol & Genet, D-37077 Gottingen, Germany. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Stanke, M (reprint author), Univ Gottingen, Inst Microbiol & Genet, Goldschmidtstr 1, D-37077 Gottingen, Germany. EM aschult2@gwdg.de; mingzh@lanl.gov; tkl@lanl.gov; kuiken@lanl.gov; btk@lanl.gov; bmorgen@gwdg.de; mstanke@gwdg.de RI Morgenstern, Burkhard/A-7486-2008; OI Korber, Bette/0000-0002-2026-5757; Schultz, Anne-Kathrin/0000-0002-0963-4275 FU NIAID NIH HHS [Y01 AI1500, Y1-AI-1500-01] NR 38 TC 60 Z9 61 U1 0 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD MAY 22 PY 2006 VL 7 AR 265 DI 10.1186/1471-2105-7-265 PG 15 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 070JE UT WOS:000239517100001 PM 16716226 ER PT J AU Pestovsky, O Shuff, A Bakac, A AF Pestovsky, O Shuff, A Bakac, A TI Protonation constants for triarylphosphines in aqueous acetonitrile solutions SO ORGANOMETALLICS LA English DT Article ID OXYGEN-ATOM TRANSFER; WATER-SOLUBLE PHOSPHINE; MOLYBDENUM(V) DIMER FORMATION; ORGANOMETALLIC CHEMISTRY; COMPLEXES; KINETICS; ACIDITY; LIGAND; 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE; HYDROPEROXO AB Two independent methods were used to determine protonation constants K-H for triarylphosphines in mixed acetonitrile/water media. One method is based on P-31 chemical shifts, and the other on the kinetics of debromination of a vicinal dibromide. The protonation constants obtained by the two methods agree well with each other, but they are several orders of magnitude smaller than the values previously reported in the literature for purely aqueous solutions. Moreover, K-H decreases with increasing water content. For PPh3 at 1.0 M ionic strength (CF3SO3H + CF3SO3Li), the values of K-H are 24.0 +/- 0.8 m(-1) (CH3CN/H2O = 90:10, v/v), 7.9 +/- 0.7 (85:15), 4.2 +/- 0.3 (80:20), 2.2 +/- 0.1 (70:30), and 1.5 +/- 0.3 (50:50). The binding of the proton is weaker at lower electrolyte concentrations, such that at mu = 0.40 M in 90:10 CH3CN/H2O K-H for PPh3 is only 3.9 +/- 0.3 m(-1). C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Pestovsky, O (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pvp@iastate.edu; bakac@ameslab.gov NR 31 TC 13 Z9 13 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD MAY 22 PY 2006 VL 25 IS 11 BP 2894 EP 2898 DI 10.1021/om060221z PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 043HX UT WOS:000237592800025 ER PT J AU Jacobsohn, LG Franceschini, DF Afanasyev-Charkin, IV Cooke, DW Daemen, LL Averitt, RD Nastasi, M AF Jacobsohn, LG Franceschini, DF Afanasyev-Charkin, IV Cooke, DW Daemen, LL Averitt, RD Nastasi, M TI Structural and optical characterization of fluorinated hydrogenated silicon carbide films deposited by pulsed glow discharge SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE glow discharge; silicon carbide; fluorine; optical properties ID AMORPHOUS-CARBON FILMS; CHEMICAL-VAPOR-DEPOSITION; SURFACE-SCIENCE ASPECTS; GAS-MIXTURES; SIC COATINGS; ALLOY-FILMS; THIN-FILMS; H FILMS; HARD; TEMPERATURE AB The effects on fluorine incorporation on the structure and optical properties of amorphous hydrogenated silicon carbide films deposited by pulsed glow discharge were investigated. Fluorine is incorporated at the expense of silicon, and films with up to 16 at.% of fluorine were obtained as determined by ion beam analysis. Structural investigation was carried by Raman and infrared spectroscopies. Infrared results showed that incorporation of fluorine occurs in the form of Si-F bonds, and Raman results showed a progressive formation of graphitic agglomerates due to fluorine incorporation in the films. Because of the relatively high bonding energy of Si-F, preferential bonding of fluorine with silicon induces small changes in the optical gap. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Jacobsohn, LG (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST-8 MS G755, Los Alamos, NM 87545 USA. EM lgjacob@lanl.gov RI Lujan Center, LANL/G-4896-2012; Franceschini, Dante/A-8095-2008; OI Jacobsohn, Luiz/0000-0001-8991-3903; Franceschini, Dante/0000-0001-7328-6116 NR 37 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD MAY 22 PY 2006 VL 200 IS 20-21 BP 6079 EP 6082 DI 10.1016/j.surfcoat.2005.09.015 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 040GS UT WOS:000237367600056 ER PT J AU Cavalleri, M Naslund, LA Edwards, DC Wernet, P Ogasawara, H Myneni, S Ojamae, L Odelius, M Nilsson, A Pettersson, LGM AF Cavalleri, Matteo Naslund, Lars-Ake Edwards, David C. Wernet, Philippe Ogasawara, Hirohito Myneni, Satish Ojamae, Lars Odelius, Michael Nilsson, Anders Pettersson, Lars G. M. TI The local structure of protonated water from x-ray absorption and density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; HYDROGEN-BOND NETWORK; LIQUID WATER; HYDRATED PROTON; FINE-STRUCTURE; ELECTRONIC-STRUCTURE; SPECTRAL SIGNATURES; SIMULATION; SPECTROSCOPY; TRANSPORT AB We present a combined x-ray absorption spectroscopy/computational study of water in hydrochloric acid (HCl) solutions of varying concentration to address the structure and bonding of excess protons and their effect on the hydrogen bonding network in liquid water. Intensity variations and energy shifts indicate changes in the hydrogen bonding structure in water as well as the local structure of the protonated complex as a function of the concentration of protons. In particular, in highly acidic solutions we find a dominance of the Eigen form, H3O+, while the proton is less localized to a specific water under less acidic conditions. (c) 2006 American Institute of Physics. C1 Stockholm Univ, AlbaNova Univ Ctr, Fysikum, SE-10691 Stockholm, Sweden. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. BESSY, D-12489 Berlin, Germany. Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. Linkoping Univ, IFM, Dept Chem, SE-58183 Linkoping, Sweden. RP Cavalleri, M (reprint author), Stockholm Univ, AlbaNova Univ Ctr, Fysikum, SE-10691 Stockholm, Sweden. EM lgm@physto.se RI Cavalleri, Matteo/A-7689-2008; Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Wernet, Philippe/A-7085-2013; Pettersson, Lars/J-4925-2013; Odelius, Michael/A-7628-2014; Ojamae, Lars/C-4974-2015; Ogasawara, Hirohito/D-2105-2009 OI Nilsson, Anders/0000-0003-1968-8696; Wernet, Philippe/0000-0001-7011-9072; Pettersson, Lars/0000-0003-1133-9934; Odelius, Michael/0000-0002-7023-2486; Ojamae, Lars/0000-0002-5341-2637; Ogasawara, Hirohito/0000-0001-5338-1079 NR 62 TC 38 Z9 38 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2006 VL 124 IS 19 AR 194508 DI 10.1063/1.2199828 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 044OY UT WOS:000237683200031 PM 16729826 ER PT J AU Mamontov, E Burnham, CJ Chen, SH Moravsky, AP Loong, CK de Souza, NR Kolesnikov, AI AF Mamontov, E. Burnham, C. J. Chen, S. -H. Moravsky, A. P. Loong, C. -K. de Souza, N. R. Kolesnikov, A. I. TI Dynamics of water confined in single- and double-wall carbon nanotubes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSFERABLE INTERACTION MODELS; STRONG LIQUID TRANSITION; NEUTRON-SCATTERING; 1ST PRINCIPLES; SUPERCOOLED WATER; SELF-DIFFUSION; SURFACE-WATER; SLOW DYNAMICS; HEAVY-WATER; CONDUCTION AB Using high-resolution quasielastic neutron scattering, we investigated the temperature dependence of single-particle dynamics of water confined in single- and double-wall carbon nanotubes with the inner diameters of 14 +/- 1 and 16 +/- 3 angstrom, respectively. The temperature dependence of the alpha relaxation time for water in the 14 angstrom nanotubes measured on cooling down from 260 to 190 K exhibits a crossover at 218 K from a Vogel-Fulcher-Tammann law behavior to an Arrhenius law behavior, indicating a fragile-to-strong dynamic transition in the confined water. This transition may be associated with a structural transition from a high-temperature, low-density (< 1.02 g/cm(3)) liquid to a low-temperature, high-density (> 1.14 g/cm(3)) liquid found in molecular dynamics simulation at about 200 K. However, no such dynamic transition in the investigated temperature range of 240-195 K was detected for water in the 16 angstrom nanotubes. In the latter case, the dynamics of water simply follows a Vogel-Fulcher-Tammann law. This suggests that the fragile-to-strong crossover for water in the 16 angstrom nanotubes may be shifted to a lower temperature. (c) 2206 American Institute of Physics. C1 Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Univ Houston, Dept Phys, Houston, TX 77204 USA. MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. MER Corp, Tucson, AZ 85706 USA. Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, SNS Project, Bldg 8600, Oak Ridge, TN 37831 USA. EM mamontove@ornl.gov RI de Souza, Nicolas/B-4257-2008; Kolesnikov, Alexander/I-9015-2012; Mamontov, Eugene/Q-1003-2015 OI Kolesnikov, Alexander/0000-0003-1940-4649; Mamontov, Eugene/0000-0002-5684-2675 NR 36 TC 78 Z9 80 U1 1 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2006 VL 124 IS 19 AR 194703 DI 10.1063/1.2194020 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 044OY UT WOS:000237683200035 PM 16729830 ER PT J AU Scherlis, DA Fattebert, JL Marzari, N AF Scherlis, Damian A. Fattebert, Jean-Luc Marzari, Nicola TI Stacking of oligo- and polythiophene cations in solution: Surface tension and dielectric saturation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CONJUGATED POLYMERS; THIOPHENE OLIGOMERS; PI-STACKING; INTERCHAIN INTERACTIONS; ELECTRONIC-STRUCTURE; CHARGE-TRANSPORT; ENERGY-TRANSFER; RADICALS; SOLVENT AB The stacking of positively charged (or doped) terthiophene oligomers and quaterthiophene polymers in solution is investigated applying a recently developed unified electrostatic and cavitation model for first-principles calculations in a continuum solvent. The thermodynamic and structural patterns of the dimerization are explored in different solvents, and the distinctive roles of polarity and surface tension are characterized and analyzed. Interestingly, we discover a saturation in the stabilization effect of the dielectric screening that takes place at rather small values of epsilon(0). Moreover, we address the interactions in trimers of terthiophene cations, with the aim of generalizing the results obtained for the dimers to the case of higher-order stacks and nanoaggregates. (c) 2006 American Institute of Physics. C1 Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan, Ciudad Univ, Buenos Aires, DF, Argentina. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA. Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Scherlis, DA (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan, Ciudad Univ, Pabellon 2,C1428EHA, Buenos Aires, DF, Argentina. EM damian@qi.fcen.uba.ar RI Marzari, Nicola/D-6681-2016 OI Marzari, Nicola/0000-0002-9764-0199 NR 37 TC 4 Z9 4 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 21 PY 2006 VL 124 IS 19 AR 194902 DI 10.1063/1.2198811 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 044OY UT WOS:000237683200044 PM 16729839 ER PT J AU Graham, J Fabian, AC Sanders, JS Morris, RG AF Graham, J Fabian, AC Sanders, JS Morris, RG TI Tracing gas motions in the Centaurus cluster SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : clusters : general; galaxies : clusters : individual; Centaurus; cooling flows ID X-RAY-EMISSION; COOLING FLOWS; PERSEUS CLUSTER; INTRACLUSTER MEDIUM; GALAXY CLUSTERS; THERMAL CONDUCTION; IRON ABUNDANCE; CORE; NGC-1275; CONSTRAINTS AB We apply the stochastic model of iron transport developed by Rebusco et al. to the Centaurus cluster. Using this model, we find that an effective diffusion coefficient D in the range 2 x 10(28) - 4 x 10(28) cm(2) s(-1) can approximately reproduce the observed abundance distribution. Reproducing the flat central profile and sharp drop around 30 - 70 kpc, however, requires a diffusion coefficient that drops rapidly with radius so that D > 4 x 10(28) cm(2) s(-1) only inside about 25 kpc. Assuming that all transport is due to fully developed turbulence, which is also responsible for offsetting cooling in the cluster core, we calculate the length- and velocity-scales of energy injection. These length- scales are found to be up to a factor of similar to 10 larger than expected if the turbulence is due to the inflation and rising of a bubble. We also calculate the turbulent thermal conductivity and find it is unlikely to be significant in preventing cooling. C1 Inst Astron, Cambridge, England. Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Graham, J (reprint author), Inst Astron, Madingley Rd, Cambridge, England. EM jgraham@ast.cam.ac.uk OI Sanders, Jeremy/0000-0003-2189-4501 NR 52 TC 29 Z9 29 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2006 VL 368 IS 3 BP 1369 EP 1376 DI 10.1111/j.1365-2966.2006.10218.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 040BC UT WOS:000237353000033 ER PT J AU Jun, SC George, JS Plis, SM Ranken, DM Schmidt, DM Wood, CC AF Jun, SC George, JS Plis, SM Ranken, DM Schmidt, DM Wood, CC TI Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID INVERSE PROBLEM; REVERSIBLE JUMP; MEG; COMPUTATION; BRAIN AB Most existing spatiotemporal rnulti-dipole approaches for MEG/EEG source localization assume that the dipoles are active for the full time range being analysed. If the actual time range of activity of sources is significantly shorter than the time range being analysed, the detectability, localization and time-course determination of such sources may be adversely affected, especially for weak sources. In order to improve detectability and reconstruction of such sources, it is natural to add active time range information (starting time point and ending time point of source activation) for each candidate source as unknown parameters in the analysis. However, this adds additional nonlinear free parameters that could burden the analysis and could be unfeasible for some methods. Recently, we described a spatiotemporal Bayesian inference multi-dipole analysis for the MEG/EEG inverse problem. This approach treated the number of dipoles as a free parameter, produced realistic uncertainty estimates using a Markov chain Monte Carlo numerical sampling of the posterior distribution and included a method to reduce the unwanted effects of local minima. In this paper, our spatiotemporal Bayesian inference multi-dipole analysis is extended to incorporate active time range parameters of starting and stopping time points. The properties of this analysis in comparison to the previous one without active time range parameters are demonstrated through extensive studies using both simulated and empirical MEG data. C1 Los Alamos Natl Lab, Biol & Quantum Phys Grp, Los Alamos, NM 87545 USA. Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Jun, SC (reprint author), Los Alamos Natl Lab, Biol & Quantum Phys Grp, MS-D454, Los Alamos, NM 87545 USA. EM jschan@lanl.gov OI Plis, Sergey/0000-0003-0040-0365; JUN, SUNG CHAN/0000-0001-5357-4436 FU NIBIB NIH HHS [2 R01 EB000310-05] NR 15 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD MAY 21 PY 2006 VL 51 IS 10 BP 2395 EP 2414 DI 10.1088/0031-9155/51/10/004 PG 20 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 054NQ UT WOS:000238384700004 PM 16675860 ER PT J AU Li, H Lapenta, G Finn, JM Li, S Colgate, SA AF Li, H Lapenta, G Finn, JM Li, S Colgate, SA TI Modeling the large-scale structures of astrophysical jets in the magnetically dominated limit SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : active; galaxies : jets; magnetic fields; methods : numerical; MHD ID DOUBLE RADIO-SOURCES; MAGNETOHYDRODYNAMIC SIMULATIONS; ACCRETION DISKS; POYNTING JETS; X-RAY; DRIVEN; PRESSURE; SCHEME AB We suggest a new approach that could be used for modeling both the large-scale behavior of astrophysical jets and the magnetically dominated explosions in astrophysics. We describe a method for modeling the injection of magnetic fields and their subsequent evolution in a regime where the free energy is magnetically dominated. The injected magnetic fields, along with their associated currents, have both poloidal and toroidal components, and they are not force free. The dynamic expansion driven by the Lorentz force of the injected fields is studied using three-dimensional ideal magnetohydrodynamic simulations. The generic behavior of magnetic field expansion, the interactions with the background medium, and the dependence on various parameters are investigated. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, H (reprint author), Los Alamos Natl Lab, Div Appl Phys, Mail Stop B227, Los Alamos, NM 87545 USA. EM hli@lanl.gov; lapenta@lanl.gov; finn@lanl.gov; sli@lanl.gov; colgate@lanl.gov OI Li, Shengtai/0000-0002-4142-3080; Lapenta, Giovanni/0000-0002-3123-4024 NR 25 TC 55 Z9 57 U1 1 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2006 VL 643 IS 1 BP 92 EP 100 DI 10.1086/501499 PN 1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 043TP UT WOS:000237624900010 ER PT J AU Fryer, CL Rockefeller, G Warren, MS AF Fryer, Christopher L. Rockefeller, Gabriel Warren, Michael S. TI SNSPH: A parallel three-dimensional smoothed particle radiation hydrodynamics code SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods : n-body simulations; methods : numerical; supernovae : general ID DIFFUSE X-RAYS; GALACTIC-CENTER; COSMOLOGICAL SIMULATIONS; SUPERNOVA EXPLOSIONS; SAGITTARIUS-A; WHITE-DWARFS; N-BODY; COLLAPSE; SPH; STARS AB We provide a description of the SNSPH code-a parallel three-dimensional radiation hydrodynamics code implementing tree code gravity, smooth particle hydrodynamics, and flux-limited diffusion transport schemes. We provide descriptions of the physics and parallelization techniques for this code. We present performance results on a suite of code tests ( both standard and new), showing the versatility of such a code, but focusing on what we believe are important aspects of modeling core-collapse supernovae. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Fryer, CL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Rockefeller, Gabriel/G-2920-2010; OI Rockefeller, Gabriel/0000-0002-9029-5097; Warren, Michael/0000-0002-1218-7904 NR 55 TC 53 Z9 53 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2006 VL 643 IS 1 BP 292 EP 305 DI 10.1086/501493 PN 1 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 043TP UT WOS:000237624900030 ER PT J AU Liu, W Goodman, J Ji, HT AF Liu, W Goodman, J Ji, HT TI Simulations of magnetorotational instability in a magnetized couette flow SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; instabilities; methods : numerical; MHD ID RADIATION MAGNETOHYDRODYNAMICS CODE; LOCAL SHEAR INSTABILITY; 2 SPACE DIMENSIONS; ACCRETION DISKS; ASTROPHYSICAL FLOWS; STABILITY; TURBULENCE; VISCOSITY; ALGORITHMS; SATURATION AB In preparation for an experimental study of magnetorotational instability ( MRI) in liquid metal, we present non-ideal two-dimensional magnetohydrodynamic simulations of the nonlinear evolution of MRI in the experimental geometry. The simulations adopt initially uniform vertical magnetic fields, conducting radial boundaries, and periodic vertical boundary conditions. No-slip conditions are imposed at the cylinders. Our linear growth rates compare well with existing local and global linear analyses. The MRI saturates nonlinearly with horizontal magnetic fields comparable to the initial axial field. The rate of angular momentum transport increases modestly but significantly over the initial state. For modest fluid and magnetic Reynolds numbers Re; Re-m similar to 10(2)-10(3), the final state is laminar reduced mean shear except near the radial boundaries, and with poloidal circulation scaling as the square root of resistivity, in partial agreement with the analysis of Knobloch and Julien. A sequence of simulations at Re-m = 20 and 10(2) <= Re <= 10(4.4) enables extrapolation to the experimental regime ( Re-m approximate to 20, Re similar to 10(7)), albeit with unrealistic boundary conditions. MRI should increase the experimentally measured torque substantially over its initial purely hydrodynamic value. C1 Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasma, Princeton, NJ 08543 USA. Princeton Univ Observ, Princeton, NJ 08544 USA. RP Liu, W (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasma, POB 451, Princeton, NJ 08543 USA. EM wliu@pppl.gov OI Liu, Wei/0000-0003-0935-3999 NR 34 TC 26 Z9 27 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2006 VL 643 IS 1 BP 306 EP 317 DI 10.1086/501495 PN 1 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 043TP UT WOS:000237624900031 ER PT J AU Hoogerwerf, R Brickhouse, NS Mauche, CW AF Hoogerwerf, R Brickhouse, NS Mauche, CW TI Accretion column structure of magnetic cataclysmic variables from X-ray spectroscopy SO ASTROPHYSICAL JOURNAL LA English DT Article DE novae, cataclysmic variables; stars : individual (EX Hydrae); techniques : spectroscopic; X-rays : stars ID EX-HYDRAE; WHITE-DWARF; LIGHT CURVES; EMISSION; REGION; IMAGES; FLOWS; DISKS; MASS; HYA AB Using Chandra HETG data, we present light curves for individual spectral lines of Mg XI and Mg XII for EX Hydrae, an intermediate polar - type cataclysmic variable. The Mg xi light curve, folded on the white dwarf spin period, shows two spikes that are not seen in the Mg XII or broadband light curves. Occultation of the accretion column by the body of the white dwarf would produce such spikes for an angle between the rotation axis and the accretion columns of alpha = 18 degrees and a height of the Mg xi emission above the white dwarf surface of less than or similar to 0.0004 white dwarf radii, or less than or similar to 4 km. The absence of spikes in the Mg XII and broadband light curves could then be explained if the bulk of its emission forms at much larger height, more than 0.004 white dwarf radii or over 40 km, above the white dwarf surface, although this is not consistent with the predictions of the standard Aizu model of the accretion column. C1 Harvard Smithsonian Ctr Astrophys, Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hoogerwerf, R (reprint author), Harvard Smithsonian Ctr Astrophys, Smithsonian Astrophys Observ, Mail Stop 31,60 Garden St, Cambridge, MA 02138 USA. EM rhoogerwerf@cfa.harvard.edu; nbrickhouse@cfa.harvard.edu; mauche@cygnus.llnl.gov OI Brickhouse, Nancy/0000-0002-8704-4473 NR 22 TC 5 Z9 5 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2006 VL 643 IS 1 BP L45 EP L48 DI 10.1086/505029 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 043TQ UT WOS:000237625000012 ER PT J AU Denis, PA Balasubramanian, K AF Denis, Pablo A. Balasubramanian, K. TI Spectroscopic constants and potential energy curves of gallium nitride (GaN) and ions: GaN+ and GaN- SO CHEMICAL PHYSICS LETTERS LA English DT Article ID RELATIVISTIC EFFECTIVE POTENTIALS; SPIN-ORBIT OPERATORS; BASIS-SETS; MOLECULE; STATES; BN; NANOTUBES; ATOMS; AR; AL AB Electronic states of GaN and their ions are studied by employing multi-reference configuration interaction (MRCI) and relativistic DKCCSD(T) calculations. The (3)Sigma- state is 532 cm(-1) below the (3)Pi state using MRCI, whereas the DKCCSD(T)/CBS energy separation is 857 cm-1. The low lying excited states undergo curve crossing with the dissociative (5)Sigma(-) and (5)Pi states causing predissociation. For GaN-, the ground state is (2)Sigma(+) and an electron affinity of 1.44 +/- 0.5 eV with an excited (2)Pi, state at 662 cm(-1). GaN+ is weakly bound with an IP of 7.88 eV. The dissociation energy of GaN is 46.5 +/- 1 kcal/mol. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Univ Calif Davis, Inst Data Anal & Visualizat, Livermore, CA 94550 USA. Calif State Univ, Dept Math & Comp Sci, Hayward, CA USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Balasubramanian, K (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, POB 808 L-268, Livermore, CA 94550 USA. EM balu@llnl.gov OI Denis, Pablo/0000-0003-3739-5061 NR 32 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 20 PY 2006 VL 423 IS 1-3 BP 247 EP 253 DI 10.1016/j.cplett.2006.03.075 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 044RJ UT WOS:000237689700050 ER PT J AU Chen, ZH Wang, QZ Amine, K AF Chen, ZH Wang, QZ Amine, K TI Improving the performance of soft carbon for lithium-ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE lithium-ion batteries; soft carbon; surface coating; silane; anode ID ELECTRODES AB A novel technique for designing a robust solid electrolyte interface (SEI) on the negative electrodes of lithium-ion batteries has been developed using a silane coating. Two silane compounds, 3,3,3-trifluoropropyltrimethoxysilane (TFPTMS) and dimethoxybis(2-(2-(2mothoxyethoxy)ethoxy)ethoxy)silane (1ND3MeO)), have been investigated with respect to improving the capacity retention of lithium manganese oxide spinel/soft carbon cells. The impact of the silane coating on the soft carbon electrode will be attributed to (1) changes in surface functional groups, (2) compositional change of the SEI, and (3) changes in the kinetics of manganese deposition. The impact of the upper cutoff voltage on the capacity retention of the cell was also discussed. (c) 2005 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@cmt.anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 NR 12 TC 18 Z9 20 U1 7 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD MAY 20 PY 2006 VL 51 IS 19 BP 3890 EP 3894 DI 10.1016/j.electacta.2005.11.004 PG 5 WC Electrochemistry SC Electrochemistry GA 051AR UT WOS:000238133200004 ER PT J AU Roeper, DF Chidambaram, D Clayton, CR Halada, GP Demaree, JD AF Roeper, DF Chidambaram, D Clayton, CR Halada, GP Demaree, JD TI Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt% titanium alloy - Part III: Surface analysis of the coating SO ELECTROCHIMICA ACTA LA English DT Article DE uranium alloys; corrosion; molybdate coatings; XPS; RBS ID RAY PHOTOELECTRON-SPECTROSCOPY; MOLYBDENUM OXIDE; DISSOLUTION MECHANISM; XPS; OXIDATION; FILMS; DIOXIDE; CATALYSTS; SILICA; ESCA AB Molybdenum oxide-based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt% titanium alloy using either concentrated nitric acid or fluorides for surface activation prior to coating formation. The acid-activated surface forms a coating that offers corrosion protection after a period of aging, when uranium species have migrated to the surface. X-ray photoelectron spectroscopy (XPS) revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. Rutherford backscattering spectroscopy (RBS) on the acid-activated coatings also shows uranium dioxide migrating to the surface. The fluoride-activated surface does not form a protective coating and there are no uranium species on the surface as indicated by XPS. The coating on the fluoride-activated samples has been found to contain a mixture of molybdenum oxides of which the main component is molybdenum trioxide and a minor component of an Mo(V) oxide. (c) 2005 Elsevier Ltd. All rights reserved. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Roeper, DF (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM droeper@notes.cc.sunysb.edu RI Chidambaram, Dev/B-2967-2008 NR 55 TC 3 Z9 3 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD MAY 20 PY 2006 VL 51 IS 19 BP 3895 EP 3903 DI 10.1016/j.electacta.2005.11.003 PG 9 WC Electrochemistry SC Electrochemistry GA 051AR UT WOS:000238133200005 ER PT J AU Benioff, P AF Benioff, P TI Complex rational numbers in quantum mechanics SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 05) CY MAY 02-06, 2005 CL Besancon, FRANCE DE complex rational numbers; quantum computation; bosons; fermions AB A binary representation of complex rational numbers and their arithmetic is described that is not based on qubits. It takes account of the fact that 0s in a qubit string do not contribute to the value of a number. They serve only as place holders. The representation is based on the distribution of four types of systems, corresponding to +1, -1, +i, -i, along an integer lattice. Complex rational numbers correspond to arbitrary products of four types of creation operators acting on the vacuum state. An occupation number representation is given for both bosons and fermions. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Benioff, P (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM pbenioff@anl.gov NR 13 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD MAY 20 PY 2006 VL 20 IS 11-13 SI SI BP 1730 EP 1741 DI 10.1142/S021797920603425X PN 2 PG 12 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 047TS UT WOS:000237902200015 ER PT J AU Nishimura, Y Lin, Z Lewandowski, JLV Ethier, S AF Nishimura, Y Lin, Z Lewandowski, JLV Ethier, S TI A finite element Poisson solver for gyrokinetic particle simulations in a global field aligned mesh SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE gyrokinetic Poisson equation; particle simulation; plasma turbulence; global field aligned mesh ID GENERAL GEOMETRY; ZONAL FLOWS; PLASMA; TURBULENCE; MODEL AB A new finite element Poisson solver is developed and applied to a global gyrokinetic toroidal code (GTC) which employs the field aligned mesh and thus a logically non-rectangular grid in a general geometry. Employing test cases where the analytical solutions are known, the finite element solver has been verified. The CPU time scaling versus the matrix size employing portable, extensible toolkit for scientific computation (PETSc) to solve the sparse matrix is promising. Taking the ion temperature gradient modes (ITG) its an example, the solution from the new finite element solver has been compared to the solution from the original GTC's iterative solver which is only efficient for adiabatic electrons. Linear and nonlinear simulation results from the two different forms of the gyrokinetic Poisson equation (integral form and the differential form) coincide each other. The new finite element solver enables the implementation of advanced kinetic electron models for global electromagnetic simulations. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Calif Irvine, Irvine, CA 92697 USA. Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Nishimura, Y (reprint author), Univ Calif Irvine, FRH 4129, Irvine, CA 92697 USA. EM nishimuy@uci.edu NR 32 TC 21 Z9 21 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2006 VL 214 IS 2 BP 657 EP 671 DI 10.1016/j.jcp.2005.10.011 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 028WF UT WOS:000236518800012 ER PT J AU Kao, J Flicker, D Ide, K Ghil, M AF Kao, J Flicker, D Ide, K Ghil, M TI Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article ID DATA ASSIMILATION; OCEANOGRAPHY; METEOROLOGY; DYNAMICS; ADJOINT; SYSTEMS; FLOWS AB This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghill K. Ide, Data assimilation with an extended Kalman filter for all impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF call be achieved through a simple modification of the original EKF formalism by including the model parameters into all augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand. (c) 2005 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. Univ Calif Los Angeles, Los Angeles, CA USA. RP Kao, J (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663,MS T086, Los Alamos, NM 87545 USA. EM kao@lanl.gov RI Ide, Kayo/F-8443-2010 NR 25 TC 6 Z9 6 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2006 VL 214 IS 2 BP 725 EP 737 DI 10.1016/j.jcp.2005.10.022 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 028WF UT WOS:000236518800015 ER PT J AU Luketa-Hanlin, A AF Luketa-Hanlin, Anay TI A review of large-scale LNG spills: Experiments and modeling SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Review DE LNG; liquefied natural gas; review; experiment; modeling; hazards ID DENSE GAS DISPERSION; POOL FIRES; HYDROCARBON MIXTURES; FLAME ACCELERATION; VAPOR DISPERSION; STEAM EXPLOSIONS; LIQUID SPILLS; WATER-SURFACE; SIMULATIONS; DETONATION AB The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on largescale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided. (c) 2005 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Fire Sci & Technol Dept, Albuquerque, NM 87185 USA. RP Luketa-Hanlin, A (reprint author), Sandia Natl Labs, Fire Sci & Technol Dept, POB 5800,MS-1135, Albuquerque, NM 87185 USA. EM aluketa@sandia.gov NR 118 TC 49 Z9 52 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD MAY 20 PY 2006 VL 132 IS 2-3 BP 119 EP 140 DI 10.1016/j.jhazmat.2005.10.008 PG 22 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 043OY UT WOS:000237612100001 PM 16271829 ER PT J AU Gritti, F Guiochon, G AF Gritti, F Guiochon, G TI Adsorption mechanism in reversed-phase liquid chromatography - Effect of the surface coverage of a monomeric C-18-silica stationary phase SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE RPLC; C-18 bonding density; adsorbent heterogeneity; adsorption energy distribution; frontal analysis; isotherm; retention mechanism; phenol; caffeine; sodium 2-naphthalene sulfonate; silica-C18; endcapping ID POLYCYCLIC AROMATIC-HYDROCARBONS; HOLD-UP VOLUME; COLUMN SELECTIVITY; CRYSTALLINE POLYMERS; ISOTHERM PARAMETERS; SHAPE SELECTIVITY; BONDED PHASES; RETENTION; ADSORBENTS; SEPARATION AB The effect of the bonding density of the octadecyl chains onto the same silica on the adsorption and retention properties of low molecular weight compounds (phenol, caffeine, and sodium 2-naphthalene sulfonate) was investigated. The same mobile phase (methanol: water, 20:80, v/v) and temperature (T = 298 K) were applied and two duplicate columns (A and B) from each batch of packing material (neat silica, simply endcapped or C-1 phase, 0.42, 1.01, 2.03, and 3.15 mu mol/m(2) of Cis alkyl chains) were tested. Adsorption data of the three compounds were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) were calculated using the expectation-maximization method. Results confirmed earlier findings in linear chromatography of a retention maximum at an intermediate bonding density. From a general point of view, the saturation capacity of the adsorbent tends to decrease with increasing bonding density, due to the vanishing space intercalated between the C Is bonded chains and to the decrease of the specific surface area of the stationary phase. The equilibrium constants are maximum for an intermediary bonding density (approximate to 2 mu mol/m(2)). An enthalpy-entropy compensation was found for the thermodynamic parameters of the isotherm data. Weak equilibrium constants (small Delta H) and high saturation capacities (large AS) were observed at low bonding densities, higher equilibrium constants and lower saturation capacities at high bonding densities, the combinations leading to similar apparent retention in RPLC. The use of a low surface coverage column is recommended for preparative purposes. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 50 TC 53 Z9 54 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 19 PY 2006 VL 1115 IS 1-2 BP 142 EP 163 DI 10.1016/j.chroma.2006.02.095 PG 22 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 041UJ UT WOS:000237481400016 PM 16580678 ER PT J AU Fan, L Kim, S Farr, CL Schaefer, KT Randolph, KM Tainer, JA Kaguni, LS AF Fan, L Kim, S Farr, CL Schaefer, KT Randolph, KM Tainer, JA Kaguni, LS TI A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE NA polymerase; mitochondria; crystal structure; molecular model; processivity ID TRANSFER-RNA-SYNTHETASE; POL-GAMMA-B; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; LARGE FRAGMENT; SPACER-REGION; BINDING; PROTEIN; REPLICATION; MUTATIONS AB Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity. (c) 2006 Elsevier Ltd. All rights reserved. C1 Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48823 USA. Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92034 USA. RP Tainer, JA (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48823 USA. EM jat@scripps.edu; lskaguni@msu.edu FU NCI NIH HHS [CA92584, P01 CA092584]; NIGMS NIH HHS [R01 GM045295, GM45295] NR 44 TC 37 Z9 37 U1 0 U2 0 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD MAY 19 PY 2006 VL 358 IS 5 BP 1229 EP 1243 DI 10.1016/j.jmb.2006.02.073 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 044RI UT WOS:000237689600005 PM 16574152 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E Krapivsky, PL TI Weak disorder in Fibonacci sequences SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article ID GROWTH; PHYLLOTAXIS AB We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1 - epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling and copying are considered. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. Boston Univ, Ctr Mol Cybernet, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM ebn@lanl.gov; paulk@bu.edu RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; NR 13 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD MAY 19 PY 2006 VL 39 IS 20 BP L301 EP L307 DI 10.1088/0305-4470/39/20/L02 PG 7 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 054NJ UT WOS:000238383900002 ER PT J AU DeLaBarre, B Christianson, JC Kopito, RR Brunger, AT AF DeLaBarre, B Christianson, JC Kopito, RR Brunger, AT TI Central pore residues mediate the p97/VCP activity required for ERAD SO MOLECULAR CELL LA English DT Article ID VALOSIN-CONTAINING PROTEIN; MEMBRANE-FUSION PROTEIN; CELL ANTIGEN RECEPTOR; AAA-ATPASE; RETRO-TRANSLOCATION; MASS-SPECTROMETRY; HIGH-RESOLUTION; SNARE COMPLEX; DEGRADATION; UBIQUITIN AB The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCR alpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCPwt), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin (.) p97NCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore. C1 Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. Stanford Univ, Bio X Program, Stanford, CA 94305 USA. RP Brunger, AT (reprint author), Stanford Univ, Howard Hughes Med Inst, JH Clark Ctr E300-C,318 Campus Dr, Stanford, CA 94305 USA. EM brunger@stanford.edu OI Brunger, Axel/0000-0001-5121-2036; Christianson, John/0000-0002-0474-1207 NR 55 TC 130 Z9 132 U1 1 U2 5 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD MAY 19 PY 2006 VL 22 IS 4 BP 451 EP 462 DI 10.1016/j.molcel.2006.03.036 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 046LO UT WOS:000237813300007 PM 16713576 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben-Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bishai, M Blair, RE Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Bourov, S Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Connolly, A Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cruz, A Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, J DiTuro, P Dorr, C Dominguez, A Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Fujii, Y Furic, I Gajjar, A Gallinaro, M Galyardt, J Garcia, JE Sciverez, MG Garfinkel, AF Gay, C Gerberich, H Gerchtein, E Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giolo, K Giordani, M Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Grundler, U da Costa, JG Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Hayward, H Heijboer, A Heinemann, B Heinrich, J Hennecke, M Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Ikado, K Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karagoz-Unel, M Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, MS Kim, SB Kim, SH Kim, YK Kirby, M Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraus, J Kravchenko, I Kreps, M Kreymer, A Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I Lecci, C LeCompte, T Lee, J Lee, J Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Li, K Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Liu, Y Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maksimovic, P Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, M Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McGivern, D McIntyre, P McNamara, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Miscetti, S Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Mulhearn, M Muller, T Mumford, R Murat, P Nachtman, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Papikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pitts, K Plager, C Pondrom, L Pope, G Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Rinnert, K Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Ryan, D Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Semeria, F Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Tafirout, R Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vacavant, L Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vickey, T Vidal, R Vila, I Vilar, R Vollrath, I Volobouev, I Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, MJ Wang, SM Warburton, A Ward, B Waschke, S Waters, D Watts, T Weber, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Worm, S Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, Y Yang, C Yang, UK Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben-Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bishai, M. Blair, R. E. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Bourov, S. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Connolly, A. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cruz, A. Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. DiTuro, P. Doerr, C. Dominguez, A. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Fujii, Y. Furic, I. Gajjar, A. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciverez, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerchtein, E. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giolo, K. Giordani, M. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Grundler, U. Guimaraes da Costa, J. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B-Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Hayward, H. Heijboer, A. Heinemann, B. Heinrich, J. Hennecke, M. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Ikado, K. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karagoz-Unel, M. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, Y. K. Kirby, M. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraus, J. Kravchenko, I. Kreps, M. Kreymer, A. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lecci, C. LeCompte, T. Lee, J. Lee, J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Li, K. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Liu, Y. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maksimovic, P. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McGivern, D. McIntyre, P. McNamara, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Miscetti, S. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Mulhearn, M. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Papikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pitts, K. Plager, C. Pondrom, L. Pope, G. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Rinnert, K. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Ryan, D. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Semeria, F. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Tafirout, R. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vacavant, L. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vickey, T. Vidal, R. Vila, I. Vilar, R. Vollrath, I. Volobouev, I. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, M. J. Wang, S. M. Warburton, A. Ward, B. Waschke, S. Waters, D. Watts, T. Weber, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Worm, S. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, Y. Yang, C. Yang, U. K. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the ratios of branching fractions B(B-s(0)-> D-s(-)pi(+))/B(B-0 -> D-pi(+)) and B(B+->(D)over-bar(0)pi(+))/B(B-0 -> D-pi(+)) SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONS; PHYSICS; DECAYS AB We report an observation of the decay B-s(0)-> D-s(-)pi(+) in p (p) over bar collisions at root s = 1.96 TeV using 115 pb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We observe 83 +/- 11(stat) B-s(0)-> D-s(-)pi(+) candidates, representing a large increase in statistics over previous measurements and the first observation of this decay at a p (p) over bar collider. We present the first measurement of the relative branching fraction B(B-s(0)-> D-s(-)pi(+))/B(B-0 -> D-pi(+))=1.32 +/- 0.18(stat)+/- 0.38(syst). We also measure B(B+->(D) over bar (0)pi(+))/B(B-0 -> D-pi(+))=1.97 +/- 0.10(stat)+/- 0.21(syst), which is consistent with previous measurements. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Siena & Scuola Normale Super, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Connolly, Amy/J-3958-2013; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Canelli, Florencia/0000-0001-6361-2117 NR 18 TC 11 Z9 11 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 191801 DI 10.1103/PhysRevLett.96.191801 PG 7 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600011 ER PT J AU Hinkel, DE Schneider, MB Young, BK Langdon, AB Williams, EA Rosen, MD Suter, LJ AF Hinkel, DE Schneider, MB Young, BK Langdon, AB Williams, EA Rosen, MD Suter, LJ TI Creation of hot radiation environments in laser-driven targets SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC-WAVES; BEAM DEFLECTION; ENERGY-TRANSFER; OMEGA-LASER; PLASMA; FILAMENTATION; SCATTERING; SYSTEM AB A hot radiation environment, produced by maximizing laser-energy deposition into a small, high-Z "can," is a platform being developed for investigations of material properties under extreme conditions. In such small targets, almost doubling the laser energy results in only an incremental increase in the x-radiation flux, and almost no increase in the maximum achieved radiation temperature. That most of this additional laser energy is not deposited within the target is a direct consequence of laser-plasma interactions (LPI) outside of the target, which result in high-angle beams never entering the target late in the laser pulse. Accounting for these processes in the modeling results in quantitative agreement for the first time with experiments using very small cans. These findings have provided the scientific foundation for modifying the target geometry to mitigate the LPI and to achieve higher radiation temperatures. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hinkel, DE (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. NR 26 TC 18 Z9 18 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 195001 DI 10.1103/PhysRevLett.96.195001 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600019 PM 16803105 ER PT J AU Nukala, PKVV Simunovic, S AF Nukala, PKVV Simunovic, S TI Comment on "finite element mapping for spring network representations of the mechanics of solids" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. NR 2 TC 1 Z9 1 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 199401 DI 10.1103/PhysRevLett.96.199401 PG 1 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600063 PM 16803149 ER PT J AU Park, HK Luhmann, NC Donne, AJH Classen, IGJ Domier, CW Mazzucato, E Munsat, T de Pol, MJV Xia, Z AF Park, HK Luhmann, NC Donne, AJH Classen, IGJ Domier, CW Mazzucato, E Munsat, T de Pol, MJV Xia, Z CA TEXTOR team TI Observation of high-field-side crash and heat transfer during sawtooth oscillation in magnetically confined plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUSION TEST REACTOR; TOKAMAK; TOMOGRAPHY; RECONNECTION; JET AB High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study the crash process and heat transfer in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to a small poloidally localized puncture in the magnetic surface at both the low and the high field sides of the poloidal plane. This observation closely resembles the "fingering event" of the ballooning mode model with the high-m mode only predicted at the low field side. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif Davis, Davis, CA 95616 USA. EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. Univ Colorado, Boulder, CO 80309 USA. Forschungszentrum Julich GmbH, EURATOM Assoc, Inst Plasmaphys, D-52425 Julich, Germany. RP Park, HK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 21 TC 73 Z9 74 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 195003 DI 10.1103/PhysRevLett.96.195003 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600021 PM 16803107 ER PT J AU Park, HK Donne, AJH Luhmann, NC Classen, IGJ Domier, CW Mazzucato, E Munsat, T van de Pol, MJV Xia, Z AF Park, HK Donne, AJH Luhmann, NC Classen, IGJ Domier, CW Mazzucato, E Munsat, T van de Pol, MJV Xia, Z CA TEXTOR Team TI Comparison study of 2D images of temperature fluctuations during sawtooth oscillation with theoretical models SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUSION TEST REACTOR; DIII-D; TOKAMAK; DIAGNOSTICS; TOMOGRAPHY; CRASHES; DENSITY; PLASMAS; TEXTOR AB High temporal and spatial resolution two-dimensional (2D) images of electron temperature fluctuations were employed to study the sawtooth oscillation in the Toroidal Experiment for Technically Oriented Research tokamak plasmas. The 2D images are directly compared with the expected 2D patterns of the plasma pressure (or electron temperature) from various theoretical models. The observed experimental 2D images are only partially in agreement with the expected patterns from each model: The image of the initial reconnection process is similar to that of the ballooning mode model. The intermediate and final stages of the reconnection process resemble those of the full reconnection model. The time evolution of the images of the hot spot or island is partially consistent to those from the full reconnection model but is not consistent with those from the quasi-interchange model. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. Univ Calif Davis, Davis, CA 95616 USA. Univ Colorado, Boulder, CO 80309 USA. Forschungszentrum Julich GmbH, EURATOM Assoc, Inst Plasmaphys, D-52425 Julich, Germany. RP Park, HK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 22 TC 57 Z9 57 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 195004 DI 10.1103/PhysRevLett.96.195004 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600022 PM 16803108 ER PT J AU Safarik, DJ Schwarz, RB Hundley, MF AF Safarik, DJ Schwarz, RB Hundley, MF TI Similarities in the C-p/T-3 peaks in amorphous and crystalline metals SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEMPERATURE HEAT-CAPACITY; LOW-FREQUENCY VIBRATIONS; TRANSVERSE PHONONS; ELASTIC-CONSTANTS; VITREOUS SILICA; BOSON PEAK; DEGREES K; GLASS; EXCITATIONS; ALUMINUM AB A low-temperature peak in C-p/T-3 vs T is ubiquitous to glasses. It arises from an abundance of low-frequency vibrations, the origin of which remains unclear. A comparable C-p/T-3 vs T peak is observed in crystals due to the dispersion of acoustic phonons and/or the excitation of optical phonons. We compared the C-p/T-3 vs T peaks in metallic and oxide glasses to elemental crystals by analyzing specific heat, phonon density of states, and elastic constant data. We observe no clear distinction in the peak temperature or amplitude between metallic glasses and crystals. Surprisingly, the peak is larger in single crystal Pd40Cu40P20 than in glassy Pd40Cu40P20. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Safarik, DJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. OI Safarik, Douglas/0000-0001-8648-9377 NR 39 TC 26 Z9 26 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 195902 DI 10.1103/PhysRevLett.96.195902 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600025 PM 16803111 ER PT J AU Wang, F Alvarez, JV Mo, SK Allen, JW Gweon, GH He, J Jin, R Mandrus, D Hochst, H AF Wang, F Alvarez, JV Mo, SK Allen, JW Gweon, GH He, J Jin, R Mandrus, D Hochst, H TI New Luttinger-liquid physics from photoemission on Li0.9Mo6O17 SO PHYSICAL REVIEW LETTERS LA English DT Article ID PURPLE BRONZE LI0.9MO6O17; ONE-DIMENSIONAL METALS AB Temperature dependent high resolution photoemission spectra of quasi-one-dimensional Li0.9Mo6O17 evince a strong renormalization of its Luttinger-liquid density-of-states anomalous exponent. We trace this new effect to interacting charge neutral critical modes that emerge naturally from the two-band nature of the material. Li0.9Mo6O17 is shown thereby to be a paradigm material that is capable of revealing new Luttinger physics. C1 Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53598 USA. RP Wang, F (reprint author), Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. RI Mo, Sung-Kwan/F-3489-2013; Mandrus, David/H-3090-2014; Alvarez, Jose/H-4696-2015 OI Mo, Sung-Kwan/0000-0003-0711-8514; Alvarez, Jose/0000-0001-5178-4309 NR 19 TC 38 Z9 38 U1 0 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 196403 DI 10.1103/PhysRevLett.96.196403 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600031 PM 16803117 ER PT J AU Yim, H Kent, MS Sasaki, DY Polizzotti, BD Kiick, KL Majewski, J Satija, S AF Yim, H. Kent, M. S. Sasaki, D. Y. Polizzotti, B. D. Kiick, K. L. Majewski, J. Satija, S. TI Rearrangement of lipid ordered phases upon protein adsorption due to multiple site binding SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOSPHOLIPID MONOLAYERS; CONCANAVALIN-A; MEMBRANES; PEPTIDE; REORGANIZATION; REFLECTIVITY; COPPER(II); COMPLEXES AB This study involves the interactions of proteins with Langmuir monolayers of a metal-chelating lipid, where adsorption is driven by a strong specific interaction between histidines on the proteins and divalent metal ions loaded into the lipid headgroups. A comparison of the structural rearrangement of the lipid film upon adsorption of myoglobin and a synthetic peptide, each of which have multiple histidines, with that upon the adsorption of lysozyme, which has only one histidine, suggests that the lipid rearrangement in the former case is due to the multiplicity of binding sites. The kinetics and manner of rearrangement change with the binding energy and film pressure. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Delaware, Dept Mat Sci & Engn, Newark, DE USA. Los Alamos Natl Lab, Los Alamos, NM USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Yim, H (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Lujan Center, LANL/G-4896-2012 FU NCRR NIH HHS [P20 RR017716, P20 RR017716-010004] NR 21 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 19 PY 2006 VL 96 IS 19 AR 198101 DI 10.1103/PhysRevLett.96.198101 PG 4 WC Physics, Multidisciplinary SC Physics GA 044PB UT WOS:000237683600056 PM 16803142 ER PT J AU Liu, ZH Feldman, LC Tolk, NH Zhang, ZY Cohen, PI AF Liu, ZH Feldman, LC Tolk, NH Zhang, ZY Cohen, PI TI Desorption of H from Si(111) by resonant excitation of the Si-H vibrational stretch mode (Retracted article. See vol. 333, pg. 1824, 2011) SO SCIENCE LA English DT Article; Retracted Publication ID SCANNING-TUNNELING-MICROSCOPY; LASER-INDUCED DESORPTION; SILICON SURFACES; VICINAL SI(111); X 7; HYDROGEN; MECHANISMS; KINETICS; ENERGY; STATE AB Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive. C1 Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Cohen, PI (reprint author), Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. EM picohen@umn.edu NR 23 TC 58 Z9 58 U1 0 U2 24 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 19 PY 2006 VL 312 IS 5776 BP 1024 EP 1026 DI 10.1126/science.1124529 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 043UX UT WOS:000237628800037 PM 16709778 ER PT J AU Holt, JK Park, HG Wang, YM Stadermann, M Artyukhin, AB Grigoropoulos, CP Noy, A Bakajin, O AF Holt, JK Park, HG Wang, YM Stadermann, M Artyukhin, AB Grigoropoulos, CP Noy, A Bakajin, O TI Fast mass transport through sub-2-nanometer carbon nanotubes SO SCIENCE LA English DT Article ID MEMBRANES; GASES; FLOW AB We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeds values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations. The gas and water permeabilities of these nanotube-based membranes are several orders of magnitude higher than those of commercial polycarbonate membranes, despite having pore sizes an order of magnitude smaller. These membranes enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Bakajin, O (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM bakajin1@llnl.gov RI Bakajin, Olgica/A-9745-2008; Han, Kyuhee/B-6201-2009; Stadermann, Michael /A-5936-2012; Park, Hyung Gyu/F-3056-2013; Wang, Yinmin (Morris)/F-2249-2010 OI Stadermann, Michael /0000-0001-8920-3581; Park, Hyung Gyu/0000-0001-8121-2344; Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 27 TC 1289 Z9 1329 U1 62 U2 563 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 19 PY 2006 VL 312 IS 5776 BP 1034 EP 1037 DI 10.1126/science.1126298 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 043UX UT WOS:000237628800040 PM 16709781 ER PT J AU Chaiko, DJ AF Chaiko, DJ TI Activation of organoclays and preparation of polyethylene nanocomposites SO E-POLYMERS LA English DT Article AB A dimethyl dihydrogenated tallow ammonium bentonite, edge modified with 1-hydroxydodecane-1,1-diphosphonic acid, was activated by intercalation of polyethylene-block-poly( ethylene glycol). A high-density polyethylene ( HDPE) nanocomposite was produced by the gradual dilution of the intercalated organoclay with HDPE, via melt mixing, until a final clay concentration of 0.3 wt% was reached. While polymer crystallinity was unaffected by the addition of the clay, polymer transparency increased dramatically. Microscopic examination of compression molded films verified that polymer nucleation increased to such an extent that the normal spherulitic structure was completely absent. A significant reduction in gas transmission accompanied the increased film clarity. Compared to the pure polymer, oxygen and water vapor permeabilities were reduced by approximately 55 and 70%, respectively. With proper dispersion, significant improvements in both physical and barrier properties are achievable by the incorporation of nanoclays into polyolefins. Additionally, it is significant that these benefits can be realized at clay concentrations consistent with those of common polymer additives, like stabilizers, clarifiers, and colorants. C1 Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Chaiko, DJ (reprint author), Univ Illinois, Dept Earth & Environm Sci, 845 W Taylor St, Chicago, IL 60607 USA. EM Chaiko@comcast.net NR 22 TC 2 Z9 2 U1 0 U2 3 PU EUROPEAN POLYMER FEDERATION PI STRASBOURG PA 1, QUAI LEZAY-MARNESIA, F067000 STRASBOURG, FRANCE SN 1618-7229 J9 E-POLYMERS JI e-Polymers PD MAY 18 PY 2006 AR 019 PG 15 WC Polymer Science SC Polymer Science GA 043ZF UT WOS:000237641000001 ER PT J AU Nadiga, BT AF Nadiga, BT TI On zonal jets in oceans SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TURBULENCE; CIRCULATION; FLOWS; CASCADE; ENERGY; WAVES; MODEL AB We find that in parameter regimes relevant to the recently observed alternating zonal jets in oceans, the formation of these jets can be explained as due to an arrest of the turbulent inverse-cascade of energy by free Rossby waves ( as opposed to Rossby basin modes) and a subsequent redirection of that energy into zonal modes. This mechanism, originally studied in the context of alternating jets in Jovian atmospheres and two dimensional turbulence in zonally-periodic configurations survives in spite of the presence of the meridional boundaries in the oceanic context. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nadiga, BT (reprint author), Los Alamos Natl Lab, MS-B296, Los Alamos, NM 87545 USA. EM balu@lanl.gov NR 20 TC 24 Z9 24 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 18 PY 2006 VL 33 IS 10 AR L10601 DI 10.1029/2006GL025865 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 049DV UT WOS:000237996900004 ER PT J AU Venkataraman, S Loeser, W Eckert, J Gemming, T Mickel, C Schubert-Bischoff, P Wanderka, N Schultz, L Sordelet, DJ AF Venkataraman, S. Loeser, W. Eckert, J. Gemming, T. Mickel, C. Schubert-Bischoff, P. Wanderka, N. Schultz, L. Sordelet, D. J. TI Nanocrystal development in Cu47Ti33Zr11Ni8Si1 metallic glass powders SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE amorphous materials; scanning and electron microscopy; X-ray diffraction; calorimetry ID CRYSTALLIZATION KINETICS; AMORPHOUS-ALLOYS; FORMING ABILITY; SUPERCOOLED LIQUID; THERMAL-STABILITY; AL-ALLOYS; ZR-TI; FE; SI; MICROSTRUCTURE AB The crystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass powders subjected to annealing at temperatures above and below the glass transition temperature has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Nucleation occurs heterogeneously at "quenched-in" nucleation sites at temperature below the glass transition. The resulting nanocrystals are Cu rich. However, upon annealing in the supercooled liquid region, crystallization of Cu51Zr14 nanocrystals occurs homogeneously by a nucleation and growth mechanism. Crystallization in the supercooled liquid is diffusion-control led. The activation energies for the first-order transformation have been calculated using isochronal and isothermal approaches and do not seem to be markedly affected by annealing. (c) 2005 Elsevier B.V. All rights reserved. C1 Tech Univ Darmstadt, FG Phys Metallkunde, FB Mat & Geowissensch 11, D-64287 Darmstadt, Germany. IFW Dresden, Inst Met Werkstoffe, D-01171 Dresden, Germany. IFW Dresden, Inst Festkorperforsch, D-01171 Dresden, Germany. IFW Dresden, Inst Festkorperanalyt & Strukturforsch, D-01171 Dresden, Germany. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50014 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50014 USA. RP Venkataraman, S (reprint author), Tech Univ Darmstadt, FG Phys Metallkunde, FB Mat & Geowissensch 11, Petersenstr 23, D-64287 Darmstadt, Germany. EM s.venkataraman@phm.tu-darmstadt.de RI Schultz, Ludwig/B-3383-2010; Gemming, Thomas/D-3920-2015 OI Gemming, Thomas/0000-0002-7353-595X NR 44 TC 9 Z9 9 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAY 18 PY 2006 VL 415 IS 1-2 BP 162 EP 169 DI 10.1016/j.jallcom.2005.08.009 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 045OA UT WOS:000237750200028 ER PT J AU Denton, MH Borovsky, JE Skoug, RM Thomsen, MF Lavraud, B Henderson, MG McPherron, RL Zhang, JC Liemohn, MW AF Denton, MH Borovsky, JE Skoug, RM Thomsen, MF Lavraud, B Henderson, MG McPherron, RL Zhang, JC Liemohn, MW TI Geomagnetic storms driven by ICME- and CIR-dominated solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SHEET ACCESS; CORONAL MASS EJECTIONS; GEOSYNCHRONOUS ORBIT; ION COMPOSITION; GEOTAIL OBSERVATIONS; INNER MAGNETOSPHERE; MAGNETIC-FIELD; DISTANT TAIL; CYCLE; TEMPERATURE AB [ 1] The interaction of the solar wind and the Earth's magnetosphere is complex and the phenomenology of the interaction is very different for solar wind dominated by interplanetary coronal mass ejections ( ICMEs) compared to solar wind dominated by corotating interaction regions (CIRs). We perform a superposed epoch study of the effects of ICME- and CIR-dominated solar wind upon the storm-time plasma at geosynchronous orbit using data from the magnetospheric plasma analyzer (MPA) instruments on board seven Los Alamos National Laboratory (LANL) satellites. Using 78 ICME events and 32 CIR events, we examine the electron and ion plasma sheets that are formed during each type of solar wind driver, at energy-per-charge between similar to 0.1 and 45 keV/q. The results demonstrate that CIR events produce a more significant modulation in the plasma sheet temperature than ICME events, whilst ICME events produce a more significant modulation in the plasma sheet density than CIR events. We attribute these differences to the average speed in the solar wind and a combination of the density of the solar wind and the ionospheric component of the plasma sheet, respectively. We also show that for CIR events, the magnitude of the spacecraft potential is, on average, significantly greater than during ICME- events, with consequent effects upon the performance of instrumentation within this environment. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Denton, MH (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM mdenton@phys.soton.ac.uk; jborovsky@lanl.gov; rskoug@lanl.gov; mthomsen@lanl.gov; lavraud@lanl.gov; mghenderson@lanl.gov; mcpherron@igpp.ucla.edu; jichunz@engin.umich.edu; liemohn@umich.edu RI Zhang, Jichun/A-6648-2009; Liemohn, Michael/H-8703-2012; Henderson, Michael/A-3948-2011; OI Liemohn, Michael/0000-0002-7039-2631; Henderson, Michael/0000-0003-4975-9029; Denton, Michael/0000-0002-1748-3710 NR 49 TC 106 Z9 106 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 18 PY 2006 VL 111 IS A7 AR A07S07 DI 10.1029/2005JA011436 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 049KE UT WOS:000238014200001 ER PT J AU Petford-Long, AK Kohn, A Bromwich, T Jackson, V Castano, F Singh, LJ AF Petford-Long, AK Kohn, A Bromwich, T Jackson, V Castano, F Singh, LJ TI Application of TEM to the development of information storage materials SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Symposium on Magnetic Nanomaterials and Devices CY JUL 03-08, 2005 CL Singapore, SINGAPORE DE Lorentz TEM; HREM; magnetic thin films; tunnel magnetoresistance ID MAGNETIC TUNNEL-JUNCTIONS; GIANT MAGNETORESISTANCE; ELECTRON-MICROSCOPY; HEUSLER ALLOYS AB One of the most spectacular examples of nanomagnetic systems is that of devices based on the giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) phenomena. The device response depends critically oil parameters such as layer thickness and chemical abruptness of the interfaces between layers.. which are nanometre-scale in thickness. We have used high resolution electron microscopy (HREM) and TEM chemical mapping to understand the microstructural origins of the magnetic and transport properties of magnetoresistive structures. We have also used Lorentz TEM and in situ magnetising experiments to analyse their magnetic structure and magnetisation reversal processes. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Oxford, Dept Mat, Oxford OX1 3PH, England. MIT, Dept Mat Sci & Engn, Cambridge, MA 01239 USA. Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Petford-Long, AK (reprint author), Argonne Natl Lab, Bldg 212,9700 S Cass Ave, Argonne, IL 60439 USA. EM petford.long@anl.gov RI Kohn, Amit/F-1559-2012; Petford-Long, Amanda/P-6026-2014 OI Petford-Long, Amanda/0000-0002-3154-8090 NR 20 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAY 18 PY 2006 VL 505 IS 1-2 BP 10 EP 15 DI 10.1016/j.tsf.2005.10.010 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 027UH UT WOS:000236440600003 ER PT J AU Balasubramanian, K AF Balasubramanian, Krishnan TI Molecular orbital basis for yellow curry spice curcumin's prevention of Alzheimer's disease SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE curcumin; molecular orbital studies; charges; polar and hydrophobic features ID ANTIOXIDANT MECHANISM; ANISOTROPIC DIELECTRICS; DOWN-REGULATION; SERUM-ALBUMIN; CYTOTOXICITY; GENERATION; APOPTOSIS; SOLVENT; CELLS AB It is demonstrated by using high-level ab initio computations that the yellow curcumin pigment, bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, in the east Indian root plant turmeric (Curcuma longa) exhibits unique charge and bonding characteristics that facilitate penetration into the blood-brain barrier and binding to amyloid, (A beta). Alzheimer's disease is caused by A beta accumulation in the brain cells combined with oxidative stress and inflammation. Consistent with the recent experimental work by Cole and co-workers (Yang, F., et al. J. Biol. Chem. 2004, 280, 5892-5901) that demonstrates curcumin pigment's binding ability to A, both in vivo and in vitro, it is shown here that curcumin possesses suitable charge and bonding features to facilitate the binding to A beta. In addition, curcumin's anti-inflammatory and antioxidant properties are also attributed to electronic and structural features. It is shown that the presence of an enolic center and two phenolic polar groups separated by an essentially hydrophobic bridge of a conjugated network provides both hydrophobic and hydrophilic features to the curcumin pigment, thereby facilitating penetration into the blood-brain barrier through the former property and then binding to A beta oligomer through the latter property. Both density functional and Mlller-Plesset perturbation (MP2) computations have been carried out on the curcumin pigment to obtain fully optimized geometries in the gas phase and aqueous solution and also the atomic charges. Different isomers ( keto and enol forms) have been considered to show that the enol form is the most favored and has all of the properties for an ideal antioxidant with also features to penetrate the blood-brain barrier and to bind to A beta. This is demonstrated with natural bond charges, highest occupied and lowest unoccupied molecular orbitals, dipole moments, and Laplacian plots. The computed ionization potential and electron affinity show that curcumin has a low molecular hardness and thus has a propensity to dissociate its phenolic -OH, and the resulting charge undergoes delocalization throughout the structure, resulting in excitonic features. This feature seems to be also important for its binding capability to human proteins such as human serum albumin and A beta. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Balasubramanian, K (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, POB 5508, Livermore, CA 94550 USA. EM balu@llnl.gov NR 36 TC 88 Z9 89 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 EI 1520-5118 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD MAY 17 PY 2006 VL 54 IS 10 BP 3512 EP 3520 DI 10.1021/jf0603533 PG 9 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 043HH UT WOS:000237590600005 PM 19127718 ER PT J AU Wang, WG Davis, KJ Cook, BD Butler, MP Ricciuto, DM AF Wang, Weiguo Davis, Kenneth J. Cook, Bruce D. Butler, Martha P. Ricciuto, Daniel M. TI Decomposing CO2 fluxes measured over a mixed ecosystem at a tall tower and extending to a region: A case study SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID ATMOSPHERIC CO2; CARBON-DIOXIDE; TERRESTRIAL ECOSYSTEMS; NORTHERN WISCONSIN; VERTICAL DIFFUSION; CLIMATE-CHANGE; SURFACE-LAYER; EXCHANGE; FOREST; FOOTPRINT AB CO2 fluxes for six stand types are inferred by decomposing eddy-covariance (EC) fluxes measured at a 447-m tower using footprint models and ecosystem models in a case study. The functional parameters in the ecosystem models are estimated for each stand type utilizing temporal EC flux series. The results show differences in terms of the functional parameters and fluxes among the different stand types that are consistent with general expectations for the respective stand types. The fluxes, in addition to measurements at two nearby short towers, are used for flux aggregation in the region. Comparisons suggest that it is critical for flux aggregation to distinguish the wetland from the upland. A distinction among three upland forests and between forested and lowland wetlands could be important, too. The difference in aggregated values of net ecosystem-atmospheric exchange of CO2 with the watershed function classification scheme and with the stand-type level classification scheme can reach about 250 gC m(-2) season(-1) over the entire growing season. Analyses suggest that the six-stand classification scheme still does not capture all the variability in stand characteristics relevant to CO2 exchange. In addition, the varying fluxes for the same stand type with location in the region challenge the widely used land-cover-based ecosystem classification scheme. It is improper to use EC measurements at any single tower to approximate CO2 fluxes in the region. Implications may help identify key ecosystem types and design more measurements in the region. Limitations and future efforts are discussed. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Wang, WG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wang@met.psu.edu RI Wang, Weiguo/B-4948-2009; Cook, Bruce/M-4828-2013; Ricciuto, Daniel/I-3659-2016 OI Cook, Bruce/0000-0002-8528-000X; Ricciuto, Daniel/0000-0002-3668-3021 NR 44 TC 17 Z9 18 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD MAY 17 PY 2006 VL 111 IS G2 AR G02005 DI 10.1029/2005JG000093 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 090XF UT WOS:000240986600001 ER PT J AU Yang, SH Mun, BS Mannella, N Nambu, A Sell, BC Ritchey, SB Salmassi, F Shick, A Parkin, SSP Fadley, CS AF Yang, SH Mun, BS Mannella, N Nambu, A Sell, BC Ritchey, SB Salmassi, F Shick, A Parkin, SSP Fadley, CS TI Relationship of tunnelling magnetoresistance and buried-layer densities of states as derived from standing-wave excited photoemission SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MEAN FREE PATHS; STABILITY AB We have measured the valence-band densities of states (DOSs) in buried CoFeB and CoFe layers in a magnetic tunnel junction using a novel extension of a recently developed standing wave/wedge soft x-ray photoemission technique. The CoFe DOS at the Fermi level is substantially enhanced when the CoFe thickness is reduced from 25 to 15 angstrom. This enhancement, which we suggest is due to the amorphous character of the CoFe when less than or similar to 20 angstrom in thickness and results in a spin-polarized peak in the DOS of primarily Co origin, can be directly correlated to marked improvements in magnetic transport and switching properties. This technique for studying buried-layer DOSs should also be applicable to other multilayer nanostructures. C1 IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic. RP Yang, SH (reprint author), IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. RI Parkin, Stuart/D-2521-2012; MSD, Nanomag/F-6438-2012; Shick, Alexander/C-1420-2013; Mun, Bongjin /G-1701-2013 OI Shick, Alexander/0000-0003-2700-5517; NR 18 TC 18 Z9 18 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 17 PY 2006 VL 18 IS 19 BP L259 EP L267 DI 10.1088/0953-8984/18/19/L05 PG 9 WC Physics, Condensed Matter SC Physics GA 054JN UT WOS:000238372800005 ER PT J AU Chen, X Tam, UC Czlapinski, JL Lee, GS Rabuka, D Zettl, A Bertozzi, CR AF Chen, X Tam, UC Czlapinski, JL Lee, GS Rabuka, D Zettl, A Bertozzi, CR TI Interfacing carbon nanotubes with living cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SINGLE-CELL; PROTEIN; FUNCTIONALIZATION; CYTOTOXICITY; TRANSPORTERS; SURFACE; FLUORESCENCE; BIOSENSORS; CANCER C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM azettl@socrates.berkeley.edu; crb@berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 24 TC 205 Z9 211 U1 0 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 17 PY 2006 VL 128 IS 19 BP 6292 EP 6293 DI 10.1021/ja060276s PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 043HF UT WOS:000237590400012 PM 16683774 ER PT J AU Jantunen, KC Scott, BL Hay, PJ Gordon, JC Kiplinger, JL AF Jantunen, Kimberly C. Scott, Brian L. Hay, P. Jeffrey Gordon, John C. Kiplinger, Jaqueline L. TI Dearomatization and functionalization of terpyridine by lutetium(III) alkyl complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NITROGEN BOND-CLEAVAGE; RARE-EARTH-METALS; HYDRODENITROGENATION CATALYSIS; ETA(2)(N,C)-PYRIDINE COMPLEX; ETHYLENE POLYMERIZATION; CYCLOPENTADIENYL LIGAND; HYDRIDE COMPLEXES; X-RAY; LANTHANIDES; ACTIVATION C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 NR 25 TC 53 Z9 53 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 17 PY 2006 VL 128 IS 19 BP 6322 EP 6323 DI 10.1021/ja061161r PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 043HF UT WOS:000237590400027 PM 16683789 ER PT J AU Mynar, JL Lowery, TJ Wemmer, DE Pines, A Frechet, JMJ AF Mynar, JL Lowery, TJ Wemmer, DE Pines, A Frechet, JMJ TI Xenon biosensor amplification via dendrimer-cage supramolecular constructs SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LASER-POLARIZED XE-129; FUNCTIONALIZED XENON; CHEMISTRY C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 NR 21 TC 54 Z9 55 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 17 PY 2006 VL 128 IS 19 BP 6334 EP 6335 DI 10.1021/ja061735s PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 043HF UT WOS:000237590400033 PM 16683795 ER PT J AU Huo, QS Liu, J Wang, LQ Jiang, YB Lambert, TN Fang, E AF Huo, QS Liu, J Wang, LQ Jiang, YB Lambert, TN Fang, E TI A new class of silica cross-linked micellar core-shell nanoparticles SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DRUG-DELIVERY DEVICES; BLOCK-COPOLYMERS; CONTROLLED-RELEASE; MESOPOROUS SILICA; PLURONIC MICELLES; AQUEOUS-SOLUTION; FLUORESCENCE; SURFACTANT; SYSTEMS; DESIGN AB Micellar nanoparticles made of surfactants and polymers have attracted wide attention in the materials and biomedical community for controlled drug delivery, molecular imaging, and sensing; however, their long-term stability remains a topic of intense study. Here we report a new class of robust, ultrafine silica core-shell nanoparticles formed from silica cross-linked, individual block copolymer micelles. Compared with pure polymeric micelles, the main advantage of the new core-shell nanoparticles is that they have significantly improved stability and do not break down during dilution. We also studied the drug loading and release properties of the silica cross-linked micellar particles, and we found that the new core-shell nanoparticles have a slower release rate which allows the entrapped molecules to be slowly released over a much longer period of time under the same experimental conditions. A range of functional groups can be easily incorporated through co-condensation with the silica matrix. The potential to deliver hydrophobic agents into cancer cells has been demonstrated. Because of their unique structures and properties, these novel core-shell nanoparticles could potentially provide a new nanomedicine platform for imaging, detection, and treatment, as well as novel colloidal particles and building blocks for mutlifunctional materials. C1 Univ New Mexico, Pacific NW Natl Lab, Richland, WA 99352 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Liu, J (reprint author), Univ New Mexico, Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov NR 44 TC 185 Z9 190 U1 13 U2 151 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 17 PY 2006 VL 128 IS 19 BP 6447 EP 6453 DI 10.1021/ja060367p PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 043HF UT WOS:000237590400048 PM 16683810 ER PT J AU Kim, YS Einsla, B Sankir, M Harrison, W Pivovar, BS AF Kim, YS Einsla, B Sankir, M Harrison, W Pivovar, BS TI Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications SO POLYMER LA English DT Article DE poly(arylene ether sulfone); polymer electrolyte membrane; proton conductivity ID PROTON-EXCHANGE MEMBRANES; RANDOM STATISTICAL COPOLYMERS; METHANOL; HYDROGEN; SYSTEMS; WATER; COMPLEXES; NAFION AB This article focuses on structure-property-performance relationships of directly copolymerized sulfonated polysulfone polymer electrolyte membranes. The chemical structure of the bisphenol-based disulfonated polysulfones was systematically alternated by introducing fluorine moieties or other polar functional groups such as benzonitrile or phenyl phosphine oxide in the copolymer backbone. Ac impedance measurements of the polymer electrolyte membranes indicated that fluorine incorporation increased proton conductivity, while polar functional group incorporation decreased conductivity. Likewise, other properties such as water uptake and ion exchange capacity are impacted by the incorporation of fluorine moiety or polar groups. These properties are critically tied with H-2/air and direct methanol fuel cell performance. We have rationalized fuel cell performance of these selected copolymers in light of structure-property relationships, which gives useful insight for the development and application of next generation polymer electrolytes. (c) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Mat Res Inst, Blacksburg, VA 24061 USA. RP Pivovar, BS (reprint author), Los Alamos Natl Lab, MST-11,MS-D429, Los Alamos, NM 87545 USA. EM pivovar@lanl.gov NR 39 TC 152 Z9 152 U1 3 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD MAY 17 PY 2006 VL 47 IS 11 BP 4026 EP 4035 DI 10.1016/j.polymer.2006.02.032 PG 10 WC Polymer Science SC Polymer Science GA 054HA UT WOS:000238366200042 ER PT J AU Pivovar, BS AF Pivovar, BS TI An overview of electro-osmosis in fuel cell polymer electrolytes SO POLYMER LA English DT Article DE fuel cell; polymer electrolyte; electro-osmosis ID ELECTROOSMOTIC DRAG; WATER TRANSPORT; EXCHANGE MEMBRANES; METHANOL; ACID; NAFION-117; DIFFUSION AB Electro-osmosis, the transport of water with protons, in polymer electrolyte fuel cell membranes is important because it effects water management within an operating cell on both a global and local level. The electro-osmotic drag coefficient is the number of water molecules transported per proton and is a quantitative measure of the extent to which electro-osmosis occurs in a given polymer electrolyte. The methods for which electro-osmotic drag coefficients have been determined are reported. An effort is made to report proton electro-osmotic drag coefficients extensively, while a few non-proton cation electro-osmotic drag coefficients have been chosen for illustrative purposes. The results reported have implications for fuel cell performance and in the development and characterization of new polymer electrolyte membranes. Published by Elsevier Ltd. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pivovar, BS (reprint author), Los Alamos Natl Lab, MST 11,MS D429, Los Alamos, NM 87545 USA. EM pivovar@lanl.gov NR 31 TC 64 Z9 65 U1 0 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD MAY 17 PY 2006 VL 47 IS 11 BP 4194 EP 4202 DI 10.1016/j.polymer.2006.02.071 PG 9 WC Polymer Science SC Polymer Science GA 054HA UT WOS:000238366200060 ER PT J AU Hickner, MA Fujimoto, CH Cornelius, CJ AF Hickner, MA Fujimoto, CH Cornelius, CJ TI Transport in sulfonated poly(phenylene)s: Proton conductivity, permeability, and the state of water SO POLYMER LA English DT Article DE fuel cell; proton exchange membrane; state of water ID POLY(VINYL ALCOHOL); POLYMER-FILMS; FUEL-CELLS; MEMBRANES; ACID AB The transport properties of a series of sulfonated poly(phenylene)s were found to strongly correlate to the ion exchange capacity of the polymer. Sulfonated poly(phenylene) membranes have shown promise as proton exchange membranes for fuel cells. In general, these materials have minimal methanol and glucose crossover while maintaining high proton conductivity, which is necessary for efficient operation of fuel cells powered by liquid fuels. Proton conductivity in addition to methanol and glucose permeability were compared to Nafion as a function of ion exchange capacity. It was found that the transport in Nation membranes was much higher than that in the sulfonated poly(phenylene)s for a given ion exchange capacity. Water content and its absorbed state within membranes were elucidated by differential scanning calorimetry in order to provide insight as to how the transport properties varied between the materials studied. The domain morphology of these ionomers was imaged with transmission electron microscopy in order to contrast the morphological differences between Nafion and the sulfonated poly(phenylene) series. (c) 2006 Published by Elsevier Ltd. C1 Sandia Natl Labs, Chem & Biol Syst Dept, Albuquerque, NM 87185 USA. RP Cornelius, CJ (reprint author), Sandia Natl Labs, Chem & Biol Syst Dept, POB 5800,MS 0734, Albuquerque, NM 87185 USA. NR 30 TC 73 Z9 73 U1 0 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD MAY 17 PY 2006 VL 47 IS 11 BP 4238 EP 4244 DI 10.1016/j.polymer.2006.02.034 PG 7 WC Polymer Science SC Polymer Science GA 054HA UT WOS:000238366200065 ER PT J AU Evans, WJ Lipp, MJ Yoo, CS Cynn, H Herberg, JL Maxwell, RS Nicol, MF AF Evans, WJ Lipp, MJ Yoo, CS Cynn, H Herberg, JL Maxwell, RS Nicol, MF TI Pressure-induced polymerization of carbon monoxide: Disproportionation and synthesis of an energetic lactonic polymer SO CHEMISTRY OF MATERIALS LA English DT Article ID SOLID-STATE POLYMERIZATION; POLY(CARBON SUBOXIDE); CHEMICAL-REACTIONS; NITROGEN; PHASE; ACETYLENE; GPA; CO; TEMPERATURE; DIFFRACTION AB We have studied pressure-induced chemical reactions in carbon monoxide using both a diamond anvil cell and a modified large volume press. Our spectroscopic data reveal that carbon monoxide disproportionates into molecular CO2 and a solid lactone-type polymer; photochemically above 3.2 GPa, thermochemically above 5 GPa at 300 K, or at 3 GPa and similar to 2000 K as achieved by laser heating. The solid product can be recovered at ambient conditions with a high degree of conversion, measured to be up to 95% of the original CO. Its fundamental chemical structure includes beta-lactone and conjugated C=C, which can be considered a severely modified polymeric carbon suboxide with open ladders and smaller five-membered rings. The polymer is metastable at ambient conditions, spontaneously liberating CO2 gases exothermically. We find that the recovered polymer has a high energy density, 1-8 kJ/g, and is very combustible. We estimate the density of recovered CO polymer to be at least 1.65 g/cm(3). C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Nevada, Las Vegas, NV 89154 USA. RP Evans, WJ (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. NR 42 TC 36 Z9 37 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 16 PY 2006 VL 18 IS 10 BP 2520 EP 2531 DI 10.1021/cm0524446 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 043IC UT WOS:000237593400011 ER PT J AU Blackburn, JL Yan, Y Engtrakul, C Parilla, PA Jones, K Gennett, T Dillon, AC Heben, MJ AF Blackburn, Jeff L. Yan, Yanfa Engtrakul, Chaiwat Parilla, Philip A. Jones, Kim Gennett, Thomas Dillon, Anne C. Heben, Michael J. TI Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique SO CHEMISTRY OF MATERIALS LA English DT Article ID B-C-N; RAMAN D-BAND; SUBSTITUTION-REACTION; ELECTRONIC-STRUCTURE; NITRIDE NANOTUBES; ABLATION; GROWTH; NANOWIRES; DEFECTS; BC2N AB We present the first successful high-yield laser vaporization synthesis of high-quality boron-doped single-wall carbon nanotubes (B-SWNTs). Boron was loaded into graphite targets in the form of elemental B as well as nickel boride (NiB) and vaporized in a laser-oven apparatus in both Ar and N-2 ambients. Although targets containing elemental B produced no or low yields of SWNTs, the NiB catalyst in N-2 produced SWNT bundles comparable in quality to the best pure-carbon SWNTs produced from traditional Ni/Co catalysts. A variety of different samples were analyzed by transmission electron microscopy, Raman spectroscopy, X-ray diffraction, and nanoprobe electron energy loss spectroscopy (EELS). Boron was found to be doped substitutionally in the SWNT lattice at contents up to 1.8 at % by EELS. The C-13 NMR chemical shift of SWNT nuclei is affected by boron doping by shifting to higher frequency, as expected for p-type doping. The EELS and NMR data exclude the possibility of B and N codoping. Aspects of the growth mechanism are discussed. C1 Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. Rochester Inst Technol, Rochester, NY 14623 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, 16253 Denver W Pkwy, Golden, CO 80401 USA. EM jeffrey_blackburn@nrel.gov RI Engtrakul, Chaiwat/H-5634-2011; Blackburn, Jeffrey/D-7344-2012 NR 43 TC 36 Z9 36 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 16 PY 2006 VL 18 IS 10 BP 2558 EP 2566 DI 10.1021/cm060192i PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 043IC UT WOS:000237593400016 ER PT J AU Sakellariou, G Baskaran, D Hadjichristidis, N Mays, JW AF Sakellariou, G Baskaran, D Hadjichristidis, N Mays, JW TI Well-defined poly(4-vinylbenzocyclobutene): Synthesis by living anionic polymerization and characterization SO MACROMOLECULES LA English DT Article ID FUNCTIONAL SILYL GROUPS; STAR BLOCK-COPOLYMERS; RADICAL POLYMERIZATION; END-GROUPS; MONOMERS; NANOPARTICLES; DIENOPHILES; CENTIPEDES; POLYMERS; STYRENE AB Living anionic polymerization of 4-vinylbenzocylobutene was performed in benzene at room temperature using sec-butyllithium as the initiator. Results of the kinetic studies indicated the termination- and transfer-free nature of the polymerization. Homopolymers with predictable molecular weights and narrow molecular weight distributions were produced, excluding the interference of the cyclobutene rings during initiation and propagation. Thermogravimetric analysis of poly( 4-vinylbenzocyclobutene) in air showed a small weight gain at similar to 200 degrees C, a rapid decomposition at similar to 455 degrees C, and a gradual decomposition at similar to 566 degrees C. This behavior was attributed to the formation of radicals from the pendent benzocyclobutene functionality through o-quinodimethane intermediates and simultaneous decomposition/ cross-linking reactions at high temperature. The living nature of the polymerization was also examined via sequential copolymerization with butadiene to form diblock copolymers. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ Athens, Dept Chem, Athens 15771, Greece. Natl Chem Lab, Polymer Sci & Engn Div, Pune 411008, Maharashtra, India. RP Baskaran, D (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM d.baskaran@ncl.res.in; jimmymays@utk.edu RI Durairaj, Baskaran/C-3692-2009; Sakellariou, Georgios/B-1752-2014 OI Durairaj, Baskaran/0000-0002-6886-5604; NR 37 TC 12 Z9 15 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 16 PY 2006 VL 39 IS 10 BP 3525 EP 3530 DI 10.1021/ma060175e PG 6 WC Polymer Science SC Polymer Science GA 042JP UT WOS:000237524500009 ER PT J AU Gwanmesia, GD Zhang, JZ Darling, K Kung, J Li, BS Wang, LP Neuville, D Liebermann, RC AF Gwanmesia, Gabriel D. Zhang, Jianzhong Darling, Kenneth Kung, Jennifer Li, Baosheng Wang, Liping Neuville, Daniel Liebermann, Robert C. TI Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9 GPa and 1000 degrees C SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE elasticity; pyrope; equation of state; synchrotron radiation; ultrasonic interferometry ID MULTI-ANVIL APPARATUS; SINGLE-CRYSTAL ELASTICITY; EQUATION-OF-STATE; HIGH-PRESSURE; WAVE VELOCITIES; TRANSITION ZONE; SOLID-SOLUTION; UPPER-MANTLE; ULTRASONIC INTERFEROMETRY; SOUND VELOCITIES AB Acoustic wave velocities for synthetic polycrystalline pyrope (Mg3Al2Si3O12) were measured to 9 GPa and temperatures up to 1000 degrees C by ultrasonic interferometry combined with energy-dispersive synchrotron X-ray diffraction in a cubic-anvil DIA-type apparatus (SAM-85). Specimen lengths at high pressures (P) and temperatures (7) are directly measured by X-radiographic methods. Elastic wave travel times and X-ray diffraction data were collected after heating and cooling at high pressures to minimize effect of non-hydrostatic stress on the measurements. A linear fit to the high P and T data set yields the elastic bulk and shear moduli [K-S = 175 (2) GPa; G = 91 (1) GPa] and their pressure and temperature derivatives [K'(S) = 3.9 +/- 0.3; G' = 1.7 +/- 0.2 and (delta K-S/delta T)(P) = -18 (2) MPa/K; (delta G/delta T)(P) = -10 (1) MPa/K]. In a separate analysis, the pressure-volume-temperature data collected during these acoustic experiments were fit to a high temperature Birch-Murnaghan (HTBM) equation [with K' fixed at 3.9] and to each isothermal P-V-T data yielding (delta K-T/delta T)(P) = -22 (2) MPa/K and (delta K-T/delta T)(P) = -20 (5) MPa/K, respectively. Comparison of Py100 data with those other Py-Mj compositions indicates that the thermo elastic properties are insensitive to majorite content in the garnet along the pyrope-majorite join. (c) 2005 Elsevier B.V. All rights reserved. C1 Delaware State Univ, Dept Phys & Pre Engn, Dover, DE 19901 USA. SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11974 USA. SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11974 USA. Lab Phys Globe Paris, Dept Geomat, Paris, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gwanmesia, GD (reprint author), Delaware State Univ, Dept Phys & Pre Engn, Dover, DE 19901 USA. EM ggwanmes@desu.edu; jzhang@lanl.gov; kdarling@desu.edu; Jkung@notes.cc.sunysb.edu; bli@notes.cc.sunysb.edu; lipwang@notes.cc.sunysb.edu; neuville@ipgp.jussieu.fr; rliebermann@notes.cc.sunysb.edu RI Li, Baosheng/C-1813-2013 NR 62 TC 40 Z9 41 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD MAY 16 PY 2006 VL 155 IS 3-4 BP 179 EP 190 DI 10.1016/j.pepi.2005.10.008 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 051QU UT WOS:000238176500001 ER PT J AU Shvartsburg, AA Li, FM Tang, KQ Smith, RD AF Shvartsburg, AA Li, FM Tang, KQ Smith, RD TI Characterizing the structures and folding of free proteins using 2-D gas-phase separations: Observation of multiple unfolded conformers SO ANALYTICAL CHEMISTRY LA English DT Article ID ION MOBILITY SPECTROMETRY; CYTOCHROME-C IONS; MOLECULAR-DYNAMICS SIMULATIONS; IONIZATION MASS-SPECTROMETRY; CREUTZFELDT-JAKOB-DISEASE; ESI-FAIMS-MS; UBIQUITIN IONS; H/D EXCHANGE; ALPHA-SYNUCLEIN; IN-VACUO AB Understanding the 3-D structure and dynamics of proteins and other biological macromolecules in various environments is among the central challenges of chemistry. Electrospray ionization can often transfer ions from solution to gas phase with only limited structural distortion, allowing their profiling using mass spectrometry and other gas-phase approaches. Ion mobility spectrometry (IMS) can separate and characterize macroion conformations with high sensitivity and speed. However, IMS separation power is generally insufficient for full resolution of major structural variants of protein ions and elucidation of their interconversion dynamics. Here we report characterization of macromolecular conformations using field asymmetric waveform IMS (FAIMS) coupled to conventional IMS in conjunction with mass spectrometry. The collisional heating of ions in the electrodynamic funnel trap between FAIMS and IMS stages enables investigating the structural evolution of particular isomeric precursors as a function of the intensity and duration of activation that can be varied over large ranges. These new capabilities are demonstrated for ubiquitin and cytochrome c, two common model proteins for structure and folding studies. For nearly all charge states, two-dimensional FAIMS/IMS separations distinguish many more conformations than either FAIMS or IMS alone, including some with very low abundance. For cytochrome c in high charge states, we find several abundant "unfolded" isomer series not distinguishable by IMS, possibly corresponding to different "string of beads" geometries. The unfolding of specific ubiquitin conformers selected by FAIMS has been studied by employing their heating in the FAIMS/IMS interface. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [RR 18522] NR 73 TC 57 Z9 59 U1 0 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 15 PY 2006 VL 78 IS 10 BP 3304 EP 3315 DI 10.1021/ac060283z PG 12 WC Chemistry, Analytical SC Chemistry GA 043IF UT WOS:000237593700012 PM 16689531 ER PT J AU Ruan, CM Wang, W Gu, BH AF Ruan, CM Wang, W Gu, BH TI Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy SO ANALYTICAL CHEMISTRY LA English DT Article ID ESCHERICHIA-COLI O157-H7; MASS IMMUNOSORBENT-ASSAY; TYROSINASE BIOSENSOR; SCATTERING SERS; INDIGO; NANOPARTICLES; IMMUNOASSAY; MOLECULES; SUBSTRATE; ANTIGEN AB A new approach was developed to detect the activity of alkaline phosphatase (ALP) enzyme at ultralow concentrations using a surface-enhanced Raman scattering (SERS) technique. The approach is based on the use of gold nanoparticles as a SERS material whereas 5-bromo-4-chloro-3-indolyl phosphate (BCIP) is used as a substrate of ALP. The enzymatic hydrolysis of BCIP led to the formation of indigo dye derivatives, which were found to be highly SERS active. For the first time, we were able to detect ALP at a concentration of similar to 4 x 10(-15) M or at single-molecule levels when ALP was incubated with BCIP for 1 h in the Tris-HCl buffer. The same technique also was successfully employed to detect surface-immobilized avidin, and a detection limit of 10 ng/mL was achieved. This new technique allows the detection of both free and labeled ALP as a Raman probe in enzyme immunoassays, immunoblotting, and DNA hybridization assays at ultralow concentrations. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012 OI Gu, Baohua/0000-0002-7299-2956 NR 43 TC 94 Z9 95 U1 7 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 15 PY 2006 VL 78 IS 10 BP 3379 EP 3384 DI 10.1021/ac0522106 PG 6 WC Chemistry, Analytical SC Chemistry GA 043IF UT WOS:000237593700021 PM 16689540 ER PT J AU Chen, GL Liu, XJ Hui, XD Hou, HY Yao, KF Liu, CT Wadsworth, J AF Chen, GL Liu, XJ Hui, XD Hou, HY Yao, KF Liu, CT Wadsworth, J TI Molecular dynamic simulations and atomic structures of amorphous materials SO APPLIED PHYSICS LETTERS LA English DT Article ID MEDIUM-RANGE ORDER; DISORDER; MODEL AB A long-standing issue of using molecular dynamics (MD) to simulate local atomic structures in nonequilibrium metals and alloys is the huge difference in cooling rates used in experimental studies and theoretical calculations. In this study, a unique approach was introduced to correct the fast time steps involved in the MD calculations. This approach has demonstrated various medium-range ordered zones with imperfect ordered packing, which are verified experimentally by high-resolution transmission electron microscopy and its selected simulation imaging of Zr2Ni glass. C1 Beijing Univ Sci & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. Nanjing Univ Sci & Technol, Dept Mat Sci & Engn, Nanjing 210014, Peoples R China. Tsing Hua Univ, Dept Mech Engn, Beijing 100084, Peoples R China. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, GL (reprint author), Beijing Univ Sci & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM glchen@skl.ustb.edu.cn; liuct@ornl.gov RI Liu, Xiong-Jun/C-7119-2009; Hui, Xidong/A-1741-2010 NR 11 TC 17 Z9 18 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 15 PY 2006 VL 88 IS 20 AR 203115 DI 10.1063/1.2198015 PG 3 WC Physics, Applied SC Physics GA 044ON UT WOS:000237682100078 ER PT J AU Kim, DH Christen, HM Varela, M Lee, HN Lowndes, DH AF Kim, DH Christen, HM Varela, M Lee, HN Lowndes, DH TI Effect of strain on structure and charge order transitions in epitaxial Bi0.4Ca0.6MnO3 films on perovskite (001) and (011) substrates SO APPLIED PHYSICS LETTERS LA English DT Article ID STATE AB The effect of epitaxial strain on the charge order (CO) transition in Bi0.4Ca0.6MnO3 films was studied by varying the strain's strength and symmetry via the use of SrTiO3 and LaAlO3 substrates having different crystallographic orientations. The film on pseudocubic (001) LaAlO3, under symmetric compressive strain, exhibits a clear CO transition. In the film on a (001) SrTiO3 substrate, under symmetric tensile strain, highly segregated line-shaped features in the Bi distribution are seen in Z-contrast scanning transmission microscopy, accompanied by a strongly broadened CO transition. The asymmetric tensile stress on (011) SrTiO3 results in an apparent compressive strain state with a deviation from tetragonality (i.e., gamma not equal 90(degrees)), accompanied by the sharpest CO transition. These comparisons illustrate the importance of considering both the strength and symmetry of epitaxial strain. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kim, DH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM kimdh@ornl.gov RI Kim, Dae Ho/B-4670-2012; Varela, Maria/H-2648-2012; Christen, Hans/H-6551-2013; Varela, Maria/E-2472-2014; Lee, Ho Nyung/K-2820-2012 OI Christen, Hans/0000-0001-8187-7469; Varela, Maria/0000-0002-6582-7004; Lee, Ho Nyung/0000-0002-2180-3975 NR 15 TC 18 Z9 18 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 15 PY 2006 VL 88 IS 20 AR 202503 DI 10.1063/1.2205753 PG 3 WC Physics, Applied SC Physics GA 044ON UT WOS:000237682100056 ER PT J AU Rathod, CR Clausen, B Bourke, MAM Vaidyanathan, R AF Rathod, CR Clausen, B Bourke, MAM Vaidyanathan, R TI Neutron diffraction investigation of hysteresis reduction and increase in linearity in the stress-strain response of superelastic NiTi SO APPLIED PHYSICS LETTERS LA English DT Article ID SHAPE-MEMORY PHENOMENA; TINI ALLOY; MARTENSITIC TRANSFORMATIONS; THERMODYNAMIC ANALYSIS; PHASE-FRACTION; MICROSTRUCTURE; BEHAVIOR; TEXTURE AB In situ neutron diffraction measurements during loading have been performed on plastically deformed superelastic NiTi samples. The measurements observed retained B19' phase in the unloaded state as a result of the plastic deformation in otherwise completely B2 phase samples. A reversible stress-induced B2-B19' transformation on application and removal of stress occurred in the presence of this retained B19' phase. The amount and orientation of this retained B19' phase changed with cycling. Such direct atomic scale observations in the bulk are used here for the first time to qualitatively elucidate the macroscopic stress-strain response in plastically deformed superelastic NiTi. (c) 2006 American Institute of Physics. C1 Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. Los Alamos Natl Lab, LANSCE, MST, Los Alamos, NM 87455 USA. RP Rathod, CR (reprint author), Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 19 TC 14 Z9 14 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 15 PY 2006 VL 88 IS 20 AR 201919 DI 10.1063/1.2204650 PG 3 WC Physics, Applied SC Physics GA 044ON UT WOS:000237682100038 ER PT J AU Wang, WJ Yang, XD Ma, BS Sun, Z Su, FH Ding, K Xu, ZY Li, GH Zhang, Y Mascarenhas, A Xin, HP Tu, CW AF Wang, WJ Yang, XD Ma, BS Sun, Z Su, FH Ding, K Xu, ZY Li, GH Zhang, Y Mascarenhas, A Xin, HP Tu, CW TI Lifetime study of N impurity states in GaAs1-xNx (x=0.1%) under hydrostatic pressure SO APPLIED PHYSICS LETTERS LA English DT Article ID PAIR LUMINESCENCE; GAP-N; GAAS; EXCITONS; ALLOY AB The lifetimes of a series of N-related photoluminescence lines (A(2)-A(6)) in GaAs1-xNx (x=0.1%) were studied under hydrostatic pressures at similar to 30 K. The lifetimes of A(5) and A(6) were found to increase rapidly with increasing pressure: from 2.1 ns at 0 GPa to more than 20 ns at 0.92 GPa for A(5) and from 3.2 ns at 0.63 GPa to 10.8 ns at 0.92 GPa for A(6). The lifetime is found to be closely correlated with the binding energy of the N impurity states, which is shown either in the pressure dependence for a given emission line or in the lifetime variation from A(2) to A(6). (c) 2006 American Institute of Physics. C1 Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RP Wang, WJ (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM wwjgr@mail.semi.ac.cn RI Sun, Zheng/J-6269-2013; Yang, Xudong/K-1552-2014 OI Yang, Xudong/0000-0002-7398-4229 NR 15 TC 1 Z9 1 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 15 PY 2006 VL 88 IS 20 AR 201917 DI 10.1063/1.2205729 PG 3 WC Physics, Applied SC Physics GA 044ON UT WOS:000237682100036 ER PT J AU White, AM Daly, DS Varnum, SM Anderson, KK Bollinger, N Zangar, RC AF White, AM Daly, DS Varnum, SM Anderson, KK Bollinger, N Zangar, RC TI ProMAT: protein microarray analysis tool SO BIOINFORMATICS LA English DT Article AB ProMAT is a software tool for statistically analyzing data from enzyme-linked immunosorbent assay microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP White, AM (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM amanda.white@pnl.gov OI Anderson, Kevin/0000-0001-5613-5893 FU NCI NIH HHS [CA117378] NR 4 TC 26 Z9 29 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD MAY 15 PY 2006 VL 22 IS 10 BP 1278 EP 1279 DI 10.1093/bioinformatics/btl093 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 039PS UT WOS:000237319300021 PM 16595561 ER PT J AU Matmon, A Shaked, Y Porat, N Enzel, Y Finkel, R Lifton, N Boaretto, E Agnon, A AF Matmon, A Shaked, Y Porat, N Enzel, Y Finkel, R Lifton, N Boaretto, E Agnon, A TI Landscape development in an hyperarid sandstone environment along the margins of the Dead Sea fault: Implications from dated rock falls (vol 240, pg 803, 2005) SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Correction C1 US Geol Survey, Menlo Pk, CA 94025 USA. Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. Geol Survey Israel, IL-95501 Jerusalem, Israel. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. RP Matmon, A (reprint author), US Geol Survey, 345 Middlefield Rd,977, Menlo Pk, CA 94025 USA. EM arimatmon@cc.huji.ac.il RI Lifton, Nathaniel/M-2017-2015 OI Lifton, Nathaniel/0000-0002-6976-3298 NR 1 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 15 PY 2006 VL 245 IS 1-2 BP 484 EP 485 DI 10.1016/j.epsl.2006.03.013 PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 057MY UT WOS:000238601100041 ER PT J AU Ferge, T Karg, E Schroppel, A Coffee, KR Tobias, HJ Frank, M Gard, EE Zimmermann, R AF Ferge, T. Karg, E. Schroeppel, A. Coffee, K. R. Tobias, H. J. Frank, M. Gard, E. E. Zimmermann, R. TI Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DIESEL EXHAUST; PARTICULATE; COMBUSTION; SPECTRA; BLACK AB Different particulate matter (PM) samples were investigated by on-line single-particle aerosol time-of-flight mass spectrometry (ATOFMS). The samples consist of soot particulates made by a diffusion flame soot generator (combustion aerosol standard, CAST), industrially produced soot material (printex), soot from a diesel passenger car as well as ambient particulates (urban dust (NIST) and road tunnel dust). Five different CAST soot particle samples were generated with different elemental carbon (EC) and organic carbon (OC) content. The samples were reaerosolized and on-line analyzed by ATOFMS, as well as precipitated on quartz filters for conventional EC/OC analysis. For each sample ca. 1000 ATOFMS single-particle mass spectra were recorded and averaged. A typical averaged soot ATOFMS mass spectrum shows characteristic carbon cluster peak progressions (C-n(+)) as well as hydrogen-poor carbon cluster peaks (CnH1-3+). These peaks are originated predominately from the elemental carbon (EC) content of the particles. Often additional peaks, which are not due to carbon clusters, are observed, which either are originated from organic compounds (OC-organic carbon), or from the non-carbonaceous inorganic content of the particles. By classification of the mass spectral peaks as elemental carbon (i.e., the carbon cluster progression peaks) or as peaks originated from organic compounds (i.e., molecular and fragment ions), the relative abundance of elemental (EC) and organic carbon (OC) can be determined. The dimensionless TC/EC values, i.e., the ratio of total carbon content (TC, TC) OC + EC) to elemental carbon (EC), were derived from the ATOFMS single-particle aerosol mass spectrometry data. The EC/TC values measured by ATOFMS were compared with the TC/ EC values determined by the thermal standard techniques (thermooptical and thermocoulometric method). A good agreement between the EC/TC values obtained by on-line ATOFMS and the off-line standard method was found. C1 GSF Forschungszentrum Umwelt & Gesundheit, Inst Okol Chem, D-85764 Neuherberg, Germany. Univ Augsburg, Inst Phys, Lehrstuhl Festkorperphys, D-86159 Augsburg, Germany. GSF Forschungszentrum Umwelt & Gesundheit, Inst Inhalat Biol, D-85764 Neuherberg, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Bayer Inst Umweltforsch & Tech, Abt Umwelt & Prozesschem, D-86167 Augsburg, Germany. RP Zimmermann, R (reprint author), GSF Forschungszentrum Umwelt & Gesundheit, Inst Okol Chem, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany. EM ralf.zimmermann@gsf.de RI Karg, Erwin/E-1441-2013; Frank, Matthias/O-9055-2014 NR 25 TC 34 Z9 36 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2006 VL 40 IS 10 BP 3327 EP 3335 DI 10.1021/es050799k PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 042JZ UT WOS:000237525500035 PM 16749701 ER PT J AU Graziano, V McGrath, WJ DeGruccio, AM Dunn, JJ Mangel, WF AF Graziano, V McGrath, WJ DeGruccio, AM Dunn, JJ Mangel, WF TI Enzymatic activity of the SARS coronavirus main proteinase dimer SO FEBS LETTERS LA English DT Article DE antiviral agents; fluorogenic substrate; high throughput screening; proteinase; rhodamine; SARS ID ACUTE RESPIRATORY SYNDROME; 3C-LIKE PROTEINASE; SUBSTRATE-SPECIFICITY; SERINE PROTEINASES; 2A PROTEINASE; 3CL PROTEASE; INHIBITORS; RHODAMINE; ASSAYS; BIOSYNTHESIS AB The enzymatic activity of the SARS coronavirus main proteinase dimer was characterized by a sensitive, quantitative assay. The new, fluorogenic substrate, (Ala-Arg-Leu-Gln-NH)(2)-Rhodamine, contained a severe acute respiratory syndrome coronavirus (SARS CoV) main proteinase consensus cleavage sequence and Rhodamine 110, one of the most detectable compounds known, as the reporter group. The gene for the enzyme was cloned in the absence of purification tags, expressed in Escherichia coli and the enzyme purified. Enzyme activity from the SARS CoV main proteinase dimer could readily be detected at low pM concentrations. The enzyme exhibited a high K-m, and is unusually sensitive to ionic strength and reducing agents. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Mangel, WF (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM mangel@bnl.gov FU NIAID NIH HHS [AI41599, AI056480] NR 35 TC 21 Z9 22 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD MAY 15 PY 2006 VL 580 IS 11 BP 2577 EP 2583 DI 10.1016/j.febslet.2006.04.004 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 044QD UT WOS:000237686400008 PM 16647061 ER PT J AU Arai, Y McBeath, M Bargar, JR Joye, J Davis, JA AF Arai, Y McBeath, M Bargar, JR Joye, J Davis, JA TI Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; BOND-VALENCE PARAMETERS; URANIUM SORPTION DATA; X-RAY; SYNTHETIC ALLOPHANE; CRYSTAL-CHEMISTRY; U(VI) SORPTION; MONTMORILLONITE; OXIDES; EXAFS AB Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH similar to 7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)](i) = 0.01-30 M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing 1 (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and beta charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (similar to 5-9), even at the partial pressure of carbon dioxide of ambient air (P-CO2 = 10-(3.45) atm). (c) 2006 Elsevier Inc. All rights reserved. C1 US Geol Survey, Div Water Resources, Menlo Pk, CA 94025 USA. Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19717 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94307 USA. RP Arai, Y (reprint author), US Geol Survey, Div Water Resources, 345 Middlefield Rd,MS 465, Menlo Pk, CA 94025 USA. EM yarai@usgs.gov NR 79 TC 63 Z9 65 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2006 VL 70 IS 10 BP 2492 EP 2509 DI 10.1016/j.gca.2006.02.013 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 044QN UT WOS:000237687400005 ER PT J AU Anderson, TJ Scott, JR Millett, F Durham, B AF Anderson, TJ Scott, JR Millett, F Durham, B TI Decarboxylation of 2,2 '-bipyridinyl-4,4 '-dicarboxylic acid diethyl ester during microwave synthesis of the corresponding trichelated ruthenium complex SO INORGANIC CHEMISTRY LA English DT Article ID SENSITIZED SOLAR-CELLS; ANION RECOGNITION; METAL-COMPLEXES; TRIS(BIPYRIDINE); PHTHALOCYANINE; IRRADIATION; RECEPTORS; BIPYRIDYL; LIGANDS; CATIONS AB Microwave reaction of RuCl3 with 2,2-bipyridinyl-4,4-dicarboxylic acid diethyl ester (debpy) in ethylene glycol generated Ru(bpy)(3)(2+) instead of the expected Ru(debpy)(3)(2+). Gas chromatography-mass spectrometry analysis of the headspace revealed CO2, and Ru(bpy)(3)(2+) was recovered from the filtrate. Further experiments suggest that RuCl3 decarboxylates debpy during microwave synthesis. C1 Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Durham, B (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM bdurham@uark.edu RI Scott, Jill/G-7275-2012 FU NIGMS NIH HHS [F32 GM020488, GM 20488, R01 GM020488, R01 GM020488-34] NR 23 TC 12 Z9 12 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 3843 EP 3845 DI 10.1021/ic060008v PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100006 PM 16676938 ER PT J AU Li, B Corbett, JD AF Li, B Corbett, JD TI Synthesis and structure of K3Mg20In14, a stuffed variant of the BaHg11 structure type with a magnesium-indium network SO INORGANIC CHEMISTRY LA English DT Article ID METALLIC ZINTL PHASE; CLUSTERS; SUBSTITUTION; ICOSAHEDRA; SR; CA AB The phase K3Mg20In14 was synthesized via high-temperature reactions of the elements in welded Ta tubes. The cubic crystal structure established by single-crystal X-ray diffraction means [space group Pm (3) over barm, Z = 1, a = 9.769(1) angstrom] features a 3D Mg-In network formed by K@Mg12In10 units plus cuboctahedral fillers, In@Mg-12. This is the first example of a well-ordered stuffed BaHg11 structure (Pearson symbol cP37). On the basis of tight-binding linear muffin-tin orbital, atomic sphere approximation calculations, the electronic structure of the compound shows dominant Mg-In interactions and substantial participation of Mg in the overall network bonding. Both In-In and Mg-In bondings are effectively optimized at the Fermi level. The Fermi energy cuts through substantial densities of states, consistent with the measured metallic property. C1 Iowa State Univ, Dept Energy, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Dept Energy, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu NR 28 TC 18 Z9 18 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 3861 EP 3863 DI 10.1021/ic060215v PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100012 PM 16676944 ER PT J AU Childress, MV Millar, D Alam, TM Kreisel, KA Yap, GPA Zakharov, LN Golen, JA Rheingold, AL Doerrer, LH AF Childress, MV Millar, D Alam, TM Kreisel, KA Yap, GPA Zakharov, LN Golen, JA Rheingold, AL Doerrer, LH TI Thallophilic interactions in aryloxide compounds: the {Tl-2(mu(2)-OAr)(4)} structural motif in (TlOAr)(4) and Tl2Cu(OAr)(4) compounds SO INORGANIC CHEMISTRY LA English DT Article ID CLOSED-SHELL INTERACTIONS; CRYSTAL-STRUCTURE; SOLID-STATE; THALLIUM(I) DIETHYLDITHIOCARBAMATE; R-ASTERISK; COMPLEXES; COORDINATION; DERIVATIVES; CHEMISTRY; CLUSTERS AB Two thallium aryloxide compounds TIOC6F5 (TIOArF) and bis-3,5-TIOC6H3(CF3)(2) (TIOAr') have been recrystallized from THF and crystallographically characterized in different isomeric forms. The latter compound forms a solvated tetrameric cubane, {TlOAr'}(4)(THF)-T-., 1. The TIOArF compound crystallized with a similar stoichiometry, {TlOArF} 4, 2 THF, 2, but contains a {TI2(mu(2)-OArF)(4)} unit that includes a thallophilic interaction at a distance of 3.5943(15) angstrom. Solution (TI)-T-205 and (TI)-T-203 NMR studies of 1 and 2 support the retention of a cubane structure for 1 in solution and suggest a similar structure for 2 with coupled thallium centers down to -90 degrees C. Fluorescence spectroscopy data for both compounds 1 and 2 in THF are consistent with LMCT. DFT calculations of 1, 2, and three models of the {TI2(mu(2)-OArF)(4)} unit show a bonding overlap of the bridged thallium atoms in 2 and are also used to describe the bonding in 1. The structures of two heterobimetallic compounds, TI2Cu(OArF)(4), 4, and TI2Cu(OAr')(4), 5, with the {TI2(mu(2)-OArF)(4)} structural motif and thallophilic contacts of 3.86( 6) and 3.564(1) angstrom, respectively, are described. The crystal structures of the unsolvated of TlOArF, 2b, solvated heterobimetallic derivative TI2Cu(OAr')(4)center dot 2THF, 5b, and the monomeric (18-crown-6) TIOArF, 3, and (TI)-T-205 NMR spectra of TIOC6H5, 6, are also reported for comparison purposes. C1 Columbia Univ Barnard Coll, Dept Chem, New York, NY 10027 USA. Sandia Natl Labs, Dept Chem Anal & Remote Sensing, Albuquerque, NM 87185 USA. Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. Univ Massachusetts, Dept Chem & Biochem, N Dartmouth, MA 02747 USA. RP Doerrer, LH (reprint author), Columbia Univ Barnard Coll, Dept Chem, 3009 Broadway, New York, NY 10027 USA. EM ldoerrer@barnard.edu NR 80 TC 30 Z9 30 U1 3 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 3864 EP 3877 DI 10.1021/ic050955o PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100013 PM 16676945 ER PT J AU Frank, P DeTomaso, A Hedman, B Hodgson, KO AF Frank, P DeTomaso, A Hedman, B Hodgson, KO TI A new structural motif for biological iron: Iron K-edge XAS reveals a [Fe-4-mu-(OR)(5)(OR)(9-10)] cluster in the ascidian Perophora annectens SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-ABSORPTION; SEQUENCE TAG ANALYSIS; TUNICATE BLOOD-CELLS; MOLGULA-MANHATTENSIS; MAGNETIC-PROPERTIES; BIS(BIPYRIDINE) LIGAND; TRINUCLEAR COMPLEX; SYDNEIENSIS-SAMEA; BOLTENIA-OVIFERA; OXIDATION-STATE AB The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of similar to 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted similar to+1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe-II or Fe-III. Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstrom and an intense Fe-Fe feature at 2.65 angstrom. Fits to the EXAFS required a split first shell with two O at 1.93 angstrom and three O at 2.07 angstrom consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstrom, two Fe at 3.08 angstrom, three O at 3.29 angstrom, and one Fe at 3.8 angstrom. Structural models consistent with these findings include a [Fe-4(OR)(13)](2-)/(3-) broken-edged Fe4O5 cuboid or a [Fe-4(OR)(14)](3-)/(4-) "Jacob's ladder" with three edge-fused Fe-2(OR)(2) rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them. C1 Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. RP Hodgson, KO (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. EM Hodgson@ssrl.slac.stanford.edu FU NCRR NIH HHS [RR-01209] NR 73 TC 5 Z9 5 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 3920 EP 3931 DI 10.1021/ic051445x PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100018 PM 16676950 ER PT J AU Bobev, S Merz, J Lima, A Fritsch, V Thompson, JD Sarrao, JL Gillessen, M Dronskowski, R AF Bobev, S Merz, J Lima, A Fritsch, V Thompson, JD Sarrao, JL Gillessen, M Dronskowski, R TI Unusual Mn-Mn spin coupling in the polar intermetallic compounds CaMn2Sb2 and SrMn2Sb2 SO INORGANIC CHEMISTRY LA English DT Article ID EARTH TRANSITION-METAL; RARE-EARTH; COLOSSAL MAGNETORESISTANCE; NEGATIVE MAGNETORESISTANCE; ZINTL PHASE; GIANT MAGNETORESISTANCE; CRYSTAL-STRUCTURE; SINGLE-CRYSTALS; MAGNETISM; SOLIDS AB Large single-crystals of two polar intermetallic phases, CaMn2Sb2 and SrMn2Sb2, have been grown using In or Sn as metal fluxes and characterized by single- crystal X-ray diffraction. The two compounds are isostructural and crystallize with the CaAl2Si2 structure (space group P3m1, No. 164) with unit cell parameters determined at 120( 2) K of a = 4.5204(6) angstrom, c = 7.456(2) angstrom and a = 4.5802(17) angstrom, c = 7.730(5) angstrom for CaMn2Sb2 and SrMn2Sb2, respectively. Temperature- and field-dependent dc- and ac-magnetization measurements suggest complex magnetic ordering of the Mn moments below ca. 250 and 35 K for CaMn2Sb2 and below ca. 265 K for SrMn2Sb2. Resistivity measurements reveal metallic-like temperature dependence with rho(290) = 40 m Omega cm for CaMn2Sb2 and rho(290) = 100 m Omega cm for SrMn2Sb2 with negligible magnetoresistance at 5 K in applied magnetic fields up to 10 kOe. Spin-polarized DFT electronic structure calculations confirm the metallic-like properties and provide further evidence for a magnetic structure where Mn atoms form two magnetic sublattices with ferromagnetic coupling within them and strong antiferromagnetic coupling between them. C1 Univ Delaware, Dept Chem, Newark, DE 19716 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rhein Westfal TH Aachen, Inst Anorgan Chem, D-52056 Aachen, Germany. RP Bobev, S (reprint author), Univ Delaware, Dept Chem, Newark, DE 19716 USA. EM sbodev@chem.udel.edu RI Fritsch, Veronika/P-1352-2016 OI Fritsch, Veronika/0000-0002-6620-4554 NR 56 TC 38 Z9 38 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 4047 EP 4054 DI 10.1021/ic060092e PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100033 PM 16676965 ER PT J AU Wang, XF Andrews, L Li, J AF Wang, Xuefeng Andrews, Lester Li, Jun TI Experimental and theoretical investigations of IR spectra and electronic structures of the U(OH)(2), UO2(OH), and UO2(OH)(2) molecules SO INORGANIC CHEMISTRY LA English DT Article ID MATRIX INFRARED-SPECTRA; METAL DIHYDROXIDE MOLECULES; OXO LIGAND-EXCHANGE; AB-INITIO; BASIS-SETS; CORRELATION-ENERGY; URANYL HYDROXIDE; ARGON MATRICES; URANIUM ATOMS; SOLID ARGON AB Reactions of laser-ablated U atoms and H2O2 molecules produce UO2, H2UO2, and UO2(OH)(2) as major products and U(OH)(2) and HU(O)OH as minor products. Complementary information is obtained from similar reactions of U atoms with D2O2, with H-2 + O-2 mixtures, and with H2O in excess Ar. Through extensive relativistic density functional theory calculations, we have determined the geometry structures and ground states of these U species with a variety of oxidation states U-II, U-IV, U-V, and U-VI. The calculated vibrational frequencies, IR intensities, and isotopic frequency ratios are in good agreement with the experimental values, thus supporting assignments of the observed matrix IR spectra. We propose that the reactions proceed by forming an energized [U(OH)(4)]* intermediate from reactions of the excited U atom with two H2O2 molecules. Because of the special stability of the U-VI oxidation state, this intermediate decomposes to the UO2(OH)(2) molecule, which reveals a distinctive difference between the chemistries of U and Th, where the major product in analogous Th reactions is the tetrahedral Th(OH)(4) molecule owing to the stable Th-IV oxidation state. C1 [Wang, Xuefeng; Andrews, Lester] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Li, Jun] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Andrews, L (reprint author), Univ Virginia, Dept Chem, McCormick Rd,POB 400319, Charlottesville, VA 22904 USA. EM lsa@virginia.edu RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 NR 62 TC 17 Z9 17 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 15 PY 2006 VL 45 IS 10 BP 4157 EP 4166 DI 10.1021/ic052071a PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 043IA UT WOS:000237593100044 PM 16676976 ER PT J AU Anders, A Oks, E AF Anders, A Oks, E TI Material-dependent high-frequency current fluctuations of cathodic vacuum arcs: Evidence for the ecton cutoff of the fractal model SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPOTS; MECHANISM; PLASMA; TIME AB Current fluctuations of cathodic arcs were recorded with high analog bandwidth (up to 1 GHz) and fast digital sampling (up to 5 Gsamples/s). The power spectral density of the arc current was determined by fast Fourier transform clearly showing material dependent, nonlinear features in the frequency domain. These features can be associated with the nonlinear impedance of the conducting channel between cathode and anode, driven by the explosive nature of electron emission and plasma formation. The characteristic times of less than 100 ns can be associated with individual explosive processes, "ectons," and therefore represent the short-time physical cutoff for the fractal model of cathodic arcs. (c) 2006 American Institute of Physics. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RP Anders, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505 NR 19 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 103301 DI 10.1063/1.2196244 PG 5 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800008 ER PT J AU Choe, SB Kim, DH Ryu, KS Lee, HS Shin, SC AF Choe, SB Kim, DH Ryu, KS Lee, HS Shin, SC TI Direct observation of Barkhausen effect in strip-patterned ferromagnetic Co/Pd multilayer films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SELF-ORGANIZED CRITICALITY; MAGNETIZATION REVERSAL; PERPENDICULAR ANISOTROPY; ION IRRADIATION; NOISE AB The one-dimensional Barkhausen effect was observed in lithographically defined magnetic strips of Co/Pd multilayer films. The magnetic domain expanded stepwise with a constant speed between pinning sites. Both the wall propagation and the pinning were characterized by the thermal activation process based on their exponential dependency on the strength of the applied magnetic field. The Barkhausen volume was determined to be 1.7x10(-13) cm(3), which was several orders larger than the activation volume of the wall propagation, 6.5x10(-18) cm(3). (c) 2006 American Institute of Physics. C1 Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. RP Choe, SB (reprint author), Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. EM sugbong@snu.ac.kr RI Shin, Sung-Chul/C-1992-2011; Kim, Dong-Hyun/F-7195-2012 NR 16 TC 4 Z9 4 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 103902 DI 10.1063/1.2199978 PG 3 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800029 ER PT J AU Davis, JP AF Davis, Jean-Paul TI Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID COMPRESSION; PRESSURES; EQUATION; METALS; STATE AB Using a magnetic pressure drive, an absolute measurement of stress and density along the principal compression isentrope is obtained for solid aluminum to 240 GPa. Reduction of the free-surface velocity data relies on a backward integration technique, with approximate accounting for unknown systematic errors in experimental timing. Maximum experimental uncertainties are +/- 4.7% in stress and +/- 1.4% in density, small enough to distinguish between different equation-of-state (EOS) models. The result agrees well with a tabular EOS that uses an empirical universal zero-temperature isotherm. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Davis, JP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jpdavis@sandia.gov NR 23 TC 52 Z9 58 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 103512 DI 10.1063/1.2196110 PG 6 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800022 ER PT J AU DelRio, FW Dunn, ML Boyce, BL Corwin, AD de Boer, MP AF DelRio, FW Dunn, ML Boyce, BL Corwin, AD de Boer, MP TI The effect of nanoparticles on rough surface adhesion SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CUT MICA SHEETS; WAALS FORCES; SILICON; FILMS; MEMS; MICROCANTILEVERS; INTERFEROMETRY; TECHNOLOGY; PARTICLES; BEAMS AB Particulates can strongly influence interfacial adhesion between rough surfaces by changing their average separation. In a cantilever beam adhesion test structure, a compressive zone exists just beyond the crack tip, which may act to deform such particles. To explore this phenomenon quantitatively, we compared finite element method calculations of the interface to load-displacement experiments of individual particles. Below a certain threshold density, we show that the stress distribution at the interface is sufficient to deform individual particles. In this regime, the adhesion is controlled by the intrinsic surface roughness and under dry conditions is mainly due to van der Waals forces across extensive noncontacting areas. Above this threshold density, however, the particles introduce a topography that is more significant than the intrinsic surface roughness. As a result, the interfacial separation is governed by the particle size and the adhesion is lower but stochastic in nature. We demonstrate that the particles on the micromachined surfaces are silicon carbide (SiC). The cantilever test structures were fabricated using standard surface micromachining techniques, which consisted of depositing, patterning, and etching two polycrystalline silicon (polysilicon) layers separated by a tetraethylorthosilicate (TEOS) sacrificial oxide layer. High temperature annealing in the fabrication process allows residual carbon in the TEOS sacrificial oxide layer to migrate to the polysilicon surface and form the SiC particles. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, MEMS Devices & Reliabil Phys Dept, Albuquerque, NM 87185 USA. Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. Sandia Natl Labs, Microsyst Mat Dept, Albuquerque, NM 87185 USA. Sandia Natl Labs, MEMS Sci & Technol Dept, Albuquerque, NM 87185 USA. RP de Boer, MP (reprint author), Sandia Natl Labs, MEMS Devices & Reliabil Phys Dept, POB 5800, Albuquerque, NM 87185 USA. EM mpdebo@sandia.gov RI Boyce, Brad/H-5045-2012; de Boer, Maarten/C-1525-2013; OI Boyce, Brad/0000-0001-5994-1743; de Boer, Maarten/0000-0003-1574-9324; DUNN, MARTIN/0000-0002-4531-9176 NR 38 TC 22 Z9 22 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 104304 DI 10.1063/1.2197263 PG 9 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800040 ER PT J AU El-Dasher, BS Zaleski, TM Gray, JJ Rybak, SJ Chen, HL AF El-Dasher, Bassem S. Zaleski, Tania M. Gray, Jeremy J. Rybak, Sergiusz J. Chen, Hao-Lin TI Surface deformation behavior of beta solution treated and overaged Ti-6Al-4V during laser shock processing SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRESS WAVES; MECHANICAL-PROPERTIES; MICROSTRUCTURE; ALLOYS; ALUMINUM; TITANIUM; TEMPERATURES; ORIENTATION; METALS; STRAIN AB The surface of a beta solution treated and overaged Ti-6Al-4V alloy specimen deformed by laser shock processing was studied using electron backscatter diffraction, scanning electron microscopy, and atomic force microscopy. Slip steps were observed within grains oriented with their c axis nearly parallel to the specimen surface normal. Based on the slip step traces and orientation information, the slip planes were determined to be {1122} for grains with their c axis within 15 degrees of the specimen surface normal and {1121} for grains with their c axis between 15 degrees and 40 degrees away from the specimen surface normal. Although both these planes are known to belong to twinning systems, {1122}< 1123 > and {1121}< 1126 >, respectively, the latter has not been observed to operate as a slip system. Examination of the Taylor factors associated with these slip systems shows that the grains with slip steps have the lowest Taylor factors. Determination of localized lattice rotations showed a unique behavior in grains with slip steps, such that all the lattice rotations were concentrated about the steps, with almost no orientation variations in between slip steps. This distribution indicates that stress concentrations exist at the slip steps, which could potentially affect the performance of the material. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP El-Dasher, BS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM eldasher2@llnl.gov NR 45 TC 5 Z9 5 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 103506 DI 10.1063/1.2193036 PG 7 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800016 ER PT J AU Jacobsohn, LG Thompson, JD Misra, A Schulze, RK Hundley, MF Nastasi, M AF Jacobsohn, LG Thompson, JD Misra, A Schulze, RK Hundley, MF Nastasi, M TI Array of cobalt nanoparticles in silica: Synthesis and effects of thermal annealing SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTROMAGNETIC ENERGY-TRANSPORT; MAGNETIC-PROPERTIES; ION-IMPLANTATION; PARTICLES; SUSCEPTIBILITY; SIZE AB The synthesis, characterization, and the effects of isochronal annealing of nearly monodispersive three-dimensional arrays of Co nanoparticles are presented. Samples were obtained by alternating electron beam evaporation of Co and SiO2 layers 0.5 and 20 nm thick, respectively, onto fused silica. Transmission electron microscopy (TEM) revealed the presence of 3.2 nm diameter Co particles with a size dispersion standard deviation of 16%. Annealing at temperatures up to 800 degrees C was carried out in vacuum for 5 min. Field and zero-field cooled measurements of the magnetic susceptibility monitored the effects of annealing on the magnetic behavior. Two temperature regimes were observed. One, up to 700 degrees C with an activation energy of 0.062 eV where no significant particle size change was observed, was tentatively related to bonding ordering within the particles. The other regime, with an activation energy of 0.67 eV, was attributed to Co diffusion and reflected particle growth as observed by TEM. These results were supported by exchange bias anisotropy and x-ray photoelectron spectroscopy measurements. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Jacobsohn, LG (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM lgjacob@lanl.gov RI Misra, Amit/H-1087-2012; OI Jacobsohn, Luiz/0000-0001-8991-3903; Schulze, Roland/0000-0002-6601-817X NR 22 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 104307 DI 10.1063/1.2199982 PG 6 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800043 ER PT J AU Metzger, WK Albin, D Romero, MJ Dippo, P Young, M AF Metzger, WK Albin, D Romero, MJ Dippo, P Young, M TI CdCl2 treatment, S diffusion, and recombination in polycrystalline CdTe SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FILM SOLAR-CELLS; CDS/CDTE HETEROJUNCTIONS; THIN-FILMS; PHOTOLUMINESCENCE; MECHANISMS; SUBLIMATION; DEPOSITION; CRYSTALS AB Time-resolved photoluminescence measurements on glass/SnO2/CdTe and glass/SnO2/CdTe/CdS structures indicate that the CdCl2 process, without any S present, significantly reduces recombination. However, S diffusion is required for lifetimes comparable to those observed in high-efficiency solar cells. Low-temperature photoluminescence, cathodoluminescence, and scanning electron images indicate how defect chemistry, grain-boundary passivation, and morphology are affected by S diffusion and the CdCl2 treatment. (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Metzger, WK (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM wyatt_metzger@nrel.gov NR 33 TC 49 Z9 51 U1 0 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2006 VL 99 IS 10 AR 103703 DI 10.1063/1.2196127 PG 6 WC Physics, Applied SC Physics GA 048JQ UT WOS:000237943800026 ER PT J AU Martinez-Arias, A Gamarra, D Fernandez-Garcia, M Wang, XQ Hanson, JC Rodriguez, JA AF Martinez-Arias, A Gamarra, D Fernandez-Garcia, M Wang, XQ Hanson, JC Rodriguez, JA TI Comparative study on redox properties of nanosized CeO2 and CuO/CeO2 under CO/O-2 SO JOURNAL OF CATALYSIS LA English DT Article DE copper oxide; ceria; catalyst; CO oxidation; CO-PROX; water-gas shift; redox properties; electron paramagnetic resonance; in situ Raman; in situ X-ray diffraction ID GAS SHIFT REACTION; CO OXIDATION; X-RAY; IN-SITU; PREFERENTIAL OXIDATION; SELECTIVE OXIDATION; CHEMICAL-PROPERTIES; CATALYTIC-ACTIVITY; CARBON-MONOXIDE; OXIDE CATALYST AB Nanosized CeO2 and CuO/CeO2 samples. active for CO-PROX or related processes were comparatively examined by O-2 probe electron paramagnetic resonance and in situ Raman and X-ray diffraction techniques. Their behavior toward CO reduction, as well as the oxygen-handling properties of the CO-reduced samples, was explored. An appreciable reduction Of the ceria bulk was detected on treatment under CO Lit 473 K. On the basis of the analysis of the evolution of different oxygen-derived species (superoxide, peroxide, O-) on low-temperature (77-300 K) oxygen chemisorption on the CO-reduced samples, a general picture of the redox properties of the samples is presented. Results demonstrate that the presence of copper promotes completion of the redox cycle under CO/O-2 by favoring both ceria reduction and oxidation. This can be relevant to explaining the remarkable oxidation activity and synergetic effects observed for catalysts combining CuO and CeO2. (c) 2006 Elsevier Inc. All rights reserved. C1 CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Martinez-Arias, A (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM amartinez@icp.csic.es; rodriguez@bnl.gov RI Hanson, jonathan/E-3517-2010; Fernandez-Garcia, Marcos/A-8122-2014 NR 45 TC 84 Z9 87 U1 2 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD MAY 15 PY 2006 VL 240 IS 1 BP 1 EP 7 DI 10.1016/j.jcat.2006.02.026 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 043BZ UT WOS:000237575600001 ER PT J AU Pierce, DW Barnett, TP AchutaRao, KM Gleckler, PJ Gregory, JM Washington, WM AF Pierce, David W. Barnett, Tim P. AchutaRao, Krishna M. Gleckler, Peter J. Gregory, Jonathan M. Washington, Warren M. TI Anthropogenic warming of the oceans: Observations and model results SO JOURNAL OF CLIMATE LA English DT Article ID ICE CORE EVIDENCE; CLIMATE-CHANGE; HEAT TRANSPORTS; WORLDS OCEANS; SIMULATIONS; TEMPERATURE; SYSTEM; 20TH-CENTURY; VARIABILITY; CIRCULATION AB Observations show the oceans have warmed over the past 40 yr. with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean-atmosphere climate models [the Parallel Climate Model version 1 (PCM) and the Hadley Centre Coupled Climate Model version 3 (HadCM3)] that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming. In this comparison the models were sampled at the same locations as gridded yearly observed data. In the top 100 m of the water column the warming is well separated from natural variability, including both variability arising from internal instabilities of the coupled ocean-atmosphere climate system and that arising from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not significant, but then increases again below this level, and remains significant down to 600 m. Analysis of PCM's heat budget indicates that the warming is driven by an increase in net surface heat flux that reaches 0.7 W m(-2) by the 1990s; the downward longwave flux increases bv 3.7 W m(-2). which is not fully compensated by an increase in the upward longwave flux of 2.2 W m(-2). Latent and net solar heat fluxes each decrease by about 0.6 W m(-2). The changes in the individual longwave components are distinguishable from the preindustrial mean by the 1920s, but due to cancellation of components. changes in the net surface heat flux do not become well separated from zero until the 1960s. Changes in advection can also play an important role in local ocean warming due to anthropogenic forcing, depending, on the location. The observed sampling of ocean temperature is highly variable in space and time. but sufficient to detect the anthropogenic warming signal in all basins, at least in the surface layers, bv the 1980s. C1 Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Res, La Jolla, CA 92093 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Univ Reading, Reading RG6 2AH, Berks, England. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Pierce, DW (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Res, Mail Stop 0224, La Jolla, CA 92093 USA. EM dpierce@ucsd.edu RI Gleckler, Peter/H-4762-2012; Gregory, Jonathan/J-2939-2016 OI Gleckler, Peter/0000-0003-2816-6224; Gregory, Jonathan/0000-0003-1296-8644 NR 38 TC 54 Z9 55 U1 1 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY 15 PY 2006 VL 19 IS 10 BP 1873 EP 1900 DI 10.1175/JCLI3723.1 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 045YN UT WOS:000237778700001 ER PT J AU Jensen, MP Del Genio, AD AF Jensen, MP Del Genio, AD TI Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility SO JOURNAL OF CLIMATE LA English DT Article ID TROPICAL WESTERN PACIFIC; TOGA-COARE; BOUNDARY-LAYER; PART II; DRY AIR; HUMIDITY; MICROPHYSICS; VARIABILITY; SENSITIVITY; RADIOSONDE AB Cumulus congestus clouds, with moderate shortwave albedos and cloud-top temperatures near freezing, occur fairly often in the Tropics. These clouds may play an important role in the evolution of the Madden-Julian oscillation and the regulation of relative humidity in the midtroposphere. Despite this importance they are not necessarily simulated very well in global climate models. Surface remote sensing observations and soundings from the Atmospheric Radiation Measurement (ARM) climate research facility at Nauru Island are coupled with a simple parcel model in order to address the following questions about these cloud types: 1) Which environmental factors play a role in determining the depth of tropical convective clouds? 2) What environmental parameters are related to entrainment rate in cumulus congestus clouds? The results presented herein suggest that at Nauru Island a drying of the midtroposphere is more likely to be responsible for limiting congestus cloud-top heights than is a stabilizing of the freezing level. It is also found that low-level CAPE and the RH profile account for the largest portion of the variance in cumulus congestus entrainment rates, consistent with the idea that entrainment rate depends on the buoyant production of turbulent kinetic energy. If the analysis is limited to cases where there is a sounding during the hour preceding the cumulus congestus observations, it is found that the low-level CAPE accounts for 85% of the total variance in entrainment rate. C1 Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Jensen, MP (reprint author), Brookhaven Natl Lab, ESD, ESSD, Bldg 490D, Upton, NY 11973 USA. EM mjensen@bnl.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 NR 34 TC 56 Z9 56 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAY 15 PY 2006 VL 19 IS 10 BP 2105 EP 2117 DI 10.1175/JCLI3722.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 045YN UT WOS:000237778700014 ER PT J AU Catalano, JG Zhang, Z Fenter, P Bedzyk, MJ AF Catalano, JG Zhang, Z Fenter, P Bedzyk, MJ TI Inner-sphere adsorption geometry of Se(IV) at the hematite (100)-water interface SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE selenite; hematite; inner-sphere adsorption; XSW ID RAY STANDING-WAVE; GRAZING-INCIDENCE EXAFS; RUTILE-WATER INTERFACE; SELENITE ADSORPTION; MINERAL SURFACES; ALUMINUM-OXIDES; HYDROUS ALUMINA; CALCITE SURFACE; FERRIC-OXIDE; DOUBLE-LAYER AB The 3-dimensional structure of adsorption complexes on mineral surfaces provides insight into the fundamental mechanisms controlling sorption processes. This is important to the development of a general understanding of the behavior of contaminants such as selenite in the environment. The adsorption of selenite (SeO32-) on the hematite (100) surface was studies using X-ray standing wave (XSW) measurements. Inner-sphere bidentate surface complexes bridging between adjacent singly-coordinated oxygen sites were identified as the primary adsorption site. The lack of binding to doubly-coordinated oxygen sites that were also exposed on the surface was likely due to differences in the reactivity or exchange kinetics of these sites or cation-cation repulsion, although the latter appears to be a secondary effect based on past observations. While these bridging bidentate geometries are similar to those inferred in past spectroscopic studies, the Se-Fe distances are such that these species might be misidentified as edge-sharing complexes if studied by EXAFS spectroscopy, highlighting the need for a fundamental understanding of mineral surface structure. (c) 2005 Elsevier Inc. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Northwestern Univ, Evanston, IL 60208 USA. RP Catalano, JG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM catalano@anl.gov RI Zhang, Zhan/A-9830-2008; Bedzyk, Michael/B-7503-2009; Catalano, Jeffrey/A-8322-2013; Bedzyk, Michael/K-6903-2013 OI Zhang, Zhan/0000-0002-7618-6134; Catalano, Jeffrey/0000-0001-9311-977X; NR 42 TC 46 Z9 47 U1 6 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 15 PY 2006 VL 297 IS 2 BP 665 EP 671 DI 10.1016/j.jcis.2005.11.026 PG 7 WC Chemistry, Physical SC Chemistry GA 042LH UT WOS:000237529000036 PM 16386265 ER PT J AU Yiotis, AG Tsimpanogiannis, IN Stubos, AK Yortsos, YC AF Yiotis, AG Tsimpanogiannis, IN Stubos, AK Yortsos, YC TI Pore-network study of the characteristic periods in the drying of porous materials SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE porous media; drying; pore-network model; invasion percolation; drying curve ID INVASION PERCOLATION; IMMISCIBLE DISPLACEMENT; SOLUTE DIFFUSION; BUBBLE-GROWTH; MEDIA; MODEL; GRADIENT; EVAPORATION; DIMENSIONS; SIMULATION AB We Study the periods that develop in the drying of capillary Porous media, particularly the constant rate (CRP) and the falling rate (FRP) periods. Drying is simulated with a 3-D pore-network model that accounts for the effect of capillarity and buoyancy at the liquid-gas interface and for diffusion through the porous material and through a boundary layer over the external surface of the material. We focus on the stabilizing or destabilizing effects of gravity on the shape of the drying curve and the relative extent of the various drying periods. The extents of CRP and FRP are directly associated with various transition points of: the percolation theory, such as the breakthrough point and the main liquid cluster disconnection point. Our study demonstrates that when an external diffusive layer is present, the constant rate period is longer. (c) 2005 Elsevier Inc. All rights reserved. C1 Natl Ctr Sci Res Demokritos, Aghia Paraskevi 15310, Greece. Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. Univ So Calif, Dept Chem Engn, Los Angeles, CA 90089 USA. RP Yiotis, AG (reprint author), Natl Ctr Sci Res Demokritos, Aghia Paraskevi 15310, Greece. EM yiotis@ipta.demokritos.gr RI Yiotis, Andreas/M-7927-2015 NR 35 TC 75 Z9 81 U1 2 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 15 PY 2006 VL 297 IS 2 BP 738 EP 748 DI 10.1016/j.jcis.2005.11.043 PG 11 WC Chemistry, Physical SC Chemistry GA 042LH UT WOS:000237529000046 PM 16359693 ER PT J AU Wang, LJ Zhang, W Qiu, SR Zachowicz, WJ Guan, XY Tang, RK Hoyer, JR De Yoreo, JJ Nancollas, GH AF Wang, LJ Zhang, W Qiu, SR Zachowicz, WJ Guan, XY Tang, RK Hoyer, JR De Yoreo, JJ Nancollas, GH TI Inhibition of calcium oxalate monohydrate crystallization by the combination of citrate and osteopontin SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE biomineralization; crystal morphology; impurity; calcium oxalate; constant composition method ID ATOMIC-FORCE MICROSCOPY; STONE FORMATION; CRYSTAL-GROWTH; UROPONTIN; DISSOLUTION; NUCLEATION; MODULATION; ADDITIVES; ADHESION; ACID AB The design of effective crystallization inhibitors of calcium oxalate monohydrate (COM), the primary constituent of kidney stones, is a significant goal. Inhibitory molecules identified in urine include a small organic anion, citrate, and osteopontin (OPN), an aspartic acid-rich protein. The results of molecular-scale analyses combining force microscopy with molecular modeling raised the possibility that inhibition of COM crystallization might be increased by the additive effects of citrate and OPN because they act on different crystal faces. Constant composition (CC) kinetics studies of COM crystal growth now confirm that additive effects are, indeed, achieved in vitro when both citrate and OPN are present. These results suggest that a strategy employing combinations of inhibitors may provide a useful therapeutic approach to urinary stone disease. (c) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94550 USA. Univ Penn, Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA. RP Nancollas, GH (reprint author), SUNY Buffalo, Dept Chem, Nat Sci Complex, Buffalo, NY 14260 USA. EM ghn@buffalo.edu RI GUAN, XIANGYING/F-4646-2010 NR 25 TC 32 Z9 36 U1 3 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 15 PY 2006 VL 291 IS 1 BP 160 EP 165 DI 10.1016/j.jcrysgro.2006.02.032 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 049CU UT WOS:000237993900028 ER PT J AU Chen, G Johnson, J Weber, R Nishikawa, R Schweizer, S Newman, P MacFarlane, D AF Chen, G Johnson, J Weber, R Nishikawa, R Schweizer, S Newman, P MacFarlane, D TI Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 17th University Conference on Glass Science CY JUN 26-30, 2005 CL Penn State Univ, University Pk, PA SP NSF Int Mat Inst HO Penn State Univ DE glass ceramics; sensors; synchrotron radiation; nanocrystals; luminescence; photoinduced effects; upconversion; radiation; rare-earths in glasses ID PHOTOSTIMULATED LUMINESCENCE AB Two-dimensional indirect digital X-ray detectors use either a storage phosphor or a scintillator as an imaging plate. A storage phosphor forms a latent X-ray image, which is subsequently read as a visible image by a photostimulated luminescence method. A scintillator produces a visible image during X-ray illumination. Commercial storage phosphor plates have a relatively poor spatial resolution due to light scattering in the readout process by the grains of phosphor material that are embedded in the plates. To improve the image resolution of storage phosphors and apply them to high-resolution mammography, we are developing image plates of Eu2+-doped fluorozirconate-based nanophase glass ceramics. X-ray imaging tests show that the resolution of these storage phosphor plates exceeds that of commercial ones by about a factor of 10. By using appropriate thermal-processing conditions, we are able to make transparent nanophase glass ceramic scintillators based on the same materials. The imaging tests show that these scintillators have high a resolution and high efficiency compared to a single-crystal CdWO4 scintillator. These results demonstrate that fluoroziconate-based nanophase glass ceramics are good candidates for medical X-ray imaging, such as high-resolution mammography. Published by Elsevier B.V. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. Containerless Res Inc, Evanston, IL 60201 USA. Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. Univ Gesamthsch Paderborn, Fac Sci, Dept Phys, D-33095 Paderborn, Germany. Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. RP Chen, G (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gchen@anl.gov RI Schweizer, Stefan/H-3518-2011; MacFarlane, Douglas/A-9642-2008; Johnson, Jacqueline/P-4844-2014; OI MacFarlane, Douglas/0000-0001-5963-9659; Johnson, Jacqueline/0000-0003-0830-9275; Nishikawa, Robert/0000-0001-7720-9951 NR 11 TC 16 Z9 16 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 15 PY 2006 VL 352 IS 6-7 BP 610 EP 614 DI 10.1016/j.jnoncrysol.2005.11.048 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 040TZ UT WOS:000237404700023 ER PT J AU Greene, JP Neubauer, J Deligiannis, D AF Greene, John P. Neubauer, Janelle Deligiannis, Dino TI A new evaporator system for target preparation at Argonne National Laboratory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 22nd World Conference of the International-Nuclear-Target-Development-Society CY OCT 19-22, 2004 CL Gaithersburg, MD SP Int Nucl Target Dev Soc DE large area target; resistance heated source; sputtering; vacuum deposition ID ATLAS AB As part of an equipment grant provided by DOE for an upgrade to the target laboratory, the procurement of a new, general purpose, high-vacuum deposition system necessary to insure reliable and continued availability of high-purity targets was recognized as a priority item. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber capable of handling large area foils or installation of a substrate planetary system for uniform coating capabilities and incorporating state-of-the-art thin film technologies. A newly manufactured system, although expensive, should be sought so as to take advantage of any warranty. Several vendors were approached so as to determine a range of price, capabilities and performance before proceeding with a purchase. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab