-->l(-)l(+)+..., substantial forward-backward asymmetries can be seen. These asymmetries provide a test of the electroweak theory in a new regime of energies, and can serve as diagnostics for any new neutral vector bosons coupling both to quarks and to charged lepton pairs.
C1 UNIV CHICAGO,ENRICO FERMI INST,CHICAGO,IL 60637.
UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637.
RP Rosner, JL (reprint author), FERMILAB NATL ACCELERATOR LAB,DIV THEORET PHYS,BATAVIA,IL 60510, USA.
NR 38
TC 39
Z9 39
U1 0
U2 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2821
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 1
PY 1996
VL 54
IS 1
BP 1078
EP 1082
DI 10.1103/PhysRevD.54.1078
PN 2
PG 5
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA UV187
UT WOS:A1996UV18700039
ER
PT J
AU Wong, WK
AF Wong, WK
TI Renormalization scale setting for the evolution equation of nonsinglet
structure functions and their moments
SO PHYSICAL REVIEW D
LA English
DT Article
ID LEADING ORDER
AB We use the BLM procedure to eliminate the renormalization scale ambiguity in the evolution equation for the nonsinglet deep-inelastic structure function F-2(NS)(x,Q). The scale of the QCD coupling in the <(MS)over bar> scheme has the form Q*(x)=Q(1-x)(1/2)/xf(x), where x is the Bjorken variable and f(x) is a smoothly varying function bounded between 0.30 and 0.45. Equivalently, the evolution of the nth moment of the structure function should contain an effective Lambda(QCD) pattern, with Lambda(n) similar to n(1/2). This variation of Lambda(n) agrees with experimental data.
RP Wong, WK (reprint author), STANFORD UNIV,STANFORD LINEAR ACCELERATOR CTR,STANFORD,CA 94309, USA.
NR 13
TC 13
Z9 13
U1 0
U2 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2821
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 1
PY 1996
VL 54
IS 1
BP 1094
EP 1098
DI 10.1103/PhysRevD.54.1094
PN 2
PG 5
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA UV187
UT WOS:A1996UV18700042
ER
PT J
AU Bhattacharya, T
Gupta, R
AF Bhattacharya, T
Gupta, R
TI Decay constants with Wilson fermions at beta=6.0
SO PHYSICAL REVIEW D
LA English
DT Article
ID CHIRAL LOGARITHMS
AB We present results of a high statistics study of f(pi), f(K), f(D), f(Ds), and f(V)(-1) in the quenched approximation using Wilson fermions at beta=6.0 on 32(3)x64 lattices. We find that the various sources of systematic errors (due to setting the quark masses, renormalization constant, and lattice scale) are now larger than the statistical errors. Our best estimates, without extrapolation to the continuum limit, are f(pi)=134(4) MeV, f(K)=159(3) MeV, f(D)=229(7) MeV, f(Ds)=260(4) MeV, and f(V)(-1)(m(rho))=0.33(1), where only statistical errors have been shown. We discuss the extrapolation to the continuum limit by combining our data with those from other collaborations.
RP LOS ALAMOS NATL LAB, T-8, MS-B285, LOS ALAMOS, NM 87545 USA.
RI Bhattacharya, Tanmoy/J-8956-2013
OI Bhattacharya, Tanmoy/0000-0002-1060-652X
NR 23
TC 12
Z9 12
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 1
PY 1996
VL 54
IS 1
BP 1155
EP 1166
DI 10.1103/PhysRevD.54.1155
PN 2
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA UV187
UT WOS:A1996UV18700049
ER
PT J
AU Bai, JZ
Bardon, O
Blum, I
Breakstone, A
Burnett, T
Chen, GP
Chen, HF
Chen, J
Chen, SM
Chen, Y
Chen, YB
Chen, YQ
Cheng, BS
Cowan, RF
Cui, XZ
Ding, HL
Du, ZZ
Dunwoodie, W
Fan, XL
Fang, J
Fero, M
Gao, CS
Gao, ML
Gao, SQ
Gratton, P
Gu, JH
Gu, SD
Gu, WX
Gu, YF
Guo, YN
Han, SW
Han, Y
Harris, FA
Hatanaka, M
He, J
He, M
Hitlin, DG
Hu, GY
Hu, T
Hu, XQ
Huang, DQ
Huang, YZ
Izen, JM
Jia, QP
Jiang, CH
Jin, S
Jin, Y
Jones, L
Kang, SH
Ke, ZJ
Kelsey, MH
Kim, BK
Kong, D
Lai, YF
Lan, HB
Lang, PF
Lankford, A
Li, F
Li, J
Li, PQ
Li, Q
Li, RB
Li, W
Li, WD
Li, WG
Li, XH
Li, XN
Lin, SZ
Liu, HM
Liu, J
Liu, JH
Liu, Q
Liu, RG
Liu, Y
Liu, ZA
Lou, XC
Lowery, B
Lu, JG
Luo, SQ
Luo, Y
Ma, AM
Ma, EC
Ma, JM
Mao, HS
Mao, ZP
Malchow, R
Mandelkern, M
Meng, XC
Ni, HL
Nie, J
Olsen, SL
Oyang, J
Palusselli, D
Pan, LJ
Panetta, J
Porter, F
Prabhakar, E
Qu, ND
Que, YK
Quigley, J
Rong, G
Schernau, M
Schmid, B
Schultz, J
Shao, YY
Shen, BW
Shen, DL
Shen, H
Shen, XY
Sheng, HY
Shi, HZ
Shi, XR
Smith, A
Soderstrom, E
Song, XF
Standifird, J
Stoker, D
Sun, F
Sun, HS
Sun, SJ
Synodinos, J
Tan, YP
Tang, SQ
Toki, W
Tong, GL
Torrence, E
Wang, F
Wang, LS
Wang, LZ
Wang, M
Wang, P
Wang, PL
Wang, SM
Wang, TJ
Wang, YY
Wei, CL
Whittaker, S
Wilson, R
Wisniewski, WJ
Xi, DM
Xia, XM
Xie, PP
Xiong, WJ
Xu, DZ
Xu, RS
Xu, ZQ
Xue, ST
Yamamoto, R
Yan, J
Yan, WG
Yang, CM
Yang, CY
Yang, J
Yang, W
Ye, MH
Ye, SW
Ye, SZ
Young, K
Yu, SC
Yu, CX
Yu, ZQ
Yuan, CZ
Zhang, BY
Zhang, CC
Zhang, DH
Zhang, HL
Zhang, J
Zhang, JW
Zhang, LS
Zhang, SQ
Zhang, Y
Zhang, YY
Zhao, DX
Zhao, HW
Zhao, JW
Zhao, M
Zhao, PD
Zhao, WR
Zheng, JP
Zheng, LS
Zheng, ZP
Zhou, GP
Zhou, HS
Zhou, L
Zhou, XF
Zhou, YH
Zhu, QM
Zhu, YC
Zhu, YS
Zhuang, BA
Zioulas, G
AF Bai, JZ
Bardon, O
Blum, I
Breakstone, A
Burnett, T
Chen, GP
Chen, HF
Chen, J
Chen, SM
Chen, Y
Chen, YB
Chen, YQ
Cheng, BS
Cowan, RF
Cui, XZ
Ding, HL
Du, ZZ
Dunwoodie, W
Fan, XL
Fang, J
Fero, M
Gao, CS
Gao, ML
Gao, SQ
Gratton, P
Gu, JH
Gu, SD
Gu, WX
Gu, YF
Guo, YN
Han, SW
Han, Y
Harris, FA
Hatanaka, M
He, J
He, M
Hitlin, DG
Hu, GY
Hu, T
Hu, XQ
Huang, DQ
Huang, YZ
Izen, JM
Jia, QP
Jiang, CH
Jin, S
Jin, Y
Jones, L
Kang, SH
Ke, ZJ
Kelsey, MH
Kim, BK
Kong, D
Lai, YF
Lan, HB
Lang, PF
Lankford, A
Li, F
Li, J
Li, PQ
Li, Q
Li, RB
Li, W
Li, WD
Li, WG
Li, XH
Li, XN
Lin, SZ
Liu, HM
Liu, J
Liu, JH
Liu, Q
Liu, RG
Liu, Y
Liu, ZA
Lou, XC
Lowery, B
Lu, JG
Luo, SQ
Luo, Y
Ma, AM
Ma, EC
Ma, JM
Mao, HS
Mao, ZP
Malchow, R
Mandelkern, M
Meng, XC
Ni, HL
Nie, J
Olsen, SL
Oyang, J
Palusselli, D
Pan, LJ
Panetta, J
Porter, F
Prabhakar, E
Qu, ND
Que, YK
Quigley, J
Rong, G
Schernau, M
Schmid, B
Schultz, J
Shao, YY
Shen, BW
Shen, DL
Shen, H
Shen, XY
Sheng, HY
Shi, HZ
Shi, XR
Smith, A
Soderstrom, E
Song, XF
Standifird, J
Stoker, D
Sun, F
Sun, HS
Sun, SJ
Synodinos, J
Tan, YP
Tang, SQ
Toki, W
Tong, GL
Torrence, E
Wang, F
Wang, LS
Wang, LZ
Wang, M
Wang, P
Wang, PL
Wang, SM
Wang, TJ
Wang, YY
Wei, CL
Whittaker, S
Wilson, R
Wisniewski, WJ
Xi, DM
Xia, XM
Xie, PP
Xiong, WJ
Xu, DZ
Xu, RS
Xu, ZQ
Xue, ST
Yamamoto, R
Yan, J
Yan, WG
Yang, CM
Yang, CY
Yang, J
Yang, W
Ye, MH
Ye, SW
Ye, SZ
Young, K
Yu, SC
Yu, CX
Yu, ZQ
Yuan, CZ
Zhang, BY
Zhang, CC
Zhang, DH
Zhang, HL
Zhang, J
Zhang, JW
Zhang, LS
Zhang, SQ
Zhang, Y
Zhang, YY
Zhao, DX
Zhao, HW
Zhao, JW
Zhao, M
Zhao, PD
Zhao, WR
Zheng, JP
Zheng, LS
Zheng, ZP
Zhou, GP
Zhou, HS
Zhou, L
Zhou, XF
Zhou, YH
Zhu, QM
Zhu, YC
Zhu, YS
Zhuang, BA
Zioulas, G
TI Search for a vector glueball by a scan of the J/psi resonance
SO PHYSICAL REVIEW D
LA English
DT Article
ID DECAYS
AB The cross section for e(+)e(-) --> rho pi has been measured by the BES detector at BEPC at center-of-mass energies covering a 40 MeV interval spanning the J/psi resonance. The data are used to search for the vector gluonium state hypothesized by Brodsky, Lepage, and Tuan as an explanation of the rho pi puzzle in charmonium physics. The shape of the rho pi cross section is compatible with that of the total hadronic cross section. No distortions indicating the presence of a vector glueball are seen.
C1 BOSTON UNIV,BOSTON,MA 02215.
CALTECH,PASADENA,CA 91125.
UNIV SCI & TECHNOL CHINA,HEFEI 230026,PEOPLES R CHINA.
COLORADO STATE UNIV,FT COLLINS,CO 80523.
MIT,CAMBRIDGE,MA 02139.
SHANDONG UNIV,JINAN 250100,PEOPLES R CHINA.
STANFORD LINEAR ACCELERATOR CTR,STANFORD,CA 94309.
UNIV HAWAII,HONOLULU,HI 96822.
UNIV CALIF IRVINE,IRVINE,CA 92717.
UNIV TEXAS,RICHARDSON,TX 75083.
UNIV WASHINGTON,SEATTLE,WA 98195.
SUPERCONDUCTING SUPER COLLIDER LAB,DALLAS,TX 75237.
RP Bai, JZ (reprint author), INST HIGH ENERGY PHYS,BEIJING 100039,PEOPLES R CHINA.
RI Chen, Yu/E-3788-2012;
OI Li, Xiaonan/0000-0003-2857-0219; Wilson, Robert/0000-0002-8184-4103
NR 10
TC 27
Z9 29
U1 0
U2 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2821
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 1
PY 1996
VL 54
IS 1
BP 1221
EP 1224
DI 10.1103/PhysRevD.54.1221
PN 2
PG 4
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA UV187
UT WOS:A1996UV18700059
ER
PT J
AU Bender, CM
Cooper, F
Meisinger, PN
AF Bender, CM
Cooper, F
Meisinger, PN
TI Spherically symmetric random walks .1. Representation in terms of
orthogonal polynomials
SO PHYSICAL REVIEW E
LA English
DT Article
ID NONINTEGER DIMENSION; ISING-MODELS; FIELD-THEORY
AB It is shown that, in general, a connection exists between orthogonal polynomials and semibounded random walks. This connection allows one to view a random walk as taking place on the set of integers that index the orthogonal polynomials. An illustration is provided by the case of spherically symmetric random walks. The correspondence between orthogonal polynomials and random walks enables one to express random-walk probabilities as weighted inner products of the polynomials. This correspondence is exploited to construct and analyze spherically symmetric random walks in D-dimensional space, where D is not restricted to be an integer. Such random walks can be described in terms of Gegenbauer (ultraspherical) polynomials. For example, Legendre polynomials can be used to represent !he special case of two-dimensional spherically sym metric random walks. The weighted inner-product representation is used to calculate exact closed-form spatial and temporal moments of the probability distribution associated with the random walk. The polynomial representation of spherically symmetric random walks is then used to calculate the two-point Green's function for a rotationally symmetric free scalar quantum field theory.
C1 LOS ALAMOS NATL LAB,DIV THEORET,LOS ALAMOS,NM 87545.
RP Bender, CM (reprint author), WASHINGTON UNIV,DEPT PHYS,ST LOUIS,MO 63130, USA.
NR 22
TC 2
Z9 2
U1 0
U2 1
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 1996
VL 54
IS 1
BP 100
EP 111
DI 10.1103/PhysRevE.54.100
PG 12
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA UY734
UT WOS:A1996UY73400022
ER
PT J
AU Bender, CM
Boettcher, S
Meisinger, PN
AF Bender, CM
Boettcher, S
Meisinger, PN
TI Spherically symmetric random walks .2. Dimensionally dependent critical
behavior
SO PHYSICAL REVIEW E
LA English
DT Article
ID NONINTEGER DIMENSION; DIFFUSION
AB A recently developed model of random walks on a D-dimensional hyperspherical lattice, where D is not restricted to integer values, is extended to include the possibility of creating and annihilating random walkers. Steady-state distributions of random walkers are obtained for all dimensions D>0 by solving a discrete eigenvalue problem. These distributions exhibit dimensionally dependent critical behavior as a function of the birth rate. This remarkably simple model exhibits a second-order phase transition with a universal, nontrivial critical exponent for all dimensions D>0.
C1 BROOKHAVEN NATL LAB,DEPT PHYS,UPTON,NY 11973.
RP Bender, CM (reprint author), WASHINGTON UNIV,DEPT PHYS,ST LOUIS,MO 63130, USA.
RI Boettcher, Stefan/G-2640-2010
OI Boettcher, Stefan/0000-0003-1273-6771
NR 22
TC 0
Z9 0
U1 0
U2 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 1996
VL 54
IS 1
BP 112
EP 126
DI 10.1103/PhysRevE.54.112
PG 15
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA UY734
UT WOS:A1996UY73400023
ER
PT J
AU Bender, CM
Boettcher, S
Meisinger, PN
AF Bender, CM
Boettcher, S
Meisinger, PN
TI Spherically symmetric random walks .3. Polymer adsorption at a
hyperspherical boundary
SO PHYSICAL REVIEW E
LA English
DT Article
ID NONINTEGER DIMENSION
AB A recently developed model of random walks on a D-dimensional hyperspherical lattice, where D is not restricted to integer values, is used to study polymer growth near a U-dimensional attractive hyperspherical boundary. The model determines the fraction P(kappa) of the polymer adsorbed on this boundary as a function of the attractive potential kappa for all values of D. The adsorption fraction P(kappa) exhibits a second-order phase transition with a universal, nontrivial scaling coefficient for 0