FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Weisskopf, MC AF Weisskopf, Martin C. TI The making of the Chandra X-Ray Observatory: The project scientist's perspective SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material DE historical perspective; x-ray astronomy C1 NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Weisskopf, MC (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. EM martin.c.weisskopf@nasa.gov NR 1 TC 1 Z9 1 U1 0 U2 0 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 20 PY 2010 VL 107 IS 16 BP 7135 EP 7140 DI 10.1073/pnas.0913067107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586FU UT WOS:000276892300008 PM 20194740 ER PT J AU Ringeval, B de Noblet-Ducoudre, N Ciais, P Bousquet, P Prigent, C Papa, F Rossow, WB AF Ringeval, Bruno de Noblet-Ducoudre, Nathalie Ciais, Philippe Bousquet, Philippe Prigent, Catherine Papa, Fabrice Rossow, William B. TI An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID NATURAL WETLANDS; ATMOSPHERIC TRANSPORT; CARBON; MODEL; VARIABILITY; SENSITIVITY; CLIMATE; FIRES; CYCLE; LAKES AB Climate variability impacts CH4 wetland sources as changes in flux density per unit area and via expansion or contraction of wetland areas in response to surface hydrological processes. This paper is a first attempt to isolate the role of varying wetland area on the seasonal and interannual variability of CH4 wetland emissions over the past decade. Wetland area extent at monthly intervals was provided over the period 1993-2000 by a suite of satellite observations from multiple sensors. The regionally variable fraction of wetland area was optimized using satellite observations of flooded area as a first estimate and further adjusted to match the seasonal cycle of CH4 fluxes retrieved from a global atmospheric inversion. Wetland flux densities of CH4 were calculated by coupling the ORCHIDEE global vegetation model with a process-based wetland CH4 emission model, calibrated by optimizing its parameters at the site level against representative CH4 flux time series. For boreal bogs north of 50 degrees N, we found that variations in area contributed about 30% to the annual flux. For temperate and tropical wetlands, the variations in area has almost no influence on the annual CH4 emissions but contributes significantly to the seasonal behavior, accounting for 40% and 66% of the seasonal amplitude of fluxes, respectively. In contrast, the interannual variability of wetland area appears to be the dominant cause of interannual variations in regional CH4 emissions from wetlands at all latitudes (largest in the tropics), with up to 90% of annual flux anomalies explained by wetland area anomalies in some years. For example, in 1998, boreal wetlands north of 50 degrees N contributed to approximately 80% of the positive anomaly according to our calculations. We also found that climate anomalies can lead to both increased emitting areas and decreased flux densities at the same time, with opposite effects on the total CH4 flux entering the atmosphere. With a view to forecasting the future trajectory of atmospheric methane content, our results point to the absolute necessity to be able to predict the variations in wetland extent, a hydrological problem, in order to affirm the reliability of simulations of changing methane emissions perturbed by climate. C1 [Ringeval, Bruno; de Noblet-Ducoudre, Nathalie; Ciais, Philippe; Bousquet, Philippe] CEA, Lab Sci Climat & Environm, CNRS, Unite Mixte,UVSQ, F-91191 Gif Sur Yvette, France. [Prigent, Catherine] Observ Paris, CNRS, Lab Etud Rayonnement & Matiere Astrophys, F-75014 Paris, France. [Papa, Fabrice; Rossow, William B.] CUNY City Coll, Cooperat Remote Sensing Sci & Technol Ctr, NOAA, New York, NY 10031 USA. [Papa, Fabrice; Rossow, William B.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Ringeval, B (reprint author), CEA, Lab Sci Climat & Environm, CNRS, Unite Mixte,UVSQ, F-91191 Gif Sur Yvette, France. EM bruno.ringeval@lsce.ipsl.fr RI Papa, Fabrice/D-3695-2009; Rossow, William/F-3138-2015; de NOBLET, Nathalie/O-8613-2015; OI Papa, Fabrice/0000-0001-6305-6253; Ringeval, Bruno/0000-0001-8405-1304 FU Agence Nationale pour la Recherche (ANR); Commissariat a l'Energie Atomique (CEA) FX This research was supported by the project Impact-Boreal, funded by the Agence Nationale pour la Recherche (ANR). We also thank M. Jackowicz-Korczynski and T. Christensen for the Abisko data. Computing support was provided by Commissariat a l'Energie Atomique (CEA). NR 49 TC 84 Z9 85 U1 2 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD APR 17 PY 2010 VL 24 AR GB2003 DI 10.1029/2008GB003354 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 585LJ UT WOS:000276826700001 ER PT J AU Wang, DY Huo, WM AF Wang, Dunyou Huo, Winifred M. TI Eight-dimensional, quantum reaction dynamics, study of the isotopic reaction D-2 + C2H SO CHEMICAL PHYSICS LETTERS LA English DT Article ID RATE CONSTANTS; TEMPERATURE-DEPENDENCE; ATMOSPHERE; C2H; PHOTOCHEMISTRY; SCATTERING; STATE; H-2; D2 AB Time-dependent quantum reaction dynamics calculations using eight degrees of freedom are reported in a study of the isotopic reaction, D-2 + C2H, on a new modified potential energy surface. It shows that vibrational excitations of D-2 enhance the reactivity, whereas the bending excitations of C2H hinder the reactivity. The comparison of the three isotopic reactions also shows the isotopic effect in the initial-state-selected reaction probability, integral cross section and rate constants. The rate constant comparison shows that the D-2 + C2H reaction has the smallest reactivity among the three isotopic reactions D-2/HD/H-2 + C2H reaction, then HD + C2H, and H-2 + C2H has the largest. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Dunyou] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Shandong, Peoples R China. [Huo, Winifred M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Wang, DY (reprint author), Shandong Normal Univ, Coll Phys & Elect, 88 E Wenhua Rd, Jinan 250014, Shandong, Peoples R China. EM dywang@sdnu.edu.cn FU Thaishan Scholar Funding; Advanced Supercomputing Division, NASA Ames Research Center FX D. W. would like to acknowledge support from Thaishan Scholar Funding. The computational support provided by the Advanced Supercomputing Division, NASA Ames Research Center is gratefully acknowledged. NR 23 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 16 PY 2010 VL 490 IS 1-3 BP 4 EP 8 DI 10.1016/j.cplett.2010.03.007 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 577XY UT WOS:000276258500002 ER PT J AU Pierce, JR Kahn, RA Davis, MR Comstock, JM AF Pierce, Jeffrey R. Kahn, Ralph A. Davis, Matt R. Comstock, Jennifer M. TI Detecting thin cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BULK SCATTERING PROPERTIES; ICE CRYSTALS; RADIATIVE-TRANSFER; SINGLE-SCATTERING; OPTICAL-THICKNESS; PARTICLE-SIZE; CLOUDS; SENSITIVITY; OCEAN; LIDAR AB Thin cirrus clouds (optical depth (OD) < 0.3) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Multiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05, 20%}, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cirrus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >similar to 0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than similar to 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm. C1 [Pierce, Jeffrey R.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Davis, Matt R.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Pierce, JR (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. EM ralph.kahn@nasa.gov RI Pierce, Jeffrey/E-4681-2013; Kahn, Ralph/D-5371-2012 OI Pierce, Jeffrey/0000-0002-4241-838X; Kahn, Ralph/0000-0002-5234-6359 FU NASA; EOS-MISR FX We thank our colleagues on the Jet Propulsion Laboratory's MISR instrument team and at the NASA Langley Research Center's Atmospheric Sciences Data Center for their roles in producing the MISR data sets. We also thank Michael Garay at the Jet Propulsion Laboratory for contributions to early work on MISR cirrus sensitivity, Brian Baum at the University of Wisconsin-Madison for developing the cirrus optical models used here, Zibo Zhang at the NASA Goddard Space Flight Center for helpful discussions, and the AERONET principal investigators for contributing to the global aerosol database. J. P. was funded by a NASA Postdoctoral Fellowship for this work. R. K. is supported in part by NASA's Climate and Radiation Research and Analysis Program, under H. Maring, NASA's Atmospheric Composition Program, and the EOS-MISR project. Contributions from J. C. were supported by NASA NEWS and Department of Energy's Atmospheric Radiation Measurement programs. NR 35 TC 17 Z9 17 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2010 VL 115 AR D08201 DI 10.1029/2009JD013019 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LS UT WOS:000276827600002 ER PT J AU Furst, JU Strekalov, DV Elser, D Lassen, M Andersen, UL Marquardt, C Leuchs, G AF Fuerst, J. U. Strekalov, D. V. Elser, D. Lassen, M. Andersen, U. L. Marquardt, C. Leuchs, G. TI Naturally Phase-Matched Second-Harmonic Generation in a Whispering-Gallery-Mode Resonator SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUB-2ND HARMONIC-GENERATION; NONEQUILIBRIUM TRANSITIONS AB We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering-gallery-mode resonator made of lithium niobate. A conversion efficiency of 9% is achieved at 30 mu W in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost 2 orders of magnitude lower than the state-of-the-art value. This suggests an application of our frequency doubler as a source of nonclassical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering-gallery-mode resonator provides the relative conversion efficiencies for frequency doubling in various modes. C1 [Fuerst, J. U.; Strekalov, D. V.; Elser, D.; Lassen, M.; Andersen, U. L.; Marquardt, C.; Leuchs, G.] Max Planck Inst Sci Light, Erlangen, Germany. [Fuerst, J. U.; Elser, D.; Marquardt, C.; Leuchs, G.] Univ Erlangen Nurnberg, Dept Phys, D-8520 Erlangen, Germany. [Strekalov, D. V.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lassen, M.; Andersen, U. L.] Tech Univ Denmark, Dept Phys, Kongens Lyngby, Denmark. RP Furst, JU (reprint author), Max Planck Inst Sci Light, Erlangen, Germany. RI Elser, Dominique/F-2750-2010; Andersen, Ulrik/A-5965-2011; Marquardt, Christoph/E-5332-2011; Leuchs, Gerd/G-6178-2012; OI Andersen, Ulrik/0000-0002-1990-7687; Marquardt, Christoph/0000-0002-5045-513X; Leuchs, Gerd/0000-0003-1967-2766; Elser, Dominique/0000-0003-4852-5036 FU COMPAS; Alexander von Humboldt Foundation FX This work was supported by COMPAS. The authors thank Christian Gabriel and Dr. Andrea Aiello, Dr. Andrey Matsko, and Dr. Anatoliy Savchenkov for discussions. J. U. F. thanks "IMPRS for optics and imaging'' for the stipend. D. V. S. and M. L. thank the Alexander von Humboldt Foundation for financial support. NR 26 TC 117 Z9 118 U1 5 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 153901 DI 10.1103/PhysRevLett.104.153901 PG 4 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700018 PM 20481990 ER PT J AU Lapen, TJ Righter, M Brandon, AD Debaille, V Beard, BL Shafer, JT Peslier, AH AF Lapen, T. J. Righter, M. Brandon, A. D. Debaille, V. Beard, B. L. Shafer, J. T. Peslier, A. H. TI A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars SO SCIENCE LA English DT Article ID MARTIAN METEORITE ALH84001; ALLAN HILLS 84001; LU-HF; DIFFERENTIATION; CONSTRAINTS; HISTORY; MANTLE; SYSTEMATICS; CHONDRITES AB Martian meteorite ALH84001 (ALH) is the oldest known igneous rock from Mars and has been used to constrain its early history. Lutetium-hafnium (Lu-Hf) isotope data for ALH indicate an igneous age of 4.091 +/- 0.030 billion years, nearly coeval with an interval of heavy bombardment and cessation of the martian core dynamo and magnetic field. The calculated Lu/Hf and Sm/Nd (samarium/neodymium) ratios of the ALH parental magma source indicate that it must have undergone extensive igneous processing associated with the crystallization of a deep magma ocean. This same mantle source region also produced the shergottite magmas (dated 150 to 570 million years ago), possibly indicating uniform igneous processes in Mars for nearly 4 billion years. C1 [Lapen, T. J.; Righter, M.; Brandon, A. D.; Shafer, J. T.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Peslier, A. H.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Debaille, V.] Univ Libre Bruxelles, Dept Sci Terre & Environm, B-1050 Brussels, Belgium. [Beard, B. L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Beard, B. L.] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Peslier, A. H.] Engn & Sci Contract Grp, Houston, TX 77058 USA. [Shafer, J. T.] Lunar & Planetary Inst, Houston, TX 77058 USA. RP Lapen, TJ (reprint author), Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. EM tjlapen@uh.edu RI Peslier, Anne/F-3956-2010 FU NASA; University of Houston Institute for Space Systems Operations; Belgian Fund for Scientific Research FX Supported by NASA Cosmochemistry grants (T.J.L. and A. D. B.), a NASA Astrobiology grant (B. L. B.), the University of Houston Institute for Space Systems Operations (T.J.L.), and the Belgian Fund for Scientific Research (V. D.). We thank three anonymous reviewers for improving the clarity of the manuscript. NR 38 TC 77 Z9 77 U1 4 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 16 PY 2010 VL 328 IS 5976 BP 347 EP 351 DI 10.1126/science.1185395 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583NR UT WOS:000276685000035 PM 20395507 ER PT J AU Robador, A Bruchert, V Steen, AD Arnosti, C AF Robador, Alberto Bruchert, Volker Steen, Andrew D. Arnosti, Carol TI Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DISSOLVED ORGANIC-CARBON; RICH COASTAL SEDIMENT; MARINE-SEDIMENTS; SULFATE REDUCTION; POLYSACCHARIDE HYDROLYSIS; COLD ADAPTATION; PORE WATERS; DEGRADATION; BACTERIA; MATTER AB Extracellular enzymatic hydrolysis of high-molecular weight organic matter is the initial step in sedimentary organic carbon degradation and is often regarded as the rate-limiting step. Temperature effects on enzyme activities may therefore exert an indirect control on carbon mineralization. We explored the temperature sensitivity of enzymatic hydrolysis and its connection to subsequent steps in anoxic organic carbon degradation in long-term incubations of sediments from the Arctic and the North Sea. These sediments were incubated under anaerobic conditions for 24 months at temperatures of 0, 10, and 20 degrees C. The short-term temperature response of the active microbial community was tested in temperature gradient block incubations. The temperature optimum of extracellular enzymatic hydrolysis, as measured with a polysaccharide (chondroitin sulfate), differed between Arctic and temperate habitats by about 8-13 degrees C in fresh sediments and in sediments incubated for 24 months. In both Arctic and temperate sediments, the temperature response of chondroitin sulfate hydrolysis was initially similar to that of sulfate reduction. After 24 months, however, hydrolysis outpaced sulfate reduction rates, as demonstrated by increased concentrations of dissolved organic carbon (DOC) and total dissolved carbohydrates. This effect was stronger at higher incubation temperatures, particularly in the Arctic sediments. In all experiments, concentrations of volatile fatty acids (VFA) were low, indicating tight coupling between VFA production and consumption. Together, these data indicate that long-term incubation at elevated temperatures led to increased decoupling of hydrolytic DOC production relative to fermentation. Temperature increases in marine sedimentary environments may thus significantly affect the downstream carbon mineralization and lead to the increased formation of refractory DOC. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Robador, Alberto] Max Planck Inst Marine Microbiol, Dept Biogeochem, D-28359 Bremen, Germany. [Bruchert, Volker] Stockholm Univ, Dept Geol & Geochem, S-10691 Stockholm, Sweden. [Steen, Andrew D.; Arnosti, Carol] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. RP Robador, A (reprint author), Univ Hawaii, Dept Oceanog, NASA Astrobiol Inst, Honolulu, HI 96822 USA. EM arobador@hawaii.edu RI Steen, Andrew/A-4152-2011 FU Max Planck Society; German Research Foundation [1162]; National Science Foundation [OCE-0323975, OCE-0848703]; United States Environmental Protection Agency (EPA) FX We thank Martina Meyer for the assistance in the lab and captain Stig Henningsen and John Mortensen of MS FARM for the successful cruise in Svalbard. We also thank two anonymous reviewers for thoughtful comments. This study was supported by the Max Planck Society and by the German Research Foundation through the Priority Program 1162 'The impact of climate variability on aquatic ecosystems (AQUASHIFT) BR 2174-1-1'. Funding was also provided to C.A. by the National Science Foundation (OCE-0323975; OCE-0848703) and to A.S. by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program. NR 49 TC 15 Z9 15 U1 0 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2010 VL 74 IS 8 BP 2316 EP 2326 DI 10.1016/j.gca.2010.01.022 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 572SZ UT WOS:000275854700005 ER PT J AU Laird, JS Onoda, S Hirao, T Edmonds, L AF Laird, Jamie Stuart Onoda, Shinobu Hirao, Toshio Edmonds, Larry TI Quenching of impact ionization in heavy-ion induced electron-hole pair plasma tracks in wide bandwidth avalanche photodetectors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SINGLE-EVENT TRANSIENTS; HIGH-SPEED SI; CHARGE COLLECTION; TEMPERATURE-DEPENDENCE; SEMICONDUCTOR-DEVICES; CARRIER CONCENTRATION; PROTON IRRADIATION; ENERGY DEPOSITION; DOPED SILICON; PHOTO-DIODES AB Optoelectronics such as Si avalanche photodiodes (APDs) used in space are subjected to background cosmic radiation including highly energetic heavy ions. As these swift ions pass through a device, they lose energy by promoting free electron-hole pairs. The resultant ionization track is an extremely dense two-component free carrier plasma with submicron radial diameters. Within the track, injected space charge is high enough to severely distort the local electric field, which perturbs the current transient or impulse response induced on the device electrodes. In this paper, the time-resolved ion beam induced current response of a low breakdown bias, high-frequency Si APD has been observed for a sequence of front side irradiations with MeV heavy ions species with different track geometries. These results are compared with focused picosecond laser experiments, where injection levels are controlled from low to high. Ion induced tracks are found to effectively quench the avalanche process. Simulations using Synopsis technology computer aided design are performed to clarify the role of screening in quenching avalanche mechanisms under the conditions prevalent here. (C) 2010 American Institute of Physics. [doi:10.1063/1.3290966] C1 [Laird, Jamie Stuart; Edmonds, Larry] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91101 USA. [Laird, Jamie Stuart] Univ Melbourne, CSIRO, Sch Phys, Parkville, Vic 3101, Australia. [Onoda, Shinobu; Hirao, Toshio] Japan Atom Energy Agcy, Takasaki, Gumma 3701292, Japan. RP Laird, JS (reprint author), CALTECH, NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91101 USA. EM jamie.laird@csiro.au RI Laird, Jamie/A-7683-2011 NR 75 TC 1 Z9 1 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2010 VL 107 IS 8 AR 084501 DI 10.1063/1.3290966 PG 11 WC Physics, Applied SC Physics GA 591LX UT WOS:000277303200105 ER PT J AU Takayabu, YN Shige, S Tao, WK Hirota, N AF Takayabu, Yukari N. Shige, Shoichi Tao, Wei-Kuo Hirota, Nagio TI Shallow and Deep Latent Heating Modes over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data SO JOURNAL OF CLIMATE LA English DT Article ID CLOUD-TOP HEIGHT; CUMULUS CONVECTION; WESTERN PACIFIC; TOGA COARE; PART II; PROFILES; RETRIEVAL; MOISTURE; PRECIPITATION; ALGORITHM AB Three-dimensional distributions of the apparent heat source (Q(1)) - radiative heating (Q(R)) estimated from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) utilizing the spectral latent heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated Q(1) - Q(R) averaged over the tropical oceans is estimated as similar to 72.6 J s(-1) (similar to 2.51 mm day(-1)) and that over tropical land is similar to 73.7 J s(-1) (similar to 2.55 mm day(-1)) for 30 degrees N-30 degrees S. It is shown that nondrizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems: deep systems and congestus. A rough estimate of the shallow-heating contribution against the total heating is about 46.7% for the average tropical oceans, which is substantially larger than the 23.7% over tropical land. Although cumulus congestus heating linearly correlates with SST, deep-mode heating is dynamically bounded by large-scale subsidence. It is notable that a substantial amount of rain, as large as 2.38 mm day(-1) on average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that, even in the region with SSTs warmer than 28 degrees C, large-scale subsidence effectively suppresses the deep convection, with the remaining heating by congestus clouds. The results support that the entrainment of mid-lower-tropospheric dry air, which accompanies the large-scale subsidence, is the major factor suppressing the deep convection. Therefore, a representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and the resultant large-scale circulation. C1 [Takayabu, Yukari N.; Hirota, Nagio] Univ Tokyo, Ctr Climate Syst Res, Chiba 2778568, Japan. [Shige, Shoichi] Osaka Prefecture Univ, Osaka, Japan. [Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Takayabu, YN (reprint author), Univ Tokyo, Ctr Climate Syst Res, 5-1-5 Kashiwanoha, Chiba 2778568, Japan. EM yukari@ccsr.u-tokyo.ac.jp RI PMM, JAXA/K-8537-2016 FU Ministry of the Environment, Japan; Japan Aerospace Exploration Agency FX The authors would like to express their hearty thanks to two anonymous reviewers for their very helpful comments and suggestions to improve the manuscript. They also would like to acknowledge Dr. Anthony Del Genio for his kind help as an editor. This work is partially supported by the Global Environment Research Fund (S-5) of the Ministry of the Environment, Japan, and by the TRMM Fifth Japanese Research Announcement (TRMM JRA5) by the Japan Aerospace Exploration Agency. The Grid Analysis and Display System (GrADS) is utilized for plotting the figures. NR 30 TC 44 Z9 44 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD APR 15 PY 2010 VL 23 IS 8 BP 2030 EP 2046 DI 10.1175/2009JCLI3110.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 594LE UT WOS:000277538400005 ER PT J AU Kawai, H Teixeira, J AF Kawai, Hideaki Teixeira, Joao TI Probability Density Functions of Liquid Water Path and Cloud Amount of Marine Boundary Layer Clouds: Geographical and Seasonal Variations and Controlling Meteorological Factors SO JOURNAL OF CLIMATE LA English DT Article ID LARGE-SCALE MODELS; TOP ENTRAINMENT INSTABILITY; 1998 EL-NINO; STATISTICAL-ANALYSES; OBJECT DATA; RADIATIVE PARAMETERS; DIURNAL VARIABILITY; SPATIAL VARIABILITY; STRATIFORM CLOUDS; REGIONAL CLOUD AB The subgrid-scale variability of the liquid water path (LWP) of marine boundary layer clouds in areas that correspond to the typical grid size of large-scale (global climate and weather prediction) atmospheric models (200 km x 200 km) is investigated using geostationary satellite visible data. Geographical and seasonal variations of homogeneity, skewness, and kurtosis of probability density functions (PDFs) of LWP are discussed, in addition to cloud amount. It is clear that not only cloud amount but also these subgrid-scale statistics have well-defined geographical patterns and seasonal variations. Furthermore, the meteorological factors that control subgrid-scale statistics of LWP that are related to boundary layer clouds are investigated using reanalysis data and PDFs of LWP data from satellites. Meteorological factors related to stability between 850 and 1000 hPa show high correlations with cloud amount and with the homogeneity, skewness, and kurtosis of PDFs of LWP of marine boundary layer clouds. The corrected gap of low-level moist static energy (CGLMSE) index, which is related to cloud-top entrainment instability, shows the highest correlation with the shape of LWP PDFs. C1 [Kawai, Hideaki] Japan Meteorol Agcy, Numer Predict Div, Chiyoda Ku, Tokyo 1008122, Japan. [Kawai, Hideaki] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Teixeira, Joao] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kawai, H (reprint author), Japan Meteorol Agcy, Numer Predict Div, Chiyoda Ku, 1-3-4 Otemachi, Tokyo 1008122, Japan. EM h-kawai@met.kishou.go.jp FU NOAA [NA17RJ1231]; Office of Naval Research [N0001408IP20064]; National Aeronautics and Space Administration, NASA FX This study was partially supported by NOAA NA17RJ1231. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA. HK thanks Dr. Masao Kanamitsu for supporting his stay at SIO and for giving him the opportunity of conducting the present study. HK also thanks Ms. Diane Boomer for proof reading. We acknowledge the three anonymous reviewers for their constructive and insightful comments. GOES data were downloaded from The Comprehensive Large Array-data Stewardship System (CLASS) Web site managed by NOAA. MODIS data were downloaded from the Level 1 and Atmosphere Archive and Distribution System (LAADS) Web site managed by NASA. EPIC data were downloaded from the EPIC Stratocumulus Integrated Dataset Web site. The ERA-Interim and ERA-40 data used in this study were provided by ECMWF. JT acknowledges the support provided by the Office of Naval Research, Marine Meteorology Program under Award N0001408IP20064, and by the NASA MAP Program. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 53 TC 17 Z9 17 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD APR 15 PY 2010 VL 23 IS 8 BP 2079 EP 2092 DI 10.1175/2009JCLI3070.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 594LE UT WOS:000277538400008 ER PT J AU Sibeck, DG Lin, RQ AF Sibeck, D. G. Lin, R. -Q. TI Concerning the motion of flux transfer events generated by component reconnection across the dayside magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; HIGH-LATITUDE MAGNETOPAUSE; EARTHS MAGNETOSPHERE; SIGNATURES; MODEL; LINE; MAGNETOSHEATH; CONVECTION; REGION; FLOW AB We generate flux transfer events (FTEs) along subsolar component reconnection curves whose tilt depends upon the interplanetary magnetic field (IMF) orientation, track their motion in response to pressure gradient and magnetic curvature forces, and estimate the perturbations they produce in the ambient magnetosheath and magnetosphere. During periods of southward IMF orientation, FTEs move poleward rapidly without ever reaching the flanks of the magnetosphere, while during periods of northward and duskward IMF they slip slowly over the flanks. Speeds increase when a depletion layer is present. For southward IMF orientations, the greatest magnetic field perturbations occur near the equator and diminish with distance from the posited reconnection line. For northward and duskward IMF orientations, dayside perturbation amplitudes are lower but increase with downstream distance at off-equatorial locations. Consequently events occurring for southward IMF orientations should dominate statistical surveys of dayside events but not those of flank events. The events move through the ambient media, invariably generating outward/inward flow perturbations in the magnetosheath but inward/outward perturbations in the magnetosphere. Multipoint spacecraft timing studies can be used to determine event axes and the component of event motion perpendicular to these axes. Because FTEs retain their initial orientations, timing studies afford an opportunity to determine the orientation of the dayside reconnection curve from remote locations. C1 [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lin, R. -Q.] USN, Ctr Surface Warfare, Carderock Div, Bethesda, MD 20817 USA. RP Sibeck, DG (reprint author), NASA, Goddard Space Flight Ctr, Code 674,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM david.g.sibeck@nasa.gov RI Sibeck, David/D-4424-2012 FU NASA; THEMIS; MMS FX Work at GSFC was funded by the NASA Heliophysics Guest Investigator program and the THEMIS and MMS projects. We thank Y. Wang, S. Eriksson, and both referees for helpful comments. D. G. S. thanks the staff of the International Space Science Institute in Bern, Switzerland, for their hospitality during two visits by a group working on FTEs. NR 62 TC 6 Z9 7 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 15 PY 2010 VL 115 AR A04209 DI 10.1029/2009JA014677 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585MX UT WOS:000276830900002 ER PT J AU Serabyn, E Mawet, D Burruss, R AF Serabyn, E. Mawet, D. Burruss, R. TI An image of an exoplanet separated by two diffraction beamwidths from a star SO NATURE LA English DT Article ID OPTICAL VORTEX CORONAGRAPH; PHASE-MASK CORONAGRAPH; HR 8799; TELESCOPE; PLANETS AB Three exoplanets around the star HR8799 have recently been discovered by means of differential imaging with large telescopes(1). Bright scattered starlight limits high-contrast imaging to large angular offsets, currently of the order of ten diffraction beamwidths, 10 lambda/D, of the star (where lambda is the wavelength and D is the aperture diameter(1-5)). Imaging faint planets at smaller angles calls for reducing the starlight and associated photon and speckle noise before detection, while efficiently transmitting nearby planet light. To carry out initial demonstrations of reduced-angle high-contrast coronagraphy, we installed a vortex coronagraph(6-9) capable of reaching small angles behind a small, well-corrected telescope subaperture that provides low levels of scattered starlight(10,11). Here we report the detection of all three HR8799 planets with the resultant small-aperture (1.5 m) system, for which only 2 lambda/D separate the innermost planet from the star, with a final noise level within a factor of two of that given by photon statistics. Similar well-corrected small-angle coronagraphs should thus be able to detect exoplanets located even closer to their host stars with larger ground-based telescopes(12-15), and also allow a reduction in the size of potential space telescopes aimed at the imaging of very faint terrestrial planets. C1 [Serabyn, E.; Mawet, D.; Burruss, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Serabyn, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gene.serabyn@jpl.nasa.gov NR 23 TC 119 Z9 121 U1 3 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 15 PY 2010 VL 464 IS 7291 BP 1018 EP 1020 DI 10.1038/nature09007 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 582XW UT WOS:000276635000033 PM 20393557 ER PT J AU Cau, M Dorval, N Attal-Tretout, B Cochon, JL Foutel-Richard, A Loiseau, A Kruger, V Tsurikov, M Scott, CD AF Cau, M. Dorval, N. Attal-Tretout, B. Cochon, J. -L. Foutel-Richard, A. Loiseau, A. Krueger, V. Tsurikov, M. Scott, C. D. TI Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence SO PHYSICAL REVIEW B LA English DT Article ID NI ATOMS; GROWTH; SOOT; C-3; VAPORIZATION; DYNAMICS; SPECTROSCOPY; MECHANISMS; EMISSION; ABLATION AB Gas-phase production of carbon nanotubes in presence of a metal catalyst with a continuous wave CO(2) laser is investigated by combining coherent anti-Stokes Raman scattering (CARS), laser-induced fluorescence (LIF), and laser-induced incandescence (LII). These in situ techniques provide a unique investigation of the different transformation processes of the primarily carbon and metal vapors issued from the vaporization of the target by the laser and the temperature at which these processes occur. Continuous-wave laser provides with stable continuous vaporization conditions very well suited for such in situ investigations. Temperature profiles inside the reactor are known from CARS measurements and flow calculations. Carbon soot, density, and size of carbon aggregates are determined by LII measurements. LIF measurements are used to study the gas phases, namely, C(2) and C(3) radicals which are the very first steps of carbon recombination, and metal catalysts gas phase. Spectral investigations allow us to discriminate the signal from each species by selecting the correct pair of excitation/detection wavelengths. Spatial distributions of the different species are measured as a function of target composition and temperature. The comparison of LIF and LII signals allow us to correlate the spatial evolution of gas and soot in the scope of the different steps of the nanotube growth already proposed in the literature and to identify the impact of the chemical nature of the catalyst on carbon condensation and nanotube nucleation. Our study presents the first direct evidence of the nanotube onset and that the nucleation proceeds from a dissolution-segregation process from metal particles as assumed in the well-known vapor-liquid-solid model. Comparison of different catalysts reveals that this process is strongly favored when Ni is present. C1 [Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. -L.; Foutel-Richard, A.] Off Natl Etud & Rech Aerosp, F-91761 Palaiseau, France. [Loiseau, A.] CNRS, ONERA, Lab Etud Microstruct, F-92322 Chatillon, France. [Krueger, V.; Tsurikov, M.] DLR, Inst Verbrennungstech, D-70569 Stuttgart, Germany. [Scott, C. D.] NASA, Lyndon B Johnson Space Ctr ES4, Houston, TX 77058 USA. RP Cau, M (reprint author), Off Natl Etud & Rech Aerosp, Chemin Huniere, F-91761 Palaiseau, France. EM nelly.dorval@onera.fr NR 53 TC 5 Z9 5 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165416 DI 10.1103/PhysRevB.81.165416 PG 22 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200093 ER PT J AU Roman, MO Schaaf, CB Lewis, P Gao, F Anderson, GP Privette, JL Strahler, AH Woodcock, CE Barnsley, M AF Roman, Miguel O. Schaaf, Crystal B. Lewis, Philip Gao, Feng Anderson, Gail P. Privette, Jeffrey L. Strahler, Alan H. Woodcock, Curtis E. Barnsley, Michael TI Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; BRDF; Surface albedo; Validation; Spatial analysis; Remote sensing; SAFARI 2000 Project; EOS land validation core sites; NSA-Barrow; ARM-SGP Central Facility; MODTRAN ID REFLECTANCE DISTRIBUTION FUNCTION; BIDIRECTIONAL REFLECTANCE; LAND; RETRIEVAL; ALGORITHM; MODELS; BRDF; VALIDATION; ATMOSPHERE; RADIATION AB In this effort, the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/Albedo algorithm is used to retrieve instantaneous surface albedo at a point in time and under specific atmospheric conditions. These retrievals are then used to study the role that the fraction of diffuse skylight plays under realistic scenarios of anisotropic diffuse illumination and multiple scattering between the surface and atmosphere. Simulations of the sky radiance using the MODTRAN (R) 5.1 radiative transfer model were performed under different aerosol optical properties, illumination conditions, and surface characteristics to describe these effects on surface albedo retrievals from MODIS. This technique was examined using a validation scheme over four measurement sites with varied aerosol levels and landscapes, ranging from croplands to tundra ecosystems, and over extended time periods. Furthermore, a series of geostatistical analyses were performed to examine the types of spatial patterns observed at each measurement site. In particular, Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo were acquired to analyze the change in variogram model parameters as a function of increased window-size. Results were then used to assess the degree to which a given point measurement is able to capture the intrinsic variability at the scale of MODIS observations. Assessments of MODIS instantaneous albedos that account for anisotropic multiple scattering, over snow-free and snow-covered lands and at all diurnal solar zenith angles, show a slight improvement over the albedo formulations that treat the downwelling diffuse radiation as isotropic. Comparisons with field measurements show biases improving by 0.004-0.013 absolute units (root-mean-squared error) or 0.1%-2.0% relative error. Published by Elsevier Inc. C1 [Roman, Miguel O.; Schaaf, Crystal B.; Strahler, Alan H.; Woodcock, Curtis E.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Roman, Miguel O.; Gao, Feng] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Lewis, Philip] UCL, Dept Geog, London, England. [Anderson, Gail P.] Earth Resources Technol Inc, Annapolis Jct, MD USA. [Anderson, Gail P.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Anderson, Gail P.] USAF, Space Vehicles Directorate, Res Lab, Hanscom AFB, MA USA. [Privette, Jeffrey L.] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Barnsley, Michael] Univ Wales Swansea, Dept Geog, Swansea, W Glam, Wales. RP Roman, MO (reprint author), Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. EM Miguel.O.Roman@nasa.gov RI Gao, Feng/F-3944-2010; Lewis, Philip/C-1588-2008; Privette, Jeffrey/G-7807-2011; Roman, Miguel/D-4764-2012 OI Lewis, Philip/0000-0002-8562-0633; Privette, Jeffrey/0000-0001-8267-9894; Roman, Miguel/0000-0003-3953-319X FU National Aeronautics and Space Administration (NASA) [NASA-NNX07AT35H, NASA-NNX08AE94A]; U.S. Department of Energy (DOE) [DE-FG02-06ER64178] FX The authors would like to thank Dr. Alexander Berk (Spectral Sciences, Inc.), for his support in evaluating the MODTRAN 5.1DISORT interface; and to Dr. Shunlin Liang (Department of Geography, University of Maryland, College Park) for revising the formulation of the sky radiance. Support for this research was provided by the National Aeronautics and Space Administration (NASA) under grants NASA-NNX07AT35H and NASA-NNX08AE94A; and the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program under grant DOE-DE-FG02-06ER64178. This paper is dedicated in honor of the contributions of Prof. Michael Barnsley to the field of Remote Sensing of Environment through his research, publications, leadership, teaching, and mentoring of students. NR 59 TC 57 Z9 59 U1 5 U2 33 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD APR 15 PY 2010 VL 114 IS 4 BP 738 EP 760 DI 10.1016/j.rse.2009.11.014 PG 23 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 561MW UT WOS:000274982700005 ER PT J AU Chander, G Xiong, XX Choi, TY Angal, A AF Chander, Gyanesh Xiong, Xiaoxiong (Jack) Choi, Taeyoung (Jason) Angal, Amit TI Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat 7 ETM+; Terra MODIS; Relative Spectral Response (RSR); Calibration; Characterization; Top-of-atmosphere (TOA) Reflectance; CEOS reference standard test sites; Libya 4; Mauritania 1; Mauritania 2; Algeria 3; Libya 1; Algeria 5 ID ABSOLUTE RADIOMETRIC CALIBRATION; SOLAR SPECTRAL IRRADIANCE; REFLECTANCE-BASED METHOD; CROSS-CALIBRATION; VICARIOUS CALIBRATION; SOLSPEC SPECTROMETER; SATELLITE SENSORS; IN-FLIGHT; PERFORMANCE; BANDS AB The ability to detect and quantify changes in the Earth's environment depends on sensors that can provide calibrated, consistent measurements of the Earth's surface features through time. A critical step in this process is to put image data from different sensors onto a common radiometric scale. This work focuses on monitoring the long-term on-orbit calibration stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors using the Committee on Earth Observation Satellites (CEOS) reference standard pseudo-invariant test sites (Libya 4, Mauritania 1/2, Algeria 3, Libya 1, and Algeria 5). These sites have been frequently used as radiometric targets because of their relatively stable surface conditions temporally. This study was performed using all cloud-free calibrated images from the Terra MODIS and the L7 ETM+ sensors, acquired from launch to December 2008. Homogeneous regions of interest (ROI) were selected in the calibrated images and the mean target statistics were derived from sensor measurements in terms of top-of-atmosphere (TOA) reflectance. For each band pair, a set of fitted coefficients (slope and offset) is provided to monitor the long-term stability over very stable pseudo-invariant test sites. The average percent differences in intercept from the long-term trends obtained from the ETM+TOA reflectance estimates relative to the MODIS for all the CEOS reference standard test sites range from 2.5% to 15%. This gives an estimate of the collective differences due to the Relative Spectral Response (RSR) characteristics of each sensor, bidirectional reflectance distribution function (BRDF), spectral signature of the ground target, and atmospheric composition. The lifetime TOA reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.4% per year in its TOA reflectance over the CEOS reference standard test sites. (C) 2009 Elsevier Inc. All rights reserved. C1 [Chander, Gyanesh] SGT Inc, Sioux Falls, SD 57198 USA. [Xiong, Xiaoxiong (Jack)] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Choi, Taeyoung (Jason); Angal, Amit] SSAI, Lanham, MD 20706 USA. RP Chander, G (reprint author), SGT Inc, Sioux Falls, SD 57198 USA. EM gchander@usgs.gov RI Choi, Taeyoung/E-4437-2016 OI Choi, Taeyoung/0000-0002-4596-989X FU NASA Land-Cover and Land-Use Change (LCLUC) [NNH08AI30L] FX This work was possible because of the cooperation between the members of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) MODIS Characterization Support Team (MCSf). This work was partially supported by the NASA Land-Cover and Land-Use Change (LCLUC) Grant NNH08AI30L The authors acknowledge the support of Philippe M. Teillet (University of Lethbridge), Dennis L. Helder (South Dakota State University), Brian L. Markham (NASA GSFC), Aisheng Wu (Science Systems and Applications, Inc.), and David j. Meyer (USGS), for providing useful input regarding the study. Special thanks are extended to Rimy Malla (Stinger Ghaffarian Technologies, Inc.) for helping with the illustrations and SAS programming. The reviewers' comments were particularly valuable and their efforts are greatly appreciated. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 39 TC 68 Z9 70 U1 5 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD APR 15 PY 2010 VL 114 IS 4 BP 925 EP 939 DI 10.1016/j.rse.2009.12.003 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 561MW UT WOS:000274982700020 ER PT J AU Angal, A Xiong, XX Choi, TY Chander, G Wu, AS AF Angal, Amit Xiong, Xiaoxiong Choi, Tae-young Chander, Gyanesh Wu, Aisheng TI Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE MODIS; ETM; Sonoran; Libya 4; calibration; BRDF ID CALIBRATION; CHANNELS AB Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts. C1 [Angal, Amit] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Choi, Tae-young; Wu, Aisheng] Sigma Space Corp, Lanham, MD 20706 USA. [Chander, Gyanesh] SGT Inc, Sioux Falls, SD 57198 USA. RP Angal, A (reprint author), Sci Syst & Applicat Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. EM amit_angal@ssaihq.com; xiaoxiong.xiong-1@nasa.gov; taeyoung.choi@sigmaspace.com; gchander@usgs.gov; aisheng.wu@sigmaspace.com RI Choi, Taeyoung/E-4437-2016 OI Choi, Taeyoung/0000-0002-4596-989X FU U.S. Geological Survey [08HQCN0005] FX The authors thank Thomas Adamson (SGT) for providing helpful comments in the technical review of this manuscript. Work at SGT, Inc. performed under U.S. Geological Survey contract 08HQCN0005. NR 17 TC 21 Z9 22 U1 1 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD APR 14 PY 2010 VL 4 AR 043525 DI 10.1117/1.3424910 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 602KE UT WOS:000278137200002 ER PT J AU Hurwitz, MM Newman, PA Li, F Oman, LD Morgenstern, O Braesicke, P Pyle, JA AF Hurwitz, M. M. Newman, P. A. Li, F. Oman, L. D. Morgenstern, O. Braesicke, P. Pyle, J. A. TI Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHERN-HEMISPHERE; OZONE DEPLETION; STRATOSPHERE; TEMPERATURE; REANALYSIS; IMPACT; WINTER AB Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December. C1 [Hurwitz, M. M.; Newman, P. A.; Oman, L. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hurwitz, M. M.] Oak Ridge Associated Univ, NASA Postdoctoral Program, Oak Ridge, TN USA. [Li, F.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Oman, L. D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Morgenstern, O.] Natl Inst Water & Atmospher Res, Omakau 9352, New Zealand. [Morgenstern, O.; Braesicke, P.; Pyle, J. A.] Univ Cambridge, Dept Chem, NCAS Climate Chem, Cambridge CB2 1EW, England. RP Hurwitz, MM (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM margaret.m.hurwitz@nasa.gov RI Newman, Paul/D-6208-2012; Oman, Luke/C-2778-2009; Li, Feng/H-2241-2012; Braesicke, Peter/D-8330-2016 OI Newman, Paul/0000-0003-1139-2508; Oman, Luke/0000-0002-5487-2598; Braesicke, Peter/0000-0003-1423-0619 FU NASA Postdoctoral Program at Goddard Space Flight Center; Natural Environmental Research Council through the NCAS initiative; European Commission [SCOUT-O3 IP] FX The authors thank the Chemistry-Climate Model Validation Activity (CCMVal) of World Climate Research Programme-Stratospheric Processes and their Role in Climate (WCRP-SPARC) for organizing the model data analysis activity. The UK MetOffice is acknowledged for use of the MetUM. Furthermore, the authors thank NASA's MAP program, E. Nash for providing the streamline plotting code, and J. E. Nielsen for running the GEOS V2 simulation. M. M. Hurwitz is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. O. Morgenstern, P. Braesicke and J. A. Pyle are supported by the Natural Environmental Research Council through the NCAS initiative and by the European Commission under the Framework 6 SCOUT-O3 IP. NR 30 TC 16 Z9 16 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 14 PY 2010 VL 115 AR D07105 DI 10.1029/2009JD012788 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LM UT WOS:000276827000002 ER PT J AU Shim, JS Scherliess, L Schunk, RW Thompson, DC AF Shim, J. S. Scherliess, L. Schunk, R. W. Thompson, D. C. TI Neutral wind and plasma drift effects on low and middle latitude total electron content SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL-ANOMALY LATITUDES; F-REGION; TOPEX/POSEIDON MEASUREMENTS; TEC; MODEL; ENHANCEMENTS; CLIMATOLOGY; IONOSPHERE; SATELLITE AB A physics-based numerical ionosphere/plasmasphere model ( IPM) was used to study the effects of daytime neutral wind and electric field perturbations on the subsequent evolution of the afternoon and postsunset total electron content ( TEC) during vernal equinox conditions. The model solves the transport equations for six ions on convecting flux tubes that realistically follow the geomagnetic field. The IPM covers geomagnetic latitudes from about 60 degrees N to 60 degrees S and equatorial crossing altitudes from 90 to 30,000 km. Two of the input parameters required by the IPM are the thermospheric neutral wind and the low-latitude electric field, which can be provided by existing empirical models or externally specified. To study effects of the neutral winds and the electric fields on TEC, these two model inputs were externally modified, and the resulting TEC variations were compared. Neutral wind and electric field modifications were introduced at three different local times in order to investigate the effect of different perturbation times on the evolution of TEC. Three longitudes ( 78 degrees E, 273 degrees E, and 318 degrees E) were considered, and the results correspond to conditions of medium solar activity and low geomagnetic activity. The largest TEC changes were found predominantly in the equatorial anomaly, and a significant longitudinal dependence was observed. The simulation results indicate that TEC variations at 2100 LT vary nonlinearly at low latitudes and linearly at middle latitudes with the elapsed time after the imposed perturbations. An important outcome of this study is that daytime neutral wind and/or electric field modifications can lead to essentially identical TEC changes at 2100 LT. C1 [Shim, J. S.; Scherliess, L.; Schunk, R. W.; Thompson, D. C.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA. RP Shim, JS (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, NASA, Goddard Space Flight Ctr, Bldg 21,Room 020, Greenbelt, MD 20771 USA. EM ludger.scherliess@usu.edu RI Scherliess, Ludger/A-7499-2016 OI Scherliess, Ludger/0000-0002-7388-5255 FU NSF [ATM-0533543]; NASA [NNX08AP92G] FX This research was partially supported by NSF grant ATM-0533543 and NASA grant NNX08AP92G to Utah State University. NR 25 TC 4 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 14 PY 2010 VL 115 AR A04307 DI 10.1029/2009JA014488 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585MW UT WOS:000276830800001 ER PT J AU Slusher, DL Neff, WD Kim, S Huey, LG Wang, Y Zeng, T Tanner, DJ Blake, DR Beyersdorf, A Lefer, BL Crawford, JH Eisele, FL Mauldin, RL Kosciuch, E Buhr, MP Wallace, HW Davis, DD AF Slusher, D. L. Neff, W. D. Kim, S. Huey, L. G. Wang, Y. Zeng, T. Tanner, D. J. Blake, D. R. Beyersdorf, A. Lefer, B. L. Crawford, J. H. Eisele, F. L. Mauldin, R. L. Kosciuch, E. Buhr, M. P. Wallace, H. W. Davis, D. D. TI Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PHOTOLYSIS FREQUENCY MEASUREMENTS; HO2NO2 PEROXYNITRIC ACID; POLAR ICE CORES; SOUTH-POLE; BOUNDARY-LAYER; PHOTOCHEMICAL PRODUCTION; HIGH-SENSITIVITY; PERNITRIC ACID; SURFACE-LAYER; NITRIC-OXIDE AB One of the major goals of the 2005 Antarctic Tropospheric Chemistry Investigation (ANTCI) was to bridge the information gap between current knowledge of South Pole (SP) chemistry and that of the plateau. The former has been extensively studied, but its geographical position on the edge of the plateau makes extrapolating these findings across the plateau problematic. The airborne observations reported here demonstrate that, as at SP, elevated levels of nitric oxide (NO) are a common summertime feature of the plateau. As in earlier studies, planetary boundary layer (PBL) variations were a contributing factor leading to NO fluctuations. Thus, extensive use was made of in situ measurements and models to characterize PBL depths along each flight path and over broader areas of the plateau. Consistent with earlier SP studies that revealed photolysis of nitrate in surface snow as the source of NOx, large vertical gradients in NO were observed over most plateau areas sampled. Similar gradients were also found for the nitrogen species HNO3 and HO2NO2 and for O-3. Thus, a common meteorological-chemical feature found was shallow PBLs associated with nitrogen species concentrations that exceeded free tropospheric levels. Collectively, these new results greatly extend the geographical sampling footprint defined by earlier SP studies. In particular, they suggest that previous assessments of the plateau as simply a chemical depository need updating. Although the evidence supporting this position comes in many forms, the fact that net photochemical production of ozone occurs during summer months over extensive areas of the plateau is pivotal. C1 [Kim, S.; Huey, L. G.; Wang, Y.; Zeng, T.; Tanner, D. J.; Davis, D. D.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Blake, D. R.; Beyersdorf, A.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92697 USA. [Buhr, M. P.; Wallace, H. W.] Air Qual Design, Golden, CO 80403 USA. [Crawford, J. H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Eisele, F. L.; Mauldin, R. L.; Kosciuch, E.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Lefer, B. L.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Neff, W. D.] NOAA, Earth Syst Res Lab, Boulder, CO 80309 USA. [Slusher, D. L.] Coastal Carolina Univ, Dept Chem & Phys, Conway, SC 29526 USA. RP Davis, DD (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM douglas.davis@eas.gatech.edu RI Neff, William/E-2725-2010; Kim, Saewung/E-4089-2012; Crawford, James/L-6632-2013; Beyersdorf, Andreas/N-1247-2013; Wang, Yuhang/B-5578-2014 OI Neff, William/0000-0003-4047-7076; Crawford, James/0000-0002-6982-0934; FU NSF Office of Polar Programs [OPP-0229633, OPP-0230246] FX Financial support for this research was provided by NSF Office of Polar Programs grants OPP-0229633 and OPP-0230246. We would also like to thank NOAA's Global Monitoring Division for their support of the ANTCI research effort at the South Pole ARO facility as well as Kenn Borek Air Ltd.'s ground and airborne staff for their dedication to making the Twin Otter sampling program a success. NR 56 TC 21 Z9 21 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 13 PY 2010 VL 115 AR D07304 DI 10.1029/2009JD012605 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LL UT WOS:000276826900004 ER PT J AU Santee, ML Sander, SP Livesey, NJ Froidevaux, L AF Santee, Michelle L. Sander, Stanley P. Livesey, Nathaniel J. Froidevaux, Lucien TI Constraining the chlorine monoxide (ClO)/chlorine peroxide (ClOOCl) equilibrium constant from Aura Microwave Limb Sounder measurements of nighttime ClO SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID IN-SITU OBSERVATIONS; THERMAL-DECOMPOSITION; PHOTOCHEMISTRY; STRATOSPHERE; KINETICS; VORTEX AB The primary ozone loss process in the cold polar lower stratosphere hinges on chlorine monoxide (ClO) and one of its dimers, chlorine peroxide (ClOOCl). Recently, analyses of atmospheric observations have suggested that the equilibrium constant, K(eq), governing the balance between ClOOCl formation and thermal decomposition in darkness is lower than that in the current evaluation of kinetics data. Measurements of ClO at night, when ClOOCl is unaffectedby photolysis, provide a useful means of testing quantitative understanding of the ClO/ClOOCl relationship. Here we analyze nighttime ClO measurements from the National Aeronautics and Space Administration Aura Microwave Limb Sounder (MLS) to infer an expression for K(eq). Although the observed temperature dependence of the nighttime ClO is in line with the theoretical ClO/ClOOCl equilibrium relationship, none of the previously published expressions for K(eq) consistently produces ClO abundances that match the MLS observations well under all conditions. Employing a standard expression for K(eq), A x exp(B/T), we constrain the parameter A to currently recommended values and estimate B using a nonlinear weighted least squares analysis of nighttime MLS ClO data. ClO measurements at multiple pressure levels throughout the periods of peak chlorine activation in three Arctic and four Antarctic winters are used to estimate B. Our derived B leads to values of K(eq) that are similar to 1.4 times smaller at stratospherically relevant temperatures than currently recommended, consistent with earlier studies. Our results are in better agreement with the newly updated (2009) kinetics evaluation than with the previous (2006) recommendation. C1 [Santee, Michelle L.; Sander, Stanley P.; Livesey, Nathaniel J.; Froidevaux, Lucien] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Sander, SP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Stanley.P.Sander@jpl.nasa.gov FU National Aeronautics and Space Administration FX Thanks to M. P. Chipperfield for developing and sharing the SLIMCAT model and to R. S. Harwood for providing production runs of SLIMCAT for every day of MLS data. Thanks to G. L. Manney and W. H. Daffer for development and production of the MLS derived meteorological products. We are grateful for an extremely insightful and constructive review. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration. NR 16 TC 8 Z9 8 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 13 PY 2010 VL 107 IS 15 BP 6588 EP 6593 DI 10.1073/pnas.0912659107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583AC UT WOS:000276642100008 PM 20388911 ER PT J AU Chiang, CY Done, C Still, M Godet, O AF Chiang, C. Y. Done, Chris Still, M. Godet, O. TI An additional soft X-ray component in the dim low/hard state of black hole binaries SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; X-rays: binaries ID ADVECTION-DOMINATED ACCRETION; BROAD-BAND SPECTRUM; NOVA XTE J1118+480; SWIFT J1753.5-0127; GX 339-4; CANDIDATE XTE-J1118+480; SYNCHROTRON EMISSION; ENERGY-SPECTRA; GRO J1655-40; MUSCAE 1991 AB We test the truncated disc models using multiwavelength (optical/ultraviolet/X-ray) data from the 2005 hard state outburst of the black hole Swift J1753.5-0127. This system is both fairly bright and has fairly low interstellar absorption, so gives one of the best data sets to study the weak, cool disc emission in this state. We fit these data using models of an X-ray illuminated disc to constrain the inner disc radius throughout the outburst. Close to the peak, the observed soft X-ray component is consistent with being produced by the inner disc, with its intrinsic emission enhanced in temperature and luminosity by reprocessing of hard X-ray illumination in an overlap region between the disc and corona. This disc emission provides the seed photons for Compton scattering to produce the hard X-ray spectrum, and these hard X-rays also illuminate the outer disc, producing the optical emission by reprocessing. However, the situation is very different as the outburst declines. The optical is probably cyclo-synchrotron radiation, self-generated by the flow, rather than tracing the outer disc. Similarly, limits from reprocessing make it unlikely that the soft X-rays are directly tracing the inner disc radius. Instead they appear to be from a new component. This is seen more clearly in a similarly dim low/hard state spectrum from XTE J1118+480, where the 10 times lower interstellar absorption allows a correspondingly better view of the ultraviolet/extreme ultraviolet (EUV) emission. The very small emitting area implied by the relatively high temperature soft X-ray component is completely inconsistent with the much larger, cooler, ultraviolet component which is well fit by a truncated disc. We speculate on the origin of this component, but its existence as a clearly separate spectral component from the truncated disc in XTE J1118+480 shows that it does not simply trace the inner disc radius, so cannot constrain the truncated disc models. C1 [Chiang, C. Y.; Done, Chris] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Still, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Godet, O.] Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 93045 USA. RP Chiang, CY (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM cychiang@ast.cam.ac.uk RI done, chris/D-4605-2016; OI done, chris/0000-0002-1065-7239; Chiang, Chia-Ying/0000-0002-9630-4003 NR 60 TC 25 Z9 25 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2010 VL 403 IS 3 BP 1102 EP 1112 DI 10.1111/j.1365-2966.2009.16129.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 577TS UT WOS:000276247500002 ER PT J AU Townsend, LJ Coe, MJ McBride, VA Bird, AJ Schurch, MPE Corbet, RHD Haberl, F Galache, JL Udalski, A AF Townsend, L. J. Coe, M. J. McBride, V. A. Bird, A. J. Schurch, M. P. E. Corbet, R. H. D. Haberl, F. Galache, J. L. Udalski, A. TI Be/X-ray binary SXP6.85 undergoes large Type II outburst in the Small Magellanic Cloud SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: emission-line; Be; Magellanic Clouds; X-rays: binaries ID GRAVITATIONAL LENSING EXPERIMENT; H-ALPHA; PULSARS; STARS; LONG AB The Small Magellanic Cloud (SMC) Be/X-ray binary pulsar SXP6.85 = XTE J0103-728 underwent a large Type II outburst beginning on 2008 August 10. The source was consistently seen for the following 20 weeks (MJD = 54688-54830). We present X-ray timing and spectroscopic analysis of the source as a part of our ongoing Rossi X-ray Timing Explorer (RXTE) monitoring campaign and INTEGRAL key programme monitoring the SMC and 47 Tuc. A comparison with the Optical Gravitational Lensing Experiment (OGLE) III light curve of the Be counterpart shows the X-ray outbursts from this source coincide with times of optical maximum. We attribute this to the circumstellar disc increasing in size, causing mass accretion on to the neutron star. Ground based infrared photometry and H alpha spectroscopy obtained during the outburst are used as a measure of the size of the circumstellar disc and lend support to this picture. In addition, folded RXTE light curves seem to indicate complex changes in the geometry of the accretion regions on the surface of the neutron star, which may be indicative of an inhomogeneous density distribution in the circumstellar material causing a variable accretion rate on to the neutron star. Finally, the assumed inclination of the system and H alpha equivalent width measurements are used to make a simplistic estimate of the size of the circumstellar disc. C1 [Townsend, L. J.; Coe, M. J.; McBride, V. A.; Bird, A. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Schurch, M. P. E.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Xray Astrophys Lab, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Haberl, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Galache, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Udalski, A.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Townsend, LJ (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM ljt203@soton.ac.uk OI Haberl, Frank/0000-0002-0107-5237 FU National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; National Science Foundation through the Center for Particle Astrophysics of the University of California [AST-8809616]; Mount Stromlo and Siding Spring Observatory; Australian National University; Polish MNiSW [N20303032/4275] FX This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This paper utilizes public domain data originally obtained by the MACHO Project, whose work was performed under the joint auspices of the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, the National Science Foundation through the Center for Particle Astrophysics of the University of California under cooperative agreement AST-8809616, and the Mount Stromlo and Siding Spring Observatory, part of the Australian National University. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275. LJT wishes to thank the IRSF/SIRIUS team for providing the reduction pipeline for the IR photometry and the University of Southampton, whose support has made this research possible. We would like to thank the anonymous referee for their helpful and constructive comments. NR 26 TC 7 Z9 9 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2010 VL 403 IS 3 BP 1239 EP 1245 DI 10.1111/j.1365-2966.2009.16211.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 577TS UT WOS:000276247500012 ER PT J AU Furness, JP Crowther, PA Morris, PW Barbosa, CL Blum, RD Conti, PS van Dyk, SD AF Furness, J. P. Crowther, P. A. Morris, P. W. Barbosa, C. L. Blum, R. D. Conti, P. S. van Dyk, S. D. TI Mid-infrared diagnostics of metal-rich H ii regions from VLT and Spitzer spectroscopy of young massive stars in W31 star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: early-type; stars: fundamental parameters; H ii regions; open clusters and associations: individual: W31 (G10; 2-0; 3); infrared: ISM ID COMPACT HII-REGIONS; RADIO RECOMBINATION LINES; GALACTIC-O-STARS; STARBURST GALAXIES; ISO SPECTROSCOPY; SPACE-TELESCOPE; STELLAR CONTENT; ORION NEBULA; IONIZING-RADIATION; INFRARED GALAXIES AB We present near-infrared Very Large Telescope/Infrared Spectrograph and Array Camera and mid-infrared (mid-IR) Spitzer/Infrared Spectrograph spectroscopy of the young massive cluster in the W31 star-forming region. H-band spectroscopy provides refined classifications for four cluster member O stars with respect to Blum et al. In addition, photospheric features are detected in the massive young stellar object (massive YSO) #26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of similar to 0.6 Myr and distance of 3.3 kpc are obtained, in excellent agreement with Blum et al. IRS spectroscopy reveals mid-IR fine structure line fluxes of [Ne ii-iii] and [S iii-iv] for four O stars and five massive YSOs. In common with previous studies, stellar temperatures of individual stars are severely underestimated from the observed ratios of fine-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct empirical temperature calibrations based upon the W31 cluster stars of known spectral type, supplemented by two inner Milky Way ultracompact (UC) H ii regions whose ionizing star properties are established. Calibrations involving [Ne iii] 15.5 mu m/[Ne ii] 12.8 mu m, [S iv] 10.5 mu m/[Ne ii] 12.8 mu m or [Ar iii] 9.0 mu m/[Ne ii] 12.8 mu m have application in deducing the spectral types of early to mid O stars for other inner Milky Way compact and UC H ii regions. Finally, evolutionary phases and time-scales for the massive stellar content in W31 are discussed, due to the presence of numerous young massive stars at different formation phases in a 'coeval' cluster. C1 [Furness, J. P.; Crowther, P. A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Morris, P. W.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Barbosa, C. L.] Univ Vale Paraiba, IP&D, BR-12244000 Sao Jose Dos Campos, SP, Brazil. [Blum, R. D.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Conti, P. S.] Univ Colorado, JILA, Boulder, CO 80309 USA. [van Dyk, S. D.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Furness, JP (reprint author), Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. EM Paul.Crowther@shef.ac.uk RI Barbosa, Cassio/C-6009-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; OI Crowther, Paul/0000-0001-6000-6920; Van Dyk, Schuyler/0000-0001-9038-9950 FU STFC; FAPESP; NSF; NASA FX JPF would like to acknowledge financial support from STFC, CLB acknowledges financial support from FAPESP and PSC thanks the NSF for continuous support. We wish to thank John Hillier and Gary Ferland for maintaining CMFGEN and cloudy. Specific support for this work was partly provided by NASA through an award issued by JPL/Caltech. We appreciate many useful suggestions from an anonymous referee. NR 86 TC 9 Z9 9 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2010 VL 403 IS 3 BP 1433 EP 1447 DI 10.1111/j.1365-2966.2010.16206.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 577TS UT WOS:000276247500028 ER PT J AU Cherchneff, I Dwek, E AF Cherchneff, Isabelle Dwek, Eli TI THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; dust, extinction; early universe; molecular processes; supernovae: general ID POLYCYCLIC AROMATIC-HYDROCARBONS; CORE-COLLAPSE SUPERNOVAE; LYMAN-ALPHA SYSTEMS; GAS-PHASE; CIRCUMSTELLAR DUST; AB-INITIO; FORMATION MECHANISM; SILICON MONOXIDE; CARBON CLUSTERS; GRAIN FORMATION AB We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M(circle dot) and 170 M(circle dot) progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He(+) on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M(circle dot) progenitor is similar to 25 M(circle dot) whereas its 20 M(circle dot) counterpart forms similar to 0.16 M(circle dot) of clusters. The unmixed ejecta of a 170 M(circle dot) progenitor SN synthesize similar to 5.6 M(circle dot) of small clusters, while its 20 M(circle dot) counterpart produces similar to 0.103 M(circle dot). Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of similar to 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe chiefly form silica and/or silicates, and pure silicon grains whereas their lower mass counterparts form a dust mixture dominated by silica and/or silicates, pure silicon, and iron sulfides. Amorphous carbon can only condense via the nucleation of carbon chains and rings characteristic of the synthesis of fullerenes when the ejecta carbon-rich zone is deprived of He(+). The first dust enrichment to the primordial gas in the early universe from Pop. III massive SN comprises primarily pure silicon, silica, and silicates. If carbon dust is present at redshift z > 6, alternative dust sources must be considered. C1 [Cherchneff, Isabelle] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Cherchneff, I (reprint author), Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. EM isabelle.cherchneff@unibas.ch; eli.dwek@nasa.gov RI Dwek, Eli/C-3995-2012 FU Swiss National Science Foundation [PMPD2-114347, PMPDP2-1241159] FX We thank the anonymous referee for comments that have contributed to the improvement of the manuscript. I. C. acknowledges support from the Swiss National Science Foundation through the Maria Heim-Vogtlin subsidies PMPD2-114347 and PMPDP2-1241159. NR 125 TC 75 Z9 75 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 1 EP 24 DI 10.1088/0004-637X/713/1/1 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500001 ER PT J AU Sharp, MK Marrone, DP Carlstrom, JE Culverhouse, T Greer, C Hawkins, D Hennessy, R Joy, M Lamb, JW Leitch, EM Loh, M Miller, A Mroczkowski, T Muchovej, S Pryke, C Woody, D AF Sharp, Matthew K. Marrone, Daniel P. Carlstrom, John E. Culverhouse, Thomas Greer, Christopher Hawkins, David Hennessy, Ryan Joy, Marshall Lamb, James W. Leitch, Erik M. Loh, Michael Miller, Amber Mroczkowski, Tony Muchovej, Stephen Pryke, Clem Woody, David TI A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV-ZEL'DOVICH ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmological parameters; cosmology: observations; large-scale structure of universe; techniques: interferometric ID ANGULAR POWER SPECTRUM; GALACTIC EMISSION; GALAXY CLUSTERS; RADIO-SOURCES; PROBE; DUST; GHZ; BAND AB We present 30 GHz measurements of the angular power spectrum of the cosmic microwave background (CMB) obtained with the Sunyaev-Zel'dovich Array. The measurements are sensitive to arcminute angular scales, where secondary anisotropy from the Sunyaev-Zel'dovich effect (SZE) is expected to dominate. For a broad bin centered at multipole 4066, we find 67(-50)(+77) mu K(2); of which 26 +/- 5 mu K(2) is the expected contribution from primary CMB anisotropy and 80 +/- 54 mu K(2) is the expected contribution from undetected radio sources. These results imply an upper limit of 155 mu K(2) (95% CL) on the secondary contribution to the anisotropy in our maps. This level of SZE anisotropy power is consistent with expectations based on recent determinations of the normalization of the matter power spectrum, i.e., sigma(8) similar to 0.8. C1 [Sharp, Matthew K.; Marrone, Daniel P.; Carlstrom, John E.; Culverhouse, Thomas; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sharp, Matthew K.; Carlstrom, John E.; Loh, Michael] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Marrone, Daniel P.; Carlstrom, John E.; Culverhouse, Thomas; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Pryke, Clem] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, John E.; Pryke, Clem] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hawkins, David; Lamb, James W.; Muchovej, Stephen; Woody, David] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Miller, Amber; Mroczkowski, Tony] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Amber] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, Tony; Muchovej, Stephen] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Sharp, MK (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM sharp@oddjob.uchicago.edu OI Marrone, Daniel/0000-0002-2367-1080; Mroczkowski, Tony/0000-0003-3816-5372 FU James S. McDonnell Foundation; National Science Foundation; University of Chicago; NSF [AST-0604982, PHY-0114422, AST-0507545, AST-05-07161] FX We thank John Cartwright, Ben Reddall, and Marcus Runyan for their significant contributions to the construction and commissioning of the SZA instrument. We thank the staff of the Owens Valley Radio Observatory and CARMA for their outstanding support. We also thank Tom Crawford, Kyle Dawson, Nils Halverson, Bill Holzapfel, Ryan Keisler, Tom Plagge, Tony Readhead, and Jonathan Sievers for helpful discussions, and David S. Meier and Eric Greisen for assistance with the VLA data reduction. We gratefully acknowledge the James S. McDonnell Foundation, the National Science Foundation, and the University of Chicago for funding to construct the SZA. The operation of the SZA is supported by NSF Division of Astronomical Sciences through grant AST-0604982. Partial support is provided by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, and by NSF grants AST-0507545 and AST-05-07161 to Columbia University. A. M. acknowledges support from a Sloan Fellowship, S. M. from an NSF Astronomy and Astrophysics Fellowship, and C. G., S. M., and M. S. from NSF Graduate Research Fellowships. NR 37 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 82 EP 89 DI 10.1088/0004-637X/713/1/82 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500008 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Chung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J de Angelis, A de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Ray, PS Rea, N Reimer, A Reimer, O Reposeur, T Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chekhtman, A. Chung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. de Angelis, A. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; pulsars: general; pulsars: individual (Vela, PSR J0835-4510) ID SUPERNOVA REMNANT; SYNCHROTRON NEBULA; RAY-EMISSION; EVOLUTION; DISCOVERY; RADIATION; RADIO; HESS; LAT; GHZ AB We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degrees diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 degrees x 3 degrees area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0.degrees 88 +/- 0.degrees 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) x 10(-7) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Chekhtman, A.; Chung, C. C.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Chung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.; Venter, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Conrad, J.; de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, IN2P3, CNRS, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johnston, S.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Noutsos, A.; Weltevrede, P.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Funk, S (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM funk@slac.stanford.edu; grondin@cenbg.in2p3.fr; lemoine@cenbg.in2p3.fr; rwr@astro.stanford.edu; ave@stanford.edu RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013 OI Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Sgro', Carmelo/0000-0001-5676-6214; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare; Istituto Nazionale di Astrofisica in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish National Space Board in Sweden; Instituto Nazionale di Astrofisica in Italy; Centre National d' Etudes Spatiales in France FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana, the Istituto Nazionale di Fisica Nucleare, and the Istituto Nazionale di Astrofisica in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Instituto Nazionale di Astrofisica in Italy and the Centre National d' Etudes Spatiales in France. NR 35 TC 37 Z9 37 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 146 EP 153 DI 10.1088/0004-637X/713/1/146 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500013 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, D Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Luca, A de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Harding, AK Hays, E Hobbs, G Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Manchester, RN Marelli, M Mazziotta, MN McConville, W McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Ray, PS Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Watters, K Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Luca, A. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Hobbs, G. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Watters, K. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI THE VELA PULSAR: RESULTS FROM THE FIRST YEAR OF FERMI LAT OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: general; stars: neutron ID GAMMA-RAY PULSARS; LARGE-AREA TELESCOPE; CRAB PULSAR; OUTER MAGNETOSPHERE; TIMING PACKAGE; LIGHT CURVES; SLOT GAPS; LONG-TERM; EMISSION; RADIATION AB We report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratio with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. By combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail. C1 [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Pierbattista, M.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-35127 Padua, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Padua, Dipartimento Fis, I-35127 Padua, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Garde, M. Llena; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Italy. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.; Noutsos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hobbs, G.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] AlbaNova, Dept Phys, Royal Inst Technol KTH, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Caliandro, GA (reprint author), Inst Ciencies Espai IEEC CSIC, Campus UAB, Barcelona 08193, Spain. EM andrea.caliandro@ieec.uab.es; ocelik@milkyway.gsfc.nasa.gov; Alice.K.Harding@nasa.gov; tyrel.j.johnson@gmail.com; kerrm@u.washington.edu RI Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Starck, Jean-Luc/D-9467-2011; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Starck, Jean-Luc/0000-0003-2177-7794; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; De Luca, Andrea/0000-0001-6739-687X; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT and scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 43 TC 64 Z9 64 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 154 EP 165 DI 10.1088/0004-637X/713/1/154 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500014 ER PT J AU Abbott, BP Abbott, R Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Alshourbagy, M Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Armandula, H Armor, P Arun, KG Aso, Y Aston, S Astonea, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, C Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, M Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Boccara, C Bodiya, TP Bogue, L Bondub, F Bonelli, L Bork, R Boschi, V Bose, S Bosi, L Braccinia, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Bridges, DO Brillet, A Brinkmann, M Brisson, V Van Den Broeck, C Brooks, AF Brown, DA Brummit, A Brunet, G Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Carbognani, F Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Cokelaer, T Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Corda, C Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Danilishin, SL D'Antonio, S Danzmann, K Dari, A Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MDP Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Franzen, A Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Gammaitoni, L Garofoli, JA Garufiab, F Gemme, G Genin, E Gennai, A Gholami, I Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Granata, M Granata, V Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Greverie, C Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Guidi, G Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Huet, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Jaranowski, P Johnson, B Johnson, WW Jones, DI Jones, G Jones, R de la Jordana, LS Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krishnan, B Krolak, A Kumar, R Kwee, P La Penna, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majorana, E Mana, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Menzinger, F Mercer, RA Meshkov, S Messenger, C Meyer, MS Michel, C Milano, L Miller, J Minelli, J Minenkova, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Muhammad, D zur Muhlen, H Mukherjee, S Mukhopadhyay, H Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Numata, K Ochsner, E O'Dell, J Ogin, GH O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameshwaraiah, V Pardi, S Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Penn, S Perreca, A Persichetti, G Pichot, M Piergiovanni, F Pierro, V Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romanoac, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Russell, P Ryan, K Sakata, S Salemi, F Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J van der Sluys, MV Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Terenzi, R Thacker, J Thorne, KA Thorne, KS Uring, ATR Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, C Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ van der Putten, S Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, P Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vineta, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Was, M Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Yvert, M Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME Zweizig, J Begin, S Corongiu, A D'Amico, N Freire, PCC Hessels, JWT Hobbs, GB Kramer, M Lyne, AG Manchester, RN Marshall, FE Middleditch, J Possenti, A Ransom, SM Stairs, IH Stappers, B AF Abbott, B. P. Abbott, R. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Alshourbagy, M. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Armandula, H. Armor, P. Arun, K. G. Aso, Y. Aston, S. Astonea, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, C. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Boccara, C. Bodiya, T. P. Bogue, L. Bondub, F. Bonelli, L. Bork, R. Boschi, V. Bose, S. Bosi, L. Braccinia, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Van Den Broeck, C. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Carbognani, F. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cokelaer, T. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Corda, C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dari, A. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Franzen, A. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Gammaitoni, L. Garofoli, J. A. Garufiab, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Granata, M. Granata, V. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Guidi, G. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Huet, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Jaranowski, P. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. de la Jordana, L. Sancho Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krishnan, B. Krolak, A. Kumar, R. Kwee, P. La Penna, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mackowski, J. -M. Mageswaran, M. Mailand, K. Majorana, E. Mana, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Menzinger, F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Michel, C. Milano, L. Miller, J. Minelli, J. Minenkova, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Muhammad, D. zur Muehlen, H. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Numata, K. Ochsner, E. O'Dell, J. Ogin, G. H. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameshwaraiah, V. Pardi, S. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Pichot, M. Piergiovanni, F. Pierro, V. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romanoac, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Russell, P. Ryan, K. Sakata, S. Salemi, F. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. van der Sluys, M. V. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Terenzi, R. Thacker, J. Thorne, K. A. Thorne, K. S. Uring, A. Th R. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. van der Putten, S. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vineta, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Was, M. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Yvert, M. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Begin, S. Corongiu, A. D'Amico, N. Freire, P. C. C. Hessels, J. W. T. Hobbs, G. B. Kramer, M. Lyne, A. G. Manchester, R. N. Marshall, F. E. Middleditch, J. Possenti, A. Ransom, S. M. Stairs, I. H. Stappers, B. CA LIGO Sci Collaboration Virgo Collaboration TI SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; pulsars: general ID NEUTRON-STARS; CRAB PULSAR; SPIN-DOWN; DISCOVERY; DISTANCE; LIMIT AB We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than similar to 2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of themeasured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 x 10(-26) for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 x 10(-8) for J2124-3358. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romanoac, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romanoac, R.] Univ Salerno, I-84084 Salerno, Italy. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Braccinia, S.; Bradaschia, C.; Cella, G.; Corda, C.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Mana, N.; Pichot, M.; Regimbau, T.; Vineta, J. -Y.] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France. [Bondub, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; zur Muehlen, H.; Uring, A. Th R.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; La Penna, P.; Marque, J.; Menzinger, F.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, Pi, Italy. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] Univ Paris 07, CEA, Observ Paris, APC,CNRS,UMR7164,IN2P3,DSM,IRFU, F-75221 Paris 05, France. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Beker, M.; Brown, D. A.; Bulten, H. J.; Gossler, S.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Gouaty, R.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Van Den Broeck, C.; Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAM, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Sierk Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Buskulic, D.; Dietz, A.; Granata, V.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.] Univ Florence, I-50121 Florence, Italy. [Campagna, E.; Cesarini, E.; Guidi, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Numata, K.; Stroeer, A.; Marshall, F. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkova, Y.; Morgia, A.; Pagliaroli, G.; Rocchi, A.; Terenzi, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Terenzi, R.] INAF, IFSI, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.] Univ Aquila, I-67100 Laquila, Italy. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] So Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Prodi, G. A.; Re, V.; Salemi, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Prodi, G. A.; Re, V.; Salemi, F.] Univ Trent, I-38050 Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Flaminio, R.; Franc, J.; Mackowski, J. -M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Begin, S.; Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Begin, S.] Univ Laval, Dept Phys Genie Phys & Opt, Ste Foy, PQ G1K 7P4, Canada. [Corongiu, A.; D'Amico, N.; Possenti, A.] Osservatorio Astron Cagliari, INAF, I-09012 Capoterra, Italy. [D'Amico, N.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy. [Freire, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Freire, P. C. C.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Hessels, J. W. T.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Hessels, J. W. T.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Hobbs, G. B.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kramer, M.; Lyne, A. G.; Stappers, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys Alan Turing Bldg, Manchester M13 9PL, Lancs, England. [Middleditch, J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; D'Amico, Nichi/A-5715-2009; Finn, Lee Samuel/A-3452-2009; Prato, Mirko/D-8531-2012; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Neri, Igor/F-1482-2010; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; Kawazoe, Fumiko/F-7700-2011 OI Granata, Massimo/0000-0003-3275-1186; Ransom, Scott/0000-0001-5799-9714; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Scott, Jamie/0000-0001-6701-6515; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Guidi, Gianluca/0000-0002-3061-9870; Minelli, Jeff/0000-0002-5330-912X; Corongiu, Alessandro/0000-0002-5924-3141; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Pitkin, Matthew/0000-0003-4548-526X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Garufi, Fabio/0000-0003-1391-6168; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; prodi, giovanni/0000-0001-5256-915X; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lueck, Harald/0000-0001-9350-4846; Neri, Igor/0000-0002-9047-9822; Galdi, Vincenzo/0000-0002-4796-3600; FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; Natural Sciences and Engineering Research Council of Canada; Commonwealth Government FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. LIGO Document No. LIGO-P080112-v5. Pulsar research at UBC is supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. The National Radio Astronomy Observatory is a facility of the United States National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We thank Maura McLaughlin for useful discussions. NR 45 TC 111 Z9 112 U1 4 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 671 EP 685 DI 10.1088/0004-637X/713/1/671 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500060 ER PT J AU Daddi, E Bournaud, F Walter, F Dannerbauer, H Carilli, CL Dickinson, M Elbaz, D Morrison, GE Riechers, D Onodera, M Salmi, F Krips, M Stern, D AF Daddi, E. Bournaud, F. Walter, F. Dannerbauer, H. Carilli, C. L. Dickinson, M. Elbaz, D. Morrison, G. E. Riechers, D. Onodera, M. Salmi, F. Krips, M. Stern, D. TI VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z=1.5 DISK GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: formation; galaxies: starburst; infrared: galaxies ID STAR-FORMING GALAXIES; INITIAL MASS FUNCTION; ULTRA DEEP FIELD; HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT GALAXIES; LYMAN BREAK GALAXIES; MU-M OBSERVATIONS; SIMILAR-TO 2; MOLECULAR GAS; SUBMILLIMETER GALAXIES AB We present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared-selected (BzK) galaxies at z similar to 1.5. Our results are based on multi-configuration CO[2-1] observations obtained at the IRAM Plateau de Bure Interferometer. All six star-forming galaxies observed were detected at high significance. High spatial resolution observations resolve the CO emission in four of them, implying sizes of the gas reservoirs of order of 6-11 kpc and suggesting the presence of ordered rotation. The galaxies have UV morphologies consistent with clumpy, unstable disks, and UV sizes that are consistent with those measured in CO. The star formation efficiencies are homogeneously low within the sample and similar to those of local spirals-the resulting gas depletion times are similar to 0.5 Gyr, much higher than what is seen in high-z submillimeter galaxies and quasars. The CO luminosities can be predicted to within 0.15 dex from the observed star formation rates (SFRs) and stellar masses, implying a tight correlation of the gas mass with these quantities. We use new dynamical models of clumpy disk galaxies to derive dynamical masses for our sample. These models are able to reproduce the peculiar spectral line shapes of the CO emission. After accounting for the stellar and dark matter masses, we derive molecular gas reservoirs with masses of (0.4-1.2) x 10(11) M(circle dot). The implied conversion (CO luminosity-to-gas mass) factor is very high: alpha(CO) = 3.6 +/- 0.8, consistent with a Galactic conversion factor but 4 times higher than that of local ultra-luminous IR galaxies that is typically used for high-redshift objects. The gas mass in these galaxies is comparable to or larger than the stellar mass, and the gas accounts for an impressive 50%-65% of the baryons within the galaxies' half-light radii. We are thus witnessing truly gas-dominated galaxies at z similar to 1.5, a finding that explains the high specific SFRs observed for z > 1 galaxies. The BzK galaxies can be viewed as scaled-up versions of local disk galaxies, with low-efficiency star formation taking place inside extended, low-excitation gas disks. These galaxies are markedly different than local ULIRGs and high-z submillimeter galaxies and quasars, where higher excitation and more compact gas is found. C1 [Daddi, E.; Bournaud, F.; Dannerbauer, H.; Elbaz, D.; Onodera, M.; Salmi, F.] Univ Paris Diderot, CEA Saclay, CEA, CNRS,DSM,DAPNIA,Lab AIM,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carilli, C. L.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Dickinson, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Krips, M.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. RP Daddi, E (reprint author), Univ Paris Diderot, CEA Saclay, CEA, CNRS,DSM,DAPNIA,Lab AIM,Serv Astrophys, F-91191 Gif Sur Yvette, France. EM edaddi@cea.fr RI Daddi, Emanuele/D-1649-2012; Bournaud, Frederic/K-1263-2013 OI Daddi, Emanuele/0000-0002-3331-9590; FU INSU/CNRS (France); MPG (Germany); IGN (Spain); ERC-StG [UPGAL 240039]; French ANR [ANR-07-BLAN-0228, ANR-08-JCJC- 0008, ANR-08-BLAN-0274]; NASA [1224666, 1407, HSTHF51235.01, NAS 5-26555]; GENCI-CCRT [2009-042192] FX This study is based on observations with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). We acknowledge the use of GILDAS software (http://www.iram.fr/IRAMFR/GILDAS). We are grateful to Len Cowie for help in crosschecking the spectroscopic redshift of BzK-12591 from Keck observations, prior to our CO follow-up. We thank Claudia Maraston for providing Chabrier IMF models from her library of synthetic stellar populations templates. We thank Padeli Papadopoulos for comments and the anonymous referee for a constructive report. This research was supported by the ERC-StG grant UPGAL 240039. We acknowledge the funding support of French ANR under contracts ANR-07-BLAN-0228, ANR-08-JCJC- 0008, and ANR-08-BLAN-0274. Support for this work was provided by NASA, contract number 1224666 issued by JPL, Caltech, under NASA contract 1407. D. R. acknowledges support from NASA through Hubble Fellowship grant HSTHF51235.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The work of D. S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The simulations were performed using HPC resources from GENCI-CCRT (grant 2009-042192). NR 115 TC 415 Z9 417 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 686 EP 707 DI 10.1088/0004-637X/713/1/686 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500061 ER PT J AU Lin, RL Zhang, XX Liu, SQ Wang, YL Gong, JC AF Lin, R. L. Zhang, X. X. Liu, S. Q. Wang, Y. L. Gong, J. C. TI A three-dimensional asymmetric magnetopause model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND CONTROL; INTERPLANETARY MAGNETIC-FIELD; HIGH-LATITUDE MAGNETOPAUSE; NEAR-EARTH MAGNETOTAIL; EMPIRICAL-MODEL; FLARING ANGLE; HIGH-ALTITUDE; POLAR CUSP; BOW SHOCK; SHAPE AB A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (P(d) + P(m)), the interplanetary magnetic field (IMF) B(z), and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus P(d) + P(m) is a bit less than-1/6, the northward IMF B(z) almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how P(d) + P(m) compresses the magnetopause, how the southward IMF B(z) erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations. C1 [Zhang, X. X.] China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. [Wang, Y. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lin, R. L.; Liu, S. Q.; Gong, J. C.] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 100190, Peoples R China. [Lin, R. L.] Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China. RP Zhang, XX (reprint author), China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. EM rllin04@163.com OI Zhang, XiaoXin/0000-0002-7759-7402 FU Major State Basic Research Development Program of China [G2006CB806300]; National Natural Science Foundation of China [40774079, 40890160]; National High Technology Research and Development Program of China [2007AA12Z314]; Special Fund for Public Welfare Industry [GYHY200806024] FX We thank the National Aeronautics and Space Administration (NASA) for the satellite data and the Hawkeye magnetopause crossings' data, and we thank the Center for Space Science and Applied Research, Chinese Academy of Sciences, for the TC1 data. We are also grateful to S. A. Boardsen for providing the procedures for applying his model. This work was supported by grants from the Major State Basic Research Development Program of China ( 973 Program, G2006CB806300), the National Natural Science Foundation of China ( 40774079 and 40890160), the National High Technology Research and Development Program of China ( 863 Program, 2007AA12Z314), and the Special Fund for Public Welfare Industry ( meteorology: GYHY200806024). NR 31 TC 66 Z9 68 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 10 PY 2010 VL 115 AR A04207 DI 10.1029/2009JA014235 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581UD UT WOS:000276549400001 ER PT J AU Rouillard, AP Lavraud, B Davies, JA Savani, NP Burlaga, LF Forsyth, RJ Sauvaud, JA Opitz, A Lockwood, M Luhmann, JG Simunac, KDC Galvin, AB Davis, CJ Harrison, RA AF Rouillard, A. P. Lavraud, B. Davies, J. A. Savani, N. P. Burlaga, L. F. Forsyth, R. J. Sauvaud, J. -A. Opitz, A. Lockwood, M. Luhmann, J. G. Simunac, K. D. C. Galvin, A. B. Davis, C. J. Harrison, R. A. TI Intermittent release of transients in the slow solar wind: 2. In situ evidence SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HELIOS PLASMA-EXPERIMENT; CORONAL MAGNETIC-FIELD; 1 AU; EVENTS; STREAM; RECONNECTION; DEPLETIONS; CONNECTION; EVOLUTION; VELOCITY AB In paper 1, we showed that the Heliospheric Imager ( HI) instruments on the pair of NASA STEREO spacecraft can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates near helmet streamers. The observation of intense intermittent transient outflow by HI implies that the corresponding in situ observations of the slow solar wind and corotating interaction regions (CIRs) should contain many signatures of transients. In the present paper, we compare the HI observations with in situ measurements from the STEREO and ACE spacecraft. Analysis of the solar wind ion, magnetic field, and suprathermal electron flux measurements from the STEREO spacecraft reveals the presence of both closed and partially disconnected interplanetary magnetic field lines permeating the slow solar wind. We predict that one of the transients embedded within the second CIR (CIR-D in paper 1) should impact the near-Earth ACE spacecraft. ACE measurements confirm the presence of a transient at the time of CIR passage; the transient signature includes helical magnetic fields and bidirectional suprathermal electrons. On the same day, a strahl electron dropout is observed at STEREO-B, correlated with the passage of a high-plasma beta structure. Unlike ACE, STEREO-B observes the transient a few hours ahead of the CIR. STEREO-A, STEREO-B, and ACE spacecraft observe very different slow solar wind properties ahead of and during the CIR analyzed in this paper, which we associate with the intermittent release of transients. C1 [Rouillard, A. P.; Lockwood, M.] Univ Southampton, Sch Phys & Astron, Space Environm Phys Grp, Southampton SO17 1BJ, Hants, England. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rouillard, A. P.; Davies, J. A.; Lockwood, M.; Davis, C. J.; Harrison, R. A.] Rutherford Appleton Lab, Space Sci & Technol Dept, Chilton OX11 0QX, England. [Savani, N. P.; Forsyth, R. J.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Blackett Lab, London SW7 2BW, England. [Simunac, K. D. C.; Galvin, A. B.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Rouillard, A. P.; Lavraud, B.; Sauvaud, J. -A.; Opitz, A.] Univ Toulouse, UPS, Ctr Etud Spatiale Rayonnements, Toulouse, France. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Rouillard, A. P.; Lavraud, B.; Sauvaud, J. -A.; Opitz, A.] CNRS, UMR 5187, Toulouse, France. RP Rouillard, AP (reprint author), Univ Southampton, Sch Phys & Astron, Space Environm Phys Grp, Southampton SO17 1BJ, Hants, England. EM alexisrouillard@yahoo.co.uk RI Scott, Christopher/H-8664-2012; Lockwood, Mike/G-1030-2011; Galvin, Antoinette/A-6114-2013; Savani, Neel/G-4066-2014 OI Scott, Christopher/0000-0001-6411-5649; Lockwood, Mike/0000-0002-7397-2172; Savani, Neel/0000-0002-1916-7877 FU Science and Technology Facilities Council (UK) FX This work was funded by the Science and Technology Facilities Council (UK). The STEREO/SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The STEREO/ SECCHI data were obtained from the World Data Center, Chilton, UK. The PLASTIC and IMPACT data are produced by a consortium of the CESR (France), the University of New Hampshire, and the University of California. The in situ data presented in this paper were partly obtained from the UKSSDC World Data Center, Chilton, UK. NR 57 TC 29 Z9 30 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 10 PY 2010 VL 115 AR A04104 DI 10.1029/2009JA014472 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581UD UT WOS:000276549400003 ER PT J AU Sahraoui, F Belmont, G Goldstein, ML Rezeau, L AF Sahraoui, F. Belmont, G. Goldstein, M. L. Rezeau, L. TI Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CLUSTER; FIELD; MAGNETOSHEATH; CONSTRAINTS; SATELLITES; TELESCOPE AB Unambiguous determination of spatial properties of space plasma turbulence from temporal measurements has been one of the major goals of the Cluster mission. For that purpose, techniques, such as the k filtering, have been developed. Such multipoint measurement techniques combine several time series recorded simultaneously at different points in space to estimate the corresponding energy density in wave number space. Here we present results of such an analysis, including a detailed discussion of the errors and limitations that arise due to the separation of the spacecraft and the quality of the tetrahedral configuration. Specifically, we answer the following questions: ( 1) What are the minimum and maximum scales that can be accurately measured given a specific distance between the satellites? ( 2) How important is the geometry of the tetrahedron, and what is the relationship of that geometry to spatial aliasing? ( 3) How should one perform a proper integration of the angular frequencies to infer wave number spectra, and what role does the Doppler shift play when the magnetofluid is rapidly convecting past the spacecraft? We illustrate the results with analyses with both simulated and Cluster magnetometer data recorded in the solar wind. We also discuss the potential impact on future multispacecraft missions, such as Magnetospheric MultiScale and Cross-Scale. C1 [Sahraoui, F.; Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sahraoui, F.; Belmont, G.; Rezeau, L.] Univ Paris 06, CNRS, Lab Phys Plasmas, Ecole Polytech, F-78140 Velizy Villacoublay, France. RP Sahraoui, F (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM fouad.sahraoui-1@nasa.gov; gerard.belmont@lpp.polytechnique.fr; melvyn.l.goldstein@nasa.gov; laurence.rezeau@lpp.polytechnique.fr RI Goldstein, Melvyn/B-1724-2008; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU CNES; NASA/GSFC FX F. Sahraoui would like to thank Jean-Louis Pinc, on for stimulating discussions over the last few years of a fruitful collaboration. The FGM data used in this work come from the Cluster Active Archive (ESA), the CIS data from AMDA (CESR, Toulouse, France), and the STAFF data from REPROC (P. Robert, LPP, Ve ' lizy, France). The French participation in the Cluster mission is supported by CNES. F. Sahraoui is partly funded through the NPP program at NASA/GSFC. NR 25 TC 19 Z9 19 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 10 PY 2010 VL 115 AR A04206 DI 10.1029/2009JA014724 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581UD UT WOS:000276549400004 ER PT J AU Dubayah, RO Sheldon, SL Clark, DB Hofton, MA Blair, JB Hurtt, GC Chazdon, RL AF Dubayah, R. O. Sheldon, S. L. Clark, D. B. Hofton, M. A. Blair, J. B. Hurtt, G. C. Chazdon, R. L. TI Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID LARGE-FOOTPRINT LIDAR; WAVE-FORM LIDAR; RAIN-FOREST; LASER ALTIMETER; VEGETATION; LANDSCAPE; VALIDATION; TOPOGRAPHY; ELEVATION; GROWTH AB In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured canopy structure over La Selva in 1998 and again in 2005. Changes in waveform metrics were related to field-derived changes in estimated aboveground biomass from a series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident lidar footprints between years showed canopy top height changes that coincided with expected changes based on land cover types. Old growth forests had a net loss in height of -0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression was used to relate lidar metrics with biomass changes for combined old growth and secondary forest plots, giving an r(2) of 0.65 and an RSE of 10.5 Mg/ha, but both parametric and bootstrapped confidence intervals were wide, suggesting weaker model performance. The plot level relationships were then used to map biomass changes across La Selva using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected patterns given the distribution of land cover types at La Selva, with secondary forests showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha). Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain whether the data and methods used could confidently estimate the sign (source or sink) of the biomass changes. The resulting map showed most of the old growth areas as neutral (no net biomass change), with widely scattered and isolated sources and sinks. Secondary forests in contrast were mostly sinks or neutral, but were never sources. By quantifying both the magnitude of biomass changes and the sensitivity of lidar to detect them, this work will help inform the formulation of future space missions focused on biomass dynamics, such as NASA's Deformation Ecosystem Structure and Dynamics of Ice mission. C1 [Dubayah, R. O.; Sheldon, S. L.; Hofton, M. A.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Clark, D. B.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. [Clark, D. B.] La Selva Biol Stn, La Selva, Costa Rica. [Blair, J. B.] NASA, Goddard Space Flight Ctr, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. [Hurtt, G. C.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Chazdon, R. L.] Univ Connecticut, Storrs, CT 06269 USA. RP Dubayah, RO (reprint author), Univ Maryland, Dept Geog, Lefrak Hall, College Pk, MD 20742 USA. EM dubayah@umd.edu RI Khachadourian, Diana/C-8513-2012; Blair, James/D-3881-2013; Hurtt, George/A-8450-2012; OI Chazdon, Robin/0000-0002-7349-5687 FU NASA's Terrestrial Ecology and Interdisciplinary Science Programs; NASA Earth System Science; Gordon and Betty Moore Foundation; National Science Foundation [LTREB 0841872]; Andrew W. Mellon Foundation; National Science Foundation; University of Connecticut Research Foundation FX This work was supported by grants from NASA's Terrestrial Ecology and Interdisciplinary Science Programs (R. O. Dubayah) and a NASA Earth System Science Graduate Fellowship (S. L. Sheldon). Monitoring of the CARBONO plots was supported by the TEAM Project of Conservation International, made possible with a grant from the Gordon and Betty Moore Foundation, and the National Science Foundation (LTREB 0841872). Monitoring of the secondary plots was supported by grants from the Andrew W. Mellon Foundation, the National Science Foundation, and the University of Connecticut Research Foundation. We thank two anonymous reviewers for useful comments on the manuscript, and especially Jim Kellner for valuable discussions on our work. NR 34 TC 58 Z9 59 U1 6 U2 42 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD APR 9 PY 2010 VL 115 AR G00E09 DI 10.1029/2009JG000933 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 581SU UT WOS:000276545600001 ER PT J AU McWilliams, ST AF McWilliams, Sean T. TI Constraining the Braneworld with Gravitational Wave Observations SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY BINARIES; COMPACT OBJECTS; BLACK-HOLES; EVOLUTION AB Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the similar to 1 mu m level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l <= 5 mu m. C1 NASA, Gravitat Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McWilliams, ST (reprint author), NASA, Gravitat Astrophys Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 24 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 141601 DI 10.1103/PhysRevLett.104.141601 PG 4 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900009 PM 20481929 ER PT J AU Porter, JR Challinor, A Ewert, F Falloon, P Fischer, T Gregory, P Van Ittersum, MK Olesen, JE Moore, KJ Rosenzweig, C Smith, P AF Porter, John R. Challinor, Andrew Ewert, Frank Falloon, Pete Fischer, Tony Gregory, Peter Van Ittersum, Martin K. Olesen, Jorgen E. Moore, Kenneth J. Rosenzweig, Cynthia Smith, Pete TI Food Security: Focus on Agriculture SO SCIENCE LA English DT Letter C1 [Porter, John R.] Univ Copenhagen, Dept Agr & Ecol, DK-1870 Copenhagen, Denmark. [Challinor, Andrew] Univ Leeds, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Ewert, Frank] Univ Bonn, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany. [Falloon, Pete] Hadley Ctr, Exeter EX1 3PB, Devon, England. [Fischer, Tony] ATSE Crawford Fund, Deakin, ACT 2600, Australia. [Gregory, Peter] Scottish Crop Res Inst, Dundee DD2 5DA, Scotland. [Van Ittersum, Martin K.] Wageningen Univ, Plant Prod Syst Grp, NL-6708 PB Wageningen, Netherlands. [Olesen, Jorgen E.] Univ Aarhus, Dept Agroecol & Environm, DK-8830 Tjele, Denmark. [Moore, Kenneth J.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Smith, Pete] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. RP Porter, JR (reprint author), Univ Copenhagen, Dept Agr & Ecol, DK-1870 Copenhagen, Denmark. EM jrp@life.ku.dk RI Challinor, Andrew/C-4992-2008; Smith, Pete/G-1041-2010; van Ittersum, Martin/J-8024-2014; Porter, John/F-9290-2014; Olesen, Jorgen/C-2905-2016; OI Challinor, Andrew/0000-0002-8551-6617; Smith, Pete/0000-0002-3784-1124; van Ittersum, Martin/0000-0001-8611-6781; Porter, John/0000-0002-0777-3028; Olesen, Jorgen/0000-0002-6639-1273; Falloon, Peter/0000-0001-7567-8885 NR 0 TC 7 Z9 7 U1 2 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 9 PY 2010 VL 328 IS 5975 BP 172 EP 173 DI 10.1126/science.328.5975.172 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 580OU UT WOS:000276459600023 PM 20378800 ER PT J AU Bian, HS Chin, MA Kawa, SR Yu, HB Diehl, T Kucsera, T AF Bian, Huisheng Chin, Mian Kawa, S. Randy Yu, Hongbin Diehl, Thomas Kucsera, Tom TI Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; BIOMASS BURNING EMISSIONS; MEXICO-CITY; TROPOSPHERIC AEROSOL; OPTICAL-PROPERTIES; DUST AEROSOLS; MODIS; POLLUTION; AERONET; VARIABILITY AB Regional correlations of CO and aerosol on different time scales provide information on their sources, lifetimes, and transport pathways. We examine regional and global column CO and fine-mode aerosol optical depth (AODf) correlations from daily to seasonal scales using 7 years (2000-2006) of satellite observations from the Measurement of Pollution in the Troposphere and the Moderate Resolution Imaging Spectroradiometer and model simulations from the Goddard Chemistry Aerosol Radiative Transport model. Our analyses indicate that, globally, column CO and AODf have similar spatial distributions due to their common source locations, although CO is more spatially dispersed because of its longer lifetime. However, temporal CO-AODf correlations differ substantially over different timescales and different regions. On daily to synoptic scales CO and AODf have a positive correlation over the industrial and biomass burning source regions owing to the covariance of emissions and coherent dynamic transport. No such correlation is seen in remote regions because of the diverging influence of mixing and chemical processes during longer-range transport. On the seasonal scale in the Northern Hemisphere, CO and AODf are out of phase by 2-4 months. This phase lag is caused by photochemical production of sulfate, which is the major component of fine-mode aerosol in the Northern Hemisphere, and photochemical destruction of CO in reaction with OH (both at maximum in the summer and at minimum in the winter), together with the seasonality of fine-mode dust, which peaks in the boreal spring season. In the Southern Hemisphere tropics and subtropics, however, CO and AODf are generally in-phase because the variability is dominated by direct release from biomass burning emissions. C1 [Bian, Huisheng; Chin, Mian; Kawa, S. Randy; Yu, Hongbin; Diehl, Thomas; Kucsera, Tom] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Bian, Huisheng; Yu, Hongbin; Diehl, Thomas; Kucsera, Tom] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Bian, HS (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM huisheng.bian@nasa.gov RI Yu, Hongbin/C-6485-2008; Kawa, Stephan/E-9040-2012; Chin, Mian/J-8354-2012 OI Yu, Hongbin/0000-0003-4706-1575; NR 35 TC 9 Z9 9 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 8 PY 2010 VL 115 AR D07302 DI 10.1029/2009JD012781 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 698HP UT WOS:000285585200005 ER PT J AU Ellehoj, MD Gunnlaugsson, HP Taylor, PA Kahanpaa, H Bean, KM Cantor, BA Gheynani, BT Drube, L Fisher, D Harri, AM Holstein-Rathlou, C Lemmon, MT Madsen, MB Malin, MC Polkko, J Smith, PH Tamppari, LK Weng, W Whiteway, J AF Ellehoj, M. D. Gunnlaugsson, H. P. Taylor, P. A. Kahanpaa, H. Bean, K. M. Cantor, B. A. Gheynani, B. T. Drube, L. Fisher, D. Harri, A. -M. Holstein-Rathlou, C. Lemmon, M. T. Madsen, M. B. Malin, M. C. Polkko, J. Smith, P. H. Tamppari, L. K. Weng, W. Whiteway, J. TI Convective vortices and dust devils at the Phoenix Mars mission landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ORBITER CAMERA; COLOR-IMAGER; PATHFINDER; SIMULATIONS; THRESHOLD; WEATHER; CLIMATE; CLOUDS AB The Phoenix Mars Lander detected a larger number of short (similar to 20 s) pressure drops that probably indicate the passage of convective vortices or dust devils. Near-continuous pressure measurements have allowed for monitoring the frequency of these events, and data from other instruments and orbiting spacecraft give information on how these pressure events relate to the seasons and weather phenomena at the Phoenix landing site. Here 502 vortices were identified with a pressure drop larger than 0.3 Pa occurring in the 151 sol mission (L-s 76 to 148). The diurnal distributions show a peak in convective vortices around noon, agreeing with current theory and previous observations. The few events detected at night might have been mechanically forced by turbulent eddies caused by the nearby Heimdal crater. A general increase with major peaks in the convective vortex activity occurs during the mission, around L-s = 111. This correlates with changes in midsol surface heat flux, increasing wind speeds at the landing site, and increases in vortex density. Comparisons with orbiter imaging show that in contrast to the lower latitudes on Mars, the dust devil activity at the Phoenix landing site is influenced more by active weather events passing by the area than by local forcing. C1 [Ellehoj, M. D.; Drube, L.; Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Gunnlaugsson, H. P.; Holstein-Rathlou, C.] Univ Aarhus, Inst Phys & Astron, DK-8000 Aarhus, Denmark. [Bean, K. M.; Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Cantor, B. A.; Malin, M. C.] Malin Space Sci Syst Inc, San Diego, CA 92191 USA. [Fisher, D.] Geol Survey Canada, Ottawa, ON K1A 0E4, Canada. [Taylor, P. A.; Gheynani, B. T.; Weng, W.; Whiteway, J.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Kahanpaa, H.; Harri, A. -M.; Polkko, J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Smith, P. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85719 USA. [Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Ellehoj, MD (reprint author), Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. EM ellehoj@gfy.ku.dk RI Lemmon, Mark/E-9983-2010; Madsen, Morten/D-2082-2011; Harri, Ari-Matti/C-7142-2012; OI Lemmon, Mark/0000-0002-4504-5136; Madsen, Morten/0000-0001-8909-5111; Harri, Ari-Matti/0000-0001-8541-2802; Kahanpaa, Henrik/0000-0001-9108-186X; Ellehoj, Mads/0000-0002-6961-2537 FU Danish Natural Science Research Council; Canadian Space Agency; NASA FX We thank the Phoenix engineering and science teams for all their work leading to a successful mission. The financial support from the Danish Natural Science Research Council for the Danish participation in the Phoenix mission is greatly appreciated. Canadian university participation was supported by Canadian Space Agency grants and contracts. We thank an anonymous reviewer for constructive criticisms and suggestions improving the manuscript substantially. Thanks to Carlos Lange for his help with the vortex shedding and to Soren Larsen for suggestions to the manuscript. L. Tamppari's contribution to the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The Phoenix mission was led by Peter Smith of the University of Arizona, on behalf of NASA and was managed by NASA's Jet Propulsion Laboratory, California Institute of Technology. The spacecraft was developed by Lockheed Martin Space Systems. NR 63 TC 43 Z9 43 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 8 PY 2010 VL 115 AR E00E16 DI 10.1029/2009JE003413 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 581TU UT WOS:000276548400002 ER PT J AU Seelos, KD Arvidson, RE Jolliff, BL Chemtob, SM Morris, RV Ming, DW Swayze, GA AF Seelos, Kimberly D. Arvidson, Raymond E. Jolliff, Bradley L. Chemtob, Steven M. Morris, Richard V. Ming, Douglas W. Swayze, Gregg A. TI Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID IMAGING SPECTROMETER AVIRIS; TERRA-MERIDIANI; ROCK COATINGS; DEPOSITS; DIVERSITY; CHEMISTRY; SULFATE; ORIGIN; TEPHRA; VIEW AB Airborne Visible/Near-Infrared Imaging Spectrometer (AVIRIS) data acquired over the Ka'u Desert are atmospherically corrected to ground reflectance and used to identify the mineralogic components of relatively young basaltic materials, including 250-700 and 200-400 year old lava flows, 1971 and 1974 flows, ash deposits, and solfatara incrustations. To provide context, a geologic surface units map is constructed, verified with field observations, and supported by laboratory analyses. AVIRIS spectral end members are identified in the visible (0.4 to 1.2 mu m) and short wave infrared (2.0 to 2.5 mu m) wavelength ranges. Nearly all the spectral variability is controlled by the presence of ferrous and ferric iron in such minerals as pyroxene, olivine, hematite, goethite, and poorly crystalline iron oxides or glass. A broad, nearly ubiquitous absorption feature centered at 2.25 mu m is attributed to opaline (amorphous, hydrated) silica and is found to correlate spatially with mapped geologic surface units. Laboratory analyses show the silica to be consistently present as a deposited phase, including incrustations downwind from solfatara vents, cementing agent for ash duricrusts, and thin coatings on the youngest lava flow surfaces. A second, Ti-rich upper coating on young flows also influences spectral behavior. This study demonstrates that secondary silica is mobile in the Ka'u Desert on a variety of time scales and spatial domains. The investigation from remote, field, and laboratory perspectives also mimics exploration of Mars using orbital and landed missions, with important implications for spectral characterization of coated basalts and formation of opaline silica in arid, acidic alteration environments. C1 [Seelos, Kimberly D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Arvidson, Raymond E.; Jolliff, Bradley L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Chemtob, Steven M.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91225 USA. [Morris, Richard V.; Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Swayze, Gregg A.] US Geol Survey, Denver, CO 80225 USA. RP Seelos, KD (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Seelos, Kimberly/F-4647-2015 OI Seelos, Kimberly/0000-0001-7236-0580 FU NASA FX We are grateful to Alian Wang for her expertise and use of the Raman spectroscopy lab at Washington University. This work benefited from constructive review from Janice Bishop and an anonymous reviewer. Support provided by the NASA Planetary Geology and Geophysics Program by a grant to Washington University and the NASA Mars Reconnaissance Orbiter project. NR 62 TC 19 Z9 19 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 8 PY 2010 VL 115 AR E00D15 DI 10.1029/2009JE003347 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 581TU UT WOS:000276548400001 ER PT J AU Kloppenborg, B Stencel, R Monnier, JD Schaefer, G Zhao, M Baron, F McAlister, H ten Brummelaar, T Che, X Farrington, C Pedretti, E Sallave-Goldfinger, PJ Sturmann, J Sturmann, L Thureau, N Turner, N Carroll, SM AF Kloppenborg, Brian Stencel, Robert Monnier, John D. Schaefer, Gail Zhao, Ming Baron, Fabien McAlister, Hal ten Brummelaar, Theo Che, Xiao Farrington, Chris Pedretti, Ettore Sallave-Goldfinger, P. J. Sturmann, Judit Sturmann, Laszlo Thureau, Nathalie Turner, Nils Carroll, Sean M. TI Infrared images of the transiting disk in the epsilon Aurigae system SO NATURE LA English DT Article ID ECLIPSE AB Epsilon Aurigae (epsilon Aur) is a visually bright, eclipsing binary star system with a period of 27.1 years. The cause of each 18-month-long eclipse has been a subject of controversy for nearly 190 years(1) because the companion has hitherto been undetectable. The orbital elements imply that the opaque object has roughly the same mass as the visible component, which for much of the last century was thought to be an F-type supergiant star with a mass of similar to 15M(circle dot) (M(circle dot), mass of the Sun). The high mass-to-luminosity ratio of the hidden object was originally explained by supposing it to be a hyperextended infrared star(2) or, later, a black hole(3) with an accretion disk, although the preferred interpretation was as a disk of opaque material(4,5) at a temperature of 500 K, tilted to the line of sight(6,7) and with a central opening(8). Recent work implies that the system consists of a low-mass (2.2M(circle dot)-3.3M(circle dot)) visible F-type star, with a disk at 550K that enshrouds a single B5V-type star(9). Here we report interferometric images that show the eclipsing body moving in front of the F star. The body is an opaque disk and appears tilted as predicted(7). Adopting a mass of 5.9M(circle dot) for the B star, we derive a mass of similar to(3.6 +/- 0.7)M(circle dot) for the F star. The disk mass is dynamically negligible; we estimate it to contain similar to 0.07M(circle plus) (M(circle plus), mass of the Earth) if it consists purely of dust. C1 [Kloppenborg, Brian; Stencel, Robert] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Monnier, John D.; Baron, Fabien; Che, Xiao] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Schaefer, Gail; McAlister, Hal; ten Brummelaar, Theo; Farrington, Chris; Sallave-Goldfinger, P. J.; Sturmann, Judit; Sturmann, Laszlo; Turner, Nils] Georgia State Univ, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Zhao, Ming] Jet Prop Lab, Pasadena, CA 91101 USA. [Pedretti, Ettore; Thureau, Nathalie] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Carroll, Sean M.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Kloppenborg, B (reprint author), Univ Denver, Dept Phys & Astron, 2112 E Wesley Ave, Denver, CO 80208 USA. EM bkloppen@du.edu; rstencel@du.edu FU US National Science Foundation (NSF); Georgia State University; W. M. Keck Foundation; David and Lucile Packard Foundation; office of the Dean of the College of Arts and Science at Georgia State University; University of Michigan FX We are grateful to the firefighters who defended Mount Wilson Observatory from the Station Fire, and L. Webster and the staff at Mount Wilson Observatory for facilitating our observations. We acknowledge with thanks the variable-star observations from the AAVSO International Database contributed by observers worldwide and used in this research. The CHARA Array, operated by Georgia State University, was built with funding provided by the US National Science Foundation (NSF), Georgia State University, the W. M. Keck Foundation and the David and Lucile Packard Foundation. CHARA is operated under continuing support from the NSF. This research is supported by the NSF as well as by funding from the office of the Dean of the College of Arts and Science at Georgia State University. J.D.M. acknowledges funding from the University of Michigan and the NSF. MIRC was supported by funds from the NSF. B. K. and R. S. thank J. Hopkins for ongoing photometry and are grateful for the bequest of William Herschel Womble in support of astronomy at the University of Denver. NR 21 TC 93 Z9 93 U1 8 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 8 PY 2010 VL 464 IS 7290 BP 870 EP 872 DI 10.1038/nature08968 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 579TM UT WOS:000276397300032 PM 20376144 ER PT J AU Stephan, K Jaumann, R Brown, RH Soderblom, JM Soderblom, LA Barnes, JW Sotin, C Griffith, CA Kirk, RL Baines, KH Buratti, BJ Clark, RN Lytle, DM Nelson, RM Nicholson, PD AF Stephan, Katrin Jaumann, Ralf Brown, Robert H. Soderblom, Jason M. Soderblom, Laurence A. Barnes, Jason W. Sotin, Christophe Griffith, Caitlin A. Kirk, Randolph L. Baines, Kevin H. Buratti, Bonnie J. Clark, Roger N. Lytle, Dyer M. Nelson, Robert M. Nicholson, Phillip D. TI Specular reflection on Titan: Liquids in Kraken Mare SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERE; PLANETS; SURFACE AB After more than 50 close flybys of Titan by the Cassini spacecraft, it has become evident that features similar in morphology to terrestrial lakes and seas exist in Titan's polar regions. As Titan progresses into northern spring, the much more numerous and larger lakes and seas in the north-polar region suggested by Cassini RADAR data, are becoming directly illuminated for the first time since the arrival of the Cassini spacecraft. This allows the Cassini optical instruments to search for specular reflections to provide further confirmation that liquids are present in these evident lakes. On July 8, 2009 Cassini VIMS detected a specular reflection in the north-polar region of Titan associated with Kraken Mare, one of Titan's large, presumed seas, indicating the lake's surface is smooth and free of scatterers with respect to the wavelength of 5 mm, where VIMS detected the specular signal, strongly suggesting it is liquid. Citation: Stephan, K., et al. ( 2010), Specular reflection on Titan: Liquids in Kraken Mare, Geophys. Res. Lett., 37, L07104, doi: 10.1029/2009GL042312. C1 [Stephan, Katrin; Jaumann, Ralf] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Sotin, Christophe; Baines, Kevin H.; Buratti, Bonnie J.; Nelson, Robert M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Brown, Robert H.; Soderblom, Jason M.; Griffith, Caitlin A.; Lytle, Dyer M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, Roger N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Soderblom, Laurence A.; Kirk, Randolph L.] US Geol Survey, Flagstaff, AZ 86011 USA. [Nicholson, Phillip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Jaumann, Ralf] Free Univ Berlin, Dept Earth Sci, Inst Geosci, D-1000 Berlin, Germany. RP Stephan, K (reprint author), DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM katrin.stephan@dlr.de RI Barnes, Jason/B-1284-2009; OI Barnes, Jason/0000-0002-7755-3530; Soderblom, Jason/0000-0003-3715-6407 FU DLR; Helmholtz Alliance Planetary Evolution and Life FX We gratefully acknowledge the many years of work by the entire Cassini team that allowed these data of Titan to be obtained. We thank K. D. Matz for data processing support, R. D. Lorenz and an anonymous reviewer for valuable comments that significantly improved our manuscript. Part of this work was performed with support of DLR and the Helmholtz Alliance Planetary Evolution and Life. NR 18 TC 31 Z9 31 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 7 PY 2010 VL 37 AR L07104 DI 10.1029/2009GL042312 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 581SL UT WOS:000276544700003 ER PT J AU Cahalan, RF Wen, GY Harder, JW Pilewskie, P AF Cahalan, Robert F. Wen, Guoyong Harder, Jerald W. Pilewskie, Peter TI Temperature responses to spectral solar variability on decadal time scales SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE; IRRADIANCE AB Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are similar to 0.6 K and similar to 0.9 K in RCM and modelE, similar to 5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by similar to 2 years, and is similar to 0.06 K compared to similar to 0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land. Citation: Cahalan, R. F., G. Wen, J. W. Harder, and P. Pilewskie (2010), Temperature responses to spectral solar variability on decadal time scales, Geophys. Res. Lett., 37, L07705, doi:10.1029/2009GL041898. C1 [Cahalan, Robert F.; Wen, Guoyong] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wen, Guoyong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Harder, Jerald W.; Pilewskie, Peter] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Cahalan, RF (reprint author), NASA, Goddard Space Flight Ctr, Code 613-2, Greenbelt, MD 20771 USA. EM guoyong.wen-1@nasa.gov RI Cahalan, Robert/E-3462-2012 OI Cahalan, Robert/0000-0001-9724-1270 FU NASA FX This research was supported by NASA's Living With a Star program, thanks to Program Manager M. Guhathakurta. We also thank A. Arking, J. Lean, W. Ridgway, and D. Rind for helpful discussions. NR 17 TC 16 Z9 17 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 6 PY 2010 VL 37 AR L07705 DI 10.1029/2009GL041898 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 581SK UT WOS:000276544600001 ER PT J AU Masutani, M Woollen, JS Lord, SJ Emmitt, GD Kleespies, TJ Wood, SA Greco, S Sun, HB Terry, J Kapoor, V Treadon, R Campana, KA AF Masutani, Michiko Woollen, John S. Lord, Stephen J. Emmitt, G. David Kleespies, Thomas J. Wood, Sidney A. Greco, Steven Sun, Haibing Terry, Joseph Kapoor, Vaishali Treadon, Russ Campana, Kenneth A. TI Observing system simulation experiments at the National Centers for Environmental Prediction SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE-TRANSFER MODEL; SSI ANALYSIS SYSTEM; LARGE-SCALE MODELS; DATA ASSIMILATION; IMPACT ASSESSMENT; WIND; FUTURE; RADIANCES; MISSION AB Observing system impact assessments using atmospheric simulation experiments are conducted to provide an objective quantitative evaluation of future observing systems and instruments. Such simulation experiments using a proxy true atmosphere, Nature Run, are known as observing system simulation experiments (OSSEs). Through OSSEs, future observing systems that effectively use data assimilation systems in order to improve weather forecasts can be designed. Various types of simulation experiments have been performed in the past by many scientists, but the OSSE at the National Centers for Environmental Prediction (NCEP) presented in this paper is the most extensive and complete OSSE. The agreement between data impacts from simulated data and the corresponding real data is satisfactory. The NCEP OSSE is also the first OSSE where radiance data from satellites were simulated and assimilated. Since a Doppler wind lidar (DWL) is a very costly instrument, various simulation experiments have been funded and performed. OSSEs that evaluate the data impact of DWL are demonstrated. The results show a potentially powerful impact from DWL. In spite of the many controversies regarding simulation experiments, this paper demonstrates that carefully constructed OSSEs are able to provide useful information that influences the design of future observing systems. Various factors that affect the assessment of the impact are discussed. C1 [Masutani, Michiko; Woollen, John S.; Lord, Stephen J.; Treadon, Russ; Campana, Kenneth A.] NOAA, Environm Modeling Ctr, Natl Ctr Environm Predict, Natl Weather Serv, Camp Springs, MD 20746 USA. [Emmitt, G. David; Wood, Sidney A.; Greco, Steven] Simpson Weather Associates, Charlottesville, VA 22902 USA. [Kleespies, Thomas J.; Sun, Haibing; Kapoor, Vaishali] NOAA, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD 20746 USA. [Masutani, Michiko] Wyle Informat Syst, Mclean, VA USA. [Woollen, John S.; Terry, Joseph] Sci Applicat Int Corp, Beltsville, MD USA. [Sun, Haibing] Perot Syst Govt Serv, Alexandria, VA USA. [Terry, Joseph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kapoor, Vaishali] Sci & Technol Corp, Suitland, MD USA. RP Masutani, M (reprint author), NOAA, Environm Modeling Ctr, Natl Ctr Environm Predict, Natl Weather Serv, 5200 Auth Rd,Rm 207, Camp Springs, MD 20746 USA. EM michiko.masutani@noaa.gov RI Kleespies, Thomas/F-5598-2010 NR 40 TC 40 Z9 40 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 2 PY 2010 VL 115 AR D07101 DI 10.1029/2009JD012528 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 578SL UT WOS:000276315500003 ER PT J AU Coradini, A Grassi, D Capaccioni, F Filacchione, G Tosi, F Ammannito, E De Sanctis, MC Formisano, V Wolkenberg, P Rinaldi, G Arnold, G Barucci, MA Bellucci, G Benkhoff, J Bibring, JP Blanco, A Bockelee-Morvan, D Capria, MT Carlson, R Carsenty, U Cerroni, P Colangeli, L Combes, M Combi, M Crovisier, J Drossart, P Encrenaz, T Erard, S Federico, C Fink, U Fonti, S Ip, WH Irwin, PGJ Jaumann, R Kuehrt, E Langevin, Y Magni, G McCord, T Mennella, V Mottola, S Neukum, G Orofino, V Palumbo, P Piccioni, G Rauer, H Schmitt, B Tiphene, D Taylor, FW Tozzi, GP AF Coradini, A. Grassi, D. Capaccioni, F. Filacchione, G. Tosi, F. Ammannito, E. De Sanctis, M. C. Formisano, V. Wolkenberg, P. Rinaldi, G. Arnold, G. Barucci, M. A. Bellucci, G. Benkhoff, J. Bibring, J. P. Blanco, A. Bockelee-Morvan, D. Capria, M. T. Carlson, R. Carsenty, U. Cerroni, P. Colangeli, L. Combes, M. Combi, M. Crovisier, J. Drossart, P. Encrenaz, T. Erard, S. Federico, C. Fink, U. Fonti, S. Ip, W. -H. Irwin, P. G. J. Jaumann, R. Kuehrt, E. Langevin, Y. Magni, G. McCord, T. Mennella, V. Mottola, S. Neukum, G. Orofino, V. Palumbo, P. Piccioni, G. Rauer, H. Schmitt, B. Tiphene, D. Taylor, F. W. Tozzi, G. P. TI Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID PLANETARY FOURIER SPECTROMETER; MARS EXPRESS MISSION; EMISSION; DUST; VARIABILITY; HST/NICMOS; MODELS AB The Rosetta spacecraft accomplished a flyby of Mars on its way to 67P/Churyumov-Gerasimenko on 25 February 2007. In this paper we describe the measurements obtained by the M channel of the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS-M) and the first scientific results derived from their analysis. The broad spectral coverage of the VIRTIS-M in the IR permitted the study of various phenomena occurring in the Martian atmosphere; observations were further exploited to achieve accurate absolute radiometric calibration. Nighttime data from the VIRTIS-M constrain the air temperature profile in the lower atmosphere (5-30 km), using variations in CO(2) opacity at 4.3 mu m. A comparison of this data with the global circulation model (GCM) by Forget et al. (1999) shows a trend of slightly higher air temperature in the VIRTIS-M retrievals; this is accompanied by the presence of moderate decreases (similar to 5 K) in large sections of the equatorial region. This is potentially related to the occurrence of water ice clouds. Daytime data from the VIRTIS-M reveal CO(2) non-local thermodynamic equilibrium emission in the high atmosphere. A mapping of emission intensity confirms its strict dependence on solar zenith angle. Additionally, devoted limb observations allowed the retrieval of vertical emission intensity profiles, indicating a peak around 105 km in southern tropical regions. Ozone content can be effectively monitored by the emission of O(2) (a(1)Delta(g)) at 1.27 mu m. Retrieved emission intensity shows that polar regions are particularly rich in ozone. Aerosol scattering was observed in the 1-2.5 mu m region above the night region above the night disk, suggesting the occurrence of very high noctilucent clouds. C1 [Coradini, A.; Grassi, D.; Tosi, F.; Ammannito, E.; Formisano, V.; Wolkenberg, P.; Rinaldi, G.; Bellucci, G.] IFSI, INAF, Area Ric Roma Tor Vergata 2, I-00133 Rome, Italy. [Arnold, G.; Carsenty, U.; Jaumann, R.; Kuehrt, E.; Mottola, S.; Neukum, G.; Rauer, H.] DLR, D-12489 Berlin, Germany. [Capaccioni, F.; Filacchione, G.; De Sanctis, M. C.; Capria, M. T.; Cerroni, P.; Magni, G.; Piccioni, G.] IASF, INAF, Area Ric Roma Tor Vergata 2, I-00133 Rome, Italy. [Barucci, M. A.; Bockelee-Morvan, D.; Combes, M.; Crovisier, J.; Drossart, P.; Encrenaz, T.; Erard, S.; Tiphene, D.] Observ Paris, Sect Meudon, F-92195 Meudon, France. [Benkhoff, J.] European Space Agcy, European Space Res & Technol Ctr, NL-2201 AZ Noordwijk, Netherlands. [Bibring, J. P.; Langevin, Y.] Ctr Univ Orsay, IAS, F-91405 Orsay, France. [Blanco, A.; Fonti, S.; Orofino, V.] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy. [Carlson, R.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Colangeli, L.; Mennella, V.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Combi, M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Federico, C.] Univ Perugia, Dipartimento Sci Terra, I-06123 Perugia, Italy. [Fink, U.] Lunar & Planetary Lab, Dept Planetary Sci, Tucson, AZ 85721 USA. [Ip, W. -H.] Natl Cent Univ, Grad Inst Astron, Chungli 32054, Taiwan. [Irwin, P. G. J.; Taylor, F. W.] Univ Oxford, Oxford OX1 3PU, England. [McCord, T.] Bear Fight Ctr, Winthrop, WA 98862 USA. [Palumbo, P.] Univ Napoli Parthenope, Dipartimento Sci Applicate, I-80133 Naples, Italy. [Schmitt, B.] Univ Grenoble 1, OSUG, F-38041 Grenoble 9, France. [Tozzi, G. P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. RP Coradini, A (reprint author), IFSI, INAF, Area Ric Roma Tor Vergata 2, Via Fosso Cavaliere, I-00133 Rome, Italy. EM davide.grassi@ifsi-roma.inaf.it RI Schmitt, Bernard/A-1064-2009; Combi, Michael/J-1697-2012; De Sanctis, Maria Cristina/G-5232-2013; OI Tozzi, Gian Paolo/0000-0003-4775-5788; Tosi, Federico/0000-0003-4002-2434; Cerroni, Priscilla/0000-0003-0239-2741; Bellucci, Giancarlo/0000-0003-0867-8679; Schmitt, Bernard/0000-0002-1230-6627; Combi, Michael/0000-0002-9805-0078; De Sanctis, Maria Cristina/0000-0002-3463-4437; Capaccioni, Fabrizio/0000-0003-1631-4314; Filacchione, Gianrico/0000-0001-9567-0055; Irwin, Patrick/0000-0002-6772-384X; Piccioni, Giuseppe/0000-0002-7893-6808 FU Italian Space Agency (ASI) FX The VIRTIS-Rosetta project is funded by Italian Space Agency (ASI). Our colleague L. Brower is acknowledged for her support in language and style revision of most parts of the text. We wish to thank the LMD-AOPP-IAA teams for their excellent work in developing, testing, distributing, and supporting the usage of the results of their GCM, for the benefit of the entire scientific community. NR 41 TC 4 Z9 4 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 2 PY 2010 VL 115 AR E04004 DI 10.1029/2009JE003345 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 578TD UT WOS:000276317500001 ER PT J AU Duan, XY Moghaddam, M Wenkert, D Jordan, RL Smrekar, SE AF Duan, Xueyang Moghaddam, Mahta Wenkert, Daniel Jordan, Rolando L. Smrekar, Suzanne E. TI X band model of Venus atmosphere permittivity SO RADIO SCIENCE LA English DT Article ID SULFURIC-ACID VAPOR; CLOUD-RELATED GASES; MICROWAVE-ABSORPTION; MIDDLE ATMOSPHERE; LABORATORY MEASUREMENTS; DIELECTRIC-CONSTANT; SIMULATED CONDITIONS; TEMPERATURE; DIOXIDE; OPACITY AB A model of Venus' atmosphere permittivity profile up to 300 km is developed in this paper for X band. The model includes both the real and imaginary parts of the atmospheric permittivity, derived using data sets inferred or directly measured from past exploration missions to Venus: the real part is obtained by calculating the total polarization of the mixture of the atmospheric components including CO(2), N(2), H(2)O, SO(2), H(2)SO(4), CO, etc.; the imaginary part is derived using the superposition of the absorption of each component. The properties of the atmospheric components such as polarization and absorption are modeled with respect to frequency, temperature, and pressure. The validity of this model is verified by comparing simulation results with available measurements of Venus' atmosphere. This permittivity model is intended as a critical tool for the design of next-generation orbiting radar systems, in particular interferometric radars. C1 [Duan, Xueyang; Moghaddam, Mahta] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Wenkert, Daniel; Jordan, Rolando L.; Smrekar, Suzanne E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Duan, XY (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA. EM xduan@umich.edu; mmoghadd@eecs.umich.edu; daniel.wenkert@jpl.nasa.gov; rolando.l.jordan@jpl.nasa.gov; suzanne.e.smrekar@jpl.nasa.gov FU JPL-DRDF Innovative Spontaneous Concepts FX This work was performed at the University of Michigan and at the Jet Propulsion Laboratory through support from JPL-DRDF Innovative Spontaneous Concepts program. Additionally, the authors would like to sincerely thank the three anonymous reviewers for their detailed and thorough comments and corrections, which have led to greatly improving the quality of the paper and the model herein. NR 50 TC 2 Z9 2 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD APR 2 PY 2010 VL 45 AR RS2003 DI 10.1029/2009RS004169 PG 19 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 578TS UT WOS:000276319200001 ER PT J AU Moore, AD Lee, SMC Stenger, MB Platts, SH AF Moore, Alan D. Lee, Stuart M. C. Stenger, Michael B. Platts, Steven H. TI Cardiovascular exercise in the US space program: Past, present and future SO ACTA ASTRONAUTICA LA English DT Review DE Spaceflight; Microgravity; Aerobic capacity; Exercise testing; Heart rate ID MANNED SKYLAB MISSION; BED REST; MAXIMAL EXERCISE; PHYSIOLOGICAL-RESPONSE; RESISTIVE EXERCISE; EXPERIMENT M-171; LEG EXERCISE; FLIGHT; SPACEFLIGHT; MICROGRAVITY AB Exercise deconditioning during space flight may impact a crewmember's ability to perform strenuous or prolonged tasks during and after a spaceflight mission. In this paper, we review the cardiovascular exercise data from U.S. spaceflights from the Mercury Project through International Space Station (ISS) expeditions and potential implications upon current and future missions. During shorter spaceflights (< 16 days), the heart rate (HR) response to exercise testing and maximum oxygen consumption (VO(2) max) are not changed. The sub-maximal exercise HR responses during longer duration flights are less consistent, and VO(2) max has not been measured. Skylab data demonstrated no change in the exercise HR response during flight which would be consistent with no change in VO(2) max; however, during ISS flight exercise HR is elevated early in the mission, but approaches preflight levels later during the missions, perhaps due to performance of exercise countermeasures. An elevated exercise HR is consistently observed after both short and long duration spaceflight, and crewmembers appear to recover at rates which are affected by the length of the mission. Published by Elsevier Ltd. C1 [Moore, Alan D.] Wyle Integrated Sci & Engn Grp, Exercise Physiol Lab, Houston, TX 77058 USA. [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Cardiovasc Lab, Houston, TX 77058 USA. [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Mail Code SK3, Houston, TX 77058 USA. RP Moore, AD (reprint author), Wyle Integrated Sci & Engn Grp, Exercise Physiol Lab, 1290 Hercules Dr,Suite 120, Houston, TX 77058 USA. EM alan.d.moore@nasa.gov FU Human Research Program FX The authors wish to thank members of the NASA Exercise Physiology Laboratory for their support of both Space Shuttle and ISS exercise test data collection and reduction, Jack H. Wilmore for his review of this manuscript during its preparation, and Meghan E. Everett for her comments and review of the manuscript. We would also like to acknowledge the members of NASA's astronaut corps who acted as volunteers for these projects, and the Human Research Program for their support in the development of this manuscript. NR 59 TC 26 Z9 33 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2010 VL 66 IS 7-8 BP 974 EP 988 DI 10.1016/j.actaastro.2009.10.009 PG 15 WC Engineering, Aerospace SC Engineering GA 561FX UT WOS:000274962400002 ER PT J AU Sumrall, JP Creech, S AF Sumrall, John P. Creech, Steve TI Update on the Ares V to support heavy lift for US space exploration policy SO ACTA ASTRONAUTICA LA English DT Article DE Ares V AB When NASA's Arcs V cargo launch vehicle (Fig. 1) begins flying late next decade, its capabilities will significantly exceed the 1960s-era Saturn V. It will send more crew and cargo to more places on the lunar surface than Apollo and provide ongoing support to a permanent lunar outpost that will open the Moon to greater exploration, science and adventure than ever before. Moreover, it will restore the United States' heavy-lift capability, which can support human and robotic exploration for decades to come. Arcs V remains in a pre-design analysis cycle stage pending a planned Authority to Proceed (ATP) in late 2010. Arcs V benefits from the decision to draw from heritage hardware and its commonality with the Arcs I crew launch vehicle, which completed its preliminary design review (PDR) in September 2008. Most of the work on Arcs V to date has been focused on refining the vehicle design through a variety of internal studies. This paper will provide background information on the Arcs V evolution, emphasizing the vehicle configuration as it exists today. Published by Elsevier Ltd. C1 [Sumrall, John P.; Creech, Steve] NASA, George C Marshall Space Flight Ctr, Washington, DC USA. RP Sumrall, JP (reprint author), NASA, George C Marshall Space Flight Ctr, Washington, DC USA. EM John.P.Sumrall@nasa.gov; Stephen.Cook@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2010 VL 66 IS 7-8 BP 1133 EP 1145 DI 10.1016/j.actaastro.2009.10.002 PG 13 WC Engineering, Aerospace SC Engineering GA 561FX UT WOS:000274962400018 ER PT J AU Korzun, AM Dubos, GF Iwata, CK Stahl, BA Quicksall, JJ AF Korzun, Ashley M. Dubos, Gregory F. Iwata, Curtis K. Stahl, Benjamin A. Quicksall, John J. TI A concept for the entry, descent, and landing of high-mass payloads at Mars SO ACTA ASTRONAUTICA LA English DT Article DE Entry; Descent and landing; Mars; EDL ID EXPLORATION AB The architecture concepts and aggressive science objectives for the next phases of Mars exploration will require landed masses an order of magnitude or greater than any Mars mission previously planned or flown. Additional studies have shown the requirements for missions more ambitious than the 2009 Mars Science Laboratory (similar to 900 kg payload mass) to extend beyond the capabilities of Viking-heritage entry, descent, and landing (EDL) technologies, namely blunt-body aeroshells, supersonic disk-gap-band parachutes, and existing TPS materials. This study details a concept for Mars entry, descent, and landing capable of delivering a 20 t payload within 1 km of a target landing site at 0 km MOLA. The concept presented here explores potentially enabling EDL technologies for the continued robotic and eventual human exploration of Mars, moving beyond the Viking-heritage systems relied upon for the past 30 years of Mars exploration. These technologies address the challenges of hypersonic guidance, supersonic deceleration, precision landing, and surface hazard avoidance. Without support for the development of these enabling technologies in the near term, the timeline for the successful advanced exploration of Mars will likely extend indefinitely. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Korzun, Ashley M.; Dubos, Gregory F.; Iwata, Curtis K.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Stahl, Benjamin A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Quicksall, John J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Korzun, AM (reprint author), Georgia Inst Technol, Guggenheim Sch Aerosp Engn, 270 Ferst Dr, Atlanta, GA 30332 USA. EM akorzun@gatech.edu; greg.dubos@gatech.edu; cukii@gatech.edu; benjamin.a.stahl@nasa.gov; john.j.quicksall@nasa.gov NR 25 TC 21 Z9 23 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2010 VL 66 IS 7-8 BP 1146 EP 1159 DI 10.1016/j.actaastro.2009.10.003 PG 14 WC Engineering, Aerospace SC Engineering GA 561FX UT WOS:000274962400019 ER PT J AU Newman, LK AF Newman, Lauri Kraft TI The NASA robotic conjunction assessment process: Overview and operational experiences SO ACTA ASTRONAUTICA LA English DT Article DE Conjunction assessment; Collision avoidance AB Orbital debris poses a significant threat to spacecraft health and safety. Recent events such as China's anti-satellite test and the Breeze-M rocket explosion have led to an even greater awareness and concern in the satellite community. Therefore, the National Aeronautics and Space Administration (NASA) has established requirements that routine conjunction assessment screening shall be performed for all maneuverable spacecraft having perigees <20001 km or within 200 km of geosynchronous altitude. NASA's Goddard Space Flight Center (GSFC) has developed an operational collision risk assessment process to protect NASA's high-value unmanned (robotic) assets that has been in use since January 2005. This paper provides an overview of the NASA robotic conjunction assessment process, including descriptions of the new tools developed to analyze close approach data and of the risk mitigation strategies employed. In addition, statistical data describing the number of conjunctions experienced are presented. A debris avoidance maneuver performed by Aura in June of 2008 is described in detail to illustrate the process. Published by Elsevier Ltd. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Newman, LK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM lauri.k.newman@nasa.gov NR 12 TC 2 Z9 3 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2010 VL 66 IS 7-8 BP 1253 EP 1261 DI 10.1016/j.actaastro.2009.10.005 PG 9 WC Engineering, Aerospace SC Engineering GA 561FX UT WOS:000274962400027 ER PT J AU Allner, M Mckay, C Coe, L Rask, J Paradise, J Wynne, JJ AF Allner, Matthew McKay, Chris Coe, Liza Rask, Jon Paradise, Jim Wynne, J. Judson TI NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives SO ACTA ASTRONAUTICA LA English DT Article DE NASA Explorer School program (NES); NASA Spaceward Bound program; Mars analog sites; Field documentation methodologies; Science education outreach; STEM; STEM-G; Community of Partners (CoPs); Lockheed Martin AB Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Allner, Matthew] Univ N Dakota, Space Studies Dept, Grand Forks, ND 58201 USA. [McKay, Chris; Coe, Liza; Rask, Jon] NASA, Ames Res Ctr, Washington, DC USA. [Wynne, J. Judson] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. RP Allner, M (reprint author), Univ N Dakota, Space Studies Dept, Grand Forks, ND 58201 USA. EM mjallner@msn.com; cmckay@mail.arc.nasa.gov; lcoe@mail.arc.nasa.gov; jon.c.rask@nasa.gov; jparadise@comcast.net; jut.wynne@nau.edu FU Student Spaceward Bound program FX We would like to thank the NASA Explorer School program, NASA Spaceward Bound, and the Mars Society for providing teachers and students with incredible scientific opportunities; Dr. Vadim Ryalov of the University of North Dakota Space Studies Department; Beth Ingrum, Vanessa Suggs, and Joan Sanders of the NES program; Dr. Joyce Winterton and Dr. Mabel Matthews of NASA's higher education division; Althia Harris and Monica Washington of NASA Headquarters in Washington, D.C. and Ria Stevenson of SAIC Travel; NASA Astronaut Joe Acaba for his support of the Student Spaceward Bound program; and Dr. David Livingston for his support and involvement of both the NES and Spaceward Bound program in his web-based radio program, The Space Show. And lastly, I would like to thank my wife Jessica, our three wonderful children Isabelle, Nathan, and Alexandra and my parents Mike and Laurie for their love and support and for allowing me the time to participate in these two programs as well as develop the research associated with it. NR 4 TC 2 Z9 2 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD APR-MAY PY 2010 VL 66 IS 7-8 BP 1280 EP 1284 DI 10.1016/j.actaastro.2009.09.019 PG 5 WC Engineering, Aerospace SC Engineering GA 561FX UT WOS:000274962400030 ER PT J AU Agogino, A Tumer, K AF Agogino, Adrian Tumer, Kagan TI A MULTIAGENT COORDINATION APPROACH TO ROBUST CONSENSUS CLUSTERING SO ADVANCES IN COMPLEX SYSTEMS LA English DT Article DE Consensus clustering; distributed clustering; multiagent clustering AB In many distributed modeling, control or information processing applications, clustering patterns that share certain similarities is the critical first step. However, many traditional clustering algorithms require centralized processing, reliable data collection and the availability of all the raw data in one place at one time. None of these requirement can be met in many complex real world problems. In this paper, we present an agent-based method for combining multiple base clusterings into a single unified "consensus" clustering that is robust against many types of failures and does not require spatial/temporal synchronization. In this approach, agents process clusterings coming from separate sources and pool them to produce a unified consensus. The first contribution of this work is to provide an adaptive method by which the agents update their selections to maximize an objective function based on the quality of the consensus clustering. The second contribution of this work is in providing intermediate agent-specific objective functions that significantly improve the quality of the consensus clustering process. Our results show that this agent-based method achieves comparable or better performance than traditional non-agent consensus clustering methods in fault-free conditions, and remains effective under a wide range of failure scenarios that paralyze the traditional methods. C1 [Agogino, Adrian] NASA, UCSC, Ames Res Ctr, Moffett Field, CA 94035 USA. [Tumer, Kagan] Oregon State Univ, Corvallis, OR 97331 USA. RP Agogino, A (reprint author), NASA, UCSC, Ames Res Ctr, Mailstop 269-3, Moffett Field, CA 94035 USA. EM adrian.k.agogino@nasa.gov; kagan.tumer@oregonstate.edu NR 71 TC 0 Z9 0 U1 0 U2 10 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-5259 EI 1793-6802 J9 ADV COMPLEX SYST JI Adv. Complex Syst. PD APR PY 2010 VL 13 IS 2 BP 165 EP 197 DI 10.1142/S0219525910002499 PG 33 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences SC Mathematics; Science & Technology - Other Topics GA 623GO UT WOS:000279727100003 ER PT J AU Kim, MHY Qualls, GD Slaba, TC Cucinotta, FA AF Kim, Myung-Hee Y. Qualls, Garry D. Slaba, Tony C. Cucinotta, Francis A. TI Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Organ dose and dose equivalent; Human tissue models; Risk assessment; Solar particle events; Galactic cosmic ray; Radiation protection ID RADIATION PROTECTION DOSIMETRY; ADULT VOXEL PHANTOM; SPACE RADIATION; EXPLORATION; RISK AB For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the "reference person" of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Kim, Myung-Hee Y.] Univ Space Res Assoc, Houston, TX 77058 USA. [Qualls, Garry D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Slaba, Tony C.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Kim, MHY (reprint author), Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM myung-hee.y.kim@nasa.gov; garry.d.qualls@nasa.gov; tony.c.slaba@nasa.gov; francis.a.cucinotta@nasa.gov OI Kim, Myung-Hee/0000-0001-5575-6858 NR 27 TC 2 Z9 3 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 1 PY 2010 VL 45 IS 7 BP 850 EP 857 DI 10.1016/j.asr.2009.09.027 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 576WB UT WOS:000276179300005 ER PT J AU Slaba, TC Qualls, GD Clowdsley, MS Blattnig, SR Walker, SA Simonsen, LC AF Slaba, T. C. Qualls, G. D. Clowdsley, M. S. Blattnig, S. R. Walker, S. A. Simonsen, L. C. TI Utilization of CAM, CAF, MAX, and FAX for space radiation analyses using HZETRN SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space radiation; Human phantoms; Radiation exposure; Dose; Dose equivalent; Whole body effective dose ID MONTE-CARLO CALCULATION; ADULT VOXEL PHANTOM; PROTECTION DOSIMETRY; PARTICLE; UPDATE AB To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm(2), 2.0 g/cm(2), and 10.0 g/cm(2), The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and to further assess the differences between CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were significantly under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is also found that the errors associated with the mass and location of certain tissues in CAM and CAF have a significant impact on the mass averaged dose equivalent values, and it is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Slaba, T. C.; Qualls, G. D.; Clowdsley, M. S.; Blattnig, S. R.; Simonsen, L. C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Slaba, T. C.; Walker, S. A.] Old Dominion Univ, Norfolk, VA 23529 USA. RP Slaba, TC (reprint author), NASA, Langley Res Ctr, Mail Storp 188 E,2 W Reid St,B1205,Room 281, Hampton, VA 23681 USA. EM Tony.C.Slaba@nasa.gov; Garry.D.-Qualls@nasa.gov; Martha.S.Clowdsley@nasa.gov; Steve.R.Blattnig@nasa.gov; Steven.A.Walk-er@nasa.gov; Lisa.C.Simonsen@nasa.gov NR 33 TC 11 Z9 13 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 1 PY 2010 VL 45 IS 7 BP 866 EP 883 DI 10.1016/j.asr.2009.08.017 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 576WB UT WOS:000276179300007 ER PT J AU Mertens, CJ Moyers, MF Walker, SA Tweed, J AF Mertens, Christopher J. Moyers, Michael F. Walker, Steven A. Tweed, John TI Proton lateral broadening distribution comparisons between GRNTRN, MCNPX, and laboratory beam measurements SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Radiation transport; Ion beam measurements; Multiple scattering; Radiobiology; GRNTRN ID SCATTERING; HZETRN AB Recent developments in NASA's deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light-ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Mertens, Christopher J.] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA. [Moyers, Michael F.] Proton Therapy Inc, Colton, CA 92324 USA. [Walker, Steven A.; Tweed, John] Old Dominion Univ, Norfolk, VA 23529 USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, 21 Langley Blvd,Mail Stop 401B, Hampton, VA 23681 USA. EM Christopher.J.Mertens@nasa.gov NR 15 TC 4 Z9 5 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 1 PY 2010 VL 45 IS 7 BP 884 EP 891 DI 10.1016/j.asr.2009.08.013 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 576WB UT WOS:000276179300008 ER PT J AU Jones, HW Kliss, MH AF Jones, Harry W. Kliss, Mark H. TI Exploration life support technology challenges for the Crew Exploration Vehicle and future human missions SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space life support; Life support systems; Life support technologies; Crew Exploration Vehicle; Lunar Outpost AB As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass oil longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Jones, Harry W.; Kliss, Mark H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jones, HW (reprint author), NASA, Ames Res Ctr, N239-8, Moffett Field, CA 94035 USA. EM Harry.Jones@nasa.gov; Mark.Kliss@nasa.gov NR 24 TC 3 Z9 3 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD APR 1 PY 2010 VL 45 IS 7 BP 917 EP 928 DI 10.1016/j.asr.2009.10.018 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 576WB UT WOS:000276179300011 ER PT J AU Das, S Chattopadhyay, A Srivastava, AN AF Das, Santanu Chattopadhyay, Aditi Srivastava, Ashok N. TI Classifying Induced Damage in Composite Plates Using One-Class Support Vector Machines SO AIAA JOURNAL LA English DT Article ID BUILT-IN SENSORS; FAULT-DETECTION; LAMB WAVES; IMPACT DAMAGE; CLASSIFICATION; TIME; DIAGNOSTICS AB For many engineering and aerospace applications, detection and quantification of multiscale damage in fiber-reinforced composite structures is increasing in importance. Consequently, the development of an efficient and cost-effective diagnosis scheme that can accurately sense, characterize, and evaluate the existence of any form of damage will offer significant potential for improving the performance, reliability, and extending the operational life of these complex systems. We present an approach to characterize and classify different damage states in composite laminates by measuring the change in the signature of the resultant wave that propagates through the anisotropic media under forced excitation. The wave propagation is measured using surface-mounted piezoelectric transducers. Sensor signals collected from test specimens with various forms of induced damage are analyzed using a pattern-recognition algorithm known as the one-class support vector machines. The one-class support-vector-machine algorithm performs automatic anomaly detection and classification of damage signatures using various features from the sensor readings. The results obtained suggest that the one-class support-vector-machine algorithm, along with appropriate preprocessing techniques, can often achieve better accuracy than the popular k-nearest-neighbor method in detecting and classifying anomalies caused by structural defects, even when the perturbations caused in the sensor signals due to different damage states are minimal. C1 [Das, Santanu] Univ Calif Santa Cruz, Res Ctr, Santa Cruz, CA 95064 USA. [Chattopadhyay, Aditi] Arizona State Univ, Adapt Intelligent Mat & Syst Ctr, Tempe, AZ 85287 USA. [Srivastava, Ashok N.] NASA, Ames Res Ctr, Integrated Vehicle Hlth Management Program, Intelligent Data Understanding Grp, Moffett Field, CA 94035 USA. RP Das, S (reprint author), Univ Calif Santa Cruz, Res Ctr, Santa Cruz, CA 95064 USA. EM santanu.das-1@arc.nasa.gov; aditi@asu.edu; ashok.n.srivastava@nasa.gov FU U.S. Air Force Office of Scientific Research [F496200310174] FX The research is supported by the U.S. Air Force Office of Scientific Research, grant number F496200310174. technical monitor Clark Allred, and NASA Ames Research Center, technical monitor Rodney Martin. Their support is gratefully acknowledged. NR 47 TC 5 Z9 5 U1 1 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD APR PY 2010 VL 48 IS 4 BP 705 EP 718 DI 10.2514/1.37282 PG 14 WC Engineering, Aerospace SC Engineering GA 581VN UT WOS:000276553200001 ER PT J AU Shah, PN Mobed, D Spakovszky, ZS Brooks, TF Humphreys, WM AF Shah, P. N. Mobed, D. Spakovszky, Z. S. Brooks, T. F. Humphreys, W. M., Jr. TI Aeroacoustics of Drag-Generating Swirling Exhaust Flows SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA/CEAS 13th Aeroacoustics Conference CY MAY 21-23, 2007 CL Rome, ITALY SP AIAA, CEAS ID JET NOISE; MOTION AB Aircraft on approach in high-drag, high-lift configurations create inherently noisy flow structures. For flaps, slats, and undercarriage, the strong correlation between overall noise and drag suggests that future quiet aircraft will need to generate drag at low noise levels. This paper presents a novel noise-reduction concept based on the idea that appreciable pressure drag can be generated by a relatively quiet swirling exhaust flow. A first aeroacoustic assessment of ram-pressure-driven swirling exhaust flows and their associated vortex breakdown instability is presented. The technical approach combines 1) an in-depth aerodynamic analysis, 2) qualitative acoustic source descriptions via plausibility arguments, and 3) detailed quantitative phased microphone-array measurements of a model-scale engine nacelle with stationary swirl vanes at a full-scale approach Mach number of 0.17. The analysis shows an acoustic signature composed of 1) quadrupole-type turbulent mixing noise in the swirling core flow and 2) scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near the nacelle, pylon, and vane centerbody trailing edges. The highest stable swirl-angle setting yields a nacelle-area-based drag coefficient of 0.83 with a full-scale overall sound pressure level of about 40 dBA at the International Civil Aviation Organization approach certification point. C1 [Shah, P. N.; Mobed, D.; Spakovszky, Z. S.] MIT, Dept Aeronaut & Astronaut, Gas Turbine Lab, Cambridge, MA 02139 USA. [Brooks, T. F.; Humphreys, W. M., Jr.] NASA, Langley Res Ctr, Aeroacoust Branch, Hampton, VA 23681 USA. RP Shah, PN (reprint author), MIT, Dept Aeronaut & Astronaut, Gas Turbine Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 19 TC 3 Z9 3 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD APR PY 2010 VL 48 IS 4 BP 719 EP 727 DI 10.2514/1.37249 PG 9 WC Engineering, Aerospace SC Engineering GA 581VN UT WOS:000276553200002 ER PT J AU Gupta, KK Choi, SB Ibrahim, A AF Gupta, K. K. Choi, S. B. Ibrahim, A. TI Aeroelastic-Acoustics Simulation of Flight Systems SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 47th Aerospace Sciences Meeting and Exhibit CY JAN 05-08, 2009 CL Orlando, FL SP Amer Inst Aeronaut & Astronaut AB This paper describes the details of a novel numerical finite-element-based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both computational fluid dynamics and structural simulations are based on finite element discretization employing unstructured grids. The sound pressure level on structural surfaces is calculated from the root mean square of the unsteady pressure, and the acoustic-wave frequencies are computed from a fast Fourier transform of the unsteady pressure distribution as a function of time. The newly developed tool proves to be unique, as it is designed to analyze complex practical problems involving computations in a routine fashion. C1 [Gupta, K. K.] NASA, Dryden Flight Res Ctr, Edwards AFB, CA 93523 USA. [Choi, S. B.] Adv Engn Solut Inc, Ormond Beach, FL 32174 USA. [Ibrahim, A.] Norfolk State Univ, Dept Engn, Norfolk, VA 23504 USA. RP Gupta, KK (reprint author), NASA, Dryden Flight Res Ctr, Edwards AFB, CA 93523 USA. NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD APR PY 2010 VL 48 IS 4 BP 798 EP 807 DI 10.2514/1.44098 PG 10 WC Engineering, Aerospace SC Engineering GA 581VN UT WOS:000276553200009 ER PT J AU Nishikawa, H Diskin, B Thomas, JL AF Nishikawa, Hiroaki Diskin, Boris Thomas, James L. TI Critical Study of Agglomerated Multigrid Methods for Diffusion SO AIAA JOURNAL LA English DT Article ID SOLVERS AB Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that a multigrid with an inconsistent coarse-grid scheme using only the edge derivatives (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods, but its convergence can deteriorate on highly skewed grids. A multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also can be grid dependent. In contrast, nearly grid-independent convergence rates are demonstrated for a multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts. C1 [Nishikawa, Hiroaki; Diskin, Boris] Natl Inst Aerosp, Hampton, VA 23666 USA. [Thomas, James L.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. EM hiro@nianet.org; bdiskin@nianet.org; James.L.Thomas@nasa.gov RI Nishikawa, Hiroaki/M-1247-2016 OI Nishikawa, Hiroaki/0000-0003-4472-5313 FU National Institute of Aerospace under the NASA Fundamental Aeronautics Program through NASA Research Announcement [NNL07AA23C, NNL07AA31C] FX The three-dimensional results presented were computed within the FUN3D suite of codes at NASA Langley Research Cente. The contributions of E. J. Nielsen, J. A. White, and R.T. Biedron of NASA to the implementation within FUN3D are gratefully acknowledged. Nishikawa was supported by the National Institute of Aerospace under the NASA Fundamental Aeronautics Program through NASA Research Announcement Contract NNL07AA23C. Diskin was supported by the National Institute of Aerospace under NASA Fundamental Aeronautics Program through NASA Research Announcement Contract NNL07AA31C. NR 13 TC 9 Z9 9 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD APR PY 2010 VL 48 IS 4 BP 839 EP 847 DI 10.2514/1.J050055 PG 9 WC Engineering, Aerospace SC Engineering GA 581VN UT WOS:000276553200013 ER PT J AU Garcia, M Litago, J Palacios-Orueta, A Pinzon, JE Ustin, SL AF Garcia, Monica Litago, J. Palacios-Orueta, A. Pinzon, J. E. Ustin, Susan L. TI Short-term propagation of rainfall perturbations on terrestrial ecosystems in central California SO APPLIED VEGETATION SCIENCE LA English DT Article DE AVHRR; Cross-correlations; ENSO; NDVI; resilience; Seasonality; Time series ID EL-NINO; SOUTHERN-OSCILLATION; CLIMATE-CHANGE; SOIL-MOISTURE; UNITED-STATES; VEGETATION; ENSO; PRECIPITATION; TEMPERATURE; VARIABILITY AB Question Does vegetation buffer or amplify rainfall perturbations, and is it possible to forecast rainfall using mesoscale climatic signals? Location Central California (USA). Methods The risk of dry or wet rainfall events was evaluated using conditional probabilities of rainfall depending on El Nino Southern Oscillation (ENSO) events. The propagation of rainfall perturbations on vegetation was calculated using cross-correlations between monthly seasonally adjusted (SA) normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR), and SA antecedent rainfall at different time-scales. Results In this region, El Nino events are associated with higher than normal winter precipitation (probability of 73%). Opposite but more predictable effects are found for La Nina events (89% probability of dry events). Chaparral and evergreen forests showed the longest persistence of rainfall effects (0-8 months). Grasslands and wetlands showed low persistence (0-2 months), with wetlands dominated by non-stationary patterns. Within the region, the NDVI spatial patterns associated with higher (lower) rainfall are homogeneous (heterogeneous), with the exception of evergreen forests. Conclusions Knowledge of the time-scale of lagged effects of the non-seasonal component of rainfall on vegetation greenness, and the risk of winter rainfall anomalies lays the foundation for developing a forecasting model for vegetation greenness. Our results also suggest greater competitive advantage for perennial vegetation in response to potential rainfall increases in the region associated with climate change predictions, provided that the soil allows storing extra rainfall. C1 [Garcia, Monica] CSIC, Dept Biol Conservac Estac Biol Donana, ES-41092 Seville, Spain. [Garcia, Monica] CSIC, Dept Desertificac & Geoecol, Estac Expt Zonas Aridas, ES-04001 Almeria, Spain. [Litago, J.] Univ Politecn Madrid, Dept Estadist & Metodos Gest Agr, Escuela Tecn Super Ingenieros Agron, ES-28040 Madrid, Spain. [Palacios-Orueta, A.] Univ Politecn Madrid, Dept Silvopascicultura, Escuela Tecn Super Ingenieros Agron, ES-28040 Madrid, Spain. [Pinzon, J. E.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Garcia, Monica; Litago, J.; Ustin, Susan L.] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing, Davis, CA 95616 USA. RP Garcia, M (reprint author), CSIC, Dept Biol Conservac Estac Biol Donana, Amer Vespucio S-N, ES-41092 Seville, Spain. EM monicagarcia@ebd.csic.es; javier.litago@upm.es; alicia.palacios@upm.es; Jorge_Pinzon@ssaihq.com; slustin@ucdavis.edu RI Litago, Javier/L-8701-2014; Palacios Orueta, Alicia/L-8987-2014; Garcia, Monica/N-1206-2014; CSIC, EBD Donana/C-4157-2011 OI Litago, Javier/0000-0003-2088-7991; Palacios Orueta, Alicia/0000-0002-1248-8336; CSIC, EBD Donana/0000-0003-4318-6602 FU NASA [NAS5-31359]; Foundation Barrie de la Maza, Spain; CSIC [I3P]; Direccion General de Investigacion, Junta de Andalucia FX The authors thank George Scheer for computer support and Dr D. Riano, Dr T. Abaigar, Dr J. Puigdefabregas, Dr J. Miranda, Dr M. Ruiz-Altisent, and A. Ruiz for helpful discussions. Funding was provided by NASA EOS program grant No. NAS5-31359. We acknowledge Foundation Barrie de la Maza from Spain for providing a fellowship to M.G. for graduate studies in the USA. Postdoctoral financial support to M.G. was provided by a CSIC I3P contract and by the Direccion General de Investigacion, Junta de Andalucia (Proyecto de Excelencia nr 01288). We acknowledge three anonymous reviewers for useful comments that significantly improved the quality of this manuscript. NR 78 TC 7 Z9 7 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1402-2001 EI 1654-109X J9 APPL VEG SCI JI Appl. Veg. Sci. PD APR PY 2010 VL 13 IS 2 BP 146 EP 162 DI 10.1111/j.1654-109X.2009.01057.x PG 17 WC Plant Sciences; Ecology; Forestry SC Plant Sciences; Environmental Sciences & Ecology; Forestry GA 559JB UT WOS:000274819200002 ER PT J AU Ghosh, S Osman, S Vaishampayan, P Venkateswaran, K AF Ghosh, Sudeshna Osman, Shariff Vaishampayan, Parag Venkateswaran, Kasthuri TI Recurrent Isolation of Extremotolerant Bacteria from the Clean Room Where Phoenix Spacecraft Components Were Assembled SO ASTROBIOLOGY LA English DT Article DE Phoenix; Extremotolerant; Clean room; Spacecraft assembly facility ID MICROBIAL CHARACTERIZATION; CABIN AIR; SP-NOV.; DIVERSITY; FACILITY; MICROORGANISMS; SPORES; ENVIRONMENTS; RESISTANCE; BIOMARKER AB The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning. C1 [Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA Research Announcement (NRA) FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by NASA Research Announcement (NRA) ROSES 2006 awarded to Kasthuri Venkateswaran. We are grateful to members of the JPL Biotechnology and Planetary Protection Group for technical assistance. We also appreciate the help rendered by R. Sumner, B. Petsos, Y. Salinas, and D. Vaughn during sampling. We are thankful to J. Spry, C. Conley, and J. Rummel for valuable advice and encouragement. NR 40 TC 27 Z9 27 U1 2 U2 18 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD APR PY 2010 VL 10 IS 3 BP 325 EP 335 DI 10.1089/ast.2009.0396 PG 11 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 592EJ UT WOS:000277358800006 PM 20446872 ER PT J AU Bianco, FB Zhang, ZW Lehner, MJ Mondal, S King, SK Giammarco, J Holman, MJ Coehlo, NK Wang, JH Alcock, C Axelrod, T Byun, YI Chen, WP Cook, KH Dave, R de Pater, I Kim, DW Lee, T Lin, HC Lissauer, JJ Marshall, SL Protopapas, P Rice, JA Schwamb, ME Wang, SY Wen, CY AF Bianco, F. B. Zhang, Z. -W. Lehner, M. J. Mondal, S. King, S. -K. Giammarco, J. Holman, M. J. Coehlo, N. K. Wang, J. -H. Alcock, C. Axelrod, T. Byun, Y. -I. Chen, W. P. Cook, K. H. Dave, R. de Pater, I. Kim, D. -W. Lee, T. Lin, H. -C. Lissauer, J. J. Marshall, S. L. Protopapas, P. Rice, J. A. Schwamb, M. E. Wang, S. -Y. Wen, C. -Y. TI THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE Kuiper belt: general; occultations ID AMERICAN OCCULTATION SURVEY; JUPITER-FAMILY COMETS; TRANS-NEPTUNIAN BODIES; SIZE DISTRIBUTION; STELLAR OCCULTATIONS; COLLISIONAL EVOLUTION; SCATTERED DISK; OORT CLOUD; SEARCH; ACCRETION AB We have analyzed the first 3.75 years of data from the Taiwanese American Occultation Survey (TAOS). TAOS monitors bright stars to search for occultations by Kuiper Belt objects (KBOs). This data set comprises 5 x 10(5) star hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this data set. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari, Kenyon & Bromley, Benavidez & Campo Bagatin, and Fraser. A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is composed of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution. C1 [Bianco, F. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bianco, F. B.] Global Telescope Network Inc, Cumbres Observ, Santa Barbara, CA 93117 USA. [Bianco, F. B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bianco, F. B.; Lehner, M. J.; Holman, M. J.; Alcock, C.; Protopapas, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zhang, Z. -W.; Lehner, M. J.; King, S. -K.; Wang, J. -H.; Lee, T.; Lin, H. -C.; Wang, S. -Y.; Wen, C. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Zhang, Z. -W.; Wang, J. -H.; Chen, W. P.] Natl Cent Univ, Inst Astron, Jhongli 32054, Taiwan. [Mondal, S.] ARIES, Naini Tal 263129, India. [Giammarco, J.] Eastern Univ, Dept Phys & Astron, St Davids, PA 19087 USA. [Giammarco, J.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Axelrod, T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Byun, Y. -I.; Kim, D. -W.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Cook, K. H.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Dave, R.; Kim, D. -W.; Protopapas, P.] Initiat Innovat Comp Harvard, Cambridge, MA 02138 USA. [de Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Lissauer, J. J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div 245 3, Moffett Field, CA 94035 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Bianco, FB (reprint author), Univ Calif Santa Barbara, Dept Phys, Mail Code 9530, Santa Barbara, CA 93106 USA. EM fbianco@lcogt.net RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985 FU NSF [AST-0501681, DMS-0636667]; NASA [NNG04G113G]; NSC [96-2112-M008- 024-MY3]; National Research Foundation of Korea [2009-0075376]; NASA's Planetary Geology & Geophysics Program; [AS-88-TP-A02] FX The authors thank Scott Kenyon, for insightful conversations. Work at the CfA was supported in part by the NSF under grant AST-0501681 and by NASA under grant NNG04G113G. Work at NCU was supported by the grant NSC 96-2112-M008- 024-MY3. Work at ASIAA was supported in part by the thematic research program AS-88-TP-A02. Work at Yonsei was supported by National Research Foundation of Korea through grant 2009-0075376 (Space Science Institute). The work of N. Coehlo was supported in part by NSF grant DMS-0636667. Work at LLNL was performed in part under USDOE Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344. Work at SLAC was performed under USDOE contract DE-AC0276SF00515. Work at NASA Ames was supported by NASA's Planetary Geology & Geophysics Program. NR 51 TC 25 Z9 25 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2010 VL 139 IS 4 BP 1499 EP 1514 DI 10.1088/0004-6256/139/4/1499 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 568BO UT WOS:000275496900018 ER PT J AU Mizuno, DR Kraemer, KE Flagey, N Billot, N Shenoy, S Paladini, R Ryan, E Noriega-Crespo, A Carey, SJ AF Mizuno, D. R. Kraemer, K. E. Flagey, N. Billot, N. Shenoy, S. Paladini, R. Ryan, E. Noriega-Crespo, A. Carey, S. J. TI A CATALOG OF MIPSGAL DISK AND RING SOURCES SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; infrared: ISM; planetary nebulae: general ID SPITZER-SPACE-TELESCOPE; INNER GALACTIC PLANE; IMAGING SURVEY; MU-M; NEBULA; DISCOVERY; GLIMPSE; CANDIDATES; OBJECTS; IMAGES AB We present a catalog of 416 extended, resolved, disk and ringlike objects as detected in theMIPSGAL 24 mu m survey of the Galactic plane. This catalog is the result of a search in the MIPSGAL image data for generally circularly symmetric, extended "bubbles" without prior knowledge or expectation of their physical nature. Most of the objects have no extended counterpart at 8 mu m or 70 mu m, with less than 20% detections at each wavelength. For the 54 objects with central point sources, the sources are nearly always seen in all Infrared Array Camera bands. About 70 objects (16%) have been previously identified, with another 35 listed as Infrared Astronomical Satellite sources. Among the identified objects, those with central sources are mostly listed as emission-line stars, but with other source types including supernova remnants (SNRs), luminous blue variables, and planetary nebulae (PNe). The 57 identified objects (of 362) without central sources are nearly all PNe (similar to 90%), which suggests that a large fraction of the 300+ unidentified objects in this category are also PNe. These identifications suggest that this is primarily a catalog of evolved stars. Also included in the catalog are two filamentary objects that are almost certainly SNRs, and 10 unusual compact extended objects discovered in the search. Two of these show remarkable spiral structure at both 8 mu m and 24 mu m. These are likely background galaxies previously hidden by the intervening Galactic plane. C1 [Mizuno, D. R.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. [Kraemer, K. E.] USA, Res Lab, RVBYB, Hanscom Afb, MA 01731 USA. [Flagey, N.; Paladini, R.; Noriega-Crespo, A.; Carey, S. J.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Billot, N.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Shenoy, S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ryan, E.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. RP Mizuno, DR (reprint author), Boston Coll, Inst Sci Res, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA. EM afrl.rvb.pa@hanscom.af.mil OI Kraemer, Kathleen/0000-0002-2626-7155 NR 32 TC 36 Z9 36 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2010 VL 139 IS 4 BP 1542 EP 1552 DI 10.1088/0004-6256/139/4/1542 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 568BO UT WOS:000275496900023 ER PT J AU French, RG Marouf, EA Rappaport, NJ McGhee, CA AF French, Richard G. Marouf, Essam A. Rappaport, Nicole J. McGhee, Colleen A. TI OCCULTATION OBSERVATIONS OF SATURN'S B RING AND CASSINI DIVISION SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: rings ID STELLAR OCCULTATION; RADIO OCCULTATION; VOYAGER-2; SYSTEM; FEATURES; 28-SGR; EDGES; POLE AB The outer edge of Saturn's B ring is strongly affected by the nearby 2:1 inner Lindblad resonance of Mimas and is distorted approximately into a centered elliptical shape, which at the time of the Voyager 1 and 2 encounters was oriented with its periapse toward Mimas. Subsequent observations have shown that the actual situation is considerably more complex. We present a complete set of historical occultation measurements of the B-ring edge, including the 1980 Voyager 1 and 1981 Voyager 2 radio and stellar occultations, the 1989 occultation of 28 Sgr, two independently analyzed occultations observed with the Hubble Space Telescope in 1991 and 1995, and a series of ring profiles from 12 diametric (ansa-to-ansa) occultations observed in 2005, using the Cassini Radio Science Subsystem (RSS). After making an approximate correction for systematic errors in the reconstructed spacecraft trajectories, we obtain orbit fits to features in the rings with rms residuals well under 1 km, in most cases. Fits to the B-ring edge in the RSS data reveal a systematic variation in the maximum optical depth at the very edge of the ring as a function of its orbital radius. We compare the B-ring measurements to an m = 2 distortion aligned with Mimas, and show that there have been substantial phase shifts over the past 25 years. Finally, we present freely precessing equatorial elliptical models for 16 features in the Cassini Division. The inner edges of the gaps are generally eccentric, whereas the outer edges are nearly circular, with ae < 0.5 km. C1 [French, Richard G.; McGhee, Colleen A.] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Marouf, Essam A.] San Jose State Univ, San Jose, CA 95192 USA. [Rappaport, Nicole J.] Jet Prop Lab, Pasadena, CA 91011 USA. RP French, RG (reprint author), Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. EM rfrench@wellesley.edu FU NASA Cassini Data Analysis Program; NASA Massachusetts Space; Wellesley College; Keck Northeast Astronomy Consortium FX We thank the members of the Cassini Radio Science Operations Team for their outstanding support in the acquisition of the Cassini RSS occultation observations described in this paper. Phil Nicholson and Matt Hedman provided the impetus for this study. We are grateful to them and to Robert Jacobson and Amanda Bosh for their independent confirmatory calculations of the geometry of several of the occultations. The NAIF team at JPL provided expert guidance in the use of the SPICE toolkit. Amanda Zangari provided programming help, and Team Cassini 2008 members Amanda Curtis, JillianGarber, Katherine Judd, and David Oakley assisted with the initial data analysis. A very detailed external review by Amanda Bosh is most appreciated. This work was supported in part by the NASA Cassini Data Analysis Program, the NASA Massachusetts Space Grant, the Wellesley College undergraduate summer research program, and the Keck Northeast Astronomy Consortium. NR 31 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2010 VL 139 IS 4 BP 1649 EP 1667 DI 10.1088/0004-6256/139/4/1649 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 568BO UT WOS:000275496900032 ER PT J AU Huang, RHH Becker, W Edmonds, PD Elsner, RF Heinke, CO Hsieh, BC AF Huang, R. H. H. Becker, W. Edmonds, P. D. Elsner, R. F. Heinke, C. O. Hsieh, B. C. TI Study of Hubble Space Telescope counterparts to Chandra X-ray sources in the globular cluster M71 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE globular clusters: individual: M71 globular clusters: individual: NGC 6838 ID CATACLYSMIC VARIABLES; MILLISECOND PULSAR; GLOBULAR-CLUSTER-47 TUCANAE; OBSERVATORY OBSERVATIONS; PHOTOMETRIC PERFORMANCE; EXTENSIVE CENSUS; CATALOG; ROSAT; CALIBRATION; BINARIES AB Aims. We report on archival Hubble Space Telescope (HST) observations of the globular cluster M71 (NGC 6838). Methods. These observations, covering the core of the globular cluster, were performed by the Advanced Camera for Surveys (ACS) and the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r(h) = 1.'65) of M71, we find 33 candidate optical counterparts to 25 out of 29 Chandra X-ray sources, while 6 possible optical counterparts to 4 X-ray sources are found outside the half-mass radius. Results. Based on the X-ray and optical properties of the identifications, we find 1 certain and 7 candidate cataclysmic variables (CVs). We also classify 2 X-ray sources as certain and 12 as potential chromospherically active binaries (ABs), respectively. The only star in the error circle of the known millisecond pulsar (MSP) is inconsistent with being the optical counterpart. Conclusions. The number of X-ray faint sources with L-X > 4 x 10(30) erg s(-1) (0.5-6.0 keV) found in M71 is higher than extrapolations from other clusters on the basis of either collision frequency or mass. Since the core density of M71 is relatively low, we suggest that those CVs and ABs are primordial in origin. C1 [Huang, R. H. H.; Becker, W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Edmonds, P. D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Elsner, R. F.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Heinke, C. O.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Hsieh, B. C.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. RP Huang, RHH (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM rhuang@mpe.mpg.de OI Heinke, Craig/0000-0003-3944-6109 FU Max-Planck Society; NASA; NSERC; University of Alberta FX This work made use of the Chandra and HST data archives. We acknowledge that Stairs et al. kindly provided the information of M71A in advance of publication. We also thank Anderson et al. for the photometry. The first author thanks Albert K.H. Kong for some helpful suggestions and acknowledges the receipt of funding provided by the Max-Planck Society in the frame of the International Max-Planck Research School (IMPRS). COH acknowledges support from NASA Chandra grants, and funding from NSERC and the University of Alberta. NR 54 TC 11 Z9 11 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2010 VL 513 AR A16 DI 10.1051/0004-6361/200811245 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584TX UT WOS:000276777200021 ER PT J AU Rocha, G Pagano, L Gorski, KM Huffenberger, KM Lawrence, CR Lange, AE AF Rocha, G. Pagano, L. Gorski, K. M. Huffenberger, K. M. Lawrence, C. R. Lange, A. E. TI Markov chain beam randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; methods: data analysis ID 30 GHZ DATA; MAPS; INSTRUMENT AB We introduce a new method to propagate uncertainties in the beam shapes used to measure the cosmic microwave background to cosmological parameters determined from those measurements. The method, called markov chain beam randomization (MCBR), randomly samples from a set of templates or functions that describe the beam uncertainties. The method is much faster than direct numerical integration over systematic "nuisance" parameters, and is not restricted to simple, idealized cases as is analytic marginalization. It does not assume the data are normally distributed, and does not require Gaussian priors on the specific systematic uncertainties. We show that MCBR properly accounts for and provides the marginalized errors of the parameters. The method can be generalized and used to propagate any systematic uncertainties for which a set of templates is available. We apply the method to the Planck satellite, and consider future experiments. Beam measurement errors should have a small effect on cosmological parameters as long as the beam fitting is performed after removal of 1/f noise. C1 [Rocha, G.; Gorski, K. M.; Lawrence, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, G.; Gorski, K. M.; Lange, A. E.] CALTECH, Pasadena, CA 91125 USA. [Pagano, L.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Pagano, L.] Univ Roma La Sapienza, Sez INFN, I-00185 Rome, Italy. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. RP Rocha, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Huffenberger, Kevin/0000-0001-7109-0099 FU ASI [I/016/07/0]; NASA [1363745] FX G. R. is grateful to Jeffrey Jewell and Lloyd Knox for insightful discussions. L. P. acknowledges support by ASI contract I/016/07/0 "COFIS". K. M. H. receives support from NASA via JPL subcontract 1363745. We gratefully acknowledge support by the NASA Science Mission Directorate via the US Planck Project. The research described in this paper was partially carried out at the Jet propulsion Laboratory, California Institute of Technology, under a contract with NASA. Copyright 2009. All rights reserved. NR 17 TC 6 Z9 6 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2010 VL 513 AR A23 DI 10.1051/0004-6361/200913032 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584TX UT WOS:000276777200028 ER PT J AU Billot, N Noriega-Crespo, A Carey, S Guieu, S Shenoy, S Paladini, R Latter, W AF Billot, N. Noriega-Crespo, A. Carey, S. Guieu, S. Shenoy, S. Paladini, R. Latter, W. TI YOUNG STELLAR OBJECTS AND TRIGGERED STAR FORMATION IN THE VULPECULA OB ASSOCIATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE H II regions; infrared: ISM; infrared: stars; stars: formation; stars: pre-main sequence ID SPITZER-SPACE-TELESCOPE; LARGE-MAGELLANIC-CLOUD; INFRARED ARRAY CAMERA; APERTURE-SUBMILLIMETER-TELESCOPE; GALACTIC PLANE SURVEY; INITIAL MASS FUNCTION; MAIN-SEQUENCE STARS; NORTHERN MILKY-WAY; H-II REGIONS; SUPERNOVA-REMNANTS AB The Vulpecula OB association, Vul OB1, is a region of active star formation located in the Galactic plane at 2.3 kpc from the Sun. Previous studies suggest that sequential star formation is propagating along this 100 pc long molecular complex. In this paper, we use Spitzer MIPSGAL and GLIMPSE data to reconstruct the star formation history of VulOB1, and search for signatures of past triggering events. We make a census of young stellar objects (YSOs) in Vul OB1 based on IR color and magnitude criteria, and we rely on the properties and nature of these YSOs to trace recent episodes of massive star formation. We find 856 YSO candidates, and show that the evolutionary stage of the YSO population in Vul OB1 is rather homogeneous-ruling out the scenario of propagating star formation. We estimate the current star formation efficiency to be similar to 8%. We also report the discovery of a dozen pillar-like structures, which are confirmed to be sites of small scale triggered star formation. C1 [Billot, N.; Latter, W.] CALTECH, IPAC, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Noriega-Crespo, A.; Carey, S.; Guieu, S.; Shenoy, S.; Paladini, R.] CALTECH, IPAC, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Billot, N (reprint author), CALTECH, IPAC, NASA, Herschel Sci Ctr, MS 100-22, Pasadena, CA 91125 USA. EM nbillot@ipac.caltech.edu FU National Science Foundation FX The authors thank S. Bontemps for providing the extinction map of Vul OB1. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Virginia Tech Spectral-Line Survey (VTSS) is supported by the National Science Foundation. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 108 TC 22 Z9 22 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 797 EP 812 DI 10.1088/0004-637X/712/2/797 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600004 ER PT J AU Zenitani, S Hesse, M Klimas, A AF Zenitani, Seiji Hesse, Michael Klimas, Alex TI SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: jets; magnetohydrodynamics (MHD); methods: numerical; relativistic processes; shock waves ID KELVIN-HELMHOLTZ INSTABILITIES; GAMMA-RAY BURSTS; RIEMANN PROBLEM; MAGNETOHYDRODYNAMICS; SOLVER; FLOWS AB We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations. C1 [Zenitani, Seiji; Hesse, Michael; Klimas, Alex] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zenitani, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Seiji.Zenitani-1@nasa.gov RI Hesse, Michael/D-2031-2012; Zenitani, Seiji/D-7988-2013; NASA MMS, Science Team/J-5393-2013 OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science Team/0000-0002-9504-5214 FU NASA FX The authors express their gratitude to Tadas Nakamura, Karl Schindler, Yosuke Matsumoto, and Masha Kuznetsova for helpful comments. S.Z. gratefully acknowledges support from NASA Postdoctoral Program. NR 31 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 951 EP 956 DI 10.1088/0004-637X/712/2/951 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600015 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Conrad, J Corbet, R DeCesar, ME Dermer, CD Desvignes, G de Angelis, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Espinoza, C Farnier, C Favuzzi, C Fegan, SJ Focke, WB Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Harding, AK Hays, E Hobbs, G Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Lyne, AG Makeev, A Manchester, RN Marelli, M Mazziotta, MN McConville, W McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stappers, BW Starck, JL Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Conrad, J. Corbet, R. DeCesar, M. E. Dermer, C. D. Desvignes, G. de Angelis, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Espinoza, C. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Hobbs, G. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kramer, M. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Lyne, A. G. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stappers, B. W. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI DISCOVERY OF PULSED gamma-RAYS FROM PSR J0034-0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND gamma-RAY EMISSION REGIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; pulsars: general; pulsars: individual (PSR J0034-0534) ID MILLISECOND PULSARS; LIGHT CURVES; GIANT PULSES; CRAB PULSAR; SLOT GAPS; RADIATION; GEOMETRY; SEARCH AB Millisecond pulsars (MSPs) have been firmly established as a class of gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight MSPs by the Fermi Large Area Telescope (LAT). Using 13 months of LAT data, significant gamma-ray pulsations at the radio period have been detected from the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The gamma-ray light curve shows two peaks separated by 0.274 +/- 0.015 in phase which are very nearly aligned with the radio peaks, a phenomenon seen only in the Crab pulsar until now. The >= 0.1 GeV spectrum of this pulsar is well fit by an exponentially cutoff power law with a cutoff energy of 1.8 +/- 0.6 +/- 0.1 GeV and a photon index of 1.5 +/- 0.2 +/- 0.1, first errors are statistical and second are systematic. The near-alignment of the radio and gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions are co-located and both are the result of caustic formation. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Roth, M.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Reimer, A.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Pierbattista, M.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,CEA IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Corbet, R.; DeCesar, M. E.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cognard, I.; Desvignes, G.; Theureau, G.] CNRS, UMR 6115, LPCE, F-45071 Orleans 02, France. [Cognard, I.; Desvignes, G.; Theureau, G.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Meurer, C.; Ripken, J.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Meurer, C.; Ripken, J.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [DeCesar, M. E.; Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [DeCesar, M. E.; Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Espinoza, C.; Kramer, M.; Lyne, A. G.; Noutsos, A.; Stappers, B. W.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Freire, P. C. C.; Guillemot, L.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Rome, Italy. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hobbs, G.; Johnston, S.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Razzano, M (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM guillemo@mpifr-bonn.mpg.de; ahardingx@yahoo.com; Tyrel.J.Johnson@nasa.gov; Christo.Venter@nwu.ac.za RI Starck, Jean-Luc/D-9467-2011; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Thorsett, Stephen/0000-0002-2025-9613; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Giordano, Francesco/0000-0002-8651-2394 FU Netherlands Foundation for Radio Astronomy, ASTRON FX The Westerbork Synthesis Radio Telescope is operated by Netherlands Foundation for Radio Astronomy, ASTRON. NR 50 TC 38 Z9 38 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 957 EP 963 DI 10.1088/0004-637X/712/2/957 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600016 ER PT J AU Berge, J Amara, A Refregier, A AF Berge, Joel Amara, Adam Refregier, Alexandre TI OPTIMAL CAPTURE OF NON-GAUSSIANITY IN WEAK-LENSING SURVEYS: POWER SPECTRUM, BISPECTRUM, AND HALO COUNTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; gravitational lensing: weak; large-scale structure of universe ID LARGE-SCALE STRUCTURE; 3-POINT CORRELATION-FUNCTION; DARK-MATTER HALOES; COSMIC SHEAR ANALYSIS; GALAXY CLUSTERS; COSMOLOGICAL CONSTRAINTS; REDSHIFT DISTRIBUTIONS; SPIN-2 FIELDS; MASS FUNCTION; ENERGY AB We compare the efficiency of weak-lensing-selected galaxy cluster counts and of the weak-lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak-lensing power spectrum, the bispectrum, and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak-lensing survey, by focusing on the Omega(m)-sigma(8) plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information: signal-to-noise ratio peak counts, counts as a function of clusters' mass, counts as a function of clusters' redshift, and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peak counts, and get percent level constraints on cosmological parameters. We show that the weak-lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as cluster counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak-lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information. The appendices summarize the halo model, and the way the power spectrum and bispectrum are computed in this framework. C1 [Berge, Joel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Amara, Adam] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Refregier, Alexandre] Univ Paris Diderot, CNRS, CEA, Lab AIM,DSM,DAPNIA SAp, F-91191 Gif Sur Yvette, France. RP Berge, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-327, Pasadena, CA 91109 USA. EM Joel.Berge@jpl.nasa.gov FU NPP; NASA FX We thank Sandrine Pires, Benjamin Joachimi, Xun Shi, and Masahiro Takada for fruitful discussions and for their help in comparing bispectrum codes, as well as JochenWeller. We also thank Jason Rhodes and Sedona Price for useful comments on this manuscript. J.B. is supported by the NPP, administered by Oak Ridge Associated Universities through a contract with NASA. This work was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank the anonymous referee for useful comments. NR 105 TC 34 Z9 34 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 992 EP 1002 DI 10.1088/0004-637X/712/2/992 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600019 ER PT J AU Sankrit, R Williams, BJ Borkowski, KJ Gaetz, TJ Raymond, JC Blair, WP Ghavamian, P Long, KS Reynolds, SP AF Sankrit, Ravi Williams, Brian J. Borkowski, Kazimierz J. Gaetz, Terrance J. Raymond, John C. Blair, William P. Ghavamian, Parviz Long, Knox S. Reynolds, Stephen P. TI DUST DESTRUCTION IN A NON-RADIATIVE SHOCK IN THE CYGNUS LOOP SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: individual objects (Cygnus Loop); ISM: supernova remnants; shock waves ID LARGE-MAGELLANIC-CLOUD; INFRARED-EMISSION; NORTHEASTERN RIM; X-RAY; TELESCOPE; GRAINS; GAS; SPECTROSCOPY; SPECTRA AB We present 24 mu m and 70 mu m images of a non-radiative shock in the Cygnus Loop supernova remnant, obtained with the Multiband Imaging Photometer for Spitzer on board the Spitzer Space Telescope. The post-shock region is resolved in these images. The ratio of the 70 mu m to the 24 mu m flux rises from about 14 at a distance 0.'1 behind the shock front to about 22 in a zone 0.'75 further downstream, as grains are destroyed in the hot plasma. Models of dust emission and destruction using post-shock electron temperatures between 0.15 keV and 0.30 keV and post-shock densities, n(H) similar to 2.0 cm(-3), predict flux ratios that match the observations. Non-thermal sputtering (i.e., sputtering due to bulk motion of the grains relative to the gas) contributes significantly to the dust destruction under these shock conditions. From the model calculations, we infer that about 35% by mass of the grains are destroyed over a 0.14 pc region behind the shock front. C1 [Sankrit, Ravi] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Raleigh, NC 27695 USA. [Gaetz, Terrance J.; Raymond, John C.] Smithsonian Astrophys Observ, Tucson, AZ USA. [Blair, William P.] Johns Hopkins Univ, Baltimore, MD USA. [Ghavamian, Parviz; Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Sankrit, R (reprint author), NASA, Ames Res Ctr, SOFIA USRA, M-S N211-3, Moffett Field, CA 94035 USA. FU JPL [1278412]; USRA at the SOFIA Science Center; NASA [NAS8-03060] FX We thank the referee for a careful reading of the paper and useful comments. This work was supported in part by JPL Award 1278412 to the University of California, Berkeley and North Carolina State University, Raleigh. R. S. acknowledges support from USRA at the SOFIA Science Center. T.J.G. acknowledges support under NASA contract NAS8-03060 with the Chandra X-ray Center. NR 28 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 1092 EP 1099 DI 10.1088/0004-637X/712/2/1092 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600026 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, B Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Belfiore, A Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J de Angelis, A de Luca, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gwon, C Hadasch, D Harding, AK Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Kanai, Y Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Ray, PS Razzano, M Rea, N Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Watters, K Winer, BL Wolff, MT Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Belfiore, A. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. de Angelis, A. de Luca, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gwon, C. Hadasch, D. Harding, A. K. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Kanai, Y. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Ray, P. S. Razzano, M. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Watters, K. Winer, B. L. Wolff, M. T. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF PSR J1836+5925 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; pulsars: general; pulsars: individual (PSR J1836+5925) ID GAMMA-RAY PULSARS; SOURCE 3EG J1835+5918; TIME-DIFFERENCING TECHNIQUE; PHOTON IMAGING CAMERA; LIGHT CURVES; CRAB PULSAR; VELA PULSAR; XMM-NEWTON; POLAR-CAP; RADIO AB The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 10(34) erg s(-1), and a large off-peak (OP) emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Grove, J. E.; Gwon, C.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wolff, M. T.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, B.; Belfiore, A.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, B.; Belfiore, A.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Belfiore, A.; Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Belfiore, A.] Univ Pavia, Dipartimento Fis Teor & Nucl DENT, I-27100 Pavia, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Celik, Oe; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.; Venter, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Torres, D. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Torres, D. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] AlbaNova, Dept Phys, Royal Inst Technol KTH, SE-10691 Stockholm, Sweden. [Kanai, Y.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Marelli, M.] Univ Insubria, I-21100 Varese, Italy. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.; Vitale, V.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM nkawai@phys.titech.ac.jp; olr@slac.stanford.edu RI Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; Hays, Elizabeth/D-3257-2012; OI Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; De Luca, Andrea/0000-0001-6739-687X; Ransom, Scott/0000-0001-5799-9714; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Thorsett, Stephen/0000-0002-2025-9613; Rando, Riccardo/0000-0001-6992-818X; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d' Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT and scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d' Etudes Spatiales in France.; The GBT is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; This work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 44 TC 28 Z9 29 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 1209 EP 1218 DI 10.1088/0004-637X/712/2/1209 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600037 ER PT J AU Muller, E Ott, J Hughes, A Pineda, JL Wong, T Mizuno, N Kawamura, A Mizuno, Y Fukui, Y Onishi, T Rubio, M AF Muller, E. Ott, J. Hughes, A. Pineda, J. L. Wong, T. Mizuno, N. Kawamura, A. Mizuno, Y. Fukui, Y. Onishi, T. Rubio, M. TI CHARACTERIZING THE LOW-MASS MOLECULAR COMPONENT IN THE NORTHERN SMALL MAGELLANIC CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; ISM: molecules; Magellanic Clouds; radio lines: galaxies; stars: evolution ID SEST KEY PROGRAM; DAY CHEMICAL-COMPOSITION; STAR-FORMATION; SPITZER SURVEY; CO; GAS; SMC; LMC; EMISSION; REGION AB We present here the first results from a high-resolution survey of the (12)CO(J = 1-0) emission across the northern part of the poorly enriched Small Magellanic Cloud (SMC), made with the ATNF Mopra telescope. Three molecular complexes detected in the lower resolution NANTEN survey are mapped with a beam FWHM of similar to 42 '', to sensitivities of approximately 210 mK per 0.9 km s(-1) channel, resolving each complex into 4-7 small clouds of masses in the range of M(vir) similar to 10(3)-10(4) M(circle dot) and with radii no larger than 16 pc. The northern SMC CO clouds follow similar empirical relationships to the southern SMC population, yet they appear relatively under-luminous for their size, suggesting that the star-forming environment in the SMC is not homogeneous. Our data also suggests that the CO cloud population has little or no extended CO envelope on scales greater than or similar to 30 pc, further evidence that the weak CO component in the north SMC is being disassociated by penetrating UV radiation. The new high-resolution data provide evidence for a variable correlation of the CO integrated brightness with integrated H I and 160 mu m emission; in particular CO is often, but not always, found coincident with peaks of 160 mu m emission, verifying the need for matching-resolution 160 mu m and H I data for a complete assessment of the SMC H(2) mass. C1 [Muller, E.; Mizuno, N.; Kawamura, A.; Mizuno, Y.; Fukui, Y.; Onishi, T.] Nagoya Univ, Dept Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Muller, E.; Hughes, A.; Wong, T.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Ott, J.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Ott, J.] CALTECH, Caltech Astron, Pasadena, CA 91125 USA. [Hughes, A.] Swinburne Univ Technol, Ctr Supercomp & Astrophys, Hawthorn, Vic 3122, Australia. [Pineda, J. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wong, T.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Wong, T.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Mizuno, N.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Osaka 5998531, Japan. [Rubio, M.] Univ Chile, Dept Astron, Santiago, Chile. RP Muller, E (reprint author), Nagoya Univ, Dept Astrophys, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan. RI Rubio, Monica/J-3384-2016 FU NASA; FONDECYT (CHILE) [1080335]; Chilean Center for Astrophysics FONDAP [15010003] FX All astronomical images used in this publication were made with the use of the karma package (Gooch 1997). J.L.P. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. M. R. wishes to acknowledge support from FONDECYT (CHILE) grant No. 1080335. M. R. is supported by the Chilean Center for Astrophysics FONDAP No. 15010003. NR 32 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 1248 EP 1258 DI 10.1088/0004-637X/712/2/1248 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600041 ER PT J AU Tinetti, G Deroo, P Swain, MR Griffith, CA Vasisht, G Brown, LR Burke, C McCullough, P AF Tinetti, G. Deroo, P. Swain, M. R. Griffith, C. A. Vasisht, G. Brown, L. R. Burke, C. McCullough, P. TI PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; techniques: spectroscopic ID EXTRASOLAR GIANT PLANETS; SUN-LIKE STAR; EXOPLANET XO-1B; HD 209458B; METHANE; WATER; TRANSITS; SPECTRA AB We report here the first infrared spectrum of the hot-Jupiter XO-1b. The observations were obtained with the NICMOS instrument on board the Hubble Space Telescope during a primary eclipse of the XO-1 system. Near photon-noise-limited spectroscopy between 1.2 and 1.8 mu m allows us to determine the main composition of this hot-Jupiter's planetary atmosphere with good precision. This is the third hot-Jupiter's atmosphere for which spectroscopic data are available in the near-IR. The spectrum shows the presence of water vapor (H(2)O), methane (CH(4)), and carbon dioxide (CO(2)), and suggests the possible presence of carbon monoxide (CO). We show that the published IRAC secondary transit emission photometric data are compatible with the atmospheric composition at the terminator determined from the NICMOS spectrum, with a range of possible mixing ratios and thermal profiles; additional emission spectroscopy data are needed to reduce the degeneracy of the possible solutions. Finally, we note the similarity between the 1.2-1.8 mu m transmission spectra of XO-1b and HD 209458b, suggesting that in addition to having similar stellar/orbital and planetary parameters the two systems may also have a similar exoplanetary atmospheric composition. C1 [Tinetti, G.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Deroo, P.; Swain, M. R.; Vasisht, G.; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Griffith, C. A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Burke, C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [McCullough, P.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Tinetti, G (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM g.tinetti@ucl.ac.uk OI Tinetti, Giovanna/0000-0001-6058-6654 FU Royal Society University Research Fellowship. FX G. T. is supported by a Royal Society University Research Fellowship. NR 26 TC 63 Z9 64 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 1 PY 2010 VL 712 IS 2 BP L139 EP L142 DI 10.1088/2041-8205/712/2/L139 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581WP UT WOS:000276556500004 ER PT J AU Christian, DJ Bodewits, D Lisse, CM Dennerl, K Wolk, SJ Hsieh, H Zurbuchen, TH Zhao, L AF Christian, D. J. Bodewits, D. Lisse, C. M. Dennerl, K. Wolk, S. J. Hsieh, H. Zurbuchen, T. H. Zhao, L. TI CHANDRA OBSERVATIONS OF COMETS 8P/TUTTLE AND 17P/HOLMES DURING SOLAR MINIMUM SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE comets: individual (Comet 8P/Tuttle, Comet 17P/Holmes); solar wind; techniques: spectroscopic; X-rays: general ID X-RAY-EMISSION; ALL-SKY SURVEY; WIND IONS; ULTRAVIOLET EMISSION; HYAKUTAKE; SPECTRA AB We present results for Chandra X-ray Observatory observations of two comets made during the minimum of solar cycle 24. The two comets, 17P/Holmes (17P) and 8P/Tuttle (8P), were very different in their activity and geometry. 17P was observed, for 30 ks right after its major outburst, on 2007 October 31 (10:07 UT), and comet 8P/Tuttle was observed in 2008 January for 47 ks. During the two Chandra observations, 17P was producing at least 100 times more water than 8P but was 2.2 times further away from the Sun. Also, 17P was at a relatively high solar latitude (+19 degrees.1) while 8P was observed at a lower solar latitude (3 degrees.4). The X-ray spectrum of 17P is unusually soft with little significant emission at energies above 500 eV. Depending on our choice of background, we derive a 300-1000 eV flux of 0.5-4.5 x 10(-13) erg cm(-2) s(-1), with over 90% of the emission in the 300-400 eV range. This corresponds to an X-ray luminosity between 0.4 and 3.3 x 10(15) erg s(-1). However, we cannot distinguish between this significant excess emission and possible instrumental effects, such as incomplete charge transfer across the CCD. 17P is the first comet observed at high latitude during solar minimum. Its lack of X-rays in the 400-1000 eV range, in a simple picture, may be attributed to the polar solar wind, which is depleted in highly charged ions. 8P/Tuttle was much brighter, with an average count rate of 0.20 counts s(-1) in the 300-1000 eV range. We derive an average X-ray flux in this range of 9.4 x 10(-13) erg cm(-2) s(-1) and an X-ray luminosity for the comet of 1.7 x 10(14) erg s(-1). The light curve showed a dramatic decrease in flux of over 60% between observations on January 1 and 4. When comparing outer regions of the coma to inner regions, its spectra showed a decrease in ratios of C VI/C V, O VIII/O VII, as predicted by recent solar wind charge exchange (SWCX) emission models. There are remarkable differences between the X-ray emission from these two comets, further demonstrating the qualities of cometary X-ray observations, and SWCX emission in general as a means of remote diagnostics of the interaction of astrophysical plasmas. C1 [Christian, D. J.] Eureka Sci, Oakland, CA 94602 USA. [Christian, D. J.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Bodewits, D.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA. [Dennerl, K.] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany. [Wolk, S. J.] Harvard Smithsonian Ctr Astrophys, Chandra Xray Ctr, Cambridge, MA 02138 USA. [Hsieh, H.] Queens Univ Belfast, Dept Phys & Astron, Astron Res Ctr, Belfast, Antrim, North Ireland. [Zurbuchen, T. H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Christian, DJ (reprint author), Eureka Sci, 2420 Delmer Ave,Suite 100, Oakland, CA 94602 USA. EM damian.christ@gmail.com; Dennis.Bodewits@nasa.gov; carey.lisse@jhuapl.edu; kod@mpe.mpg.de; swolk@cfa.harvard.edu; h.hseih@qub.c.uk; thomasz@umich.edu; lzh@umich.edu RI Zhao, Liang/B-8215-2012; Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Wolk, Scott/0000-0002-0826-9261; Bodewits, Dennis/0000-0002-2668-7248; Christian, Damian/0000-0003-1746-3020; Zhao, Liang/0000-0002-5975-7476 FU Chandra X-ray Observatory [CXO-09100452, CXO-9100455, CXO-07108248]; NASA [NAS8-03060]; California State University Northridge FX This work was supported by the Chandra X-ray Observatory's cycle 9 GO program, CXO-09100452, and archival program CXO-9100455. We thank Harvey Tannenbaum for Director's Discretionary Time to observe Comet 17P/Holmes (CXO-08108279), and we thank the Chandra X-ray Observatory's Scheduling and Mission Operations teams for executing these difficult and time-critical moving target observations. S.J.W. was supported by NASA contract NAS8-03060. D.J.C. thanks the California State University Northridge for support, and C. M. L. gratefully acknowledges support from Chandra GO program CXO-07108248. We also thank A. Fitzsimmons for useful discussions on 17P and Geronimo L. Villanueva for assistance in understanding the comet's orbital geometry. We are grateful for the cometary ephemerides of D.K. Yeomans published at the JPL/Horizons Web site. NR 37 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2010 VL 187 IS 2 BP 447 EP 459 DI 10.1088/0067-0049/187/2/447 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585QJ UT WOS:000276841500006 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Cominsky, LR Conrad, J Corbet, R Cutini, S den Hartog, PR Dermer, CD de Angelis, A de Luca, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Espinoza, C Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Gotthelf, EV Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gwon, C Hanabata, Y Harding, AK Hayashida, M Hays, E Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Kanbach, G Kaspi, VM Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kramer, M Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Livingstone, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Lyne, AG Madejski, GM Makeev, A Manchester, RN Marelli, M Mazziotta, MN McConville, W McEnery, JE McGlynn, S Meurer, C Michelson, PF Mineo, T Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Ray, PS Razzano, M Rea, N Reimer, A Reimer, O Reposeur, T Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sellerholm, A Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stappers, BW Starck, JL Striani, E Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Wang, N Watters, K Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbet, R. Cutini, S. den Hartog, P. R. Dermer, C. D. de Angelis, A. de Luca, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Espinoza, C. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Gotthelf, E. V. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gwon, C. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Kanbach, G. Kaspi, V. M. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kramer, M. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Livingstone, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Lyne, A. G. Madejski, G. M. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mineo, T. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Ray, P. S. Razzano, M. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sellerholm, A. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stappers, B. W. Starck, J. -L. Striani, E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wang, N. Watters, K. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI THE FIRST FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma rays: general; pulsars: general; stars: neutron ID SUPERNOVA REMNANT G292.0+1.8; EGRET ERROR BOXES; TIME-DIFFERENCING TECHNIQUE; ROTATING NEUTRON STARS; SOURCE 3EG J2227+6122; GREEN-BANK-TELESCOPE; HIGH-ENERGY EMISSION; X-RAY; MILLISECOND PULSARS; RADIO PULSARS AB The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Gwon, C.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Sellerholm, A.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CEA Saclay,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; Charles, E.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; Charles, E.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; Charles, E.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Camilo, F.; Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; de Luca, A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cognard, I.; Theureau, G.] CNRS, LPCE, UMR 6115, F-45071 Orleans 02, France. [Cognard, I.; Theureau, G.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Espinoza, C.; Kramer, M.; Lyne, A. G.; Noutsos, A.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. [Freire, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; McConville, W.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Giavitto, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johnston, S.; Manchester, R. N.; Weltevrede, P.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kanbach, G.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kaspi, V. M.; Livingstone, M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Mineo, T.] IASF Palermo, I-90146 Palermo, Italy. [Morselli, A.; Striani, E.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ozaki, M.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Rea, N.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Striani, E.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Wang, N.] Chinese Acad Sci, Natl Astron Observ, Urumqi 830011, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM andrea.caliandro@ba.infn.it; elizabeth.c.ferrara@nasa.gov; parent@cenbg.in2p3.fr; rwr@astro.stanford.edu RI Starck, Jean-Luc/D-9467-2011; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; Mineo, Teresa/0000-0002-4931-8445; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; De Luca, Andrea/0000-0001-6739-687X; Ransom, Scott/0000-0001-5799-9714; Cutini, Sara/0000-0002-1271-2924 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Commonwealth Government FX The Fermi-LAT Collaboration acknowledges the generous support of a number of agencies and institutes that have supported the Fermi-LAT Collaboration. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The Parkes Radio Telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. The Green Bank Telescope is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center (NAIC), a national research center operated by Cornell University under a cooperative agreement with the National Science Foundation. The Nancay Radio Observatory is operated by the Paris Observatory, associated with the French Centre National de la Recherche Scientifique (CNRS). The Lovell Telescope is owned and operated by the University of Manchester as part of the Jodrell Bank Centre for Astrophysics with support from the Science and Technology Facilities Council of the United Kingdom. The Westerbork Synthesis Radio Telescope is operated by Netherlands Foundation for Radio Astronomy, ASTRON. NR 167 TC 308 Z9 310 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2010 VL 187 IS 2 BP 460 EP 494 DI 10.1088/0067-0049/187/2/460 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585QJ UT WOS:000276841500007 ER PT J AU Luo, B Brandt, WN Xue, YQ Brusa, M Alexander, DM Bauer, FE Comastri, A Koekemoer, A Lehmer, BD Mainieri, V Rafferty, DA Schneider, DP Silverman, JD Vignali, C AF Luo, B. Brandt, W. N. Xue, Y. Q. Brusa, M. Alexander, D. M. Bauer, F. E. Comastri, A. Koekemoer, A. Lehmer, B. D. Mainieri, V. Rafferty, D. A. Schneider, D. P. Silverman, J. D. Vignali, C. TI IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: active; galaxies: distances and redshifts; galaxies: photometry; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY SOURCES; SPECTRAL ENERGY-DISTRIBUTIONS; OPTICALLY NORMAL GALAXIES; XMM-NEWTON OBSERVATIONS; ISOLATED NEUTRON-STARS; NEAR-INFRARED CATALOG; POINT-SOURCE CATALOGS; VLA SURVEY; VLT/FORS2 SPECTROSCOPY AB We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the approximate to 2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of approximate to 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for approximate to 10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of vertical bar Delta z vertical bar/(1 + z) approximate to 1% and an outlier [with vertical bar Delta z vertical bar/(1 + z) > 0.15] fraction of approximate to 1.4% for sources with spectroscopic redshifts. We performed blind tests to derive a more realistic estimate of the photo-z quality for sources without spectroscopic redshifts. We expect there are approximate to 9% outliers for the relatively brighter sources (R less than or similar to 26), and the outlier fraction will increase to approximate to 15%-25% for the fainter sources (R greater than or similar to 26). The typical photo-z accuracy is approximate to 6%-7%. The outlier fraction and photo-z accuracy do not appear to have a redshift dependence (for z approximate to 0-4). These photo-z's appear to be the best obtained so far for faint X-ray sources, and they have been significantly (greater than or similar to 50%) improved compared to previous estimates of the photo-z's for the X-ray sources in the approximate to 2 Ms Chandra Deep Field-North and approximate to 1 Ms CDF-S. C1 [Luo, B.; Brandt, W. N.; Xue, Y. Q.; Rafferty, D. A.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brusa, M.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Brusa, M.] Univ Maryland Baltimore Cty, Dept Astron, Baltimore, MD 21250 USA. [Alexander, D. M.; Lehmer, B. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Comastri, A.] Osservatorio Astron Bologna, INAF, Bologna, Italy. [Koekemoer, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mainieri, V.] European So Observ, D-85748 Garching, Germany. [Silverman, J. D.] Univ Tokyo, IPMU, Chiba 2778568, Japan. [Vignali, C.] Univ Bologna, Dipartmento Astron, I-40126 Bologna, Italy. RP Luo, B (reprint author), Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. RI Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015 OI Alexander, David/0000-0002-5896-6313; Koekemoer, Anton/0000-0002-6610-2048; Vignali, Cristian/0000-0002-8853-9611; Brusa, Marcella/0000-0002-5059-6848; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970 FU CXC [SP8-9003A/B]; NASA [NAG5-13035]; Royal Society; Philip Leverhulme Fellowship Prize; ASI-INAF [I/023/05/00, I/088/06] FX We acknowledge financial support from CXC grant SP8-9003A/B (B. L., W. N. B., Y. Q. X., M. B., F. E. B., D. R.), NASA LTSA grant NAG5-13035 (W. N. B.), the Royal Society and the Philip Leverhulme Fellowship Prize (D. M. A.), and ASI-INAF grants I/023/05/00 and I/088/06 (A. C.). We thank R. Feldmann, R. Gilli, H. Hao, R. C. Hickox, K. I. Kellermann, N. A. Miller, and G. Pavlov for helpful discussions. We are grateful to A. Finoguenov, A. Grazian, N. A. Miller, and M. Nonino for kindly providing their catalogs. NR 74 TC 95 Z9 95 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2010 VL 187 IS 2 BP 560 EP 580 DI 10.1088/0067-0049/187/2/560 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585QJ UT WOS:000276841500009 ER PT J AU Ikhsanov, NR Beskrovnaya, NG AF Ikhsanov, N. R. Beskrovnaya, N. G. TI Accretion magnetar in the close binary system 4U 2206+54 SO ASTROPHYSICS LA English DT Article DE binary x-ray systems: pulsars: magnetic fields: accretion; individual: 4U 2206+e54 ID X-RAY PULSARS; NEUTRON-STARS; WIND-ACCRETION; MODEL; 4U-2206+54; MAGNETOSPHERE; POPULATION; ORIGIN; FIELDS; STATE AB The magneto-rotational evolution of a neutron star in the massive binary system 4U 2206+54 is discussed in light of the recent discovery of its 5555 s rotational period and its average rate of spin-down. We show that this behavior of the neutron star means that its magnetic field exceeds the quantum mechanical critical limit and it is an accretion magnetar. The system's evolution is explained by wind driven mass transfer without formation of an accretion disk. The constant character of the x-ray source indicates a steady rate of accretion and raises anew the question of the stability of the boundary of the magnetosphere of a star undergoing spherical accretion. A solution to this problem is also a key to determining the mechanism for the slowing down of the star's rotation. C1 [Ikhsanov, N. R.] NASA, Marshall Space Flight Ctr, Washington, DC USA. [Ikhsanov, N. R.; Beskrovnaya, N. G.] Russian Acad Sci, Main Pulkovo Astron Observ, Moscow 117901, Russia. RP Ikhsanov, NR (reprint author), NASA, Marshall Space Flight Ctr, Washington, DC USA. EM nazar_ikhsanov@yahoo.com; beskrovnaya@yahoo.com RI Ikhsanov, Nazar/M-9304-2015; Beskrovnaya, Nina/P-2915-2015 OI Ikhsanov, Nazar/0000-0002-3326-5588; Beskrovnaya, Nina/0000-0003-4454-6729 NR 38 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0571-7256 J9 ASTROPHYSICS+ JI Astrophysics PD APR PY 2010 VL 53 IS 2 BP 237 EP 250 DI 10.1007/s10511-010-9115-z PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627TB UT WOS:000280064700009 ER PT J AU Yoshida, Y Duncan, BN Retscher, C Pickering, KE Celarier, EA Joiner, J Boersma, KF Veefkind, JP AF Yoshida, Yasuko Duncan, Bryan N. Retscher, Christian Pickering, Kenneth E. Celarier, Edward A. Joiner, Joanna Boersma, K. Folkert Veefkind, J. Pepijn TI The impact of the 2005 Gulf hurricanes on pollution emissions as inferred from Ozone Monitoring Instrument (OMI) nitrogen dioxide SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Pollution emissions; Hurricanes; OMI; Tropospheric NO(2) ID TROPOSPHERIC NO2; UNITED-STATES; VALIDATION; MEXICO; MODEL AB The impact of Hurricanes Katrina and Rita in 2005 on pollution emissions in the Gulf of Mexico region was investigated using tropospheric column amounts of nitrogen dioxide (NO(2)) from the Ozone Monitoring Instrument (OMI) on the NASA Aura satellite. Around New Orleans and coastal Mississippi, we estimate that Katrina caused a 35% reduction in NO(x) emissions on average in the three weeks after landfall. Hurricane Rita caused a significant reduction (20%) in NO(x) emissions associated with power generation and intensive oil refining activities near the Texas/Louisiana border. We also found a 43% decrease by these two storms over the eastern Gulf of Mexico Outer Continental Shelf mainly due to the evacuation of and damage to platforms, rigs, and ports associated with oil and natural gas production. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Yoshida, Yasuko; Retscher, Christian; Celarier, Edward A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. [Yoshida, Yasuko; Duncan, Bryan N.; Retscher, Christian; Pickering, Kenneth E.; Celarier, Edward A.; Joiner, Joanna] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Boersma, K. Folkert; Veefkind, J. Pepijn] Royal Netherlands Meteorol Inst, Climate Observat Dept, NL-3730 AE De Bilt, Netherlands. RP Yoshida, Y (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. EM yasuko.yoshida-1@nasa.gov RI Duncan, Bryan/A-5962-2011; Joiner, Joanna/D-6264-2012; Pickering, Kenneth/E-6274-2012; Boersma, Klaas/H-4559-2012 OI Boersma, Klaas/0000-0002-4591-7635 FU NASA FX We are grateful to M. Martini (Univ. Maryland) for providing lightning IC/GC ratio data interpolated to the OMI NO2 grid. The NLDN data are collected by Vaisala, Inc. and archived by NASA Marshall Space Flight Center. The DOMINO product is obtained from www.temis.nl. This work was supported by NASA's Earth Science Research Program. NR 37 TC 4 Z9 4 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2010 VL 44 IS 11 SI SI BP 1443 EP 1448 DI 10.1016/j.atmosenv.2010.01.037 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 584FO UT WOS:000276736600008 ER PT J AU Ziemba, LD Dibb, JE Griffin, RJ Huey, LG Beckman, P AF Ziemba, Luke D. Dibb, Jack E. Griffin, Robert J. Huey, L. Gregory Beckman, Pieter TI Observations of particle growth at a remote, Arctic site SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerosol; Summit; Photochemistry; SMPS; Arctic ID SIZE DISTRIBUTION; SOUTH-POLE; GREENLAND; SUMMIT; AEROSOL; AIR; CHEMISTRY; STATION; EVENTS; ISCAT AB Observations of particle size distributions suggest that particles grow significantly just above the snow surface at a remote, Arctic site. Measurements were made at Summit, Greenland (71.38 degrees N and 31.98 degrees W) at approximately 3200 m above sea level. No new particle formation was observed locally, but growth of ultrafine particles was identified by continuous evolution of the geometric mean diameter (GMD) during four events. The duration of the growth during events was between 24 and 115 h, and calculated event-average growth rates (GR) were 0.09, 0.30, 0.27, and 0.18 nm h(-1) during each event, respectively. Four-hour GR up to 0.96 nm h(-1) were observed. Events occurred during below- and above-average temperatures and were independent of wind direction. Correlation analysis of hourly-calculated GR suggested that particle growth was limited by the availability of photochemically produced precursor gases. Sulfuric acid played a very minor role in particle growth, which was likely dominated by condensation of organic compounds, the source of which was presumably the snow surface. The role of boundary layer dynamics is not definite, although some mixing at the surface is necessary for the observation of particle growth. Due to the potentially large geographic extent of events, observations described here may provide a link between long-range transport of mid-latitude pollutants and climate regulation in the remote Arctic. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ziemba, Luke D.; Dibb, Jack E.; Griffin, Robert J.; Beckman, Pieter] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH USA. [Huey, L. Gregory] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Ziemba, LD (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd, Hampton, VA 23681 USA. EM luke.ziemba@nasa.gov FU National Oceanic and Atmospheric Administration under AIRMAP [NA060AR4600189] FX Financial support during this study was provided by the Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration under AIRMAP grant #NA060AR4600189 to UNH, and use of the AIRMAP SMPS and CPC is much appreciated. Special thanks to CH2M HILL Polar Services, the New York Air National Guard 109th Airlift Wing, and the staff and scientists at Summit Camp for logistical assistance and to Carolyn Jordan for helpful discussion and comments. This manuscript has not been reviewed by the funding agencies, and no endorsement should be inferred. NR 36 TC 11 Z9 11 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2010 VL 44 IS 13 BP 1649 EP 1657 DI 10.1016/j.atmosenv.2010.01.032 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 589OT UT WOS:000277162200007 ER PT J AU Rothschild, LJ AF Rothschild, Lynn J. TI A powerful toolkit for synthetic biology: Over 3.8 billion years of evolution SO BIOESSAYS LA English DT Review DE astrobiology; constraints on evolution; evolution; evolutionary mechanism; exobiology; origin of novelty; synthetic biology ID MYCOPLASMA-GENITALIUM GENOME; HORIZONTAL GENE-TRANSFER; SACCHAROMYCES-CEREVISIAE; ADAPTIVE EVOLUTION; POINT MUTATION; PARAMECIUM-TETRAURELIA; MITOCHONDRIAL GENES; CHEMICAL-SYNTHESIS; FLOWERING PLANTS; DUPLICATION AB The combination of evolutionary with engineering principles will enhance synthetic biology. Conversely, synthetic biology has the potential to enrich evolutionary biology by explaining why some adaptive space is empty, on Earth or elsewhere. Synthetic biology, the design and construction of artificial biological systems, substitutes bio-engineering for evolution, which is seen as an obstacle. But because evolution has produced the complexity and diversity of life, it provides a proven toolkit of genetic materials and principles available to synthetic biology. Evolution operates on the population level, with the populations composed of unique individuals that are historical entities. The source of genetic novelty includes mutation, gene regulation, sex, symbiosis, and interspecies gene transfer. At a phenotypic level, variation derives from regulatory control, replication and diversification of components, compartmentalization, sexual selection and speciation, among others. Variation is limited by physical constraints such as diffusion, and chemical constraints such as reaction rates and membrane fluidity. While some of these tools of evolution are currently in use in synthetic biology, all ought to be examined for utility. A hybrid approach of synthetic biology coupled with fine-tuning through evolution is suggested. C1 NASA, Ames Res Ctr, Biospher Sci Branch, Moffett Field, CA 94035 USA. RP Rothschild, LJ (reprint author), NASA, Ames Res Ctr, Biospher Sci Branch, Mail Stop 239-20, Moffett Field, CA 94035 USA. EM Lynn.J.Rothschild@nasa.gov NR 98 TC 5 Z9 5 U1 5 U2 26 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0265-9247 J9 BIOESSAYS JI Bioessays PD APR PY 2010 VL 32 IS 4 SI SI BP 304 EP 313 DI 10.1002/bies.200900180 PG 10 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 584XK UT WOS:000276787300006 PM 20349441 ER PT J AU Yang, P Hong, G Dessler, AE Ou, SSC Liou, KN Minnis, P Harshvardhan AF Yang, Ping Hong, Gang Dessler, Andrew E. Ou, Steve S. C. Liou, Kuo-Nan Minnis, Patrick Harshvardhan TI CONTRAILS AND INDUCED CIRRUS Optics and Radiation SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID SCATTERING; SHAPE; SIZE AB This paper summarizes the assessment of the current state of knowledge, areas of uncertainties, and recommendations for future efforts, regarding the optical and radiative properties of contrails and contrail cirrus, which have been reported in two detailed subject-specific white papers for the Aviation Climate Change Research Initiative undertaken by the U. S. Federal Aviation Administration. To better estimate the radiative forcing of aircraft-induced cloudiness, there is a pressing need to improve the present understanding of the optical properties of nonspherical ice crystals within contrails and contrail cirrus, and to enhance the global satellite detection and retrieval of these clouds. It is also critical to develop appropriate parameterizations of ice crystal bulk optical properties for climate models on the basis of state-of-the-art scattering simulations and available in situ measurements of ice crystal size and habit distributions within contrails and contrail cirrus. More accurate methods are needed to retrieve the bulk radiative properties of contrails and contrail cirrus to separate natural from anthropogenic ice cloud effects. Such refined techniques should be applied to past and future satellite imagery to develop a contrail climatology that would serve to evaluate contrail radiative forcing more accurately, to determine trends in contrail cirrus, and to guide and validate parameterizations of contrails in numerical weather and climate models. To point the way forward, we recommend four near-term and three long-term research priorities C1 [Yang, Ping; Hong, Gang; Dessler, Andrew E.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Ou, Steve S. C.; Liou, Kuo-Nan] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Ou, Steve S. C.; Liou, Kuo-Nan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Harshvardhan] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@ariel.met.tamu.edu RI Yang, Ping/B-4590-2011; Hong, Gang/A-2323-2012; Dessler, Andrew/G-8852-2012; Minnis, Patrick/G-1902-2010 OI Dessler, Andrew/0000-0003-3939-4820; Minnis, Patrick/0000-0002-4733-6148 FU U.S. Department of Transportation Federal Aviation Administration's Aviation Climate Research Initiative (ACCRI); NASA FX This study is supported by both the U.S. Department of Transportation Federal Aviation Administration's Aviation Climate Research Initiative (ACCRI) Program managed by Dr. Mohan Gupta and the NASA Applied Sciences Program. The authors thank Dr. Meg Miller and Ms. Mary Gammon for editing the manuscript. Dr. Meg Miller also substantially helped to unify the terminology in this paper in accordance with those in the literature. NR 17 TC 20 Z9 20 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD APR PY 2010 VL 91 IS 4 BP 473 EP + DI 10.1175/2009BAMS2837.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 593TB UT WOS:000277482500005 ER PT J AU Trigo, RM Vaquero, JM Stothers, RB AF Trigo, Ricardo M. Vaquero, J. M. Stothers, R. B. TI Witnessing the impact of the 1783-1784 Laki eruption in the Southern Hemisphere SO CLIMATIC CHANGE LA English DT Article ID GREAT DRY FOG; VOLCANIC-ERUPTIONS; SKAFTAR-FIRES; POLLUTION AB The Icelandic Laki eruption in 1783/1784 produced a large volume of lava while the associated aerosols were directly responsible for severe environmental and health effects in Iceland and northern Europe. The intense plume of smoke and sulphurous dry fog has been reported to have affected a considerable fraction of Eurasia and Northeastern Canada but no impact descriptions have been reported for the Southern Hemisphere. Here we reproduce the description of an abnormally high incidence of unusual dry fog and haze days during the years 1784-1786 in Rio de Janeiro (20A degrees S, Brazil) obtained by Bento Sanches Dorta, a Portuguese astronomer. Using monthly averages of fog days registered by Dorta between 1781 and 1788 it is shown that the outstanding peak observed between September and November of 1784 might be linked to the Laki eruption. The vast majority of observational and modeling studies appear to contradict such hypothesis; however recent modeling studies of the impact of large high latitude eruptions support the existence of large-scale climatic anomalies in the Southern Hemisphere tropical region, and in particular the appearance of above-normal cloud cover over central Brazil. C1 [Trigo, Ricardo M.] Univ Lisbon, Fac Ciencias, Ctr Geofis, Lab Associado IDL, P-1749016 Lisbon, Portugal. [Trigo, Ricardo M.] Civil Univ Lusofona, Dept Eng, Lisbon, Portugal. [Vaquero, J. M.] Univ Extremadura, Escuela Politecn, Dept Fis Aplicada, Caceres 10071, Spain. [Stothers, R. B.] NASA, Goddard Space Flight Ctr, Inst Space Studies, New York, NY 10025 USA. RP Trigo, RM (reprint author), Univ Lisbon, Fac Ciencias, Ctr Geofis, Lab Associado IDL, Edificio C8,Piso 6, P-1749016 Lisbon, Portugal. EM rmtrigo@fc.ul.pt RI Trigo, Ricardo/B-7044-2008; Vaquero, Jose/B-8017-2010 OI Trigo, Ricardo/0000-0002-4183-9852; Vaquero, Jose/0000-0002-8754-1509 NR 39 TC 7 Z9 7 U1 0 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD APR PY 2010 VL 99 IS 3-4 BP 535 EP 546 DI 10.1007/s10584-009-9676-1 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 570UU UT WOS:000275704500010 ER PT J AU Lynn, BH Rosenzweig, C Goldberg, R Rind, D Hogrefe, C Druyan, L Healy, R Dudhia, J Rosenthal, J Kinney, P AF Lynn, Barry H. Rosenzweig, Cynthia Goldberg, Richard Rind, David Hogrefe, Christian Druyan, Len Healy, Richard Dudhia, Jimy Rosenthal, Joyce Kinney, Patrick TI Testing GISS-MM5 physics configurations for use in regional impacts studies SO CLIMATIC CHANGE LA English DT Article ID WESTERN UNITED-STATES; CONVECTIVE ADJUSTMENT SCHEME; SURFACE-HYDROLOGY MODEL; CLIMATE MODEL; PART II; PARAMETERIZATION SCHEMES; RADIATIVE-TRANSFER; PACIFIC-NORTHWEST; MESOSCALE MODEL; BOUNDARY-LAYER AB The Mesoscale Modeling System Version 5 (MM5) was one-way nested to the Goddard Institute for Space Studies global climate model (GISS GCM), which provided the boundary conditions for present (1990s) and future (IPCC SRES A2 scenario, 2050s) five-summer "time-slice" simulations over the continental and eastern United States. Five configurations for planetary boundary layer, cumulus parameterization, and radiation scheme were tested, and one set was selected for use in the New York City Climate and Health Project-a multi-disciplinary study investigating the effects of climate change and land-use change on human health in the New York metropolitan region. Although hourly and daily data were used in the health project, in this paper we focus on long-term current and projected mean climate change. The GISS-MM5 was very sensitive to the choice of cumulus parameterization and planetary boundary layer scheme, leading to significantly different temperature and precipitation outcomes for the 1990s. These differences can be linked to precipitation type (convective vs. non-convective), to their effect on solar radiation received at the ground, and ultimately to surface temperature. The projected changes in climate (2050s minus 1990s) were not as sensitive to choice of model physics combination. The range of the projected surface temperature changes at a given grid point among the model versions was much less than the mean change for all five model configurations, indicating relative consensus for simulating surface temperature changes among the different model projections. The MM5 versions, however, offer less consensus regarding 1990s to 2050s changes in precipitation amounts. All of the projected 2050s temperature changes were found to be significant at the 95th percent confidence interval, while the majority of the precipitation changes were not. C1 [Lynn, Barry H.; Rosenzweig, Cynthia; Goldberg, Richard; Rind, David; Hogrefe, Christian; Druyan, Len; Healy, Richard; Dudhia, Jimy; Rosenthal, Joyce; Kinney, Patrick] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Lynn, Barry H.] Weather It Is LTD, Weather & Climate Focus, IL-90435 Efrat, Israel. [Goldberg, Richard; Healy, Richard] Columbia Univ, NASA GISS, Ctr Climate Syst Res, New York, NY 10025 USA. [Hogrefe, Christian] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Dudhia, Jimy] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80307 USA. [Rosenthal, Joyce] Grad Sch Architecture Planning & Preservat, Urban Planning Program, New York, NY 10027 USA. [Kinney, Patrick] Columbia Univ, Mailman Sch Publ Hlth, Dept Environm Hlth Sci, Columbia Climate & Hlth Program, New York, NY 10032 USA. RP Rosenzweig, C (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM crosenzweig@giss.nasa.gov RI Dudhia, Jimy/B-1287-2008; Kinney, Patrick/H-7914-2012; Healy, Richard/J-9214-2015 OI Dudhia, Jimy/0000-0002-2394-6232; Healy, Richard/0000-0002-5098-8921 NR 42 TC 9 Z9 9 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD APR PY 2010 VL 99 IS 3-4 BP 567 EP 587 DI 10.1007/s10584-009-9729-5 PG 21 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 570UU UT WOS:000275704500012 ER PT J AU Palinkas, LA Reedy, KR Shepanek, M Reeves, D Case, HS Van Do, N Reed, HL AF Palinkas, Lawrence A. Reedy, Kathleen R. Shepanek, Marc Reeves, Dennis Case, H. Samuel Van Do, Nhan Reed, H. Lester TI A randomized placebo-controlled clinical trial of the effectiveness of thyroxine and triiodothyronine and short-term exposure to bright light in prevention of decrements in cognitive performance and mood during prolonged Antarctic residence SO CLINICAL ENDOCRINOLOGY LA English DT Article ID SEASONAL AFFECTIVE-DISORDER; THYROTROPIN LEVELS; SERUM THYROTROPIN; THYROID-HORMONES; PITUITARY; RHYTHM; TSH; HYPOTHYROIDISM; MELATONIN; RESPONSES AB P>Objective We examined the effects of a combined levothyroxine/liothyronine supplement and exposure to bright (10,000 lux) light in euthyroid men and women who spent the austral summer (n = 43) and/or winter (n = 42) in Antarctica. Methods Subjects were randomized to receive 64 nmol of levothyroxine and 16 nmol of liothyronine supplement or a placebo capsule for 93 center dot 2 +/- 3 center dot 0 days in summer and/or 149 center dot 5 +/- 2 center dot 2 days in winter. Subjects were further randomized to receive 10,000 lux bright white light or 50 lux dim red light for 14 days at the end of summer and/or winter. Cognitive performance and mood were assessed using the Automatic Neuropsychological Assessment Metric - Isolated and Confined Environments. Results In winter, bright light exposure was associated with a significantly greater reduction in TSH and anger (P < 0 center dot 05), a significantly greater increase in fT(3) (P < 0 center dot 05), and a significantly smaller increase in depressive symptoms (P < 0 center dot 001), when compared with dim light. The T4/T3 supplement also led to a significantly greater reduction in TSH (P < 0 center dot 05), but a greater reduction in cognitive task efficiency (P < 0 center dot 05) as well, when compared with placebo. Conclusion Administration of bright light leads to a significant reduction in serum TSH and prevents increases in anger and depressive symptoms in winter. However, these associations were not observed in summer, suggesting a seasonal influence of photoperiod over temperature upon this intervention in the polar environment. C1 [Palinkas, Lawrence A.] Univ So Calif, Sch Social Work, Los Angeles, CA 90089 USA. [Palinkas, Lawrence A.] Univ So Calif, Dept Anthropol, Los Angeles, CA 90089 USA. [Palinkas, Lawrence A.] Univ So Calif, Dept Prevent Med, Los Angeles, CA 90089 USA. [Reedy, Kathleen R.] US FDA, Silver Spring, MD USA. [Shepanek, Marc] NASA, Washington, DC 20546 USA. [Reeves, Dennis] Clinvest Inc, Springfield, MO USA. [Case, H. Samuel] McDaniel Coll, Dept Exercise Sci & Phys Educ, Westminster, MD USA. [Van Do, Nhan] Tricare Management Act, Falls Church, VA USA. [Reed, H. Lester] MultiCare Hlth Syst, Tacoma, WA USA. RP Palinkas, LA (reprint author), Univ So Calif, Sch Social Work, 669 W 34th St, Los Angeles, CA 90089 USA. EM palinkas@usc.edu FU National Science Foundation [OPP-0090343] FX The opinions expressed herein are those of the authors and are not to be construed as reflecting the views of the Department of the Army, the Department of Defense, National Science Foundation, National Aeronautics and Space Administration, or US Food and Drug Administration. This study is supported by the National Science Foundation grant number OPP-0090343. The authors extend a special thanks to Barbara Brittell and Troy Wiles for their role in data collection in the field. NR 38 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0300-0664 EI 1365-2265 J9 CLIN ENDOCRINOL JI Clin. Endocrinol. PD APR PY 2010 VL 72 IS 4 BP 543 EP 550 DI 10.1111/j.1365-2265.2009.03669.x PG 8 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 563ZS UT WOS:000275180700018 PM 19650782 ER PT J AU McKay, CP AF McKay, Christopher P. TI An Origin of Life on Mars SO COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY LA English DT Article ID GLOBAL DISTRIBUTION; SEARCH; ROCKS; SOILS; EARTH AB Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one-possibly preserved in ancient permafrost. Away to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids). C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP McKay, CP (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM chris.mckay@nasa.gov NR 25 TC 7 Z9 7 U1 5 U2 15 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 1943-0264 J9 CSH PERSPECT BIOL JI Cold Spring Harbor Perspect. Biol. PD APR PY 2010 VL 2 IS 4 AR a003509 DI 10.1101/cshperspect.a003509 PG 7 WC Cell Biology SC Cell Biology GA 625GF UT WOS:000279882300013 PM 20452949 ER PT J AU Chen, AJ Di, LP Bai, YQ Wei, YX Liu, Y AF Chen, Aijun Di, Liping Bai, Yuqi Wei, Yaxing Liu, Yang TI Grid computing enhances standards-compatible geospatial catalogue service SO COMPUTERS & GEOSCIENCES LA English DT Article DE Catalogue service; Geospatial metadata standards; Grid computing; OGC Web services AB A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities. Published by Elsevier Ltd. C1 [Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang] George Mason Univ, Greenbelt, MD 20770 USA. [Chen, Aijun] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chen, AJ (reprint author), George Mason Univ, 6301 Ivy Lane,Ste 620, Greenbelt, MD 20770 USA. EM aijunchen@gmail.com; tdi@gmu.com; ybai1@gmu.com; weiy@ornl.gov; Yangliu5@gmail.com RI Wei, Yaxing/K-1507-2013 OI Wei, Yaxing/0000-0001-6924-0078 FU NASA [NCC5-645, NAG-13409, NNG04GE61A]; US National Geospatial-Intelligence Agency [HM1582-04-1-2021]; OGC FX This project was supported by grants from the NASA Earth Science Data and Information System Project (NCC5-645, PI: Dr. Liping Di), NASA Advanced Information System Technology program (NAG-13409, PI: Dr. Liping Di), NASA REASoN program (NNG04GE61A, PI: Dr. Liping Di), and US National Geospatial-Intelligence Agency NURI program (HM1582-04-1-2021, PI: Dr. Liping Di). Additional funding was received from the OGC for developing the OGC Web Services. Many thanks are given to our colleague, Dr. Barry Schlesinger, for his proofreading of the manuscript. NR 39 TC 5 Z9 5 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD APR PY 2010 VL 36 IS 4 BP 411 EP 421 DI 10.1016/j.cageo.2009.09.006 PG 11 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 578CS UT WOS:000276271600001 ER PT J AU Egbert, GD Erofeeva, SY Ray, RD AF Egbert, Gary D. Erofeeva, Svetlana Y. Ray, Richard D. TI Assimilation of altimetry data for nonlinear shallow-water tides: Quarter-diurnal tides of the Northwest European Shelf SO CONTINENTAL SHELF RESEARCH LA English DT Article DE Tides; Nonlinear tides; Overtides; Satellite altimetry ID OCEAN TIDES; ENGLISH-CHANNEL; GLOBAL OCEAN; MODEL; SEA AB Non-linear tidal constituents, such as the overtide M(4) Or the Compound tide MS(4), are generated by interaction in shallow seas of the much larger astronomically forced "primary" tidal constituents (e.g., M(2), S(2)). As such, errors in modeling these "secondary" shallow-water tides might be expected to be caused first of all by errors in modeling the primary constituents. Thus, in the context of data assimilation, observations of primary-constituent harmonic constants can indirectly constrain shallow-water constituents. Here we consider variational data assimilation for primary and secondary tidal constituents as a coupled problem, using a simple linearized perturbation theory for weak interactions of the dominant primary constituents. Variation of the resulting penalty functional leads to weakly non-linear Euler-Lagrange equations, which we show can be solved approximately with a simple two-stage scheme. In the first stage, data for the primary constituents are assimilated into the linear shallow water equations (SWE), and the resulting inverse solutions are used to compute the quadratic interactions in the non-linear SWE that constitute the forcing for the secondary constituents. In the second stage, data for the compound or overtide constituent are assimilated into the linear SWE, using a prior forced by the results of the first stage. We apply this scheme to assimilation of TOPEX/Poseidon and Jason altimetry data on the Northwest European Shelf, comparing results to a large set of shelf and coastal tide gauges. Prior solutions for M(4), MS(4) and MN(4) computed using inverse solutions for M(2), S(2), and N(2) dramatically improve fits to validation tide gauges relative to unconstrained forward solutions. Further assimilation of along-track harmonic constants for these shallow-water constituents reduces RMS differences to below 1 cm on the shelf, approaching the accuracy of the validation tide gauge harmonic constants. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Egbert, Gary D.; Erofeeva, Svetlana Y.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Egbert, GD (reprint author), Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. EM egbert@coas.oregonstate.edu RI Ray, Richard/D-1034-2012; OI Egbert, Gary/0000-0003-1276-8538 FU U.S. National Aeronautics and Space Administration; Natural Environment Research Council FX This work was supported by the U.S. National Aeronautics and Space Administration through the Ocean Surface Topography Mission. French tide gauge data were obtained from System d'Observation du Niveau des Eaux Littorales. British data were obtained from the British Oceanographic Data Centre, as part of the U.K. National Tidal & Sea Level Facility, funded by the Natural Environment Research Council. We thank B. D. Beckley and E. J. O. Schrama for help with additional gauge and altimeter datasets. NR 23 TC 38 Z9 39 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0278-4343 J9 CONT SHELF RES JI Cont. Shelf Res. PD APR 1 PY 2010 VL 30 IS 6 SI SI BP 668 EP 679 DI 10.1016/j.csr.2009.10.011 PG 12 WC Oceanography SC Oceanography GA 596FD UT WOS:000277669400015 ER PT J AU Harvey, HR Ju, SJ Son, SK Feinberg, LR Shaw, CT Peterson, WT AF Harvey, H. R. Ju, Se-J. Son, S-K. Feinberg, L. R. Shaw, C. T. Peterson, W. T. TI The biochemical estimation of age in Euphausiids: Laboratory calibration and field comparisons SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Euphausiids; Euphausia pacifica; Euphausia superba; Ageing; Lipofuscin; Demographic structure ID CRAB CALLINECTES-SAPIDUS; ANTARCTIC KRILL; EXTRACTABLE LIPOFUSCIN; SUPERBA; VARIABILITY; CRUSTACEANS; PACIFICA; GROWTH; ACCUMULATION; LONGEVITY AB Euphausiids play a key role in many marine ecosystems as a link between primary producers and top predators. Understanding their demographic (i.e. age) structure is an essential tool to assess growth and recruitment as well as to determine how changes in environmental conditions might alter their condition and distribution. Age determination of crustaceans cannot be accomplished using traditional approaches, and here we evaluate the potential for biochemical products of tissue metabolism (termed lipofuscins) to determine the demographic structure of euphausiids in field collections. Lipofuscin was extracted from krill neural tissues (eye and eye-stalk), quantified using fluorescent intensity and normalized to tissue protein content to allow comparisons across animal sizes. Multiple fluorescent components from krill were observed, with the major product having a maximum fluorescence at excitation of 355 nm and emission of 510 nm. Needed age calibration of lipofuscin accumulation in Euphausia pacifica was accomplished using known-age individuals hatched and reared in the laboratory for over one year. Lipofuscin content extracted from neural tissues of laboratory-reared animals was highly correlated with the chronological age of animals (r=0.87). Calibrated with laboratory lipofuscin accumulation rates, field-collected sub-adult and adult E. pacifica in the Northeast Pacific were estimated to be older than 100 days and younger than 1 year. Comparative data for the Antarctic krill, E. superba showed much higher lipofuscin values suggesting a much longer lifespan than the more temperate species, E. pacifica. These regional comparisons suggest that biochemical indices allow a practical approach to estimate population age structure of diverse populations, and combined with other measurements can provide estimates of vital rates (i.e. longevity, mortality, growth) for krill populations in dynamic environments. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ju, Se-J.; Son, S-K.] Korea Ocean & Res Dev Inst, Deep Sea & Marine Georesources Res Dept, Seoul 425600, South Korea. [Harvey, H. R.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. [Feinberg, L. R.; Shaw, C. T.] Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. [Peterson, W. T.] Natl Marine Fisheries Serv, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. RP Ju, SJ (reprint author), Korea Ocean & Res Dev Inst, Deep Sea & Marine Georesources Res Dept, POB 29, Seoul 425600, South Korea. EM sjju@kordi.re.kr RI Ju, Se-Jong/A-9029-2009 FU NSF [OPP-9910043]; NOAA [OCE-0000732]; KORDI [PE98314, PM54903]; KORP FX We thank Rachael Dyda, Steve McGuire, and Susan Klosterhaus for their assistance in the collection of euphausiids. This work was supported by NSF through the Southern Ocean GLOBEC program (OPP-9910043) and NOAA through the NEP-GLOBEC program (OCE-0000732). S.-J. Ju was also partially supported by KORDI projects (PE98314 & PM54903) and the industrial and academic outstanding researcher invitation program sponsored by KORP. This manuscript is contribution No. 4363 of The University of Maryland Center for Environmental Science and contribution No. 651 of US GLOBEC program. NR 36 TC 11 Z9 14 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD APR PY 2010 VL 57 IS 7-8 BP 663 EP 671 DI 10.1016/j.dsr2.2009.10.015 PG 9 WC Oceanography SC Oceanography GA 588KR UT WOS:000277069300017 ER PT J AU Molaro, JL Mckay, CP AF Molaro, Jamie L. McKay, Christopher P. TI Processes controlling rapid temperature variations on rock surfaces SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE rock weathering; surface temperature; time scale; wind fluctuations ID CRYPTOENDOLITHIC MICROBIAL ENVIRONMENT; THERMAL-STRESS; GRAIN SCALE; ANTARCTICA; DESERT; ISLAND AB In arid environments, thermal oscillations are an important source of rock weathering. Measurements of temperature have been made on the surface of rocks in a desert environment at a sampling interval of 0.375 s, with simultaneous measurements of wind speed, air temperature, and incoming shortwave radiation. Over timescales of hours, the temperature of the rock surface was determined primarily by shortwave radiation and air temperature, while rapid temperature variations, high dT/dt, at intervals of seconds or less, were determined by wind speed. The maximum values of temperature change and time spent above 2 degrees C min(-1) increased at high measurement rates and were much higher than previously reported. The maximum recorded value of dT/dt was 137 degrees C min(-1) and the average percentage time spent above 2 degrees C min(-1) was similar to 70 +/- 13%. Maximum values of dT/dt did not correlate with the maximum values of time spent above 2 degrees C min(-1). Simultaneous measurements of two thermocouples 5.5 cm apart on a single rock surface had similar temperature and dT/dt values, but were not correlated at sampling intervals of less than 10 s. It is suggested that this is resulting from rapid fluctuations due to small spatial and timescale wind effects that are averaged out when data is taken at longer sampling intervals, similar to 10 s or greater. Published in 2010 by John Wiley & Sons, Ltd. C1 [Molaro, Jamie L.; McKay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Molaro, JL (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM jmolaro@gmail.com RI Molaro, Jamie/C-6769-2014 OI Molaro, Jamie/0000-0002-5867-9410 NR 22 TC 12 Z9 12 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0197-9337 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD APR PY 2010 VL 35 IS 5 BP 501 EP 507 DI 10.1002/esp.1957 PG 7 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 596OQ UT WOS:000277695000001 ER PT J AU Shin, KM Watt, RK Watt, GD Choi, SH Kim, HH Kim, SI Kim, SJ AF Shin, Kwang Min Watt, Richard K. Watt, Gerald D. Choi, Sang H. Kim, Hyug-Han Kim, Sun I. Kim, Seon Jeong TI Characterization of ferritin core on redox reactions as a nanocomposite for electron transfer SO ELECTROCHIMICA ACTA LA English DT Article DE Ferritin; Redox reaction; Core stability; SWCNT; Nanocomposite ID WALLED CARBON NANOTUBES; MAMMALIAN FERRITIN; REDUCTION; IRON; PHOSPHATE AB The kinetics of the change in mass related to the release from and deposition onto the cavities of a ferritin in the SWCNT nanocomposite by electrochemical redox reactions, and the effects of the SWCNT on the kinetics of the variation in mass of the ferritin nanocomposite were characterized using an electrochemical quartz crystal microbalance. The change in mass of reconstituted ferritin in the SWCNT nanocomposite shows reversible variation and stability of the ferritin/SWCNT nanocomposite on redox reactions was confirmed by using a coreless apoferritin and a Fe(2+) chelating agent. The ferritin/SWCNT nanocomposite is a good candidate for applications based on electron transfer, such as biosensor, biobatteries and electrodes for biofuel cell. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Shin, Kwang Min; Kim, Sun I.; Kim, Seon Jeong] Hanyang Univ, Ctr Bioartificial Muscle, Seoul 133791, South Korea. [Shin, Kwang Min; Kim, Sun I.; Kim, Seon Jeong] Hanyang Univ, Dept Biomed Engn, Seoul 133791, South Korea. [Watt, Richard K.; Watt, Gerald D.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Choi, Sang H.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Kim, Hyug-Han] Dankook Univ, Sch Adv Sci, Dept Chem, Cheonan 330180, South Korea. RP Kim, SJ (reprint author), Seongdong POB 55, Seoul 133605, South Korea. EM sjk@hanyang.ac.kr FU Ministry of Education, Science and Technology (M EST) in Korea FX This work was supported by the Creative Research Initiative Center for Bio-Artificial Muscle of the Ministry of Education, Science and Technology (M EST) in Korea. NR 22 TC 4 Z9 4 U1 3 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 1 PY 2010 VL 55 IS 10 BP 3486 EP 3490 DI 10.1016/j.electacta.2010.01.086 PG 5 WC Electrochemistry SC Electrochemistry GA 584YY UT WOS:000276792000007 ER PT J AU Terenzi, F Hall, TM AF Terenzi, F. Hall, Timothy M. TI Idealized tracer transport models with time-varying transport: applications to ocean boundary currents SO ENVIRONMENTAL FLUID MECHANICS LA English DT Article DE Ocean tracer transport; Deep western boundary current; Idealized analytic models ID DEEP EQUATORIAL ATLANTIC; LABRADOR SEA-WATER; STRATOSPHERIC TRANSPORT; PIPE MODEL; AIR; AGE; DISTRIBUTIONS; VENTILATION; DIFFUSION; ARRIVAL AB One-dimensional advection-diffusion and advection-diffusion-dilution (or "leaky-pipe") models have been widely used to interpret a variety of geophysical phenomena. For example, in the ocean these tools have been used to interpret the penetration and spreading of tracers such as Chlorofluorocarbons(CFCs) along the Deep Western boundary current (DWBC). Usually, the transport coefficients of such models are taken to be constant in time, thus assuming the transport to be in steady state. Here, we relax this assumption and calculate tracer-signal variability in two simple 1D models for the boundary current having low-amplitude time-varying coefficients. Given a background tracer gradient due, for example, to a steady-state source in a boundary region, the resulting tracer field exhibits fluctuations due to the transport acting on the gradients. We compare the transport-induced tracer fluctuations to propagated fluctuations occurring in steady-state models with a periodic source in the boundary region. Using coefficients fitted to DWBC tracer observations, we find that in the North Atlantic propagated tracer fluctuations are larger, while in the sub-tropics transport-induced fluctuations dominate. This contrasts a common view that subtropical and tropical DWBC fluctuations in tracers such as CFCs, temperature and salinity anomalies are propagated signals from the northern formation region. However, the predicted transport-induced fluctuations in these models are still smaller than the observed fluctuations. C1 [Terenzi, F.; Hall, Timothy M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Hall, Timothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Terenzi, F (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM ft2104@columbia.edu NR 22 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1567-7419 J9 ENVIRON FLUID MECH JI Environ. Fluid Mech. PD APR PY 2010 VL 10 IS 1-2 BP 235 EP 255 DI 10.1007/s10652-009-9135-6 PG 21 WC Environmental Sciences; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources SC Environmental Sciences & Ecology; Mechanics; Meteorology & Atmospheric Sciences; Oceanography; Water Resources GA 551HN UT WOS:000274197800014 ER PT J AU Lau, WKM Kim, MK Kim, KM Lee, WS AF Lau, William K. M. Kim, Maeng-Ki Kim, Kyu-Myong Lee, Woo-Seop TI Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE water cycle; enhanced warming and accelerated melting of glacier in Himalayas and the Tibetan Plateau ID ASIAN SUMMER MONSOON; GLACIER; CLIMATE; RETREAT; MODEL; MOUNTAINS; SATELLITE; DECADES; RECORDS; TRENDS AB Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (similar to 5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback-the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect. C1 [Lau, William K. M.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Maeng-Ki; Lee, Woo-Seop] Kongju Natl Univ, Dept Atmospher Sci, Kong Ju 314701, South Korea. [Kim, Kyu-Myong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Lau, WKM (reprint author), NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM William.k.lau@nasa.gov; mkkim@konju.ac.kr; Kyu-Myong.Kim@nasa.gov; wooseobi@kongju.ac.kr RI Kim, Kyu-Myong/G-5398-2014; Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 FU NASA; Republic of Korea FX This work is supported by the Interdisciplinary Program, NASA Headquarters, program manager Dr H Maring. This work is partially supported by a grant (CATER 2009-1147) from the Korea Meteorological Administration Research and Development Program of the Republic of Korea. NR 43 TC 56 Z9 58 U1 5 U2 48 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2010 VL 5 IS 2 AR 025204 DI 10.1088/1748-9326/5/2/025204 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 618PZ UT WOS:000279369500017 ER PT J AU Stephens, GL Hu, YX AF Stephens, Graeme L. Hu, Yongxiang TI Are climate-related changes to the character of global-mean precipitation predictable? SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE global precipitation; climate change ID WATER-VAPOR; HYDROLOGICAL CYCLE; SURFACE; TRENDS; TEMPERATURE; VARIABILITY; HUMIDITY; MODELS; RAIN AB The physical basis for the change in global-mean precipitation projected to occur with the warming associated with increased greenhouse gases is discussed. The expected increases to column water vapor W control the rate of increase of global precipitation accumulation through its affect on the planet's energy balance. The key role played by changes to downward longwave radiation controlled by this changing water vapor is emphasized. The basic properties of molecular absorption by water vapor dictate that the fractional rate of increase of global-mean precipitation must be significantly less that the fractional rate of increase in water vapor and it is further argued that this reduced rate of precipitation increase implies that the timescale for water re-cycling is increased in the global mean. This further implies less frequent precipitation over a fixed period of time, and the intensity of these less frequent precipitating events must subsequently increase in the mean to realize the increased global accumulation. These changes to the character of global-mean precipitation, predictable consequences of equally predictable changes to W, apply only to the global-mean state and not to the regional or local scale changes in precipitation. C1 [Stephens, Graeme L.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Stephens, Graeme L.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Hu, Yongxiang] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Stephens, GL (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RI Hu, Yongxiang/K-4426-2012 NR 41 TC 21 Z9 21 U1 8 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR-JUN PY 2010 VL 5 IS 2 AR 025209 DI 10.1088/1748-9326/5/2/025209 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 618PZ UT WOS:000279369500022 ER PT J AU Kounaves, SP Stroble, ST Anderson, RM Moore, Q Catling, DC Douglas, S McKay, CP Ming, DW Smith, PH Tamppari, LK Zent, AP AF Kounaves, Samuel P. Stroble, Shannon T. Anderson, Rachel M. Moore, Quincy Catling, David C. Douglas, Susanne McKay, Christopher P. Ming, Douglas W. Smith, Peter H. Tamppari, Leslie K. Zent, Aaron P. TI Discovery of Natural Perchlorate in the Antarctic Dry Valleys and Its Global Implications SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NITRATE; IDENTIFICATION; DEPOSITION; REDUCTION; CHEMISTRY; BACTERIA; SYSTEMS; ORIGIN; SALTS; SOILS AB In the past few years, it has become increasingly apparent that perchlorate (ClO(4)(-)) is present on all continents, except the polar regions where it had not yet been assessed, and that it may have a significant natural source. Here, we report on the discovery of perchlorate in soil and ice from several Antarctic Dry Valleys (ADVs) where concentrations reach up to 1100 mu g/kg. In the driest ADV, perchlorate correlates with atmospherically deposited nitrate. Far from anthropogenic activity, ADV perchlorate provides unambiguous evidence that natural perchlorate is ubiquitous on Earth. The discovery has significant implications for the origin of perchlorate, its global biogeochemical interactions, and possible interactions with the polar ice sheets. The results support the hypotheses that perchlorate is produced globally and continuously in the Earth's atmosphere, that it typically accumulates in hyperarid areas, and that it does not build up in oceans or other wet environments most likely because of microbial reduction on a global scale. C1 [Kounaves, Samuel P.; Stroble, Shannon T.; Anderson, Rachel M.; Moore, Quincy; Catling, David C.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Douglas, Susanne; Tamppari, Leslie K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McKay, Christopher P.; Zent, Aaron P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Smith, Peter H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Kounaves, SP (reprint author), Tufts Univ, Dept Chem, Medford, MA 02155 USA. EM samuel.kounaves@tufts.edu RI Catling, David/D-2082-2009; OI Catling, David/0000-0001-5646-120X; Kounaves, Samuel/0000-0002-2629-4831 FU National Aeronautics & Space Administration; National Science Foundation FX This research project was supported by the National Aeronautics & Space Administration and the National Science Foundation, as part of the International Polar Year. NR 40 TC 81 Z9 83 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 1 PY 2010 VL 44 IS 7 BP 2360 EP 2364 DI 10.1021/es9033606 PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 574MN UT WOS:000275993700023 PM 20155929 ER PT J AU Weinstein, LM AF Weinstein, L. M. TI Review and update of lens and grid schlieren and motion camera schlieren SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Review ID FOCUSING SCHLIEREN; SYSTEM; VISUALIZATION; FLOWS AB Optical density variation in fluids and transparent solids can often be studied by examining the effect of refraction of light passing through the medium. The schlieren technique has proven to be particularly well suited for these applications, and has been widely used for wind-tunnel studies. Newer variations of this technique have extended it to a wide range of applications. The lens and grid schlieren systems have been used to examine aerodynamic flow fields that were previously difficult to study with conventional schlieren systems. Motion camera schlieren was developed to obtain the flow field around aircraft in flight and rocket sleds. This paper gives an up to date review of the background and development of the lens and grid schlieren and motion camera schlieren techniques and includes examples of many of the flows studied using the techniques, including some previously unpublished ones. In addition, some preliminary results from new versions of both types of systems are described. C1 NASA, Natl Inst Aerosp, Hampton, VA 23666 USA. RP Weinstein, LM (reprint author), NASA, Natl Inst Aerosp, Hampton, VA 23666 USA. EM leonard.weinstein@nianet.org NR 66 TC 12 Z9 12 U1 0 U2 9 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD APR PY 2010 VL 182 IS 1 BP 65 EP 95 DI 10.1140/epjst/e2010-01226-y PG 31 WC Physics, Multidisciplinary SC Physics GA 621UI UT WOS:000279609600005 ER PT J AU Evans, JM Schneider, RS Platts, SH Brown, AK Stenger, MB Knapp, CF AF Evans, Joyce M. Schneider, Rebecca S. Platts, Steven H. Brown, Angela K. Stenger, Michael B. Knapp, Charles F. TI Orthostatic Tolerance and Breast High Compression Garments SO FASEB JOURNAL LA English DT Meeting Abstract C1 [Evans, Joyce M.; Schneider, Rebecca S.; Knapp, Charles F.] Univ Kentucky, Lexington, KY USA. [Platts, Steven H.] NASA Johnson Space Ctr, Cardiovasc Labotatory, Houston, TX USA. [Brown, Angela K.] MEI Technol, Houston, TX USA. [Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Cardiovasc Labotatory, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2010 VL 24 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA V28IW UT WOS:000208675505326 ER PT J AU Smith, SM Pierson, DL Mehta, SK Zwart, SR AF Smith, Scott M. Pierson, Duane L. Mehta, Satish K. Zwart, Sara R. TI Intake of fish and omega-3 (n-3) fatty acids: effect on bone during actual and simulated weightlessness SO FASEB JOURNAL LA English DT Meeting Abstract C1 [Smith, Scott M.; Pierson, Duane L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Mehta, Satish K.] Enterprise Advisory Serv, Houston, TX USA. [Zwart, Sara R.] USRA, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD APR PY 2010 VL 24 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA V28IW UT WOS:000208675502787 ER PT J AU Tribuzio, CA Kruse, GH Fujioka, JT AF Tribuzio, Cindy A. Kruse, Gordon H. Fujioka, Jeffrey T. TI Age and growth of spiny dogfish (Squalus acanthias) in the Gulf of Alaska: analysis of alternative growth models SO FISHERY BULLETIN LA English DT Article ID BRITISH-COLUMBIA WATERS; WESTERN NORTH-ATLANTIC; BACK-CALCULATION; 2-PHASE GROWTH; UNITED-STATES; LIFE-HISTORY; VALIDATION; LENGTH; REPRODUCTION; CONSISTENCY AB Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t(0) formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L-0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L infinity = 87.2 and 102.5 cm and k=0.106 and 0.058 for males and females, respectively. C1 [Tribuzio, Cindy A.; Fujioka, Jeffrey T.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Tribuzio, Cindy A.; Kruse, Gordon H.] Univ Alaska Fairbanks, Juneau Ctr, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. RP Tribuzio, CA (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM cindy.tribuzio@noaa.gov FU North Pacific Research Board; Rasmuson Fisheries Research Center; Alaska Fisheries Science Center FX We are grateful for funding of this research by the North Pacific Research Board (NPRB publication no. 227), the Rasmuson Fisheries Research Center, and the Alaska Fisheries Science Center's Population Dynamics Fellowship through the Cooperative Institute for Arctic Research (CIFAR). We thank V. Gallucci, J. Rice, A. Andrews, and W. Strasberger for field and laboratory assistance, and G. Bargmann, S. Rosen, and J. Topping at the Washington Department of Fish and Wildlife for reading spines and training. We acknowledge the National Marine Fisheries Service; Alaska Department of Fish and Game; chartered vessels and crew of the FVs Kingfisher, Winter King, and Sea View, commercial fishermen in Yakutat, Cordova, and Kasilof; Gauvin and Associates, LLC., and Alaska Pacific and Trident Seafoods for kindly providing sampling opportunities. Finally, we are grateful to T. Quinn II and K. Goldman for considerable helpful analytical advice. NR 55 TC 12 Z9 12 U1 2 U2 12 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2010 VL 108 IS 2 BP 119 EP 135 PG 17 WC Fisheries SC Fisheries GA 587UA UT WOS:000277017600001 ER PT J AU Fergusson, EA Sturdevant, MV Orsi, JA AF Fergusson, Emily A. Sturdevant, Molly V. Orsi, Joseph A. TI Effects of starvation on energy density of juvenile chum salmon (Oncorhynchus keta) captured in marine waters of Southeastern Alaska SO FISHERY BULLETIN LA English DT Article ID PRINCE-WILLIAM-SOUND; BODY CONDITION INDEXES; COHO SALMON; PINK SALMON; ESTIMATING FITNESS; SOCKEYE SALMON; RATION SIZE; GROWTH; TEMPERATURE; SURVIVAL AB We conducted laboratory starvation experiments on juvenile chum salmon (Oncorhynchus keta) captured in the neritic marine waters of northern Southeast Alaska in June and July 2003. Temporal changes in fish energy density (whole body energy content [WBEC], cal/g dry weight), percent moisture content, wet weight (g), length (mm), and size-related condition residuals were measured in the laboratory and were then compared to long-term field data. Laboratory water temperatures and salinities averaged 9 C and 32 psu in both months. Trends in response variables were similar for both experimental groups, although sampling intervals were limited in July because fewer fish were available (n=54) than in June (n=101). Overall, for June (45-d experimental period, 9 intervals), WBEC, wet weight, and condition residuals decreased and percent moisture content increased, whereas fork length did not change. For July (20-d experimental period, 5 intervals), WBEC and condition residuals decreased, percent moisture content and fork length increased, and wet weight did not change. WBEC, percent moisture content, and condition residuals fell outside the norm of long-term data ranges within 10-15 days of starvation, and may be more useful than fork length and wet weight for detecting fish condition responses to suboptimal environments. C1 [Fergusson, Emily A.; Sturdevant, Molly V.; Orsi, Joseph A.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, Juneau, AK 99801 USA. RP Fergusson, EA (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM emily.fergusson@noaa.gov NR 33 TC 3 Z9 3 U1 1 U2 5 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2010 VL 108 IS 2 BP 218 EP 225 PG 8 WC Fisheries SC Fisheries GA 587UA UT WOS:000277017600009 ER PT J AU Fruh, EL Keller, A Trantham, J Simon, V AF Fruh, Erica L. Keller, Aimee Trantham, Jessica Simon, Victor TI Accuracy of sex determination for northeastern Pacific Ocean thornyheads (Sebastolobus altivelis and S. alascanus) SO FISHERY BULLETIN LA English DT Article ID ROCKFISH; SCORPAENIDAE AB Determining the sex of thornyheads (Sebastolobus alascanus and S. altivelis) can be difficult under field conditions. We assessed our ability to correctly assign sex in the field by comparing results from field observations to results obtained in the laboratory through both macroscopic and microscopic examination of gonads. Sex of longspine thornyheads was more difficult to determine than that of shortspine thornyheads and correct determination of sex was significantly related to size. By restricting the minimum size of thornyheads to 18 cm for macroscopic determination of sex we reduced the number of fish with misidentified sex by approximately 65%. C1 [Fruh, Erica L.] Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Keller, Aimee; Simon, Victor] Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Seattle, WA 98112 USA. [Trantham, Jessica] Underwater World, Husb Dept, Tumon, GU 96913 USA. RP Fruh, EL (reprint author), Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2032 SE OSU Dr, Newport, OR 97365 USA. EM Erica.Fruh@noaa.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2010 VL 108 IS 2 BP 226 EP 232 PG 7 WC Fisheries SC Fisheries GA 587UA UT WOS:000277017600010 ER PT J AU DeMets, C Gordon, RG Argus, DF AF DeMets, Charles Gordon, Richard G. Argus, Donald F. TI Geologically current plate motions SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Plate motions; Planetary tectonics ID MID-ATLANTIC-RIDGE; SOUTHWEST INDIAN RIDGE; NORTH-AMERICA PLATE; EAST PACIFIC RISE; BASE-LINE INTERFEROMETRY; NAZCA SPREADING CENTER; PHILIPPINE SEA PLATE; AUSTRALIAN-ANTARCTIC DISCORDANCE; GLOBAL POSITIONING SYSTEM; JUAN-FERNANDEZ MICROPLATE AB We describe best-fitting angular velocities and MORVEL, a new closure-enforced set of angular velocities for the geologically current motions of 25 tectonic plates that collectively occupy 97 per cent of Earth's surface. Seafloor spreading rates and fault azimuths are used to determine the motions of 19 plates bordered by mid-ocean ridges, including all the major plates. Six smaller plates with little or no connection to the mid-ocean ridges are linked to MORVEL with GPS station velocities and azimuthal data. By design, almost no kinematic information is exchanged between the geologically determined and geodetically constrained subsets of the global circuit-MORVEL thus averages motion over geological intervals for all the major plates. Plate geometry changes relative to NUVEL-1A include the incorporation of Nubia, Lwandle and Somalia plates for the former Africa plate, Capricorn, Australia and Macquarie plates for the former Australia plate, and Sur and South America plates for the former South America plate. MORVEL also includes Amur, Philippine Sea, Sundaland and Yangtze plates, making it more useful than NUVEL-1A for studies of deformation in Asia and the western Pacific. Seafloor spreading rates are estimated over the past 0.78 Myr for intermediate and fast spreading centres and since 3.16 Ma for slow and ultraslow spreading centres. Rates are adjusted downward by 0.6-2.6 mm yr(-1) to compensate for the several kilometre width of magnetic reversal zones. Nearly all the NUVEL-1A angular velocities differ significantly from the MORVEL angular velocities. The many new data, revised plate geometries, and correction for outward displacement thus significantly modify our knowledge of geologically current plate motions. MORVEL indicates significantly slower 0.78-Myr-average motion across the Nazca-Antarctic and Nazca-Pacific boundaries than does NUVEL-1A, consistent with a progressive slowdown in the eastward component of Nazca plate motion since 3.16 Ma. It also indicates that motions across the Caribbean-North America and Caribbean-South America plate boundaries are twice as fast as given by NUVEL-1A. Summed, least-squares differences between angular velocities estimated from GPS and those for MORVEL, NUVEL-1 and NUVEL-1A are, respectively, 260 per cent larger for NUVEL-1 and 50 per cent larger for NUVEL-1A than for MORVEL, suggesting that MORVEL more accurately describes historically current plate motions. Significant differences between geological and GPS estimates of Nazca plate motion and Arabia-Eurasia and India-Eurasia motion are reduced but not eliminated when using MORVEL instead of NUVEL-1A, possibly indicating that changes have occurred in those plate motions since 3.16 Ma. The MORVEL and GPS estimates of Pacific-North America plate motion in western North America differ by only 2.6 +/- 1.7 mm yr(-1), approximate to 25 per cent smaller than for NUVEL-1A. The remaining difference for this plate pair, assuming there are no unrecognized systematic errors and no measurable change in Pacific-North America motion over the past 1-3 Myr, indicates deformation of one or more plates in the global circuit. Tests for closure of six three-plate circuits indicate that two, Pacific-Cocos-Nazca and Sur-Nubia-Antarctic, fail closure, with respective linear velocities of non-closure of 14 +/- 5 and 3 +/- 1 mm yr(-1) ( 95 per cent confidence limits) at their triple junctions. We conclude that the rigid plate approximation continues to be tremendously useful, but-absent any unrecognized systematic errors-the platesdeform measurably, possibly by thermal contraction and wide plate boundaries with deformation rates near or beneath the level of noise in plate kinematic data. C1 [DeMets, Charles] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Gordon, Richard G.] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Argus, Donald F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP DeMets, C (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM chuck@geology.wisc.edu RI Zhan, Zhongwen/D-3016-2009; Argus, Donald/F-7704-2011 FU NSF [OCE-0453113, OCE-0453219, EAR-0735156]; National Science Foundation; NASA FX The following individuals, whom we thank, kindly contributed published and unpublished original data that were critical for this project: Daniel Aslanian, Anne Briais, John Brozena, Steve Cande, Mathilde Cannat, Jim Cochran, Rajendra Drolia, Javier Escartin, Marc Fournier, Toshiya Fujiwara, Pascal Gente, Jean Goslin, Nancy Grindlay, Allegra Hosford, Philippe Huchon, Jill Karsten, Teruyuki Kato, Skip Kovacs, Tim Le Bas, Marco Ligi, Roy Livermore, Emanuele Lodolo, RonMacnab, Fernando Martinez, the late Sergei Maschenkov, Serguei Merkouriev, Bramley Murton, Rob Pockalny, Walter Roest, Jean-Yves Royer, Takeshi Sagiya, Dan Scheirer, JeanGuys Schilling, Roger Searle, Shuanngen Jin, Wim Simons, Chris Small, Bob Smalley, Joann Stock, Graham Westbrook and ShuiBeih Yu. We also thank Ben Horner-Johnson for supplying software to facilitate plotting pole uncertainty ellipses and Indrajit Das for assembling from multibeam data a new digital file of the mid-ocean ridges for the paper figures. We also thank Thorsten Becker and two anonymous reviewers for constructive comments. Figures were produced with Generic Mapping Tool software (Wessel & Smith 1991). This work was funded by NSF grants OCE-0453113 ( CD) and OCE-0453219 (RG). Part of this material is based on data provided by the UNAVCO Facility with support from the National Science Foundation and NASA under NSF Cooperative Agreement No. EAR-0735156. NR 265 TC 667 Z9 690 U1 29 U2 197 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD APR PY 2010 VL 181 IS 1 BP 1 EP 80 DI 10.1111/j.1365-246X.2009.04491.x PG 80 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 573BV UT WOS:000275884300001 ER PT J AU Rame, E Wilkinson, A Elliot, A Young, C AF Rame, Enrique Wilkinson, Allen Elliot, Alan Young, Carolyn TI Flowability of lunar soil simulant JSC-1a SO GRANULAR MATTER LA English DT Article; Proceedings Paper CT Mini-Symposium on Granular Materials held at the Inaugural Conference of EMI CY MAY 18-21, 2008 CL Univ Minnesota, Minneapolis, MN SP Engn Mech Inst HO Univ Minnesota DE Lunar simulant; Flowability; Hopper design ID FLOW AB We have done a complete flowability characterization of the lunar soil simulant, JSC-1a, following closely the ASTM-6773 standard for the Shulze ring shear test. The measurements, which involve pre-shearing the material before each yield point, show JSC-1a to be cohesionless, with an angle of internal friction near 40A degrees. We also measured yield loci after consolidating the material in a vibration table which show it to have significant cohesion (a parts per thousand 1 kPa) and an internal friction angle of about 60A degrees. Hopper designs based on each type of flowability test differ significantly. These differences highlight the need to discern the condition of the lunar soil in the specific process where flowability is an issue. We close with a list-not necessarily comprehensive-of engineering rules of thumb that apply to powder flow in hoppers. C1 [Rame, Enrique] NASA, Natl Ctr Space Explorat Res, Glenn Res Ctr, Cleveland, OH 44135 USA. [Elliot, Alan] Univ Kansas, Lawrence, KS 66045 USA. [Young, Carolyn] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Rame, E (reprint author), NASA, Natl Ctr Space Explorat Res, Glenn Res Ctr, MS 110-3, Cleveland, OH 44135 USA. EM enrique.rame@grc.nasa.gov; aw@grc.nasa.gov NR 28 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-5021 J9 GRANUL MATTER JI Granul. Matter PD APR PY 2010 VL 12 IS 2 SI SI BP 173 EP 183 DI 10.1007/s10035-010-0172-0 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Physics, Applied SC Materials Science; Mechanics; Physics GA 585ZR UT WOS:000276870500005 ER PT J AU Bearman, C Paletz, SBF Orasanu, J Thomas, MJW AF Bearman, Christopher Paletz, Susannah B. F. Orasanu, Judith Thomas, Matthew J. W. TI The Breakdown of Coordinated Decision Making in Distributed Systems SO HUMAN FACTORS LA English DT Article ID MENTAL MODELS; TEAM ADAPTATION; PERFORMANCE; COGNITION AB Objective: This article aims to explore the nature and resolution of breakdowns in coordinated decision making in distributed safety-critical systems. Background: In safety-critical domains, people with different roles and responsibilities often must work together to make coordinated decisions while geographically distributed. Although there is likely to be a large degree of overlap in the shared mental models of these people on the basis of procedures and experience, subtle differences may exist. Method: Study 1 involves using Aviation Safety Reporting System reports to explore the ways in which coordinated decision making breaks down between pilots and air traffic controllers and the way in which the breakdowns are resolved. Study 2 replicates and extends those findings with the use of transcripts from the Apollo 13 National Aeronautics and Space Administration space mission. Results: Across both studies, breakdowns were caused in part by different types of lower-level breakdowns (or disconnects), which are labeled as operational, informational, or evaluative. Evaluative disconnects were found to be significantly harder to resolve than other types of disconnects. Conclusion: Considering breakdowns according to the type of disconnect involved appears to capture useful information that should assist accident and incident investigators. The current trend in aviation of shifting responsibilities and providing increasingly more information to pilots may have a hidden cost of increasing evaluative disconnects. Application: The proposed taxonomy facilitates the investigation of breakdowns in coordinated decision making and draws attention to the importance of considering subtle differences between participants' mental models when considering complex distributed systems. C1 [Bearman, Christopher; Thomas, Matthew J. W.] Univ S Australia, Adelaide, SA 5001, Australia. [Paletz, Susannah B. F.; Orasanu, Judith] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bearman, C (reprint author), Univ S Australia, Level 7 Playford Bldg,City E Campus,GPO Box 2471, Adelaide, SA 5001, Australia. EM chris.bearman@unisa.edu.au OI Thomas, Matthew/0000-0002-5553-5825 FU National Aeronautics and Space Administration (NASA); Federal Aviation Administration's Office of Human Factors FX The authors would like to thank the following people: Jane Bearman, La Quisha Beckum, Roberta Bernhard, Doug Drury, Stephen Farlow, Jon Holbrook, Bonny Parke, Michael de los Reyes, Christian Schunn, and the three anonymous reviewers. This research was supported by the National Aeronautics and Space Administration (NASA) Aviation Safety Program, the Federal Aviation Administration's Office of Human Factors, and an appointment of the first author to the NASA postdoctoral program at Ames Research Center administered by Oak Ridge Associated Universities. Please note that two authors of this article are/were U. S. government employees and created the article within the scope of their employment. As a work of the U. S. federal government, the content of the article is in the public domain. NR 36 TC 18 Z9 18 U1 2 U2 24 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0018-7208 J9 HUM FACTORS JI Hum. Factors PD APR PY 2010 VL 52 IS 2 SI SI BP 173 EP 188 DI 10.1177/0018720810372104 PG 16 WC Behavioral Sciences; Engineering, Industrial; Ergonomics; Psychology, Applied; Psychology SC Behavioral Sciences; Engineering; Psychology GA 649TM UT WOS:000281796800004 PM 20942249 ER PT J AU Esposito, LW Hendrix, AR AF Esposito, Larry W. Hendrix, Amanda R. TI Introduction to special section on Saturn's rings and icy satellites from Cassini SO ICARUS LA English DT Editorial Material C1 [Esposito, Larry W.] Univ Colorado, LASP, Boulder, CO 80303 USA. [Hendrix, Amanda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Esposito, LW (reprint author), Univ Colorado, LASP, 1234 Innovat Dr, Boulder, CO 80303 USA. EM Larry.Esposito@lasp.colorado.edu; arh@jpl.nasa.gov NR 1 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 381 EP 381 DI 10.1016/j.icarus.2010.02.001 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600001 ER PT J AU Bradley, ET Colwell, JE Esposito, LW Cuzzi, JN Tollerud, H Chambers, L AF Bradley, E. Todd Colwell, Joshua E. Esposito, Larry W. Cuzzi, Jeffrey N. Tollerud, Heather Chambers, Lindsey TI Far ultraviolet spectral properties of Saturn's rings from Cassini UVIS SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn, Rings; Ices, UV spectroscopy; Ultraviolet observations ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MAIN RINGS; PHOTOMETRY; SCATTERING; SURFACES; COLOR AB Spectra taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) of Saturn's C ring, B ring, Cassini Division, and A ring have been analyzed in order to characterize ring particle surface properties and water ice abundance in the rings. UVIS spectra sense the outer few microns of the ring particles. Spectra of the normalized reflectance (I/F) in all four regions show a characteristic water ice absorption feature near 165 nm. Our analysis shows that the fractional abundance of surface water ice is largest in the outer B ring and decreases by over a factor of 2 across the inner C ring. We calculate the mean path length of UV photons through icy ring particle regolith and the scattering asymmetry parameter using a Hapke reflectance model and a Shkuratov reflectance model to match the location of the water ice absorption edge in the data. Both models give similar retrieved values of the photon mean length, however the retrieved asymmetry (g) values are different. The photon mean path lengths are nearly uniform across the B and A rings. Shortward of 165 nm the rings exhibit a slope that turns up towards shorter wavelengths, while the UV slope of 180/150 nm (reflectance outside the water absorption ratioed to that inside the absorption band) tracks I/F with maxima in the outer B ring and in the central A ring. Retrieved values of the scattering asymmetry parameter show the regolith grains to be highly backscattering in the FUV spectral regime. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bradley, E. Todd; Colwell, Joshua E.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Esposito, Larry W.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Tollerud, Heather] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Chambers, Lindsey] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Bradley, ET (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. EM tbradley@physics.ucf.edu NR 31 TC 7 Z9 7 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 458 EP 466 DI 10.1016/j.icarus.2009.12.021 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600008 ER PT J AU Ostro, SJ West, RD Wye, LC Zebker, HA Janssen, MA Stiles, B Kelleher, K Anderson, YZ Boehmer, RA Callahan, P Gim, Y Hamilton, GA Johnson, WTK Veeramachaneni, C Lorenz, RD AF Ostro, S. J. West, R. D. Wye, L. C. Zebker, H. A. Janssen, M. A. Stiles, B. Kelleher, K. Anderson, Y. Z. Boehmer, R. A. Callahan, P. Gim, Y. Hamilton, G. A. Johnson, W. T. K. Veeramachaneni, C. Lorenz, R. D. CA Cassini RADAR Team TI New Cassini RADAR results for Saturn's icy satellites SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn, Satellites; Satellites, General; Radar observations ID COHERENT-BACKSCATTER; E-RING; ENCELADUS; HYPERION; IAPETUS; TETHYS; DIONE; RHEA; SPECTROSCOPY; ARECIBO AB Cassini radar tracks on Saturn's icy satellites through the end of the Prime Mission in 2008 have increased the number of radar albedo estimates from 10 (Ostro et al., 2006) to 73. The measurements sample diverse subradar locations (and for Dione, Rhea, and Iapetus almost always use beamwidths less than half the target angular diameters), thereby constraining the satellites' global radar albedo distributions. The echoes result predominantly from volume scattering, and their strength is thus strongly sensitive to ice purity and regolith maturity. The combination of the Cassini data set and Arecibo 13-cm observations of Enceladus, Tethys, Dione, Rhea (Black et al., 2007), and Iapetus (Black et al., 2004) discloses an unexpectedly complex pattern of 13-to-2-cm wavelength dependence. The 13-cm albedos are generally smaller than 2-cm albedos and lack the correlation seen between 2-cm and optical geometric albedos. Enceladus and Iapetus are the most interesting cases. We infer from hemispheric albedo variations that the E-ring has a prominent effect on the 13-cm radar "lightcurve". The uppermost trailing-side regolith is too fresh for meteoroid bombardment to have developed larger-scale heterogeneities that would be necessary to elevate the 13-cm radar albedo, whereas all of Enceladus is clean and mature enough for the 2-cm albedo to be uniformly high. For, Iapetus, the 2-cm albedo is strongly correlated with optical albedo: low for the optically dark, leading-side material and high for the optically bright, trailing-side material. However, Iapetus' 13-cm albedo values show no significant albedo dichotomy and are several times lower than 2-cm values, being indistinguishable from the weighted mean of 13-cm albedos for main-belt asteroids, 0.15 +/- 0.10. The leading side's optically dark contaminant must be present to depths of at least one to several decimeters, so 2-cm albedos can mimic the optical dichotomy; however, it does not have to extend any deeper than that. The fact that both hemispheres of Iapetus look Asteroid-like at 13 cm means that coherent backscattering itself is not nearly as effective as it is at 2 cm. Since Iapetus' entire surface is mature regolith, the wavelength dependence must involve composition, not structure. Either the composition is a function of depth everywhere (with electrical loss much greater at depths greater than a decimeter or two), or the intrinsic electrical loss of some pervasive constituent is much higher at 13 cm than at 2 cm. Ammonia is a candidate for such a contaminant. If ammonia's electrical properties do not depend on frequency, and if ammonia is globally much less abundant within the upper one or two decimeters than at greater depths, then coherent backscattering would effectively be shut down at 13 cm, explaining the Asteroid-like 13-cm albedo. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ostro, S. J.; West, R. D.; Janssen, M. A.; Stiles, B.; Kelleher, K.; Anderson, Y. Z.; Boehmer, R. A.; Callahan, P.; Gim, Y.; Hamilton, G. A.; Johnson, W. T. K.; Veeramachaneni, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wye, L. C.; Zebker, H. A.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP West, RD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM richard.west@jpl.nasa.gov RI Lorenz, Ralph/B-8759-2016 OI Lorenz, Ralph/0000-0001-8528-4644 NR 26 TC 6 Z9 6 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 498 EP 506 DI 10.1016/j.icarus.2009.07.041 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600011 ER PT J AU Filacchione, G Capaccioni, F Clark, RN Cuzzi, JN Cruikshank, DP Coradini, A Cerroni, P Nicholson, PD McCord, TB Brown, RH Buratti, BJ Tosi, F Nelson, RM Jaumann, R Stephan, K AF Filacchione, G. Capaccioni, F. Clark, R. N. Cuzzi, J. N. Cruikshank, D. P. Coradini, A. Cerroni, P. Nicholson, P. D. McCord, T. B. Brown, R. H. Buratti, B. J. Tosi, F. Nelson, R. M. Jaumann, R. Stephan, K. TI Saturn's icy satellites investigated by Cassini-VIMS II. Results at the end of nominal mission SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn, Satellites; Spectroscopy; Ices, IR spectroscopy; Infrared observations; Image processing ID INFRARED MAPPING SPECTROMETER; OUTER SOLAR-SYSTEM; MU-M; CARBON-DIOXIDE; WATER ICE; CRYSTALLINE H2O-ICE; OPTICAL-CONSTANTS; ENCELADUS SURFACE; MOON PHOEBE; H2O ICE AB We report the detailed analysis of the spectrophotometric properties of Saturn's icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini's nominal mission (June 1st 2008), while a previous paper (Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259290, hereby referred to as Paper I) reported the preliminary results of this study. During the four years of nominal mission, VIMS has observed the entire population of Saturn's icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas. Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/F continua at 0.55 mu m, 1.822 mu m and 3.547 mu m visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to "contaminants" abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn's system. We introduce a polar representation of the spectrophotometric parameters as function of the solar phase angle (along radial distance) and of the effective longitude interval illuminated by the Sun and covered by VIMS during the observation (in azimuth) to better investigate the spatial distribution of the spectrophotometric quantities across the regular satellites hemispheres. Finally, we report the observed spectral positions of the 4.26 mu m band of the carbon dioxide present in the surface material of three outermost moons Hyperion, Iapetus and Phoebe. (C) 2009 Elsevier Inc. All rights reserved. C1 [Filacchione, G.; Capaccioni, F.; Cerroni, P.] Ist Astrofis Spaziale & Fis Cosm, INAF IASF, Area Ric Tor Vergata, I-00133 Rome, Italy. [Clark, R. N.] US Geol Survey, Fed Ctr, Denver, CO 80228 USA. [Cuzzi, J. N.; Cruikshank, D. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Coradini, A.; Tosi, F.] Ist Fis Spazio Interplanetario, INAF, Area Ric Tor Vergata, I-00133 Rome, Italy. [Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [McCord, T. B.] Bear Fight Ctr, Winthrop, WA 98862 USA. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, R. H.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Buratti, B. J.; Nelson, R. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jaumann, R.; Stephan, K.] DLR, Inst Planetary Explorat, D-12489 Berlin, Germany. RP Filacchione, G (reprint author), Ist Astrofis Spaziale & Fis Cosm, INAF IASF, Area Ric Tor Vergata, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. EM gianrico.filacchione@iasf-roma.inaf.it OI Cerroni, Priscilla/0000-0003-0239-2741; Capaccioni, Fabrizio/0000-0003-1631-4314; Filacchione, Gianrico/0000-0001-9567-0055; Tosi, Federico/0000-0003-4002-2434 NR 56 TC 25 Z9 25 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 507 EP 523 DI 10.1016/j.icarus.2009.11.006 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600012 ER PT J AU Buratti, BJ Bauer, JM Hicks, MD Mosher, JA Filacchione, G Momary, T Baines, KH Brown, RH Clark, RN Nicholson, PD AF Buratti, B. J. Bauer, J. M. Hicks, M. D. Mosher, J. A. Filacchione, G. Momary, T. Baines, K. H. Brown, R. H. Clark, R. N. Nicholson, P. D. TI Cassini spectra and photometry 0.25-5.1 mu m of the small inner satellites of Saturn SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn, Satellites; Satellites, Composition; Spectrophotometry ID INFRARED MAPPING SPECTROMETER; ICY SATELLITES; DARK MATERIAL; VIMS; SURFACE; IAPETUS; HYPERION; PHOEBE; ENCELADUS; DIONE AB The nominal tour of the Cassini mission enabled the first spectra and solar phase curves of the small inner satellites of Saturn. We present spectra from the Visual Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) that span the 0.25-5.1 mu m spectral range. The composition of Atlas, Pandora, Janus, Epimetheus, Calypso, and Telesto is primarily water ice, with a small amount (similar to 5%) of contaminant, which most likely consists of hydrocarbons. The optical properties of the "shepherd" satellites and the coorbitals are tied to the A-ring, while those of the Tethys Lagrangians are tied to the E-ring of Saturn. The color of the satellites becomes progressively bluer with distance from Saturn, presumably from the increased influence of the E-ring; Telesto is as blue as Enceladus. Janus and Epimetheus have very similar spectra, although the latter appears to have a thicker coating of ring material. For at least four of the satellites, we find evidence for the spectral line at 0.68 mu m that Vilas et al. [Vilas, F.. Larsen, S.M., Stockstill, KR., Gaffley, M.J., 1996. Icarus 124, 262-267] attributed to hydrated iron minerals on Iapetus and Hyperion. However, it is difficult to produce a spectral mixing model that includes this component. We find no evidence for CO(2) on any of the small satellites. There was a sufficient excursion in solar phase angle to create solar phase curves for Janus and Telesto. They bear a close similarity to the solar phase curves of the medium-sized inner icy satellites. Preliminary spectral modeling suggests that the contaminant on these bodies is not the same as the exogenously placed low-albedo material on Iapetus, but is rather a native material. The lack of CO(2) on the small inner satellites also suggests that their low-albedo material is distinct from that on Iapetus, Phoebe, and Hyperion. (C) 2009 Elsevier Inc. All rights reserved. C1 [Buratti, B. J.; Bauer, J. M.; Hicks, M. D.; Mosher, J. A.; Momary, T.; Baines, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Filacchione, G.] INAF IASF, I-00133 Rome, Italy. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, R. N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Buratti, BJ (reprint author), Jet Prop Lab, Mail Stop 183-501, Pasadena, CA 91001 USA. EM Bonnie.Buratti@jpl.nasa.gov NR 35 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 524 EP 536 DI 10.1016/j.icarus.2009.08.015 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600013 ER PT J AU Pitman, KM Buratti, BJ Mosher, JA AF Pitman, Karly M. Buratti, Bonnie J. Mosher, Joel A. TI Disk-integrated bolometric Bond albedos and rotational light curves of saturnian satellites from Cassini Visual and Infrared Mapping Spectrometer SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Satellites, Surfaces; Spectroscopy; Saturn, Satellites ID ICY SATELLITES; E-RING; MU-M; VOYAGER PHOTOMETRY; RADAR OBSERVATIONS; ENCELADUS SURFACE; OPPOSITION SURGE; CARBON-DIOXIDE; PHASE CURVES; WATER-VAPOR AB We present values from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) of four fundamental disk-integrated spectrophotometric properties (bolometric Bond albedo, solar phase curve, phase integral, and geometric albedo at 7-15 different wavelengths in the lambda = 0.35-5.1 mu m range) for five mid-sized saturnian icy satellites: Rhea, Dione, Tethys, Mimas, and Enceladus. These values, which include data from the period 2004-2008 and add to past VIMS phase curves, include opposition surge effects at down to fractions of a degree in solar phase angle for several moons and extend to over double the solar phase angle coverage of the Voyager mission. We also present new rotational light curves for Rhea and Dione at 7 near-infrared bands not previously available in ground-based or spacecraft studies. The bolometric Bond albedos we derive are as follows: 0.48 +/- 0.09 (Rhea), 0.52 +/- 0.08 (Dione), 0.61 +/- 0.09 (Tethys), 0.67 +/- 0.10 (Mimas), and 0.85 +/- 0.11 (Enceladus). We also provide breakdowns of the major photometric quantities in both leading and trailing hemispheres. These refined parameters can be used to construct future bolometric Bond albedo maps that will contribute to surface composition identification studies, as well as models of volatile transport and sublimation. Through such applications, these data will help to determine the physical properties of surface particles, how the E-ring affects the inner saturnian moons, what is responsible for the dark albedo patterns seen on Tethys, and if these moons (e.g.. Diane) are geologically active. (C) 2009 Elsevier Inc. All rights reserved. C1 [Pitman, Karly M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Pitman, Karly M.; Buratti, Bonnie J.; Mosher, Joel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pitman, KM (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM pitman@psi.edu NR 84 TC 14 Z9 14 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 537 EP 560 DI 10.1016/j.icarus.2009.12.001 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600014 ER PT J AU Cruikshank, DP Meyer, AW Brown, RH Clark, RN Jaumann, R Stephan, K Hibbitts, CA Sandford, SA Mastrapa, RME Filacchione, G Ore, CMD Nicholson, PD Buratti, BJ McCord, TB Nelson, RM Dalton, JB Baines, KH Matsoni, DL AF Cruikshank, Dale P. Meyer, Allan W. Brown, Robert H. Clark, Roger N. Jaumann, Ralf Stephan, Katrin Hibbitts, Charles A. Sandford, Scott A. Mastrapa, Rachel M. E. Filacchione, Gianrico Ore, Cristina M. Dalle Nicholson, Philip D. Buratti, Bonnie. J. McCord, Thomas. B. Nelson, Robert M. Dalton, J. Brad Baines, Kevin H. Matsoni, Dennis L. TI Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn; Ices ID WATER-ICE; ION IRRADIATION; GALILEAN SATELLITES; CO2 MOLECULES; ANALOGS; SURFACE; IAPETUS; GRAINS; IDENTIFICATION; MAGNETOSPHERE AB Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 mu m (2343.3 cm(-1)), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 (*) nH(2)O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus. Hyperion, and Dione is shifted to shorter wavelengths (typically similar to 4.255 mu m (similar to 2350.2 cm(-1))) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 mu m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 mu m centered on 4.28 mu m. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper. Published by Elsevier Inc. C1 [Cruikshank, Dale P.; Meyer, Allan W.] NASA, Ames Res Ctr, USRA, Moffett Field, CA 94035 USA. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, Roger N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Jaumann, Ralf; Stephan, Katrin] German Aerosp Ctr DLR, Inst Space Sensor Technol & Planetary Explorat, D-12489 Berlin, Germany. [Hibbitts, Charles A.] JHU APL, Laurel, MD 20723 USA. [Filacchione, Gianrico] INAF IASF, I-00133 Rome, Italy. [Ore, Cristina M. Dalle] SETI Inst, Mountain View, CA 94043 USA. [Nicholson, Philip D.] Cornell Univ, Ithaca, NY 14853 USA. [Buratti, Bonnie. J.; Nelson, Robert M.; Dalton, J. Brad; Baines, Kevin H.; Matsoni, Dennis L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McCord, Thomas. B.] Bear Fight Ctr, Winthrop, WA 98862 USA. RP Cruikshank, DP (reprint author), NASA, Ames Res Ctr, USRA, Mail Stop 245-6, Moffett Field, CA 94035 USA. EM dale.p.cruikshank@nasa.gov RI Hibbitts, Charles/B-7787-2016; OI Hibbitts, Charles/0000-0001-9089-4391; Filacchione, Gianrico/0000-0001-9567-0055 NR 51 TC 48 Z9 48 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 561 EP 572 DI 10.1016/j.icarus.2009.07.012 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600015 ER PT J AU Howett, CJA Spencer, JR Pearl, J Segura, M AF Howett, C. J. A. Spencer, J. R. Pearl, J. Segura, M. TI Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Enceladus; Satellites, surfaces ID VOYAGER PHOTOMETRY; SATURNIAN SYSTEM; INFRARED OBSERVATIONS; H2O ICE; TEMPERATURES; SATELLITES; SURFACES; HYPERION; ECLIPSE; SPECTRA AB Spectra taken by Cassini's Composite Infrared Spectrometer (CIRS) between 10 and 600 cm(-1) (17-1000 mu m) of surface thermal emission of Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus have been used to derive the thermal inertia and bolometric Bond albedo values. Only an upper limit for the bolometric Bond albedo of Iapetus' dark leading side could be determined due to the insensitivity of the thermal model to albedo when albedos are very low. The thermal inertia in this region however is better constrained. The CIRS coverage of Enceladus is extensive enough that the latitudinal variation in these values from 60 degrees S to 70 degrees N has been determined in 10 degrees wide bins. The bolometric Bond albedos determined here are consistent with literature values which show the surface of the saturnian icy moons to be covered in ice contaminated to varying degrees. The thermal inertia of the moons is shown to be in the range 9-20 J m(-2) K(-1) s(-1/2), approximately 2-6 times lower than that of the Galilean satellites, implying a less well consolidated and more porous surface. The thermal inertias of Iapetus and Phoebe are somewhat higher, suggesting that the very low thermal inertias of satellites from Rhea inwards may be related to their probable coating of E-ring material. Latitudinal variations on the surface of Enceladus show that the bolometric Bond albedo and thermal inertia increase towards the active plume source at the south pole. (C) 2009 Elsevier Inc. All rights reserved. C1 [Howett, C. J. A.; Spencer, J. R.] SW Res Inst, Boulder, CO 80302 USA. [Pearl, J.; Segura, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Howett, CJA (reprint author), SW Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM howett@boulder.swri.edu NR 36 TC 40 Z9 40 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 573 EP 593 DI 10.1016/j.icarus.2009.07.016 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600016 ER PT J AU Ingersoll, AP Pankine, AA AF Ingersoll, Andrew P. Pankine, Alexey A. TI Subsurface heat transfer on Enceladus: Conditions under which melting occurs SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Enceladus; Ices; Geological processes; Interiors ID SOUTH-POLAR FRACTURES; PLUME; WATER; EUROPA; ICE; TECTONICS; MODELS; JETS; FLUX AB Given the heat that is reaching the surface from the interior of Enceladus, we ask whether liquid water is likely and at what depth it might occur. The heat may be carried by thermal conduction through the solid ice, by the vapor as it diffuses through a porous matrix, or by the vapor flowing upward through open cracks. The vapor carries latent heat, which it acquires when ice or liquid evaporates. As the vapor nears the surface it may condense onto the cold ice, or it may exit the vent without condensing, carrying its latent heat with it. The ice at the surface loses its heat by infrared radiation. An important physical principle, which has been overlooked so far, is that the partial pressure of the vapor in the pores and in the open cracks is nearly equal to the saturation vapor pressure of the ice around it. This severely limits the ability of ice to deliver the observed heat to the surface without melting at depth. Another principle is that viscosity limits the speed of the flow, both the diffusive flow in the matrix and the hydrodynamic flow in open cracks. We present hydrodynamic models that take these effects into account. We find that there is no simple answer to the question of whether the ice melts or not. Vapor diffusion in a porous matrix can deliver the heat to the surface without melting if the particle size is greater than 1 cm and the porosity is greater than similar to 0.1, in other words, if the matrix is a rubble pile. Whether such an open matrix can exist under its own hydrostatic load is unclear. Flow in open cracks can deliver the heat without melting if the width of the crack is greater than 10 cm, but the heat source must be in contact with the crack. Frictional heating on the walls due to tidal stresses is one such possibility. The lifetime of the crack is a puzzle, since condensation on the walls in the upper few meters could seal the crack off in a year, and it takes many years for the heat source to warm the walls if the crack extends down to km depths. The 10:1 ratio of radiated heat to latent heat carried with the vapor is another puzzle. The models tend to give a lower ratio. The resolution might be that each tiger stripe has multiple cracks that share the heat, which tends to lower the ratio. The main conclusion is that melting depends on the size of the pores and the width of the cracks, and these are unknown at present. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ingersoll, Andrew P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Pankine, Alexey A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ingersoll, AP (reprint author), CALTECH, Div Geol & Planetary Sci, MS 150-21,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM api@gps.caltech.edu NR 29 TC 23 Z9 23 U1 0 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 594 EP 607 DI 10.1016/j.icarus.2009.09.015 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600017 ER PT J AU Hendrix, AR Hansen, CJ Holsclaw, GM AF Hendrix, Amanda R. Hansen, Candice J. Holsclaw, Greg M. TI The ultraviolet reflectance of Enceladus: Implications for surface composition SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Satellites, Composition; Ices, UV spectroscopy; Saturn, Satellites; Ultraviolet observations; Enceladus ID INFRARED MAPPING SPECTROMETER; CHARGED-PARTICLE IRRADIATION; OUTER SOLAR-SYSTEM; OPTICAL-CONSTANTS; SATURNIAN SATELLITES; H2O ICE; SPECTRA; THOLINS; WATER; SPECTROSCOPY AB The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H(2)O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P.[2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH(3) (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH(3) hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182,211-223). We compare Enceladus' WV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH(3) and a small amount of a tholin in addition to H(2)O ice on the surface. The presence of these three species (H(2)O, NH(3), and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating. (C) 2010 Elsevier Inc. All rights reserved. C1 [Hendrix, Amanda R.; Hansen, Candice J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Holsclaw, Greg M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Hendrix, AR (reprint author), CALTECH, Jet Prop Lab, Mail Stop 230-250, Pasadena, CA 91109 USA. EM arh@jpl.nasa.gov NR 69 TC 17 Z9 17 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 608 EP 617 DI 10.1016/j.icarus.2009.11.007 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600018 ER PT J AU Lee, JS Buratti, BJ Hicks, M Mosher, J AF Lee, Janice S. Buratti, Bonnie J. Hicks, Michael Mosher, Joel TI The roughness of the dark side of Iapetus from the 2004 to 2005 flyby SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Iapetus; Satellites, Surfaces; Regoliths; Saturn, Satellites; Satellites, General ID INFRARED MAPPING SPECTROMETER; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; CASSINI IMAGING SCIENCE; VOYAGER PHOTOMETRY; SATURNS SATELLITES; RADIATIVE-TRANSFER; ALBEDO DICHOTOMY; PHOEBE; SURFACE; SPECTROPHOTOMETRY AB The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J.[1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6 degrees. As compared to the 13-33 degrees Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lee, Janice S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Lee, Janice S.] Calif State Univ Long Beach, Long Beach, CA 90815 USA. [Buratti, Bonnie J.; Hicks, Michael; Mosher, Joel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, JS (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 Nasa Pkwy, Houston, TX 77058 USA. EM janicejle@yahoo.com NR 55 TC 1 Z9 1 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 623 EP 630 DI 10.1016/j.icarus.2009.11.008 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600020 ER PT J AU Stephan, K Jaumann, R Wagner, R Clark, RN Cruikshank, DP Hibbitts, CA Roatsch, T Hoffmann, H Brown, RH Filiacchione, G Buratti, BJ Hansen, GB McCord, TB Nicholson, PD Baines, KH AF Stephan, Katrin Jaumann, Ralf Wagner, Roland Clark, Roger N. Cruikshank, Dale P. Hibbitts, Charles A. Roatsch, Thomas Hoffmann, Harald Brown, Robert H. Filiacchione, G. Buratti, Bonnie J. Hansen, Gary B. McCord, Tom B. Nicholson, Phil D. Baines, Kevin H. TI Dione's spectral and geological properties SO ICARUS LA English DT Article; Proceedings Paper CT International Conference on Saturn from Cassini-Huygens CY JUL 28-AUG 01, 2008 CL Imperial Coll, London, ENGLAND HO Imperial Coll DE Saturn; Satellites; Surfaces; Spectroscopy; Geological processes ID HIGHLY CORRELATED IMAGES; OUTER SOLAR-SYSTEM; WATER ICE; SATURNIAN SATELLITES; HIGH-RESOLUTION; CASSINI-VIMS; REFLECTANCE SPECTROSCOPY; IMAGING SPECTROSCOPY; PROTON IRRADIATION; HYPERSPECTRAL DATA AB We present a detailed analysis of the variations in spectral properties across the surface of Saturn's satellite Dione using Cassini/VIMS data and their relationships to geological and/or morphological characteristics as seen in the Cassini/ISS images. This analysis focuses on a local region on Dione's anti-saturnian hemisphere that was observed by VIMS with high spatial resolution during orbit 16 in October 2005. The results are incorporated into a global context provided by VIMS data acquired within Cassini's first 50 orbits. Our results show that Dione's surface is dominated by at least one global process. Bombardment by magnetospheric particles is consistent with the concentration of dark material and enhanced CO2 absorption on the trailing hemisphere of Diane independent of the geology. Local regions within this terrain indicate a special kind of resurfacing that probably is related to large-scale impact process. In contrast, the enhanced ice signature on the leading side is associated with the extended ejecta of the fresh impact crater Creusa (similar to 49 degrees N/76 degrees W). Although no geologically active regions could be identified, Diane's tectonized regions observed with high spatial resolution partly show some clean H2O ice implying that tectonic processes could have continued into more recent times. (C) 2009 Elsevier Inc. All rights reserved. C1 [Stephan, Katrin; Jaumann, Ralf; Wagner, Roland; Roatsch, Thomas; Hoffmann, Harald] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Jaumann, Ralf] Free Univ Berlin, FR Planetol & Fernerkundung, D-12249 Berlin, Germany. [Clark, Roger N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cruikshank, Dale P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hibbitts, Charles A.] JHU Appl Phys Lab, Laurel, MD USA. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Filiacchione, G.] INAF IASF, Rome, Italy. [Buratti, Bonnie J.; Baines, Kevin H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hansen, Gary B.] Univ Washington, Seattle, WA 98195 USA. [McCord, Tom B.] Space Sci Inst, Winthrop, WA USA. [Nicholson, Phil D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Stephan, K (reprint author), DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM Katrin.Stephan@dlr.de RI Hibbitts, Charles/B-7787-2016 OI Hibbitts, Charles/0000-0001-9089-4391 NR 84 TC 24 Z9 24 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 631 EP 652 DI 10.1016/j.icarus.2009.07.036 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600021 ER PT J AU Heldmann, JL Conley, CA Brown, AJ Fletcher, L Bishop, JL McKay, CP AF Heldmann, J. L. Conley, C. A. Brown, A. J. Fletcher, L. Bishop, J. L. McKay, C. P. TI Possible liquid water origin for Atacama Desert mudflow and recent gully deposits on Mars SO ICARUS LA English DT Article DE Mars; Mars, Surface; Geological processes ID POTENTIAL FORMATION MECHANISMS; MARTIAN GULLIES; CONSTRAINTS; SEEPAGE; LIFE; FLOW AB Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade. Published by Elsevier Inc. C1 [Heldmann, J. L.; Conley, C. A.; Brown, A. J.; Fletcher, L.; Bishop, J. L.; McKay, C. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Conley, C. A.] NASA Headquarters, Washington, DC 20546 USA. [Brown, A. J.; Bishop, J. L.] SETI Inst, Mountain View, CA 94043 USA. RP Heldmann, JL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jennifer.Heldmann@nasa.gov NR 25 TC 12 Z9 12 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 685 EP 690 DI 10.1016/j.icarus.2009.09.013 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600025 ER PT J AU Trainer, MG Tolbert, MA Mckay, CP Toon, OB AF Trainer, Melissa G. Tolbert, Margaret A. McKay, Christopher P. Toon, Owen B. TI Enhanced CO2 trapping in water ice via atmospheric deposition with relevance to Mars SO ICARUS LA English DT Article DE Mars, Surface; Mars, Polar caps; Mars, Atmosphere; Ices ID CLATHRATE-HYDRATE FORMATION; CARBON-DIOXIDE CLATHRATE; POLAR LAYERED DEPOSITS; OUTER SOLAR-SYSTEM; FT-IR SPECTRA; MARTIAN ATMOSPHERE; INFRARED-SPECTROSCOPY; SEASONAL BEHAVIOR; METHANE; RELEASE AB It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars. Published by Elsevier Inc. C1 [Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Tolbert, Margaret A.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [McKay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Toon, Owen B.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. RP Trainer, MG (reprint author), NASA, Goddard Space Flight Ctr, Code 699, Greenbelt, MD 20771 USA. EM melissa.trainer@nasa.gov RI Trainer, Melissa/E-1477-2012 FU NASA [NNH05ZDAS001N, NNX08AG93G] FX This work was supported by NASA Mars Fundamental Research Program under Grant NNH05ZDAS001N, by Planetary Atmospheres Grant NNX08AG93G, and by the NASA Astrobiology Institute through a cooperative agreement with the University of Colorado. M.G.T. was supported by an appointment to the NASA Postdoctoral Program at the University of Colorado Center for Astrobiology, administered by Oak Ridge Associated Universities. Special thanks Raina Gough for providing the Fe-montmorillonite sample. NR 70 TC 8 Z9 8 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 707 EP 715 DI 10.1016/j.icarus.2009.09.008 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600027 ER PT J AU Radeva, YL Mumma, MJ Bonev, BP DiSanti, MA Villanueva, GL Magee-Sauer, K Gibb, EL Weaver, HA AF Radeva, Yana L. Mumma, Michael J. Bonev, Boncho P. DiSanti, Michael A. Villanueva, Geronimo L. Magee-Sauer, Karen Gibb, Erika L. Weaver, Harold A. TI The organic composition of Comet C/2000 WM(1) (LINEAR) revealed through infrared spectroscopy SO ICARUS LA English DT Article DE Comets, Composition; Infrared observations; Origin, Solar System; Spectroscopy ID GIOTTO SPACECRAFT ENCOUNTER; MONTE-CARLO-SIMULATION; O1 HALE-BOPP; CARBON-MONOXIDE; ATMOSPHERES APPLICATION; WATER PRODUCTION; SOLAR-SYSTEM; 153P/IKEYA-ZHANG; COMET-73P/SCHWASSMANN-WACHMANN-3; 17P/HOLMES AB We investigated the parent volatile composition of the Oort cloud Comet C/2000 WM(1) (LINEAR) on 23-25 November 2001, using the Near Infrared Echelle Spectrograph on the Keck II telescope. Flux-calibrated spectra, absolute production rates, and mixing ratios are presented for H(2)O, HCN, CH(4), C(2)H(2), C(2)H(6), H(2)CO, CH(3)OH and CO. Compared with "organics-normal" comets, WM(1) is moderately depleted in HCN, CH(4) and CH(3)OH, and is even more depleted in C(2)H(2) and CO. Its composition is thus intermediate to comets that are severely depleted in their organic volatile composition and those that exhibit "normal" organic volatile abundances. We argue that WM(1) may have formed closer to the young Sun than "organics-normal" comets, but at greater distance than the severely depleted comets, before its ejection to the Oort cloud. The mixing ratios of the above-listed organic volatiles agree day-by-day for 23-25 November 2001. Thus, there is no evidence of macroscopic heterogeneity in chemistry of this comet's nucleus at the achieved measurement accuracy. As the first comet to show moderate organic depletion in parent volatiles, WM(1) represents an important addition to the emerging taxonomic classification based on chemical composition. (C) 2009 Elsevier Inc. All rights reserved. C1 [Radeva, Yana L.; Mumma, Michael J.; Bonev, Boncho P.; DiSanti, Michael A.; Villanueva, Geronimo L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Radeva, Yana L.; Mumma, Michael J.; Bonev, Boncho P.; DiSanti, Michael A.; Villanueva, Geronimo L.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Bonev, Boncho P.; Villanueva, Geronimo L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Magee-Sauer, Karen] Rowan Univ, Dept Phys & Astron, Glassboro, NJ 08028 USA. [Gibb, Erika L.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Weaver, Harold A.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA. RP Radeva, YL (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM yanaradeva@astro.umd.edu RI mumma, michael/I-2764-2013; Magee-Sauer, Karen/K-6061-2015; Weaver, Harold/D-9188-2016 OI Magee-Sauer, Karen/0000-0002-4979-9875; FU NASA [RTOP 344-32-07, RTOP 344-32-98]; Astrobiology Institute [RTOP 344-53-51]; NSF [0807939, RUI 0407052]; W.M. Keck Foundation FX Y.L.R. gratefully acknowledges support and guidance from M.F. A'Hearn (Univ. of Maryland). This work was supported by NASA (Planetary Astronomy Program (RTOP 344-32-07 to M.J.M. and RTOP 344-32-98 to MAD.), Astrobiology Institute (RTOP 344-53-51 to M.J.M.), and Postdoctoral Program (GLV)), and by NSF (0807939 to ELG, and RUI 0407052 to KM.-S.). The data presented herein were obtained at the W.M. Keck Observatory, operated as a scientific partnership among CalTech, UCLA, and NASA. This Observatory was made possible by the generous financial support of the W.M. Keck Foundation, NR 38 TC 16 Z9 16 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD APR PY 2010 VL 206 IS 2 BP 764 EP 777 DI 10.1016/j.icarus.2009.09.014 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 572QJ UT WOS:000275847600033 ER PT J AU Jansma, PA AF Jansma, P. A. Trisha TI Making a Case for Systems Engineering SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB In late 2007, the Systems Engineering Advancement (SEA) Project at the Jet Propulsion Laboratory (JPL) decided to design a multi-day Systems Engineering Workshop to train systems engineers in the practice of systems engineering. They were determined to avoid the trap of merely giving hours of lectures and presentations that would bore audiences and soon be forgotten. They decided to base the workshop on six detailed case studies, each approximately 15 pages in length. The topics of the six case studies were selected to cover a range of types of flight projects - orbiters, landers and rovers, planetary and earth missions, development and operations, spacecraft and instruments, recent past and current. By including this range of projects, they hoped to touch on a broad spectrum of systems engineering situations, issues, and challenges, and to use these to accomplish specific learning objectives. They developed a template for the case studies to ensure that specific areas were addressed in each case study, and to ensure that a "big picture" view of the mission itself would be presented before getting into the "meat" of the case. Then questions were designed to ensure that the workshop participants would wrestle with the systems engineering challenges presented, and would understand and absorb the systems engineering skills needed to address them. The workshop also included sessions of "story-telling" by key Project Systems Engineers and short lecture sessions addressing key topics and concepts. This describes the approach and methodology for designing detailed case studies for use as learning tools for systems engineering training. It describes the planning and development process and the approach for actually utilizing them in a real workshop. It concludes with lessons learned and the results from the recent JPL Systems Engineering Workshop. C1 CALTECH, Jet Prop Lab, Syst Engn Adv Project, Pasadena, CA 91109 USA. RP CALTECH, Jet Prop Lab, Syst Engn Adv Project, 4800 Oak Grove Dr,M-S 301-490, Pasadena, CA 91109 USA. NR 34 TC 0 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD APR PY 2010 VL 25 IS 4 BP 4 EP 17 PG 14 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 601MW UT WOS:000278065000001 ER PT J AU Adell, PC Witulski, AF Schrimpf, RD Baronti, F Holman, WT Galloway, KF AF Adell, P. C. Witulski, A. F. Schrimpf, R. D. Baronti, F. Holman, W. T. Galloway, K. F. TI Digital Control for Radiation-Hardened Switching Converters in Space SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article DE Converters; Field programmable gate arrays; Digital control; Radiation detectors; Pulse width modulation; Aerospace electronics; Transient analysis ID ANALOG CIRCUITS AB Single-event hardening solutions for two converter designs with digital control are considered for space radiation environments: 1) a boost converter using static random access memory (SRAM)-based field programmable gate arrays (FPGAs). In this case the hardening approach is based on duplication at both the logic and device levels and on a nondisruptive resynchronization mechanism that ensures the converter operation if single-event functional interrupt occurs. 2) An integrated buck converter that uses redundancy at the register level, as well as modification of the very high speed integrated circuit (VHSIC) hardware description language (VHDL) code. These hardening techniques are validated through experiments and simulations. C1 [Witulski, A. F.; Schrimpf, R. D.] Vanderbilt Univ, Inst Space & Def Elect, Nashville, TN USA. [Baronti, F.] Univ Pisa, Dept Informat Engn, I-56100 Pisa, Italy. [Holman, W. T.] Vanderbilt Univ, Sch Engn, Dept Elect Engn & Comp Sci, Nashville, TN USA. RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, Elect Parts Engn Off, Mail Stop 303-220,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM philippe.c.adell@jpl.nasa.gov RI Schrimpf, Ronald/L-5549-2013; OI Schrimpf, Ronald/0000-0001-7419-2701; Baronti, Federico/0000-0002-9123-8617 NR 19 TC 7 Z9 7 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD APR PY 2010 VL 46 IS 2 BP 761 EP 770 DI 10.1109/TAES.2010.5461655 PG 10 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 593YS UT WOS:000277499800020 ER PT J AU Zeng, LZ Bennett, CL Chuss, DT Wollack, EJ AF Zeng, Lingzhen Bennett, Charles L. Chuss, David T. Wollack, Edward J. TI A Low Cross-Polarization Smooth-Walled Horn With Improved Bandwidth SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Feeds; horn antennas; millimeter-wave antennas ID DUAL-MODE HORN; SUBMILLIMETER WAVELENGTHS; MILLIMETER; ANTENNAS; DESIGN AB Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited similar to 14 degrees FWHM beam is presented. The feed was demonstrated to have low cross polarization (< -30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band. C1 [Zeng, Lingzhen; Bennett, Charles L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 20723 USA. [Chuss, David T.; Wollack, Edward J.] NASA, GSFC, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Zeng, LZ (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 20723 USA. EM lingzz@pha.jhu.edu; cbennett@pha.jhu.edu; David.T.Chuss@nasa.gov; Edward.J.Wollack@nasa.gov RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Zeng, Lingzhen/0000-0001-6924-9072 FU NASA; Johns Hopkins University FX This work was supported in part by a NASA ROSES APRA Grant and a Johns Hopkins University/APL partnership research grant. NR 25 TC 17 Z9 18 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD APR PY 2010 VL 58 IS 4 BP 1383 EP 1387 DI 10.1109/TAP.2010.2041318 PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 579YX UT WOS:000276414500039 ER PT J AU Yogev, O Shapiro, AA Antonsson, EK AF Yogev, Or Shapiro, Andrew A. Antonsson, Erik K. TI Computational Evolutionary Embryogeny SO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION LA English DT Article DE Design synthesis; development; embryogeny; evolution; finite element; genetic algorithm; genome; modularity; morphogen; phenotype; structure ID CONJUGATE-GRADIENT METHOD; ELEMENT MESH QUALITY; GUARANTEED DESCENT; CONDITION NUMBER; JACOBIAN MATRIX; OPTIMIZATION; GROWTH; QUANTITIES; PRINCIPLES; FRAMEWORK AB Evolutionary and developmental processes are used to evolve the configurations of 3-D structures in silico to achieve desired performances. Natural systems utilize the combination of both evolution and development processes to produce remarkable performance and diversity. However, this approach has not yet been applied extensively to the design of continuous 3-D load-supporting structures. Beginning with a single artificial cell containing information analogous to a DNA sequence, a structure is grown according to the rules encoded in the sequence. Each artificial cell in the structure contains the same sequence of growth and development rules, and each artificial cell is an element in a finite element mesh representing the structure of the mature individual. Rule sequences are evolved over many generations through selection and survival of individuals in a population. Modularity and symmetry are visible in nearly every natural and engineered structure. An understanding of the evolution and expression of symmetry and modularity is emerging from recent biological research. Initial evidence of these attributes is present in the phenotypes that are developed from the artificial evolution, although neither characteristic is imposed nor selected-for directly. The computational evolutionary development approach presented here shows promise for synthesizing novel configurations of high-performance systems. The approach may advance the system design to a new paradigm, where current design strategies have difficulty producing useful solutions. C1 [Yogev, Or] ESolar Inc, Pasadena, CA 91103 USA. [Shapiro, Andrew A.] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. [Yogev, Or] CALTECH, Div Engn & Appl Sci, Engn Design Res Lab, Pasadena, CA 91125 USA. [Shapiro, Andrew A.] CALTECH, Jet Prop Lab, Enterprise Engn Div, Pasadena, CA 91109 USA. RP Yogev, O (reprint author), ESolar Inc, Pasadena, CA 91103 USA. EM yogevori@gmail.com; andrew.a.shapiro@jpl.nasa.gov; erik.antonsson@caltech.edu NR 66 TC 8 Z9 8 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1089-778X J9 IEEE T EVOLUT COMPUT JI IEEE Trans. Evol. Comput. PD APR PY 2010 VL 14 IS 2 BP 301 EP 325 DI 10.1109/TEVC.2009.2030438 PG 25 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA 575LX UT WOS:000276069700008 ER PT J AU Tedesco, M Reichle, R Low, A Markus, T Foster, JL AF Tedesco, Marco Reichle, Rolf Loew, Alexander Markus, Thorsten Foster, James L. TI Dynamic Approaches for Snow Depth Retrieval From Spaceborne Microwave Brightness Temperature SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave; remote sensing; snow ID WATER EQUIVALENT RETRIEVAL; CATCHMENT-BASED APPROACH; LAND-SURFACE PROCESSES; DRY-SNOW; EMISSION MODEL; UNCERTAINTY; PARAMETERS; ALGORITHM; SYSTEM; RANGE AB Snow depth (SD) can be retrieved from spaceborne data through linear regression against the microwave brightness temperature difference between 19 and 37 GHz (or similar frequencies). Other methods use snow physical and/or snow electromagnetic (EM) models to estimate SD. Here, we introduce novel retrieval approaches that dynamically combine ancillary SD information (e. g., from snow physical models driven with surface meteorological data) with established algorithms based on regression or EM modeling. The basic idea is to recalibrate regression coefficients (or the effective grain size in the case of EM models) once per week in a simple data assimilation scheme. SD is retrieved from Special Sensor Microwave Imager brightness temperature data and evaluated against in situ observations from 37 stations throughout the Northern Hemisphere. As expected, the SD retrievals perform better with (weekly) ancillary SD inputs from in situ measurements (not used in validation) than with (weekly) ancillary SD inputs from snow physical modeling. The best results are obtained with the regression-based approach using dynamically recalibrated coefficients and ancillary SD inputs from in situ observations (rmse = 6cm). The regression approach still performs better with the time average of the dynamic coefficients (rmse = 8 cm) than with standard literature values based on climatology ("REGR-CLIM"; rmse = 50 cm). For SD retrieval with an EM model, we obtain results comparable to REGR-CLIM (rmse = 44 cm). Driving the novel regression approaches with SD estimates from snow physical modeling still results in improvements over REGR-CLIM for all approaches (rmse = 15 cm). Comparable SD estimates are obtained from the snow physical model alone. C1 [Tedesco, Marco] CUNY, New York, NY 10031 USA. [Reichle, Rolf; Markus, Thorsten; Foster, James L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Loew, Alexander] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. RP Tedesco, M (reprint author), CUNY, New York, NY 10031 USA. EM mtedesco@sci.ccny.cuny.edu; Rolf.Reichle@nasa.gov; alexander.loew@zmaw.de; thorsten.markus@nasa.gov; james.l.foster@nasa.gov RI Markus, Thorsten/D-5365-2012; Reichle, Rolf/E-1419-2012; Tedesco, Marco/F-7986-2015 FU National Aeronautics and Space Administration (NASA) [NNX0808AI02G, NNX06AD59G]; NASA [NNX08AI02G, NNX09AU60G, NNX08AH36] FX This work was supported by the National Aeronautics and Space Administration (NASA) under Grants NNX0808AI02G and NNX06AD59G. The work of M. Tedesco was supported by NASA under Grants NNX08AI02G and NNX09AU60G. The work of R. Reichle was supported by NASA under Grant NNX08AH36. NR 34 TC 14 Z9 15 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2010 VL 48 IS 4 BP 1955 EP 1967 DI 10.1109/TGRS.2009.2036910 PN 2 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 574TA UT WOS:000276015200005 ER PT J AU Brown, S AF Brown, Shannon TI A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Coastal altimetry; Jason-1; Jason-2/Ocean Surface Topography Mission (OSTM); land contamination; microwave radiometer; path delay (PD); satellite altimetry ID COASTAL REGIONS; TMR AB An algorithm is developed to retrieve wet tropospheric path delay (PD) near land from a satellite microwave radiometer to improve coastal altimetry studies. Microwave radiometers are included on ocean altimetry missions to retrieve the wet PD, but their performance has been optimized for retrievals in the open ocean. Near land, the radiometer footprint contains a mixture of radiometrically warm land and radiometrically cold ocean. Currently, the radiometer retrievals in the coastal region are flagged as invalid since large errors result when the open-ocean retrieval algorithm is applied to mixed land/ocean scenes. The PD retrieval algorithm developed in this paper is applicable to both open-ocean and mixed land-ocean scenes, thus enabling retrievals in the coastal zone. The performance of the algorithm is demonstrated with detailed simulations and application to measurements from the Advanced Microwave Radiometer on the Jason-2/Ocean Surface Topography Mission. The algorithm error is estimated to be less than 0.8 cm up to 15 km from land, less than 1.0 cm within 10 km from land, less than 1.2 cm within 5 km from land, and less than 1.5 cm up to the coastline. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Brown, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Shannon.T.Brown@jpl.nasa.gov NR 14 TC 36 Z9 37 U1 1 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2010 VL 48 IS 4 BP 1986 EP 1992 DI 10.1109/TGRS.2009.2037220 PN 2 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 574TA UT WOS:000276015200008 ER PT J AU Edmonds, LD AF Edmonds, Larry D. TI A Theoretical Analysis of Steady-State Charge Collection in Simple Diodes Under High-Injection Conditions SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ADC model; ambipolar diffusion; ambipolar diffusion with a cutoff; charge collection; charge-collection efficiency; drift-diffusion; sensitive volume; SV model ID SILICON DEVICES; ION TRACKS; N-TYPE AB A previous rigorous mathematical analysis of drift-diffusion equations was used to investigate collected charge in a simple reverse-biased p-n junction diode exposed to an ionization source that liberates carriers (electron-hole pairs) in a quasi-neutral region within the diode. Each of two simple models was found to agree with the more rigorous analysis when carrier liberation is sufficiently intense. One is the sensitive volume (SV) model, and the other was called "ambipolar diffusion with a cutoff" (ADC). The earlier rigorous analysis was worked out in detail only for a localized source, i.e., a point source of carrier liberation, so it was able to validate the applicability of each simple model only for that case. The present paper treats an arbitrary spatial distribution of carrier generation and concludes that the ADC model remains valid for this more general case, but the SV model does not. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Edmonds, LD (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM larry.d.edmonds@jpl.nasa.gov NR 11 TC 10 Z9 10 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2010 VL 57 IS 2 BP 818 EP 830 DI 10.1109/TNS.2009.2038914 PN 2 PG 13 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 583MA UT WOS:000276679200013 ER PT J AU Dustegor, D Poroseva, SV Hussaini, MY Woodruff, S AF Duestegoer, Dilek Poroseva, Svetlana V. Hussaini, M. Yousuff Woodruff, Stephen TI Automated Graph-Based Methodology for Fault Detection and Location in Power Systems SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Fault diagnosis; power system protection; structural analysis; wide-area protection ID WIDE-AREA PROTECTION AB This study investigates how the model-based fault detection and location approach of structural analysis can be adapted to meet the needs of power systems, where challenges associated with increased system complexity make conventional protection schemes impractical. With a global view of the protected system and the systematic and automated use of the system's analytical redundancy, faults are detected and located by more than one means. This redundancy can be used as a confirmation mechanism within a wide-area protection scheme to avoid unnecessary or false tripping due to protection component failure or disturbance. Furthermore, this redundancy turns the sensor configuration problem into an optimization problem with regard to fault detection and location. The effectiveness of different system topologies can then be compared on the basis of the optimal number of sensors they require. The principle of structural analysis is described in detail and illustrated on a simple power system model. Pertinence of the approach is demonstrated through simulation. C1 [Duestegoer, Dilek; Poroseva, Svetlana V.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. [Hussaini, M. Yousuff] Florida State Univ, Dept Math, Tallahassee, FL 32310 USA. [Woodruff, Stephen] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Dustegor, D (reprint author), Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. EM dustegor@caps.fsu.edu; poroseva@caps.fsu.edu; yousuff@fsu.edu; stephen.l.woodruff@nasa.gov RI Dustegor, Dilek/E-4477-2010 OI Dustegor, Dilek/0000-0003-2980-1314 FU Office of Naval Research through the Electric Ship Research and Development Consortium [N000140810080]; National Science Foundation through the Engineering Research Center for Future Renewable Electric Energy Delivery and Management Systems; Office of the Provost at Florida State University [TPWRD-00923-2008] FX Manuscript received December 17, 2008; revised May 22, 2009. First published December 31, 2009; current version published March 24, 2010. This work was supported in part by the Office of Naval Research through the Electric Ship Research and Development Consortium (Grant N000140810080) and in part by the National Science Foundation through the Engineering Research Center for Future Renewable Electric Energy Delivery and Management Systems. The research of Dustegor was supported in part by the Office of the Provost at Florida State University. Paper no. TPWRD-00923-2008. NR 26 TC 11 Z9 11 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD APR PY 2010 VL 25 IS 2 BP 638 EP 646 DI 10.1109/TPWRD.2009.2037005 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 575AZ UT WOS:000276036700013 ER PT J AU Zeng, XW He, CM Oravec, H Wilkinson, A Agui, J Asnani, V AF Zeng, Xiangwu He, Chunmei Oravec, Heather Wilkinson, Allen Agui, Juan Asnani, Vivake TI Geotechnical Properties of JSC-1A Lunar Soil Simulant SO JOURNAL OF AEROSPACE ENGINEERING LA English DT Article AB For the success of planned missions to the moon in the near future, it is essential to have a thorough understanding of the geotechnical behavior of lunar soil. However, only a limited amount of information is available about geotechnical properties of lunar soils. In addition, the amount of lunar soils brought back to Earth is small. To help the development of new regolith moving machines and vehicles that will be used in future missions, a new lunar soil similant JSC-1A has been developed. A group of conventional geotechnical laboratory tests was conducted to characterize the geotechnical properties of the simulant, such as particle size distribution, maximum and minimum bulk densities, compaction characteristics, shear strength parameters, and compressibility. C1 [Zeng, Xiangwu; He, Chunmei; Oravec, Heather] Case Western Reserve Univ, Dept Civil Engn, Cleveland, OH 44106 USA. [Wilkinson, Allen; Agui, Juan; Asnani, Vivake] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zeng, XW (reprint author), Case Western Reserve Univ, Dept Civil Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM xxz16@cwru.edu FU NASA [NNX07A078G, NNX07AM35A] FX The work reported here was carried out with support from NASA Grant Nos. NNX07A078G and NNX07AM35A. The opinions expressed in this paper are those of the writers and do not represent the official policies of the funding agency. NR 28 TC 25 Z9 26 U1 0 U2 11 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0893-1321 J9 J AEROSPACE ENG JI J. Aerosp. Eng. PD APR PY 2010 VL 23 IS 2 BP 111 EP 116 DI 10.1061/(ASCE)AS.1943-5525.0000014 PG 6 WC Engineering, Aerospace; Engineering, Civil SC Engineering GA 570FU UT WOS:000275658500003 ER PT J AU Huang, GJ Bringi, VN Cifelli, R Hudak, D Petersen, WA AF Huang, Gwo-Jong Bringi, V. N. Cifelli, Robert Hudak, David Petersen, W. A. TI A Methodology to Derive Radar Reflectivity-Liquid Equivalent Snow Rate Relations Using C-Band Radar and a 2D Video Disdrometer SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SIZE SPECTRA; DISTRIBUTIONS; HYDROMETEORS AB The objective of this work is to derive equivalent radar reflectivity factor liquid equivalent snow rate (Z(e)-SR)-power-law relations for snowfall using the C-band King City operational weather radar and a 213 video disdrometer (2DVD). The 2DVD provides two orthogonal views of each snow particle that falls through its 10 cm x 10 cm virtual sensor area. The "size" parameter used here for describing the size distribution is based on the "apparent" volume computed from the two images, and an equivolume spherical diameter D(app) is defined. The determination of fall speed is based on matching two images corresponding to the same particle as it falls through two light planes separated by a precalibrated separation distance. A new "rematching" algorithm was developed to improve the quality of the fall speed versus D(app) as compared with the original matching algorithm provided by the manufacturer. The snow density is parameterized in the conventional power-law form rho = alpha D(app)(beta), where alpha and beta are assumed to be variable. To account for strong horizontal winds that tend to decrease the measured concentrations from the 2DVD, a third parameter gamma is introduced. The methodology estimates the three parameters (alpha, beta, and gamma) by minimizing the difference between the radar-measured reflectivity and the equivalent reflectivity computed from the 2DVD in a least squares sense. The optimally determined values of alpha, beta, and gamma are used to estimate the SR and the coefficient and exponent of the Z(e) = a(SR)(b) relation. For validation, the accumulation from the SR is compared with the manually recorded accumulations from the double-fence international reference (DFIR) gauge. The data were collected during the Canadian Cloudsat Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) conducted in Ontario. Canada, during the 2006/07 winter season. A total of seven snow days were analyzed and the accumulation intercomparisons gave a fractional standard deviation of 26% and normalized bias 2.1%. The range of the a and b values for the seven clays appear reasonable and similar to conventional Z(e)-R relations. C1 [Huang, Gwo-Jong; Bringi, V. N.; Cifelli, Robert] Colorado State Univ, Ft Collins, CO 80525 USA. [Hudak, David] Environm Canada, Toronto, ON, Canada. [Petersen, W. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Huang, GJ (reprint author), Colorado State Univ, Ft Collins, CO 80525 USA. EM gh222106@engr.colostate.edu NR 32 TC 32 Z9 32 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD APR PY 2010 VL 27 IS 4 BP 637 EP 651 DI 10.1175/2009JTECHA1284.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 582WT UT WOS:000276631700002 ER PT J AU Wang, HL Schubert, S Suarez, M Koster, R AF Wang, Hailan Schubert, Siegfried Suarez, Max Koster, Randal TI The Physical Mechanisms by Which the Leading Patterns of SST Variability Impact US Precipitation SO JOURNAL OF CLIMATE LA English DT Article ID ATLANTIC MULTIDECADAL OSCILLATION; SEA-SURFACE TEMPERATURE; UNITED-STATES; AIR-TEMPERATURE; NORTH-AMERICAN; CLIMATE MODELS; BOREAL SUMMER; PART I; DROUGHT; ENSO AB This study uses the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) AGCM to investigate the physical mechanisms by which the leading patterns of annual mean SST variability impact U.S. precipitation. The focus is on a cold Pacific pattern and a warm Atlantic pattern that exert significant drought conditions over the U.S. continent. The precipitation response to the cold Pacific is characterized by persistent deficits over the Great Plains that peak in summer with a secondary peak in spring, and weakly pluvial conditions in summer over the Southeast (SE). The precipitation response to the warm Atlantic is dominated by persistent deficits over the Great Plains with the maximum deficit occurring in late summer. The precipitation response to the warm Atlantic is overall similar to the response to the cold Pacific with, however, considerably weaker amplitude. An analysis of the atmospheric moisture budget combined with a stationary wave model diagnosis of the associated atmospheric circulation anomalies is conducted to investigate mechanisms of the precipitation responses. A key result is that, while the cold Pacific and warns Atlantic are two spatially distinct SST patterns, they nevertheless produce similar diabatic heating anomalies over the Gulf of Mexico during the warm season. In the case of the Atlantic forcing, the heating anomalies are a direct response to the SST anomalies, whereas in the case of Pacific forcing they are a secondary response to circulation anomalies forced from the tropical Pacific. The diabatic heating anomalies in both cases force an anomalous low-level cyclonic flow over the Gull of Mexico that leads to reduced moisture transport into the central United States and increased moisture transport into the eastern United States. The precipitation deficits over the Great Plains in both cases are greatly amplified by the strong soil moisture feedback in the NSIPP-1 AGCM. In contrast, the response over the SE to the cold Pacific during spring is primarily associated with an upper-tropospheric high anomaly over the southern United States that is remotely forced by tropical Pacific diabatic heating anomalies, leading to greatly reduced stationary moisture flux convergences and anomalous subsidence in that region. Moderately reduced evaporation and weakened transient moisture flux convergences play secondary roles. It is only during spring that these three terms are all negative and constructively contribute to produce the maximum dry response in spring. The above findings based on the NSIPP-1 AGCM are generally consistent with observations, as well as with four other AGCMs included in the U.S. Climate Variability and Predictability (CLIVAR) project. C1 [Wang, Hailan; Schubert, Siegfried; Suarez, Max; Koster, Randal] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off UMBC GEST, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Wang, Hailan] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Wang, HL (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off UMBC GEST, Sci & Explorat Directorate, Code 610-1, Greenbelt, MD 20771 USA. EM hailan.wang@nasa.gov RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NOAA; NASA FX This study is supported by the NOAA Climate Prediction Program for the Americas (CPPA) and the NASA Modeling, Analysis, and Prediction (MAP) program. The authors thank NASA's Global Modeling and Assimilation Office (GMAO) for making the NSIPP1 runs available, the Lamont-Doherty Earth Observatory of Columbia University for making their CCM3 runs available, NOAA's Climate Prediction Center (CPO/Climate Test Bed (TB) for making the GFS runs available, NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) for making the AM2.1 runs available, the National Center for Atmospheric Research (NCAR) for making the CAM3.5 runs available, and the Center for Ocean Land Atmosphere (COLA) and the University of Miami's Rosenstiel School of Marine and Atmospheric Science for making the CCSM3.0 coupled model runs available. NR 40 TC 17 Z9 18 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD APR 1 PY 2010 VL 23 IS 7 BP 1815 EP 1836 DI 10.1175/2009JCLI3188.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 581EY UT WOS:000276505500011 ER PT J AU Tao, WK Lang, S Zeng, XP Shige, S Takayabu, Y AF Tao, Wei-Kuo Lang, Stephen Zeng, Xiping Shige, Shoichi Takayabu, Yukari TI Relating Convective and Stratiform Rain to Latent Heating SO JOURNAL OF CLIMATE LA English DT Article ID CLOUD-RESOLVING MODEL; SOUTH CHINA SEA; TRMM PR DATA; PASSIVE MICROWAVE RADIOMETRY; MIDLATITUDE SQUALL LINE; DEEP TROPICAL CLOUDS; TOGA-COARE; SPECTRAL RETRIEVAL; VERTICAL PROFILES; MOISTURE BUDGETS AB The relationship among surface rainfall, its intensity, and its associated strati form amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.5 degrees horizontal resolution, the occurrence of conditional rain rates over 100 mm day(-1) is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm. C1 [Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Zeng, Xiping] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Shige, Shoichi] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Takayabu, Yukari] Univ Tokyo, Ctr Climate Syst Res, Tokyo, Japan. RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM wei-kuo.tao-1@nasa.gov RI PMM, JAXA/K-8537-2016 FU NASA; NASA Precipitation Measuring Mission (PMM) FX This research was supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Precipitation Measuring Mission (PMM). The authors are grateful to Dr. R. Kakar at NASA headquarters for his support of this research. We also thank two anonymous reviewers for their constructive comments and suggestions that improved this paper significantly. Acknowledgment is also made to the NASA Goddard Space Flight Center and NASA Ames computing centers for the computational resources used in this research. NR 66 TC 23 Z9 24 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD APR 1 PY 2010 VL 23 IS 7 BP 1874 EP 1893 DI 10.1175/2009JCLI3278.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 581EY UT WOS:000276505500014 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Grove, JE Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Harding, AK Horan, D Hughes, RE Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Raino, S Rando, R Reimer, A Reimer, O Reposeur, T Rodriguez, AY Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sellerholm, A Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Torres, DF Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Zaharijas, G Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Horan, D. Hughes, R. E. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Raino, S. Rando, R. Reimer, A. Reimer, O. Reposeur, T. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sellerholm, A. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Torres, D. F. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Zaharijas, G. Ziegler, M. TI Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter simulations; dark matter experiments ID LARGE-AREA TELESCOPE; SPACE-TELESCOPE; EVOLUTION; HALOES; GALAXY; FLUCTUATIONS; SUBSTRUCTURE; EMISSION; BLAZARS; MODELS AB The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. We use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and by using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e. g. in minimal supersymmetry models) annihilating predominantly into quarks. For the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai IEEC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Gehrels, N.; Harding, A. K.; McEnery, J. E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Meurer, C.; Sellerholm, A.; Ylinen, T.; Zaharijas, G.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Zaharijas, G.] CEA, Inst Phys Theor, IPhT, F-91191 Gif Sur Yvette, France. [Conrad, J.; Garde, M. Llena; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. EM conrad@fysik.su.se; michael.gustafsson@pd.infn.it; sellerholm@phyto.se; gabrijela.zaharijas@cea.fr RI Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Reimer, Olaf/A-3117-2013; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Starck, Jean-Luc/D-9467-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Rando, Riccardo/M-7179-2013; Johnson, Neil/G-3309-2014 OI Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Reimer, Olaf/0000-0001-6953-1385; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Starck, Jean-Luc/0000-0003-2177-7794; giglietto, nicola/0000-0002-9021-2888; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; European Union FP6 Marie Curie Research & Training Network 'UniverseNet' [MRTN-CT-2006-035863]; National Institute of Nuclear Physics in Italy FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the and the Centre National d'Etudes Spatiales in France.; M. Gustafsson and G. Zaharijas acknowledge support from the European Union FP6 Marie Curie Research & Training Network 'UniverseNet' (MRTN-CT-2006-035863). M. Gustafsson also thanks the National Institute of Nuclear Physics in Italy for their support. NR 85 TC 120 Z9 120 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2010 IS 4 AR 014 DI 10.1088/1475-7516/2010/04/014 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 596KV UT WOS:000277684600019 ER PT J AU Forbes, D Hubbard, S Raffaelle, R McNatt, JS AF Forbes, David Hubbard, Seth Raffaelle, Ryne McNatt, Jeremiah S. TI Au-catalyst-free epitaxy of InAs nanowires SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 17th Amer Conference on Crystal Growth and Epitaxy/14th United States Biennial Workshop on Organometallic Vapor Phase Epitaxy/6th Inter Workshop on Modeling in Crystal Growth CY AUG 09-14, 2009 CL Lake Geneva, WI SP Amer Assoc Crystal Growth DE Nanostructures; Metalorganic vapor phase epitaxy; Nanomaterials; InAs; Semiconducting III-V materials ID GAAS NANOWIRES; GROWTH; DEPOSITION; MECHANISM; MOVPE AB Semiconducting nanowires have been intensively studied in order to exploit unique optical and electrical properties that develop at the nano-scale. Commonly, nanowires are produced using Au nanoparticles (similar to 50 nm diameter) as seed particles on the surface applied prior to epitaxy. The Au particle acts as a preferred nucleation site for nanowire growth. This report demonstrates InAs nanowire epitaxy on GaAs(1 0 0) and GaAs(1 1 1) substrates without the use of Au nanoparticles. InAs nanowires are formed by using in-situ generated metallic droplets via decomposition of the metalorganic source during OMVPE. The InAs nanowires grow preferentially in the [1 1 1] direction, although evidence of [1 0 0] growth is observed. InAs nanowires in excess of 0.5 mu m in length have been observed on GaAs(1 0 0) substrates. The effect of OMVPE conditions such as substrate orientation, V/III ratio, and growth temperature on the InAs nanowire structure is described. (C) 2009 Elsevier B.V. All rights reserved. C1 [Forbes, David; Hubbard, Seth; Raffaelle, Ryne] Rochester Inst Technol, Rochester, NY 14623 USA. [McNatt, Jeremiah S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Forbes, D (reprint author), Rochester Inst Technol, 85 Lomb Mem Dr,Gosnell Bldg 3330, Rochester, NY 14623 USA. EM dvfsps@rit.edu RI Schaff, William/B-5839-2009 NR 16 TC 11 Z9 11 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD APR 1 PY 2010 VL 312 IS 8 BP 1391 EP 1395 DI 10.1016/j.jcrysgro.2009.12.009 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 588AU UT WOS:000277039100071 ER PT J AU Narita, Y Sahraoui, F Goldstein, ML Glassmeier, KH AF Narita, Y. Sahraoui, F. Goldstein, M. L. Glassmeier, K. -H. TI Magnetic energy distribution in the four-dimensional frequency and wave vector domain in the solar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID BOW SHOCK; HOMOGENEOUS TURBULENCE; CLUSTER; PLASMA; EVOLUTION; MAGNETOSHEATH; FLUCTUATIONS; TELESCOPE; DISSIPATION; SPECTRA AB We present a measurement of the energy distribution in the four-dimensional (4-D) frequency and wave vector domain of magnetic field fluctuations in the solar wind. The measurement makes use of the wave telescope technique that has been developed particularly for multispacecraft data analysis. We review briefly the theoretical background and then present a numerical test using synthetic data; the technique is then applied to magnetic field data obtained while the Cluster spacecraft was in the solar wind. The energy distribution is determined in the flow rest frame in the frequency range below 0.2 rad/s and the wave number range below 0.0015 rad/km, corrected for the Doppler shift. We find the following properties in the energy distribution in the rest frame: (1) a double anisotropy in the wave vector domain associated with the mean magnetic field and the flow directions, (2) a symmetric distribution with respect to the sign of wave vector, and (3) no evidence for a linear dispersion relation in the frequency and wave number domain. Since the flow direction in the analyzed time interval is close to the normal direction to the bow shock, the anisotropy may well be associated with the bow shock. These results suggest that the solar wind is in a state of well-developed strong turbulence and justifies the theoretical picture of quasi-two-dimensional turbulence that obtains in the presence of a (relatively) strong DC magnetic field. However, the fluctuations are not axisymmetric around the mean field and the energy distribution is extended in the perpendicular direction to the flow or shock normal. Anisotropy associated with the boundary is reminiscent of previously reported magnetosheath turbulence. This study opens a way to investigate solar wind turbulence in the full 4-D frequency and wave vector space. C1 [Narita, Y.; Glassmeier, K. -H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Sahraoui, F.; Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Glassmeier, K. -H.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Narita, Y (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. EM y.narita@tu-bs.de RI Goldstein, Melvyn/B-1724-2008 FU Bundesministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt, Germany [50 OC 0901]; NPP FX The work of YN and KHG was financially supported by Bundesministerium fur Wirtschaft und Technologie and Deutsches Zentrum fur Luft- und Raumfahrt, Germany, under contract 50 OC 0901. FS is partly funded by the NPP program at NASA/GSFC. Discussion with S. P. Gary is greatly appreciated. We thank H. Reme and I. Dandouras for providing the ion data of Cluster. NR 51 TC 18 Z9 18 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 1 PY 2010 VL 115 AR A04101 DI 10.1029/2009JA014742 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578TN UT WOS:000276318700003 ER PT J AU De Lannoy, GJM Reichle, RH Houser, PR Arsenault, KR Verhoest, NEC Pauwels, VRN AF De Lannoy, Gabrielle J. M. Reichle, Rolf H. Houser, Paul R. Arsenault, Kristi R. Verhoest, Niko E. C. Pauwels, Valentijn R. N. TI Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; SOIL-MOISTURE ESTIMATION; INFORMATION-SYSTEM; ANALYSIS SCHEME; FRAMEWORK; COVER; MODIS; IMPLEMENTATION; UNCERTAINTY; PREDICTION AB Four methods based on the ensemble Kalman filter (EnKF) are tested to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) into finescale (1 km) land model simulations. Synthetic coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (regridding) to the finescale model resolution prior to data assimilation. In either case, observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated finescale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the finescale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study. C1 [De Lannoy, Gabrielle J. M.; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [De Lannoy, Gabrielle J. M.; Houser, Paul R.; Arsenault, Kristi R.] George Mason Univ, Calverton, MD USA. [De Lannoy, Gabrielle J. M.; Houser, Paul R.; Arsenault, Kristi R.] Ctr Res Environm & Water, Calverton, MD USA. [Reichle, Rolf H.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. RP De Lannoy, GJM (reprint author), Univ Ghent, Lab Hydrol & Water Management, Coupure Links 653, B-9000 Ghent, Belgium. EM gabrielle.delannoy@ugent.be RI Reichle, Rolf/E-1419-2012; Verhoest, Niko/C-9726-2010; Houser, Paul/J-9515-2013; OI Verhoest, Niko/0000-0003-4116-8881; Houser, Paul/0000-0002-2991-0441; Pauwels, Valentijn/0000-0002-1290-9313 FU NASA [NNX08AH36G]; NOAA CPPA [NA07OAR4310221] FX The first author is a postdoctoral research fellow of the Research Foundation Flanders (FWO). Rolf Reichle was supported by NASA Grant NNX08AH36G. We thank Sujay Kumar and the LIS development team at NASA GSFC for providing the LIS5.0 beta version, Hiroko Kato from NASA GSFC for providing the GDAS forcing data, and Megan Larko from CREW/IGES for the computational support. This study is partially supported by the NOAA CPPA Grant NA07OAR4310221. We thank the reviewers for their constructive comments. NR 64 TC 34 Z9 34 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2010 VL 11 IS 2 BP 352 EP 369 DI 10.1175/2009JHM1192.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 595HJ UT WOS:000277601000007 ER PT J AU Tokay, A Bashor, PG McDowell, VL AF Tokay, Ali Bashor, Paul G. McDowell, Victoria L. TI Comparison of Rain Gauge Measurements in the Mid-Atlantic Region SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID NUMERICAL-SIMULATION; SPATIAL VARIABILITY; RADAR REFLECTIVITY; GROUND-VALIDATION; FIELD CAMPAIGN; PRECIPITATION; TRMM; ERRORS; MESONET AB A comparative study of daily and monthly rainfall between research and operational gauges was conducted at the mid-Atlantic region. Fifty research tipping-bucket gauges were deployed to 20 sites where each site had dual or triple gauges. The gauges were in place to validate the National Aeronautics and Space Administration's newly developed polarimetric radar rainfall estimate. For logistic purposes, these research gauges were collocated with operational gauges and were operated over a year at each site. Therefore, this is an experimental study, which involves a mixture of one to five sites of seven operational gauge networks. A very good to excellent agreement between the two collocated research gauges at daily time scale raised the authors' confidence to consider them as a reference before comparing with the operational gauges. Among operational networks, the National Weather Service's (NWS) Automated Surface Observing Systems (ASOS) weighing bucket and the Climate Reference Network and Forest Services tipping-bucket gauges demonstrated high performance for both daily and monthly rainfall, while the Federal Aviation Administration's Automated Weather Observing Systems (AWOS) tipping-bucket gauges performed poorly. Among the other networks, the ASOS tipping-bucket and Cooperative observer program's stick gauges seemed to be reliable for monthly rainfall, but not always for daily rainfall. The Virginia Agricultural Experimental Station (VAES) tipping-bucket gauges, on the other hand, had a mixture of high and low performance for daily and monthly rainfall. Unlike other gauge networks, VAES gauges were in place for long-term research applications. C1 [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Bashor, Paul G.] NASA, Comp Sci Corp, Wallops Flight Facil, Wallops Isl, VA USA. [McDowell, Victoria L.] Susquehanna Univ, Dept Earth & Environm Sci, Selinsgrove, PA USA. RP Tokay, A (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM ali.tokay-1@nasa.gov FU Joint Center for Earth Systems Technology, University of Maryland, Baltimore County; TRMM [NNX07AF45G] FX We would like to acknowledge the National Climate Data Center, the North Carolina State Climate Office, the Climate Reference Network, the National Weather Service Wakefield Office, Fire Management, the Virginia Agricultural Experimental Station, the Cooperative Observer program, the Automated Surface Observation System, and the Automated Weather Observation System for providing data and feedback on various aspects of data collection and quality and gauge maintenance. The rain gauge project was iniatiated through efforts of Robert F. Adler, former TRMM project scientist, while Richard J. Lawrence of the NASA Goddard Space Flight Center and John Gerlach of the NASA Wallops Flight Facility played a leadership role during the operation. This study was initiated during the third author's summer internship at the NASA Goddard Space Flight Center. We thank the Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, for funding and logistics of the summer student program. We appreciate invaluable comments from Emad Habib of the University of Louisiana, Lafayette, David A. Marks and Jianxin Wang of Science Systems Applications Inc., and Koray K. Yilmaz of the Earth System Science Interdisciplinary Center. The comments from three anonymous reviewers were also helpful. This study was funded through NNX07AF45G under Ramesh Kakar, TRMM program scientist. NR 28 TC 12 Z9 12 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2010 VL 11 IS 2 BP 553 EP 565 DI 10.1175/2009JHM1137.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 595HJ UT WOS:000277601000021 ER PT J AU Tian, YD Peters-Lidard, CD Adler, RF Kubota, T Ushio, T AF Tian, Yudong Peters-Lidard, Christa D. Adler, Robert F. Kubota, Takuji Ushio, Tomoo TI Evaluation of GSMaP Precipitation Estimates over the Contiguous United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID MICROWAVE RADIOMETER OBSERVATIONS; RAIN CLASSIFICATION METHODS; PASSIVE MICROWAVE; LAND; VALIDATION; RESOLUTION; PRODUCTS; INFORMATION AB Precipitation estimates from the Global Satellite Mapping of Precipitation (GSMaP) project are evaluated over the contiguous United States (CONUS) for the period of 2005-06. GSMaP combines precipitation retrievals from the Tropical Rainfall Measuring Mission satellite and other polar-orbiting satellites, and interpolates them with cloud motion vectors derived from infrared images from geostationary satellites, to produce a high-resolution dataset. Four other satellite-based datasets are also evaluated concurrently with GSMaP, to provide a better perspective. The new Climate Prediction Center (CPC) unified gauge analysis is used as the reference data. The evaluation shows that GSMaP does well in capturing the spatial patterns of precipitation, especially for summer, and that it has better estimation of precipitation amount over the eastern than over the western CONUS. Meanwhile, GSMaP shares many of the challenges common to other satellite-based products, including that it underestimates in winter and overestimates in summer. In winter, GSMaP has on average one-half less precipitation over the western region and one-third less over the eastern region, whereas in summer it has about three-quarters and one-quarter more estimated precipitation over the two respective regions, respectively. Most of the summer overestimates (winter underestimates) are from an excessive (insufficient) number of strong events (>20 mm day 21). Overall, GSMaP's performance is comparable to other satellite-based products, with slightly better probability of detection during summer, and the different satellite-based estimates as a group have better agreement among themselves during summer than during winter. C1 [Tian, Yudong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Peters-Lidard, Christa D.] NASA, Hydrol Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Adler, Robert F.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kubota, Takuji] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Ibaraki, Japan. [Ushio, Tomoo] Osaka Univ, Dept Informat & Commun Technol, Osaka, Japan. RP Tian, YD (reprint author), NASA, GEST Ctr, Goddard Space Flight Ctr, Mail Code 614-3, Greenbelt, MD 20771 USA. EM yudong.tian@nasa.gov RI Ushio, Tomoo/G-6915-2011; Kubota, Takuji/E-6024-2011; Measurement, Global/C-4698-2015; PMM, JAXA/K-8537-2016; Peters-Lidard, Christa/E-1429-2012 OI Kubota, Takuji/0000-0003-0282-1075; Peters-Lidard, Christa/0000-0003-1255-2876 FU Air Force Weather Agency MIPR [F2BBAJ6033GB01] FX This research is partially supported by the Air Force Weather Agency MIPR F2BBAJ6033GB01 and by NASA's Applied Sciences Program. The GSMaP Project was sponsored by JST-CREST and is promoted by the JAXA Precipitation Measuring Mission (PMM) Science Team. The authors wish to thank Mingyue Chen and Pingping Xie for their helpful discussions and for assistance with data access, and three anonymous reviewers for their comments. NR 26 TC 41 Z9 44 U1 3 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD APR PY 2010 VL 11 IS 2 BP 566 EP 574 DI 10.1175/2009JHM1190.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 595HJ UT WOS:000277601000022 ER PT J AU Kirchner, F Munoz, C AF Kirchner, Florent Munoz, Cesar TI The proof monad SO JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING LA English DT Article DE Proof languages; Deductive strategies; Category theory; Monadic structures AB f A formalism for expressing the operational semantics of proof languages used in procedural theorem provers is proposed. It is argued that this formalism provides an elegant way to describe the computational features of proof languages, such as side effects, exception handling, and backtracking. The formalism, called proof monads, finds its roots in category theory, and in particular satisfies the monad laws. It is shown that the framework's monadic operators are related to fundamental tactics and strategies in procedural theorem provers. Finally, the paper illustrates how proof monads can be used to implement semantically clean control structure mechanisms in actual proof languages. (C) 2010 Elsevier Inc. All rights reserved. C1 [Kirchner, Florent] INRIA, LIX, Menlo Pk, CA 94025 USA. [Kirchner, Florent] SRI Int, Menlo Pk, CA 94025 USA. [Munoz, Cesar] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Kirchner, F (reprint author), INRIA, LIX, Menlo Pk, CA 94025 USA. EM florent.kirchner@lix.polytechnique.fr; cesar.a.munoz@nasa.gov FU National Aeronautics and Space Administration at Langley Research Center [NCC-1-02043] FX This work was supported by the National Aeronautics and Space Administration at Langley Research Center under the Research Cooperative Agreement No. NCC-1-02043 awarded to the National Institute of Aerospace. NR 39 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1567-8326 J9 J LOGIC ALGEBR PROGR JI J. Logic. Algebr. Program PD APR-JUL PY 2010 VL 79 IS 3-5 BP 264 EP 277 DI 10.1016/j.jlap.2010.03.002 PG 14 GA 604OV UT WOS:000278289300004 ER PT J AU Estabrook, FB AF Estabrook, Frank B. TI The Hilbert Lagrangian and isometric embedding: Tetrad formulation of Regge-Teitelboim gravity SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article AB We discuss exterior differential systems (EDSs) for the vacuum gravitational field. These EDSs are derived by varying the Hilbert-Einstein Lagrangian, given most elegantly as a Cartan 4-form calibrating 4-spaces embedded in ten flat dimensions. In particular, we thus formulate with tetrad equations the Regge-Teitelboim (RT) dynamics "a la string;" it arises when variation of the 4-spaces gives the Euler-Lagrange equations of a multicontact field theory. We calculate the Cartan character table of this EDS, showing the field equations to be well posed with no gauge freedom. The Hilbert Lagrangian as usually varied over just the intrinsic curvature structure of a 4-space yields only a subset of this dynamics, viz., solutions satisfying additional conditions constraining them to be Ricci flat. In the static spherically symmetric case, we present a new tetrad embedding in flat six dimensions, which allows reduction of the RT field equations to a quadrature; the Schwarzschild metric is a special case. As has previously been noted, there may be a classical correspondence of the RT theory with the hidden dimensions of brane theory, and perhaps this extended general relativistic dynamics holds in extreme circumstances where it can be interpreted as including a sort of dark or bulk energy even though no term with a cosmological constant is included in the Lagrangian. As a multicontact system, canonical quantization should be straightforward. (C) 2010 American Institute of Physics. [doi:10.1063/1.3352557] C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Estabrook, FB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM frank.b.estabrook@jpl.nasa.gov NR 23 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 J9 J MATH PHYS JI J. Math. Phys. PD APR PY 2010 VL 51 IS 4 AR 042502 DI 10.1063/1.3352557 PG 10 WC Physics, Mathematical SC Physics GA 590QQ UT WOS:000277242500010 ER PT J AU Lamb, J Chandra, D Coleman, M Sharma, A Cathey, WN Paglieri, SN Wermer, JR Bowman, RC Lynch, FE AF Lamb, Joshua Chandra, Dhanesh Coleman, Michael Sharma, Archana Cathey, William N. Paglieri, Stephen N. Wermer, Joseph R. Bowman, Robert C., Jr. Lynch, Franklin E. TI Low and high-pressure hydriding of V-0.5at.%C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HYDROGEN PERMEATION CHARACTERISTICS; TRITIUM EXTRACTION; BREEDER-BLANKET; LIQUID LITHIUM; METAL-HYDRIDES; VANADIUM; PALLADIUM; MEMBRANES; SYSTEM; DIFFUSION AB The low-pressure hydriding characteristics of V-0.5at.%C alloy were determined in this study. There are several prior reports on the pressure-composition-temperature (p-c-T) isotherms and stability of the low-pressure vanadium hydride phases (V(2)H or beta(1)), and of vanadium alloyed with transition elements, but there are no reports on the hydrides of V-C alloys. The thermodynamic properties of the vanadium did not change significantly with the addition of carbon. In addition to low-pressure studies on V-0.5at.%C, we also performed high-pressure studies on V(2)H <-> VH <-> VH(2) (beta(1) <-> beta(2) <-> gamma) hydrides, including thermal cycling (778 cycles) between the beta and gamma phases. Thermal cycling between VH <-> VH(2) increased the pressure hysteresis. The effects of thermal cycling (4000 cycles) on the absorption and desorption isotherms of V-0.5at.%C and on the H/M ratios for the beta(1)-, beta(2)- and gamma-phase hydrides are also presented. There was minimal decrepitation (pulverization) of the alloy; decrepitation of the V-0.5at.%C alloy was dramatically less than that of pure vanadium. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lamb, Joshua; Chandra, Dhanesh; Coleman, Michael; Sharma, Archana; Cathey, William N.] Univ Nevada, Reno, NV 89557 USA. [Paglieri, Stephen N.] TDA Res Inc, Wheat Ridge, CO 80033 USA. [Wermer, Joseph R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bowman, Robert C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lynch, Franklin E.] HCI, Littleton, CO 80125 USA. RP Chandra, D (reprint author), Univ Nevada, MS 388, Reno, NV 89557 USA. EM dchandra@unr.edu OI Bowman, Robert/0000-0002-2114-1713 FU US DOE; Jet Propulsion Laboratory; US National Aeronautics and Space Administration (NASA) FX We acknowledge Dr. Wen Ming Chien for assistance with plotting some of the figures, and Dr. Raja Chellappa, Dr. John D. Wright, and Jan Graves for proofreading the manuscript. This work was funded in part by the US DOE and was partially performed at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with the US National Aeronautics and Space Administration (NASA). The authors are also grateful for assistance by the DOE Metal Hydride Center of Excellence. NR 56 TC 2 Z9 2 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 1 PY 2010 VL 399 IS 1 BP 55 EP 61 DI 10.1016/j.jnucmat.2010.01.002 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 591VR UT WOS:000277333700007 ER PT J AU Makeev, MA Srivastava, D AF Makeev, Maxim A. Srivastava, Deepak TI Microstructure Dependence of the Mechanical and Thermal Behavior of Pyrolytic Carbonaceous Char SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FLAMMABILITY PROPERTIES; ELASTIC PROPERTIES; CONDUCTIVITY; NANOCOMPOSITES; FILMS; TRANSPORT; NANOWIRES; NETWORKS; GLASSES; SILICON AB The mechanical and thermal properties of carbonaceous char, obtained through ultrahigh-temperature pyrolysis using molecular dynamics simulations with the Brenner reactive empirical bond-order potential, are reported in this work. The main focus is on the effects of microstructure and microtopology on the mechanical and thermal response properties of pyrolytic char. The Young's modulus of char is found to follow an similar to((n) over bar - n(T))(gamma) dependence on the average coordination number, (n) over bar, for (n) over bar values below approximate to 2.97, with n(T) being a threshold coordination number for transition between soft and solid phases of the material. This behavior is characteristic of a random network model of glassy systems, in which case gamma approximate to 1.5. As the average coordination number (n) over bar increases from approximate to 2.97 to approximate to 3.10, deviations from the simple power-law behavior are observed. We show that these deviations are due to a microtopological transition associated with the formation of buckled graphene-sheet-like microstructures in the char. The thermal conductivity of pyrolytic char is also investigated in a wide range oh temperatures and shown to follow a behavior described by the modified Einstein heat transfer theory, corrected for the presence of buckled graphene-sheet-like features in the pyrolyzed char. C1 [Makeev, Maxim A.; Srivastava, Deepak] NASA, UARC, UC Santa Cruz, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Srivastava, D (reprint author), NASA, UARC, UC Santa Cruz, Ames Res Ctr, MS 229-1, Moffett Field, CA 94035 USA. FU NASA [NNX07AC41A] FX M.A.M. and D.S. gratefully acknowledge support from NASA through the Hlypersonics project of the Fundamental Aeronautics program (NNX07AC41A). NR 29 TC 1 Z9 1 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 1 PY 2010 VL 114 IS 12 BP 5709 EP 5714 DI 10.1021/jp909507m PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 572TI UT WOS:000275855600049 ER PT J AU Spicer, DS Bingham, R O'sullivan, S AF Spicer, D. S. Bingham, Robert O'sullivan, S. TI A model for predicting extragalactic jet lifetimes SO JOURNAL OF PLASMA PHYSICS LA English DT Letter AB In this letter, we propose a model to explain the disintegration of extragalactic jets and to predict the associated timescale. The model assumes that a. jet is current and charge neutral as well as collimated at its source; however, the forward electron current gradually decays producing a. magnetic field transverse to the direction of jet propagation. This growing transverse magnetic field eventually causes the jet to disintegrate. C1 [Spicer, D. S.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Bingham, Robert] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Bingham, Robert] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [O'sullivan, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Spicer, DS (reprint author), Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. EM daniel.shields.spicer@drexel.edu; bob.bingham@stfe.ac.uk NR 6 TC 0 Z9 0 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2010 VL 76 BP 129 EP 134 DI 10.1017/S0022377809990730 PN 2 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 576SV UT WOS:000276169600001 ER PT J AU Battaglia, A Tanelli, S Kobayashi, S Zrnic, D Hogan, RJ Simmer, C AF Battaglia, Alessandro Tanelli, Simone Kobayashi, Satoru Zrnic, Dusan Hogan, Robin J. Simmer, Clemens TI Multiple-scattering in radar systems: A review SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Review DE Radar equation; Multiple scattering; Radiative transfer ID MIRROR-IMAGE RETURNS; PART I; BACKSCATTERING ENHANCEMENT; RADIATIVE-TRANSFER; SPHERICAL-PARTICLES; PRECIPITATION RADAR; DENSE DISTRIBUTION; 3-BODY SCATTERING; WEAK-LOCALIZATION; MILLIMETER-WAVE AB Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Battaglia, Alessandro] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Battaglia, Alessandro; Simmer, Clemens] Univ Bonn, Inst Meteorol, D-5300 Bonn, Germany. [Tanelli, Simone] Calif Technol, Jet Prop Lab, Pasadena, CA 91101 USA. [Kobayashi, Satoru] Appl Mat Inc, Santa Clara, CA 95054 USA. [Zrnic, Dusan] Natl Severe Storms Lab NOAA, Norman, OK USA. [Hogan, Robin J.] Univ Reading, Dept Meteorol, Reading, Berks, England. RP Battaglia, A (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM a.battaglia@le.ac.uk RI Simmer, Clemens/M-4949-2013; Hogan, Robin/M-6549-2016; OI Simmer, Clemens/0000-0003-3001-8642; Hogan, Robin/0000-0002-3180-5157; Battaglia, Alessandro/0000-0001-9243-3484 FU German Science Foundation; National Aeronautics and Space Administration FX The work performed by Dr. Battaglia has been partially funded by the German Science Foundation under the TOSCA project. The contribution by Dr. Simone Tanelli was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Dr. Valery Melnikov maintained calibration of the NOAA/NSSL polarimetric radar and collected data, whereas Jelena Andric produced Figures 8-10. NR 100 TC 24 Z9 26 U1 5 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD APR PY 2010 VL 111 IS 6 BP 917 EP 947 DI 10.1016/j.jqsrt.2009.11.024 PG 31 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 575GD UT WOS:000276054000009 ER PT J AU Zivan, L Tischler, MB AF Zivan, Lior Tischler, Mark B. TI Development of a Full Flight Envelope Helicopter Simulation Using System Identification SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article; Proceedings Paper CT 63rd Annual Forum of the American-Helicopter-Society CY MAY 01-03, 2007 CL Virginia Beach, VA SP Amer Helicopter Soc AB Frequency-domain system identification techniques were used to develop a series of mathematical models of the Bell 206 helicopter, each valid at different flight conditions. The models were combined and "stitched" together to produce a continuous full flight envelope model of the helicopter. The model was implemented in a simple simulator and evaluated by several pilots, all flight qualified in this helicopter. It was the opinion of the pilots that the simulation is a good representation of the aircraft for all tasks of interest. C1 [Zivan, Lior] Ben Gurion Int Airport, Israel Aerosp Ind, Div Engn, Flight Control Syst Dept, Tel Aviv, Israel. [Tischler, Mark B.] USA, Res Dev & Engn Command, Ames Res Ctr, Moffett Field, CA USA. RP Zivan, L (reprint author), Ben Gurion Int Airport, Israel Aerosp Ind, Div Engn, Flight Control Syst Dept, Tel Aviv, Israel. EM lzivan@iai.co.il NR 13 TC 3 Z9 3 U1 0 U2 5 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD APR PY 2010 VL 55 IS 2 AR 022003 DI 10.4050/JAHS.55.022003 PG 15 WC Engineering, Aerospace SC Engineering GA 745OV UT WOS:000289175900003 ER PT J AU Braun, SA Montgomery, MT Mallen, KJ Reasor, PD AF Braun, Scott A. Montgomery, Michael T. Mallen, Kevin J. Reasor, Paul D. TI Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MESOSCALE CONVECTIVE SYSTEM; PLANETARY BOUNDARY-LAYER; CYCLONE INTENSIFICATION; NWP SYSTEM; MODEL; CYCLOGENESIS; SENSITIVITY; PARAMETERIZATION; PREDICTABILITY; PREDICTION AB Several hypotheses have been put forward for the mechanisms of generation of surface circulation associated with tropical cyclones. This paper examines high-resolution simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during NASA's Tropical Cloud Systems and Processes Experiment, to investigate the development of low-level circulation and its relationship to the precipitation evolution. Two simulations are examined: one that better matches available observations but underpredicts the storm's minimum sea level pressure and a second one that somewhat overintensifies the storm but provides a set of simulations that encapsulates the overall genesis and development characteristics of the observed storm. The roles of convective and stratiform precipitation processes within the mesoscale precipitation systems that formed Gert are discussed. During 21-25 July, two episodes of convective system development occurred. In each, precipitation system evolution was characterized by intense and deep convective upward motions followed by increasing stratiform-type vertical motions (upper-level ascent, low-level descent). Potential vorticity (PV) in convective regions was strongest at low levels while stratiform-region PV was strongest at midlevels, suggesting that convective processes acted to spin up lower levels prior to the spinup of middle levels by stratiform processes. Intense vortical hot towers (VHTs) were prominent features of the low-level cyclonic vorticity field. The most prominent PV anomalies persisted more than 6 h and were often associated with localized minima in the sea level pressure field. A gradual aggregation of the cyclonic PV occurred as existing VHTs near the center continually merged with new VHTs, gradually increasing the mean vorticity near the center. Nearly concurrently with this VHT-induced development, stratiform precipitation processes strongly enhanced the mean inflow and convergence at middle levels, rapidly increasing the midlevel vorticity. However, the stratiform vertical motion profile is such that while it increases midlevel vorticity, it decreases vorticity near the surface as a result of low-level divergence. Consequently, the results suggest that while stratiform precipitation regions may significantly increase cyclonic circulation at midlevels, convective vortex enhancement at low to midlevels is likely necessary for genesis. C1 [Braun, Scott A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Montgomery, Michael T.] USN, Postgrad Sch, Monterey, CA USA. [Montgomery, Michael T.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. [Mallen, Kevin J.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Reasor, Paul D.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. RP Braun, SA (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. EM scott.a.braun@nasa.gov RI Reasor, Paul/B-2932-2014 OI Reasor, Paul/0000-0001-6407-017X FU NASA; Center for Earth Atmosphere Studies; [NNG07HU171] FX The authors thank Drs. David Raymond and Roger Smith and an anonymous reviewer for their helpful comments on the manuscript. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA TCSP program. M. T. Montgomery was supported through Multi-Interagency Procurement Request NNG07HU171. K. Mallen was supported through a fellowship from the Center for Earth Atmosphere Studies, a cooperative agreement between NASA and CSU. The simulations were conducted on NASA Center for Computational Sciences facilities. NR 45 TC 29 Z9 29 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD APR PY 2010 VL 67 IS 4 BP 999 EP 1025 DI 10.1175/2009JAS3140.1 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585MK UT WOS:000276829400007 ER PT J AU Ismail, S Ferrare, RA Browell, EV Kooi, SA Dunion, JP Heymsfield, G Notari, A Butler, CF Burton, S Fenn, M Krishnamurti, TN Biswas, MK Chen, G Anderson, B AF Ismail, Syed Ferrare, Richard A. Browell, Edward V. Kooi, Susan A. Dunion, Jason P. Heymsfield, Gerry Notari, Anthony Butler, Carolyn F. Burton, Sharon Fenn, Marta Krishnamurti, T. N. Biswas, Mrinal K. Chen, Gao Anderson, Bruce TI LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID INTERTROPICAL DISCONTINUITY REGION; AFRICAN EASTERLY WAVES; ATLANTIC HURRICANES; CONVECTIVE SYSTEM; GLOBAL-MODEL; IMPACT; LIDAR; IHOP-2002; AIRBORNE; MONSOON AB The Lidar Atmospheric Sensing Experiment (LASE) on board the NASA DC-8 measured high-resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan air layer (SAL). These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its interactions with AEWs and TCs. Three case studies were selected for detailed analysis: (i) a stratified SAL, with fine structure and layering (unlike a well-mixed SAL), (ii) a SAL with high relative humidity (RH), and (iii) an AEW surrounded by SAL dry air intrusions. Profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in the SAL, convection, and clear air regions. LASE extinction-to-backscatter ratios for the dust layers varied from 35 +/- 5 to 45 +/- 5 sr, well within the range of values determined by other lidar systems. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings. respectively. An analysis of LASE data suggests that the SAL suppresses low-altitude convection. Midlevel convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on 20 August 2008. This interaction is responsible for the transfer of about 7 x 10(15) J (or 8 x 10(3) J m(-2)) latent heat energy within a day to the SAL. Initial modeling studies that used LASE water vapor profiles show sensitivity to and improvements in model forecasts of an AEW. C1 [Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Chen, Gao; Anderson, Bruce] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Kooi, Susan A.; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta] SSAI, Hampton, VA USA. [Dunion, Jason P.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. [Heymsfield, Gerry] NASA, Goddard Space Flight Ctr, College Pk, MD USA. [Krishnamurti, T. N.; Biswas, Mrinal K.] Florida State Univ, Tallahassee, FL 32306 USA. RP Ismail, S (reprint author), NASA, Langley Res Ctr, MS 401A, Hampton, VA 23681 USA. EM syed.ismail-1@nasa.gov RI Dunion, Jason/B-1352-2014 OI Dunion, Jason/0000-0001-7489-0569 FU Paul McClung FX We thank Paul McClung for supporting LASE integration onto the DC-8; Dr. Ramesh Kakar, NASA Headquarters, for providing financial support for LASE deployment and data analysis; Dr. Edward Zipser for coordinating and directing the NAMMA field experiment; Dr. Robert Ross and Dr. George Smith for discussions; and Dr. Earle Williams for an extensive review and many suggestions for change. NR 52 TC 14 Z9 14 U1 1 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD APR PY 2010 VL 67 IS 4 BP 1026 EP 1047 DI 10.1175/2009JAS3136.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585MK UT WOS:000276829400008 ER PT J AU Hansell, RA Tsay, SC Ji, Q Hsu, NC Jeong, MJ Wang, SH Reid, JS Liou, KN Ou, SC AF Hansell, R. A. Tsay, S. C. Ji, Q. Hsu, N. C. Jeong, M. J. Wang, S. H. Reid, J. S. Liou, K. N. Ou, S. C. TI An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust during the NAMMA Field Campaign SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID EMITTED RADIANCE INTERFEROMETER; OPTICAL-CONSTANTS; MINERAL AEROSOLS; EXPERIMENT SHADE; C-130 AIRCRAFT; AFRICAN DUST; PUERTO-RICO; ATMOSPHERE; IMPACT; CLOUD AB In September 2006, NASA Goddard's mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73 degrees N. 22.93 degrees W) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadowband radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRELW) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRELW and longwave heating rate profiles are also evaluated. Instantaneous surface DRELW ranges from 2 to 10 W m(-2) and exhibits a strong linear dependence with dust AOT yielding a DRELW of 16 W m(-2) per unit dust AOT. The DRELW is estimated to be similar to 42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRELW can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation. C1 [Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hansell, R. A.; Ji, Q.; Wang, S. H.] Univ Maryland, College Pk, MD 20742 USA. [Jeong, M. J.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Wang, S. H.] Natl Cent Univ, Dept Atmospher Sci, Chungli 32054, Taiwan. [Reid, J. S.] USN, Res Lab, Monterey, CA USA. [Liou, K. N.; Ou, S. C.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Liou, K. N.; Ou, S. C.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Hansell, RA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM richard.a.hansell@nasa.gov RI Jeong, Myeong/B-8803-2008; Wang, Sheng-Hsiang/F-4532-2010; Hsu, N. Christina/H-3420-2013; Reid, Jeffrey/B-7633-2014; Tsay, Si-Chee/J-1147-2014; Hansell, Richard/J-2065-2014 OI Wang, Sheng-Hsiang/0000-0001-9675-3135; Reid, Jeffrey/0000-0002-5147-7955; FU NASA FX We are grateful to Dr. Jose Pimenta Lima and his staff at INMG for their logistical support and for providing daily radiosonde data. Participation of SMART-COMMIT was supported by Dr. Hal Maring, NASA Radiation Science Program. The NASA Micro-Pulse Lidar Network, managed by Dr. E. J. Welton, was funded by NASA Earth Observing System and Radiation Sciences Program. Dr. Reid's participation was funded through the NASA CALIPSO science team and Naval Research Laboratory Base Program. We acknowledge the AERONET program managed by Dr. B. Holben. CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. We are grateful to Dr. J. Haywood for his constructive and insightful comments. We also thank Drs. T. Roush and C. Zender for the mineral datasets, W. Feltz for providing the AERIPLUS code, and Dr. M. Mishchenko for his T-matrix light-scattering code. Lastly we thank the anonymous reviewers for their helpful remarks. NR 64 TC 27 Z9 27 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD APR PY 2010 VL 67 IS 4 BP 1048 EP 1065 DI 10.1175/2009JAS3257.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585MK UT WOS:000276829400009 ER PT J AU Zou, LH Wali, N Yang, JM Bansal, NP AF Zou, Linhua Wali, Natalie Yang, Jenn-Ming Bansal, Narottam P. TI Microstructural development of a C-f/ZrC composite manufactured by reactive melt infiltration SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Composites (B); Microstructure (B); Carbon (D); ZrC; Reactive melt infiltration ID SILICON-CARBIDE; ZIRCONIUM-CARBON; LIQUID SILICON; TEMPERATURES; KINETICS; SYSTEM AB The microstructural development of a carbon fibre reinforced ZrC matrix composite, C-f/ZrC, manufactured by reactive melt infiltration (RMI) was investigated. The microstructural features of the composite were revealed by optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that the carbon fibre bundles are surrounded by continuous ZrC layers, while the composite matrix is composed of island-like ZrC particles dispersed within an alpha-Zr-ZrC eutectic phase. Nanosized inclusions were found inside some ZrC particles and it was demonstrated that they were alpha-Zr or alpha-Zr-ZrC. A formation mechanism of the unique matrix microstructure is proposed. (C) 2009 Published by Elsevier Ltd. C1 [Zou, Linhua; Wali, Natalie; Yang, Jenn-Ming] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Bansal, Narottam P.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zou, LH (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM linhua_zou@hotmail.edu NR 20 TC 63 Z9 69 U1 5 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD APR PY 2010 VL 30 IS 6 BP 1527 EP 1535 DI 10.1016/j.jeurceramsoc.2009.10.016 PG 9 WC Materials Science, Ceramics SC Materials Science GA 569XB UT WOS:000275635000038 ER PT J AU Wang, TS Luong, V Foote, J Litchford, R Chen, YS AF Wang, Ten-See Luong, Van Foote, John Litchford, Ron Chen, Yen-Sen TI Analysis of a Cylindrical Specimen Heated by an Impinging Hot Hydrogen Jet SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article; Proceedings Paper CT AIAA/ASME 9th Joint Thermophysics and Heat Transfer Conference CY JUN 05-08, 2006 CL San Francisco, CA SP AIAA, ASME ID PERFORMANCE; NOZZLE AB A computational conjugate heat transfer methodology was developed to study the heat transfer inside a cylindrical specimen heated by an impinging hot hydrogen jet for nuclear thermal propulsion applications. The development involved the implementation of a time-marching solid conduction heat transfer procedure onto a transient pressure-based unstructured-grid computational-fluid-dynamics formulation. The conjugate heat transfer between the solid and the gaseous media were anchored with a standard solid heat transfer code. Three steady-state and five transient analyses were then conducted, using thermal conductivities representing three hypothetical composite materials. It was found that material thermal conductivity strongly influences the heat transfer characteristics. In addition, it was observed that during steady-state operations, the specimen experiences a high temperature but a low thermal gradient, whereas during transient operations, the specimen undergoes a high thermal gradient during the initial heating. It was also found from the transient analyses that the shorter the ramp time, the stronger the thermal gradient is experienced by the cylindrical specimen. C1 [Wang, Ten-See] NASA, George C Marshall Space Flight Ctr, Fluid Dynam Branch, Huntsville, AL 35812 USA. [Luong, Van] NASA, George C Marshall Space Flight Ctr, Thermal & Combust Anal Branch, Huntsville, AL 35812 USA. [Foote, John; Litchford, Ron] NASA, George C Marshall Space Flight Ctr, Combust Devices Design & Dev Branch, Huntsville, AL 35812 USA. [Chen, Yen-Sen] Natl Space Org, Hsinchu 30078, Taiwan. RP Wang, TS (reprint author), NASA, George C Marshall Space Flight Ctr, Fluid Dynam Branch, Mail Stop ER42, Huntsville, AL 35812 USA. NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR-JUN PY 2010 VL 24 IS 2 BP 381 EP 387 DI 10.2514/1.47737 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 588TG UT WOS:000277096200018 ER PT J AU Chatterjee, A Plawsky, JL Wayner, PC Chao, DF Sicker, RJ Lorik, T Chestney, L Eustace, J Zoldak, J AF Chatterjee, Arya Plawsky, Joel L. Wayner, Peter C., Jr. Chao, David F. Sicker, Ronald J. Lorik, Tibor Chestney, Louis Eustace, John Zoldak, John TI Constrained Vapor Bubble Experiment for International Space Station: Earth's Gravity Results SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID MICRO-HEAT-PIPE; TRIANGULAR MICROGROOVES; GROOVES; STEADY; MODEL; PREDICTION; TRANSPORT; EXCHANGER; SECTION; FLOW AB The constrained vapor bubble experiment scheduled to fly aboard the International Space Station in the near future promises to give us new insight into the fundamental science of interfacial thermophysics. The evaporating meniscus formed at the corner of the vapor bubble is expected to behave in a significantly different manner in the microgravity environment as compared with the Earth's gravity environment. Since the constrained vapor bubble can also behave as a micro heat pipe, it will additionally help in gaining a technical understanding of the performance of a micro heat pipe in a space environment. Earth-based experiments have been conducted for the past two decades to gain a better knowledge of the rich phenomenon observed in the relatively simple constrained vapor bubble setup. Here, some recent Earth's-gravity-environment-based data obtained on a 30-mm-long constrained vapor bubble have been presented. The data were fitted to a model, and a self-consistent value of the inside heat transfer coefficient was obtained. The external convective and radiative heat transfer coefficients were also determined. These ground. based experiments form a calibration against which the future data from space-based experiments will be compared. C1 [Chatterjee, Arya; Plawsky, Joel L.; Wayner, Peter C., Jr.] Rensselaer Polytech Inst, Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. [Chao, David F.; Sicker, Ronald J.] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. [Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John] Zin Technol, Cleveland, OH 44130 USA. RP Chatterjee, A (reprint author), Rensselaer Polytech Inst, Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. FU NASA [NNX09AL98G] FX This material is based on the work supported by NASA under grant no. NNX09AL98G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NASA. NR 25 TC 4 Z9 4 U1 2 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR-JUN PY 2010 VL 24 IS 2 BP 400 EP 410 DI 10.2514/1.47522 PG 11 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 588TG UT WOS:000277096200020 ER PT J AU Work, TM Balazs, GH AF Work, Thierry M. Balazs, George H. TI PATHOLOGY AND DISTRIBUTION OF SEA TURTLES LANDED AS BYCATCH IN THE HAWAII-BASED NORTH PACIFIC PELAGIC LONGLINE FISHERY SO JOURNAL OF WILDLIFE DISEASES LA English DT Article DE Drowning; fisheries; green turtle; longline; olive ridley turtle; pathology; pelagic ID CHELONIA MYDAS AGASSIZII; CARETTA-CARETTA; LEPIDOCHELYS-OLIVACEA; PHYSIOLOGICAL ADJUSTMENTS; LOGGERHEAD TURTLES; MORTALITY; LUNG; ARCHIPELAGO; SURVIVAL; OCEAN AB We examined the gross and microscopic pathology and distribution of sea turtles that were landed as bycatch from the Hawaii, USA based pelagic longline fishery and known to be forced submerged. Olive ridley turtles (Lepidochelys otivacea) composed the majority of animals examined, and hook-induced perforation of the esophagus was the most common gross lesion followed by perforation of oral structures (tongue, canthus) and of flippers. Gross pathology in the lungs suggestive of drowning was seen in 23 of 71 turtles. Considering only the external gross findings, the pathologist and the observer on board the longline vessel agreed on hook-induced lesions only 60% of the time thereby illustrating the limitations of depending on external examination alone to implicate hooking interactions or drowning as potential cause of sea turtle mortality. When comparing histology of drowned turtles to a control group of nondrowned turtles, the former had significantly more pulmonary edema, hemorrhage, and sloughed columnar epithelium. These microscopic changes may prove useful to diagnose suspected drowning in sea turtles where history of hooking or netting interactions is unknown. C1 [Work, Thierry M.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, Honolulu, HI 96850 USA. [Balazs, George H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96822 USA. RP Work, TM (reprint author), US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, 300 Ala Moana Blvd,Room 5-231, Honolulu, HI 96850 USA. EM thierry_work@usgs.gov FU National Marine Fisheries Service; US Geological Survey FX We thank Bob Braun, Bob Morris, Yonat Swimmer, Stacy Hargrove, and George Antonelis for providing constructive comments on the manuscript. This work was funded by the National Marine Fisheries Service and the US Geological Survey. NR 44 TC 11 Z9 13 U1 2 U2 8 PU WILDLIFE DISEASE ASSOC, INC PI LAWRENCE PA 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA SN 0090-3558 J9 J WILDLIFE DIS JI J. Wildl. Dis. PD APR PY 2010 VL 46 IS 2 BP 422 EP 432 PG 11 WC Veterinary Sciences SC Veterinary Sciences GA 593DA UT WOS:000277431200009 PM 20688635 ER PT J AU Ito, M Messenger, S AF Ito, Motoo Messenger, Scott TI Thermal metamorphic history of a Ca, Al-rich inclusion constrained by high spatial resolution Mg isotopic measurements with NanoSIMS 50L SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR-SYSTEM; ALLENDE METEORITE; REFRACTORY INCLUSIONS; FERROMAGNESIAN CHONDRULES; PARENT BODY; DIFFUSION; AL-26; CHONDRITES; NEBULA; OLIVINE AB Mg isotope data were collected by NanoSIMS with high-precision and high-spatial resolution from a coarse-grained type B Ca-, Al-rich inclusion (CAI), EK1-6-3, in the Allende CV3 chondrite to evaluate the time scale of parent body thermal metamorphism. The CAI melilite and fassaite contain excesses of 26Mg (26Mg*) from the in-situ decay of 26Al; the inferred initial ratio, (26Al/27Al)(0) = (5.8 +/- 2.4) x 10-5, is consistent with many previously reported coarse-grained CAIs from CV chondrites (e.g., MacPherson et al. 1995). However, the anorthite has heterogeneous (26Al/27Al)(0), ranging from 1.8 x 10-5 to 3.3 x 10-6. The 26Al-26Mg systematics within the anorthite is consistent with thermal diffusion of Mg isotopes during metamorphism. We also show that the heterogeneous distribution of 26Mg* in anorthite could have resulted from thermal diffusion of 26Mg* over a 0.6-0.8 Ma time span. Mg diffusion thus may be responsible for the (26Al/27Al)(0) heterogeneity within anorthite in CAIs. C1 [Ito, Motoo; Messenger, Scott] NASA, Lyndon B Johnson Space Ctr, Robert M Walker Lab Space Sci, ARES, Houston, TX 77058 USA. [Ito, Motoo] USRA Houston, Lunar & Planetary Inst, Houston, TX 77058 USA. RP Ito, M (reprint author), NASA, Lyndon B Johnson Space Ctr, Robert M Walker Lab Space Sci, ARES, Mail Code KR,2101 NASA Pkwy, Houston, TX 77058 USA. EM ito@lpi.usra.edu FU NASA FX This research was supported by a NASA Origins Program Grant to S. M., and a senior postdoctoral fellowship to M. I. from the NASA Postdoctoral Program at the NASA Johnson Space Center. The careful reviews by Dr. Ian Hutcheon and Dr. Kentaro Makide, and the editorial handling of Dr. Ed Scott are gratefully acknowledged. NR 59 TC 5 Z9 5 U1 1 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD APR PY 2010 VL 45 IS 4 BP 583 EP 595 DI 10.1111/j.1945-5100.2010.01038.x PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 642JM UT WOS:000281208600006 ER PT J AU Clarke, S Mielke, RE Neal, A Holden, P Nadeau, JL AF Clarke, Samuel Mielke, Randall E. Neal, Andrea Holden, Patricia Nadeau, Jay L. TI Bacterial and Mineral Elements in an Arctic Biofilm: A Correlative Study Using Fluorescence and Electron Microscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE electron microscopy; ESEM; STEM; quantum dots; bacteria; Gram negative; biofilm ID CDSE QUANTUM DOTS; MICROBIAL BIOFILMS; PROTEINS; SPRINGS; CELLS; WATER AB Few simple labeling methods exist for simultaneous fluorescence and electron microscopy of bacteria and biofilms. Here we describe the synthesis, characterization, and application of fluorescent nanoparticle quantum dot (QD) conjugates to target microbial species, including difficult to label Gram-negative strains. These QD conjugates impart contrast for both environmental scanning electron microscopy (ESEM) and fluorescence microscopy, permitting observation of living and fixed bacteria and biofilms. We apply these probes for studying biofilms extracted from perennial cold springs in the Canadian High Arctic, which is a particularly challenging system. In these biofilms, sulfur-metabolizing bacteria live in close association with unusual sulfur mineral formations. Following simple labeling protocols with the QD conjugates, we are able to image these organisms in fully-hydrated samples and visualize their relationship to the sulfur minerals using both ESEM and fluorescence microscopy. We then use scanning transmission electron microscopy to observe precipitated sulfur around individual cells and within the biofilm lattice. All combined, this information sheds light on the possible mechanisms of biofilm and mineral structure formation. These new QD conjugates and techniques are highly transferable to many other microbiological applications, especially those involving Gram-negative bacteria, and can be used for correlated fluorescence and electron microscopy. C1 [Clarke, Samuel; Nadeau, Jay L.] McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2B4, Canada. [Mielke, Randall E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Neal, Andrea; Holden, Patricia] Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Nadeau, JL (reprint author), McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2B4, Canada. EM jay.nadeau@mcgill.ca RI Clarke, Samuel/C-9955-2010 FU U.S. Environmental Protection Agency; Canadian Space Agency; National Science Foundation; Natural Sciences and Engineering Research Council of Canada; Canadian Institutes of Health Research Regenerative Medicine and Nanomedicine [RMS-82504] FX This work is supported by the U.S. Environmental Protection Agency, the Canadian Space Agency CARN program, and the National Science Foundation. J.L.N. and S.C. also acknowledge the Natural Sciences and Engineering Research Council of Canada NanoIP program and the Canadian Institutes of Health Research Regenerative Medicine and Nanomedicine grant RMS-82504. NR 27 TC 14 Z9 14 U1 2 U2 22 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD APR PY 2010 VL 16 IS 2 BP 153 EP 165 DI 10.1017/S1431927609991334 PG 13 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 576IG UT WOS:000276137200005 PM 20100386 ER PT J AU Catinella, B Schiminovich, D Kauffmann, G Fabello, S Wang, J Hummels, C Lemonias, J Moran, SM Wu, R Giovanelli, R Haynes, MP Heckman, TM Basu-Zych, AR Blanton, MR Brinchmann, J Budavari, T Goncalves, T Johnson, BD Kennicutt, RC Madore, BF Martin, CD Rich, MR Tacconi, LJ Thilker, DA Wild, V Wyder, TK AF Catinella, Barbara Schiminovich, David Kauffmann, Guinevere Fabello, Silvia Wang, Jing Hummels, Cameron Lemonias, Jenna Moran, Sean M. Wu, Ronin Giovanelli, Riccardo Haynes, Martha P. Heckman, Timothy M. Basu-Zych, Antara R. Blanton, Michael R. Brinchmann, Jarle Budavari, Tamas Goncalves, Thiago Johnson, Benjamin D. Kennicutt, Robert C. Madore, Barry F. Martin, Christopher D. Rich, Michael R. Tacconi, Linda J. Thilker, David A. Wild, Vivienne Wyder, Ted K. TI The GALEX Arecibo SDSS Survey - I. Gas fraction scaling relations of massive galaxies and first data release SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; radio lines: galaxies; ultraviolet: galaxies ID DIGITAL SKY SURVEY; FAST ALPHA SURVEY; COLOR-MAGNITUDE DIAGRAM; VIRGO CLUSTER REGION; HI SOURCE CATALOG; STAR-FORMATION; LOCAL UNIVERSE; NEUTRAL-HYDROGEN; ELLIPTIC GALAXIES; DUST ATTENUATION AB We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large programme that is gathering high quality H i-line spectra using the Arecibo radio telescope for an unbiased sample of similar to 1000 galaxies with stellar masses greater than 1010 M(circle dot) and redshifts 0.025 < z < 0.05, selected from the Sloan Digital Sky Survey (SDSS) spectroscopic and Galaxy Evolution Explorer (GALEX) imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5 per cent) is reached. This paper presents the first Data Release, consisting of similar to 20 per cent of the final GASS sample. We use this data set to explore the main scaling relations of the H i gas fraction with galaxy structure and NUV- r colour. A large fraction (similar to 60 per cent) of the galaxies in our sample are detected in H i. Even at stellar masses above 1011 M(circle dot), the detected fraction does not fall below similar to 40 per cent. We find that the atomic gas fraction M(H i)/M(star) decreases strongly with stellar mass, stellar surface mass density and NUV- r colour, but is only weakly correlated with the galaxy bulge-to-disc ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few per cent) H i decreases sharply above a characteristic stellar surface mass density of 108.5 M(circle dot) kpc-2. The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between M(H i)/M(star) and other galaxy properties. We have fitted a plane to the two-dimensional relation between the H i mass fraction, stellar surface mass density and NUV- r colour. Interesting outliers from this plane include gas-rich red sequence galaxies that may be in the process of regrowing their discs, as well as blue, but gas-poor spirals. C1 [Catinella, Barbara; Kauffmann, Guinevere; Fabello, Silvia; Wang, Jing] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Schiminovich, David; Hummels, Cameron; Lemonias, Jenna] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Wang, Jing] Univ Sci & Technol China, Ctr Astrophys, Hefei 230026, Peoples R China. [Moran, Sean M.; Heckman, Timothy M.; Budavari, Tamas; Thilker, David A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wu, Ronin; Blanton, Michael R.] New York Univ, Dept Phys, New York, NY 10003 USA. [Giovanelli, Riccardo; Haynes, Martha P.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Basu-Zych, Antara R.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Brinchmann, Jarle] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Goncalves, Thiago; Martin, Christopher D.; Wyder, Ted K.] CALTECH, Pasadena, CA 91125 USA. [Kennicutt, Robert C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Madore, Barry F.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Rich, Michael R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Tacconi, Linda J.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Wild, Vivienne] Inst Astrophys Paris, F-75014 Paris, France. [Brinchmann, Jarle] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Johnson, Benjamin D.; Kennicutt, Robert C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Catinella, B (reprint author), Max Planck Inst Astrophys, D-85741 Garching, Germany. EM bcatinel@mpa-garching.mpg.de RI Brinchmann, Jarle/M-2616-2015; OI Brinchmann, Jarle/0000-0003-4359-8797; Catinella, Barbara/0000-0002-7625-562X FU NSF [AST-0607007]; Brinson Foundation; National Astronomy and Ionosphere Center; Centre National d'Etudes Spatiales (CNES) of France; Korean Ministry of Science and Technology; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX BC wishes to thank the Arecibo staff, in particular Phil Perillat, Ganesan Rajagopalan and the telescope operators for their assistance, and Hector Hernandez for scheduling the observations. BC also thanks Roderik Overzier and Luca Cortese for helpful comments on this paper. RG and MPH acknowledge support from NSF grant AST-0607007 and from the Brinson Foundation. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. GALEX is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales (CNES) of France and the Korean Ministry of Science and Technology. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 48 TC 178 Z9 179 U1 0 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2010 VL 403 IS 2 BP 683 EP 708 DI 10.1111/j.1365-2966.2009.16180.x PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 571NU UT WOS:000275760900010 ER PT J AU McBride, VA Bird, AJ Coe, MJ Townsend, LJ Corbet, RHD Haberl, F AF McBride, V. A. Bird, A. J. Coe, M. J. Townsend, L. J. Corbet, R. H. D. Haberl, F. TI The Magellanic Bridge: evidence for a population of X-ray binaries SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: general; Magellanic Clouds ID STELLAR POPULATION; CLOUD; CATALOG; STREAM AB INTEGRAL observations of the Small Magellanic Cloud region have resulted in the serendipitous detection of two transient hard X-ray sources in the Magellanic Bridge. In this paper, we present the timing and spectral characteristics of these sources across the 2-100 keV energy range, which, in conjunction with their optical counterparts, demonstrate that they are high-mass X-ray binaries (HMXBs) in the Magellanic Bridge. Together with one previously known HMXB system, and three candidates, these sources represent an emerging population of X-ray binaries in the Bridge, probably initiated by tidally induced star formation as a result of the gravitational interaction between the Large and Small Magellanic Clouds. C1 [McBride, V. A.; Bird, A. J.; Coe, M. J.; Townsend, L. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Corbet, R. H. D.] NASA, Goddard Space Flight Ctr, CRESST Mail Code 662, Greenbelt, MD 20771 USA. [Haberl, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP McBride, VA (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM vanessa@soton.ac.uk OI Haberl, Frank/0000-0002-0107-5237 NR 22 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR PY 2010 VL 403 IS 2 BP 709 EP 713 DI 10.1111/j.1365-2966.2009.16178.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 571NU UT WOS:000275760900011 ER PT J AU Abrams, M Bailey, B Tsu, H Hato, M AF Abrams, Michael Bailey, Bryan Tsu, Hiroji Hato, Masami TI The ASTER Global DEM SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Article C1 [Abrams, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Abrams, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 5 TC 40 Z9 41 U1 1 U2 8 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD APR PY 2010 VL 76 IS 4 BP 344 EP 348 PG 5 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 577NZ UT WOS:000276231900002 ER PT J AU Stubbs, TJ Glenar, DA Colaprete, A Richard, DT AF Stubbs, Timothy J. Glenar, David A. Colaprete, Anthony Richard, Denis T. TI Optical scattering processes observed at the Moon: Predictions for the LADEE Ultraviolet Spectrometer SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Moon; Horizon glow; Optical scattering; Lunar dust; Lunar exosphere; LADEE ID DYNAMIC FOUNTAIN MODEL; GENERATED DUST CLOUDS; ZODIACAL LIGHT; LUNAR DUST; PLANETARY SATELLITES; TERMINATOR REGION; SPACE PROBES; EXOSPHERE; SURFACE; SODIUM AB The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft will orbit the Moon at an altitude of 50 km with a payload that includes the Ultraviolet Spectrometer (UVS) instrument, which will obtain high spectral resolution measurements at near-ultraviolet and visible wavelengths (approximate to 231-826 nm). When LADEE/UVS observes the lunar limb from within the shadow of the Moon it is anticipated that it will detect a lunar horizon glow (LHG) due to sunlight scattered from submicron exospheric dust, as well as emission lines from exospheric gases (particularly sodium), in the presence of the bright coronal and zodiacal light (CZL) background. A modularized code has been developed at NMSU for simulations of scattered light sources as observed by orbiting instruments in lunar shadow. Predictions for the LADEE UVS and star tracker cameras indicate that LHG, sodium (Na) emission lines, and CZL can be distinguished based on spatial morphology and spectral characteristics, with LHG dominant at blue wavelengths (similar to 250-450 nm) and small tangent heights. If present, LHG should be readily detected by LADEE/UVS and distinguishable from other sources of optical scattering. Observations from UVS and the other instruments aboard LADEE will significantly advance our understanding of how the Moon interacts with the surrounding space environment: these new insights will be applicable to the many other airless bodies in the solar system. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Stubbs, Timothy J.; Glenar, David A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stubbs, Timothy J.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Stubbs, Timothy J.; Glenar, David A.; Colaprete, Anthony] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. [Glenar, David A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Richard, Denis T.] San Jose State Univ, Res Fdn, San Jose, CA 95192 USA. RP Stubbs, TJ (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 695, Greenbelt, MD 20771 USA. EM Timothy.J.Stubbs@nasa.gov RI Stubbs, Timothy/I-5139-2013 OI Stubbs, Timothy/0000-0002-5524-645X FU NASA [NNX08AN76G (LROPS), NNX09A079G (LASER), NNX09AG78A (NLSI/DREAM)] FX This research was funded by NASA grants: NNX08AN76G (LROPS), NNX09A079G (LASER) and NNX09AG78A (NLSI/DREAM). The UVS instrument is funded by the NASA Science Mission Directorate. We thank David Landis (Aurora Design and Technology) for contributions to UVS development. We benefited from helpful comments and suggestions made by Rosemary Killen and Johan Warell. NR 51 TC 16 Z9 16 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD APR PY 2010 VL 58 IS 5 BP 830 EP 837 DI 10.1016/j.pss.2010.01.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584QY UT WOS:000276768600010 ER PT J AU Prasad, KV Broy, M Krueger, I AF Prasad, K. Venkatesh Broy, Manfred Krueeger, Ingolf TI Scanning the Issue SO PROCEEDINGS OF THE IEEE LA English DT Editorial Material C1 [Prasad, K. Venkatesh] NASA, Jet Prop Lab, Pasadena, CA USA. [Prasad, K. Venkatesh] Rutgers State Univ, Piscataway, NJ 08855 USA. [Prasad, K. Venkatesh] Ricoh Calif Res Ctr, Menlo Pk, CA USA. [Prasad, K. Venkatesh] Michigan State Univ, Visiting Comm, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Prasad, K. Venkatesh] Northwestern Univ, Dept Comp Sci & Elect Engn, Evanston, IL 60208 USA. [Prasad, K. Venkatesh] Northwestern Univ, Ford Massachusetts Inst Technol Strateg Alliance, Evanston, IL 60208 USA. [Prasad, K. Venkatesh] Ford Motor Co, Infotron Technol Grp, Dearborn, MI 48121 USA. [Broy, Manfred] Univ Passau, Fac Math & Comp Sci, Passau, Germany. [Broy, Manfred] Tech Univ Munich, Fac Comp Sci, D-8000 Munich, Germany. [Krueeger, Ingolf] Univ Calif San Diego, Jacobs Sch Engn, Dept Comp Sci & Engn, Software & Syst Engn Lab, La Jolla, CA 92093 USA. RP Prasad, KV (reprint author), CALTECH, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD APR PY 2010 VL 98 IS 4 BP 506 EP 509 DI 10.1109/JPROC.2010.2041833 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA 575SU UT WOS:000276089200002 ER PT J AU Rhodes, J Leauthaud, A Stoughton, C Massey, R Dawson, K Kolbe, W Roe, N AF Rhodes, Jason Leauthaud, Alexie Stoughton, Chris Massey, Richard Dawson, Kyle Kolbe, William Roe, Natalie TI The Effects of Charge Transfer Inefficiency (CTI) on Galaxy Shape Measurements SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID HUBBLE-SPACE-TELESCOPE; P-CHANNEL CCDS; TRANSFER EFFICIENCY; ADVANCED CAMERA; COSMIC SHEAR; WEAK; PERFORMANCE; ENERGY; DAMAGE AB We examine the effects of charge transfer inefficiency (CTI) during CCD readout on the demanding galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage in space-based detectors. We verify our simulations on real data from fully depleted p-channel CCDs that have been deliberately irradiated in a laboratory. We show that only charge traps with time constants of the same order as the time between rowtransfers during readout affect galaxy shape measurements. We simulate deep astronomical images and the process of CCD readout, characterizing the effects of CTI on various galaxy populations. Our code and methods are general and can be applied to any CCDs, once the density and characteristic release times of their charge trap species are known. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, Delta e, will increase at a rate of (2.65 +/- 0.02) x 10(-4) yr(-1) at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission surveying the entire extragalactic sky within about 4 yr of accumulated radiation damage. However, software mitigation techniques demonstrated elsewhere can reduce this by a factor of similar to 10, bringing the effect well below mission requirements. This conclusion is valid only for the p-channel CCDs we have modeled; CCDs with higher CTI will fare worse and may not meet the requirements of future dark energy missions. We also discuss additional ways in which hardware could be designed to further minimize the impact of CTI. C1 [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Leauthaud, Alexie; Kolbe, William; Roe, Natalie] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Stoughton, Chris] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Massey, Richard] Royal Observ Edinburgh, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. RP Rhodes, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM jason.d.rhodes@jpl.nasa.gov FU US Department of Energy [DE-AC02-05CH11231]; STFC [PP/E006450/1]; FP7 [MIRG-CT-208994]; Office of Science at LBNL; Fermilab FX This work was supported in part by the Jet Propulsion Laboratory, operated by the California Institute of Technology under a contract with NASA. This work was also supported by the US Department of Energy under contract DE-AC02-05CH11231. We thank Chris Bebek, Mike Lampton, Michael Levi, and Roger Smith for useful discussions about CCDs and CTE. A. L. acknowledges support from the Chamberlain Fellowship at LBNL and from the Berkeley Center for Cosmological Physics. R. M. is supported by STFC Advanced Fellowship PP/E006450/1 and FP7 grant MIRG-CT-208994. C. S. was supported by funding from the Office of Science at LBNL and Fermilab. NR 45 TC 28 Z9 28 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD APR PY 2010 VL 122 IS 890 BP 439 EP 450 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573AO UT WOS:000275881000005 ER PT J AU Yumoto, K Globus, RK Mojarrab, R Arakaki, J Wang, A Searby, ND Almeida, EAC Limoli, CL AF Yumoto, Kenji Globus, Ruth K. Mojarrab, Rose Arakaki, Joy Wang, Angela Searby, Nancy D. Almeida, Eduardo A. C. Limoli, Charles L. TI Short-Term Effects of Whole-Body Exposure to Fe-56 Ions in Combination with Musculoskeletal Disuse on Bone Cells SO RADIATION RESEARCH LA English DT Article ID GALACTIC COSMIC-RAYS; OXIDATIVE STRESS; SKELETAL-MUSCLE; TRABECULAR BONE; OSTEOBLASTIC DIFFERENTIATION; OSTEOCLAST DIFFERENTIATION; SPACE EXPLORATION; CANCELLOUS BONE; X-IRRADIATION; RAT MODEL AB Space travel and prolonged bed rest cause bone loss due to musculoskeletal disuse. In space, radiation fields may also have detrimental consequences because charged particles traversing the tissues of the body can elicit a wide range of cytotoxic and genotoxic lesions. The effects of heavy-ion radiation exposure in combination with musculoskeletal disuse on bone cells and tissue are not known. To explore this, normally loaded 16-week-old male C57BL/6 mice were exposed to Fe-56 ions (1 GeV/nucleon) at doses of 0 cGy (sham), 10 cGy, 50 cGy or 2 Gy 3 days before tissue harvest. Additional mice were hindlimb unloaded by tail traction continuous!) for 1 week to simulate weightlessness and exposed to Fe-56-ion radiation (0 cGy, 50 cGy, 2 Cy) 3 days before tissue harvest. Despite the short duration of this study, low-dose (10, 50 cGy) irradiation of normally loaded mice reduced trabecular volume fraction (BV/TV) in the proximal tibiae by 18% relative to sham-irradiated controls. Hindlimb unloading together with 50 cGy radiation caused a 126% increase in the number of TRAP(+) osteoclasts on cancellous bone surfaces relative to normally loaded, sham-irradiated controls. Together, radiation and hindlimb unloading had a greater effect on suppressing osteoblastogenesis ex vivo than either treatment alone. In sum, low-dose exposure to heavy ions (50 cGy) caused rapid cancellous bone loss in normally loaded mice and increased osteoclast numbers in hindlimb unloaded mice. In vitro irradiation also was more detrimental to osteoblastogenesis in bone marrow cells that were recovered from hindlimb unloaded mice compared to cells from normally loaded mice. Furthermore, irradiation in vitro stimulated osteoclast formation in a macrophage cell line (RAW264.7) in the presence of RANKL (25 ng/ml), showing that heavy-ion radiation can stimulate osteoclast differentiation even in the absence of osteoblasts. Thus heavy-ion radiation can acutely increase osteoclast numbers in cancellous tissue and, under conditions of musculoskeletal disuse, can enhance the sensitivity of bone cells, in particular osteoprogenitors, to the effects of radiation. (C) 2010 by Radiation Research Society C1 [Yumoto, Kenji; Limoli, Charles L.] Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92717 USA. [Yumoto, Kenji; Globus, Ruth K.; Mojarrab, Rose; Arakaki, Joy; Wang, Angela; Searby, Nancy D.; Almeida, Eduardo A. C.] NASA, Ames Res Ctr, Space Biosci Div, Moffett Field, CA 94035 USA. RP Limoli, CL (reprint author), Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92717 USA. EM climoli@uci.edu RI Wang, Angela/B-9944-2008 FU NASA [NNH04ZUU005N/RAD2004-0000-0110, NNA05CV48A] FX This work was supported by NASA grants NNH04ZUU005N/RAD2004-0000-0110 (RKG) and NNA05CV48A (CLL). We thank Dr. Christopher Jacobs and Derek Lindsey for the microCT at the Bone and Joint Center, Veteran's Administration Palo Alto Health Care System. We also are grateful to Peter Guida and Laura Thompson for their support at Brookhaven National Laboratory and Emily Morey-Holton at Ames Research Center for helpful advice in the course of these studies and for critically reading the manuscript. NR 46 TC 19 Z9 20 U1 0 U2 6 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD APR PY 2010 VL 173 IS 4 SI SI BP 494 EP 504 DI 10.1667/RR1754.1 PG 11 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 580TI UT WOS:000276472800012 PM 20334522 ER PT J AU Smith, C Kelly, D Dezfuli, H AF Smith, Curtis Kelly, Dana Dezfuli, Homayoon TI Probability-informed testing for reliability assurance through Bayesian hypothesis methods SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Bayesian inference; Reliability; Hypothesis testing; System analysis; Cost; MCMC; Probability level AB Bayesian inference techniques play a central role in modern risk and reliability evaluations of complex engineering systems. These techniques allow the system performance data and any relevant associated information to be used collectively to calculate the probabilities of various types of hypotheses that are formulated as part of reliability assurance activities. This paper proposes a methodology based on Bayesian hypothesis testing to determine the number of tests that would be required to demonstrate that a system-level reliability target is met with a specified probability level. Recognizing that full-scale testing of a complex system is often not practical, testing schemes are developed at the subsystem level to achieve the overall system reliability target. The approach uses network modeling techniques to transform the topology of the system into logic structures consisting of series and parallel subsystems. The paper addresses the consideration of cost in devising subsystem level test schemes. The developed techniques are demonstrated using several examples. All analyses are carried out using the Bayesian analysis tool WinBUGS, which uses Markov chain Monte Carlo simulation methods to carry out inference over the network. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Smith, Curtis; Kelly, Dana] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Dezfuli, Homayoon] NASA, Washington, DC 20546 USA. RP Smith, C (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Curtis.Smith@inl.gov FU Battelle Energy Alliance, LLC (BEA) [DE-AC07-05ID14517] FX This paper has been authorized by Battelle Energy Alliance, LLC (BEA) under Contract no. DE-AC07-05ID14517 with the US Department of Energy. The Government and BEA make no express or implied warranty as to the conditions of the research or any intellectual property, generated information, or product made or developed under this technical assistance project, or the ownership, merchantability, or fitness for a particular purpose of the research or resulting product; that the goods, services, materials, products, processes, information, or data to be furnished hereunder will accomplish intended results or are safe for any purpose including the intended purpose; or that any of the above will not interfere with privately owned rights of others. Neither the Government nor BEA shall be liable for special, consequential, nor incidental damages attributed to such research or resulting product, intellectual property, generated information, or product made or delivered under this technical assistance project. NR 15 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD APR PY 2010 VL 95 IS 4 BP 361 EP 368 DI 10.1016/j.ress.2009.11.006 PG 8 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 571UK UT WOS:000275781100006 ER PT J AU Hahn, I Weilert, M Wang, X Goullioud, R AF Hahn, Inseob Weilert, M. Wang, X. Goullioud, R. TI A heterodyne interferometer for angle metrology SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DISPLACEMENT; RESOLUTION AB We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/root Hz at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately +/-0.15 mrad, and 3 mu rad rms, respectively. (C) 2010 American Institute of Physics. [doi:10.1063/1.3374550] C1 [Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hahn, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 21 TC 11 Z9 11 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2010 VL 81 IS 4 AR 045103 DI 10.1063/1.3374550 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 590QW UT WOS:000277243100047 PM 20441364 ER PT J AU Turmon, M Jones, HP Malanushenko, OV Pap, JM AF Turmon, Michael Jones, Harrison P. Malanushenko, Olena V. Pap, Judit M. TI Statistical Feature Recognition for Multidimensional Solar Imagery SO SOLAR PHYSICS LA English DT Article DE Active regions, structure; Sunspots, statistics; Magnetic fields, photosphere; Solar irradiance ID IRRADIANCE VARIATIONS; SPECTROMAGNETOGRAPH; SOLAR-CYCLE-23; CLASSIFICATION; MAGNETOGRAMS; SEGMENTATION; VARIABILITY; SOHO/MDI; CYCLE-23; SUNSPOTS AB A maximum a posteriori (MAP) technique is developed to identify solar features in cotemporal and cospatial images of line-of-sight magnetic flux, continuum intensity, and equivalent width observed with the NASA/National Solar Observatory (NSO) Spectromagnetograph (SPM). The technique facilitates human understanding of patterns in large data sets and enables systematic studies of feature characteristics for comparison with models and observations of long-term solar activity and variability. The method uses Bayes' rule to compute the posterior probability of any feature segmentation of a trio of observed images from per-pixel, class-conditional probabilities derived from independently-segmented training images. Simulated annealing is used to find the most likely segmentation. New algorithms for computing class-conditional probabilities from three-dimensional Gaussian mixture models and interpolated histogram densities are described and compared. A new extension to the spatial smoothing in the Bayesian prior model is introduced, which can incorporate a spatial dependence such as center-to-limb variation. How the spatial scale of training segmentations affects the results is discussed, and a new method for statistical separation of quiet Sun and quiet network is presented. C1 [Turmon, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jones, Harrison P.] Natl Solar Observ, Tucson, AZ 85719 USA. [Malanushenko, Olena V.] New Mexico State Univ, Apache Point Observ, Sunspot, NM 88349 USA. [Pap, Judit M.] Univ Maryland, College Pk, MD 20742 USA. RP Turmon, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM turmon@jpl.nasa.gov; hjones@nso.edu; elenam@apo.nmsu.edu; judit.m.pap@nasa.gov FU NASA [NNH04ZSS001N] FX This research was supported by Heliophysics Supporting Research and Technology grant NNH04ZSS001N from NASA's Office of Space Science. The research described in this paper was carried out in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 44 TC 27 Z9 27 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD APR PY 2010 VL 262 IS 2 BP 277 EP 298 DI 10.1007/s11207-009-9490-y PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573JC UT WOS:000275908300003 ER PT J AU Adams, M Tennant, AF Cirtain, JW AF Adams, M. Tennant, Allyn F. Cirtain, J. W. TI Using a Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points SO SOLAR PHYSICS LA English DT Article DE Data analysis; Corona; X-ray bright points ID NUMBER; CYCLE AB We describe adapting a method that is used to find point sources in Chandra X-ray telescope data for use in finding solar X-ray bright points. The algorithm allows selected pixels to be excluded from the source-finding, thus excluding saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon-counting statistics, whereas solar telescopes typically integrate a flux. Thus, the calculated signal-to-noise ratio is incorrect, but we find that we can scale the number to get reasonable results. We compare our source-finding to previous Yohkoh results and find a similar number of bright points. Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle. Although these preliminary results are based on a small sample, we see no dependence on the solar cycle. C1 [Adams, M.; Tennant, Allyn F.; Cirtain, J. W.] NASA, MSFC, Huntsville, AL USA. RP Adams, M (reprint author), NASA, MSFC, VP62, Huntsville, AL USA. EM mitzi.adams@nasa.gov; allyn.tennant@msfc.nasa.gov; jonathan.w.cirtain@nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD APR PY 2010 VL 262 IS 2 BP 315 EP 320 DI 10.1007/s11207-009-9456-0 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573JC UT WOS:000275908300005 ER PT J AU Labrosse, N Heinzel, P Vial, JC Kucera, T Parenti, S Gunar, S Schmieder, B Kilper, G AF Labrosse, N. Heinzel, P. Vial, J. -C. Kucera, T. Parenti, S. Gunar, S. Schmieder, B. Kilper, G. TI Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar prominences; Spectroscopy; Radiative transfer; Diagnostics; Modelling ID MULTILEVEL RADIATIVE-TRANSFER; ACCELERATED LAMBDA-ITERATION; HYDROGEN LYMAN LINES; PARTIAL FREQUENCY REDISTRIBUTION; CORONA TRANSITION REGION; EXTREME-ULTRAVIOLET EMISSION; VARIABLE SOURCE FUNCTION; MAGNETIC-FIELD VECTOR; H-ALPHA STRUCTURES; QUIESCENT PROMINENCES AB This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences. C1 [Labrosse, N.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Heinzel, P.; Gunar, S.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic. [Vial, J. -C.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Kucera, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parenti, S.] Observ Royal Belgique, B-1180 Brussels, Belgium. [Schmieder, B.] Observ Paris, LESIA, F-92190 Meudon, France. [Kilper, G.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Labrosse, N (reprint author), Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. EM n.labrosse@physics.gla.ac.uk RI Labrosse, Nicolas/B-2670-2010; Kucera, Therese/C-9558-2012; Gunar, Stanislav/G-9012-2014; Heinzel, Petr/G-9014-2014 OI Labrosse, Nicolas/0000-0002-4638-157X; FU International Space Science Institute; Belgian Federal Science Policy Office; Programme National Soleil-Terre; ESA-PECS [98030]; Grant Agency of the Czech Republic [AV0Z10030501]; NASA [S-84002F]; DLR; CNES; ESA-PRODEX; ONR [SP033-02-43] FX The authors gratefully acknowledge the support of the International Space Science Institute through its International Team program, and thank the other colleagues from the Spectroscopy and Imaging of Quiescent and Eruptive Solar Prominences from Space team for fruitful discussions. S. P. acknowledges the support from the Belgian Federal Science Policy Office through the ESA-PRODEX programme. J.C.V. thanks the Programme National Soleil-Terre for financial support. S.G. and P.H. acknowledge the support from the ESA-PECS project No. 98030. S. G. acknowledges the support from the institutional project AV0Z10030501 and from grant 205/07/1100 of the Grant Agency of the Czech Republic. T. K. thanks the NASA Heliophysics Guest Investigator Program for financial support.; The authors thank Yong Lin, Tom Berger, and Jongchul Chae, for providing original versions of some of the figures used in this review, and the careful reading and helpful comments by two anonymous referees.; The SUMER project is financially supported by DLR, CNES, NASA, and the ESA-PRODEX Programme (Swiss contribution). SOHO is a mission operated by ESA and NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. The VAULT instrument development work has been supported by the ONR task area SP033-02-43 and by NASA defense procurement request S-84002F.; This research has made use of NASA's Astrophysics Data System. NR 268 TC 158 Z9 158 U1 3 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD APR PY 2010 VL 151 IS 4 BP 243 EP 332 DI 10.1007/s11214-010-9630-6 PG 90 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 582RM UT WOS:000276616100001 ER PT J AU Mackay, DH Karpen, JT Ballester, JL Schmieder, B Aulanier, G AF Mackay, D. H. Karpen, J. T. Ballester, J. L. Schmieder, B. Aulanier, G. TI Physics of Solar Prominences: II-Magnetic Structure and Dynamics SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar magnetic fields; Solar prominences; Oscillations; MHD waves ID CONFIGURATIONS SUPPORTING PROMINENCES; FAST MAGNETOHYDRODYNAMIC OSCILLATIONS; TWISTED FLUX-TUBE; FULL-STOKES SPECTROPOLARIMETRY; ACTIVE-REGION FILAMENTS; CORONAL MASS EJECTIONS; HYDROGEN LYMAN LINES; H-ALPHA; QUIESCENT PROMINENCES; MHD WAVES AB Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them. C1 [Mackay, D. H.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. [Karpen, J. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ballester, J. L.] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Spain. [Schmieder, B.; Aulanier, G.] Observ Paris, LESIA, F-92195 Meudon, Principal, France. RP Mackay, DH (reprint author), Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. EM duncan@mcs.st-and.ac.uk RI Karpen, Judith/E-1484-2012; Ballester, Jose /A-2637-2011 OI Ballester, Jose /0000-0001-8921-9225 FU ISSI (Bern); European Commission through the European Solar Magnetism Network [HPRN-CT-2002-00313]; SOLAIRE Network [MTRN-CT-2006-035484]; Spanish Ministry of Science and Innovation [AYA2006-07637]; FEDER; Conselleria de Economia, Hisenda i Innovacio [PCTIB-2005GC3-03]; UK STFC FX The authors would like to thank ISSI (Bern) for support of the team "Spectroscopy and Imaging of Quiescent and Eruptive Prominences from Space." They also would like to thank their teammates for the nice working atmosphere and the lively discussions. Financial support by the European Commission through the European Solar Magnetism Network (HPRN-CT-2002-00313) and the SOLAIRE Network (MTRN-CT-2006-035484) is gratefully acknowledged. JK would like to thank S. Antiochos, C. R. DeVore and J. A. Klimchuk for their collaboration on the thermal non-equilibrium studies discussed in Sect. 3. JLB would like to acknowledge I. Arregui, M. Carbonell, A. Diaz, P. Forteza, R. Oliver, R. Soler and J. Terradas, colleagues from the Mallorca Solar Physics Group, for their contributions to the research reported in Sect. 4. JLB would also like to acknowledge the financial support received from the Spanish Ministry of Science and Innovation under grant AYA2006-07637, FEDER funds, and from the Conselleria de Economia, Hisenda i Innovacio under grant PCTIB-2005GC3-03. DHM would like to thank the UK STFC for their financial support. NR 283 TC 214 Z9 214 U1 4 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD APR PY 2010 VL 151 IS 4 BP 333 EP 399 DI 10.1007/s11214-010-9628-0 PG 67 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 582RM UT WOS:000276616100002 ER PT J AU Jorgensen, C Dusan, S AF Jorgensen, Charles Dusan, Sorin TI Speech interfaces based upon surface electromyography SO SPEECH COMMUNICATION LA English DT Article DE Electromyography; Speech recognition; Speech synthesis; Bioelectric control; Articulatory synthesis; EMG ID TRACT AREA FUNCTION; ARTICULATORY MODEL; RECOGNITION AB This paper discusses the use of surface electromyography (EMG) to recognize and synthesize speech. The acoustic speech signal can be significantly corrupted by high noise in the environment or impeded by garments or masks. Such situations occur, for example, when firefighters wear pressurized suits with self-contained breathing apparatus (SCBA) or when astronauts perform operations in pressurized gear. In these conditions it is important to capture and transmit clear speech commands in spite of a corrupted or distorted acoustic speech signal. One way to mitigate this problem is to use surface electromyography to capture activity of speech articulators and then, either recognize spoken commands from EMG signals or use these signals to synthesize acoustic speech commands. We describe a set of experiments for both speech recognition and speech synthesis based on surface electromyography and discuss the lessons learned about the characteristics of the EMG signal for these domains. The experiments include speech recognition in high noise based on 15 commands for firefighters wearing self-contained breathing apparatus, a sub-vocal speech robotic platform control experiment based on five words, a speech recognition experiment testing recognition of vowels and consonants, and a speech synthesis experiment based on an articulatory speech synthesizer. Published by Elsevier B.V. C1 [Jorgensen, Charles] NASA, Ames Res Ctr, Computat Sci Div, Moffett Field, CA 94035 USA. [Dusan, Sorin] NASA, Ames Res Ctr, MCT Inc, Moffett Field, CA 94035 USA. RP Jorgensen, C (reprint author), NASA, Ames Res Ctr, Computat Sci Div, M-S 269-1, Moffett Field, CA 94035 USA. EM Charles.Jorgensen@nasa.gov FU NASA FX The authors would like to particularly thank the NASA Aeronautics Basic Research program's Extension of the Human Senses Initiative for support over the years during the development of these technologies and the collegial contributions of Drs. Bradley Betts, Kevin Wheeler, Kim Binstead, Shinji Maeda, Arturo Galvan, Jianwu Dang, and Mrs. Rebekah Kochavi and Mrs. Diana Lee. NR 34 TC 19 Z9 19 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6393 EI 1872-7182 J9 SPEECH COMMUN JI Speech Commun. PD APR PY 2010 VL 52 IS 4 SI SI BP 354 EP 366 DI 10.1016/j.specom.2009.11.003 PG 13 WC Acoustics; Computer Science, Interdisciplinary Applications SC Acoustics; Computer Science GA 574XB UT WOS:000276026400008 ER PT J AU Spudis, PD Bussey, DBJ Baloga, SM Butler, BJ Carl, D Carter, LM Chakraborty, M Elphic, RC Gillis-Davis, JJ Goswami, JN Heggy, E Hillyard, M Jensen, R Kirk, RL LaVallee, D McKerracher, P Neish, CD Nozette, S Nylund, S Palsetia, M Patterson, W Robinson, MS Raney, RK Schulze, RC Sequeira, H Skura, J Thompson, TW Thomson, BJ Ustinov, EA Winters, HL AF Spudis, P. D. Bussey, D. B. J. Baloga, S. M. Butler, B. J. Carl, D. Carter, L. M. Chakraborty, M. Elphic, R. C. Gillis-Davis, J. J. Goswami, J. N. Heggy, E. Hillyard, M. Jensen, R. Kirk, R. L. LaVallee, D. McKerracher, P. Neish, C. D. Nozette, S. Nylund, S. Palsetia, M. Patterson, W. Robinson, M. S. Raney, R. K. Schulze, R. C. Sequeira, H. Skura, J. Thompson, T. W. Thomson, B. J. Ustinov, E. A. Winters, H. L. TI Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LUNAR SOUTH-POLE; RADAR EXPERIMENT; ICE DEPOSITS; MERCURY; SURFACE; IMAGES AB We present new polarimetric radar data for the sur face of the north pole of the Moon acquired with the Mini-SAR experiment onboard India's Chandrayaan-1 spacecraft. Between mid-February and mid-April, 2009, Mini-SAR mapped more than 95% of the areas polewards of 80 latitude at a resolution of 150 meters. The north polar region displays backscatter properties typical for the Moon, with circular polarization ratio (CPR) values in the range of 0.1-0.3, increasing to over 1.0 for young primary impact craters. These higher CPR values likely reflect surface roughness associated with these fresh features. In contrast, some craters in this region show elevated CPR in their interiors, but not exterior to their rims. Almost all of these features are in permanent sun shadow and correlate with proposed locations of polar ice modeled on the basis of Lunar Prospector neutron data. These relations are consistent with deposits of water ice in these craters. Citation: Spudis, P. D., et al. (2010), Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission, Geophys. Res. Lett., 37, L06204, doi: 10.10292009GL042259. C1 [Spudis, P. D.; Nozette, S.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Bussey, D. B. J.; Carl, D.; Hillyard, M.; Jensen, R.; LaVallee, D.; McKerracher, P.; Neish, C. D.; Nylund, S.; Patterson, W.; Raney, R. K.; Schulze, R. C.; Sequeira, H.; Skura, J.; Thomson, B. J.; Winters, H. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Baloga, S. M.] Proxemy Res Inc, Laytonville, MD 20882 USA. [Butler, B. J.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Carter, L. M.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Chakraborty, M.] ISRO, Ctr Space Applicat, Ahmadabad 380015, Gujarat, India. [Elphic, R. C.] NASA, Ames Res Ctr, Planetary Syst Branch, Moffett Field, CA 94035 USA. [Gillis-Davis, J. J.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Goswami, J. N.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Heggy, E.; Thompson, T. W.; Ustinov, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kirk, R. L.] US Geol Survey, Astrogeol Program, Flagstaff, AZ 86001 USA. [Palsetia, M.] Vexcel Inc, Boulder, CO 80301 USA. [Robinson, M. S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Spudis, PD (reprint author), Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM spudis@lpi.usra.edu RI Carter, Lynn/D-2937-2012; Neish, Catherine/G-6321-2012; Heggy, Essam/E-8250-2013; Ustinov, Eugene/D-1350-2015 OI Heggy, Essam/0000-0001-7476-2735; Ustinov, Eugene/0000-0003-0227-4286 NR 27 TC 74 Z9 78 U1 2 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 31 PY 2010 VL 37 AR L06204 DI 10.1029/2009GL042259 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 578SB UT WOS:000276314400002 ER PT J AU Chang, FL Minnis, P Lin, B Khaiyer, MM Palikonda, R Spangenberg, DA AF Chang, Fu-Lung Minnis, Patrick Lin, Bing Khaiyer, Mandana M. Palikonda, Rabindra Spangenberg, Douglas A. TI A modified method for inferring upper troposphere cloud top height using the GOES 12 imager 10.7 and 13.3 mu m data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUNDER DATA; CIRRUS CLOUDS; RETRIEVAL; LIDAR; LAYER; ISCCP; RUC; VAS AB Passive satellite retrievals using conventional CO2 absorption techniques tend to systematically underestimate the upper transmissive cloud top heights (CTHs). These techniques are based on single-layer assumptions that the upper cloud occupies a geometrically thin layer above a cloud-free surface. This study presents a new modified CO2 absorption technique (MCO2AT) to improve the inference of transmissive CTHs in the upper troposphere above 600 hPa. The MCO2AT employs an iterative algorithm that starts with a single-layer CO2 absorption technique (SCO2AT) followed by an iterative procedure to retrieve an enhanced upper CTH based on inferred effective background radiances. Both techniques are applied to the 10.7 and 13.3 mu m channel data of the Twelfth Geostationary Operational Environmental Satellite (GOES 12) imager and their retrievals of upper tropospheric CTHs are compared with two active sensing products: the ground-based Active Remotely Sensed Cloud Location (ARSCL) products from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site and the satellite-based Cloud Aerosol Lidar With Orthogonal Polarization (CALIOP) products. On average, the CTHs from MCO2AT and SCO2AT are lower than those from both of the active sensors by similar to 1 and 2.4 km, respectively, possibly due to the different sensitivities and spatial resolutions between passive and active sensors. Preliminary validation of the new modified method is encouraging, especially the improvements for upper transmissive clouds in geometrically thick and/or multilayered cloud situations. The development of the modified method is particularly useful for sensors like the GOES 12, Meteosat-9, and others, which carry only one CO2 absorption channel at similar to 13.3 mu m. C1 [Chang, Fu-Lung; Khaiyer, Mandana M.; Palikonda, Rabindra; Spangenberg, Douglas A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick; Lin, Bing] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Chang, Fu-Lung] Natl Inst Aerosp, Hampton, VA USA. RP Chang, FL (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM fu-lung.chang-1@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA Advanced Satellite Aviation-weather Products initiative; NASA; Department of Energy [DE-AI02-07ER64546]; NOAA Center for Satellite Applications and Research FX This research has been supported by the NASA Advanced Satellite Aviation-weather Products initiative, the NASA Applied Sciences Program, the Department of Energy ARM Program through DE-AI02-07ER64546, and the NOAA Center for Satellite Applications and Research GOES-R Program. NR 33 TC 14 Z9 15 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 30 PY 2010 VL 115 AR D06208 DI 10.1029/2009JD012304 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 578SJ UT WOS:000276315300001 ER PT J AU Robert, CE von Savigny, C Rahpoe, N Bovensmann, H Burrows, JP DeLand, MT Schwartz, MJ AF Robert, C. E. von Savigny, C. Rahpoe, N. Bovensmann, H. Burrows, J. P. DeLand, M. T. Schwartz, M. J. TI First evidence of a 27 day solar signature in noctilucent cloud occurrence frequency SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID POLAR MESOSPHERIC CLOUDS; NITRIC-OXIDE EXPLORER; MIDDLE ATMOSPHERE; GRAVITY-WAVE; SUMMER MESOSPHERE; ULTRAVIOLET FLUX; ICE PARTICLES; WATER-VAPOR; TEMPERATURE; MODEL AB This paper presents evidence of a connection between the 27 day modulation of the solar activity and noctilucent cloud (NLC) occurrence frequency as measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and solar backscatter ultraviolet (SBUV) instruments. Observations show anticorrelations significant at the 90% confidence level between noctilucent cloud occurrence rate anomalies and Lyman-alpha irradiance variation during several seasons in both hemispheres. A superposed epoch analysis confirms these results and also reveals a clear recurrence pattern in noctilucent clouds occurrence anomalies with a similar to 27 day period. The superposed epoch analysis also shows that the maximum NLC response in the Northern Hemisphere is clearly localized at 0 day phase lag, while in the Southern Hemisphere the maximum response is broader and occurs at 0 +/- 2 day phase lag. Microwave Limb Sounder mesospheric products suggest that the more likely driver for the variation in NLC occurrence is temperature instead of water vapor, but the mechanisms responsible for the observed variations are not yet fully understood. C1 [Robert, C. E.; von Savigny, C.; Rahpoe, N.; Bovensmann, H.; Burrows, J. P.] Univ Bremen, Inst Environm Phys & Remote Sensing, D-28359 Bremen, Germany. [DeLand, M. T.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Robert, CE (reprint author), Univ Bremen, Inst Environm Phys & Remote Sensing, Otto Hahn Allee 1, D-28359 Bremen, Germany. EM crobert@iup.physik.uni-bremen.de RI von Savigny, Christian/B-3910-2014; Schwartz, Michael/F-5172-2016; Bovensmann, Heinrich/P-4135-2016 OI Schwartz, Michael/0000-0001-6169-5094; Bovensmann, Heinrich/0000-0001-8882-4108 FU German Ministry of Education and Research (BMBF); German Aerospace Center (DLR); DFG-CAWSES; University of Bremen FX We would like to acknowledge the anonymous reviewers for their helpful comments and their suggestion of using the superposed epoch analysis. This work was supported by the German Ministry of Education and Research (BMBF), the German Aerospace Center (DLR), the DFG-CAWSES (project WAVE-NLC), and the University of Bremen (project ICAPS). SCIAMACHY is jointly funded by Germany, Netherlands, and Belgium. We are also indebted to ESA for providing SCIAMACHY Level 1 data. NR 51 TC 13 Z9 13 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 30 PY 2010 VL 115 AR D00I12 DI 10.1029/2009JD012359 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 578SJ UT WOS:000276315300002 ER PT J AU Halekas, JS Lillis, RJ Lin, RP Manga, M Purucker, ME Carley, RA AF Halekas, J. S. Lillis, R. J. Lin, R. P. Manga, M. Purucker, M. E. Carley, R. A. TI How strong are lunar crustal magnetic fields at the surface?: Considerations from a reexamination of the electron reflectometry technique SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID PROSPECTOR; ANOMALIES; MOON AB Despite extensive study, we do not yet fully understand the origins of the unique lunar crustal magnetism. The strength of surface fields and their relation to local geology are crucial pieces of the puzzle. However, only a few surface measurements exist, and spacecraft magnetometers cannot detect magnetization with wavelengths much smaller than the orbital altitude. Meanwhile, electron reflectometry (ER) enables a remote measurement of surface fields, but its sensitivity to magnetization with different spatial scales is not well understood. In this paper, we report on new simulations of the ER technique and its sensitivity to magnetic fields produced by simulated crustal magnetization with various strengths and spatial distributions, utilizing full particle tracing simulations and the same data analysis techniques used for space data. We find that the ER technique reliably detects surface fields from magnetization with wavelengths larger than similar to 10 km but has increasingly less sensitivity to smaller wavelengths. Since the few surface measurements we have imply very incoherent near-surface magnetization, this implies that the ER technique may seriously underestimate the strength of lunar fields in some areas. Our results imply that small-scale impact-related crustal magnetization may prove even more important than previously thought. C1 [Halekas, J. S.; Lillis, R. J.; Lin, R. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Carley, R. A.] Univ Edinburgh, Grant Inst Earth Sci, Edinburgh EH9 3JW, Midlothian, Scotland. [Manga, M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Purucker, M. E.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Halekas, JS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM jazzman@ssl.berkeley.edu RI Manga, Michael/D-3847-2013; Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX07AN94G] FX We gratefully acknowledge numerous conversations about the origins of lunar magnetism with Mike Fuller and Lon Hood. This work was supported by NASA grant NNX07AN94G. NR 18 TC 15 Z9 15 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 30 PY 2010 VL 115 AR E03006 DI 10.1029/2009JE003516 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 578TA UT WOS:000276317200002 ER PT J AU Pei, C Bieber, JW Breech, B Burger, RA Clem, J Matthaeus, WH AF Pei, C. Bieber, J. W. Breech, B. Burger, R. A. Clem, J. Matthaeus, W. H. TI Cosmic ray diffusion tensor throughout the heliosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND FLUCTUATIONS; PERPENDICULAR DIFFUSION; VELOCITY CORRELATION; CHARGED-PARTICLES; MAGNETIC-FIELD; MHD TURBULENCE; TRANSPORT; EVOLUTION; COEFFICIENTS; DISSIPATION AB We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic rays following the method presented by Bieber et al. (1995). We use the nonlinear guiding center theory to obtain the perpendicular diffusion coefficient of the cosmic rays. We find that (1) the radial mean free path decreases from 1 to 30 AU for both turbulence scenarios; (2) after 30 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 30 AU, after which the perpendicular component becomes important; (4) the rigidity dependence of the parallel mean free path is proportional to P. 404 for one turbulence scenario and P(.374) for the other at 1 AU from 0.1 to 10 GV, but in the outer heliosphere its dependence steepens above 4 GV; and (5) the rigidity dependence of the perpendicular mean free path is very weak. C1 [Pei, C.; Bieber, J. W.; Clem, J.; Matthaeus, W. H.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Breech, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20716 USA. [Burger, R. A.] North West Univ, Unit Space Phys, Sch Phys, ZA-2520 Potchefstroom, South Africa. RP Pei, C (reprint author), Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. EM pei@bartol.udel.edu; jwbieber@bartol.udel.edu; breech@cis.udel.edu; adri.burger@nwu.ac.za; clem@bartol.udel.edu; whm@udel.edu FU NASA [NNX07AH73G, NNX08AI47G] FX This work is supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G. NR 44 TC 25 Z9 25 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 30 PY 2010 VL 115 AR A03103 DI 10.1029/2009JA014705 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578TK UT WOS:000276318300002 ER PT J AU Bailey, SW Franz, BA Werdell, PJ AF Bailey, Sean W. Franz, Bryan A. Werdell, P. Jeremy TI Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing SO OPTICS EXPRESS LA English DT Article ID CHLOROPHYLL-A; ALGORITHM; VALIDATION; ABSORPTION; RADIANCE; SEAWIFS; CASE-1 AB The atmospheric correction algorithm employed by the NASA Ocean Biology Processing Group requires an assumption of negligible water-leaving reflectance in the near-infrared region of the spectrum. For waters where this assumption is not valid, an optical model is used to estimate near-infrared water-leaving reflectance. We describe this optical model as implemented for the sixth reprocessing of the SeaWiFS mission-long time-series (September 2009). Application of the optical model resulted in significant reductions in the number of negative water-leaving reflectance retrievals in turbid and optically complex waters, and improved agreement with in situ chlorophyll-a observations. The incidence of negative water-leaving reflectance retrievals at 412 nm was reduced by 40%, while negative reflectance at 490 nm was nearly eliminated. (C) 2010 Optical Society of America C1 [Bailey, Sean W.] Futuretech Corp, Greenbelt, MD 20770 USA. [Bailey, Sean W.; Franz, Bryan A.; Werdell, P. Jeremy] NASA, Goddard Space Flight Ctr, Ocean Biol Proc Grp, Greenbelt, MD 20771 USA. [Werdell, P. Jeremy] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Bailey, SW (reprint author), Futuretech Corp, 7307 Hanover Pkwy,Suite D, Greenbelt, MD 20770 USA. RI Franz, Bryan/D-6284-2012; Werdell, Jeremy/D-8265-2012; Bailey, Sean/D-3077-2017 OI Franz, Bryan/0000-0003-0293-2082; Bailey, Sean/0000-0001-8339-9763 NR 16 TC 112 Z9 115 U1 3 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAR 29 PY 2010 VL 18 IS 7 BP 7521 EP 7527 DI 10.1364/OE.18.007521 PG 7 WC Optics SC Optics GA 582MP UT WOS:000276602000109 PM 20389774 ER PT J AU Remsberg, E AF Remsberg, Ellis TI Observed seasonal to decadal scale responses in mesospheric water vapor SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; 11-YEAR SOLAR-CYCLE; MIDDLE ATMOSPHERE; SEMIANNUAL OSCILLATION; VARIABILITY; MODEL; STRATOSPHERE; TEMPERATURE; CLOUDS AB The 14 year (1991-2005) time series of mesospheric water vapor from the Halogen Occultation Experiment (HALOE) are analyzed using multiple linear regression (MLR) techniques for their seasonal and longer-period terms from 45 degrees S to 45 degrees N. The distribution of annual average water vapor shows a decrease from a maximum of 6.5 ppmv at 0.2 hPa to about 3.2 ppmv at 0.01 hPa, in accord with the effects of the photolysis of water vapor due to the Lyman-alpha flux. The distribution of the semiannual cycle amplitudes is nearly hemispherically symmetric at the low latitudes, while that of the annual cycles shows larger amplitudes in the Northern Hemisphere. The diagnosed 11 year, or solar cycle, max minus min, water vapor values are of the order of several percent at 0.2 hPa to about 23% at 0.01 hPa. The solar cycle terms have larger values in the Northern than in the Southern Hemisphere, particularly in the middle mesosphere, and the associated linear trend terms are anomalously large in the same region. Those anomalies are due, at least in part, to the fact that the amplitudes of the seasonal cycles were varying at northern midlatitudes during 1991-2005, while the corresponding seasonal terms of the MLR model do not allow for that possibility. Although the 11 year variation in water vapor is essentially hemispherically symmetric and antiphased with the solar cycle flux near 0.01 hPa, the concurrent temperature variations produce slightly colder conditions at the northern high latitudes at solar minimum. It is concluded that this temperature difference is most likely the reason for the greater occurrence of polar mesospheric clouds at the northern versus the southern high latitudes at solar minimum during the HALOE time period. C1 NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Remsberg, E (reprint author), NASA, Sci Directorate, Langley Res Ctr, Mail Stop 401B, Hampton, VA 23681 USA. EM ellis.e.remsberg@nasa.gov NR 45 TC 15 Z9 15 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 27 PY 2010 VL 115 AR D06306 DI 10.1029/2009JD012904 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 574WY UT WOS:000276026100005 ER PT J AU Zent, AP Hecht, MH Cobos, DR Wood, SE Hudson, TL Milkovich, SM DeFlores, LP Mellon, MT AF Zent, Aaron P. Hecht, Michael H. Cobos, Doug R. Wood, Stephen E. Hudson, Troy L. Milkovich, Sarah M. DeFlores, Lauren P. Mellon, Michael T. TI Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS WATER CYCLE; INNER SOLAR-SYSTEM; POROUS-MEDIA; SEASONAL RESERVOIRS; MARTIAN REGOLITH; VAPOR; SOIL; ICE; HEAT; PERMITTIVITY AB The thermal and electrical conductivity probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA), was included on the Phoenix Lander to conduct in situ measurements of the exchange of heat and water in the Martian polar terrain. TECP measured regolith thermal conductivity, heat capacity, temperature, electrical conductivity, and dielectric permittivity throughout the mission. A relative humidity sensor returned the first in situ humidity measurements from the Martian surface. The dry overburden above the ground ice is a good thermal insulator (average kappa = 0.085 W m(-1) K-1 and average C rho = 1.05 x 10(6) J m(-3) K-1). Surface thermal inertia (I) calculated from these values agrees well with daytime orbital determinations, but differences in the spatial and temporal scale of heat transport lead to very different measurements at night. Electrical conductivity was consistent with open circuit throughout the mission; an upper limit conductivity of 2 nS cm(-1) is derived. Bulk dielectric permittivity (epsilon(b)) shows several puzzling signals but also a systematic increase overnight in the latter half of the mission, contemporaneous with H2O adsorption. The magnitude of the increase is difficult to reconcile with expected changes in unfrozen water. Atmospheric H2O averages around 1.8 Pa during the day, corresponding to a R-H < 5%. At night, much of the H2O disappears from the atmosphere, and RH increases to similar to 100%. Temperature and H2O partial pressure data suggest that adsorption on mineral surfaces plays a major role in scrubbing H2O, with a possible contribution from perchlorate salts. C1 [Zent, Aaron P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cobos, Doug R.] Decagon Devices, Pullman, WA 99163 USA. [Hecht, Michael H.; Hudson, Troy L.; Milkovich, Sarah M.; DeFlores, Lauren P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mellon, Michael T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80305 USA. [Wood, Stephen E.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. RP Zent, AP (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM aaron.p.zent@nasa.gov RI Mellon, Michael/C-3456-2016; Wood, Stephen/R-5592-2016 OI Wood, Stephen/0000-0002-9330-434X FU Phoenix Flight Team at the University of Arizona FX The authors are grateful to the Phoenix Flight Team at the University of Arizona and JPL, who made the Phoenix mission possible. The authors would particularly like to thank Martin Buehler, Colin Campbell, Gaylon Campbell, Carrie Chavez, Lynne Cooper, Hugh Kieffer, John Michael Morookian, Marsha Presley, Richard Quinn, and Matt Siegler. NR 69 TC 57 Z9 57 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 27 PY 2010 VL 115 AR E00E14 DI 10.1029/2009JE003420 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 574XJ UT WOS:000276027200001 ER PT J AU de Asis, ED Leung, J Wood, S Nguyen, CV AF de Asis, Edward D., Jr. Leung, Joseph Wood, Sally Nguyen, Cattien V. TI Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells SO NANOTECHNOLOGY LA English DT Article ID FROG SARTORIUS MUSCLE; INTERFACING NEURONS; HIPPOCAMPAL SLICES; STIMULATION; ARRAYS; BIOMEDICINE; SYNAPSES; NETWORKS; SIGNALS; FIBRES AB Identifying the neurophysiological basis underlying learning and memory in the mammalian central nervous system requires the development of biocompatible, high resolution, low electrode impedance electrophysiological probes; however, physically, electrode impedance will always be finite and, at times, large. Herein, we demonstrate through experiments performed on frog sartorius muscle that single multi-walled carbon nanotube electrode (sMWNT electrode) geometry and placement are two degrees of freedom that can improve biocompatibility of the probe and counteract the detrimental effects of MWNT/electrolyte interface impedance on the stimulation efficiency and signal-to-noise ratio (SNR). We show that high aspect ratio dependent electric field enhancement at the MWNT tip can boost stimulation efficiency. Derivation of the sMWNT electrode's electrical equivalent indicates that, at low stimulus voltage regimes below 1 V, current conduction is mediated by charge fluctuation in the double layer obviating electrolysis of water, which is potentially toxic to pH sensitive biological tissue. Despite the accompanying increase in electrode impedance, a pair of closely spaced sMWNT electrodes in a two probe (bipolar) configuration maintains biocompatibility and enhances stimulation efficiency and SNR compared to the single probe (unipolar) configuration. For stimulus voltages below 1 V, the electrical equivalent verifies that current conduction in the two probe configuration still proceeds via charge fluctuation in the double layer. As an extracellular stimulation electrode, the two sMWNT electrodes comprise a current dipole that concentrates the electric field and the current density in a smaller region of sartorius; consequently, the bipolar configuration can elicit muscle fiber twitching at low voltages that preclude electrolysis of water. When recording field potentials, the bipolar configuration subtracts the potential between two points allowing for the detection of higher signal amplitudes. As a result, SNR is improved. These results indicate that use of the high aspect ratio MWNT in a bipolar configuration can achieve a biocompatible electrode that offers enhanced stimulation efficiency and higher SNR. C1 [de Asis, Edward D., Jr.; Nguyen, Cattien V.] NASA, Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA. [de Asis, Edward D., Jr.; Wood, Sally] Santa Clara Univ, Sch Engn, Dept Elect Engn, Santa Clara, CA 95053 USA. [de Asis, Edward D., Jr.; Wood, Sally] Santa Clara Univ, Sch Engn, Dept Bioengn, Santa Clara, CA 95053 USA. RP Nguyen, CV (reprint author), NASA, Ames Res Ctr, ELORET Corp, M-S 229-1, Moffett Field, CA 94035 USA. EM cattien.v.nguyen@nasa.gov NR 47 TC 4 Z9 4 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAR 26 PY 2010 VL 21 IS 12 AR 125101 DI 10.1088/0957-4484/21/12/125101 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 564OH UT WOS:000275224100001 PM 20182008 ER PT J AU Willis, JK AF Willis, Josh K. TI Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CIRCULATION; 26.5-DEGREES-N AB Global warming has been predicted to slow the Atlantic Meridional Overturning Circulation (AMOC), resulting in significant regional climate impacts across the North Atlantic and beyond. Here, satellite observations of sea surface height (SSH) along with temperature, salinity and velocity from profiling floats are used to estimate changes in the northward-flowing, upper limb of the AMOC at latitudes around 41 degrees N. The 2004 through 2006 mean overturning is found to be 15.5 +/- 2.4 Sv (10(6) m(3)/s) with somewhat smaller seasonal and interannual variability than at lower latitudes. There is no significant trend in overturning strength between 2002 and 2009. Altimeter data, however, suggest an increase of 2.6 Sv since 1993, consistent with North Atlantic warming during this same period. Despite significant seasonal to interannual fluctuations, these observations demonstrate that substantial slowing of the AMOC did not occur during the past 7 years and is unlikely to have occurred in the past 2 decades. Citation: Willis, J. K. (2010), Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning?, Geophys. Res. Lett., 37, L06602, doi: 10.1029/2010GL042372. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Willis, JK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NERC FX The author would like to thank D. Menemenlis for use of the ECCO2 model and D. Volkov for help understanding the cube sphere output, and I. Fukumori and W. Patzert for a number of help- ful suggestions on the initial draft. Altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from CNES. Argo data were collected and made freely available by the International Argo Project. (http://www.argo.ucsd.edu). NCEP Reanalysis Derived data provided by the NOAA/OAR/ESRL PSD, from their Web site at http://www.esrl.noaa.gov/psd/. Overturning observations from 26.5 degrees N are based on data from the RAPID-WATCH MOC monitoring project funded by NERC and are freely available from http://www.noc.soton.ac.uk/rapidmoc. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 18 TC 82 Z9 82 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 25 PY 2010 VL 37 AR L06602 DI 10.1029/2010GL042372 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 574WR UT WOS:000276025400003 ER PT J AU Raj, SV Palczer, A AF Raj, S. V. Palczer, A. TI Thermal expansion of vacuum plasma sprayed coatings SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Thermal expansion; Vacuum plasma sprayed coatings; Copper alloy coatings; NiAl coating; NiCrAlY coating; Launch vehicles AB Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (Delta L/L(0))(thermal), varies with the absolute temperature, T, as (Delta L/L(0))(thermal) = A(T - 293)(3) + B(T - 293)(2) + C(T - 293) + D where A, B, C and D are regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8%Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed. Published by Elsevier B.V. C1 [Raj, S. V.] NASA, Mat & Struct Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Raj, SV (reprint author), NASA, Mat & Struct Div, Glenn Res Ctr, MS 106-5,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM sai.v.raj@nasa.gov NR 28 TC 5 Z9 6 U1 3 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAR 25 PY 2010 VL 527 IS 7-8 BP 2129 EP 2135 DI 10.1016/j.msea.2009.11.064 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 569YQ UT WOS:000275639200065 ER PT J AU Mertens, CJ Kress, BT Wiltberger, M Blattnig, SR Slaba, TS Solomon, SC Engel, M AF Mertens, Christopher J. Kress, Brian T. Wiltberger, Michael Blattnig, Steve R. Slaba, Tony S. Solomon, Stanley C. Engel, M. TI Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003 SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID DOSE CONVERSION COEFFICIENTS; FLIGHT ATTENDANTS; 10 TEV; MODEL; ATMOSPHERE; SPACECRAFT; DOSIMETRY; ALTITUDES; FLUENCE; MEMBERS AB We present initial results from the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model during the Halloween 2003 superstorm. The objective of NAIRAS is to produce global, real-time, data-driven predictions of ionizing radiation for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. We have conducted a case study of radiation exposure during a high-energy solar energetic particle (SEP) event in October 2003. The purpose of the case study is to quantify the important influences of the storm time and quiet time magnetospheric magnetic field on high-latitude SEP atmospheric radiation exposure. The Halloween 2003 superstorm is an ideal event to study magnetospheric influences on atmospheric radiation exposure since this event was accompanied by a major magnetic storm which was one of the largest of solar cycle 23. We find that neglecting geomagnetic storm effects during SEP events can underestimate the high-latitude radiation exposure from nearly 15% to over a factor of 2, depending on the flight path relative to the magnetosphere open-closed boundary. C1 [Mertens, Christopher J.; Blattnig, Steve R.; Slaba, Tony S.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Kress, Brian T.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Engel, M.] Hamline Univ, Dept Phys, St Paul, MN 55104 USA. [Wiltberger, Michael; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Slaba, Tony S.] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA. RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 401B, Hampton, VA 23681 USA. EM christopher.j.mertens@nasa.gov; bkress@darmouth.edu; wiltbemj@ucar.edu; steve.r.blattnig@nasa.gov; tony.c.slaba@nasa.gov; stans@ucar.edu; mengel02@hamlineuniversity.edu RI Solomon, Stanley/J-4847-2012; Wiltberger, Michael/B-8781-2008 OI Solomon, Stanley/0000-0002-5291-3034; Wiltberger, Michael/0000-0002-4844-3148 FU NASA FX This work was supported by the NASA Applied Science Program. C.J.M. is grateful to Xiaojing Xu (SSAI, Inc.) for improving the graphics and for helpful discussions with Barbara Grajewski (National Institute for Occupational Safety and Health). NR 53 TC 37 Z9 37 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAR 25 PY 2010 VL 8 AR S03006 DI 10.1029/2009SW000487 PG 16 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 574YB UT WOS:000276029000001 ER PT J AU Farrell, WM Stubbs, TJ Halekas, JS Killen, RM Delory, GT Collier, MR Vondrak, RR AF Farrell, W. M. Stubbs, T. J. Halekas, J. S. Killen, R. M. Delory, G. T. Collier, M. R. Vondrak, R. R. TI Anticipated electrical environment within permanently shadowed lunar craters SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID IN-CELL SIMULATIONS; PLASMA; WAKE; EXPANSION; POLES; SURFACE; VACUUM; WATER; ICE AB Shadowed locations near the lunar poles are almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters. In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface. On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles. Solar wind plasma expands into such voids, producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations. We find that there are regions near the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data. We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters. C1 [Farrell, W. M.; Stubbs, T. J.; Killen, R. M.; Collier, M. R.; Vondrak, R. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.] NASA, Ames Res Ctr, NASA Lunar Sci Inst, Moffett Field, CA 94035 USA. [Stubbs, T. J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Halekas, J. S.; Delory, G. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Farrell, WM (reprint author), NASA, Goddard Space Flight Ctr, 8463 Greenbelt Rd, Greenbelt, MD 20770 USA. EM william.farrell@gsfc.nasa.gov RI Killen, Rosemary/E-7127-2012; Collier, Michael/I-4864-2013; Stubbs, Timothy/I-5139-2013; Farrell, William/I-4865-2013; OI Collier, Michael/0000-0001-9658-6605; Stubbs, Timothy/0000-0002-5524-645X; Halekas, Jasper/0000-0001-5258-6128 FU NASA's Exploration Technology Development Program (ETDP); GSFC Internal Research and Development (IRAD) FX This work was initially enabled by support from NASA's Exploration Technology Development Program (ETDP) and GSFC Internal Research and Development (IRAD) program. Recent augmentation of support into FY09 is provided via the NASA's LASER program, LRO Participating Science program, and NASA's Lunar Science Institute, awards which we gratefully acknowledge. B. A. Campbell and J. L. Margot are both acknowledge for directing us to the locations for access to the Goldstone Radar data. NR 27 TC 25 Z9 25 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAR 24 PY 2010 VL 115 AR E03004 DI 10.1029/2009JE003464 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 574XI UT WOS:000276027100001 ER PT J AU Mlynczak, MG Hunt, LA Marshall, BT Martin-Torres, FJ Mertens, CJ Russell, JM Remsberg, EE Lopez-Puertas, M Picard, R Winick, J Wintersteiner, P Thompson, RE Gordley, LL AF Mlynczak, Martin G. Hunt, Linda A. Marshall, B. Thomas Martin-Torres, F. Javier Mertens, Christopher J. Russell, James M., III Remsberg, Ellis E. Lopez-Puertas, Manuel Picard, Richard Winick, Jeremy Wintersteiner, Peter Thompson, R. Earl Gordley, Larry L. TI Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID NIGHTTIME TERRESTRIAL THERMOSPHERE; MU-M BANDS; UPPER-ATMOSPHERE; THERMODYNAMIC-EQUILIBRIUM; MIDDLE ATMOSPHERE; SABER EXPERIMENT; CARBON-DIOXIDE; TRANSFER MODEL; ATOMIC OXYGEN; EMISSION AB We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth's thermosphere. These data have been taken over a period of 7 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W m(-3)), radiative fluxes (W m(-2)), and radiated power (W). In the period from January 2002 through January 2009, we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle 23. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 mu m and the NO 5.3 mu m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate data set and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models. C1 [Mlynczak, Martin G.; Mertens, Christopher J.; Remsberg, Ellis E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hunt, Linda A.] SSAI, Hampton, VA 23666 USA. [Marshall, B. Thomas; Thompson, R. Earl; Gordley, Larry L.] GATS Inc, Newport News, VA 23606 USA. [Martin-Torres, F. Javier] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Russell, James M., III] Hampton Univ, Hampton, VA 23668 USA. [Lopez-Puertas, Manuel] IAA, E-18008 Granada, Spain. [Picard, Richard; Winick, Jeremy] Hanscom AFB, AFRL, Bedford, MA 01731 USA. [Wintersteiner, Peter] ARCON Corp, Waltham, MA 02451 USA. RP Mlynczak, MG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM m.g.mlynczak@nasa.gov RI Mlynczak, Martin/K-3396-2012; Lopez Puertas, Manuel/M-8219-2013; Martin-Torres, Francisco Javier/G-6329-2015 OI Lopez Puertas, Manuel/0000-0003-2941-7734; Martin-Torres, Francisco Javier/0000-0001-6479-2236 FU Science Directorate at NASA Langley; NASA Heliophysics Division TIMED Project; NASA Heliophysics Division Guest Investigator Program FX M. G. M. would like to acknowledge continued support from the Science Directorate at NASA Langley, from the NASA Heliophysics Division TIMED Project, and from the NASA Heliophysics Division Guest Investigator Program. NR 32 TC 40 Z9 40 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 24 PY 2010 VL 115 AR A03309 DI 10.1029/2009JA014713 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 574XR UT WOS:000276028000001 ER PT J AU Allamandola, LJ Bouwman, J Mattioda, A Cuppen, H Gudipati, M Linnartz, H AF Allamandola, Louis J. Bouwman, Jordy Mattioda, Andrew Cuppen, Herma Gudipati, Murthy Linnartz, Harold TI Photochemistry of polycyclic aromatic hydrocarbons (PAHs) in cosmic ices SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. Leiden Univ, Sackler Lab Astrophys, Leiden, South Holland, Netherlands. Jet Prop Lab, JPL Sci Div, Pasadena, CA USA. RI Gudipati, Murthy/F-7575-2011; Cuppen, Herma/F-9729-2015 OI Cuppen, Herma/0000-0003-4397-0739 NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 697-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304449 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Identifying the molecular origin of global warming SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 NASA, Ames Res Ctr, Mountain View, CA USA. Purdue Univ, Lafayette, IN USA. NR 0 TC 0 Z9 0 U1 1 U2 113 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 422-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304335 ER PT J AU Bux, S Rodriguez, M Yeung, M Yang, C Mahkluf, A Fleurial, JP Kaner, RB AF Bux, Sabah Rodriguez, Marc Yeung, Michael Yang, Crystal Mahkluf, Adam Fleurial, Jean-Pierre Kaner, Richard B. TI Rapid synthesis of nanostructured silicon via solid state metathesis reactions SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA USA. CALTECH, Jet Prop Lab, Power & Sensors Syst Sect, Pasadena, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 1017-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189302778 ER PT J AU Contreras, CS Ricketts, CL Salama, F AF Contreras, Cesar Sanchez Ricketts, Claire Louise Salama, Farid TI Laboratory studies of the formation of interstellar dust from PAH precursors SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Contreras, Cesar Sanchez; Ricketts, Claire Louise; Salama, Farid] NASA, Ames Res Ctr, Div Space Sci, ORAU, Moffett Field, CA 94035 USA. RI Salama, Farid/A-8787-2009 OI Salama, Farid/0000-0002-6064-4401 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 701-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304454 ER PT J AU Howard, HR Hodyss, R Johnson, P Kanik, I AF Howard, Heather R. Hodyss, Robert Johnson, Paul Kanik, Isik TI Photolytic reactions in ices relevant to Triton SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Lebanon Valley Coll, Dept Chem, Annville, PA USA. CALTECH, Jet Prop Lab, Pasadena, CA USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 356-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304306 ER PT J AU Linnartz, H Allamandola, LJ Bouwman, J Cuppen, HM van Dishoeck, EF Fayolle, EC Ioppolo, S Isokoski, K Oberg, KI Romanzin, C AF Linnartz, Harold Allamandola, Lou J. Bouwman, Jordy Cuppen, Herma M. van Dishoeck, Ewine F. Fayolle, Edith C. Ioppolo, Sergio Isokoski, Karoliina Oberg, Karin I. Romanzin, Claire TI Laboratory studies of interstellar ices - a hot topic SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Leiden Univ, Leiden Observ, Sackler Lab Astrophys, Leiden, Zuid Holland, Netherlands. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Cuppen, Herma/F-9729-2015 OI Cuppen, Herma/0000-0003-4397-0739 NR 0 TC 0 Z9 0 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 698-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304450 ER PT J AU Mattioda, A Allamandola, L Ricca, A Bauschlicher, C Tucker, J Boersma, C AF Mattioda, Andrew Allamandola, Louis Ricca, Alessandra Bauschlicher, Charles Tucker, Jonathan Boersma, Christiaan TI Far infrared spectroscopy of polycyclic aromatic hydrocarbons SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 NASA, Ames Res Ctr, Astrophys & Astrochem Lab, Moffett Field, CA 94035 USA. SETI Inst, Mountain View, CA USA. RI Boersma, Christiaan/L-7696-2014 OI Boersma, Christiaan/0000-0002-4836-217X NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 699-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304451 ER PT J AU Ricca, A Bauschlicher, CW Mattioda, AL Boersma, C Allamandola, LJ AF Ricca, Alessandra Bauschlicher, Charles W. Mattioda, Andrew L. Boersma, Christiaan Allamandola, Louis J. TI Far-infrared spectroscopy of large PAHs SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 SETI Inst, Carl Sagan Ctr, Mountain View, CA USA. NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RI Boersma, Christiaan/L-7696-2014 OI Boersma, Christiaan/0000-0002-4836-217X NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 700-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304453 ER PT J AU Ricketts, CL Contreras, CS Salama, F Imanaka, H Lebonnois, S McKay, C AF Ricketts, Claire L. Contreras, Cesar S. Salama, Farid Imanaka, Hiroshi Lebonnois, Sebastien McKay, Chris TI Laboratory studies to investigate the formation of carbon species in the atmosphere of Titan SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 NASA, Ames Res Ctr, Div Space Sci, Astrophys Branch, Moffett Field, CA 94035 USA. Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. UPMC, Meteorol Dynam Lab, CNRS, Paris, France. NASA, Ames Res Ctr, Div Space Sci, Planetary Syst Branch, Moffett Field, CA 94035 USA. RI Salama, Farid/A-8787-2009 OI Salama, Farid/0000-0002-6064-4401 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 736-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189304472 ER PT J AU Zhang, ZY Jaffe, R Philpott, M AF Zhang, Zhiyong Jaffe, Richard Philpott, Michael TI Ab initio study of CO2 reduction on pyrite surfaces and pyrite growth SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Stanford Univ, Stanford, CA 94305 USA. NASA, Ames, IA USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD MAR 21 PY 2010 VL 239 MA 95-GEOC PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V21DW UT WOS:000208189302702 ER PT J AU Miller, L Turner, TJ Reeves, JN Lobban, A Kraemer, SB Crenshaw, DM AF Miller, L. Turner, T. J. Reeves, J. N. Lobban, A. Kraemer, S. B. Crenshaw, D. M. TI Spectral variability and reverberation time delays in the Suzaku X-ray spectrum of NGC 4051 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; galaxies: active; X-rays: galaxies; X-rays: individual: NGC 4051 ID ACTIVE GALACTIC NUCLEI; LINE SEYFERT-1 ARK-564; BLACK-HOLE; POWER SPECTRUM; XMM-NEWTON; IRON LINE; TIMING PROPERTIES; GALAXY NGC-4051; MCG-6-30-15; REFLECTION AB Long-exposure Suzaku X-ray observations of the nearby active galaxy NGC 4051 from 2005 and 2008 are analysed, in an attempt to reach a self-consistent understanding of both the spectral variability on long time-scales and the broad-band variability at high time resolution. The techniques of principal components analysis and a maximum likelihood method of power spectrum analysis are used. In common with other type I active galactic nuclei (AGN), the spectral variability is dominated by a varying-normalization power-law component together with a quasi-steady, hard-spectrum offset component that contains Fe K atomic features. NGC 4051 displays a strong excess over a power law at energies of above 20 keV, some fraction of which also appears to vary with the power-law continuum. The fast time-scale power spectrum has a shape generally consistent with previous determinations, with the previously known dependence on broad-band photon energy, but in the new data significant differences are found between the low and high flux states of the source, demonstrating that the power spectrum is non-stationary. Frequency-dependent time lags between the hard and soft bands of up to 970 +/- 225 s are measured. The existence of the observed time lags excludes the possibility that the hard spectral component originates as reflection from the inner accretion disc. We instead show that the time lags and their frequency and energy dependence may be explained simply by the effects of reverberation in the hard band, caused by reflection from a thick shell of material with maximum lags of about 10 000 s. If the reflecting material surrounds the AGN, it extends to a distance of about 1.5 x 1014 cm, 600 gravitational radii, from the illuminating source and the global covering factor is C-g greater than or similar to 0.44, confirming previous suggestions that type I AGN have high covering factors of absorbing and reflecting material. Given the spectral and timing similarities with other type I AGN, we infer that this source structure is common in the type I population. C1 [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.; Kraemer, S. B.] NASA, Astrophys Sci Div, GSFC, Greenbelt, MD 20771 USA. [Reeves, J. N.; Lobban, A.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 8EH, Staffs, England. [Kraemer, S. B.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Crenshaw, D. M.] Georgia State Univ, Dept Phys & Astron, Astron Off, Atlanta, GA 30303 USA. RP Miller, L (reprint author), Univ Oxford, Dept Phys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM L.Miller@physics.ox.ac.uk RI XRAY, SUZAKU/A-1808-2009 FU NASA [NNX09AO92G, GO9-0123X] FX This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). TJT acknowledges NASA grants NNX09AO92G and GO9-0123X. NR 53 TC 31 Z9 31 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 21 PY 2010 VL 403 IS 1 BP 196 EP 210 DI 10.1111/j.1365-2966.2009.16149.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 579EW UT WOS:000276351600033 ER PT J AU Hurley, K Rowlinson, A Bellm, E Perley, D Mitrofanov, IG Golovin, DV Kozyrev, AS Litvak, ML Sanin, AB Boynton, W Fellows, C Harshmann, K Ohno, M Yamaoka, K Nakagawa, YE Smith, DM Cline, T Tanvir, NR O'Brien, PT Wiersema, K Rol, E Levan, A Rhoads, J Fruchter, A Bersier, D Kavelaars, JJ Gehrels, N Krimm, H Palmer, DM Duncan, RC Wigger, C Hajdas, W Atteia, JL Ricker, G Vanderspek, R Rau, A von Kienlin, A AF Hurley, K. Rowlinson, A. Bellm, E. Perley, D. Mitrofanov, I. G. Golovin, D. V. Kozyrev, A. S. Litvak, M. L. Sanin, A. B. Boynton, W. Fellows, C. Harshmann, K. Ohno, M. Yamaoka, K. Nakagawa, Y. E. Smith, D. M. Cline, T. Tanvir, N. R. O'Brien, P. T. Wiersema, K. Rol, E. Levan, A. Rhoads, J. Fruchter, A. Bersier, D. Kavelaars, J. J. Gehrels, N. Krimm, H. Palmer, D. M. Duncan, R. C. Wigger, C. Hajdas, W. Atteia, J. -L. Ricker, G. Vanderspek, R. Rau, A. von Kienlin, A. TI A new analysis of the short-duration, hard-spectrum GRB 051103, a possible extragalactic soft gamma repeater giant flare SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; gamma-rays: bursts ID RAY BURST CATALOG; 2004 DECEMBER 27; SUPERNOVA-REMNANTS; HOST GALAXY; INTERPLANETARY NETWORK; IMAGE SUBTRACTION; NEUTRON-STARS; SGR 1806-20; SGR-1806-20; AFTERGLOW AB GRB 051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its proximity on the sky to M81/M82, as well as its time history, localization and energy spectrum. We have derived a refined interplanetary network localization for this burst which reduces the size of the error box by over a factor of 2. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. We analyse the time-resolved energy spectra of this event with improved time and energy resolution, and conclude that although the spectrum is very hard its temporal evolution at late times cannot be determined, which further complicates the giant flare association. We also present new optical observations reaching limiting magnitudes of R > 24.5, about 4-mag deeper than previously reported. In tandem with serendipitous observations of M81 taken immediately before and 1 month after the burst, these place strong constraints on any rapidly variable sources in the region of the refined error ellipse proximate to M81. We do not find any convincing afterglow candidates from either background galaxies or sources in M81, although within the refined error region we do locate two UV bright star-forming regions which may host SGRs. A supernova remnant (SNR) within the error ellipse could provide further support for an SGR giant flare association, but we were unable to identify any SNR within the error ellipse. These data still do not allow strong constraints on the nature of the GRB 051103 progenitor, and suggest that candidate extragalactic SGR giant flares will be difficult, although not impossible, to confirm. C1 [Hurley, K.; Bellm, E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Rowlinson, A.; Tanvir, N. R.; O'Brien, P. T.; Wiersema, K.; Rol, E.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Perley, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.] Inst Space Res, Moscow 117997, Russia. [Boynton, W.; Fellows, C.; Harshmann, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Ohno, M.] JAXA, ISAS, Sagamihara, Kanagawa 2298510, Japan. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. [Nakagawa, Y. E.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cline, T.; Gehrels, N.; Krimm, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rol, E.] Univ Amsterdam, NL-1098 SJ Amsterdam, Netherlands. [Levan, A.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Rhoads, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Fruchter, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bersier, D.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Kavelaars, J. J.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Duncan, R. C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Wigger, C.; Hajdas, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Atteia, J. -L.] Observ Midi Pyrenees, Astrophys Lab, F-31400 Toulouse, France. [Ricker, G.; Vanderspek, R.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu RI Gehrels, Neil/D-2971-2012; OI Bellm, Eric/0000-0001-8018-5348 FU NASA [NASA NNG04GQ84G, NAG5-12706, NNX06AI36G]; JPL [1282046]; MIT [SC-A-293291]; Science and Technology Funding Council; Science and Technology Facilities Council and through the EU; NRC; CNRS; US Government [NAG W-2166] FX KH is grateful for IPN support from the NASA Guest Investigator programmes for Swift (NASA NNG04GQ84G), INTEGRAL (NAG5-12706) and Suzaku (NNX06AI36G); for support under the Mars Odyssey Participating Scientist Program, JPL Contract 1282046 and under the HETE-II co-investigator program, MIT Contract SC-A-293291. We are also grateful to the Konus-Wind team - E. Mazets, S. Golenetskii, D. Frederiks, V. Pal'shin and R. Aptekar - for contributing the Konus data to this study.; AR, KW and ER, NRT and AL would like to acknowledge funding from the Science and Technology Funding Council.; This research has made use of data obtained using, or software provided by, the UK's AstroGrid Virtual Observatory Project, which is funded by the Science and Technology Facilities Council and through the EU's Framework 6 programme.; The National Optical Astronomy Observatory (NOAO) consists of Kitt Peak National Observatory near Tucson, Arizona, Cerro Tololo Inter-American Observatory near La Serena, Chilie and the NOAO Gemini Science Centre. NOAO is operated by the Association of the Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation.; Based on observations with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Sceicne de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS.; The Digitized Sky Surveys were produced at the Space Telescope Science Institute under US Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.; Based on observations made through the Isaac Newton Group's Wide Field Camera Survey Programme with the INT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. NR 96 TC 21 Z9 21 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 21 PY 2010 VL 403 IS 1 BP 342 EP 352 DI 10.1111/j.1365-2966.2009.16118.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 579EW UT WOS:000276351600046 ER PT J AU Behar, E Kaspi, S Reeves, J Turner, TJ Mushotzky, R O'Brien, PT AF Behar, Ehud Kaspi, Shai Reeves, James Turner, T. J. Mushotzky, Richard O'Brien, Paul T. TI REMARKABLE SPECTRAL VARIABILITY OF PDS 456 SO ASTROPHYSICAL JOURNAL LA English DT Article DE quasars: individual (PDS 456); techniques: spectroscopic; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; XMM-NEWTON; MILKY-WAY; X-RAYS; ABSORPTION; QUASAR; OUTFLOW; SPECTROSCOPY; CONSTRAINTS; PDS-456 AB We report on the highest to date signal-to-noise ratio X-ray spectrum of the luminous quasar PDS 456, as obtained during two XMM-Newton orbits in 2007 September. The present spectrum is considerably different from several previous X-ray spectra recorded for PDS 456 since 1998. The ultra-high-velocity outflow seen as recently as 2007 February is not detected in absorption. Conversely, a significant reflection component is detected (Delta chi(2) = 313 compared to a simple absorbed power law). The reflection model suggests that the reflecting medium may be outflowing at a velocity v/c = -0.06 +/- 0.02 (Delta chi(2) = 28 compared to v/c = 0). The present spectrum is analyzed in the context of the previous ones in an attempt to understand all spectra within the framework of a single model. We examine whether an outflow with variable partial covering of the X-ray source along the line of sight that also reflects the source from other lines of sight can explain the dramatic variations in the broadband spectral curvature of PDS 456. It is established that absorption plays a major role in shaping the spectrum of other epochs, while the 2007 XMM-Newton spectrum is dominated by reflection, and the coverage of the source by the putative outflow is small (<20%). C1 [Behar, Ehud; Mushotzky, Richard] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kaspi, Shai] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Reeves, James] Univ Keele, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [O'Brien, Paul T.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Behar, E (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. FU NASA [08-ADP08-0076]; Kitzman Fellowship; Israel-Niedersachsen collaboration program FX E. B. acknowledges funding from a NASA XMM-Newton Guest Observer grant and from NASA grant 08-ADP08-0076. S. K. is supported at the Technion by the Kitzman Fellowship and by a grant from the Israel-Niedersachsen collaboration program. NR 29 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 26 EP 37 DI 10.1088/0004-637X/712/1/26 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900003 ER PT J AU Duchene, G McCabe, C Pinte, C Stapelfeldt, KR Menard, F Duvert, G Ghez, AM Maness, HL Bouy, H Navascues, DBY Morales-Calderon, M Wolf, S Padgett, DL Brooke, TY Noriega-Crespo, A AF Duchene, G. McCabe, C. Pinte, C. Stapelfeldt, K. R. Menard, F. Duvert, G. Ghez, A. M. Maness, H. L. Bouy, H. Barrado y Navascues, D. Morales-Calderon, M. Wolf, S. Padgett, D. L. Brooke, T. Y. Noriega-Crespo, A. TI PANCHROMATIC OBSERVATIONS AND MODELING OF THE HV TAU C EDGE-ON DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; protoplanetary disks; stars: individual (HV Tau); stars: pre-main sequence ID MAIN-SEQUENCE STARS; SPECTRAL ENERGY-DISTRIBUTIONS; HH-30 CIRCUMSTELLAR DISK; ADAPTIVE OPTICS SYSTEM; HERBIG-HARO FLOW; T-TAURI; PROTOPLANETARY DISKS; GRAIN-GROWTH; CIRCUMBINARY RING; MULTIWAVELENGTH OBSERVATIONS AB We present new high spatial resolution (less than or similar to 0 ''.1) 1-5 mu m adaptive optics images, interferometric 1.3 mm continuum and (12)CO 2-1 maps, and 350 mu m, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images unambiguously demonstrate that HV Tau AB-C is a common proper motion pair. They further reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 mu m, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of two years. We further detect a radial velocity gradient in the disk in our (12)CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around a 0.5-1 M(circle dot) central star, suggesting that it could be the most massive component in the triple system. To obtain a global representation of the HV Tau C disk, we search for a model that self-consistently reproduces observations of the disk from the visible regime up to millimeter wavelengths. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. While both grain growth and stratification have already been suggested in many disks, only a panchromatic analysis, such as presented here, can provide a complete picture of the structure of a disk, a necessary step toward quantitatively testing the predictions of numerical models of disk evolution. C1 [Duchene, G.; Maness, H. L.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Duchene, G.; Pinte, C.; Menard, F.; Duvert, G.] Univ Grenoble 1, CNRS, LAOG, UMR 5571, F-38041 Grenoble 09, France. [McCabe, C.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Pinte, C.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Stapelfeldt, K. R.] CALTECH, JPL, Pasadena, CA 91109 USA. [Ghez, A. M.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Bouy, H.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Barrado y Navascues, D.; Morales-Calderon, M.] CSIC, Lab Astrofis Esteler & Exoplanetas, CAB, INTA, Madrid 28691, Spain. [Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Padgett, D. L.; Brooke, T. Y.; Noriega-Crespo, A.] CALTECH, SSC, Pasadena, CA 91125 USA. RP Duchene, G (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM gduchene@astro.berkeley.edu RI Stapelfeldt, Karl/D-2721-2012; Barrado Navascues, David/C-1439-2017; Morales-Calderon, Maria/C-8384-2017; OI Barrado Navascues, David/0000-0002-5971-9242; Morales-Calderon, Maria/0000-0001-9526-9499; Bouy, Herve/0000-0002-7084-487X FU National Science Foundation Science and Technology Center for Adaptive Optics [AST-9876783]; Programme National de Physique Stellaire of CNRS/INSU (France); Agence Nationale de la Recherche [ANR-07BLAN-0221]; European Commission [PIEF-GA-2008-220891]; Intel Corporation; Hewlett-Packard Corporation; IBM Corporation; National Science Foundation [EIA-0303575]; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; Associates of the California Institute of Technology; states of California, Illinois and Maryland; National Science Foundation; W.M. Keck Foundation FX We are indebted to all members of the GEODE group for many fruitful discussions about modeling of edge-on protoplanetary disks, and in particular to Marshall Perrin for developing some of the model analysis tools used in this project. We are grateful to Darren Dowell for his help with the astrometric calibration of our CSO data and to the CARMA staff for conducting the observations presented in this paper. The work presented here has been funded in part by National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783, by the Programme National de Physique Stellaire of CNRS/INSU (France), and by the Agence Nationale de la Recherche through contract ANR-07BLAN-0221. C. P. acknowledges the funding from the European Commission's Seventh Framework Program as a Marie Curie Intra-European Fellow (PIEF-GA-2008-220891). The authors acknowledge the contribution from Intel Corporation, Hewlett-Packard Corporation, IBM Corporation, and the National Science Foundation grant EIA-0303575 in making hardware and software available for the CITRIS Cluster which was used in producing some of the model computations presented in this paper. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the Associates of the California Institute of Technology, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 95 TC 30 Z9 30 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 112 EP 129 DI 10.1088/0004-637X/712/1/112 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900010 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grove, JE Guillemot, L Guiriec, S Gustafsson, M Harding, AK Hays, E Horan, D Hughes, RE Jackson, MS Jeltema, TE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Profumo, S Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rodriguez, AY Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sellerholm, A Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M Bullock, JS Kaplinghat, M Martinez, GD AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Harding, A. K. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Jeltema, T. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sellerholm, A. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. Bullock, James S. Kaplinghat, Manoj Martinez, Gregory D. TI OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; gamma rays: galaxies ID VELOCITY DISPERSION PROFILES; EXPLORING HALO SUBSTRUCTURE; GAMMA-RAY EMISSION; LOCAL GROUP; SUPERSYMMETRY-BREAKING; LIKELIHOOD ANALYSIS; GIANT STARS; URSA-MINOR; SEGUE 1; SATELLITE AB We report on the observations of 14 dwarf spheroidal galaxies (dSphs) with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky gamma-ray survey in the 20 MeV to > 300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected gamma-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dSphs, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant gamma-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the gamma-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10(-9) photons cm(-2) s(-1). Using recent stellar kinematic data, the gamma-ray flux limits are combined with improved determinations of the dark matter density profile in eight of the 14 candidate dwarfs to place limits on the pair-annihilation cross section of WIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e. g., in models where supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e(+)e(-) data, including low-mass wino-like neutralinos and models with TeV masses pair annihilating into muon-antimuon pairs. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA,IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Jackson, M. S.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Sellerholm, A.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CNRS, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, IN2P3, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Jeltema, T. E.] UCO, Lick Observ, Santa Cruz, CA 95064 USA. [Kataoka, J.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencias Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Bullock, James S.; Kaplinghat, Manoj; Martinez, Gregory D.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM cohen@slac.stanford.edu; farnier@lpta.in2p3.fr; tesla@ucolick.org; profumo@scipp.ucsc.edu RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Bullock, James/K-1928-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Thompson, David/0000-0001-5217-9135; Reimer, Olaf/0000-0001-6953-1385; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Bullock, James/0000-0003-4298-5082; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135 FU Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden FX We would like to thank the referee for valuable comments and improvements to the paper. Extended discussions with M. Geha, J. Simon, L. Strigari, and J. Siegal-Gaskins are gratefully acknowledged. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. NR 76 TC 197 Z9 198 U1 4 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 147 EP 158 DI 10.1088/0004-637X/712/1/147 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900013 ER PT J AU Ramesh, R Kathiravan, C Kartha, SS Gopalswamy, N AF Ramesh, R. Kathiravan, C. Kartha, Sreeja S. Gopalswamy, N. TI RADIOHELIOGRAPH OBSERVATIONS OF METRIC TYPE II BURSTS AND THE KINEMATICS OF CORONAL MASS EJECTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar-terrestrial relations; Sun: activity; Sun: corona; Sun: radio radiation ID SUN-EARTH CONNECTION; OUTER SOLAR CORONA; RADIO-BURSTS; ACCELERATION PHASE; QUIET SUN; FLARES; CMES; WAVELENGTHS; SCATTERING; EMISSION AB Assuming that metric type II radio bursts from the Sun are due to magnetohydrodynamic shocks driven by coronal mass ejections (CMEs), we estimate the average CME acceleration from its source region up to the position of the type II burst. The acceleration values are in the range approximate to 600-1240 m s(-2), which are consistent with values obtained using non-radio methods. We also find that (1) CMEs with comparatively larger acceleration in the low corona are associated with soft X-ray flares of higher energy; the typical acceleration of a CME associated with X1.0 class soft X-ray flare being approximate to 1020 m s(-2), and (2) CMEs with comparatively higher speed in the low corona slow down quickly at large distances from the Sun-the deceleration of a CME with a typical speed of 1000 km s(-1) being approximate to-15 m s(-2) in the distance range of approximate to 3-32 R-circle dot. C1 [Ramesh, R.; Kathiravan, C.; Kartha, Sreeja S.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ramesh, R (reprint author), Indian Inst Astrophys, Bangalore 560034, Karnataka, India. EM ramesh@iiap.res.in RI Gopalswamy, Nat/D-3659-2012; OI Gopalswamy, Nat/0000-0001-5894-9954 NR 41 TC 14 Z9 14 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 188 EP 193 DI 10.1088/0004-637X/712/1/188 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900016 ER PT J AU Madzunkov, SM MacAskill, JA Chutjian, A AF Madzunkov, S. M. MacAskill, J. A. Chutjian, A. TI FORMATION OF CARBON DIOXIDE, METHANOL, ETHANOL, AND FORMIC ACID ON AN ICY GRAIN ANALOG USING FAST OXYGEN ATOMS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; circumstellar matter; ISM: molecules; stars: protostars; stars: winds, outflows ID ELECTRON-IMPACT; MOLECULES; IONIZATION; CHEMISTRY; CLOUDS AB Carbon dioxide (CO(2)), methanol (CH(3)OH), ethanol (CH(3)CH(2)OH), and formic acid (HCOOH) have been formed in collisions of a superthermal, 9 eV beam of O((3)P) atoms with CH(4) molecules, with an over coat of CO molecules, adsorbed on a gold surface at 4.8 K. The products are detected using temperature programmed-desorption and quadrupole mass spectrometry. Identification of the species is carried out through use of the Metropolis random walk algorithm as constrained by the fractionation patterns of the detected species. Relative formation yields are reported and reaction sequences are given to account for possible formation routes. C1 [Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.] CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, Pasadena, CA 91109 USA. RP Madzunkov, SM (reprint author), CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration, California Institute of Technology FX This work was carried out at JPL/Caltech and was supported by the National Aeronautics and Space Administration through agreement with the California Institute of Technology, Copyright 2009, California Institute of Technology. NR 16 TC 7 Z9 7 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 194 EP 197 DI 10.1088/0004-637X/712/1/194 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900017 ER PT J AU Turner, TJ Miller, L Reeves, JN Lobban, A Braito, V Kraemer, SB Crenshaw, DM AF Turner, T. J. Miller, L. Reeves, J. N. Lobban, A. Braito, V. Kraemer, S. B. Crenshaw, D. M. TI SIGNIFICANT X-RAY LINE EMISSION IN THE 5-6 keV BAND OF NGC 4051 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 4051); galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; BLACK-HOLE; XMM-NEWTON; SPECTRAL VARIABILITY; ACCRETION FLOWS; ABSORPTION; SPECTROSCOPY; NGC-4051; COMPLEX; CHANDRA AB A Suzaku X-ray observation of NGC 4051 taken during 2005 November reveals line emission at 5.44 keV in the rest frame of the galaxy which does not have an obvious origin in known rest-frame atomic transitions. The improvement to the fit statistic when this line is accounted for establishes its reality at > 99.9% confidence: we have also verified that the line is detected in the three X-ray Imaging Spectrometer units independently. Comparison between the data and Monte Carlo simulations shows that the probability of the line being a statistical fluctuation is p < 3.3 x 10(-4). Consideration of three independent line detections in Suzaku data taken at different epochs yields a probability p < 3 x 10(-11) and thus conclusively demonstrates that it cannot be a statistical fluctuation in the data. The new line and a strong component of Fe K alpha emission from neutral material are prominent when the source flux is low, during 2005. Spectra from 2008 show evidence for a line consistent with having the same flux and energy as that observed during 2005, but inconsistent with having a constant equivalent width against the observed continuum. The stability of the line flux and energy suggests that it may not arise in transient hotspots, as has been suggested for similar lines in other sources, but could arise from a special location in the reprocessor, such as the inner edge of the accretion disk. Alternatively, the line energy may be explained by spallation of Fe into Cr, as discussed in a companion paper. C1 [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.; Kraemer, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Reeves, J. N.; Lobban, A.] Univ Keele, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kraemer, S. B.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Crenshaw, D. M.] Georgia State Univ, Dept Phys & Astron, Astron Off, Atlanta, GA 30303 USA. RP Turner, TJ (reprint author), Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RI XRAY, SUZAKU/A-1808-2009; OI Braito, Valentina/0000-0002-2629-4989 FU NASA [NNX08AL50G]; STFC [PP/E001114/1] FX T.J.T. acknowledges NASA grant NNX08AL50G. L. M. acknowledges STFC grant number PP/E001114/1. We are grateful to the anonymous referee whose comments significantly improved this manuscript: we also thank the Suzaku operations team for performing this observation and providing software and calibration for the data analysis. This research has also made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. NR 38 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 209 EP 217 DI 10.1088/0004-637X/712/1/209 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900019 ER PT J AU Iro, N Deming, LD AF Iro, N. Deming, L. D. TI A TIME-DEPENDENT RADIATIVE MODEL FOR THE ATMOSPHERE OF THE ECCENTRIC EXOPLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: individual (HD 80606b, HD 17156b); radiative transfer ID PLANET HD 17156B; TRANSITING PLANET; EXTRASOLAR PLANET; HOT JUPITERS; ORBIT; PARAMETERS; 209458B; PERIOD; EVOLUTION; SPECTRA AB We present a time-dependent radiative model for the atmosphere of extrasolar planets that takes into account the eccentricity of their orbit. In addition to the modulation of stellar irradiation by the varying planet-star distance, the pseudo-synchronous rotation of the planets may play a significant role. We include both of these time-dependent effects when modeling the planetary thermal structure. We investigate the thermal structure and spectral characteristics for time-dependent stellar heating for two highly eccentric planets. Finally, we discuss observational aspects for those planets suitable for Spitzer measurements and investigate the role of the rotation rate. C1 [Iro, N.; Deming, L. D.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. RP Iro, N (reprint author), NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Code 693, Greenbelt, MD 20771 USA. EM nicolas.iro@nasa.gov; leo.d.deming@nasa.gov FU NASA, Goddard Space Flight Center FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administrated by Oak Ridge Associated Universities through a contract with NASA. NR 35 TC 19 Z9 19 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 218 EP 225 DI 10.1088/0004-637X/712/1/218 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900020 ER PT J AU Najita, JR Carr, JS Strom, SE Watson, DM Pascucci, I Hollenbach, D Gorti, U Keller, L AF Najita, Joan R. Carr, John S. Strom, Stephen E. Watson, Dan M. Pascucci, Ilaria Hollenbach, David Gorti, Uma Keller, Luke TI SPITZER SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; planetary systems; protoplanetary disks; stars: individual (TW Hya); stars: pre-main sequence ID NE-II EMISSION; MAIN-SEQUENCE STARS; MAGNETOSPHERIC ACCRETION MODELS; IRRADIATED PROTOPLANETARY DISKS; RECOMBINATION-LINE-INTENSITIES; HIGH-RESOLUTION SPECTROSCOPY; YOUNG CIRCUMSTELLAR DISKS; PLANET-FORMING REGION; X-RAY SPECTROSCOPY; HIGH-MASS PLANETS AB We report sensitive Spitzer IRS spectroscopy in the 10-20 mu m region of TW Hya, a nearby T Tauri star. The unusual spectral energy distribution of the source, that of a "transition object," indicates that the circumstellar disk in the system has experienced significant evolution, possibly as a result of planet formation. The spectrum we measure is strikingly different from that of other classical T Tauri stars reported in the literature, displaying no strong emission features of H(2)O, C(2)H(2), or HCN. The difference suggests that the inner planet formation region (less than or similar to 5 AU) of the gaseous disk has evolved physically and/or chemically away from the classical T Tauri norm. Nevertheless, TW Hya does show a rich spectrum of emission features of atoms (H I, [Ne II], and [Ne III]) and molecules (H(2), OH, CO(2), HCO(+), and possibly CH(3)), some of which are also detected in classical T Tauri spectra. The properties of the neon emission are consistent with an origin for the emission in a disk irradiated by X-rays (with a possible role for additional irradiation by stellar EUV). The OH emission we detect, which also likely originates in the disk, is hot, arising from energy levels up to 23,000 K above ground, and may be produced by the UV photodissociation of water. The H I emission is surprisingly strong, with relative strengths that are consistent with case B recombination. While the absence of strong molecular emission in the 10-20 mu m region may indicate that the inner region of the gaseous disk has been partly cleared by an orbiting giant planet, chemical and/or excitation effects may be responsible instead. We discuss these issues and how our results bear on our understanding of the evolutionary state of the TW Hya disk. C1 [Najita, Joan R.; Strom, Stephen E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Carr, John S.] USN, Res Lab, Washington, DC 20375 USA. [Watson, Dan M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Pascucci, Ilaria] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hollenbach, David; Gorti, Uma] SETI Inst, Mountain View, CA 94043 USA. [Gorti, Uma] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Keller, Luke] Ithaca Coll, Dept Phys, Ithaca, NY 14850 USA. RP Najita, JR (reprint author), Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. FU NASA FX We are grateful to Al Glassgold, Barbara Ercolano, and DavidArdila for interesting and useful discussions regarding the interpretation of the observations. J. N. thanks for their generous hospitality Tom Soifer and the Spitzer Science Center, where much of the analysis for this paper was carried out. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Basic research in infrared astronomy at the Naval Research Laboratory is supported by 6.1 base funding. NR 106 TC 57 Z9 57 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 274 EP 286 DI 10.1088/0004-637X/712/1/274 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900025 ER PT J AU Vercellone, S D'Ammando, F Vittorini, V Donnarumma, I Pucella, G Tavani, M Ferrari, A Raiteri, CM Villata, M Romano, P Krimm, H Tiengo, A Chen, AW Giovannini, G Venturi, T Giroletti, M Kovalev, YY Sokolovsky, K Pushkarev, AB Lister, ML Argan, A Barbiellini, G Bulgarelli, A Caraveo, P Cattaneo, PW Cocco, V Costa, E Del Monte, E De Paris, G Di Cocco, G Evangelista, Y Feroci, M Fiorini, M Fornari, F Froysland, T Fuschino, F Galli, M Gianotti, F Labanti, C Lapshov, I Lazzarotto, F Lipari, P Longo, F Giuliani, A Marisaldi, M Mereghetti, S Morselli, A Pellizzoni, A Pacciani, L Perotti, F Piano, G Picozza, P Pilia, M Prest, M Rapisarda, M Rappoldi, A Sabatini, S Soffitta, P Striani, E Trifoglio, M Trois, A Vallazza, E Zambra, A Zanello, D Pittori, C Verrecchia, F Santolamazza, P Giommi, P Colafrancesco, S Salotti, L Agudo, I Aller, HD Aller, MF Arkharov, AA Bach, U Bachev, R Beltrame, P Benitez, E Bottcher, M Buemi, CS Calcidese, P Capezzali, D Carosati, D Chen, WP Da Rio, D Di Paola, A Dolci, M Dultzin, D Forne, E Gomez, JL Gurwell, MA Hagen-Thorn, VA Halkola, A Heidt, J Hiriart, D Hovatta, T Hsiao, HY Jorstad, SG Kimeridze, G Konstantinova, TS Kopatskaya, EN Koptelova, E Kurtanidze, O Lahteenmaki, A Larionov, VM Leto, P Ligustri, R Lindfors, E Lopez, JM Marscher, AP Mujica, R Nikolashvili, M Nilsson, K Mommert, M Palma, N Pasanen, M Roca-Sogorb, M Ros, JA Roustazadeh, P Sadun, AC Saino, J Sigua, L Sorcia, M Takalo, LO Tornikoski, M Trigilio, C Turchetti, R Umana, G AF Vercellone, S. D'Ammando, F. Vittorini, V. Donnarumma, I. Pucella, G. Tavani, M. Ferrari, A. Raiteri, C. M. Villata, M. Romano, P. Krimm, H. Tiengo, A. Chen, A. W. Giovannini, G. Venturi, T. Giroletti, M. Kovalev, Y. Y. Sokolovsky, K. Pushkarev, A. B. Lister, M. L. Argan, A. Barbiellini, G. Bulgarelli, A. Caraveo, P. Cattaneo, P. W. Cocco, V. Costa, E. Del Monte, E. De Paris, G. Di Cocco, G. Evangelista, Y. Feroci, M. Fiorini, M. Fornari, F. Froysland, T. Fuschino, F. Galli, M. Gianotti, F. Labanti, C. Lapshov, I. Lazzarotto, F. Lipari, P. Longo, F. Giuliani, A. Marisaldi, M. Mereghetti, S. Morselli, A. Pellizzoni, A. Pacciani, L. Perotti, F. Piano, G. Picozza, P. Pilia, M. Prest, M. Rapisarda, M. Rappoldi, A. Sabatini, S. Soffitta, P. Striani, E. Trifoglio, M. Trois, A. Vallazza, E. Zambra, A. Zanello, D. Pittori, C. Verrecchia, F. Santolamazza, P. Giommi, P. Colafrancesco, S. Salotti, L. Agudo, I. Aller, H. D. Aller, M. F. Arkharov, A. A. Bach, U. Bachev, R. Beltrame, P. Benitez, E. Boettcher, M. Buemi, C. S. Calcidese, P. Capezzali, D. Carosati, D. Chen, W. P. Da Rio, D. Di Paola, A. Dolci, M. Dultzin, D. Forne, E. Gomez, J. L. Gurwell, M. A. Hagen-Thorn, V. A. Halkola, A. Heidt, J. Hiriart, D. Hovatta, T. Hsiao, H-Y. Jorstad, S. G. Kimeridze, G. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Kurtanidze, O. Lahteenmaki, A. Larionov, V. M. Leto, P. Ligustri, R. Lindfors, E. Lopez, J. M. Marscher, A. P. Mujica, R. Nikolashvili, M. Nilsson, K. Mommert, M. Palma, N. Pasanen, M. Roca-Sogorb, M. Ros, J. A. Roustazadeh, P. Sadun, A. C. Saino, J. Sigua, L. Sorcia, M. Takalo, L. O. Tornikoski, M. Trigilio, C. Turchetti, R. Umana, G. TI MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. III. EIGHTEEN MONTHS OF AGILE MONITORING OF THE "CRAZY DIAMOND" SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; quasars: general; quasars: individual (3C 454.3); radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; RAY TIMING EXPLORER; BL-LAC OBJECTS; GAMMA-RAY; X-RAY; BLAZAR 3C-454.3; XMM-NEWTON; VARIABILITY PROPERTIES; INFRARED OBSERVATIONS; SPACE MISSION AB We report on 18 months of multiwavelength observations of the blazar 3C 454.3 ( Crazy Diamond) carried out in the period 2007 July-2009 January. In particular, we show the results of the AGILE campaigns which took place on 2008 May-June, 2008 July-August, and 2008 October-2009 January. During the 2008 May-2009 January period, the source average flux was highly variable, with a clear fading trend toward the end of the period, from an average. gamma-ray flux F-E>100 (MeV) greater than or similar to 200 x 10(-8) photons cm(-2) s(-1) in 2008 May-June, to F-E>100 MeV similar to 80 x 10(-8) photons cm(-2) s(-1) in 2008 October-2009 January. The average gamma-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law, showing a moderate softening ( from Gamma(GRID) similar to 2.0 to Gamma(GRID) similar to 2.2) toward the end of the observing campaign. Only 3 sigma upper limits can be derived in the 20-60 keV energy band with Super-AGILE, because the source was considerably off-axis during the whole time period. In 2007 July-August and 2008 May-June, 3C 454.3 was monitored by Rossi X-ray Timing Explorer (RXTE). The RXTE/Proportional Counter Array (PCA) light curve in the 3-20 keV energy band shows variability correlated with the gamma-ray one. The RXTE/PCA average flux during the two time periods is F3-20 keV = 8.4 x 10(-11) erg cm(-2) s(-1), and F3-20 keV = 4.5 x 10(-11) erg cm(-2) s(-1), respectively, while the spectrum ( a power law with photon index Gamma(PCA) = 1.65 +/- 0.02) does not show any significant variability. Consistent results are obtained with the analysis of the RXTE/High-Energy X-Ray Timing Experiment quasi-simultaneous data. We also carried out simultaneous Swift observations during all AGILE campaigns. Swift/XRT detected 3C 454.3 with an observed flux in the 2-10 keV energy band in the range (0.9-7.5) x 10(-11) erg cm(-2) s(-1) and a photon index in the range Gamma(XRT) = 1.33-2.04. In the 15-150 keV energy band, when detected, the source has an average flux of about 5 mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period in the radio, millimeter, near-IR, and optical bands. The observations show an extremely variable behavior at all frequencies, with flux peaks almost simultaneous with those at higher energies. A correlation analysis between the optical and the gamma-ray fluxes shows that the gamma-optical correlation occurs with a time lag of tau = - 0.4(-0.8)(+0.6) days, consistent with previous findings for this source. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations in the period 2007 July-2009 February shows an increasing trend of the core radio flux, anti-correlated with the higher frequency data, allowing us to derive the value of the source magnetic field. Finally, the modeling of the broadband spectral energy distributions for the still unpublished data, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year. C1 [Vercellone, S.; Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.; Vittorini, V.; Donnarumma, I.; Tavani, M.; Argan, A.; Cocco, V.; Costa, E.; Del Monte, E.; De Paris, G.; Evangelista, Y.; Feroci, M.; Froysland, T.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Piano, G.; Sabatini, S.; Soffitta, P.; Striani, E.; Trois, A.] INAF IASF Roma, I-00133 Rome, Italy. [D'Ammando, F.; Tavani, M.] Univ Roma Tor Vergata, Dip Fis, I-00133 Rome, Italy. [Vittorini, V.; Tavani, M.; Ferrari, A.; Chen, A. W.] CNR, I-10133 Turin, Italy. [Pucella, G.; Rapisarda, M.] ENEA Roma, I-00044 Frascati, Roma, Italy. [Ferrari, A.] Univ Turin, Dip Fis, I-10125 Turin, Italy. [Raiteri, C. M.; Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Krimm, H.] CRESST, Greenbelt, MD USA. [Krimm, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H.] Univ Space Res Assoc, Columbia, MD USA. [Tiengo, A.; Chen, A. W.; Caraveo, P.; Fiorini, M.; Fornari, F.; Giuliani, A.; Mereghetti, S.; Perotti, F.; Pilia, M.; Zambra, A.] INAF IASF Milano, I-20133 Milan, Italy. [Giovannini, G.] Univ Bologna, Dip Astron, I-40127 Bologna, Italy. [Giovannini, G.; Venturi, T.; Giroletti, M.] INAF IRA, I-40129 Bologna, Italy. [Kovalev, Y. Y.; Sokolovsky, K.; Pushkarev, A. B.; Bach, U.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kovalev, Y. Y.; Sokolovsky, K.; Vallazza, E.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Pushkarev, A. B.; Arkharov, A. A.; Larionov, V. M.] Pulkovo Observ, St Petersburg, Russia. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98049 Nauchnyi, Crimea, Ukraine. [Lister, M. L.] Purdue Univ, W Lafayette, IN 47906 USA. [Barbiellini, G.; Longo, F.] Dip Fis, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Bulgarelli, A.; Di Cocco, G.; Fuschino, F.; Gianotti, F.; Labanti, C.; Marisaldi, M.; Trifoglio, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Cattaneo, P. W.; Rappoldi, A.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Galli, M.] ENEA, I-40129 Bologna, Italy. [Lapshov, I.] Acad Sci, IKI, Moscow, Russia. [Lipari, P.; Zanello, D.] INFN Roma La Spaienza, I-00185 Rome, Italy. [Morselli, A.; Picozza, P.] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Pellizzoni, A.; Pilia, M.] Osservatorio Astron Cagliari, INAF, I-09012 Capoterra, Italy. [Pilia, M.; Prest, M.] Univ Insubria, Dipartimento Fis, I-22100 Como, Italy. [Pittori, C.; Verrecchia, F.; Santolamazza, P.; Giommi, P.; Colafrancesco, S.] ASI ASDC, I-00044 Frascati, Roma, Italy. [Salotti, L.] ASI, I-00198 Rome, Italy. [Agudo, I.; Gomez, J. L.; Roca-Sogorb, M.] CSIC, Inst Astrofis Andalucia, Madrid, Spain. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bachev, R.] Bulgarian Acad Sci, Inst Astron, BG-1040 Sofia, Bulgaria. [Benitez, E.; Dultzin, D.; Hiriart, D.; Lopez, J. M.; Sorcia, M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Boettcher, M.; Palma, N.; Roustazadeh, P.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.] Osserv Astrofis Catania, INAF, Catania, Italy. [Calcidese, P.] Osservatorio Astron Reg Autonoma Valle Aosta, Aosta, Italy. [Chen, W. P.; Hsiao, H-Y.; Koptelova, E.] Natl Cent Univ, Inst Astron, Taipei, Taiwan. [Di Paola, A.] Osserv Astron Roma, INAF, Rome, Italy. [Forne, E.; Ros, J. A.] Agrupacio Astron Sabadell, Sabadell, Spain. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Hagen-Thorn, V. A.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionov, V. M.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Hagen-Thorn, V. A.; Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Halkola, A.; Lindfors, E.; Nilsson, K.; Pasanen, M.; Saino, J.; Takalo, L. O.] Univ Turku, Tuorla Observ, Dept Phys & Astron, SF-20500 Turku, Finland. [Heidt, J.; Mommert, M.] Heidelberg Univ, Landessternwarte Heidelberg Konigstuhl, ZAH, Heidelberg, Germany. [Hovatta, T.; Lahteenmaki, A.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, Helsinki, Finland. [Jorstad, S. G.; Marscher, A. P.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Mujica, R.] INAOF, Mexico City, DF, Mexico. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80202 USA. RP Vercellone, S (reprint author), INAF IASF Palermo, Via Malfa 153, I-90146 Palermo, Italy. EM stefano@ifc.inaf.it RI Pushkarev, Alexander/M-9997-2015; Pittori, Carlotta/C-7710-2016; Morselli, Aldo/G-6769-2011; Lazzarotto, Francesco/J-4670-2012; Larionov, Valeri/H-1349-2013; Kopatskaya, Evgenia/H-4720-2013; Grishina, Tatiana/H-6873-2013; Hagen-Thorn, Vladimir/H-3983-2013; Kovalev, Yuri/J-5671-2013; Lahteenmaki, Anne/L-5987-2013; Kurtanidze, Omar/J-6237-2014; Sokolovsky, Kirill/D-2246-2015; Trifoglio, Massimo/F-5302-2015; Agudo, Ivan/G-1701-2015; Jorstad, Svetlana/H-6913-2013 OI Giovannini, Gabriele/0000-0003-4916-6362; Marisaldi, Martino/0000-0002-4000-3789; Vercellone, Stefano/0000-0003-1163-1396; Raiteri, Claudia Maria/0000-0003-1784-2784; MEREGHETTI, SANDRO/0000-0003-3259-7801; Giroletti, Marcello/0000-0002-8657-8852; Tavani, Marco/0000-0003-2893-1459; Lazzarotto, Francesco/0000-0003-4871-4072; Costa, Enrico/0000-0003-4925-8523; giommi, paolo/0000-0002-2265-5003; Donnarumma, Immacolata/0000-0002-4700-4549; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; Tiengo, Andrea/0000-0002-6038-1090; Venturi, Tiziana/0000-0002-8476-6307; Sabatini, Sabina/0000-0003-2076-5767; Caraveo, Patrizia/0000-0003-2478-8018; PREST, MICHELA/0000-0003-3161-4454; Verrecchia, Francesco/0000-0003-3455-5082; Fiorini, Mauro/0000-0001-8297-1983; Di Paola, Andrea/0000-0002-2189-8644; trois, alessio/0000-0002-3180-6002; Labanti, Claudio/0000-0002-5086-3619; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Picozza, Piergiorgio/0000-0002-7986-3321; Villata, Massimo/0000-0003-1743-6946; Fuschino, Fabio/0000-0003-2139-3299; Gianotti, Fulvio/0000-0003-4666-119X; Leto, Paolo/0000-0003-4864-2806; Pittori, Carlotta/0000-0001-6661-9779; Dolci, Mauro/0000-0001-8000-5642; Buemi, Carla Simona/0000-0002-7288-4613; Bulgarelli, Andrea/0000-0001-6347-0649; galli, marcello/0000-0002-9135-3228; Cattaneo, Paolo Walter/0000-0001-6877-6882; Pacciani, Luigi/0000-0001-6897-5996; Morselli, Aldo/0000-0002-7704-9553; Larionov, Valeri/0000-0002-4640-4356; Kopatskaya, Evgenia/0000-0001-9518-337X; Grishina, Tatiana/0000-0002-3953-6676; Hagen-Thorn, Vladimir/0000-0002-6431-8590; Kovalev, Yuri/0000-0001-9303-3263; Sokolovsky, Kirill/0000-0001-5991-6863; Trifoglio, Massimo/0000-0002-2505-3630; Agudo, Ivan/0000-0002-3777-6182; Jorstad, Svetlana/0000-0001-9522-5453 NR 66 TC 47 Z9 48 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 405 EP 420 DI 10.1088/0004-637X/712/1/405 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900035 ER PT J AU Hinkley, S Oppenheimer, BR Brenner, D Zimmerman, N Roberts, LC Parry, IR Soummer, R Sivaramakrishnan, A Simon, M Perrin, MD King, DL Lloyd, JP Bouchez, A Roberts, JE Dekany, R Beichman, C Hillenbrand, L Burruss, R Shao, M Vasisht, G AF Hinkley, Sasha Oppenheimer, Ben R. Brenner, Douglas Zimmerman, Neil Roberts, Lewis C., Jr. Parry, Ian R. Soummer, Remi Sivaramakrishnan, Anand Simon, Michal Perrin, Marshall D. King, David L. Lloyd, James P. Bouchez, Antonin Roberts, Jennifer E. Dekany, Richard Beichman, Charles Hillenbrand, Lynne Burruss, Rick Shao, Michael Vasisht, Gautam TI DISCOVERY AND CHARACTERIZATION OF A FAINT STELLAR COMPANION TO THE A3V STAR zeta VIRGINIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: adaptive optics; methods: data analysis; stars: individual (HIP66249, HR5107); techniques: image processing ID ADAPTIVE OPTICS SYSTEM; MASS-RATIO DISTRIBUTION; YOUNG BROWN DWARFS; MAIN-SEQUENCE; BINARY STARS; IMAGING SPECTROSCOPY; EXTRASOLAR PLANETS; CIRCUMSTELLAR DISK; ECLIPSING BINARY; HELIUM CONTENT AB Through the combination of high-order adaptive optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is similar to 7 mag fainter than its host star in the H band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168(-0.016)(+0.012) M(circle dot), giving a mass ratio for this system q = 0.082(-0.008)(+0.007). Assuming the two objects are coeval, this mass suggests an M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semimajor axis to be greater than or similar to 24.9 AU, the period greater than or similar to 124 yr, and eccentricity greater than or similar to 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT. C1 [Hinkley, Sasha; Hillenbrand, Lynne] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Sivaramakrishnan, Anand] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Zimmerman, Neil] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Roberts, Lewis C., Jr.; Roberts, Jennifer E.; Burruss, Rick; Shao, Michael; Vasisht, Gautam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Parry, Ian R.; King, David L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Sivaramakrishnan, Anand; Simon, Michal] SUNY Stony Brook, Stony Brook, NY USA. [Perrin, Marshall D.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90024 USA. [Lloyd, James P.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Bouchez, Antonin; Dekany, Richard] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Beichman, Charles] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Hinkley, S (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd,MC 249-17, Pasadena, CA 91125 USA. RI Lloyd, James/B-3769-2011 FU NASA (National Aeronautics and Space Administration) [NNG05GJ86G]; National Science Foundation [AST-0804417, 0334916, 0215793, 0520822]; internal Research and Technology Development funds; US Air Force; NSF [AST 98-76783] FX We thank the anonymous referee for his or her comments. This work was performed in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. The Lyot Project is based upon work supported by the National Science Foundation under grants AST-0804417, 0334916, 0215793, and 0520822, as well as grant NNG05GJ86G from the National Aeronautics and Space Administration under the Terrestrial Planet Finder Foundation Science Program. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded by internal Research and Technology Development funds. The Lyot Project gratefully acknowledges the support of the US Air Force and NSF in creating the special Advanced Technologies and Instrumentation opportunity that provides access to the AEOS telescope. Eighty percent of the funds for that program are provided by the US Air Force. This work is based on observations made at the Maui Space Surveillance System, operated by Detachment 15 of the U. S. Air Force Research Laboratory Directed Energy Directorate. This work has been partially supported by the NSF Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement AST 98-76783. The Lyot Project is also grateful to the Cordelia Corporation, Hilary and Ethel Lipsitz, the Vincent Astor Fund, Judy Vale, and an anonymous donor, who initiated the project. NR 74 TC 30 Z9 30 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 421 EP 428 DI 10.1088/0004-637X/712/1/421 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900036 ER PT J AU Moran, TG Davila, JM Thompson, WT AF Moran, Thomas G. Davila, Joseph M. Thompson, William T. TI THREE-DIMENSIONAL POLARIMETRIC CORONAL MASS EJECTION LOCALIZATION TESTED THROUGH TRIANGULATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; Sun: coronal mass ejections (CMEs) ID SOHO MISSION; STEREO; SECCHI AB We have tested the validity of the coronal mass ejection (CME) polarimetric reconstruction technique for the first time using triangulation and demonstrated that it can provide the angle and distance of CMEs to the plane of the sky. In this study, we determined the three-dimensional orientation of the CMEs that occurred on 2007 August 21 and 2007 December 31 using polarimetric observations obtained simultaneously with the Solar Terrestrial Relations Observatory/Sun Earth Connection Coronal and Heliospheric Investigation spacecraft COR1-A and COR1-B coronagraphs. We obtained the CME orientations using both the triangulation and polarimetric techniques and found that angles to the sky plane yielded by the two methods agree to within approximate to 5 degrees, validating the polarimetric reconstruction technique used to analyze CMEs observed with the Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph. In addition, we located the CME source regions using EUV and magnetic field measurements and found that the corresponding mean angles to the sky plane of those regions agreed with those yielded by the geometric and polarimetric methods within uncertainties. Furthermore, we compared the locations provided by polarimetric COR1 analysis with those determined from other analyses using COR2 observations combined with geometric techniques and forward modeling. We found good agreement with those studies relying on geometric techniques but obtained results contradictory to those provided by forward modeling. C1 [Moran, Thomas G.] Catholic Univ Amer, Washington, DC 20064 USA. [Moran, Thomas G.; Davila, Joseph M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thompson, William T.] Adnet Syst Inc, Lanham, MD 20771 USA. RP Moran, TG (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM moran@esa.nascom.nasa.gov RI Thompson, William/D-7376-2012 FU NASA Supporting Research and Technology Program; Living With a Star Program FX This work was supported by grants from the NASA Supporting Research and Technology Program and the Living With a Star Program, and carried out at the NASA Goddard Space Flight Center SOHO Experimental Analyzers Facility at the NASA Goddard Space Flight Center. NR 21 TC 23 Z9 23 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 453 EP 458 DI 10.1088/0004-637X/712/1/453 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900040 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN Meurer, C Michelson, PF Mitthumsiri, W Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohsugi, T Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M-H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Lee, S-H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. Meurer, C. Michelson, P. F. Mitthumsiri, W. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F-W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI OBSERVATION OF SUPERNOVA REMNANT IC 443 WITH THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; supernovae: individual (IC 443) ID XMM-NEWTON OBSERVATIONS; MHZ MASER EMISSION; ENERGY COSMIC-RAYS; X-RAY; MOLECULAR CLOUD; NOVA REMNANT; GAMMA-RAYS; NONTHERMAL EMISSION; IC-443; SHOCK AB We report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. With the high gamma-ray statistics and broad energy coverage provided by the LAT, we accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443. The emission region is extended in the energy band with theta(68) = 0 degrees.27 +/- 0 degrees.01(stat) +/- 0 degrees.03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. The combined gamma-ray spectrum (200 MeV < E < 2 TeV) is reproduced well by decays of neutral pions produced by a broken power-law proton spectrum with a break around 70 GeV. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Lee, S-H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Lee, S-H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe; Cheung, C. C.; Johnson, T. J.; Moiseev, A. A.; Vasileiou, V.; Venter, C.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Sci Data Ctr, ASI, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M-H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M-H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, Ctr Etud Spatiale Rayonnements, CNRS, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Porter, T. A.; Sadrozinski, H. F-W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Porter, T. A.; Sadrozinski, H. F-W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencias Espai, IEEC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, Unit Space Phys, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM kamae@slac.stanford.edu; francesco.giordano@ba.infn.it; arodrig@ieec.uab.es; dtorres@ieec.uab.es RI Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Johnson, Neil/G-3309-2014; Ozaki, Masanobu/K-1165-2013 OI Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT, as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 64 TC 144 Z9 145 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 459 EP 468 DI 10.1088/0004-637X/712/1/459 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900041 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chaplin, V Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Fishman, G Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Granot, J Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Haynes, RH Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Kocian, ML Komin, N Kouveliotou, C Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Preece, R Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Strickman, MS Suson, DJ Tagliaferri, G Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Tramacere, A Troja, E Uchiyama, Y Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chaplin, V. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Fishman, G. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Grondin, M-H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Haynes, R. H. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kocian, M. L. Komin, N. Kouveliotou, C. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F-W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Suson, D. J. Tagliaferri, G. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Uchiyama, Y. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Ylinen, T. Ziegler, M. TI FERMI DETECTION DELAYED GeV EMISSION FROM THE SHORT GAMMA-RAY BURST 081024B SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual (GRB 081024B) ID MERGING NEUTRON-STARS; HIGH-ENERGY NEUTRINOS; 28 FEBRUARY 1997; BATSE OBSERVATIONS; PROTONS; SPECTRA; CATALOG AB We report on the detailed analysis of the high-energy extended emission from the short gamma-ray burst (GRB) 081024B detected by the Fermi Gamma-ray Space Telescope. Historically, this represents the first clear detection of temporal extended emission from a short GRB. The light curve observed by the Fermi Gamma-ray Burst Monitor lasts approximately 0.8 s whereas the emission in the Fermi Large Area Telescope lasts for about 3 s. Evidence of longer lasting high-energy emission associated with long bursts has been already reported by previous experiments. Our observations, together with the earlier reported study of the bright short GRB 090510, indicate similarities in the high-energy emission of short and long GRBs and open the path to new interpretations. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F-W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F-W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ripken, J.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Chaplin, V.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; McBreen, S.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencias Espai, IEEC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Stamatikos, M.; Thompson, D. J.; Troja, E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.; Ripken, J.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M-H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M-H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, Marshall Space Flight Ctr, Duluth, MN 55812 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Haynes, R. H.] Univ Virginia, Charlottesville, VA 22904 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.; Nakamori, T.; Troja, E.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Knoedlseder, J.; Vilchez, N.] UPS, Ctr Etud Spatiale Rayonnements, CNRS, F-31028 Toulouse 4, France. [McBreen, S.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Meegan, C.] USRA, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tagliaferri, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM asano@phys.titech.ac.jp; narayana.bhat@nasa.gov; nicola.omodei@gmail.com RI Komin, Nukri/J-6781-2015; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012 OI Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Tagliaferri, Gianpiero/0000-0003-0121-0723; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; McBreen, Sheila/0000-0002-1477-618X; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888 FU NASA; DOE; CEA/Irfu; IN2P3/CNRS; ASI; INFN; MEXT; KEK; JAXA; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF; CNES FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 49 TC 47 Z9 47 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 558 EP 564 DI 10.1088/0004-637X/712/1/558 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900049 ER PT J AU Kaneko, Y Gogus, E Kouveliotou, C Granot, J Ramirez-Ruiz, E van der Horst, AJ Watts, AL Finger, MH Gehrels, N Pe'er, A van der Klis, M von Kienlin, A Wachter, S Wilson-Hodge, CA Woods, PM AF Kaneko, Yuki Goegues, Ersin Kouveliotou, Chryssa Granot, Jonathan Ramirez-Ruiz, Enrico van der Horst, Alexander J. Watts, Anna L. Finger, Mark H. Gehrels, Neil Pe'er, Asaf van der Klis, Michiel von Kienlin, Andreas Wachter, Stefanie Wilson-Hodge, Colleen A. Woods, Peter M. TI MAGNETAR TWISTS: FERMI/GAMMA-RAY BURST MONITOR DETECTION OF SGR J1550-5418 (vol 710, pg 1335, 2010) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Kaneko, Yuki; Goegues, Ersin] Sabanci Univ, TR-34956 Istanbul, Turkey. [Kouveliotou, Chryssa; van der Horst, Alexander J.; Wilson-Hodge, Colleen A.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Granot, Jonathan] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Watts, Anna L.; van der Klis, Michiel] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Finger, Mark H.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pe'er, Asaf] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [von Kienlin, Andreas] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Wachter, Stefanie] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Woods, Peter M.] Dynetics Inc, Huntsville, AL 35806 USA. RP Kaneko, Y (reprint author), Sabanci Univ, TR-34956 Istanbul, Turkey. EM yuki@sabanciuniv.edu RI Gehrels, Neil/D-2971-2012 NR 1 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 20 PY 2010 VL 712 IS 1 BP 761 EP 761 DI 10.1088/0004-637X/712/1/761 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 564NX UT WOS:000275222900067 ER PT J AU Altamirano, D Patruno, A Heinke, CO Markwardt, C Strohmayer, TE Linares, M Wijnands, R van der Klis, M Swank, JH AF Altamirano, D. Patruno, A. Heinke, C. O. Markwardt, C. Strohmayer, T. E. Linares, M. Wijnands, R. van der Klis, M. Swank, J. H. TI DISCOVERY OF A 205.89 Hz ACCRETING MILLISECOND X-RAY PULSAR IN THE GLOBULAR CLUSTER NGC 6440 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; globular clusters: individual (NGC 6440); pulsars: general; stars: neutron ID SAX J1748.9-2021; NEUTRON-STARS; NGC-6440; PULSATIONS; TRANSIENT; EMISSION AB We report on the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with RXTE on 2009 August 30, October 1 and October 28, during the decays of less than or similar to 4 day outbursts of a newly X-ray transient source in NGC 6440. By studying the Doppler shift of the pulsation frequency, we find that the system is an ultra-compact binary with an orbital period of 57.3 minutes and a projected semimajor axis of 6.22 lt-ms. Based on the mass function, we estimate a lower limit to the mass of the companion to be 0.0067 M-circle dot (assuming a 1.4 M-circle dot neutron star). This new pulsar shows the shortest outburst recurrence time among AMXPs (similar to 1 month). If this behavior does not cease, this AMXP has the potential to be one of the best sources in which to study how the binary system and the neutron star spin evolve. Furthermore, the characteristics of this new source indicate that there might exist a population of AMXPs undergoing weak outbursts which are undetected by current all-sky X-ray monitors. NGC 6440 is the only globular cluster to host two known AMXPs, while no AMXPs have been detected in any other globular cluster. C1 [Altamirano, D.; Patruno, A.; Linares, M.; Wijnands, R.; van der Klis, M.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. [Heinke, C. O.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Markwardt, C.; Strohmayer, T. E.; Swank, J. H.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [Markwardt, C.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Altamirano, D (reprint author), Univ Amsterdam, Astron Inst, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM d.altamirano@uva.nl RI Swank, Jean/F-2693-2012; OI Heinke, Craig/0000-0003-3944-6109 NR 42 TC 31 Z9 31 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2010 VL 712 IS 1 BP L58 EP L62 DI 10.1088/2041-8205/712/1/L58 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BV UT WOS:000275418200013 ER PT J AU Hanasoge, SM Duvall, TL DeRosa, ML AF Hanasoge, Shravan M. Duvall, Thomas L., Jr. DeRosa, Marc L. TI SEISMIC CONSTRAINTS ON INTERIOR SOLAR CONVECTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE convection; hydrodynamics; Sun: helioseismology; Sun: interior; Sun: oscillations; waves ID TIME-DISTANCE HELIOSEISMOLOGY; GIANT-CELLS; SENSITIVITY KERNELS; ROTATION; SURFACE; DEEP AB We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(circle dot) = 0.95 with spatial extent l < 20, where l is the spherical harmonic degree, comprises weak flow systems, on the order of 15 m s(-1) or less. Convective features deeper than r/R(circle dot) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves. C1 [Hanasoge, Shravan M.] Max Planck Inst Sonnensystemforsch, D-37191 Kaltenburg Lindau, Germany. [Hanasoge, Shravan M.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Duvall, Thomas L., Jr.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [DeRosa, Marc L.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. RP Hanasoge, SM (reprint author), Max Planck Inst Sonnensystemforsch, Max Planck Str 2, D-37191 Kaltenburg Lindau, Germany. EM hanasoge@mps.mpg.de RI Duvall, Thomas/C-9998-2012 FU German Aerospace Center (DLR) [FK Z 50 OL 0801]; Princeton University Department of Geosciences; NASA FX The simulations presented herewere performed on the Schirra supercomputer at NASA Ames. S. M. H. extends warm regards toward P. Scherrer for supporting a visit to Stanford over which some of the work was accomplished. We thank M. Miesch for sending us the ASH data used in Figure 5 and J. Toomre for helpful comments. S. M. H. acknowledges funding from the German Aerospace Center (DLR) through grant FK Z 50 OL 0801 "German Data Center for SDO" and the Princeton University Department of Geosciences. T. D. appreciates funding from NASA and the continued hospitality of the Stanford Solar Group. NR 26 TC 23 Z9 24 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2010 VL 712 IS 1 BP L98 EP L102 DI 10.1088/2041-8205/712/1/L98 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BV UT WOS:000275418200021 ER PT J AU Kashlinsky, A Atrio-Barandela, F Ebeling, H Edge, A Kocevski, D AF Kashlinsky, A. Atrio-Barandela, F. Ebeling, H. Edge, A. Kocevski, D. TI A NEW MEASUREMENT OF THE BULK FLOW OF X-RAY LUMINOUS CLUSTERS OF GALAXIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; diffuse radiation; early universe ID SCALE PECULIAR VELOCITIES; PREINFLATIONARY UNIVERSE; ANISOTROPY; REMNANTS; PROFILE; SAMPLE AB We present new measurements of the large-scale bulk flows of galaxy clusters based on five-year WMAP data and a significantly expanded X-ray cluster catalog. Our method probes the flow via measurements of the kinematic Sunyaev-Zel'dovich (SZ) effect produced by the hot gas in moving clusters. It computes the dipole in the cosmic microwave background data at cluster pixels, which preserves the SZ component while integrating down other contributions. Our improved catalog of over 1000 clusters enables us to further investigate possible systematic effects and, thanks to a higher median cluster redshift, allows us to measure the bulk flow to larger scales. We present a corrected error treatment and demonstrate that the more X-ray luminous clusters, while fewer in number, have much larger optical depth, resulting in a higher dipole and thus a more accurate flow measurement. This results in the observed correlation of the dipole derived at the aperture of zero monopole with the monopole measured over the cluster central regions. This correlation is expected if the dipole is produced by the SZ effect and cannot be caused by unidentified systematics (or primary cosmic microwave background anisotropies). We measure that the flow is consistent with approximately constant velocity out to at least similar or equal to 800 Mpc. The significance of the measured signal peaks around 500 h(70)(-1) Mpc, most likely because the contribution from more distant clusters becomes progressively more diluted by the WMAP beam. However, at present, we cannot rule out that these more distant clusters simply contribute less to the overall motion. C1 [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, SSAI, Greenbelt, MD 20771 USA. [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Atrio-Barandela, F.] Univ Salamanca, E-37008 Salamanca, Spain. [Ebeling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Edge, A.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Kocevski, D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Kashlinsky, A (reprint author), NASA, Goddard Space Flight Ctr, SSAI, Code 665, Greenbelt, MD 20771 USA. EM alexander.kashlinsky@nasa.gov RI Atrio-Barandela, Fernando/A-7379-2017; OI Atrio-Barandela, Fernando/0000-0002-2130-2513; Edge, Alastair/0000-0002-3398-6916 FU NASA [NNG04G089G/09-ADP09-0050]; Spanish Ministerio de Educacion y Ciencia/Junta de Castilla y Leon [FIS2006-05319/GR-234] FX We acknowledge NASA NNG04G089G/09-ADP09-0050 and FIS2006-05319/GR-234 grants from Spanish Ministerio de Educacion y Ciencia/Junta de Castilla y Leon. NR 24 TC 105 Z9 106 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 20 PY 2010 VL 712 IS 1 BP L81 EP L85 DI 10.1088/2041-8205/712/1/L81 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BV UT WOS:000275418200018 ER PT J AU Khan, SA Wahr, J Bevis, M Velicogna, I Kendrick, E AF Khan, Shfaqat Abbas Wahr, John Bevis, Michael Velicogna, Isabella Kendrick, Eric TI Spread of ice mass loss into northwest Greenland observed by GRACE and GPS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTH; SURFACE AB Greenland's main outlet glaciers have more than doubled their contribution to global sea level rise over the last decade. Recent work has shown that Greenland's mass loss is still increasing. Here we show that the ice loss, which has been well-documented over southern portions of Greenland, is now spreading up along the northwest coast, with this acceleration likely starting in late 2005. We support this with two lines of evidence. One is based on measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity mission, launched in March 2002. The other comes from continuous Global Positioning System (GPS) measurements from three long-term sites on bedrock adjacent to the ice sheet. The GRACE results provide a direct measure of mass loss averaged over scales of a few hundred km. The GPS data are used to monitor crustal uplift caused by ice mass loss close to the sites. The GRACE results can be used to predict crustal uplift, which can be compared with the GPS data. In addition to showing that the northwest ice sheet margin is now losing mass, the uplift results from both the GPS measurements and the GRACE predictions show rapid acceleration in southeast Greenland in late 2003, followed by a moderate deceleration in 2006. Because that latter deceleration is weak, southeast Greenland still appears to be losing ice mass at a much higher rate than it was prior to fall 2003. In a more general sense, the analysis described here demonstrates that GPS uplift measurements can be used in combination with GRACE mass estimates to provide a better understanding of ongoing Greenland mass loss; an analysis approach that will become increasingly useful as long time spans of data accumulate from the 51 permanent GPS stations recently deployed around the edge of the ice sheet as part of the Greenland GPS Network (GNET). Citation: Khan, S. A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick (2010), Spread of ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys. Res. Lett., 37, L06501, doi:10.1029/2010GL042460. C1 [Khan, Shfaqat Abbas] DTU Space, Dept Geodesy, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Bevis, Michael; Kendrick, Eric] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Wahr, John] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Wahr, John] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Khan, SA (reprint author), DTU Space, Dept Geodesy, Natl Space Inst, Maries Vej 30, DK-2100 Copenhagen, Denmark. EM abbas@space.dtu.dk RI Khan, Shfaqat/B-2664-2012; OI Khan, Shfaqat Abbas/0000-0002-2689-8563 FU NASA [NNX06AH37G, NNX08AF02G]; JPL [1259025]; NSF Office of Polar Programs FX Work at the University of Colorado (CU) was partially supported by NASA grants NNX06AH37G and NNX08AF02G and by JPL contract 1259025. Work at UC-Irvine was supported by grants from NASA's Cryospheric Science Program, Solid Earth and Natural Hazards Program, Terrestrial Hydrology Program, and by the NSF Office of Polar Programs. We thank Sean Swenson (CU) for providing GRACE degree one coefficients. NR 25 TC 93 Z9 93 U1 4 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 19 PY 2010 VL 37 AR L06501 DI 10.1029/2010GL042460 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 572TV UT WOS:000275857000006 ER PT J AU Cuzzi, JN Burns, JA Charnoz, S Clark, RN Colwell, JE Dones, L Esposito, LW Filacchione, G French, RG Hedman, MM Kempf, S Marouf, EA Murray, CD Nicholson, PD Porco, CC Schmidt, J Showalter, MR Spilker, LJ Spitale, JN Srama, R Sremcevic, M Tiscareno, MS Weiss, J AF Cuzzi, J. N. Burns, J. A. Charnoz, S. Clark, R. N. Colwell, J. E. Dones, L. Esposito, L. W. Filacchione, G. French, R. G. Hedman, M. M. Kempf, S. Marouf, E. A. Murray, C. D. Nicholson, P. D. Porco, C. C. Schmidt, J. Showalter, M. R. Spilker, L. J. Spitale, J. N. Srama, R. Sremcevic, M. Tiscareno, M. S. Weiss, J. TI An Evolving View of Saturn's Dynamic Rings SO SCIENCE LA English DT Review ID PROMETHEUS-PANDORA SYSTEM; SELF-GRAVITY WAKES; F-RING; B-RING; VISCOUS OVERSTABILITY; RADIAL STRUCTURE; CASSINI VIMS; A-RING; MOONLETS; SATELLITES AB We review our understanding of Saturn's rings after nearly 6 years of observations by the Cassini spacecraft. Saturn's rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks. C1 [Cuzzi, J. N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Burns, J. A.; Hedman, M. M.; Nicholson, P. D.; Tiscareno, M. S.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Charnoz, S.] Univ Paris Diderot, CEA, CNRS, Lab Astrophys Instrumentat Modelisat, F-91191 Gif Sur Yvette, France. [Clark, R. N.] US Geol Survey, Denver, CO 80225 USA. [Colwell, J. E.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Dones, L.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Esposito, L. W.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Filacchione, G.] Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [French, R. G.] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Kempf, S.; Srama, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Marouf, E. A.] San Jose State Univ, Dept Elect Engn, San Jose, CA 95192 USA. [Murray, C. D.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Porco, C. C.; Spitale, J. N.; Weiss, J.] Space Sci Inst, Cassini Imaging Cent Lab Operat CICLOPS, Boulder, CO 80301 USA. [Schmidt, J.] Univ Potsdam, Inst Phys & Astron, Potsdam, Germany. [Showalter, M. R.] SETI Inst, Mountain View, CA 94043 USA. [Spilker, L. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Weiss, J.] Carleton Coll, Northfield, MN 55057 USA. RP Cuzzi, JN (reprint author), NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. EM jeffrey.cuzzi@nasa.gov RI Tiscareno, Matthew/D-6963-2011; OI KEMPF, SASCHA/0000-0001-5236-3004; Filacchione, Gianrico/0000-0001-9567-0055 FU NASA; Italian Space Agency (ASI), Deutsches Zentrum fur Luft und Raumfahrt (DLR); Newton Institute, Universite Paris Diderot and CEA-Saclay; U.K. Science and Technology Facilities Council FX We applaud with gratitude the Cassini spacecraft engineering and operations teams. We thank the other members of the Cassini Rings Discipline Working group for their many contributions, not all of which could be described here. We thank our Ring Science Planning Team leaders at JPL-B. Wallis, K. Perry, C. Roumeliotis, R. Lange, and S. Brooks-and the observation planning and design specialists on all the teams represented here for their essential contributions to the mission's success. We acknowledge M. Lewis, H. Salo, and G. Stewart for the simulations and visualizations described in the SOM and for helpful comments. We also thank three anonymous reviewers, R. E. Johnson, R. Pappalardo, P. Kalas, and C. Niebur for helpful suggestions on presentation. The U.S. authors were supported by NASA through the Cassini Project and Cassini Data Analysis Program. Other support was provided by the Italian Space Agency (ASI), Deutsches Zentrum fur Luft und Raumfahrt (DLR), the Newton Institute, Universite Paris Diderot and CEA-Saclay, and the U.K. Science and Technology Facilities Council. NR 69 TC 42 Z9 42 U1 0 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAR 19 PY 2010 VL 327 IS 5972 BP 1470 EP 1475 DI 10.1126/science.1179118 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 570YQ UT WOS:000275715200037 PM 20299586 ER PT J AU Obland, MD Repasky, KS Nehrir, AR Carlsten, JL Shaw, JA AF Obland, Michael D. Repasky, Kevin S. Nehrir, Amin R. Carlsten, John L. Shaw, Joseph A. TI Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE lidar; absorption; semiconductor lasers; tunable lasers; remote sensing ID RAMAN LIDAR; FUTURE PERFORMANCE; LOWER STRATOSPHERE; UPPER TROPOSPHERE; DIAL MEASUREMENTS; LEANDRE-II; DYE-LASER; AEROSOL; SYSTEM; INSTRUMENTS AB This work describes the design and testing of a highly-tunable differential absorption lidar (DIAL) instrument utilizing an all-semiconductor transmitter. This new DIAL instrument transmitter has a highly-tunable external cavity diode laser (ECDL) as a seed laser source for two cascaded commercial tapered amplifiers. The transmitter has the capability of tuning over a range of similar to 17 nm centered at about 832 nm to selectively probe several water vapor absorption lines. This capability has been requested in other recent DIAL experiments for wavelengths near 830 nm. The transmitter produces pulse energies of approximately 0.25 mu J at a repetition rate of 20 kHz. The linewidth is exceptionally narrow at <0.3 MHz, with frequency stability that has been shown to be +/-88 MHz and spectral purity of 0.995. Tests of the DIAL instrument to prove the validity of its measurements were undertaken. Preliminary water vapor profiles, taken in Bozeman, Montana, agree to within 5-60% with profiles derived from co-located radiosondes 800 meters above ground altitude. Below 800 meters, the measurements are biased low due to a number of systematic issues that are discussed. The long averaging times required by low-power systems have been shown to lead to biases in data, and indeed, our results showed strong disagreements on nights when the atmosphere was changing rapidly, such as on windy nights or when a storm system was entering the area. Improvements to the system to correct the major systematic biases are described. C1 [Obland, Michael D.; Carlsten, John L.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Obland, Michael D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Repasky, Kevin S.; Nehrir, Amin R.; Shaw, Joseph A.] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA. RP Obland, MD (reprint author), Montana State Univ, Dept Phys, EPS 264, Bozeman, MT 59717 USA. EM Michael.D.Obland@NASA.gov; repasky@ece.montana.edu; carlsten@physics.montana.edu FU NASA [NNX06AD11G]; NASA EPSCoR [NNX08AT69A] FX This work was supported by NASA grant number NNX06AD11G and the NASA Graduate Student Research Program (GSRP), and partially supported by NASA EPSCoR grant number NNX08AT69A. At the time this research was performed, Michael Obland was a graduate student at Montana State University. He has since become a research scientist at NASA Langley Research Center, initially as a NASA Postdoctoral Fellow, administered by Oak Ridge Associated Universities through a contract with NASA. NR 57 TC 5 Z9 6 U1 0 U2 8 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD MAR 18 PY 2010 VL 4 AR 043515 DI 10.1117/1.3383156 PG 24 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 601IJ UT WOS:000278051500001 ER PT J AU Su, H Jiang, JH Neelin, JD Kahn, BH Waters, JW Livesey, NJ Gu, Y AF Su, Hui Jiang, Jonathan H. Neelin, J. David Kahn, Brian H. Waters, Joe W. Livesey, Nathaniel J. Gu, Yu TI Reply to comment by Roberto Rondanelli and Richard S. Lindzen on "Variations in convective precipitation fraction and stratiform area with sea surface temperature'' SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Editorial Material C1 [Su, Hui; Jiang, Jonathan H.; Kahn, Brian H.; Waters, Joe W.; Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Neelin, J. David; Gu, Yu] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. RP Su, H (reprint author), CALTECH, Jet Prop Lab, M-S 183-701,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Hui.Su@jpl.nasa.gov RI Neelin, J. David/H-4337-2011 NR 3 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 18 PY 2010 VL 115 AR D06203 DI 10.1029/2009JD012872 PG 3 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 572UA UT WOS:000275857600004 ER PT J AU Deeg, HJ Moutou, C Erikson, A Csizmadia, S Tingley, B Barge, P Bruntt, H Havel, M Aigrain, S Almenara, JM Alonso, R Auvergne, M Baglin, A Barbieri, M Benz, W Bonomo, AS Borde, P Bouchy, F Cabrera, J Carone, L Carpano, S Ciardi, D Deleuil, M Dvorak, R Ferraz-Mello, S Fridlund, M Gandolfi, D Gazzano, JC Gillon, M Gondoin, P Guenther, E Guillot, T den Hartog, R Hatzes, A Hidas, M Hebrard, G Jorda, L Kabath, P Lammer, H Leger, A Lister, T Llebaria, A Lovis, C Mayor, M Mazeh, T Ollivier, M Patzold, M Pepe, F Pont, F Queloz, D Rabus, M Rauer, H Rouan, D Samuel, B Schneider, J Shporer, A Stecklum, B Street, R Udry, S Weingrill, J Wuchterl, G AF Deeg, H. J. Moutou, C. Erikson, A. Csizmadia, Sz. Tingley, B. Barge, P. Bruntt, H. Havel, M. Aigrain, S. Almenara, J. M. Alonso, R. Auvergne, M. Baglin, A. Barbieri, M. Benz, W. Bonomo, A. S. Borde, P. Bouchy, F. Cabrera, J. Carone, L. Carpano, S. Ciardi, D. Deleuil, M. Dvorak, R. Ferraz-Mello, S. Fridlund, M. Gandolfi, D. Gazzano, J. -C. Gillon, M. Gondoin, P. Guenther, E. Guillot, T. den Hartog, R. Hatzes, A. Hidas, M. Hebrard, G. Jorda, L. Kabath, P. Lammer, H. Leger, A. Lister, T. Llebaria, A. Lovis, C. Mayor, M. Mazeh, T. Ollivier, M. Paetzold, M. Pepe, F. Pont, F. Queloz, D. Rabus, M. Rauer, H. Rouan, D. Samuel, B. Schneider, J. Shporer, A. Stecklum, B. Street, R. Udry, S. Weingrill, J. Wuchterl, G. TI A transiting giant planet with a temperature between 250 K and 430 K SO NATURE LA English DT Article ID ABUNDANCE ANALYSIS; EVOLUTION; STARS AB Of the over 400 known(1) exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets(2), including the first terrestrial exoplanet(3,4) (CoRoT-7b), have been discovered using a space mission(5) designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 +/- 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a 'temperate' photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models(6) with an inferred interior composition consistent with that of Jupiter and Saturn. C1 [Deeg, H. J.; Tingley, B.; Almenara, J. M.; Rabus, M.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Deeg, H. J.; Tingley, B.; Almenara, J. M.; Rabus, M.] Univ La Laguna, Dept Astrofis, E-38200 Tenerife, Spain. [Moutou, C.; Barge, P.; Barbieri, M.; Bonomo, A. S.; Deleuil, M.; Gazzano, J. -C.; Jorda, L.; Llebaria, A.] CNRS, Lab Astrophys Marseille, F-13388 Marseille, France. [Moutou, C.; Barge, P.; Barbieri, M.; Bonomo, A. S.; Deleuil, M.; Gazzano, J. -C.; Jorda, L.; Llebaria, A.] Univ Aix Marseille 1, F-13388 Marseille 13, France. [Erikson, A.; Csizmadia, Sz.; Kabath, P.; Rauer, H.] German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany. [Bruntt, H.; Auvergne, M.; Baglin, A.; Rouan, D.] CNRS, Observ Paris, LESIA, F-92195 Meudon, France. [Havel, M.; Guillot, T.] Univ Nice Sophia Antipolis, Observ Cote Azur, CNRS, UMR 6202, F-06304 Nice 4, France. [Aigrain, S.; Pont, F.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Aigrain, S.] Univ Oxford, Oxford OX1 3RH, England. [Alonso, R.; Lovis, C.; Mayor, M.; Pepe, F.; Queloz, D.; Udry, S.] Observ Univ Geneve, CH-1290 Sauverny, Switzerland. [Barbieri, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Benz, W.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Borde, P.; Leger, A.; Ollivier, M.; Samuel, B.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bouchy, F.; Hebrard, G.] IAP, F-75014 Paris, France. [Bouchy, F.] Observ Haute Provence, CNRS, OAMP, F-04870 St Michel lObservatoire, France. [Cabrera, J.; Schneider, J.] CNRS, Observ Paris, LUTH, F-92195 Meudon, France. [Cabrera, J.; Schneider, J.] Univ Paris Diderot, F-92195 Meudon, France. [Carone, L.; Paetzold, M.] Univ Cologne, Rhein Inst Umweltforschung, D-50931 Cologne, Germany. [Carpano, S.; Fridlund, M.; Gondoin, P.; den Hartog, R.] European Space Agcy, Estec, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. [Ciardi, D.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Dvorak, R.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Ferraz-Mello, S.] Univ Sao Paulo, Inst Astron Geophys & Atmospher Sci, BR-05508 Sao Paulo, Brazil. [Gandolfi, D.; Guenther, E.; Hatzes, A.; Stecklum, B.; Wuchterl, G.] Thuringer Landessternwarte, D-07778 Tautenburg, Germany. [Gillon, M.] Univ Liege, Liege 1, Belgium. [Hidas, M.; Lister, T.; Street, R.] Las Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Hidas, M.] Univ Sydney, Sydney Inst Astron, Sch Phys, Sydney, NSW 2006, Australia. [Lammer, H.; Weingrill, J.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Mazeh, T.; Shporer, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Rauer, H.] TU Berlin, Ctr Astron & Astrophys, D-10623 Berlin, Germany. RP Deeg, HJ (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, E-38205 Tenerife, Spain. EM hdeeg@iac.es RI Tecnologias espaciai, Inct/I-2415-2013; Tingley, Brandon/E-5146-2014; Ferraz-Mello, Sylvio/B-7529-2013; OI Barbieri, Mauro/0000-0001-8362-3462; Carone, Ludmila/0000-0001-9355-3752; Gandolfi, Davide/0000-0001-8627-9628; Ciardi, David/0000-0002-5741-3047; Tingley, Brandon/0000-0003-4483-2661; Weingrill, Jorg/0000-0002-0848-413X FU Spanish Ministerio de Ciencia e Innovacion [ESP2007-65480-C02-02]; DLR [50OW0204, 50OW0603, 50QP07011] FX The CoRoT space mission has been developed and is operated by CNES, with the contributions of Austria, Belgium, Brazil, ESA, Germany and Spain. CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. The team at IAC acknowledges support by grant ESP2007-65480-C02-02 of the Spanish Ministerio de Ciencia e Innovacion. The German CoRoT Team (TLS and Univ. Cologne) acknowledges DLR grants 50OW0204, 50OW0603 and 50QP07011. Observations with the HARPS spectrograph were performed under the ESO programme ID 082. C-0120, and observations with the VLT/UVES under ID 081.C-0413(C). NR 30 TC 61 Z9 61 U1 0 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 18 PY 2010 VL 464 IS 7287 BP 384 EP 387 DI 10.1038/nature08856 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 570FG UT WOS:000275657100040 PM 20237564 ER PT J AU Summers, RL Platts, S Myers, JG Coleman, TG AF Summers, Richard L. Platts, Steven Myers, Jerry G. Coleman, Thomas G. TI Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight SO THEORETICAL BIOLOGY AND MEDICAL MODELLING LA English DT Article ID COMPUTER-SYSTEMS ANALYSIS; SIMULATED MICROGRAVITY; BED REST; WOMEN; HYPOTENSION; ASTRONAUTS; TOLERANCE; MASS AB Background: A tendency to develop reentry orthostasis after a prolonged exposure to microgravity is a common problem among astronauts. The problem is 5 times more prevalent in female astronauts as compared to their male counterparts. The mechanisms responsible for this gender differentiation are poorly understood despite many detailed and complex investigations directed toward an analysis of the physiologic control systems involved. Methods: In this study, a series of computer simulation studies using a mathematical model of cardiovascular functioning were performed to examine the proposed hypothesis that this phenomenon could be explained by basic physical forces acting through the simple common anatomic differences between men and women. In the computer simulations, the circulatory components and hydrostatic gradients of the model were allowed to adapt to the physical constraints of microgravity. After a simulated period of one month, the model was returned to the conditions of earth's gravity and the standard postflight tilt test protocol was performed while the model output depicting the typical vital signs was monitored. Conclusions: The analysis demonstrated that a 15% lowering of the longitudinal center of gravity in the anatomic structure of the model was all that was necessary to prevent the physiologic compensatory mechanisms from overcoming the propensity for reentry orthostasis leading to syncope. C1 [Summers, Richard L.; Coleman, Thomas G.] Univ Mississippi, Med Ctr, Dept Emergency Med, Jackson, MS 39216 USA. [Myers, Jerry G.] NASA, Human Res Off, Glenn Res Ctr, Cleveland, OH 44135 USA. [Platts, Steven] NASA, Cardiovasc Lab, Space Life Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Summers, RL (reprint author), Univ Mississippi, Med Ctr, Dept Emergency Med, Jackson, MS 39216 USA. EM rsummers@pol.net NR 26 TC 9 Z9 10 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4682 J9 THEOR BIOL MED MODEL JI Theor. Biol. Med. Model. PD MAR 18 PY 2010 VL 7 AR 8 DI 10.1186/1742-4682-7-8 PG 5 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 577KH UT WOS:000276221400001 PM 20298577 ER PT J AU Echer, E Tsurutani, BT Guarnieri, FL AF Echer, E. Tsurutani, B. T. Guarnieri, F. L. TI Forward and reverse CIR shocks at 4-5 AU: Ulysses SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Solar wind; Ulysses; Interplanetary shocks; Corotating interaction regions ID COROTATING INTERACTION REGIONS; SOLAR-WIND; ECLIPTIC-PLANE; INTERPLANETARY SHOCKS; OUTER HELIOSPHERE; STREAM; WAVES AB In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992-1993. Ulysses was 4-5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below similar to 30 degrees were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average theta(nBo) = 67 degrees). The reverse shocks were more oblique (average theta(nBo) = 52 degrees), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (similar to-30 degrees to -35 degrees) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Echer, E.] INPE, Sao Jose Dos Campos, SP, Brazil. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Guarnieri, F. L.] Univ Vale Paraiba UNIVAP, Sao Jose Dos Campos, SP, Brazil. RP Echer, E (reprint author), INPE, Sao Jose Dos Campos, SP, Brazil. EM eecher@dge.inpe.br FU CNPq agency [PQ-300104/2005-7, 470706/2006-6]; FAPESP agency [2008/056076-2] FX Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. EE would like to thank CNPq agency (PQ-300104/2005-7 and 470706/2006-6) for financial support. The authors would like also to than FAPESP agency for financial support (project 2008/056076-2). NR 19 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 15 PY 2010 VL 45 IS 6 BP 798 EP 803 DI 10.1016/j.asr.2009.11.011 PG 6 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 574FM UT WOS:000275974300010 ER PT J AU Pines, V Zlatkowski, M Chait, A AF Pines, Vladimir Zlatkowski, Marianna Chait, Arnon TI Charging of dust grains by anisotropic solar wind multi-component plasma SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Moon environment; Solar wind plasma; Dusty plasma ID PARTICLES AB In this paper we study the charging process of small grain particles by anisotropic multi-component solar wind plasmas (electrons, protons and heavy ions), versus two-component (electron/proton) plasmas. We are focusing attention on the important characteristics of the charging process, namely the charging time, floating potential and current content as functions of plasma parameters such as He(++)/H(+) (alpha/p) number density and T(alpha)/T(p) temperature ratios of alpha particles to protons, as well as plasma streaming velocity nu(0). Measured statistical properties of solar wind plasma parameters at 1 AU show considerable variations in alpha/p-temperature ratios from 1 to 10, in alpha/p-number density ratio from 0.01 to 0.35, as well as in values of streaming velocity nu(0) from 200 km/s to 1000 km/s and more. Periods of these variations could last for several days each, leading to significant variability in the charging process, according to newly derived general analytical expressions. Numerical calculations performed for protons/alphas plasmas showed large disparity in the charging characteristics. For example, in anisotropic plasma, grain charging time varies up to 90% depending on alpha/p-particles temperature and number density ratios, whereas changes in floating potential are up to 40%. In contrast, in isotropic plasma, charging characteristic for grains do not change very much for the same plasma parameters variations, with charging time varying about 12% and floating potential only varying about 4%. It is also shown that in highly anisotropic plasma, with all ballistic electrons and ions, dust grains could not hold their charges, and characteristic discharged time is calculated. We note that the analysis is equally applicable to any sized body immersed in solar wind plasma. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Pines, Vladimir; Zlatkowski, Marianna; Chait, Arnon] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Pines, V (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM vpines@oh.rr.com NR 16 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD MAR 15 PY 2010 VL 45 IS 6 BP 812 EP 822 DI 10.1016/j.asr.2009.10.011 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 574FM UT WOS:000275974300012 ER PT J AU Soibel, A Ting, DZY Hill, CJ Lee, M Nguyen, J Keo, SA Mumolo, JM Gunapala, SD AF Soibel, Alexander Ting, David Z. -Y. Hill, Cory J. Lee, Mike Nguyen, Jean Keo, Sam A. Mumolo, Jason M. Gunapala, Sarath D. TI Gain and noise of high-performance long wavelength superlattice infrared detectors SO APPLIED PHYSICS LETTERS LA English DT Article DE dark conductivity; diffusion; infrared detectors; photodetectors; photodiodes; superlattices ID 1/F NOISE; TEMPERATURE; PHOTODIODES; DIODES AB We experimentally investigate the noise and gain of high-performance long-wavelength superlattice (SL) infrared photodetectors. We compare a recently demonstrated SL heterodiode, which exhibits an electrical gain much larger than unity, with a SL photodetector without gain to show that the electrical gain in these devices originates from the device structure rather than from the SL absorber. We directly measure the noise spectra of a high performance SL, and show that 1/f noise is not intrinsically present in these structures. However, we find that a very large extraneous frequency-dependent noise can be generated by side-wall leakage currents. Analysis of the noise and gain indicate that the exact dependence of the shot noise on the dark current in these SL heterodiodes can be different from that in the diffusion-limited diode homojunction. C1 [Soibel, Alexander; Ting, David Z. -Y.; Hill, Cory J.; Lee, Mike; Nguyen, Jean; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Soibel, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Soibel@jpl.nasa.gov RI Soibel, Alexander/A-1313-2007 FU Missile Defense Agency; National Aeronautics and Space Administration FX The authors thank S. Bandara, J. K. Liu, B. Yang, and W. Farr for helpful discussions, and M. Tidrow, L. Zheng, R. Liang, T. Luchik, A. Larson, S. Forouhar, M. Hermann, E. Kolawa, and P. Dimotakis for encouragement and support. The research described in this paper was sponsored by the Missile Defense Agency, and was carried out at the Jet Propulsion Laboratory, California Institute of Technology, through an agreement with the National Aeronautics and Space Administration. NR 15 TC 35 Z9 35 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 15 PY 2010 VL 96 IS 11 AR 111102 DI 10.1063/1.3357429 PG 3 WC Physics, Applied SC Physics GA 572IW UT WOS:000275825200002 ER PT J AU Lefticariu, L Pratt, LA LaVerne, JA Schimmelmann, A AF Lefticariu, Liliana Pratt, Lisa A. LaVerne, Jay A. Schimmelmann, Arndt TI Anoxic pyrite oxidation by water radiolysis products - A potential source of biosustaining energy SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE radiolysis; pyrite oxidation; sulfate; hydrogen; astrobiology ID HYDROGEN-PEROXIDE; MERIDIANI-PLANUM; MOLECULAR-HYDROGEN; SULFIDE OXIDATION; MARTIAN SURFACE; OXYGEN ISOTOPES; SOUTH-AFRICA; MARS; SULFUR; DEEP AB Radiolysis on rocky planetary bodies provides chemical species across redox gradients that can supply energy for microbial life in subsurface environments. We investigated the oxidation of pyrite to aqueous sulfate (SO(4)(2-)) by water gamma-radiolysis products with concomitant production of molecular hydrogen (H(2)). The production of H(2), the only gaseous product recovered at the end of pyrite-water irradiation experiments, was found to be dependent on pyrite/water ratios. The yield of radiolytically-produced SO(4)(2)- correlated with the total irradiation dose. The effectiveness of gamma-radiation in oxidative dissolution of pyrite is determined by (1) redox reactions between radiolytically-produced oxidants and pyrite, and (2) the interaction between gamma-radiation and pyrite's crystalline structure. Radiolytic oxidation of reduced sulfur occurs with the oxidants HO(center dot) (hydroxyl radical) and Fe(3+) (ferric iron) involving two different pathways. The radiolytic production of these two chemical oxidants is self-sustaining in the presence of water and Fe(2+) in the system. Radiolytic oxidation can produce significant sulfur isotope effects by preferentially bringing (34)S into solution as sulfate and leaving a (32)S-enriched elemental sulfur layer on the pyrite surface. Experimental abiotic fractionations of sulfur isotopes between original pyrite and its sulfur oxidation products are significant and indicate that isotopically distinct sulfate is being produced during oxidation. Based on measured radiolysis constants for pyrite and radiation dose estimates for continental crust, we show that radiolysis of water coupled to oxidation of metallic sulfides could be a significant source of sulfate in many geological environments. Implications of this work are broad, impacting our assessment of the potential for life to exist in subsurface environments on Earth as well as in extraterrestrial environments. (c) 2010 Elsevier B.V. All rights reserved. C1 [Lefticariu, Liliana] So Illinois Univ, Dept Geol, Carbondale, IL 62901 USA. [Pratt, Lisa A.; Schimmelmann, Arndt] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. [LaVerne, Jay A.] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. [LaVerne, Jay A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Lefticariu, Liliana; Pratt, Lisa A.] Indiana Univ, IPTAI, NASA Astrobiol Inst, Bloomington, IN USA. RP Lefticariu, L (reprint author), So Illinois Univ, Dept Geol, Carbondale, IL 62901 USA. EM Lefticariu@geo.siu.edu RI Lefticariu, Liliana/A-9403-2011 OI Lefticariu, Liliana/0000-0003-3413-654X FU NASA [NNA 04CC03A]; SIUC Faculty Seed Grant; Office of Basic Energy Sciences of the U.S. Department of Energy; Notre Dame Radiation Laboratory [NDRL-4745]; NSF [EAR0318769] FX This work was supported in part by NASA Grant NNA 04CC03A through the NASA Astrobiology Institute. LL was supported by an SIUC Faculty Seed Grant. The Notre Dame Radiation Laboratory is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy; this contribution is NDRL-4745 from the Notre Dame Radiation Laboratory. An NSF equipment grant to Juergen Schieber (EAR0318769) provided funds for the purchase of the analytical SEM that was used for acquiring the images used in this report. The manuscript greatly benefited from constructive criticism and helpful comments by Associate Editor Richard W. Carlson, Timothy Lyons, and an anonymous reviewer. NR 74 TC 10 Z9 11 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 15 PY 2010 VL 292 IS 1-2 BP 57 EP 67 DI 10.1016/j.epsl.2010.01.020 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 576IX UT WOS:000276138900006 ER PT J AU Czaja, AD Johnson, CM Beard, BL Eigenbrode, JL Freeman, KH Yamaguchi, KE AF Czaja, Andrew D. Johnson, Clark M. Beard, Brian L. Eigenbrode, Jennifer L. Freeman, Katherine H. Yamaguchi, Kosei E. TI Iron and carbon isotope evidence for ecosystem and environmental diversity in the similar to 2.7 to 2.5 Ga Hamersley Province, Western Australia SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE iron isotopes; carbon isotopes; Archean; Hamersley Province; microbial metabolic diversity; dissimilatory iron reduction ID ARCHEAN MOLECULAR FOSSILS; DEEP-SEA SEDIMENTS; SULFUR-ISOTOPE; PILBARA CRATON; FE ISOTOPES; BLACK-SEA; OXYGENIC PHOTOSYNTHESIS; ATMOSPHERIC OXYGEN; FE(III) REDUCTION; AQUEOUS FE(II) AB The largest excursion in kerogen delta C-13 and bulk/mineral delta Fe-56 values yet measured in the ancient rock record occurs in rocks of similar to 2.7 to 2.5 Ga age. New Fe isotope data integrated with previously collected C isotope data on the same samples document the metabolic diversity of microbial communities in the Neoarchean Hamersley Province of the Pilbara Craton in Western Australia. Samples of shales, carbonates, and mixed carbonate/shale lithologies were collected from three drill cores; two cores from the depocenter of the province and one from the margin. Shallow-water clastic/carbonate rocks deposited in the center of the province (Tumbiana Formation) record kerogen delta C-13 values that indicate C cycling by various anaerobic or aerobic methane pathways, but the restricted range in delta Fe-56 values indicates little or no Fe redox cycling. Deep-water sediments deposited contemporaneously in both parts of the Hamersley Province (Jeerinah Formation) record slightly positive delta Fe-56 values in the relatively shallower and suboxic margin, but strongly negative delta Fe-56 values in the deeper euxinic depocenter of the province, a pattern consistent with Fe cycling via a basin Fe shuttle, driven by bacterial dissimilatory iron reduction (DIR). Kerogen delta C-13 values from these units indicate coupling of microbial Fe cycling to aerobic methanotrophy or anaerobic oxidation of methane. Younger black shales, intercalated with iron formation (Marra Mamba Iron Formation) in the depocenter, record a shift to near-zero delta Fe-56 values reflecting an Fe budget dominated by hydrothermal and clastic sources. However, time-equivalent, Fe-rich carbonate/shale lithologies deposited on the margin of the province (Carawine Dolomite) have delta Fe-56 values that steadily decrease from near zero to strongly negative values. These relatively Fe-rich carbonates may reflect a carbonate trap of a DIR-driven Fe shuttle, similar to the sulfidic trap in the euxinic portion of the Jeerinah Formation. In contrast, younger shallow-water carbonates deposited by turbidity currents in relatively deep water in the center of the province (Wittenoom Formation), have delta Fe-56 values that correlate with Fe concentrations, a pattern that indicates Fe cycling by Rayleigh fractionation through precipitation of iron oxides from aqueous ferrous iron. (c) 2010 Elsevier B.V. All rights reserved. C1 [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Yamaguchi, Kosei E.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Eigenbrode, Jennifer L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Freeman, Katherine H.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Yamaguchi, Kosei E.] Toho Univ, Dept Chem, Chiba 2748510, Japan. [Yamaguchi, Kosei E.] Japan Agcy Marine Earth Sci & Technol, Precambrian Ecosyst Lab, Yokosuka, Kanagawa 2370061, Japan. RP Czaja, AD (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM aczaja@geology.wisc.edu RI Freeman, Katherine/H-5140-2011; Eigenbrode, Jennifer/D-4651-2012 OI Freeman, Katherine/0000-0002-3350-7671; FU NASA Astrobiology Institute FX This work was supported by the NASA Astrobiology Institute. We gratefully acknowledge the assistance of J. Huberty, M. Spicuzza, and D. Walizer; J. Valley and H. Xu for the access to lab equipment; and comments by E. Roden, editor R. Carlson and two anonymous reviewers that helped improve the manuscript. NR 100 TC 39 Z9 42 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAR 15 PY 2010 VL 292 IS 1-2 BP 170 EP 180 DI 10.1016/j.epsl.2010.01.032 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 576IX UT WOS:000276138900017 ER PT J AU McWilliams, ST Thorpe, JI Baker, JG Kelly, BJ AF McWilliams, Sean T. Thorpe, James Ira Baker, John G. Kelly, Bernard J. TI Impact of mergers on LISA parameter estimation for nonspinning black hole binaries SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-WAVES AB We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger, and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q >= 1/10, and total masses 10(5) less than or similar to M/M-circle dot less than or similar to 10(7). We compare the parameter uncertainties using the Fisher-matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable-mass systems with total mass M/M-circle dot similar to 10(6), we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 10% can be localized to within O(1 arcmin). C1 [McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Kelly, Bernard J.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.] Univ Maryland, CRESST, Baltimore, MD 21250 USA. [Kelly, Bernard J.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. RP McWilliams, ST (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Sean.T.McWilliams@nasa.gov RI Kelly, Bernard/G-7371-2011; Thorpe, James/D-3150-2012; OI Kelly, Bernard/0000-0002-3326-4454 FU NASA FX We thank Alessandra Buonanno and Ryan Lang for thorough reviews of the manuscript, and Keith Arnaud and Tuck Stebbins for useful discussions. S. T. M. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The simulations were carried out using resources from the NASA Center for Computational Sciences (Goddard Space Flight Center). NR 38 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 15 PY 2010 VL 81 IS 6 AR 064014 DI 10.1103/PhysRevD.81.064014 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 577BL UT WOS:000276195700064 ER PT J AU Huemmrich, KF Gamon, JA Tweedie, CE Oberbauer, SF Kinoshita, G Houston, S Kuchy, A Hollister, RD Kwon, H Mano, M Harazono, Y Webber, PJ Oechel, WC AF Huemmrich, K. F. Gamon, J. A. Tweedie, C. E. Oberbauer, S. F. Kinoshita, G. Houston, S. Kuchy, A. Hollister, R. D. Kwon, H. Mano, M. Harazono, Y. Webber, P. J. Oechel, W. C. TI Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Normalized Difference Vegetation Index; Arctic tundra; Light use efficiency; Simulated environmental change; Gross ecosystem exchange; CO(2) flux; Mosses; Leaf area index; Reflectance; Fraction of absorbed photosynthetically active radiation ID DIFFERENCE VEGETATION INDEX; WET SEDGE TUNDRA; NET CO2 FLUX; ARCTIC TUNDRA; CARBON-DIOXIDE; SPECTRAL REFLECTANCE; GROWING-SEASON; EXCHANGE; ALASKA; RESPONSES AB Satellite observations have shown greening trends in tundra in response to climate change, suggesting increases in productivity. To better understand the ability of remote sensing to detect climate impacts on tundra vegetation productivity, we applied a photosynthetic light use efficiency model to simulated climate change treatments of tundra vegetation. We examined changes in the Normalized Difference Vegetation Index (NDVI) and photosynthetic light use efficiency (epsilon) in experimental warming and moisture treatments designed to simulate climate change in northern Alaska. Plots were warmed either passively, using Open Top Chambers, or actively using electric heaters in the soil. In one set of plots water table depth was actively altered, while other plots were established in locations that were naturally wet or dry. Over two growing seasons, plot-level carbon flux and spectral reflectance measurements were collected, and the results were used to derive a light use efficiency model that could explore the effects of moisture and temperature treatments using remote sensing. Warming increased values of canopy greenness (NDVI) relative to control plots, this effect being more pronounced in wet plots than in dry plots. Light use efficiency (LUE), the relationship between absorbed photosynthetically active radiation (PAR) and gross ecosystem production (CEP), was consistent across warming treatments, growing season, subsequent years, and sites. However, LUE was affected by vegetation type, which varied with moisture; plots in naturally dry locations showed reduced light use efficiency relative to moist plots. Additionally moss exhibited reduced LUE relative to vascular plants. Understory moss production, not accounted for by the usual definition of the fraction of absorbed PAR (f(APAR)), was found to be a significant part of total GEP, particularly in areas with low vascular plant cover. These results support the use of light use efficiency models driven by spectral reflectance for estimating GEP in tundra vegetation, provided effects of vegetation functional type (e.g. mosses versus vascular plants) and microtopography are considered. (C) 2009 Elsevier Inc. All rights reserved. C1 [Huemmrich, K. F.; Gamon, J. A.] Desert Res Inst, Reno, NV 89512 USA. [Gamon, J. A.; Houston, S.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Tweedie, C. E.] Univ Texas El Paso, El Paso, TX 79968 USA. [Oberbauer, S. F.] Florida Int Univ, Miami, FL 33199 USA. [Kinoshita, G.] IFC Int, San Diego, CA USA. [Hollister, R. D.] Grand Valley State Univ, Allendale, MI 49401 USA. [Kwon, H.] Yonsei Univ, Seoul 120749, South Korea. [Mano, M.; Harazono, Y.] Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki 305, Japan. [Webber, P. J.] Michigan State Univ, E Lansing, MI 48824 USA. [Kuchy, A.] Univ Idaho, Moscow, ID 83843 USA. [Oechel, W. C.] San Diego State Univ, San Diego, CA 92182 USA. RP Huemmrich, KF (reprint author), Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, JCET, Code 614-4, Greenbelt, MD 20771 USA. EM Karl.F.Huemmrich@nasa.gov RI Oechel, Walter/F-9361-2010; Gamon, John/A-2641-2014 OI Oechel, Walter/0000-0002-3504-026X; Gamon, John/0000-0002-8269-7723 FU International Arctic Research Center at the Desert Research Institute, Reno, Nevada; National Science Foundation [OPP-9907185, OPP-9906692] FX This research was funded through a grant from the International Arctic Research Center to JG and FH at the Desert Research Institute, Reno, Nevada. This work was also partially supported by the National Science Foundation Office of Polar Programs grants OPP-9907185 and OPP-9906692 to SFO and FJW, respectively. The authors wish to thank the field crews for all of their work: Erika Anderson, Spring Strahm, Michelle Perl, Leticia Sanchez, Chris Donovan, Joe Verfaillie, Rommel Zulueta, jean Van Dalen, Christopher Anderson, Dustin Bronson, Andrew Johnson, Shawn Serbin, Camila Schwyzer, and Justine Shaw, and the Barrow Arctic Science Consortium for logistics support. NR 52 TC 42 Z9 45 U1 3 U2 56 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2010 VL 114 IS 3 BP 481 EP 489 DI 10.1016/j.rse.2009.10.003 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 559JP UT WOS:000274820700002 ER PT J AU Hall, DK Riggs, GA Foster, JL Kumar, SV AF Hall, Dorothy K. Riggs, George A. Foster, James L. Kumar, Sujay V. TI Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; Snow cover; SWE; Data assimilation; LIS ID INTERACTIVE MULTISENSOR SNOW; LAND INFORMATION-SYSTEM; ICE MAPPING SYSTEM; SATELLITE DATA; SURFACE MODEL; RIVER-BASIN; TIME-SERIES; TERRA; VARIABILITY; COMBINATION AB The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snow-cover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.05 degrees resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE). are updated based on the observations of snow cover which are obtained either from the MOD10C1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain-averaged bias improvement of similar to 11%, whereas such improvement using the standard MOD10C1 maps is similar to 3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hall, Dorothy K.; Riggs, George A.] NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD 20771 USA. [Riggs, George A.] Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Foster, James L.; Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Greenbelt, MD 20771 USA. RP Hall, DK (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD 20771 USA. EM dorothy.k.hall@nasa.gov; george.a.riggs@nasa.gov; james.l.foster@nasa.gov; sujay.v.kumar@nasa.gov RI Hall, Dorothy/D-5562-2012; Kumar, Sujay/B-8142-2015 NR 43 TC 75 Z9 82 U1 4 U2 32 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2010 VL 114 IS 3 BP 496 EP 503 DI 10.1016/j.rse.2009.10.007 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 559JP UT WOS:000274820700004 ER PT J AU Imhoff, ML Zhang, P Wolfe, RE Bounoua, L AF Imhoff, Marc L. Zhang, Ping Wolfe, Robert E. Bounoua, Lahouari TI Remote sensing of the urban heat island effect across biomes in the continental USA SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Urban heat island; Remote sensing; MODIS; Land surface temperature; Biomes; Landsat; Impervious surface area ID LAND-SURFACE TEMPERATURE; UNITED-STATES; IMPERVIOUS SURFACE; PRIMARY PRODUCTIVITY; TROPICAL CITY; SATELLITE; MODIS; VEGETATION; IMPACT; URBANIZATION AB Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the non-urban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 degrees C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 degrees C, except for urban areas in biomes with and and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 degrees C temperature difference in summer and only 1.3 degrees C in winter. In desert environments, the LSTs response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes. Published by Elsevier Inc. C1 [Imhoff, Marc L.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [Zhang, Ping] Earth Resource Technol Inc, Annapolis Jct, MD 20701 USA. RP Imhoff, ML (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Hydrospher & Biospher Sci Lab, Code 614-4, Greenbelt, MD 20771 USA. EM Marc.LImhoff@nasa.gov RI Zhang, Ping/D-7257-2012; Wolfe, Robert/E-1485-2012 OI Wolfe, Robert/0000-0002-0915-1855 NR 50 TC 215 Z9 240 U1 36 U2 231 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAR 15 PY 2010 VL 114 IS 3 BP 504 EP 513 DI 10.1016/j.rse.2009.10.008 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 559JP UT WOS:000274820700005 ER PT J AU Panchenko, M Rucker, HO Kaiser, ML Cyr, OCS Bougeret, JL Goetz, K Bale, SD AF Panchenko, M. Rucker, H. O. Kaiser, M. L. Cyr, O. C. St. Bougeret, J-L. Goetz, K. Bale, S. D. TI New periodicity in Jovian decametric radio emission SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID IO PLASMA TORUS; CASSINI UVIS OBSERVATIONS; AZIMUTHAL VARIABILITY; JUPITER AB We report on the finding of a new periodicity in the Jovian decametric radio emission (DAM). Periodic bursts of non-Io component of DAM which recur with a period 1.5% longer than the Jupiter rotation (System III) have been found in the dynamic radio spectra acquired by STEREO/WAVES, Wind/WAVES and Cassini/RPWS during the years 2002-2008. Typically, the bursts appear very periodically over several Jovian days with a decreasing intensity and they display a negative frequency drift. All the bursts were detected within the same sector of Jovian Central Meridian Longitude (III), between 300 degrees and 60 degrees (via 360 degrees) of CML (III), close to the region of the non-Io-C source. No correlation has been found with the position of Io. Considering the simultaneous stereoscopic observations onboard STEREO-A and STEREO-B, as well as Wind and Cassini we can conclude that the sources of the periodic bursts most probably sub-corotate with Jupiter. Citation: Panchenko, M., H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J.-L. Bougeret, K. Goetz, and S. D. Bale (2010), New periodicity in Jovian decametric radio emission, Geophys. Res. Lett., 37, L05106, doi: 10.1029/2010GL042488. C1 [Panchenko, M.; Rucker, H. O.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Kaiser, M. L.; Cyr, O. C. St.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bougeret, J-L.] UPMC, CNRS, LESIA, Observ Paris, F-92195 Meudon, France. [Goetz, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Bale, S. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Panchenko, M (reprint author), Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria. EM mykhaylo.panchenko@oeaw.ac.at RI Bale, Stuart/E-7533-2011 OI Bale, Stuart/0000-0002-1989-3596 FU Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P20680-N16] FX The authors are pleased to acknowledge the Plasma Physics Data Center (CDPP) team for providing the STEREO data and Wind/WAVES and Cassini/RPWS teams for access to Wind and Cassini data. This work was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (project P20680-N16). NR 18 TC 3 Z9 3 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 12 PY 2010 VL 37 AR L05106 DI 10.1029/2010GL042488 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 568AV UT WOS:000275494700004 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gustafsson, M Hanabata, Y Harding, AK Hayashida, M Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sellerholm, A Sgro, C Shaw, MS Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Hanabata, Y. Harding, A. K. Hayashida, M. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sellerholm, A. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVERSE COMPTON-SCATTERING; EGRET DATA; SOLAR AB We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extra-galactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data. C1 [abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Di Bernardo, G.; Gaggero, D.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe; Gehrels, N.; Harding, A. K.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Ryde, F.; Sellerholm, A.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, S-10405 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM markusa@slac.stanford.edu; tporter@scipp.ucsc.edu; sellerholm@physto.se RI Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Starck, Jean-Luc/D-9467-2011; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Nolan, Patrick/A-5582-2009; Rando, Riccardo/M-7179-2013; Johnson, Neil/G-3309-2014; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Thompson, David/0000-0001-5217-9135; Starck, Jean-Luc/0000-0003-2177-7794; giglietto, nicola/0000-0002-9021-2888; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924 FU K.A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; NASA [NNX09AC15G] FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LATas well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. GALPROP development is partially funded via NASA Grant No. NNX09AC15G. Some of the results in this Letter have been derived using the HEALPIX [14] package. NR 24 TC 368 Z9 369 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 12 PY 2010 VL 104 IS 10 AR 101101 DI 10.1103/PhysRevLett.104.101101 PG 7 WC Physics, Multidisciplinary SC Physics GA 568SR UT WOS:000275543500007 PM 20366411 ER PT J AU Chembo, YK Strekalov, DV Yu, N AF Chembo, Yanne K. Strekalov, Dmitry V. Yu, Nan TI Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators SO PHYSICAL REVIEW LETTERS LA English DT Article ID NOBEL LECTURE AB Optical frequency comb generation in whispering gallery mode resonators has been demonstrated in several experiments. The spectra of the combs exhibit a wide variety of complex profiles that are not fully understood. We report a detailed study on frequency comb generation in whispering gallery mode resonators including a complete stability analysis and numerical simulations. We show that the interaction of dispersion and nonlinearity is the key in determining the stability of the comb, the complex characteristics of its spectral profile, and its frequency span. The results will be important for understanding the essential physical processes leading to efficient comb generation. C1 [Chembo, Yanne K.; Strekalov, Dmitry V.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yanne.chembo@jpl.nasa.gov FU NASA Postdoctoral Program FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this research was funded by the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities (ORAU). NR 12 TC 90 Z9 91 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 12 PY 2010 VL 104 IS 10 AR 103902 DI 10.1103/PhysRevLett.104.103902 PG 4 WC Physics, Multidisciplinary SC Physics GA 568SR UT WOS:000275543500022 PM 20366426 ER PT J AU Hathaway, DH Rightmire, L AF Hathaway, David H. Rightmire, Lisa TI Variations in the Sun's Meridional Flow over a Solar Cycle SO SCIENCE LA English DT Article ID MICHELSON DOPPLER IMAGER; POLAR MAGNETIC-FIELDS; CIRCULATION; NETWORK AB The Sun's meridional flow is an axisymmetric flow that is generally directed from its equator toward its poles at the surface. The structure and strength of the meridional flow determine both the strength of the Sun's polar magnetic field and the intensity of sunspot cycles. We determine the meridional flow speed of magnetic features on the Sun using data from the Solar and Heliospheric Observatory. The average flow is poleward at all latitudes up to 75 degrees, which suggests that it extends to the poles. It was faster at sunspot cycle minimum than at maximum and substantially faster on the approach to the current minimum than it was at the last solar minimum. This result may help to explain why this solar activity minimum is so peculiar. C1 [Hathaway, David H.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Rightmire, Lisa] Univ Memphis, Memphis, TN 38152 USA. RP Hathaway, DH (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM david.hathaway@nasa.gov FU NASA [NAG5-10483]; Marshall Space Grant Research Internship Project FX The SOHO/MDI project is supported by NASA grant NAG5-10483 to Stanford University. SOHO is a project of international cooperation between ESA and NASA. L. R. was supported as a summer intern at NASA/Marshall Space Flight Center through the Marshall Space Grant Research Internship Project. NR 23 TC 117 Z9 118 U1 3 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 12 PY 2010 VL 327 IS 5971 BP 1350 EP 1352 DI 10.1126/science.1181990 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 567CA UT WOS:000275418700033 PM 20223980 ER PT J AU Iess, L Rappaport, NJ Jacobson, RA Racioppa, P Stevenson, DJ Tortora, P Armstrong, JW Asmar, SW AF Iess, Luciano Rappaport, Nicole J. Jacobson, Robert A. Racioppa, Paolo Stevenson, David J. Tortora, Paolo Armstrong, John W. Asmar, Sami W. TI Gravity Field, Shape, and Moment of Inertia of Titan SO SCIENCE LA English DT Article ID AMMONIUM-SULFATE; SATELLITES AB Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a - c) and 103 meters (b - c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth. C1 [Iess, Luciano; Racioppa, Paolo] Univ Roma La Sapienza, Dipartimento Ingn Aerospaziale & Astronaut, I-00184 Rome, Italy. [Rappaport, Nicole J.; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stevenson, David J.] CALTECH, Pasadena, CA 91125 USA. [Tortora, Paolo] Univ Bologna, DIEM II Fac Ingn, I-47100 Forli, Italy. RP Iess, L (reprint author), Univ Roma La Sapienza, Dipartimento Ingn Aerospaziale & Astronaut, Via Eudossiana 18, I-00184 Rome, Italy. EM luciano.iess@uniroma1.it RI IESS, Luciano/F-4902-2011; Tortora, Paolo/J-6191-2012 OI IESS, Luciano/0000-0002-6230-5825; Tortora, Paolo/0000-0001-9259-7673 FU Italian Space Agency; NASA FX The work of L. I., P. R., and P. T. was funded in part by the Italian Space Agency. The work of N. J. R., R. A. J., J. W. A., and S. W. A. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. D. J. S. acknowledges support from NASA's planetary geology and geophysics program. NR 12 TC 85 Z9 85 U1 0 U2 24 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 12 PY 2010 VL 327 IS 5971 BP 1367 EP 1369 DI 10.1126/science.1182583 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 567CA UT WOS:000275418700038 PM 20223984 ER PT J AU Townsend, LW Charara, YM Delauder, N PourArsalan, M Anderson, JA Fisher, CM Spence, HE Schwadron, NA Golightly, MJ Cucinotta, FA AF Townsend, L. W. Charara, Y. M. Delauder, N. PourArsalan, M. Anderson, J. A. Fisher, C. M. Spence, H. E. Schwadron, N. A. Golightly, M. J. Cucinotta, F. A. TI Parameterizations of the linear energy transfer spectrum for the CRaTER instrument during the LRO mission SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID NUCLEAR FRAGMENTATION MODEL; PRODUCTION CROSS-SECTIONS; PREDICTING NUCLIDE PRODUCTION; HEAVY-ION FRAGMENTATION; GALACTIC COSMIC-RAY; OPTICAL-MODEL; CODE; VALIDATION; SCATTERING AB The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument was launched as part of the Lunar Reconnaissance Orbiter (LRO) spacecraft in June 2009. Its purpose is to measure the linear energy transfer (LET) spectrum in lunar orbit as an aid in determining risks to human crews on future lunar missions. Part of the preparations for the mission involved estimating the LET spectrum for the anticipated environment that the instrument is likely to see during the 1 year operational phase of the LRO mission. Detailed estimates of LET spectra in the six silicon detectors and two tissue equivalent plastic segments were made using the beta version of the HETC-HEDS Monte Carlo transport code. Tables of LET in each detector component, for incident particle elemental species from hydrogen through iron, were carried out at incident particle energies from 20 MeV per nucleon to 3 GeV per nucleon. The LET values in these tables have been parameterized by elemental species and energy for ease in quickly and accurately estimating the LET response for any input solar or galactic cosmic ray spectrum likely to be encountered during the lifetime of the instrument. The parameterized LET values are in excellent agreement with the HETC-HEDS calculations. Typical differences are on the order of a few percent. These parameterizations will also be useful in validation studies of the Earth-Moon-Mars Radiation Environment Module using CRaTER measurements in lunar orbit. C1 [Townsend, L. W.; Charara, Y. M.; Delauder, N.; PourArsalan, M.; Anderson, J. A.; Fisher, C. M.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Cucinotta, F. A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Spence, H. E.; Schwadron, N. A.; Golightly, M. J.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Townsend, LW (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM ltownsen@tennessee.edu RI Spence, Harlan/A-1942-2011 FU National Aeronautics and Space Administration, Living [NNX07AC14G] FX Research support from the National Aeronautics and Space Administration, Living With a Star program, through grant NNX07AC14G is gratefully acknowledged. NR 38 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAR 11 PY 2010 VL 8 AR S00E03 DI 10.1029/2009SW000526 PG 18 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 568CO UT WOS:000275499600001 ER PT J AU Tedder, SA Wheeler, JL Cutler, AD Danehy, PM AF Tedder, Sarah A. Wheeler, Jeffrey L. Cutler, Andrew D. Danehy, Paul M. TI Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy SO APPLIED OPTICS LA English DT Article ID SCATTERING MEASUREMENTS; CARS THERMOMETRY; SOOTING FLAMES; TEMPERATURE; COMBUSTION; LASER; N-2; CO2 AB Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) is a technique that is capable of simultaneously measuring temperature and species mole fractions of N-2, O-2, H-2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H-2 S(3) and H-2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of flow containing pure hydrogen fuel at room temperature. (C) 2010 Optical Society of America C1 [Tedder, Sarah A.; Danehy, Paul M.] NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Hampton, VA 23681 USA. [Tedder, Sarah A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Wheeler, Jeffrey L.] Whitworth Univ, Spokane, WA 99251 USA. [Cutler, Andrew D.] George Washington Univ, Newport News, VA 23602 USA. RP Tedder, SA (reprint author), NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, 18 Langley Blvd, Hampton, VA 23681 USA. EM sarah.a.tedder@nasa.gov FU National Aeronautics Program; Hypersonics Project; Experimental Capabilities and Propulsion Disciplines FX The authors would like to thank Stephen Jones and Michael Heinz for their support in the laboratory. This work was funded by the National Aeronautics Program, Hypersonics Project, Experimental Capabilities and Propulsion Disciplines. NR 22 TC 17 Z9 17 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 10 PY 2010 VL 49 IS 8 BP 1305 EP 1313 DI 10.1364/AO.49.001305 PG 9 WC Optics SC Optics GA 566RH UT WOS:000275390200014 PM 20220885 ER PT J AU Cenko, SB Frail, DA Harrison, FA Kulkarni, SR Nakar, E Chandra, PC Butler, NR Fox, DB Gal-Yam, A Kasliwal, MM Kelemen, J Moon, DS Ofek, EO Price, PA Rau, A Soderberg, AM Teplitz, HI Werner, MW Bock, DCJ Bloom, JS Starr, DA Filippenko, AV Chevalier, RA Gehrels, N Nousek, JN Piran, T AF Cenko, S. B. Frail, D. A. Harrison, F. A. Kulkarni, S. R. Nakar, E. Chandra, P. C. Butler, N. R. Fox, D. B. Gal-Yam, A. Kasliwal, M. M. Kelemen, J. Moon, D. -S Ofek, E. O. Price, P. A. Rau, A. Soderberg, A. M. Teplitz, H. I. Werner, M. W. Bock, D. C. -J. Bloom, J. S. Starr, D. A. Filippenko, A. V. Chevalier, R. A. Gehrels, N. Nousek, J. N. Piran, T. TI THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST SWIFT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; X-rays: individual (GRB 050820A,GRB 050904, GRB 060418, GRB 070125, GRB 080319B) ID AFTERGLOW LIGHT CURVES; X-RAY; GRB 080319B; INTERNAL SHOCKS; BLAST WAVE; JET BREAKS; MULTIWAVELENGTH OBSERVATIONS; RELATIVISTIC TURBULENCE; CIRCUMSTELLAR MEDIUM; MILLISECOND PULSARS AB Long-duration gamma-ray bursts (GRBs) are widely believed to be highly collimated explosions ( bipolar conical outflows with half-opening angle theta approximate to 1 degrees -10 degrees). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a "jet" break), has proven exceedingly difficult in the Swift era. Here, we undertake a study of five of the brightest ( in terms of the isotropic prompt. gamma-ray energy release, E(gamma,iso)) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength ( radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet break in all five events, strongly supporting the canonical picture of GRBs as collimated explosions. The most natural explanation for the lack of observed jet breaks from most Swift GRBs is therefore selection effects. However, the opening angles for the events in our sample are larger than would be expected if all GRBs had a canonical energy release of similar to 10(51) erg. The total energy release we measure for the "hyper-energetic" (E(tot) greater than or similar to 10(52) erg) events in our sample is large enough to start challenging models with a magnetar as the compact central remnant. C1 [Cenko, S. B.; Butler, N. R.; Bloom, J. S.; Starr, D. A.; Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Kulkarni, S. R.; Kasliwal, M. M.; Ofek, E. O.; Rau, A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Chandra, P. C.] Royal Mil Coll Canada, Dept Phys, Kingston, ON, Canada. [Fox, D. B.; Nousek, J. N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Kelemen, J.] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Moon, D. -S] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Price, P. A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Rau, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Soderberg, A. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Teplitz, H. I.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Werner, M. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, D. C. -J.] Combined Array Res Millimeter Wave Astron, Big Pine, CA 93513 USA. [Starr, D. A.] Las Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Chevalier, R. A.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20770 USA. [Piran, T.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RP Cenko, SB (reprint author), Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RI Gehrels, Neil/D-2971-2012 FU Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; NASA/Swift [NNG06GI86G, NNX09AL08G, NAS5-00136, NNG06GH61G, NAS 5-26555, NNG06GH50G, NNX08AN84G]; NSF [AST-0607485, AST-0908886]; Israeli Science Foundation; EU; Benoziyo Center for Astrophysics; Peter and Patricia Gruber Awards; William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute; ERC [P60]; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; Associates of the California Institute of Technology; states of California, Illinois, and Maryland; Harvard University Milton Fund; SAO; UC Berkeley; W. M. Keck Foundation; [GO-10551] FX S. B. C. and A. V. F. acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, NASA/Swift grants NNG06GI86G and NNX09AL08G, and NSF grants AST-0607485 and AST-0908886. A. G. acknowledges support by the Israeli Science Foundation, an EU Seventh Framework Programme Marie Curie IRG fellowship and the Benoziyo Center for Astrophysics, a research grant from the Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. J.N.N. is supported by NASA contract NAS5-00136. T. P. acknowledges support from an ERC advanced research grant. P60 operations are funded in part by NASA through the Swift Guest Investigator Program ( grant number NNG06GH61G). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These data are associated with program GO-10551. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank the SSC Director for an award of discretionary time and the Spitzer Operations team for their quick response to our request. This publication has made use of data obtained from the Swift interface of the High-Energy Astrophysics Archive (HEASARC), provided by NASA's Goddard Space Flight Center. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the Associates of the California Institute of Technology, the states of California, Illinois, and Maryland, and the NSF. Ongoing CARMA development and operations are supported by the NSF under a cooperative agreement, and by the CARMA partner universities. PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and was made possible by a grant from the Harvard University Milton Fund, a camera loan from the University of Virginia, and continued support of the SAO and UC Berkeley. The PAIRITEL project is further supported by NASA/Swift Guest Investigator grants NNG06GH50G and NNX08AN84G. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. NR 134 TC 64 Z9 65 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 641 EP 654 DI 10.1088/0004-637X/711/2/641 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100039 ER PT J AU Yuan, F Schady, P Racusin, JL Willingale, R Kruhler, T O'Brien, PT Greiner, J Oates, SR Rykoff, ES Aharonian, F Akerlof, CW Ashley, MCB Barthelmy, SD Filgas, R Flewelling, HA Gehrels, N Gogus, E Guver, T Horns, D Kiziloglu, U Krimm, HA McKay, TA Ozel, ME Phillips, A Quimby, RM Rowell, G Rujopakarn, W Schaefer, BE Vestrand, WT Wheeler, JC Wren, J AF Yuan, F. Schady, P. Racusin, J. L. Willingale, R. Kruehler, T. O'Brien, P. T. Greiner, J. Oates, S. R. Rykoff, E. S. Aharonian, F. Akerlof, C. W. Ashley, M. C. B. Barthelmy, S. D. Filgas, R. Flewelling, H. A. Gehrels, N. Goegues, E. Guever, T. Horns, D. Kiziloglu, Ue. Krimm, H. A. McKay, T. A. Ozel, M. E. Phillips, A. Quimby, R. M. Rowell, G. Rujopakarn, W. Schaefer, B. E. Vestrand, W. T. Wheeler, J. C. Wren, J. TI GRB 081008: FROM BURST TO AFTERGLOW AND THE TRANSITION PHASE IN BETWEEN SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 081008) ID GAMMA-RAY BURST; SWIFT XRT DATA; BAND SPECTRAL EVOLUTION; X-RAY; LIGHT CURVES; COMPREHENSIVE ANALYSIS; OPTICAL OBSERVATIONS; REFRESHED SHOCKS; ENERGY INJECTION; ENGINE ACTIVITY AB We present a multi-wavelength study of GRB 081008, at redshift 1.967, by Swift, ROTSE-III, and Gamma-Ray Burst Optical/NearInfrared Detector. Compared to other Swift GRBs, GRB 081008 has a typical gamma-ray isotropic equivalent energy output (similar to 10(53) erg) during the prompt phase, and displayed two temporally separated clusters of pulses. The early X-ray emission seen by the Swift X-Ray Telescope was dominated by the softening tail of the prompt emission, producing multiple flares during and after the Swift Burst Alert Telescope detections. Optical observations that started shortly after the first active phase of gamma-ray emission showed two consecutive peaks. We interpret the first optical peak as the onset of the afterglow associated with the early burst activities. A second optical peak, coincident with the later gamma-ray pulses, imposes a small modification to the otherwise smooth light curve and thus suggests a minimal contribution from a probable internal component. We suggest the early optical variability may be from continuous energy injection into the forward shock front by later shells producing the second epoch of burst activities. These early observations thus provide a potential probe for the transition from the prompt phase to the afterglow phase. The later light curve of GRB 081008 displays a smooth steepening in all optical bands and X-ray. The temporal break is consistent with being achromatic at the observed wavelengths. Our broad energy coverage shortly after the break constrains a spectral break within optical. However, the evolution of the break frequency is not observed. We discuss the plausible interpretations of this behavior. C1 [Yuan, F.; Akerlof, C. W.; McKay, T. A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Schady, P.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Racusin, J. L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Willingale, R.; O'Brien, P. T.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kruehler, T.; Greiner, J.; Filgas, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kruehler, T.] Tech Univ Munich, Univ Cluster, D-85748 Garching, Germany. [Rykoff, E. S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Aharonian, F.; Horns, D.; Rowell, G.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Ashley, M. C. B.; Phillips, A.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.] NASA Goddard, Greenbelt, MD 20771 USA. [Flewelling, H. A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Goegues, E.] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey. [Guever, T.; Rujopakarn, W.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Guever, T.; Rujopakarn, W.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Kiziloglu, Ue.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Ozel, M. E.] Cag Univ, Dept Math, TR-33800 Tarsus, Turkey. [Quimby, R. M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Schaefer, B. E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Vestrand, W. T.; Wren, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wheeler, J. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Yuan, F (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RI Guver, Tolga/C-1408-2011; Horns, Dieter/C-9727-2011; Racusin, Judith/D-2935-2012; Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Rujopakarn, Wiphu/E-7849-2012; McKay, Timothy/C-1501-2009; Guver, Tolga/B-1039-2014; OI Flewelling, Heather/0000-0002-1050-4056; Kruehler, Thomas/0000-0002-8682-2384; McKay, Timothy/0000-0001-9036-6150; Guver, Tolga/0000-0002-3531-9842; Yuan, Fang/0000-0001-8315-4176; Rujopakarn, Wiphu/0000-0002-0303-499X; Rowell, Gavin/0000-0002-9516-1581 FU NASA [NNX-08AN25G, NAS5-00136, NNX-08AV63G, PHY-0801007]; STFC; DFG; Australian Research Council; University of New South Wales; University of Texas; University of Michigan; Leibniz-Prize [HA 1850/28-1] FX F.Y. gratefully acknowledges useful discussions with S. B. Pandey. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. F. Y. is supported by the NASA Swift Guest Investigator grants NNX-08AN25G. J.L.R. acknowledges support for this work from NASA contract NAS5-00136. R. W. and P.T.O. gratefully acknowledge funding from the STFC for Swift at the University of Leicester. T. K. acknowledges support by the DFG cluster of excellence "Origin and Structure of the Universe." ROTSE-III has been supported by NASA grant NNX-08AV63G, NSF grant PHY-0801007, the Australian Research Council, the University of New South Wales, the University of Texas, and the University of Michigan. Special thanks to the H. E. S. S. staff, especially Toni Hanke. Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize (DFG grant HA 1850/28-1) to Professor G. Hasinger (IPP). NR 72 TC 18 Z9 18 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 870 EP 880 DI 10.1088/0004-637X/711/2/870 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100054 ER PT J AU Grupe, D Burrows, DN Wu, XF Wang, XY Zhang, B Liang, EW Garmire, G Nousek, JA Gehrels, N Ricker, GR Bautz, MW AF Grupe, Dirk Burrows, David N. Wu, Xue-Feng Wang, Xiang-Yu Zhang, Bing Liang, En-Wei Garmire, Gordon Nousek, John A. Gehrels, Neil Ricker, George R. Bautz, Marshall W. TI LATE-TIME DETECTIONS OF THE X-RAY AFTERGLOW OF GRB 060729 WITH CHANDRA-THE LATEST DETECTIONS EVER OF AN X-RAY AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual (GRB 060729) ID SWIFT XRT DATA; LIGHT CURVES; BURST AFTERGLOWS; JET BREAKS; ENERGY INJECTION; MASSIVE STARS; EVOLUTION; TELESCOPE; ACCELERATION; SHOCKS AB We report on five Chandra observations of the X-ray afterglow of the gamma-ray burst (GRB) 060729 performed between 2007 March and 2008 May. In all five observations, the afterglow is clearly detected. The last Chandra pointing was performed on 2008 May 4, 642 days after the burst-the latest detection of a GRB X-ray afterglow ever. A reanalysis of the Swift XRT light curve together with the three detections by Chandra in 2007 reveals a break at similar to 1.0 Ms after the burst with a slight steepening of the decay slope from alpha = 1.32 to 1.61. This break coincides with a significant hardening of the X-ray spectrum, consistent with a cooling break in the wind medium scenario, in which the cooling frequency of the afterglow crosses the X-ray band. The last two Chandra observations in 2007 December and 2008 May provide evidence for another break at about one year after the burst. If interpreted as a jet break, this late-time break implies a jet half-opening angle of similar to 14 degrees for a wind medium. Alternatively, this final break may have a spectral origin, in which case no jet break has been observed and the half-opening angle of the jet of GRB 060729 must be larger than similar to 15 degrees for a wind medium. We compare the X-ray afterglow of GRB 060729 in a wind environment with other bright X-ray afterglows, in particular GRBs 061121 and 080319B, and discuss why the X-ray afterglow of GRB 060729 is such an exceptionally long-lasting event. C1 [Grupe, Dirk; Burrows, David N.; Wu, Xue-Feng; Wang, Xiang-Yu; Garmire, Gordon; Nousek, John A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Wu, Xue-Feng] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Wang, Xiang-Yu] Nanjing Univ, Dept Astron, Nanjing 210093, Peoples R China. [Zhang, Bing] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Liang, En-Wei] Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China. [Ricker, George R.; Bautz, Marshall W.] MIT, Cambridge, MA 02139 USA. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Grupe, D (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM grupe@astro.psu.edu RI Gehrels, Neil/D-2971-2012; Wu, Xuefeng/G-5316-2015 OI Wu, Xuefeng/0000-0002-6299-1263 FU NASA [NNX 08AL40G, NAS5-00136]; National Natural Science Foundation of China [10221001, 10403002, 10503012, 10621303, 10633040, 10873002]; National Basic Research Program of China [2009CB824800]; SAO [SV4-74018, A12, G08-9056 X] FX We thank Sandy Patel and Chryssa Kouveliotou for providing the data for the luminosities of Swift and pre-Swift bursts, Hala Eid for fitting the late-time light curve with the Beuermann et al. model, and Eric Feigelson for useful discussion about statistics. We thank the referee for his/her suggestions/comments which have helped to improve our paper significantly. We are extremely thankful to the whole Chandra team for successfully planning and performing the observations of GRB 060729. X. F. W. thanks Peter Meszaros, Kenji Toma, Derek Fox, Antonino Cucchiara, and Yizhong Fan for their helpful discussion. This work was also partially supported by NASA NNX 08AL40G (X.F.W.), National Natural Science Foundation of China (grants 10221001, 10403002, 10503012, 10621303, 10633040, and 10873002), and National Basic Research Program of China ( 973 Program 2009CB824800) (X.Y.W., X.F.W., and E.W.L.). Swift is supported at Penn State by NASA contract NAS5-00136. This research has been supported by SAO grants SV4-74018, A12 (D.G. and G.G.), and G08-9056 X (D.G.) NR 52 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1008 EP 1016 DI 10.1088/0004-637X/711/2/1008 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100001 ER PT J AU Roberts, DA AF Roberts, D. Aaron TI DEMONSTRATIONS THAT THE SOLAR WIND IS NOT ACCELERATED BY WAVES OR TURBULENCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; solar wind; Sun: corona ID ALFVEN WAVES; CORONAL HOLES; MAGNETOHYDRODYNAMIC TURBULENCE; HELIOS OBSERVATIONS; RADIAL EVOLUTION; MAGNETIC-FIELDS; FLUCTUATIONS; DRIVEN; SPEED; DISTRIBUTIONS AB The present work uses observations and theoretical considerations to provide both qualitative and quantitative arguments that hydromagnetic waves, whether turbulent or not, cannot produce the acceleration of the fast solar wind and the related heating of the open solar corona. Waves do exist, and can play a role in the differential heating and acceleration of minor ions, but their amplitudes are not sufficient to power the wind, as demonstrated by extrapolation of magnetic spectra from Helios and Ulysses observations. Dissipation mechanisms invoked to circumvent this conclusion cannot be effective for a variety of reasons. In particular, turbulence does not play a strong role in the corona as shown both by observations of coronal striations and other features, and by theoretical considerations of line tying to a nonturbulent photosphere, nonlocality of interactions, and the nature of the kinetic dissipation. We consider possible "ways out" of the arguments presented, and suggest that in the absence of wave or turbulent heating and acceleration, the chromosphere and transition region become the natural source, if yet unproven, of open coronal energization through the production of nonthermal particle distributions. C1 NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Roberts, DA (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RI Roberts, Dana/D-4625-2012 NR 51 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1044 EP 1050 DI 10.1088/0004-637X/711/2/1044 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100005 ER PT J AU Ukwatta, TN Stamatikos, M Dhuga, KS Sakamoto, T Barthelmy, SD Eskandarian, A Gehrels, N Maximon, LC Norris, JP Parke, WC AF Ukwatta, T. N. Stamatikos, M. Dhuga, K. S. Sakamoto, T. Barthelmy, S. D. Eskandarian, A. Gehrels, N. Maximon, L. C. Norris, J. P. Parke, W. C. TI SPECTRAL LAGS AND THE LAG-LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID ALERT-TELESCOPE BAT; HUBBLE DIAGRAM; RESOLUTION SPECTROSCOPY; PEAK LUMINOSITY; HOST GALAXY; ENERGY; EMISSION; PULSES; ENVIRONMENT; CONNECTION AB Spectral lag, the time difference between the arrival of high-energy and low-energy photons, is a common feature in gamma-ray bursts (GRBs). Norris et al. reported a correlation between the spectral lag and the isotropic peak luminosity of GRBs based on a limited sample. More recently, a number of authors have provided further support for this correlation using arbitrary energy bands of various instruments. In this paper, we report on a systematic extraction of spectral lags based on the largest Swift sample to date of 31 GRBs with measured redshifts. We extracted the spectral lags for all combinations of the standard Swift hard X-ray energy bands: 15-25 keV, 25-50 keV, 50-100 keV, and 100-200 keV and plotted the time dilation corrected lag as a function of isotropic peak luminosity. The mean value of the correlation coefficient for various channel combinations is -0.68 with a chance probability of similar to 0.7 x 10(-3). In addition, the mean value of the power-law index is 1.4 +/- 0.3. Hence, our study lends support to the existence of a lag-luminosity correlation, albeit with large scatter. C1 [Ukwatta, T. N.; Dhuga, K. S.; Eskandarian, A.; Maximon, L. C.; Parke, W. C.] George Washington Univ, Washington, DC 20052 USA. [Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. RP Ukwatta, TN (reprint author), George Washington Univ, Washington, DC 20052 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012 FU NASA [NNX08AR44A] FX The authors are indebted to the late Dr. David L. Band for fruitful and insightful discussions on the CCF methodology. In addition, we take this opportunity to acknowledge useful input from David A. Kahn regarding the luminosity calculations. We also thank the anonymous referee for comments and suggestions that significantly improved the paper. The NASA grant NNX08AR44A provided partial support for this work and is gratefully acknowledged. NR 86 TC 41 Z9 41 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1073 EP 1086 DI 10.1088/0004-637X/711/2/1073 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100009 ER PT J AU Chiang, HC Ade, PAR Barkats, D Battle, JO Bierman, EM Bock, JJ Dowell, CD Duband, L Hivon, EF Holzapfel, WL Hristov, VV Jones, WC Keating, BG Kovac, JM Kuo, CL Lange, AE Leitch, EM Mason, PV Matsumura, T Nguyen, HT Ponthieu, N Pryke, C Richter, S Rocha, G Sheehy, C Takahashi, YD Tolan, JE Yoon, KW AF Chiang, H. C. Ade, P. A. R. Barkats, D. Battle, J. O. Bierman, E. M. Bock, J. J. Dowell, C. D. Duband, L. Hivon, E. F. Holzapfel, W. L. Hristov, V. V. Jones, W. C. Keating, B. G. Kovac, J. M. Kuo, C. L. Lange, A. E. Leitch, E. M. Mason, P. V. Matsumura, T. Nguyen, H. T. Ponthieu, N. Pryke, C. Richter, S. Rocha, G. Sheehy, C. Takahashi, Y. D. Tolan, J. E. Yoon, K. W. TI MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; gravitational waves; inflation; polarization ID 2003 FLIGHT; SOURCE CATALOG; GRAVITY-WAVES; ANISOTROPY; PROBE; TEMPERATURE; BOOMERANG; QUAD; EMISSION AB Background Imaging of Cosmic Extragalactic Polarization (Bicep) is a bolometric polarimeter designed to measure the inflationary B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. During three seasons of observing at the South Pole (2006 through 2008), Bicep mapped similar to 2% of the sky chosen to be uniquely clean of polarized foreground emission. Here, we present initial results derived from a subset of the data acquired during the first two years. We present maps of temperature, Stokes Q and U, E and B modes, and associated angular power spectra. We demonstrate that the polarization data are self-consistent by performing a series of jackknife tests. We study potential systematic errors in detail and show that they are sub-dominant to the statistical errors. We measure the E-mode angular power spectrum with high precision at 21 <= l <= 335, detecting for the first time the peak expected at l similar to 140. The measured E-mode spectrum is consistent with expectations from a Lambda CDM model, and the B-mode spectrum is consistent with zero. The tensor-to-scalar ratio derived from the B-mode spectrum is r = 0.02(-0.26)(+0.31) or r < 0.72 at 95% confidence, the first meaningful constraint on the inflationary gravitational wave background to come directly from CMB B-mode polarization. C1 [Chiang, H. C.; Barkats, D.; Bock, J. J.; Hristov, V. V.; Jones, W. C.; Kovac, J. M.; Lange, A. E.; Mason, P. V.; Matsumura, T.; Richter, S.; Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Chiang, H. C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Ade, P. A. R.] Univ Wales Coll Cardiff, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Barkats, D.] Natl Radio Astron Observ, Santiago, Chile. [Battle, J. O.; Bock, J. J.; Dowell, C. D.; Lange, A. E.; Nguyen, H. T.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bierman, E. M.; Keating, B. G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kuo, C. L.; Tolan, J. E.] Stanford Univ, Palo Alto, CA 94305 USA. [Hivon, E. F.] Inst Astrophys, F-75014 Paris, France. [Holzapfel, W. L.; Takahashi, Y. D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Leitch, E. M.; Pryke, C.; Sheehy, C.] Univ Chicago, Chicago, IL 60637 USA. [Yoon, K. W.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Ponthieu, N.] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Kuo, C. L.; Tolan, J. E.] KIPAC, Menlo Pk, CA 94025 USA. [Duband, L.] Commissariat Energie Atom, SBT, Grenoble, France. RP Chiang, HC (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. RI Appourchaux, Thierry/F-4692-2010; Holzapfel, William/I-4836-2015; OI Barkats, Denis/0000-0002-8971-1954; Hivon, Eric/0000-0003-1880-2733 FU NSF [OPP-0230438, AST-0548262]; Caltech President's Discovery Fund; Caltech President's Fund [PF-471]; JPL Research and Technology Development Fund; NASA; John B. and Nelly Kilroy Foundation; U.S. DOE [DE-AC02-76SF00515]; KICP FX Bicep is supported by NSF Grant No. OPP-0230438, Caltech President's Discovery Fund, Caltech President's Fund PF-471, JPL Research and Technology Development Fund, and the late J. Robinson. We thank the South Pole Station staff for helping make our observing seasons a success. We also thank Joanna Dunkley, Nathan Miller, and our colleagues in Acbar, Boomerang, QUaD, Bolocam, SPT, and WMAP for advice and helpful discussions, and Kathy Deniston for logistical and administrative support. We gratefully acknowledge support of individual team members by the NASA Graduate Fellowship program (H.C.C.), NSF PECASE Award No. AST-0548262 (B.G.K.), the John B. and Nelly Kilroy Foundation (J.M.K.), the U.S. DOE contract to SLAC No. DE-AC02-76SF00515 (C.L.K. and J.E.T.), KICP (C.P. and C.S.), and the NASA Science Mission Directorate via the US Planck Project (G.R.). NR 35 TC 164 Z9 164 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1123 EP 1140 DI 10.1088/0004-637X/711/2/1123 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100011 ER PT J AU Takahashi, YD Ade, PAR Barkats, D Battle, JO Bierman, EM Bock, JJ Chiang, HC Dowell, CD Duband, L Hivon, EF Holzapfel, WL Hristov, VV Jones, WC Keating, BG Kovac, JM Kuo, CL Lange, AE Leitch, EM Mason, PV Matsumura, T Nguyen, HT Ponthieu, N Pryke, C Richter, S Rocha, G Yoon, KW AF Takahashi, Y. D. Ade, P. A. R. Barkats, D. Battle, J. O. Bierman, E. M. Bock, J. J. Chiang, H. C. Dowell, C. D. Duband, L. Hivon, E. F. Holzapfel, W. L. Hristov, V. V. Jones, W. C. Keating, B. G. Kovac, J. M. Kuo, C. L. Lange, A. E. Leitch, E. M. Mason, P. V. Matsumura, T. Nguyen, H. T. Ponthieu, N. Pryke, C. Richter, S. Rocha, G. Yoon, K. W. TI CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; gravitational waves; inflation; instrumentation: polarimeters; telescopes ID POLARIZATION POWER SPECTRA; RECEIVER; QUAD AB The Background Imaging of Cosmic Extragalactic Polarization (Bicep) experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, Bicep has completed three years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the Bicep experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit Bicep's two-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1. C1 [Takahashi, Y. D.; Holzapfel, W. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ade, P. A. R.] Univ Wales Coll Cardiff, Cardiff CF24 3YB, S Glam, Wales. [Barkats, D.; Bock, J. J.; Chiang, H. C.; Hristov, V. V.; Jones, W. C.; Kovac, J. M.; Lange, A. E.; Mason, P. V.; Matsumura, T.; Richter, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Barkats, D.] Natl Radio Astron Observ, Santiago, Chile. [Battle, J. O.; Bock, J. J.; Dowell, C. D.; Nguyen, H. T.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bierman, E. M.; Keating, B. G.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Chiang, H. C.; Jones, W. C.] Princeton Univ, Princeton, NJ 08544 USA. [Duband, L.] Commissariat Energie Atom, Grenoble, France. [Hivon, E. F.] Inst Astrophys, F-75014 Paris, France. [Kuo, C. L.] Stanford Univ, Palo Alto, CA 94305 USA. [Leitch, E. M.; Pryke, C.] Univ Chicago, Chicago, IL 60637 USA. [Ponthieu, N.] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Yoon, K. W.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. RP Takahashi, YD (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Holzapfel, William/I-4836-2015; OI Barkats, Denis/0000-0002-8971-1954; Hivon, Eric/0000-0003-1880-2733 FU NSF [OPP-0230438, AST-0548262]; Caltech Discovery Fund; Caltech President's Fund [PF-471]; JPL Research and Technology Fund; NASA FX Bicep is supported by NSF Grant OPP-0230438, Caltech Discovery Fund, Caltech President's Fund PF-471, JPL Research and Technology Fund, and the late J. Robinson. We thank our colleagues in Acbar, Boomerang, QUaD, Bolocam, and SPT for advice and helpful discussions, Kathy Deniston for logistical and administrative support, and the South Pole Station staff for their support. We acknowledge support by the NASA Graduate Fellowship program (H.C.C., E.M.B.), the John B. and Nelly Kilroy Foundation (J.M.K.), and NSF PECASE Award AST-0548262 (B.G.K.). NR 21 TC 39 Z9 39 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1141 EP 1156 DI 10.1088/0004-637X/711/2/1141 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100012 ER PT J AU Jensen, AG Snow, TP Sonneborn, G Rachford, BL AF Jensen, Adam G. Snow, Theodore P. Sonneborn, George Rachford, Brian L. TI OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: molecules; ultraviolet: ISM ID SPECTROSCOPIC-EXPLORER OBSERVATIONS; INTERSTELLAR GAS; PHYSICAL CONDITIONS; ULTRAVIOLET EXTINCTION; VELOCITY DISPERSION; ABSORPTION LINES; COLUMN DENSITIES; BAND SYSTEM; FUSE SURVEY; OF-SIGHT AB The Far Ultraviolet Spectroscopic Explorer ( FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H(2)) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H(2)) greater than or similar to 20. This study is comprehensive through the highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H(2) in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H(2), although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H(2) column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH(+). Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code. C1 [Rachford, Brian L.] Embry Riddle Aeronaut Univ, Dept Phys, Prescott, AZ 86301 USA. [Snow, Theodore P.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Jensen, Adam G.; Sonneborn, George] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jensen, AG (reprint author), Wesleyan Univ, Dept Astron, Van Vleck Observ, 96 Foss Hill Dr, Middletown, CT 06457 USA. EM Adam.Jensen@gmail.com; tsnow@casa.colorado.edu; George.Sonneborn@nasa.gov; rachf7ac@erau.edu RI Sonneborn, George/D-5255-2012 FU NASA Postdoctoral Program at Goddard Space Flight Center [NAG5-12279] FX We are very grateful to Dan Welty for providing access to CH and CH+ velocity structure fits in addition to the other atomic and molecular column densities that are available on his Web site. We also thank J. Michael Shull for access to prepublished determinations of N(0) and N(1) for HD 195965. Joshua Destree and Teresa Ross provided helpful assistance with certain aspects of preparing the FUSE spectra. Dr. Welty and Mr. Destree also provided many very valuable comments on the manuscript, as did the anonymous referee. Finally, we express our gratitude to the Meudon PDR code team for making their code publicly available and providing some assistance in its use. This research was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities. Additional support was provided by NASA grant NAG5-12279 to the University of Colorado. NR 48 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1236 EP 1256 DI 10.1088/0004-637X/711/2/1236 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100020 ER PT J AU Skemer, AJ Close, LM Hinz, PM Hoffmann, WF Greene, TP Males, JR Beck, TL AF Skemer, Andrew J. Close, Laird M. Hinz, Philip M. Hoffmann, William F. Greene, Thomas P. Males, Jared R. Beck, Tracy L. TI ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; circumstellar matter; dust, extinction; infrared: stars; instrumentation: adaptive optics; stars: pre-main sequence ID T-TAURI STARS; ADAPTIVE OPTICS SYSTEM; IRRADIANCE CALIBRATION; CRYSTALLINE SILICATES; PROTOPLANETARY DISKS; SPECTROSCOPIC SURVEY; CIRCUMBINARY DISK; PLANET FORMATION; BROWN DWARF; GROWTH AB The 10 mu m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (<= 3 ''; less than or similar to 420 AU) at the distances of the nearest star-forming regions (similar to 140 pc). Large, 6-10 m ground-based telescopes with midinfrared instruments can resolve these systems. In this paper, we spatially resolve the 0 ''.88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. C1 [Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Males, Jared R.] Univ Arizona, Steward Observ, Dept Astron, Tucson, AZ 85721 USA. [Greene, Thomas P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Beck, Tracy L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Skemer, AJ (reprint author), Univ Arizona, Steward Observ, Dept Astron, Tucson, AZ 85721 USA. OI Skemer, Andrew/0000-0001-6098-3924 FU NASA; University of Arizona; NSF CAREER; MRI; TSIP FX The authors are grateful to Jeroen Bouwman and Ilaria Pascucci for supplying the reduced Spitzer spectrum of UY Aur. We also thank the Gemini mid-IR team, especially Rachel Mason, Scott Fisher, MelanieClark, and Michael Hoenig for digging up old acquisition images. We thank Dan Potter and Joe Hora for help with the IRTF observations. We also thank the anonymous referee for his/her comments that have greatly improved this paper. This paper makes use of the IDL library, mpfit, described in Markwardt (2009). A.J.S. acknowledges the NASA Graduate Student Research Program (GSRP) and the University of Arizona's Technology Research Initiative Fund (TRIF) for their generous support. L.M.C.'s research is supported by NSF CAREER, MRI and TSIP awards. NR 53 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAR 10 PY 2010 VL 711 IS 2 BP 1280 EP 1290 DI 10.1088/0004-637X/711/2/1280 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 559SN UT WOS:000274848100023 ER PT J AU Dorodnitsyn, A Kallman, T AF Dorodnitsyn, A. Kallman, T. TI ACTIVE GALAXY UNIFICATION IN THE ERA OF X-RAY POLARIMETRY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; galaxies: active; hydrodynamics; methods: numerical; quasars: absorption lines; X-rays: galaxies ID REFLECTION GRATING SPECTROMETER; GALACTIC NUCLEI; HYDRODYNAMICAL MODEL; TORUS WIND; SEYFERT-GALAXIES; WARM ABSORBERS; LINE FORMATION; NGC 5548; RADIATION; EMISSION AB Active galactic nuclei (AGNs), Seyfert galaxies, and quasars are powered by luminous accretion and often accompanied by winds that are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes that are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption ( warm absorbers). Here, we show that such gas will have a distinct signature when viewed in polarized X-rays. Observations of such polarization can test models for the geometry of the flow and the gas responsible for launching and collimating it. We present calculations that show that the polarization depends on the hydrodynamics of the flow, the quantum mechanics of resonance-line scattering, and the transfer of polarized X-ray light in the highly ionized moving gas. The results emphasize the three-dimensional nature of the wind for modeling spectra. We show that the polarization in the 0.1-10 keV energy range is dominated by the effects of resonance lines. We predict a 5%-25% X-ray polarization signature of type-2 objects in this energy range. These results are generalized to flows that originate from a cold torus-like structure, located similar to 1 pc from the BH, which wraps the BH and is ultimately responsible for the apparent dichotomy between type 1 and type 2 AGNs. Such signals will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism Small Explorer. C1 [Dorodnitsyn, A.; Kallman, T.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Dorodnitsyn, A (reprint author), NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. FU NASA [05-ATP05-18] FX This research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA, and by grants from the NASA Astrophysics Theory Program 05-ATP05-18. NR 38 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2010 VL 711 IS 2 BP L112 EP L116 DI 10.1088/2041-8205/711/2/L112 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BT UT WOS:000275418000014 ER PT J AU Kolokolova, L Buratti, B Tishkovets, V AF Kolokolova, L. Buratti, B. Tishkovets, V. TI IMPACT OF COHERENT BACKSCATTERING ON THE SPECTRA OF ICY SATELLITES OF SATURN AND THE IMPLICATIONS OF ITS EFFECTS FOR REMOTE SENSING SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE methods: data analysis; methods: numerical; planets and satellites: general; planets and satellites: individual (Rhea, Iapetus); techniques: spectroscopic ID SOLAR-SYSTEM OBJECTS; WEAK-LOCALIZATION; BIDIRECTIONAL REFLECTANCE; DISORDERED MEDIA; ENCELADUS; PHOTONS; SURFACE; LIGHT AB We have found systematic variations in the spectra of Saturn's icy satellites Rhea and Iapetus obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The main attribute of these variations is a significantly different depth of the absorption bands at different phase angles. We show that these variations likely result from the coherent backscattering effect (CBE). This effect has been mainly known as the probable reason for a steep opposition spike in brightness observed for some asteroids, moons, and Kuiper Belt Objects at phase angles smaller than 3.. The opposition spike has different steepness at different albedos due to the strong dependence of the CBE on the absorption of the material. As a result of this dependence, the impact of the CBE should be different within and outside of the absorption spectral bands. This produces a systematic change in the depth of the absorption bands at different phase angles, as we see in the VIMS spectra of Rhea and Iapetus. Neglecting this effect may result in misinterpretation of the spectra and misleading conclusions about compositional and particle size differences of icy bodies studied at different phase angles. Our computer modeling of the CBE reproduces the observed spectral variations and also shows that they are strongly affected by the size and packing of particles. Thus, the variations in the absorption bands produced by the CBE not only allow us to improve interpretation of the spectra, but also provide a promising approach to study size and packing of the regolith and dust particles. C1 [Kolokolova, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Buratti, B.] Jet Prop Lab, Pasadena, CA 91109 USA. [Tishkovets, V.] Inst Radioastron, Kharkov, Ukraine. RP Kolokolova, L (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM Ludmilla@astro.umd.edu NR 32 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2010 VL 711 IS 2 BP L71 EP L74 DI 10.1088/2041-8205/711/2/L71 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BT UT WOS:000275418000005 ER PT J AU Sahai, R Chronopoulos, CK AF Sahai, Raghvendra Chronopoulos, Christopher K. TI THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; dust: extinction; ISM: structure; stars: AGB and post-AGB; stars: individual (IRC+10216); stars: mass-loss ID CIRCUMSTELLAR ENVELOPE; EVOLUTION; BUBBLES; MODELS; SHELL AB We have discovered a very extended shock structure (i.e., with a diameter of about 24') surrounding the well-known carbon star IRC+10216 in ultraviolet images taken with the Galaxy Evolution Explorer satellite. We conclude that this structure results from the interaction of IRC+10216's molecular wind with the interstellar medium (ISM), as it moves through the latter. All important structural features expected from theoretical models of such interactions are identified: the termination shock, the astrosheath, the astropause, the bow shock, and an astrotail (with vortices). The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 M circle dot, for a mass-loss rate of 2 x 10(-5) M(circle dot) yr(-1)). From the termination-shock standoff distance, we find that IRC+10216 is moving at a speed of about greater than or similar to 91 km s(-1) (1 cm(-3)/nISM)(1/2) through the surrounding ISM. C1 [Sahai, Raghvendra; Chronopoulos, Christopher K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sahai, R (reprint author), CALTECH, Jet Prop Lab, MS 183-900, Pasadena, CA 91109 USA. EM sahai@jpl.nasa.gov FU NASA [NMO710651]; GALEX FX We thank Drs. D. van Buren, M. Mac Low, T. Ueta, C. Wareing, and H.-R. Muller for helpful discussions. R. S.'s contribution to the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R. S. thanks NASA for financial support via LTSA (NMO710651) and GALEX GO awards. C. K. C. thanks NASA for a Space Grant summer 2009 student internship at JPL. NR 17 TC 36 Z9 36 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2010 VL 711 IS 2 BP L53 EP L56 DI 10.1088/2041-8205/711/2/L53 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BT UT WOS:000275418000001 ER PT J AU van Meter, JR Wise, JH Miller, MC Reynolds, CS Centrella, J Baker, JG Boggs, WD Kelly, BJ McWilliams, ST AF van Meter, James R. Wise, John H. Miller, M. Coleman Reynolds, Christopher S. Centrella, Joan Baker, John G. Boggs, William D. Kelly, Bernard J. McWilliams, Sean T. TI MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE black hole physics; galaxies: nuclei; gravitational waves ID ACCRETION DISKS; STANDARD SIRENS; COUNTERPARTS; AFTERGLOW; EVOLUTION; SEARCH; MERGER AB Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne Laser Interferometer Space Antenna. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step toward solving this problem by mapping the flow of pressureless matter in the dynamic, three-dimensional general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal. C1 [van Meter, James R.; Centrella, Joan; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 21114 USA. [Wise, John H.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Greenbelt, MD 21114 USA. [Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Boggs, William D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP van Meter, JR (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 21114 USA. EM james.r.vanmeter@nasa.gov RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454 FU National Science Foundation [AST 06-07428]; NASA [NNX08AH29G, 06-BEFS06-19] FX We performed these calculations on Discover at NASA/GSFC and Pleiades at NASA/AMES. C. S. R. and M. C. M. acknowledge partial support from the National Science Foundation under grant AST 06-07428. M. C. M. was also supported in part by NASA ATP grant NNX08AH29G. The work at Goddard supported in part by NASA grant 06-BEFS06-19. J. H. W., S. T. M., and B. J. K. were supported by appointments to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 36 TC 15 Z9 15 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 10 PY 2010 VL 711 IS 2 BP L89 EP L93 DI 10.1088/2041-8205/711/2/L89 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BT UT WOS:000275418000009 ER PT J AU Xiu, P Chai, F Shi, L Xue, HJ Chao, Y AF Xiu, Peng Chai, Fei Shi, Lei Xue, Huijie Chao, Yi TI A census of eddy activities in the South China Sea during 1993-2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID UPPER-LAYER CIRCULATION; LUZON STRAIT; MESOSCALE EDDIES; TOPEX/POSEIDON ALTIMETRY; ANTICYCLONIC EDDIES; KUROSHIO BEND; COLD EDDY; OCEAN; VARIABILITY; DYNAMICS AB Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993-2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 +/- 2.4 eddies predicted by the model and 32.8 +/- 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km(2), equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Nino-Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS. C1 [Xiu, Peng; Chai, Fei; Shi, Lei; Xue, Huijie] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA. [Chao, Yi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xiu, P (reprint author), Univ Maine, Sch Marine Sci, Orono, ME 04469 USA. EM fchai@maine.edu RI Xiu, Peng/O-6724-2014 FU NASA [NNG04GM64G]; NSFC [90711006] FX This research was supported by a NASA grant (NNG04GM64G) and NSFC grant (90711006) to F. Chai. This research was carried out, in part, by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 70 TC 93 Z9 105 U1 3 U2 54 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAR 10 PY 2010 VL 115 AR C03012 DI 10.1029/2009JC005657 PG 15 WC Oceanography SC Oceanography GA 568BQ UT WOS:000275497200001 ER PT J AU Singh, KH Okuma, S AF Singh, K. H. Okuma, S. TI Special Issue - Magnetic anomalies (vol 478, pg 1, 2009) SO TECTONOPHYSICS LA English DT Correction C1 [Singh, K. H.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, GEST,UMBC, Greenbelt, MD 20771 USA. [Okuma, S.] AIST, Geol Survey Japan, Tsukuba, Ibaraki 3058567, Japan. RP Singh, KH (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, GEST,UMBC, Greenbelt, MD 20771 USA. EM fnu.kumarhemant-1@nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD MAR 10 PY 2010 VL 483 IS 3-4 BP 426 EP 426 DI 10.1016/j.tecto.2009.12.015 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 573PP UT WOS:000275927000019 ER PT J AU Field, RD Moore, GWK Holdsworth, G Schmidt, GA AF Field, Robert D. Moore, G. W. K. Holdsworth, Gerald Schmidt, Gavin A. TI A GCM-based analysis of circulation controls on delta O-18 in the southwest Yukon, Canada: Implications for climate reconstructions in the region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NORTH PACIFIC; INTERANNUAL VARIABILITY; PRECIPITATION; ISOTOPES; WATER; TELECONNECTIONS; TEMPERATURE; ATMOSPHERE; CENTURIES; GREENLAND AB To improve our understanding of paleoclimatic records in the southwest Yukon, we examined controls on precipitation delta O-18 using an isotopically-equipped atmospheric general circulation model (GCM). Our results show that, particularly during the cool-season, elevated delta O-18 is associated with a deeper Aleutian Low and stronger southerly moisture flow, while lower delta O-18 is associated with the opposite meteorological conditions. These results suggest that the large mid-19th century shift towards lower delta O-18 values seen in paleoclimate records from the region was associated with a shift towards a weaker Aleutian Low. While in disagreement with a previous interpretation of this shift, it is consistent with records of glacial advance and tree-ring growth during the same period, and observational studies of Aleutian Low controls on temperature and precipitation in the region. Citation: Field, R. D., G. W. K. Moore, G. Holdsworth, and G. A. Schmidt (2010), A GCM-based analysis of circulation controls on delta O-18 in the southwest Yukon, Canada: Implications for climate reconstructions in the region, Geophys. Res. Lett., 37, L05706, doi:10.1029/2009GL041408. C1 [Field, Robert D.; Moore, G. W. K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Holdsworth, Gerald] Univ Calgary, Arctic Inst N Amer, Calgary, AB T3B 1E5, Canada. [Schmidt, Gavin A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Field, RD (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM robert.field@utoronto.ca RI Schmidt, Gavin/D-4427-2012; Moore, Kent/D-8518-2011 OI Schmidt, Gavin/0000-0002-2258-0486; Moore, Kent/0000-0002-3986-5605 FU Canadian Foundation for Climate and Atmospheric Sciences through the Polar Climate Stability Network; Natural Sciences and Engineering Research Council of Canada FX This work was supported by the Canadian Foundation for Climate and Atmospheric Sciences through the Polar Climate Stability Network, and for R. F. by a graduate scholarship from the Natural Sciences and Engineering Research Council of Canada. We thank Allegra LeGrande and Sophie Lewis for assistance with the GCM. NR 27 TC 13 Z9 13 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAR 9 PY 2010 VL 37 AR L05706 DI 10.1029/2009GL041408 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 568AR UT WOS:000275494300001 ER PT J AU Ginoux, P Garbuzov, D Hsu, NC AF Ginoux, Paul Garbuzov, Dmitri Hsu, N. Christina TI Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL PROPERTIES; ART.; MODEL; VEGETATION; EMISSIONS; INDEX AB Mineral dust interacts with radiation and impacts both the regional and global climate. The relative contribution of natural and anthropogenic dust sources, however, remains largely uncertain. Although human activities disturb soils and therefore enhance wind erosion, their contribution to global dust emission has never been directly evaluated because of a lack of data. The retrieval of aerosol properties over land, including deserts, using the Moderate Resolution Imaging Spectroradiometer Deep Blue algorithm makes the first direct characterization of the origin of individual sources possible. In order to separate freshly emitted dust from other aerosol types and aged dust particles, the spectral dependence of the single scattering albedo and the Angstrom wavelength exponent are used. Four years of data from the eastern part of West Africa, which includes one of the most active natural dust sources and the highest population density on the continent, are processed. Sources are identified on the basis of the persistence of significant aerosol optical depth from freshly emitted dust, and the origin is characterized as natural or anthropogenic on the basis of a land use data set. Our results indicate that although anthropogenic dust is observed less frequently and with lower optical depth than dust from natural sources in this particular region, it occupies a large area covering most of northern Nigeria and southern Chad, around Lake Chad. In addition, smaller anthropogenic sources are found as far south as 5 degrees of latitude north, well outside the domain of most dust source inventories. C1 [Ginoux, Paul] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Garbuzov, Dmitri] Princeton Univ, Dept Comp Sci, Princeton, NJ 08542 USA. [Hsu, N. Christina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ginoux, P (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM paul.ginoux@noaa.gov; dmitri@princeton.edu; christina.hsu@nasa.gov RI Ginoux, Paul/C-2326-2008; Hsu, N. Christina/H-3420-2013 OI Ginoux, Paul/0000-0003-3642-2988; FU Princeton Environmental Institute FX We are thankful to the reviewers comments who help us improve the manuscript. Dmitri Garbuzov was funded under the summer internship program by the Princeton Environmental Institute. Figures 6, 7, and 8 have been realized using GoogleEarth (TM). NR 32 TC 40 Z9 43 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 9 PY 2010 VL 115 AR D05204 DI 10.1029/2009JD012398 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568BA UT WOS:000275495300002 ER PT J AU Oman, LD Waugh, DW Kawa, SR Stolarski, RS Douglass, AR Newman, PA AF Oman, L. D. Waugh, D. W. Kawa, S. R. Stolarski, R. S. Douglass, A. R. Newman, P. A. TI Mechanisms and feedback causing changes in upper stratospheric ozone in the 21st century SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; GASES NITROUS-OXIDE; GREENHOUSE GASES; FUTURE CONCENTRATIONS; DEPLETING SUBSTANCES; CARBON-DIOXIDE; DOUBLED CO2; TEMPERATURE; RECOVERY; CHLORINE AB Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantify the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System chemistry-climate model, using multiple linear regression analysis applied to simulations using either A1b or A2 greenhouse gas (GHG) scenarios. In both scenarios, upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the A1b GHG scenario, this increase is determined by the decrease in halogen amounts and the GHG-induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase because of cooler temperatures. The resulting ozone evolutions are similar in the A2 and A1b simulations. The response of ozone caused by feedback from temperature and HOx changes, related to changing halogen concentrations, is also quantified using simulations with fixed-halogen concentrations. C1 [Oman, L. D.; Waugh, D. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Oman, L. D.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Oman, LD (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. EM luke.d.oman@nasa.gov RI Newman, Paul/D-6208-2012; Douglass, Anne/D-4655-2012; Oman, Luke/C-2778-2009; Kawa, Stephan/E-9040-2012; Stolarski, Richard/B-8499-2013; Waugh, Darryn/K-3688-2016 OI Newman, Paul/0000-0003-1139-2508; Oman, Luke/0000-0002-5487-2598; Stolarski, Richard/0000-0001-8722-4012; Waugh, Darryn/0000-0001-7692-2798 FU NASA MAP; NSF Large-scale Climate Dynamics programs FX This research was supported by the NASA MAP and NSF Large-scale Climate Dynamics programs. We thank J. Eric Nielsen for running the model simulations; Stacey Frith for helping with the model output processing; and Chang Lang, Qing Liang, and Tak Igusa for helpful comments. We also thank two anonymous reviewers for helpful comments and additions. We also thank those involved in model development at GSFC and high-performance computing resources on NASA's "Project Columbia." NR 29 TC 23 Z9 23 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAR 9 PY 2010 VL 115 AR D05303 DI 10.1029/2009JD012397 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 568BA UT WOS:000275495300001 ER PT J AU Moore, M Walsh, M Bailey, J Brunson, D Gulland, F Landry, S Mattila, D Mayo, C Slay, C Smith, J Rowles, T AF Moore, Michael Walsh, Michael Bailey, James Brunson, David Gulland, Frances Landry, Scott Mattila, David Mayo, Charles Slay, Christopher Smith, Jamison Rowles, Teresa TI Sedation at Sea of Entangled North Atlantic Right Whales (Eubalaena glacialis) to Enhance Disentanglement SO PLOS ONE LA English DT Article AB Background: The objective of this study was to enhance removal of fishing gear from right whales (Eubalaena glacialis) at sea that evade disentanglement boat approaches. Titrated intra muscular injections to achieve sedation were undertaken on two free swimming right whales. Methodology/Principal Findings: Following initial trials with beached whales, a sedation protocol was developed for right whales. Mass was estimated from sighting and necropsy data from comparable right whales. Midazolam (0.01 to 0.025 mg/ kg) was first given alone or with meperidine (0.17 to 0.25 mg/kg) either once or four times over two hours to whale # 1102 by cantilevered pole syringe. In the last attempt on whale # 1102 there appeared to be a mild effect in 20-30 minutes, with duration of less than 2 hours that included exhalation before the blowhole fully cleared the water. Boat avoidance, used as a measure of sedation depth, was not reduced. A second severely entangled animal in 2009, whale # 3311, received midazolam (0.03 mg/kg) followed by butorphanol (0.03 mg/kg) an hour later, delivered ballistically. Two months later it was then given midazolam (0.07 mg/kg) and butorphanol (0.07 mg/kg) simultaneously. The next day both drugs at 0.1 mg/kg were given as a mixture in two darts 10 minutes apart. The first attempt on whale # 3311 showed increased swimming speed and boat avoidance was observed after a further 20 minutes. The second attempt on whale # 3311 showed respiration increasing mildly in frequency and decreasing in strength. The third attempt on whale # 3311 gave a statistically significant increase in respiratory frequency an hour after injection, with increased swimming speed and marked reduction of boat evasion that enabled decisive cuts to entangling gear. Conclusions/Significance: We conclude that butorphanol and midazolam delivered ballistically in appropriate dosages and combinations may have merit in future refractory free swimming entangled right whale cases until other entanglement solutions are developed. C1 [Moore, Michael] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. [Walsh, Michael; Bailey, James] Univ Florida, Coll Vet Med, Dept Large Anim Clin Sci, Gainesville, FL 32610 USA. [Brunson, David] Pfizer Inc, Vet Specialty Team Sedat Pain Management & Anesth, Madison, WI USA. [Gulland, Frances] Marine Mammal Ctr, Sausalito, CA USA. [Landry, Scott; Mayo, Charles] Provincetown Ctr Coastal Studies, Provincetown, MA USA. [Mattila, David] Natl Oceanog Atmospher Adm, Hawaiian Islands Humpback Whale Natl Marine Sanct, Natl Ocean Serv, Kihei, HI USA. [Slay, Christopher] Coastwise Consulting Inc, Athens, GA USA. [Smith, Jamison] Natl Oceanog Atmospher Adm, Protected Resources Div, Natl Marine Fisheries Serv, Gloucester, MA USA. [Rowles, Teresa] Natl Oceanog Atmospher Adm, Marine Mammal Conservat Div, Natl Marine Fisheries Serv, Silver Spring, MD USA. RP Moore, M (reprint author), Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. EM mmoore@whoi.edu RI Moore, Michael/E-1707-2015 OI Moore, Michael/0000-0003-3074-6631 FU Cecil H; Ida M. Green Technology Innovation Program (WHOI); North Pond Foundation; Sloan and Wick Simmonds; Northeast Consortium; National Oceanic Atmospheric Administration (NOAA); Georgia Department of Natural Resources; Florida Fish and Wildlife Conservation Commission; Provincetown Center for Coastal Studies; Coastwise Consulting; Atlantic Large Whale Disentanglement Network; Aquatic Animal Health Program; University of Florida FX This work was funded by Cecil H. and Ida M. Green Technology Innovation Program (WHOI), North Pond Foundation, Sloan and Wick Simmonds, Northeast Consortium, National Oceanic Atmospheric Administration (NOAA), Georgia Department of Natural Resources, Florida Fish and Wildlife Conservation Commission, Provincetown Center for Coastal Studies, Coastwise Consulting, the Atlantic Large Whale Disentanglement Network, and Aquatic Animal Health Program, University of Florida. NOAA was centrally involved in the permitting and undertaking of the work. The Marine Mammal Protection Act of 1972 demands that this be so. The paper was drafted by all of the authors with no influence from NOAA as an agency in terms of how it was written. Coastwise Consulting provided logistic support for the 2009 field work. Provincetown Center for Coastal Studies provided support for ballistic technology development. Woods Hole Oceanographic Institution funded initial concept development. University of Florida funded drug acquisition. Despite some of the authors being employees of the above sources of funds, the administrators of the funds so granted had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Pfizer Inc. had no financial involvement in the project. NR 13 TC 16 Z9 18 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 9 PY 2010 VL 5 IS 3 AR e9597 DI 10.1371/journal.pone.0009597 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 565XA UT WOS:000275328300014 PM 20231895 ER PT J AU Bueno, J Shaw, MD Day, PK Echternach, PM AF Bueno, J. Shaw, M. D. Day, P. K. Echternach, P. M. TI Proof of concept of the quantum capacitance detector SO APPLIED PHYSICS LETTERS LA English DT Article AB We fabricated and tested a proof-of-concept quantum capacitance detector, a superconducting radiation detector described in a recent publication [Shaw et al., Phys. Rev. B 79, 144511 (2009)]. In this concept, quasiparticle tunneling in a single Cooper-pair box is used to measure the density of quasiparticles in a superconducting absorber.