FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abdo, AA Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Chen, AW Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Conrad, J Cutini, S Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Guillemot, L Guiriec, S Hadasch, D Harding, AK Hayashida, M Horan, D Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Knodlseder, J Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nestoras, I Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reyes, LC Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sambruna, R Sander, A Sato, R Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stecker, FW Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Villata, M Vitale, V von Kienlin, A Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M Tavecchio, F Sikora, M Schady, P Roming, P Chester, MM Maraschi, L AF Abdo, A. A. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Chekhtman, A. Chen, A. W. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Conrad, J. Cutini, S. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Horan, D. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reyes, L. C. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sambruna, R. Sander, A. Sato, R. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stecker, F. W. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. Tavecchio, F. Sikora, M. Schady, P. Roming, P. Chester, M. M. Maraschi, L. TI SUZAKU OBSERVATIONS OF LUMINOUS QUASARS: REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; radiation mechanisms: non-thermal; X-rays: galaxies ID XMM-NEWTON OBSERVATIONS; MAGNETOSONIC SHOCK-WAVES; LARGE-AREA TELESCOPE; RADIO-LOUD QUASARS; X-RAY TELESCOPE; MULTIWAVELENGTH OBSERVATIONS; GALACTIC NUCLEI; 3C 454.3; AMBIENT RADIATION; NONTHERMAL FLARES AB We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.] Univ Paris Diderot, Lab AIM, CNRS, CEA IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cavazzuti, E.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; McEnery, J. E.; Sambruna, R.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.; Roming, P.; Chester, M. M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guillemot, L.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] Inst Phys & Chem Res RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Sato, R.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reyes, L. C.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sadrozinski, H. F. -W.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.; Tavecchio, F.] Consorzio Interuniv Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Schady, P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Maraschi, L.] Osservatorio Astron Brena, I-20121 Milan, Italy. [Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM rsato@astro.isas.jaxa.jp RI Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Johnson, Neil/G-3309-2014; XRAY, SUZAKU/A-1808-2009; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Reimer, Olaf/0000-0001-6953-1385; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Villata, Massimo/0000-0003-1743-6946; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; Frailis, Marco/0000-0002-7400-2135; Grandi, Paola/0000-0003-1848-6013; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; L. S. was partially supported by the Polish Ministry of Science and Higher Education through the project N N203 380336. NR 56 TC 15 Z9 15 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 835 EP 849 DI 10.1088/0004-637X/716/1/835 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000064 ER PT J AU Lichtenberg, KA Arvidson, RE Morris, RV Murchie, SL Bishop, JL Remolar, DF Glotch, TD Dobrea, EN Mustard, JF Andrews-Hanna, J Roach, LH AF Lichtenberg, Kimberly A. Arvidson, Raymond E. Morris, Richard V. Murchie, Scott L. Bishop, Janice L. Fernandez Remolar, David Glotch, Timothy D. Dobrea, Eldar Noe Mustard, John F. Andrews-Hanna, Jeffrey Roach, Leah H. TI Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MERIDIANI-PLANUM; OMEGA/MARS EXPRESS AB Sedimentary deposits within the 280 km wide crater containing Aram Chaos (similar to 3 degrees N, 339 degrees E) have been differentially eroded by wind to expose a stratigraphic column 900-1000 m thick that unconformably overlies the chaos bedrock. A detailed stratigraphic and mineralogical description of the deposits is presented based on data from the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars, Context Imager, and High Resolution Imaging Science Experiment. Two sedimentary units overlie the basement chaos material representing the original plains fill in Aram Crater: the first and oldest is composed of (1) a 50-75 m thick dark-toned basal unit containing ferric hydroxysulfate intercalated with monohydrated-sulfate-bearing materials, (2) a 75-100 m thick light-toned unit with monohydrated sulfates, and (3) a 175-350 m thick light-toned resistant capping unit with nanophase ferric oxides and monohydrated sulfates. After a period of wind erosion, these deposits were partially and unconformably covered by the second sedimentary unit, a 75-100 m thick, discontinuous dark-toned unit containing crystalline hematite and polyhydrated sulfate material. These sedimentary deposits were formed by evaporite deposition during at least two distinct rising groundwater episodes fed by regional-scale recharge. Later groundwater event(s) formed the polyhydrated materials, indicating that environmental conditions changed to a higher water-to-rock ratio. Wind has continued to shape the landscape after the last wetting event to produce the features and exposures observed. C1 [Lichtenberg, Kimberly A.; Arvidson, Raymond E.] Washington Univ, McDonnell Ctr Space Sci, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Andrews-Hanna, Jeffrey] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Fernandez Remolar, David] INTA CSIC, Ctr Astrobiol, E-28850 Madrid, Spain. [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mustard, John F.; Roach, Leah H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Dobrea, Eldar Noe] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Lichtenberg, KA (reprint author), Washington Univ, McDonnell Ctr Space Sci, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM lichtenberg@wunder.wustl.edu RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU NASA; Micinn Project [ESP2006-09487] FX K. A. Lichtenberg, R. E. Arvidson, and R. V. Morris acknowledge support from NASA for participation as CRISM Science Team Members. We thank J. Gruener (NASA-JSC) for the XRD powder patterns of the synthetic sulfate-bearing phases. David Fernandez-Remolar acknowledges support by the Micinn Project ESP2006-09487. We would also like to thank our two reviewers for the thoughtful and thorough comments which made this a better paper. NR 40 TC 46 Z9 48 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 10 PY 2010 VL 115 AR E00D17 DI 10.1029/2009JE003353 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 610MC UT WOS:000278735900001 ER PT J AU Boykin, PO Mor, T Roychowdhury, V Vatan, F AF Boykin, P. Oscar Mor, Tal Roychowdhury, Vwani Vatan, Farrokh TI Algorithms on ensemble quantum computers SO NATURAL COMPUTING LA English DT Article; Proceedings Paper CT 6th International Conference on Unconventional Computation CY AUG, 2007 CL Kingston, CANADA SP EATCS, Cent Discrete Math & Theoret Comp Sci, Queens Univ, Sch Comp DE Quantum algorithms; Ensemble (bulk) quantum computers; NMR; Fault tolerance computing ID NUCLEAR-MAGNETIC-RESONANCE; ERROR-CORRECTION; COMPUTATION; TELEPORTATION; SPINS AB In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e. g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and sigma(1/4)(z) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement. C1 [Mor, Tal] Technion, Dept Comp Sci, IL-32000 Haifa, Israel. [Boykin, P. Oscar] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Roychowdhury, Vwani] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Vatan, Farrokh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mor, T (reprint author), Technion, Dept Comp Sci, IL-32000 Haifa, Israel. EM talmo@cs.technion.ac.il NR 27 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1567-7818 EI 1572-9796 J9 NAT COMPUT JI Nat. Comput. PD JUN 10 PY 2010 VL 9 IS 2 BP 329 EP 345 DI 10.1007/s11047-009-9133-0 PG 17 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 604GK UT WOS:000278267300004 ER PT J AU Zaitchik, BF Rodell, M Olivera, F AF Zaitchik, Benjamin F. Rodell, Matthew Olivera, Francisco TI Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme SO WATER RESOURCES RESEARCH LA English DT Article ID GENERAL-CIRCULATION MODELS; SURFACE MODEL; CONTINENTAL-SCALE; PRECIPITATION PRODUCTS; TEMPORAL ANALYSIS; BASIN EXPERIMENT; CLIMATE MODELS; SNOW COVER; PARAMETERIZATION; RUNOFF AB Advanced land surface models (LSMs) offer detailed estimates of distributed hydrological fluxes and storages. These estimates are extremely valuable for studies of climate and water resources, but they are difficult to verify as field measurements of soil moisture, evapotranspiration, and surface and subsurface runoff are sparse in most regions. In contrast, river discharge is a hydrologic flux that is recorded regularly and with good accuracy for many of the world's major rivers. These measurements of discharge spatially integrate all upstream hydrological processes. As such, they can be used to evaluate distributed LSMs, but only if the simulated runoff is properly routed through the river basins. In this study, a rapid, computationally efficient source-to-sink (STS) routing scheme is presented that generates estimates of river discharge at gauge locations based on gridded runoff output. We applied the scheme as a postprocessor to archived output of the Global Land Data Assimilation System (GLDAS). GLDAS integrates satellite and ground-based data within multiple offline LSMs to produce fields of land surface states and fluxes. The application of the STS routing scheme allows for evaluation of GLDAS products in regions that lack distributed in situ hydrological measurements. We found that the four LSMs included in GLDAS yield very different estimates of river discharge and that there are distinct geographic patterns in the accuracy of each model as evaluated against gauged discharge. The choice of atmospheric forcing data set also had a significant influence on the accuracy of simulated discharge. C1 [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Olivera, Francisco] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. RP Zaitchik, BF (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, 301 Olin Hall,3400 N Charles St, Baltimore, MD 21218 USA. EM zaitchik@jhu.edu RI Rodell, Matthew/E-4946-2012; Zaitchik, Benjamin/B-9461-2013 OI Rodell, Matthew/0000-0003-0106-7437; FU NASA FX The authors thank Hiroko Kato for performing the GLDAS simulations used in this study and for providing insight on their results. The authors also thank multiple members of the NASA Hydrological Sciences Branch for contributing their ideas and technical expertise. The Global Runoff Data Center (GRDC) is gratefully acknowledged for providing all river gauge data used in this study. This work was funded by NASA's Energy and Water Cycle Study (NEWS) program. NR 79 TC 48 Z9 49 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 10 PY 2010 VL 46 AR W06507 DI 10.1029/2009WR007811 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 610OG UT WOS:000278742000001 ER PT J AU Gong, J Geller, MA AF Gong, Jie Geller, Marvin A. TI Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL LOWER STRATOSPHERE; MIDDLE ATMOSPHERE; MACQUARIE ISLAND; INTERANNUAL VARIABILITY; LATITUDINAL VARIATIONS; GENERAL-CIRCULATION; MOMENTUM FLUX; MODEL; PARAMETERIZATION; SPECTRUM AB Convectively generated internal gravity waves at extratropical latitudes are difficult to identify by climatological analysis of the temperature and horizontal wind fields from radiosonde profiles using traditional analysis methods. Here, we show that, by analyzing ascent rate profiles (we define a new variable, "vertical fluctuation energy (VE)"), we can identify convection sources in climatological analyses. Analysis of a 9-year time series (1998-2006) of United States high vertical resolution radiosonde data shows that VE maximizes in summer in midlatitudes within the troposphere (2-8.9 km), and peaks at local afternoon-early evening during the summer over most of the contiguous United States. Furthermore, the apparent dominant vertical wavelength based on Fourier analysis of the low-pass filtered ascent rate fluctuations also increase and decrease with VE, both on diurnal and seasonal timescales. VE in the lower stratosphere, however, does not show this same relationship to convection, but analysis of the vertical wavelength does show some of the features seen in tropospheric VE. Unlike midlatitude stations, VE within both the troposphere and the lower stratosphere over tropical western Pacific island stations is highly correlated with convective precipitation and inversely correlated with outgoing longwave radiation. We interpret this difference by using the 4-D Gravity Wave Regional or Global Ray Tracer ray-tracing model with a source spectrum representative of a convection source. C1 [Gong, Jie; Geller, Marvin A.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA. RP Gong, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jie.Gong@jpl.nasa.gov RI Gong, Jie/H-2436-2011 FU NSF [ATM - 0413747] FX This research is sponsored by NSF grant ATM - 0413747. The authors are grateful to Joan Alexander, Brian Colle, Stephen Eckermann, and Kaoru Sato for helpful discussions and suggestions. Three anonymous reviewers' comments and suggestions are also greatly appreciated. NR 54 TC 19 Z9 20 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 9 PY 2010 VL 115 AR D11110 DI 10.1029/2009JD012265 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 610KZ UT WOS:000278732900001 ER PT J AU Sultana, J Kazanas, D AF Sultana, Joseph Kazanas, Demosthenes TI Bending of light in conformal Weyl gravity SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; DEFLECTION; CLUSTERS; ENERGY; MATTER; LIMIT AB We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term gamma r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces. C1 [Sultana, Joseph; Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Sultana, Joseph] Univ Malta, Dept Math, Msida, Malta. RP Sultana, J (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM joseph.sultana@um.edu.mt; demos.kazanas@nasa.gov FU NASA-GSFC FX J. S. gratefully acknowledges the financial support of the Fulbright Program, during his stay at NASA-GSFC. NR 29 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 9 PY 2010 VL 81 IS 12 AR 127502 DI 10.1103/PhysRevD.81.127502 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608BH UT WOS:000278555900010 ER PT J AU Lu, GP Blakeslee, RJ Li, JB Smith, DM Shao, XM McCaul, EW Buechler, DE Christian, HJ Hall, JM Cummer, SA AF Lu, Gaopeng Blakeslee, Richard J. Li, Jingbo Smith, David M. Shao, Xuan -Min McCaul, Eugene W. Buechler, Dennis E. Christian, Hugh J. Hall, John M. Cummer, Steven A. TI Lightning mapping observation of a terrestrial gamma-ray flash SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THUNDERSTORM; PROPAGATION; RADIATION; ARRAY AB We report the observation with the North Alabama Lightning Mapping Array (LMA) related to a terrestrial gamma-ray flash (TGF) detected by RHESSI on 26 July 2008. The LMA data explicitly show the TGF was produced during the initial development of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above sea level (-22 degrees C temperature level) a higher positive region centered at 13 km, both confined to the convective core of an isolated storm in close proximity to the RHESSI footprint. After the occurrence of an LMA source with a high peak power (26 kW), the initial lightning evolution caused an unusually large IC current moment that became detectable 2 ms after the first LMA source and increased for another 2 ms, during which the burst of gamma-rays was produced. This slowly building current moment was most likely associated with the upward leader progression, which produced an uncommonly large IC charge moment change (+90 C.km) in 3 ms while being punctuated by a sequence of fast discharge. These observations suggest that the leader development may be involved in the TGF production. Citation: Lu, G., R. J. Blakeslee, J. Li, D. M. Smith, X. -M. Shao, E. W. McCaul, D. E. Buechler, H. J. Christian, J. M. Hall, and S. A. Cummer (2010), Lightning mapping observation of a terrestrial gamma-ray flash, Geophys. Res. Lett., 37, L11806, doi: 10.1029/2010GL043494. C1 [Lu, Gaopeng; Li, Jingbo; Cummer, Steven A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Blakeslee, Richard J.] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Smith, David M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Shao, Xuan -Min] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [McCaul, Eugene W.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Buechler, Dennis E.; Christian, Hugh J.; Hall, John M.] Univ Alabama, Global Hydrol & Climate Ctr, Huntsville, AL 35806 USA. RP Lu, GP (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90921, Durham, NC 27708 USA. EM gl46@duke.edu; cummer@ee.duke.edu RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008 OI Cummer, Steven/0000-0002-0002-0613 FU NSF [ATM-0221968] FX This work was supported by NSF Physical Meteorology Program grant ATM-0221968. The authors would like to thank Bill Winn, Ken Eack, Ron Thomas, Bill Rison, and David Raymond for valuable discussions. NR 27 TC 59 Z9 59 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 8 PY 2010 VL 37 AR L11806 DI 10.1029/2010GL043494 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 610KQ UT WOS:000278732000005 ER PT J AU Xie, F Wu, DL Ao, CO Kursinski, ER Mannucci, AJ Syndergaard, S AF Xie, F. Wu, D. L. Ao, C. O. Kursinski, E. R. Mannucci, A. J. Syndergaard, S. TI Super-refraction effects on GPS radio occultation refractivity in marine boundary layers SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LOWER TROPOSPHERE; SUPERREFRACTION; STRATOCUMULUS; ATMOSPHERE; FEEDBACKS; SIGNALS AB With the combination of global coverage, high vertical resolution, and all-weather capability, GPS radio occultation (RO) is an emerging satellite remote sensing technique that can probe the atmospheric boundary layer (ABL) on a global basis. However, a systematic negative bias (commonly referred to as N-bias) remains in derived refractivity profiles in the ABL. In this paper we present the N-biases in COSMIC RO soundings with respect to ECMWF analyses, which show a seasonally varying pattern clustered over the oceans where super-refraction (SR) often occurs. A case study of coincident COSMIC RO and radiosonde sounding confirms that the N-bias is primarily caused by SR. We also show that the high-rate RO bending angle measurements can resolve the ABL top at a vertical resolution better than 100 m. A reconstruction method is applied to one case where SR occurs and significantly reduces the negative refractivity error in the ABL. Citation: Xie, F., D. L. Wu, C. O. Ao, E. R. Kursinski, A. J. Mannucci, and S. Syndergaard (2010), Super-refraction effects on GPS radio occultation refractivity in marine boundary layers, Geophys. Res. Lett., 37, L11805, doi: 10.1029/2010GL043299. C1 [Xie, F.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA. [Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kursinski, E. R.] Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA. [Syndergaard, S.] Danish Meteorol Inst, DK-2100 Copenhagen, Denmark. RP Xie, F (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA. EM feiqin.xie@jpl.nasa.gov RI XIE, FEIQIN/J-4569-2013; Wu, Dong/D-5375-2012; Syndergaard, Stig/C-1103-2017 OI Syndergaard, Stig/0000-0003-3119-2618 FU JIFRESSE at UCLA; NOAA JCSDA; National Aeronautics and Space Administration (NASA) FX This work was supported by an appointment to JIFRESSE at UCLA. Dr. F. Xie and Dr. E. R. Kursinski are partly supported by NOAA JCSDA. Drs. D. L. Wu, C. O. Ao and A. J. Mannucci are supported by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). ECMWF analyses were provided by ECMWF through NCAR's CISL (Computational and Information Systems Laboratory) Research Data Archive (RDA). The authors would like to thank Byron Iijima, Marc Pestana, Tom Meehan, and Larry Young at JPL for assistance with the COSMIC retrievals and helpful discussions. We also thank Dr. Rick Anthe at UCAR and another anonymous reviewer for their help to improve the manuscript. NR 26 TC 14 Z9 14 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 8 PY 2010 VL 37 AR L11805 DI 10.1029/2010GL043299 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 610KQ UT WOS:000278732000004 ER PT J AU Klimas, A Uritsky, V Donovan, E AF Klimas, Alex Uritsky, Vadim Donovan, Eric TI Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth's midtail plasma sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SELF-ORGANIZED CRITICALITY; SPORADIC LOCALIZED RECONNECTIONS; MAGNETIC-FIELD TOPOLOGY; FLOW BURSTS; INTERMITTENT TURBULENCE; COHERENT STRUCTURES; SPACE PLASMAS; MT-INDEX; DYNAMIC MAGNETOSPHERE; PARTICLE INJECTIONS AB We provide indirect evidence for turbulent reconnection in Earth's midtail plasma sheet by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. (2002, 2003, 2006). The events are divided into two groups: (1) those that map to vertical bar X-GSM vertical bar < 12 R-E in the magnetotail and do not show scale-free statistics and (2) those that map to vertical bar X-GSM vertical bar > 12 R-E and do show scale-free statistics. The vertical bar X-GSM vertical bar dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail plasma sheet. C1 [Klimas, Alex] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Uritsky, Vadim; Donovan, Eric] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RP Klimas, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alex.klimas@nasa.gov OI Donovan, Eric/0000-0002-8557-4155 FU NASA [NNX08AG73G]; MMS IDS [NCC5-494] FX We would like to acknowledge the essential contributions to many aspects of our results by D. Fairfield, A. Richmond, S. Boardsen, and N. Tsyganenko. For this research, one of us (A.J.K.) was supported by NASA grant NNX08AG73G and by the MMS IDS grant NCC5-494. NR 76 TC 12 Z9 12 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 8 PY 2010 VL 115 AR A06202 DI 10.1029/2009JA014995 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610MV UT WOS:000278738000004 ER PT J AU Corvino, G Rezzolla, L Bernuzzi, S De Pietri, R Giacomazzo, B AF Corvino, Giovanni Rezzolla, Luciano Bernuzzi, Sebastiano De Pietri, Roberto Giacomazzo, Bruno TI On the shear instability in relativistic neutron stars SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID DIFFERENTIALLY ROTATING STARS; BAR-MODE INSTABILITY; GRAVITATIONAL-RADIATION; DYNAMICAL INSTABILITIES; GENERAL-RELATIVITY; ANGULAR-MOMENTUM; GROUND-STATE; DENSE MATTER; SIMULATIONS; STABILITY AB We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription (Douchin and Haensel 2001 Astron. Astrophys. 380 151-67). We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, beta(c) T/vertical bar W vertical bar similar or equal to 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of beta. This class of instability, which has so far been found only for small values of beta and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts et al (2005 Astrophys. J. 618 L37) on the nature of the low-T/vertical bar W vertical bar instability as the manifestation of a shear instability in a region where the latter is possible only for small values of beta. Furthermore, our results provide additional insight on shear instabilities and on the necessary conditions for their development. C1 [Corvino, Giovanni; Rezzolla, Luciano; Giacomazzo, Bruno] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Golm, Germany. [Bernuzzi, Sebastiano] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [De Pietri, Roberto] Univ Parma, Dept Phys, I-43100 Parma, Italy. [De Pietri, Roberto] Ist Nazl Fis Nucl, Parma, Italy. [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Corvino, G (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst, Golm, Germany. EM Giovanni.Corvino@roma1.infn.it RI Corvino, Giovanni/D-5918-2011; Giacomazzo, Bruno/I-8088-2012; De Pietri, Roberto/E-5336-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023; De Pietri, Roberto/0000-0003-1556-8304 NR 52 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114104 DI 10.1088/0264-9381/27/11/114104 PG 20 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000015 ER PT J AU Kelly, BJ Tichy, W Zlochower, Y Campanelli, M Whiting, B AF Kelly, B. J. Tichy, W. Zlochower, Y. Campanelli, M. Whiting, B. TI Post-Newtonian initial data with waves: progress in evolution SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID 3-DIMENSIONAL CARTESIAN GRIDS; APPARENT-HORIZON FINDER; MANY-BODY SYSTEM; NUMERICAL RELATIVITY; CANONICAL FORMALISM; BLACK-HOLES; ADM AB In Kelly et al (2007 Phys. Rev. D 76 024008), we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. These data satisfy the constraint equations to 2.5 post-Newtonian order, and contain a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving these data with a modern moving puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted. C1 [Kelly, B. J.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kelly, B. J.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, B. J.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Tichy, W.] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. [Zlochower, Y.; Campanelli, M.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Sch Math Sci, Rochester, NY 14623 USA. [Whiting, B.] Univ Florida, Dept Phys, Inst Fundamental Theory, Gainesville, FL 32611 USA. RP Kelly, BJ (reprint author), NASA, Goddard Space Flight Ctr, CRESST, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM bernard.j.kelly@nasa.gov RI Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454; Whiting, Bernard F/0000-0002-8501-8669 NR 34 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114005 DI 10.1088/0264-9381/27/11/114005 PG 11 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000007 ER PT J AU Rezzolla, L Baiotti, L Giacomazzo, B Link, D Font, JA AF Rezzolla, Luciano Baiotti, Luca Giacomazzo, Bruno Link, David Font, Jose A. TI Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID GAMMA-RAY BURSTS; QUASI-PERIODIC OSCILLATIONS; SCHWARZSCHILD BLACK-HOLE; RUNAWAY INSTABILITY; RELATIVISTIC TORI; ANGULAR-MOMENTUM; THICK DISCS; NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; ACCRETION DISKS AB We present new results from accurate and fully general-relativistic simulations of the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution of the stars is followed through the inspiral phase, the merger, and the prompt collapse to a black hole, up until the appearance of a thick accretion disc, which is studied as it enters and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation of state with Gamma = 2 is used, this work presents a systematic study within a fully general-relativistic framework of the properties of the resulting black-hole-torus system produced by the merger of unequal-mass binaries. More specifically, we show that (1) the mass of the torus increases considerably with the mass asymmetry, and equal-mass binaries do not produce significant tori if they have a total baryonic mass M(tot) greater than or similar to 3.7 M(circle dot); (2) tori with masses M(tor) similar to 0.2 M(circle dot) are measured for binaries with M(tot) similar to 3.4 M(circle dot) and mass ratios q similar to 0.75-0.85; (3) the mass of the torus can be estimated by the simple expression (M) over tilde (tor) (q, M(tot)) = [c(1)(1 - q) + c(2)] (M(max) - M(tot)), involving the maximum mass for the binaries and coefficients constrained from the simulations, and suggesting that the tori can have masses as large as (M) over tilde (tor) similar to 0.35 M(circle dot) for M(tot) similar to 2.8 M(circle dot) and q similar to 0.75-0.85; (4) using a novel technique to analyze the evolution of the tori, we find no evidence for the onset of non-axisymmetric instabilities and that very little, if any, of their mass is unbound; (5) finally, for all the binaries considered, we compute the complete gravitational waveforms and the recoils imparted to the black holes, discussing the prospects of the detection of these sources for a number of present and future detectors. C1 [Rezzolla, Luciano; Giacomazzo, Bruno; Link, David] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. [Baiotti, Luca] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 606, Japan. [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Link, David] Humboldt Univ, Inst Phys, Berlin, Germany. [Font, Jose A.] Univ Valencia, Dept Astron & Astrofis, Valencia, Spain. RP Rezzolla, L (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. EM rezzolla@aei.mpg.de RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 NR 76 TC 95 Z9 96 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114105 DI 10.1088/0264-9381/27/11/114105 PG 36 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000016 ER PT J AU Fonti, S Montanaro, S Politi, R Blanco, A Marra, AC Marzo, GA Orofino, V AF Fonti, S. Montanaro, S. Politi, R. Blanco, A. Marra, A. C. Marzo, G. A. Orofino, V. TI Infrared reflectance spectra of particulate mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID EMISSION-SPECTROSCOPY; COHERENT BACKSCATTER; MINERAL MIXTURES; PARTICLES; SCATTERING; REGOLITHS; QUARTZ AB In this work we report the main results of a laboratory test program aimed to check the spectral behavior of several mixtures of particulate samples. The chosen spectral interval is from 2.5 to 25.0 mu m since it is the range where many minerals have their characteristic features and it is important for the interpretation of remote sensing spectra of planetary surfaces. The present study uses directional hemispherical reflectance spectra of three particulate minerals (dolomite, olivine, and quartz), with different grain sizes (ranging from 1 to 300 mu m), and of their mixtures. It was found that, in the spectral range between 2.5 mu m and the Christiansen feature, the reflectance of the mixtures is a nonlinear combination of the reflectance of the single pure materials, in agreement with the results found at shorter wavelength and reported in the literature. Our experimental results also confirm that, for longer wavelength, the reflectance of the mixtures is a linear combination of the reflectance of the single pure minerals. In this work, after checking some important simplifying hypotheses, we show that the mixture spectra cannot be always accurately reproduced using the volume percentage of each component, but it has a complicate behavior requiring a careful evaluation of all the parameters involved in the process. In particular we have determined experimentally the penetration depth of the radiation at different wavelengths in some of the mixtures. In this way we have been able to address the important issue of the influence of surface composition on the observed spectra. C1 [Fonti, S.; Montanaro, S.; Blanco, A.; Orofino, V.] Univ Salento, Dept Phys, I-73100 Lecce, Italy. [Politi, R.] INAF, IASF, I-00133 Rome, Italy. [Marra, A. C.] CNR, ISAC, I-73100 Lecce, Italy. [Marzo, G. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Fonti, S (reprint author), Univ Salento, Dept Phys, Via Arnesano,CP 193, I-73100 Lecce, Italy. EM sergio.fonti@le.infn.it RI Marzo, Giuseppe/A-9765-2015; OI Politi, Romolo/0000-0002-9793-9780 FU Ministry of University and Research; Italian Space Agency; National Institute of Astrophysics FX This research has been partially supported by the Ministry of University and Research, the Italian Space Agency, and the National Institute of Astrophysics. The authors warmly thank Ljuba Moroz for her constructive discussion and valuable suggestions, as well as Bruce Hapke and Bethany Ehlmann for their very useful reviews that allowed us to considerably improve the quality of the manuscript. NR 28 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 5 PY 2010 VL 115 AR E06003 DI 10.1029/2009JE003461 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 606UW UT WOS:000278454800002 ER PT J AU Zhao, MH Gu, XH Lowther, SE Park, C Jean, YC Nguyen, T AF Zhao, Minhua Gu, Xiaohong Lowther, Sharon E. Park, Cheol Jean, Y. C. Nguyen, Tinh TI Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy SO NANOTECHNOLOGY LA English DT Article ID SCANNING PROBE MICROSCOPY; CONDUCTANCE MICROSCOPY; FIELD-EMISSION; NETWORKS AB Subsurface characterization of carbon nanotubes (CNTs) dispersed in free-standing polymer composite films was achieved via quantitative electric force microscopy (EFM). The effects of relative humidity, EFM probe geometry, tip-sample distance and bias voltage on the EFM contrast were studied. Non-parabolic voltage dependence of the EFM signal of subsurface CNTs in polymer composites was observed and a new mechanism was proposed taking consideration of capacitive coupling as well as coulombic coupling. We anticipate that this quantitative EFM technique will be a useful tool for non-destructive subsurface characterization of high dielectric constant nanostructures in low dielectric constant matrices. C1 [Zhao, Minhua; Gu, Xiaohong; Nguyen, Tinh] NIST, Mat & Construct Res Div, Gaithersburg, MD 20899 USA. [Lowther, Sharon E.] NASA, Adv Mat & Proc Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Park, Cheol] Natl Inst Aerosp, Hampton, VA 23681 USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Jean, Y. C.] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. RP Zhao, MH (reprint author), NIST, Mat & Construct Res Div, Gaithersburg, MD 20899 USA. EM minhua.zhao@nist.gov; tinh.nguyen@nist.gov RI Zhao, Minhua/A-6678-2009 OI Zhao, Minhua/0000-0003-4880-1010 FU NIST/NIH(NIBIB) FX The first author (MZ) acknowledges the support of a National Research Council Fellowship sponsored by NIST/NIH(NIBIB). NR 46 TC 34 Z9 34 U1 0 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 4 PY 2010 VL 21 IS 22 AR 225702 DI 10.1088/0957-4484/21/22/225702 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 592UL UT WOS:000277405900012 PM 20453284 ER PT J AU Naud, CM Del Genio, AD Haeffelin, M Morille, Y Noel, V Dupont, JC Turner, DD Lo, C Comstock, J AF Naud, C. M. Del Genio, A. D. Haeffelin, M. Morille, Y. Noel, V. Dupont, J. -C. Turner, D. D. Lo, C. Comstock, J. TI Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ACTIVE REMOTE SENSORS; ICE WATER-CONTENT; LIDAR DEPOLARIZATION; AIRCRAFT OBSERVATIONS; PRECIPITATION SCHEME; MULTIPLE-SCATTERING; RAMAN LIDAR; RADAR; CLIMATE; VAPOR AB The relationship between cloud thermodynamic phase and temperature in some aircraft measurements conducted in midlatitude frontal clouds suggests that significant liquid does not exist at temperatures colder than 258 K. This data set is often used to verify parameterizations of cloud phase in general circulation models. However, other aircraft campaigns and different instruments suggest a different relationship. Here we examine the temperature-phase relationship for midlatitude optically thin winter clouds. Cloud phase and temperature profiles derived from 5 years of ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the U. S. Atmospheric Radiation Measurement Program Southern Great Plains site and the Site Instrumental de Recherche par Teledetection Atmospherique in France. Because lidars are attenuated in optically thick clouds, the data set only includes clouds with optical thickness of < 3. Cloud phase is obtained by using the classical method based on a depolarization ratio threshold of 11% for differentiating liquid from ice. The frequency of occurrence of clouds either completely liquid or completely glaciated in the temperature range from 233 to 273 K is similar to previous observations in the midlatitudes but somewhat greater than in the Arctic. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites, liquid is more prevalent at colder temperatures than has been found previously in some thicker frontal clouds, suggesting different processes for glaciation in nonfrontal optically thin clouds. C1 [Naud, C. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Naud, C. M.; Del Genio, A. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Meteorol Dynam Lab, F-91128 Palaiseau, France. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Inst Pierre Simon Laplace, F-91128 Palaiseau, France. [Turner, D. D.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Lo, C.; Comstock, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Naud, CM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM cnaud@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012; Noel, Vincent/C-3702-2013 OI Del Genio, Anthony/0000-0001-7450-1359; Noel, Vincent/0000-0001-9494-0340 FU U. S. Department of Energy [DE-FG02-06ER64167] FX This work was supported by an Interagency Agreement with the Atmospheric Radiation Measurement program of the U. S. Department of Energy. Support for D. Turner was provided by grant DE-FG02-06ER64167 from DOE BER as part of the ARM program. NR 58 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 3 PY 2010 VL 115 AR D11202 DI 10.1029/2009JD012889 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 606UI UT WOS:000278453400004 ER PT J AU Hillan, DS Cairns, IH Robinson, PA Mohamed, A AF Hillan, D. S. Cairns, Iver H. Robinson, P. A. Mohamed, A. TI Prediction of background levels for the Wind WAVES instrument and implications for the galactic background radiation SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID THERMAL NOISE; RADIO-EMISSION; PLASMA; FREQUENCY; SPACECRAFT; ANTENNAS; SHOCKS AB We investigate and predict the observed background levels for the TNR, RAD1, and RAD2 receivers when connected to the X, Y, and Z antennas of the WAVES instrument on the spacecraft Wind. The receivers are connected to either a single antenna, in "SEP" mode, or a combination of antennas, in "SUM" mode. With the TNR receiver in SEP (X) mode, the predicted backgrounds agree to within 20% when modeled using a two component model for the quasi-thermal plasma noise (QTN). Calibrating the RAD1 in SEP (X) mode observations against TNR allows us to calculate the relative receiver gain G(R1) = 1.43 +/- 0.18. Using the RAD1 data in SUM (X + Z) mode, the ratio of antenna gains is found to be R = 6.5, in agreement with preflight measurements. Observed differences between the SEP (X) and SUM (X + Z) modes are explained for the first time, and the predicted levels of QTN and galactic background are found to agree to within 20%. RAD2 is also calibrated against RAD1 and TNR, yielding a total gain G(R2)G(y) = 2.5 +/- 0.3. Differences between the predicted and observed galactic background spectra are used to estimate the effective antenna lengths for the X and Y antennas, which are found to be between the physical monopole antenna length L and the Hansen (1981) prediction of root(2/3)L. The analyses are consistent with the Novaco and Brown (1978) galactic background model, which decreases much faster than that of Cane (1979). Our model background spectrum is useful for theory-data comparisons of type II and III bursts. C1 [Hillan, D. S.; Cairns, Iver H.; Robinson, P. A.; Mohamed, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Mohamed, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hillan, DS (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. EM hillan@physics.usyd.edu.au OI Cairns, Iver/0000-0001-6978-9765 FU Australian Research Council FX We thank S. Hoang, P. J. Kellogg, M. L. Kaiser, M. Maksimovic, K. Issautier, and J. Eastwood for helpful discussions. The Australian Research Council supported this research. NR 21 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 2 PY 2010 VL 115 AR A06102 DI 10.1029/2009JA014714 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606VB UT WOS:000278455300001 ER PT J AU Shakya, KM Ziemba, LD Griffin, RJ AF Shakya, Kabindra M. Ziemba, Luke D. Griffin, Robert J. TI Characteristics and Sources of Carbonaceous, Ionic, and Isotopic Species of Wintertime Atmospheric Aerosols in Kathmandu Valley, Nepal SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Carbonaceous aerosols; Kathmandu; Ionic aerosols; Isotope ratios ID ELEMENTAL CARBON; SOURCE APPORTIONMENT; ORGANIC AEROSOL; CHEMICAL-COMPOSITION; AIR-POLLUTION; CHINA; PARTICLES; PM2.5; PARTICULATE; COMPONENTS AB To investigate the air pollution from aerosols in Kathmandu during winter, bulk aerosol samples were collected during winter 2007-2008 to characterize carbonaceous and ionic species and carbon and nitrogen isotopes. This study illustrates the applications of carbon and nitrogen isotope data for characterizing aerosols and their implications for identifying sources that were inconsistent with the results for the carbonaceous and ionic aerosols. Mean concentrations of organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) in Kathmandu during the period were 20.02 +/- 6.59 (1 sigma), 4.48 +/- 1.17, and 10.09 +/- 3.64 mu gC/m(3), respectively. Elemental carbon and OC were correlated (R(2) = 0.56), likely indicating common sources for both species, as well as for the precursors that led to the formation of secondary organic carbon (SOC). The mean estimated SOC contribution to OC was 31%, suggesting that local emission is more important than transport and processing during winter in Kathmandu. On average, 50% of the OC was water soluble, and the correlation of SOC with WSOC (R(2) = 0.66) suggests that the majority of SOC and some primary organic carbon (POC) were water soluble in Kathmandu. The mean delta(13)C of -25.74 +/- 0.19 parts per thousand observed in aerosols of Kathmandu confirms consistent anthropogenic sources such as fossil fuel combustion. Heavier carbon also was observed to be associated with the water-soluble fraction of OC in aerosols. The mean delta(15)N of 9.45 +/- 0.87 parts per thousand suggests the limited influence of biomass burning and its strong correlation with crustal cations Ca(2+) (R(2) = 0.74, p < 0.05) and Mg(2+) (R(2) = 0.71, p < 0.05) indicates distant sources. Principal component analysis revealed four major sources/pathways for particles: local and vehicular emissions, secondary gas-to-particle conversion, aqueous processing, and dust transport, each explaining similar to 39, 23, 11, and 9% of the variance. C1 [Shakya, Kabindra M.; Griffin, Robert J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Shakya, Kabindra M.; Ziemba, Luke D.; Griffin, Robert J.] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA. [Ziemba, Luke D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Griffin, RJ (reprint author), Rice Univ, Dept Civil & Environm Engn, 6100 Main St, Houston, TX 77005 USA. EM rob.griffin@rice.edu RI Wang, Linden/M-6617-2014 FU University of New Hampshire FX The partial support of the University of New Hampshire Ph.D. program in Natural Resources and Earth System Sciences, Andrew Quimette and Philip Place for help in isotope analyses, and Neeraj Tamrakar for providing the sampling site and logistical support are gratefully acknowledged. NR 46 TC 22 Z9 22 U1 1 U2 25 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD JUN PY 2010 VL 10 IS 3 BP 219 EP U13 DI 10.4209/aaqr.2009.10.0068 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA 580NK UT WOS:000276455900003 ER PT J AU Sietzen, F Aldrin, B AF Sietzen, Frank Aldrin, Buzz TI Conversations with Buzz Aldrin SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Aldrin, Buzz] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUN PY 2010 VL 48 IS 6 BP 12 EP 14 PG 3 WC Engineering, Aerospace SC Engineering GA V24JR UT WOS:000208407200004 ER PT J AU Kirk, BS Carey, GF AF Kirk, Benjamin S. Carey, Graham F. TI Validation of Fully Implicit, Parallel Finite Element Simulations of Laminar Hypersonic Flows SO AIAA JOURNAL LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; NAVIER-STOKES EQUATIONS; ADVECTIVE-DIFFUSIVE SYSTEMS; COMPRESSIBLE EULER; FORMULATION; ALGORITHM; OPERATOR; SCIENCE; SCHEME AB This paper concerns comparative studies of predictive simulations and experimental results from the literature for high-Mach-number two-dimensional/axisymmetric flow past a hollow-cylinder flare and a double cone. The underlying physical model for the mathematical formulation assumes calorically-perfect-gas laminar flow, and we seek to approximate the corresponding compressible Navier-Stokes equations expressed in conservation-variable form. Predictive simulations of this mathematical model are based on a fully implicit, parallel streamline-upwind Petrov-Galerkin finite element formulation that uses a grouped-variable expansion for the inviscid flux terms. The spatial discretization, second-order-accurate time discretization, numerical method, and parallel fully implicit implementation are concisely described. Representative iterative and mesh convergence results are presented for the case of a hollow-cylinder flare. Local predicted values of surface pressure and heat transfer are compared with available experimentally measured values for both geometries. These results are interpreted in the context of validation. Predicted results for complex flowfield/shock interactions and the viscous slip surface are illustrated through a computed schlieren image for the double cone. The present work presents the first known comparison of predictions from the finite element method to this set of data, and the validation study provides the comparative details to motivate future computational investigations and experimental studies. C1 [Kirk, Benjamin S.] NASA, Lyndon B Johnson Space Ctr, Appl Aerosci & Computat Fluid Dynam Branch, Houston, TX 77058 USA. [Carey, Graham F.] Univ Texas Austin, Inst Computat Engn Sci, Austin, TX 78712 USA. RP Kirk, BS (reprint author), NASA, Lyndon B Johnson Space Ctr, Appl Aerosci & Computat Fluid Dynam Branch, 2101 NASA Pkwy,Mail Code EG3, Houston, TX 77058 USA. NR 48 TC 0 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1025 EP 1036 DI 10.2514/1.40860 PG 12 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900001 ER PT J AU Nielsen, EJ Diskin, B Yamaleev, NK AF Nielsen, Eric J. Diskin, Boris Yamaleev, Nail K. TI Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids SO AIAA JOURNAL LA English DT Article ID NAVIER-STOKES EQUATIONS; SENSITIVITY-ANALYSIS; COMPLEX-VARIABLES; MESHES; ALGORITHM; IMPLICIT; SYSTEMS AB An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet. C1 [Nielsen, Eric J.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. [Diskin, Boris] Natl Inst Aerosp, Hampton, VA 23666 USA. [Yamaleev, Nail K.] N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA. RP Nielsen, EJ (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. FU NASA [NNL07AA23C] FX The authors wish to thank Robert Biedron of NASA Langley Research Center for many useful discussions pertaining to the current work. Geometric parameterizations provided by Bill Jones of NASA Langley Research Center are also appreciated. Jan-Renee Carlson of NASA Langley Research Center is acknowledged for her assistance with plenum geometry modifications and boundary conditions for the fighter jet example. The second and third authors acknowledge the support from NASA under grant NNL07AA23C. NR 43 TC 22 Z9 25 U1 1 U2 9 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1195 EP 1206 DI 10.2514/1.J050035 PG 12 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900016 ER PT J AU Ho, JC Hodges, DH Yu, WB AF Ho, Jimmy C. Hodges, Dewey H. Yu, Wenbin TI Energy Transformation to Generalized Timoshenko Form for Nonuniform Beams SO AIAA JOURNAL LA English DT Article ID SECTION C1 [Hodges, Dewey H.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Yu, Wenbin] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. RP Ho, JC (reprint author), USA, ELORET Corp, Aeroflightdynam Directorate, Ames Res Ctr, Mail Stop 215-1, Moffett Field, CA 94035 USA. EM jimmy.c.ho@us.army.mil; dhodges@gatech.edu; wenbin@engineering.usu.edu RI Yu, Wenbin/B-1916-2009 FU U.S. Army Vertical Lift Research Center of Excellence at Georgia Institute of Technology FX This research is supported by the U.S. Army Vertical Lift Research Center of Excellence at Georgia Institute of Technology and its affiliate program through subcontract at Utah State University. The Technical Monitor is Michael J. Rutkowski. NR 13 TC 2 Z9 2 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1268 EP 1272 DI 10.2514/1.J050160 PG 5 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900025 ER PT J AU Barker, CM Johnson, WO Eldridge, BF Park, BK Melton, F Reisen, WK AF Barker, Christopher M. Johnson, Wesley O. Eldridge, Bruce F. Park, Bborie K. Melton, Forrest Reisen, William K. TI Temporal Connections between Culex tarsalis Abundance and Transmission of Western Equine Encephalomyelitis Virus in California SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID ST-LOUIS ENCEPHALITIS; VECTOR COMPETENCE; TEMPERATURE; CULICIDAE; DIPTERA; MOSQUITOS; VALLEY; ARBOVIRUSES; COACHELLA; INFECTION AB Definition of targets for vector control requires an understanding of the relationship between vector abundance and the intensity of arbovirus transmission. Using an extensive surveillance dataset with observations from sentinel chicken flocks and mosquito traps paired in time and space, hierarchical autoregressive logistic regression models were developed to predict the probability of seroconversion in chickens for western equine encephalomyelitis virus (WEEV) based on the relative abundance of the principal vector, Culex tarsalis. After adjustments for confounders, the abundance of Cx. tarsalis 29-42 d before the date of chicken sampling was credibly associated with the risk of WEEV transmission in both the Central and Coachella Valleys, and a doubling of relative Cx. tarsalis abundance was associated with a 58% increase in the odds of seroconversion. The critical time windows identified in our study highlight the need for surveillance of vector populations and forecasting models to guide proactive vector control measures before the detection of transmission to sentinel chickens. C1 [Barker, Christopher M.; Eldridge, Bruce F.; Park, Bborie K.; Reisen, William K.] Univ Calif Davis, Ctr Vectorborne Dis, Davis, CA 95616 USA. [Johnson, Wesley O.] Univ Calif Irvine, Dept Stat, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA. Calif State Univ, Seaside, CA USA. [Melton, Forrest] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA. RP Barker, CM (reprint author), Univ Calif Davis, Ctr Vectorborne Dis, Old Davis Rd, Davis, CA 95616 USA. EM cmbarker@ucdavis.edu FU NASA [RM08-6044, NNA06CN02A]; NOAA Office of Global Programs, Climate Variability and Human Health [00-543] FX This work was funded by NASA Earth-Sun Science Applied Sciences Program Research Opportunities in Space and Earth Science, Decision Support through Earth-Sun Science Research Results grant RM08-6044 for NNA06CN02A and NOAA Office of Global Programs, Climate Variability and Human Health grant 00-543. NR 53 TC 2 Z9 2 U1 0 U2 4 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD JUN PY 2010 VL 82 IS 6 BP 1185 EP 1193 DI 10.4269/ajtmh.2010.09-0324 PG 9 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 606XP UT WOS:000278462600036 PM 20519621 ER PT J AU Mckay, CP AF McKay, Christopher P. TI Liquid water formation around rocks and meteorites on Antarctic Polar Plateau ice SO ANTARCTIC SCIENCE LA English DT Article ID CRYPTOENDOLITHIC MICROBIAL ENVIRONMENT; ALLAN HILLS 84001; AMINO-ACIDS; ALH84001; CHONDRITES; DESERT; SEARCH C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Mckay, CP (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM chris.mckay@nasa.gov NR 14 TC 3 Z9 3 U1 0 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2010 VL 22 IS 3 BP 287 EP 288 DI 10.1017/S0954102010000118 PG 2 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 627CH UT WOS:000280015800011 ER PT J AU Arkoosh, MR Boylen, D Dietrich, J Anulacion, BF Ylitalo, G Bravo, CF Johnson, LL Loge, FJ Collier, TK AF Arkoosh, Mary R. Boylen, Deborah Dietrich, Joseph Anulacion, Bernadita F. Ylitalo, Gina Bravo, Claudia F. Johnson, Lyndal L. Loge, Frank J. Collier, Tracy K. TI Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs) SO AQUATIC TOXICOLOGY LA English DT Article DE PBDEs; Salmon; Disease susceptibility; Willamette River; Immune system; Columbia River Basin; Listonella anguillarum ID JUVENILE CHINOOK SALMON; POLYCHLORINATED-BIPHENYLS PCBS; BROMINATED FLAME RETARDANTS; THYROID-HORMONES; COLUMBIA RIVER; IMMUNE-SYSTEM; VITAMIN-A; ESTUARY; FISH; ENVIRONMENT AB The health effects of the flame retardant polybrominated diphenyl ethers (PBDEs) in fish are not well understood. To determine the potential effects of this ubiquitous contaminant class on fish health, juvenile subyearling Chinook salmon (Oncorhynchus tshawytscha) were fed a diet that reflected the PBDE congeners found in the stomach contents of subyearling Chinook salmon collected from the highly urbanized and industrialized lower Willamette River in the Columbia River Basin of North America. The diet, consisting of five PBDE congeners (BDE-47, BDE-99, BDE-100, BDE-153 and BDE-154), was fed to the salmon at 2% of their body weight in food per day for 40 days. Two concentrations of the diet (1 x and 10x PBDE) were fed to the salmon. The 1x PBDE diet reflected the concentration of PBDEs (190 ng PBDEs/g food) found in the stomach contents of juvenile subyearling Chinook salmon; the 10x diet was prepared at 10 times that concentration. The fish were then exposed to the marine bacterial pathogen Listonella anguillarum to assess susceptibility to infectious disease. juvenile Chinook salmon fed the 1x PBDE diet were more susceptible to L. anguillarum than salmon fed the control diet. This suggests that juvenile salmonids in the lower Willamette River exposed to PBDEs may be at greater risk for disease than nonexposed juvenile salmonids. In contrast, salmon that consumed the 10x PBDE diet were not more susceptible to the pathogen than salmon fed the control diet. The mechanisms for the dichotomous results observed in disease susceptibility between salmon fed the 1x and 10x PBDE diets are currently not known but have also been observed in other species exposed to PBDEs with respect to immune function. Published by Elsevier B.V. C1 [Arkoosh, Mary R.; Boylen, Deborah; Dietrich, Joseph] Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Newport, OR 97365 USA. [Anulacion, Bernadita F.; Ylitalo, Gina; Johnson, Lyndal L.; Collier, Tracy K.] Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Seattle, WA 98112 USA. [Bravo, Claudia F.; Loge, Frank J.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Arkoosh, MR (reprint author), Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, 2032 SE OSU Dr, Newport, OR 97365 USA. EM mary.arkoosh@noaa.gov NR 49 TC 24 Z9 28 U1 5 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X J9 AQUAT TOXICOL JI Aquat. Toxicol. PD JUN 1 PY 2010 VL 98 IS 1 BP 51 EP 59 DI 10.1016/j.aquatox.2010.01.013 PG 9 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA 607LZ UT WOS:000278506900007 PM 20207027 ER PT J AU Hintze, PE Nicholson, WL AF Hintze, Paul E. Nicholson, Wayne L. TI Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium SO ARCHIVES OF MICROBIOLOGY LA English DT Article DE Bacillus subtilis; Spore; Dipicolinic acid; DPA ID GERMINATION MUTANTS; BACTERIAL-SPORES; SPORULATION; ENDOSPORES; RESISTANCE; RADIATION; SEQUENCE; OPERON; SPOVA AB Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca-DPA). Spores excrete Ca-DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported. C1 [Nicholson, Wayne L.] Kennedy Space Ctr, Space Life Sci Lab, Gainesville, FL 32899 USA. [Hintze, Paul E.] NASA, Corros Technol Lab, Gainesville, FL 32899 USA. [Nicholson, Wayne L.] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32899 USA. RP Nicholson, WL (reprint author), Kennedy Space Ctr, Space Life Sci Lab, Bldg M6-1025 SLSL,Room 201-B, Gainesville, FL 32899 USA. EM WLN@ufl.edu OI Hintze, Paul/0000-0002-9962-2955 FU USDA [FLA-MCS-04602] FX The authors wish to thank Pete Setlow for generous donation of the strains used. This work was supported by USDA grant FLA-MCS-04602 to W.L.N. NR 25 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0302-8933 J9 ARCH MICROBIOL JI Arch. Microbiol. PD JUN PY 2010 VL 192 IS 6 BP 493 EP 497 DI 10.1007/s00203-010-0569-5 PG 5 WC Microbiology SC Microbiology GA 597TT UT WOS:000277785300009 PM 20396869 ER PT J AU Benford, J Benford, G Benford, D AF Benford, James Benford, Gregory Benford, Dominic TI Messaging with Cost-Optimized Interstellar Beacons SO ASTROBIOLOGY LA English DT Article DE SETI; METI; High-power microwaves; HPM; Microwave antennas ID SEARCH AB On Earth, how would we build galactic-scale beacons to attract the attention of extraterrestrials, as some have suggested we should do? From the point of view of expense to a builder on Earth, experience shows an optimum trade-off. This emerges by minimizing the cost of producing a desired power density at long range, which determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For nonlinear power-law dependence, a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule of thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations by using current cost parameters ($/W, $/m(2)) as a basis. We show the scaling and give examples of such beacons. Galactic-scale beacons can be built for a few billion dollars with our present technology. Such beacons have narrow "searchlight" beams and short "dwell times" when the beacon would be seen by an alien observer in their sky. More-powerful beacons are more efficient and have economies of scale: cost scales only linearly with range R, not as R(2), so number of stars radiated to increases as the square of cost. On a cost basis, they will likely transmit at higher microwave frequencies, similar to 10 GHz. The natural corridor to broadcast is along the galactic radius or along the local spiral galactic arm we are in. A companion paper asks "If someone like us were to produce a beacon, how should we look for it?" C1 [Benford, James] Microwave Sci Inc, Lafayette, CA 94549 USA. [Benford, Gregory] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Benford, Dominic] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Benford, J (reprint author), Microwave Sci Inc, Lafayette, CA 94549 USA. EM jbenford@earthlink.net RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 25 TC 12 Z9 12 U1 0 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 475 EP 490 DI 10.1089/ast.2009.0393 PG 16 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100002 PM 20624056 ER PT J AU Benford, G Benford, J Benford, D AF Benford, Gregory Benford, James Benford, Dominic TI Searching for Cost-Optimized Interstellar Beacons SO ASTROBIOLOGY LA English DT Article DE SETI; METI; Microwave; Power beaming; Beacons; Radio astronomy; Array antennas; High-power microwaves ID EXTRATERRESTRIAL INTELLIGENCE; FOSSIL DIVERSITY; RADIO; SIGNALS; CYCLES; SETI; WOW AB What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses. C1 [Benford, James] Microwave Sci Inc, Lafayette, CA 94549 USA. [Benford, Gregory] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Benford, Dominic] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Benford, J (reprint author), Microwave Sci Inc, Lafayette, CA 94549 USA. EM jbenford@earthlink.net RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 34 TC 12 Z9 12 U1 0 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 491 EP 498 DI 10.1089/ast.2009.0394 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100003 PM 20624057 ER PT J AU Vaishampayan, P Osman, S Andersen, G Venkateswaran, K AF Vaishampayan, Parag Osman, Shariff Andersen, Gary Venkateswaran, Kasthuri TI High-Density 16S Microarray and Clone Library-Based Microbial Community Composition of the Phoenix Spacecraft Assembly Clean Room SO ASTROBIOLOGY LA English DT Article DE Microbial ecology; Spacecraft assembly facility ID MICROBIOLOGICAL PROFILES; DIVERSITY; ENVIRONMENTS; POPULATIONS; UNIFRAC; DNA AB The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants. C1 [Vaishampayan, Parag; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA USA. [Osman, Shariff; Andersen, Gary] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Vaishampayan, P (reprint author), 4800 Oak Grove Dr,M-S 89, Pasadena, CA 91109 USA. EM vaishamp@jpl.nasa.gov RI Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory (LBL) [DE-AC02-05CH11231]; NASA FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Additional work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory (LBL), under contract DE-AC02-05CH11231. This research was funded by NASA Research Announcement (NRA) ROSS 2006 awarded to Kasthuri Venkateswaran. We are grateful to members of the Biotechnology and Planetary Protection group (JPL) and the Center for Environmental Biotechnology (LBL) for technical assistance. We also appreciate the help rendered by R. Sumner, B. Petsos, Y. Salinas, and D. Vaughn during sampling, and T. DeSantis, E. Brodie, and Y. Piceno during PhyloChip analysis. We are thankful to J. Spry, K. Buxbaum, C. Conley, and J. Rummel for valuable advice and encouragement. NR 42 TC 20 Z9 20 U1 0 U2 7 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 499 EP 508 DI 10.1089/ast.2009.0443 PG 10 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100004 PM 20624058 ER PT J AU Lacy, CHS Torres, G Claret, A Charbonneau, D O'Donovan, FT Mandushev, G AF Lacy, Claud H. Sandberg Torres, Guillermo Claret, Antonio Charbonneau, David O'Donovan, Francis T. Mandushev, Georgi TI ABSOLUTE PROPERTIES OF THE ECLIPSING TRIPLE STAR CO ANDROMEDAE: CONSTRAINTS ON CONVECTIVE CORE OVERSHOOTING SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; binaries: spectroscopic; stars: fundamental parameters; stars: individual (CO And); stars: rotation; stars: solar-type ID LIMB-DARKENING COEFFICIENTS; SPECTROSCOPIC BINARIES; LIGHT CURVES; MODEL ATMOSPHERES; TIDAL-EVOLUTION; Y-2 ISOCHRONES; STELLAR MODELS; MAIN-SEQUENCE; TRANSFORMATIONS; TEMPERATURES AB Accurate absolute properties have been determined for the eclipsing triple star CO And (F8+F8) based on extensive differential photometry obtained by three robotic observatories and CfA spectroscopy. The eclipsing binary star orbit is circular with a period of 3.655 days. The triple nature of this system is revealed by more than a century of timings of minimum light, and by the presence of third light in the photometric orbits. The masses of the eclipsing pair are 1.289 +/- 0.007 and 1.264 +/- 0.007 solar masses, and the corresponding radii are 1.727 +/- 0.021 and 1.694 +/- 0.017 solar radii. These stars are synchronously rotating and are near the end of their main-sequence phase, at an age of about 3.6 Gyr. The much fainter widely separated third body appears to have a mass of about 0.8 solar masses. The distance to the system is 377 +/- 25 pc. C1 [Lacy, Claud H. Sandberg] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Torres, Guillermo; Charbonneau, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Claret, Antonio] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [O'Donovan, Francis T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mandushev, Georgi] Lowell Observ, Flagstaff, AZ 86001 USA. RP Lacy, CHS (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM clacy@uark.edu; gtorres@cfa.harvard.edu; claret@iaa.es; dcharbonneau@cfa.harvard.edu; ftod@caltech.edu; gmand@lowell.edu RI O'Donovan, Francis/I-2423-2014; OI O'Donovan, Francis/0000-0002-4858-6106; Charbonneau, David/0000-0002-9003-484X NR 79 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2010 VL 139 IS 6 BP 2347 EP 2359 DI 10.1088/0004-6256/139/6/2347 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595WG UT WOS:000277643700021 ER PT J AU Eisenhardt, PRM Griffith, RL Stern, D Wright, EL Ashby, MLN Brodwin, M Brown, MJI Bussmann, RS Dey, A Ghez, AM Glikman, E Gonzalez, AH Kirkpatrick, JD Konopacky, Q Mainzer, A Vollbach, D Wright, SA AF Eisenhardt, Peter R. M. Griffith, Roger L. Stern, Daniel Wright, Edward L. Ashby, Matthew L. N. Brodwin, Mark Brown, Michael J. I. Bussmann, R. S. Dey, Arjun Ghez, A. M. Glikman, Eilat Gonzalez, Anthony H. Kirkpatrick, J. Davy Konopacky, Quinn Mainzer, Amy Vollbach, David Wright, Shelley A. TI ULTRACOOL FIELD BROWN DWARF CANDIDATES SELECTED AT 4.5 mu m SO ASTRONOMICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: galaxies; infrared: stars; stars: individual (SDWFS J142831.46+354923.1; SDWFS J143524.44+335334.6; SDWFS J143356.62+351849.2); stars: low-mass ID ARRAY CAMERA IRAC; ADAPTIVE OPTICS SYSTEM; DUST-OBSCURED GALAXIES; LONG-PERIOD VARIABLES; DIGITAL SKY SURVEY; T-DWARFS; MIDINFRARED SELECTION; LOW-MASS; SPITZER; STARS AB We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and were required to have [3.6] - [4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened active galactic nuclei (AGNs). Optical detection of four of the remaining 18 sources implies they are likely also AGNs, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of similar to T8. The proper motion is <0 ''.25 yr(-1), consistent with expectations for a luminosity-inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5] = 2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. predict that larger numbers of cool brown dwarfs should be found for a Chabrier mass function. Suppressing the model [4.5] flux by a factor of 2, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer will probe a volume similar to 40x larger and should find hundreds of brown dwarfs cooler than T7. C1 [Eisenhardt, Peter R. M.; Griffith, Roger L.; Stern, Daniel; Mainzer, Amy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wright, Edward L.; Ghez, A. M.; Konopacky, Quinn] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ashby, Matthew L. N.; Brodwin, Mark] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Bussmann, R. S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Glikman, Eilat] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Gonzalez, Anthony H.; Vollbach, David] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wright, Shelley A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94709 USA. RP Eisenhardt, PRM (reprint author), CALTECH, Jet Prop Lab, MS 169-327,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Peter.Eisenhardt@jpl.nasa.gov RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Wright, Shelley/0000-0003-1034-8054 FU National Optical Astronomy Observatory (NOAO); W. M. Keck Foundation; NASA; National Science Foundation (NSF) [0708490]; NSF Science & Technology Center; UCSC [AST-9876783]; Levine-Leichtman Family Foundation FX The authors thank Emanuele Daddi, Mark Dickinson, Jason Melbourne, and Tom Soifer for assistance obtaining observations; Nick Seymour for assistance with SDWFS and WIRC reductions; and Vandana Desai for the Mrk 231 spectrum and information about DOG SED's. Tom Soifer, Marcia Rieke, Dan Weedman, and Jim Houck are thanked for allowing access to the GTO MIPS survey of the NDWFS, and we acknowledge Buell Jannuzi's central role in the NDWFS and related surveys of the field. Discussions with Roc Cutri helped us understand the mid-IR characteristics of AGB stars, and Szymon Kozlowski clarified questions about SDWFS variability measurements. We thank the anonymous referee for a detailed and careful review which improved the accuracy of the presentation. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. This work made use of images and data products provided by the NOAO Deep Wide-Field Survey (NDWFS), which is supported by the National Optical Astronomy Observatory (NOAO), and follow-up NOAO surveys. NOAO is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation, which also provided support for M.B. Some data were obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between Caltech, NASA/JPL, and Cornell University. Support for this work was provided by NASA through an award issued by JPL/Caltech. A.H.G. acknowledges support for this work by the National Science Foundation (NSF) under grant 0708490. Support for A.M.G. and Q.K.'s contribution to this work was provided by the NSF Science & Technology Center for AO, managed by UCSC (AST-9876783), and the Levine-Leichtman Family Foundation. NR 58 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2010 VL 139 IS 6 BP 2455 EP 2464 DI 10.1088/0004-6256/139/6/2455 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595WG UT WOS:000277643700029 ER PT J AU Decin, L De Beck, E Brunken, S Muller, HSP Menten, KM Kim, H Willacy, K de Koter, A Wyrowski, F AF Decin, L. De Beck, E. Bruenken, S. Mueller, H. S. P. Menten, K. M. Kim, H. Willacy, K. de Koter, A. Wyrowski, F. TI Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri II. In-depth non-LTE chemical abundance analysis SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; molecular processes; radiative transfer; submillimeter: stars; stars: AGB and post-AGB; stars: mass-loss ID MASS-LOSS RATES; SILICON ISOTOPIC ABUNDANCES; ROTATIONAL LINE-PROFILES; GIANT BRANCH STARS; VY-CANIS MAJORIS; EVOLVED STARS; WATER-VAPOR; EXPLOSIVE NUCLEOSYNTHESIS; COLLISIONAL EXCITATION; RADIATIVE-TRANSFER AB Context. The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflow from these stars creates a circumstellar envelope in which a rich gas-phase chemistry takes place. Complex shock-induced non-equilibrium chemistry takes place in the inner wind envelope, dust-gas reactions and ion-molecule reactions alter the abundances in the intermediate wind zone, and the penetration of cosmic rays and ultraviolet photons dissociates the molecules in the outer wind region. Aims. Little observational information exists on the circumstellar molecular abundance stratifications of many molecules. Furthermore, our knowledge of oxygen-rich envelopes is not as profound as for the carbon-rich counterparts. The aim of this paper is therefore to study the circumstellar chemical abundance pattern of 11 molecules and isotopologs ((12)CO, (13)CO, SiS, (28)SiO, (29)SiO, (30)SiO, HCN, CN, CS, SO, SO(2)) in the oxygen-rich evolved star IK Tau. Methods. We have performed an in-depth analysis of a large number of molecular emission lines excited in the circumstellar envelope around IK Tau. The analysis is done based on a non-local thermodynamic equilibrium (non-LTE) radiative transfer analysis, which calculates the temperature and velocity structure in a self-consistent way. The chemical abundance pattern is coupled to theoretical outer wind model predictions including photodestruction and cosmic ray ionization. Not only the integrated line intensities, but also the line shapes are used as diagnostic tool to study the envelope structure. Results. The deduced wind acceleration is much slower than predicted from classical theories. SiO and SiS are depleted in the envelope, possibly due to the adsorption onto dust grains. For HCN and CS a clear difference with respect to inner wind non-equilibrium predictions is found, either indicating uncertainties in the inner wind theoretical modeling or the possibility that HCN and CS (or the radical CN) participate in the dust formation. The low signal-to-noise profiles of SO and CN prohibit an accurate abundance determination; the modeling of high-excitation SO2 lines is cumbersome, possibly related to line misidentifications or problems with the collisional rates. The SiO isotopic ratios ((29)SiO/(28)SiO and (30)SiO/ (28)SiO) point toward an enhancement in (28)SiO compared to results of classical stellar evolution codes. Predictions for H(2)O emission lines in the spectral range of the Herschel/HIFI mission are performed. C1 [Decin, L.; De Beck, E.] Katholieke Univ Leuven, Inst Astron, Dept Phys & Astron, B-3001 Heverlee, Belgium. [Decin, L.; de Koter, A.] Univ Amsterdam, Sterrenkundig Inst Anton Pannekock, NL-1090 CE Amsterdam, Netherlands. [Bruenken, S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bruenken, S.; Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Mueller, H. S. P.; Menten, K. M.; Kim, H.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kim, H.] MPI Gravitat Phy, D-30167 Hannover, Germany. [Willacy, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Koter, A.] Univ Utrecht, Astron Inst, NL-3584 CC Utrecht, Netherlands. RP Decin, L (reprint author), Katholieke Univ Leuven, Inst Astron, Dept Phys & Astron, Celestijnenlaan 200D, B-3001 Heverlee, Belgium. EM Leen.Decin@ster.kuleuven.ac.be RI Brunken, Sandra/B-1880-2010; OI Brunken, Sandra/0000-0001-7175-4828; Mueller, Holger/0000-0002-0183-8927 FU Fund for Scientific Research - Flanders (FWO) [G.0470.07]; Bundesministerium for Bildung und Forschung (BMBF) FX We thank I. Cherchneff for useful discussion on the circumstellar non-TE chemistry, and F. Schoier for providing us with an updated HCN linelist in the LAMDA database. L.D. acknowledges financial support from the Fund for Scientific Research - Flanders (FWO). E.D.B. acknowledges support from the FWO under grant number G.0470.07. H.S.P.M. is very grateful to the Bundesministerium for Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum fur Luft-und Raumfahrt (DLR). The computations for this research have been done on the VIC HPC Cluster of the KULeuven. We are grateful to the LUDIT HPC team for their support. NR 92 TC 44 Z9 44 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR A69 DI 10.1051/0004-6361/201014136 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400084 ER PT J AU Galametz, A Stern, D Stanford, SA De Breuck, C Vernet, J Griffith, RL Harrison, FA AF Galametz, A. Stern, D. Stanford, S. A. De Breuck, C. Vernet, J. Griffith, R. L. Harrison, F. A. TI Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z=1.416 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; galaxies: clusters: general; Galaxy: evolution; galaxies: individual: 7C 1756+6520; galaxies: clusters: individual: 7C1756+6520 ID ACTIVE GALACTIC NUCLEI; IRAC SHALLOW SURVEY; YALE-CHILE MUSYC; RADIO GALAXIES; X-RAY; MULTIWAVELENGTH SURVEY; MIDINFRARED SELECTION; RED-SEQUENCE; PROTOCLUSTERS; TELESCOPE AB We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 +/- 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets < 2 Mpc relative to the radio galaxy position and have velocity offsets < 1000 km s(-1) relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z similar to 1.437, forming a sub-group offset by Delta v similar to 3000 km s(-1) and approximately 1.'5 east of the radio galaxy. C1 [Galametz, A.; De Breuck, C.; Vernet, J.] European So Observ, D-85748 Garching, Germany. [Galametz, A.] Observ Astron, F-67000 Strasbourg, France. [Stern, D.; Griffith, R. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Galametz, A (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM agalamet@eso.org OI Vernet, Joel/0000-0002-8639-8560; De Breuck, Carlos/0000-0002-6637-3315 FU NASA; US Department of Energy, National Nuclear Security Administration [W-7405-Eng-48] FX This work is based on a spectroscopic campaign at the W. M. Keck Observatory, a scientific partnership between the University of California and the California Institute of Technology, made possible by a generous gift of the W. M. Keck Foundation. We are very grateful to Tadayuki Kodama for having provided the models of red sequence presented in this paper. We thank the anonymous referee for his/her careful reading of the manuscript and constructive comments. The work of DS and RLG was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. S.A.S.'s work was performed under the auspices of the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. NR 37 TC 21 Z9 21 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR A101 DI 10.1051/0004-6361/201014356 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400116 ER PT J AU Snodgrass, C Meech, K Hainaut, O AF Snodgrass, C. Meech, K. Hainaut, O. TI The nucleus of 103P/Hartley 2, target of the EPOXI mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 103P/Hartley 2 ID SPACE-TELESCOPE OBSERVATIONS; JUPITER-FAMILY COMETS; CCD PHOTOMETRY; ENSEMBLE PROPERTIES; DISTANT COMETS AB Context. 103P/Hartley 2 was selected as the target comet for the Deep Impact extended mission, EPOXI, in October 2007. There have been no direct optical observations of the nucleus of this comet, as it has always been highly active when previously observed. Aims. We aimed to recover the comet near to aphelion, to: a) confirm that it had not broken up and was in the predicted position; b) to provide astrometry and brightness information for mission planning; and c) to continue the characterisation of the nucleus. Methods. We observed the comet at heliocentric distances between 5.7 and 5.5 AU, using FORS2 at the VLT, at 4 epochs between May and July 2008. We performed VRI photometry on deep stacked images to look for activity and measure the absolute magnitude and therefore estimate the size of the nucleus. Results. We recovered the comet near the expected position, with a magnitude of m(R) = 23.74 +/- 0.06 at the first epoch. The comet had no visible coma, although comparison of the profile with a stellar one showed that there was faint activity, or possibly a contribution to the flux from the dust trail from previous activity. This activity appears to fade at further epochs, implying that this is a continuation of activity past aphelion from the previous apparition rather than an early start to activity before the next perihelion. Our data imply a nucleus radius of <= 1 km for an assumed 4% albedo; we estimate a similar to 6% albedo. We measure a colour of (V - R) = 0.26 +/- 0.09. C1 [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Snodgrass, C.] European So Observ, Casilla D, Chile. [Meech, K.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Meech, K.] NASA, Astrobiol Inst, Washington, DC USA. [Hainaut, O.] European So Observ, D-85748 Garching, Germany. RP Snodgrass, C (reprint author), Max Planck Inst Solar Syst Res, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. EM snodgrass@mps.mpg.de OI Snodgrass, Colin/0000-0001-9328-2905 FU EPOXI mission through University of Maryland [Z631506] FX We thank ESO for awarding Director's Discretionary Time to this project, the Paranal astronomers and telescope operators who performed the observations for us and the referee, Dr. S. C. Lowry, for helpful comments that improved this paper. This work is based in part on support from the EPOXI mission through a subcontract from the University of Maryland Z631506. NR 16 TC 8 Z9 8 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR L9 DI 10.1051/0004-6361/201014790 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400009 ER PT J AU de Martino, D Falanga, M Bonnet-Bidaud, JM Belloni, T Mouchet, M Masetti, N Andruchow, I Cellone, SA Mukai, K Matt, G AF de Martino, D. Falanga, M. Bonnet-Bidaud, J.-M. Belloni, T. Mouchet, M. Masetti, N. Andruchow, I. Cellone, S. A. Mukai, K. Matt, G. TI The intriguing nature of the high-energy gamma ray source XSS J12270-4859 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; stars: individual: XSS J12270-4859; stars: individual: 1FGL J1227.9-4852; X-rays: binaries ID XMM-NEWTON; CATACLYSMIC VARIABLES; LOW-MASS; VARIABILITY; BINARIES; TELESCOPE; ACCRETION; CAMERA; IMAGER; STARS AB Context. The nature of the hard X-ray source XSS J12270-4859 is still unclear. It was claimed to be a possible magnetic cataclysmic variable of the Intermediate Polar type from its optical spectrum and a possible 860 s X-ray periodicity in RXTE data. However, recent observations do not support the latter variability, leaving this X-ray source still unclassified. Aims. To investigate its nature we present a broad-band X-ray and gamma ray study of this source based on a recent XMM-Newton observation and archival INTEGRAL and RXTE data. Using the Fermi/LAT 1-year point source catalogue, we tentatively associate XSS J12270-4859 with 1FGLJ1227.9-4852, a source of high-energy gamma rays with emission up to 10GeV. We further complement the study with UV photometry from XMM-Newton and ground-based optical and near-IR photometry. Methods. We have analysed both timing and spectral properties in the gamma rays, X-rays, UV and optical/near-IR bands of XSS J12270-4859. Results. The X-ray emission is highly variable, showing flares and intensity dips. The flares consist of flare-dip pairs. Flares are detected in both X-rays and the UV range, while the subsequent dips are present only in the X-ray band. Further aperiodic dipping behaviour is observed during X-ray quiescence, but not in the UV. The broad-band 0.2-100 keV X-ray/soft gamma ray spectrum is featureless and well described by a power law model with Gamma = 1.7. The high-energy spectrum from 100 MeV to 10 GeV is represented by a power law index of 2.45. The luminosity ratio between 0.1-100 GeV and 0.2-100 keV is similar to 0.8, indicating that the GeV emission is a significant component of the total energy output. Furthermore, the X-ray spectrum does not greatly change during flares, quiescence and the dips seen in quiescence. The X-ray spectrum however hardens during the post-flare dips, where a partial covering absorber is also required to fit the spectrum. Optical photometry acquired at different epochs reveals a period of 4.32 hr that could be ascribed to the binary orbital period. Near-IR, possibly ellipsoidal, variations are detected. Large amplitude variability on shorter (tens mins) timescales is found to be non-periodic. Conclusions. The observed variability at all wavelengths together with the spectral characteristics strongly favour a low-mass atypical low-luminosity X-ray binary and are against a magnetic cataclysmic variable nature. The association with a Fermi/LAT high-energy gamma ray source further strengths this interpretation. C1 [de Martino, D.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Falanga, M.] ISSI, CH-3012 Bern, Switzerland. [Bonnet-Bidaud, J.-M.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Belloni, T.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Mouchet, M.] Univ Paris 07, Lab APC, F-75005 Paris, France. [Mouchet, M.] Observ Paris, LUTH, Sect Meudon, F-92195 Meudon, France. [Masetti, N.] INAF Ist Astrofis Spaziale, I-40129 Bologna, Italy. [Andruchow, I.; Cellone, S. A.] UNLP, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina. [Andruchow, I.; Cellone, S. A.] CONICET UNLP, Inst Astrofis La Plata, La Plata, Buenos Aires, Argentina. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Matt, G.] Univ Roma III, Dipartimento Fis, I-00146 Rome, Italy. RP de Martino, D (reprint author), INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy. EM demartino@oacn.inaf.it; mfalanga@issibern.ch; bonnetbidaud@cea.fr; tomaso.belloni@brera.inaf.it; martine.mouchet@obspm.fr; nicola.masetti@iasfbo.inaf.it; andru@fcaglp.fcaglp.unlp.edu.ar; koji.mukai@nasa.gov; matt@fis.uniroma3.it OI de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU ASI [ASI/INAF I/023/05/06, ASI/INAF I/088/06/0]; INAF [PRIN-INAF 2007 N.17] FX D.d.M., T. B. and N.M. acknowledge financial support from ASI under contract ASI/INAF I/023/05/06 and ASI/INAF I/088/06/0 and also from INAF under contract PRIN-INAF 2007 N.17. We gratefully acknowledge the help of E. Bonning in the extraction of the counts map from the Fermi LAT archive. NR 36 TC 28 Z9 28 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A25 DI 10.1051/0004-6361/200913802 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606CN UT WOS:000278399000025 ER PT J AU Doroshenko, V Suchy, S Santangelo, A Staubert, R Kreykenbohm, I Rothschild, R Pottschmidt, K Wilms, J AF Doroshenko, V. Suchy, S. Santangelo, A. Staubert, R. Kreykenbohm, I. Rothschild, R. Pottschmidt, K. Wilms, J. TI RXTE observations of the 1A 1118-61 in an outburst, and the discovery of a cyclotron line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: neutron; pulsars: individual: 1A 1118-61; binaries: general ID X-RAY SOURCE AB We present the analysis of RXTE monitoring data obtained during the 2009 January outburst of the hard X-ray transient 1A 1118-61. Using these observations the broadband (3.5-120 keV) spectrum of the source was measured for the first time ever. We have found that the broadband continuum spectrum of the source is similar to other accreting pulsars and is well described by several conventionally used phenomenological models. We have discovered that regardless of the applied continuum model, a prominent broad absorption feature at similar to 55 keV is observed. We interpret this feature as a cyclotron resonance scattering feature (CRSF). The observed CRSF energy is one of the highest known and corresponds to a magnetic field of B similar to 4.8 x 10(12) G in the scattering region. Our data also indicate the presence of an iron emission line presence that has not been previously reported for 1A 1118-61. Timing properties of the source, including a strong spin-up, were found to be similar to those observed by CGRO/BATSE during the previous outburst, but the broadband capabilities of RXTE reveal a more complicated energy dependency of the pulse-profile. C1 [Doroshenko, V.; Santangelo, A.; Staubert, R.] Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Suchy, S.; Rothschild, R.] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA. [Kreykenbohm, I.; Wilms, J.] Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Kreykenbohm, I.; Wilms, J.] Erlangen Ctr Astroparticle Phys ECAP, D-91058 Erlangen, Germany. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, CSST, Baltimore, MD 21250 USA. RP Doroshenko, V (reprint author), Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM doroshv@astro.uni-tuebingen.de RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Doroshenko, Victor/0000-0001-8162-1105 FU DLR [50OR0702] FX V.D. thanks DLR for financial support (grant 50OR0702). NR 21 TC 14 Z9 14 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR L1 DI 10.1051/0004-6361/201014858 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000003 ER PT J AU Dzyurkevich, N Flock, M Turner, NJ Klahr, H Henning, T AF Dzyurkevich, N. Flock, M. Turner, N. J. Klahr, H. Henning, Th. TI Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: formation; magnetohydrodynamics; methods: numerical; instabilities; accretion, accretion disks; turbulence ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; TURBULENT PROTOPLANETARY DISKS; ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; ACCRETION DISKS; SOLAR NEBULA; MAGNETIC-FIELDS; SHEARING BOX; PLANETESIMAL FORMATION; FRACTIONAL IONIZATION AB Context. The poorly-ionized interior of the protoplanetary disk or "dead zone" is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims. Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods. We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results. The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the "butterfly pattern" seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual a between 10(-4) and 10(-3). The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions. The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible. C1 [Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Turner, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dzyurkevich, N (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM natalia@mpia.de FU Deutsches Zentrum fur Luft- und Raumfahrt (DLR); Deutsche Forschungsgemeinschaft (DFG) through Forschergruppe [759]; The Formation of Planets: The Critical First Growth Phase; NASA [07-SSO07-0044]; Alexander von Humboldt Foundation FX N. Dzyurkevich acknowledges the support of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). N. Dzyurkevich, M. Flock and H. Klahr were supported in part by the Deutsche Forschungsgemeinschaft (DFG) through Forschergruppe 759, "The Formation of Planets: The Critical First Growth Phase". The participation of N. J. Turner was made possible by the NASA Solar Systems Origins program under grant 07-SSO07-0044, and by the Alexander von Humboldt Foundation through a Fellowship for Experienced Researchers. The parallel computations were performed on the PIA cluster of the Max Planck Institute for Astronomy Heidelberg, located at the computing center of the Max Planck Society in Garching. NR 62 TC 64 Z9 64 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A70 DI 10.1051/0004-6361/200912834 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000039 ER PT J AU Gielen, C Van Wincke, H Min, M Waters, LBFM Evans, TL Matsuura, M Deroo, P Dominik, C Reyniers, M Zijlstra, A Gordon, KD Kemper, F Indebetouw, R Marengo, M Meixner, M Sloan, GC Tielens, AGGM Woods, PM AF Gielen, C. Van Wincke, H. Min, M. Waters, L. B. F. M. Evans, T. Lloyd Matsuura, M. Deroo, P. Dominik, C. Reyniers, M. Zijlstra, A. Gordon, K. D. Kemper, F. Indebetouw, R. Marengo, M. Meixner, M. Sloan, G. C. Tielens, A. G. G. M. Woods, P. M. TI SPITZER-IRS spectral fitting of discs around binary post-AGB stars Corrigendum SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: abundances; stars: AGB and post-AGB; circumstellar matter; binaries: general; Magellanic Clouds; errata, addenda C1 [Gielen, C.; Van Wincke, H.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Waters, L. B. F. M.; Dominik, C.] Univ Amsterdam, Sterrenkundig Inst Anton Pannckock, NL-1098 Amsterdam, Netherlands. [Evans, T. Lloyd] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Matsuura, M.] UCL, Dept Phys & Astron, UCL Inst Origins, London WC1E 6BT, England. [Matsuura, M.] Univ Coll London, Mullard Space Sci Lab, UCL Inst Origins, Dorking RH5 6NT, Surrey, England. [Deroo, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Reyniers, M.] Royal Meteorol Inst Belgium, Dept Observat, B-1180 Brussels, Belgium. [Zijlstra, A.; Kemper, F.; Woods, P. M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Gordon, K. D.; Meixner, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Indebetouw, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Marengo, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Tielens, A. G. G. M.] Leiden Observ, NL-2333 CA Leiden, Netherlands. [Indebetouw, R.] Natl Radio Astron Observ, Charlottesville, VA 22906 USA. [Min, M.] Univ Utrecht, Astron Inst Utrecht, NL-3584 CC Utrecht, Netherlands. RP Gielen, C (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM clio.gielen@ster.kuleuven.be FU Fund for Scientific Research of Flanders (FWO) [G.0178.02, G.0470.07]; NASA FX C.G. and H.V.W. acknowledge support of the Fund for Scientific Research of Flanders (FWO) under the grant G.0178.02. and G.0470.07. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 3 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR C2 DI 10.1051/0004-6361/200912982e PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000002 ER PT J AU Monin, JL Guieu, S Pinte, C Rebull, L Goldsmith, P Fukagawa, M Menard, F Padgett, D Stappelfeld, K McCabe, C Carey, S Noriega-Crespo, A Brooke, T Huard, T Terebey, S Hillenbrand, L Guedel, M AF Monin, J. -L. Guieu, S. Pinte, C. Rebull, L. Goldsmith, P. Fukagawa, M. Menard, F. Padgett, D. Stappelfeld, K. McCabe, C. Carey, S. Noriega-Crespo, A. Brooke, T. Huard, T. Terebey, S. Hillenbrand, L. Guedel, M. TI The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; brown dwarfs; circumstellar matter; surveys; catalogs ID INITIAL MASS FUNCTION; INFRARED ARRAY CAMERA; SPACE-TELESCOPE; CHAMELEON-I; EVOLUTIONARY MODELS; CIRCUMSTELLAR DISK; STAR CLUSTER; STELLAR; ATMOSPHERES; MEMBERS AB Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas. Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 +/- 12%, a value statistically consistent with the one among TTS (58 +/- 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we study one isolated example of a transitional disk with an inner radius of approximate to 0.1 AU (CFHT BD Tau 12, found via its relatively small mid-IR excess compared to most members of Taurus that have disks. We find that BDs are statistically found in regions of similar molecular gas surface density to those associated with stars. Furthermore, we find that the gas column density distribution is almost identical for stellar and substellar objects with and without disks. C1 [Monin, J. -L.; Menard, F.] Univ Grenoble 1, Lab Astrophys Grenoble, CNRS, F-38041 Grenoble, France. [Guieu, S.; Rebull, L.; Padgett, D.; McCabe, C.; Carey, S.; Noriega-Crespo, A.; Brooke, T.] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Pinte, C.] Univ Exeter, Exeter EX4 4QL, Devon, England. [Goldsmith, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fukagawa, M.] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Stappelfeld, K.; Hillenbrand, L.] CALTECH, Pasadena, CA 91125 USA. [Brooke, T.] Univ Maryland, Baltimore, MD 21250 USA. [Terebey, S.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Guedel, M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. RP Monin, JL (reprint author), Univ Grenoble 1, Lab Astrophys Grenoble, CNRS, BP 53, F-38041 Grenoble, France. EM Jean-Louis.Monin@obs.ujf-grenoble.fr RI Guedel, Manuel/C-8486-2015; OI Guedel, Manuel/0000-0001-9818-0588; Rebull, Luisa/0000-0001-6381-515X FU CNRS/INSU, France FX We thank an anonymous referee for a very detailed and precise report that helped uncover several errors in the first version of this paper. This research has made use of the CDS database. We thank the Programme National de Physique Stellaire (PNPS, CNRS/INSU, France) for financial support. The authors also wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the CFH Telescope observations presented therein would not have been possible. NR 40 TC 10 Z9 10 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A91 DI 10.1051/0004-6361/200912338 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000060 ER PT J AU Schmitz, F Fleck, B AF Schmitz, F. Fleck, B. TI Adiabatic high degree modes of a rotating star I. General features and real pressure modes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE hydrodynamics; waves; stars: oscillations; Sun: oscillations; stars: atmospheres ID DIFFERENTIAL ROTATION; OSCILLATIONS; CHROMOSPHERE; STABILITY; FORM; SUN AB Aims. The influence of the rotation of the Sun on non-radial p-modes with high wave numbers l is studied. To investigate and understand the basic properties of these modes, it is sufficient to consider only the outer layers of the Sun, which can be approximated by a plane layer with constant gravity. Methods. We use a model with a smooth transition between a polytropic convection zone and an isothermal atmosphere. The rotation is simulated by a constant horizontal wind. For this model, using the column mass instead of the geometrical height, the adiabatic wave equation of the pressure perturbation can be reduced to Whittaker's differential equation. From boundary conditions we obtain the dispersion relation. The geometrical height is a simple elementary function of the column mass. Results. The dispersion relation F(omega, k) = 0 is a higher order algebraic equation in both frequency and horizontal wave number, which must be solved numerically. We analyze the behavior of the dispersion curves of modes with an adiabatic exponent gamma = 5/3 for layers with polytropic indices n = 3 and n = 3/2. The f-mode is considered separately. For the understanding of the results we also consider modes of a homogeneous gas. We compare the k - omega diagram of our idealized model with the k - omega diagram of a real solar model. C1 [Schmitz, F.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Fleck, B.] NASA, Goddard Space Flight Ctr, ESA Sci Operat Dept, Greenbelt, MD 20771 USA. RP Schmitz, F (reprint author), Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. EM schmitz@astro.uni-wuerzburg.de; bfleck@esa.nascom.nasa.gov RI Fleck, Bernhard/C-9520-2012 NR 22 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A103 DI 10.1051/0004-6361/200912635 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000072 ER PT J AU Shore, SN Wahlgren, GM AF Shore, S. N. Wahlgren, G. M. TI The O I] 1641 angstrom line as a probe of symbiotic star winds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: symbiotic; atomic processes; galaxies: active; circumstellar matter ID ATOMIC OXYGEN; RS-OPHIUCHI; PARTIAL REDISTRIBUTION; RR-TELESCOPII; AG DRACONIS; EMISSION; OUTBURST; SPECTRUM; TRANSITION; BINARY AB The neutral oxygen resonance gimel 1302 angstrom line can, if the optical depth is sufficiently high, de-excite by an intercombination transition at gimel 1641 angstrom to a metastable state. This has been noted in a number of previous studies but never systematically investigated as a diagnostic of the neutral red giant wind in symbiotic stars and symbiotic-like recurrent novae. Methods. We used archival IUE high resolution, and HST GHRS and STIS medium and high resolution, spectra to study a sample of symbiotic stars. The integrated fluxes were measured, where possible, for the O I gimel 1302 angstrom and O I] lambda 1641 angstrom lines. Results. The intercombination lambda 1641 angstrom line is detected in a substantial number of symbiotic stars with optical depths that give column densities comparable with direct eclipse measures (EG And) and the evolution of the recurrent nova RS Oph 1985 in outburst. In four systems (EG And, Z And, V1016 Cyg, and RR Tel), we find that the O I] variations are strongly correlated with the optical light curve and outburst activity. This transition can also be important for the study of a wide variety of sources in which an ionization-bounded H II region is imbedded in an extensive neutral medium, including active galactic nuclei, and not only for evaluations of extinction. C1 [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Wahlgren, G. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Wahlgren, G. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shore, SN (reprint author), Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy. EM shore@df.unipi.it FU NASA [NNG06GJ29G] FX We thank J. P. Aufdenberg, K. Genovali, J. Mikolajewska, C. Rossi, and R. Viotti, and the (anonymous) referee for valuable discussions and suggestions. The IUE and the HST GHRS and STIS spectra were obtained from the MAST archive of STScI and archival visual photometric data were provided by the AAVSO. G.M.W. acknowledges support from NASA Grant NNG06GJ29G. NR 39 TC 6 Z9 6 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A108 DI 10.1051/0004-6361/201014271 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000077 ER PT J AU Thompson, WT AF Thompson, W. T. TI Precision effects for solar image coordinates within the FITS world coordinate system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE standards; Sun: general; techniques: image processing; astronomical data bases: miscellaneous; methods: data analysis ID RADIO-EMISSION; REPRESENTATIONS; SCATTERING AB The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image. Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work. C1 NASA, Adnet Syst Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thompson, WT (reprint author), NASA, Adnet Syst Inc, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RI Thompson, William/D-7376-2012 FU NASA [NNG06EB68C] FX The author would like to thank Dean Pesnell for many helpful suggestions, and Gordon Holman and Jeffrey Brosius for useful references on the theory of radio transport through a plasma. The author would also like to thank the referee for many helpful comments and careful criticisms. This work was carried out under NASA grant NNG06EB68C. NR 20 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A59 DI 10.1051/0004-6361/200810357 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000028 ER PT J AU Bernat, D Bouchez, AH Ireland, M Tuthill, P Martinache, F Angione, J Burruss, RS Cromer, JL Dekany, RG Guiwits, SR Henning, JR Hickey, J Kibblewhite, E McKenna, DL Moore, AM Petrie, HL Roberts, J Shelton, JC Thicksten, RP Trinh, T Tripathi, R Troy, M Truong, T Velur, V Lloyd, JP AF Bernat, David Bouchez, Antonin H. Ireland, Michael Tuthill, Peter Martinache, Frantz Angione, John Burruss, Rick S. Cromer, John L. Dekany, Richard G. Guiwits, Stephen R. Henning, John R. Hickey, Jeff Kibblewhite, Edward McKenna, Daniel L. Moore, Anna M. Petrie, Harold L. Roberts, Jennifer Shelton, J. Chris Thicksten, Robert P. Trinh, Thang Tripathi, Renu Troy, Mitchell Truong, Tuan Velur, Viswa Lloyd, James P. TI A CLOSE COMPANION SEARCH AROUND L DWARFS USING APERTURE MASKING INTERFEROMETRY AND PALOMAR LASER GUIDE STAR ADAPTIVE OPTICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; stars: low-mass; techniques: high angular resolution ID LOW-MASS STARS; BROWN DWARF; DYNAMICAL MASS; ULTRACOOL DWARFS; BINARY-SYSTEMS; GJ 802B; MULTIPLICITY AB We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of Delta K similar to 2.3 for separations between 1.2 lambda/D-4 lambda/D and Delta K similar to 1.4 at 23 lambda/D. We present four candidate binaries detected with moderate-to- high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored. C1 [Bernat, David; Lloyd, James P.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Petrie, Harold L.; Thicksten, Robert P.; Tripathi, Renu] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Bouchez, Antonin H.; Angione, John; Burruss, Rick S.; Cromer, John L.; Dekany, Richard G.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; Kibblewhite, Edward; McKenna, Daniel L.; Moore, Anna M.; Petrie, Harold L.; Roberts, Jennifer; Shelton, J. Chris; Thicksten, Robert P.; Trinh, Thang; Tripathi, Renu; Troy, Mitchell; Truong, Tuan; Velur, Viswa] CALTECH, Palomar Observ, Palomar Laser Guide Star Adapt Opt Team, Palomar Mt, CA 92060 USA. [Ireland, Michael; Tuthill, Peter] Univ Sydney, Sch Phys, Sydney Inst Astrophys, Sydney, NSW 2006, Australia. [Martinache, Frantz] Natl Inst Nat Sci, Natl Astron Observ Japan, Hilo, HI 96720 USA. [Angione, John; Burruss, Rick S.; Guiwits, Stephen R.; Roberts, Jennifer; Shelton, J. Chris; Trinh, Thang; Troy, Mitchell; Truong, Tuan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kibblewhite, Edward] Univ Chicago, Chicago, IL 60637 USA. RP Bernat, D (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RI Lloyd, James/B-3769-2011; OI Ireland, Michael/0000-0002-6194-043X FU National Science Foundation [AST-0905932, AST-0705085]; National Aeronautics and Space Administration FX We thank the staff and telescope operators of the Palomar Observatory for their support. David Bernat thanks Jason Wright for many helpful discussions about the analytical techniques developed within this paper. We thank the Palomar staff for many nights of assistance at the Palomar Hale telescope. This work was supported in part by the National Science Foundation under award numbers AST-0905932 and AST-0705085. The Hale telescope at Palomar Observatory is operated as part of a collaborative agreement between Caltech, JPL, and Cornell University. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, and is funded by the National Aeronautics and Space Administration, and the National Science Foundation. NR 30 TC 20 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 724 EP 735 DI 10.1088/0004-637X/715/2/724 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100001 ER PT J AU Sandell, G Wright, M AF Sandell, Goeran Wright, Melvyn TI A DETAILED STUDY OF THE ACCRETION DISK SURROUNDING THE HIGH-MASS PROTOSTAR NGC 7538 S SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; ISM: clouds; stars: formation; stars: pre-main sequence; submillimeter: stars ID YOUNG STELLAR OBJECTS; (PROTO)STAR IRAS 20126+4104; HYPERCOMPACT HII-REGIONS; VELOCITY MOLECULAR GAS; T-TAURI STARS; METHANOL MASERS; NGC-7538 REGION; ROTATING TOROIDS; HYDROXYL MASERS; HIGH-RESOLUTION AB We present deep high-angular resolution observations of the high-mass protostar NGC 7538 S, which is in the center of a cold dense cloud core with a radius of 0.5 pc and a mass of similar to 2000 M(circle dot). These observations show that NGC 7538 S is embedded in a compact elliptical core with a mass of 85-115 M(circle dot). The star is surrounded by a rotating accretion disk, which powers a very young, hot molecular outflow approximately perpendicular to the rotating accretion disk. The accretion rate is very high, similar to(1.4-2.8) x 10(-3) M(circle dot) yr(-1). Evidence for rotation of the disk surrounding the star is seen in all largely optically thin molecular tracers, H(13)CN J = 1 -> 0, HN(13)C J = 1 -> 0, H(13)CO(+) J = 1 -> 0, and DCN J = 3 -> 2. Many molecules appear to be affected by the hot molecular outflow, including DCN and H(13)CO(+). The emission from CH(3)CN, which has often been used to trace disk rotation in young high-mass stars, is dominated by the outflow, especially at higher K levels. Our new high angular resolution observations show that the rotationally supported part of the disk is smaller than we previously estimated. The enclosed mass of the inner, rotationally supported part of the disk (D similar to 5 '', i.e., 14,000 AU) is similar to 14-24M(circle dot). C1 [Sandell, Goeran] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Wright, Melvyn] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. RP Sandell, G (reprint author), NASA, Ames Res Ctr, SOFIA USRA, MS N211-3, Moffett Field, CA 94035 USA. EM Goran.H.Sandell@nasa.gov FU National Science Foundation FX The BIMA array was operated by the Universities of California (Berkeley), Illinois, and Maryland with support from the National Science Foundation. We want to thank Dr. W.M. Goss for helpful comments and support throughout this project. Special thanks goes to Dr. Mark Heyer, who did the FCRAO observations for us, and to the JCMT telescope system specialists, who did all the JCMT observing in service mode. We thank the anonymous referee for an extremely careful reading of our paper, which considerably improved it. NR 79 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 919 EP 938 DI 10.1088/0004-637X/715/2/919 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100017 ER PT J AU Torrejon, JM Schulz, NS Nowak, MA Kallman, TR AF Torrejon, J. M. Schulz, N. S. Nowak, M. A. Kallman, T. R. TI A CHANDRA SURVEY OF FLUORESCENCE Fe LINES IN X-RAY BINARIES AT HIGH RESOLUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (X1908+075); surveys; X-rays: binaries ID IRON LINE; EMISSION-LINES; STELLAR WIND; INTERSTELLAR-MEDIUM; COMPTON SHOULDER; ACCRETION DISKS; BLACK-HOLE; CYGNUS X-1; VELA X-1; K-LINES AB Fe K line fluorescence is commonly observed in the X-ray spectra of many X-ray binaries (XRBs) and represents a fundamental tool to investigate the material surrounding the X-ray source. In this paper, we present a comprehensive survey of 41 XRBs (10 HMXBs and 31 LMXBs) with Chandra with specific emphasis on the Fe K region and the narrow Fe K alpha line, at the highest resolution possible. We find that (1) the Fe K alpha line is always centered at lambda = 1.9387 +/- 0.0016 angstrom, compatible with Fe I up to Fe x; we detect no shifts to higher ionization states nor any difference between high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs). (2) The line is very narrow, with FWHM < 5 m angstrom, normally not resolved by Chandra which means that the reprocessing material is not rotating at high speeds. (3) Fe K alpha fluorescence is present in all the HMXBs in the survey. In contrast, such emissions are astonishingly rare (similar to 10%) among LMXBs where only a few out of a large number showed Fe K fluorescence. However, the line and edge properties of these few are very similar to their high mass cousins. (4) The lack of Fe line emission is always accompanied by the lack of any detectable K edge. (5) We obtain the empirical curve of growth of the equivalent width of the Fe K alpha line versus the density column of the reprocessing material, i.e., EW(K alpha) versus N(H), and show that it is consistent with a reprocessing region spherically distributed around the compact object. (6) We show that fluorescence in XRBs follows the X-ray Baldwin effect as previously only found in the X-ray spectra of active galactic nuclei. We interpret this finding as evidence of decreasing neutral Fe abundance with increasing X-ray illumination and use it to explain some spectral states of Cyg X-1 as a possible cause of the lack of narrow Fe line emission in LMXBs. (7) Finally, we study anomalous morphologies such as Compton shoulders and asymmetric line profiles associated with the line fluorescence. Specifically, we present the first evidence of a Compton shoulder in the HMXB X1908+075. Also, the Fe K alpha lines of 4U1700-37 and LMC X-4 present asymmetric wings, suggesting the presence of highly structured stellar winds in these systems. C1 [Torrejon, J. M.] Univ Alicante, Inst Fis Aplicada Ciencias & Tecnol, E-03080 Alicante, Spain. [Torrejon, J. M.; Schulz, N. S.; Nowak, M. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Torrejon, JM (reprint author), Univ Alicante, Inst Fis Aplicada Ciencias & Tecnol, E-03080 Alicante, Spain. EM jmt@ua.es RI Torrejon, Jose /K-6395-2014 OI Torrejon, Jose /0000-0002-5967-5163 FU Spanish Ministerio de Educacion y Ciencia (MEC) [PR2007-0176]; MICINN [AYA2008-06166-C03-03, CSD-2006-00070] FX We thank Julia Lee for making the LMC X-4 data available to us previous to publication. J.M.T. acknowledges the support of the Spanish Ministerio de Educacion y Ciencia (MEC) through the grant PR2007-0176, and the MICINN through grants AYA2008-06166-C03-03 and Consolider-GTC CSD-2006-00070. NR 40 TC 41 Z9 41 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 947 EP 958 DI 10.1088/0004-637X/715/2/947 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100019 ER PT J AU Ostorero, L Moderski, R Stawarz, L Diaferio, A Kowalska, I Cheung, CC Kataoka, J Begelman, MC Wagner, SJ AF Ostorero, L. Moderski, R. Stawarz, L. Diaferio, A. Kowalska, I. Cheung, C. C. Kataoka, J. Begelman, M. C. Wagner, S. J. TI X-RAY-EMITTING GHz-PEAKED-SPECTRUM GALAXIES: TESTING A DYNAMICAL-RADIATIVE MODEL WITH BROADBAND SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (IERS B0026+346, IERS B0108+388, IERS B0500+019, IERS B0710+439, PKS B0941-080, IERS B1031+567, IERS B1345+125, IVS B1358+624, IERS B1404+286, IERS B2128+048, IERS B2352+495); galaxies: jets; radiation mechanisms: non-thermal; X-rays: galaxies ID COMPACT STEEP-SPECTRUM; ACTIVE GALACTIC NUCLEI; POWERFUL RADIO GALAXIES; ULTRALUMINOUS INFRARED GALAXIES; SPITZER-SPACE-TELESCOPE; PEARSON-READHEAD SURVEY; HIGH-FREQUENCY PEAKERS; FREE-FREE ABSORPTION; NARROW-LINE REGION; MULTIBAND IMAGING PHOTOMETER AB In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-peaked-spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellarmedium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission, from the X-ray to the gamma-ray frequency domain. Here, we test this model with the broadband SEDs of a sample of 11 X-ray-emitting GPS galaxies with compact-symmetric-object morphology, and show that (1) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism and (2) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk-dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (NH) and radio (NHi) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes. C1 [Ostorero, L.; Diaferio, A.] Univ Turin, Dipartimento Fis Gen Amedeo Avogadro, I-10125 Turin, Italy. [Ostorero, L.; Diaferio, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Moderski, R.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Moderski, R.; Stawarz, L.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Kowalska, I.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Cheung, C. C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Begelman, M. C.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Wagner, S. J.] Landessternwarte Heidelberg Konigstuhl, D-69117 Heidelberg, Germany. RP Ostorero, L (reprint author), Univ Turin, Dipartimento Fis Gen Amedeo Avogadro, Via P Giuria 1, I-10125 Turin, Italy. OI Ostorero, Luisa/0000-0003-3983-5980 NR 212 TC 19 Z9 19 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1071 EP 1093 DI 10.1088/0004-637X/715/2/1071 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100029 ER PT J AU Burrows, RH Zank, GP Webb, GM Burlaga, LF Ness, NF AF Burrows, R. H. Zank, G. P. Webb, G. M. Burlaga, L. F. Ness, N. F. TI PICKUP ION DYNAMICS AT THE HELIOSPHERIC TERMINATION SHOCK OBSERVED BY VOYAGER 2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: heliosphere ID SOLAR-WIND; PERPENDICULAR SHOCKS; ACCELERATION; MICROSTRUCTURE AB The recent Voyager 2 (V2) observations of the termination shock (TS) indicate that it is a plasma shock unlike any other in the heliosphere with the dynamics and structure heavily influenced by the presence of an energized population of pickup ions (PUIs). The "unexpected" finding of cold plasma downstream of the TS in the heliosheath, corresponding to very little heating of the thermal solar wind (SW), suggests that the energy dissipated by the shock is dominated by the energization of PUIs at the TS. We examine the "shock surfing" mechanism at the test particle level, where multiply reflected ions (MRIs) gain energy from the motional electric field as a consequence of reflection from the cross-shock potential (CSP), for a model of the TS3 (the third TS crossing measured by V2). The energization of PUI filled-shell distributions at a stationary, perpendicular model of the TS3 indicates that shock surfing can provide both substantial PUI acceleration and a dissipation mechanism at the TS. For a sufficiently strong CSP and sufficiently narrow shock ramp MRI acceleration can account for the "missing" energy of the downstream SW plasma. C1 [Burrows, R. H.; Zank, G. P.; Webb, G. M.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Washington, DC 20064 USA. RP Burrows, RH (reprint author), Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. FU NASA [NNX09AB40G, NNX07AH18G, NNG05EC85C, NNX09 AG63G, NNX08AJ21G, NNX09AB24G, NNX09AG29G, NNX09AG62G] FX We acknowledge the partial support of NASA grants NNX09AB40G, NNX07AH18G, NNG05EC85C, NNX09 AG63G, NNX08AJ21G, NNX09AB24G, NNX09AG29G, and NNX09AG62G. NR 20 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1109 EP 1116 DI 10.1088/0004-637X/715/2/1109 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100031 ER PT J AU Paganini, L Villanueva, GL Lara, LM Lin, ZY Kuppers, M Hartogh, P Faure, A AF Paganini, L. Villanueva, G. L. Lara, L. M. Lin, Z. Y. Kueppers, M. Hartogh, P. Faure, A. TI HCN SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3. A STUDY OF GAS EVOLUTION AND ITS LINK TO CN SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; comets: general; comets: individual (73P/Schwassmann-Wachmann 3); molecular processes; radiative transfer ID BOPP 1995 O1; HALE-BOPP; EXCITATION CONDITIONS; VOLATILE COMPOSITION; RADIATIVE-TRANSFER; HYDROGEN-CYANIDE; FRAGMENT-B; INNER COMA; C/1996 B2; WATER AB In 2006 May, comet 73P/Schwassmann-Wachmann 3 experienced large outburst activity allowing us to study the gas production rate of fresh material released from the nucleus. We observed the comet in a coordinated campaign using millimeter and optical facilities at heliocentric distances between 0.966 and 1.033 AU. During this time, we had the opportunity to follow the post-outburst evolution of fragment B, which evidenced larger production rates in comparison to fragment C, the latter showing a rather stable gas production rate (Q(HCN) similar to 2 x 10(25) molecules s(-1)). In addition to the investigation of the gas evolution, we studied the possible role of HCN and dust as progenitors for the CN radical. From our joint observations on May 12, we observed a high correlation of CN with HCN and low correlation with the continuum emission (grains). Herewith, our study supports the view of HCN as a major source of CN, although the presence of other sources for cyanide cannot be fully ruled out. C1 [Paganini, L.; Villanueva, G. L.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Paganini, L.; Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lara, L. M.; Lin, Z. Y.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Kueppers, M.] ESAC, Madrid 28691, Spain. [Faure, A.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble LAOG, F-38041 Grenoble 09, France. RP Paganini, L (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Mailstop 693-0, Greenbelt, MD 20771 USA. EM lucas.paganini@nasa.gov FU Max-Planck-Gesellschaft; Spanish Ministerio de Educacion y Ciencia; Ministerio de Ciencia e Innovacion [ESP2006-02934, AyA 2009-08011] FX This work is based on joint observations from the Heinrich Hertz Submillimeter Telescope and Lulin Observatory. We are grateful to the staff of HHSMT and LO for their great assistance and generous allocation of telescope time throughout our observational campaign. L. P. acknowledges D. Bockelee-Morvan, N. Biver, K. Jockers, M. Drahus, M. Lippi, and M.J. Mumma for useful discussions, the anonymous referee for valuable comments on the manuscript, and the support of this research by the Max-Planck-Gesellschaft. L. M. L. and Z.-Y.L. thank the support given by the Spanish Ministerio de Educacion y Ciencia and Ministerio de Ciencia e Innovacion under projects ESP2006-02934 and AyA 2009-08011. The SMT is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona. NR 57 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1258 EP 1269 DI 10.1088/0004-637X/715/2/1258 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100042 ER PT J AU Goldsmith, PF Velusamy, T Li, D Langer, WD AF Goldsmith, Paul F. Velusamy, Thangasamy Li, Di Langer, William D. TI MOLECULAR HYDROGEN EMISSION FROM THE BOUNDARIES OF THE TAURUS MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: individual objects (Taurus molecular cloud); ISM: molecules; photon-dominated region (PDR) ID POLYCYCLIC AROMATIC-HYDROCARBON; WARM NEUTRAL HALOS; H-I; H-2 EMISSION; DARK CLOUDS; GAS; CO; PHOTODISSOCIATION; CHEMISTRY; REGIONS AB We report Spitzer Space Telescope observations of the four lowest rotational transitions of H(2) in three portions of the boundary of the Taurus molecular cloud. Emission in the two lowest transitions, S(0) and S(1), was detected in almost all pointing directions, while the S(2) and S(3) lines were marginally detected only after further averaging of data. The widespread detection of lines coming from levels 510 K and 1016 K above the molecular ground state is indicative of gas at a temperature of at least 200 K containing column densities (1-5) x 10(18) cm(-2) of H(2). For the region with the simplest geometry, we have used the Meudon PDR code to model the chemistry, radiative transfer, and excitation of molecular hydrogen. We conclude that models with acceptable values of the UV interstellar radiation field can reproduce the amount of H(2) in the lowest excited state, but cannot account for the degree of excitation of the H(2). The unexpectedly high degree of excitation of the H(2) in the boundary layer of a molecular cloud, which cannot be explained by the presence of stellar sources, points to an enhanced heating rate which may be the result of, e. g., dissipation of turbulence. We have in one boundary region been able to obtain the ortho-to-para ratio (OPR) for H(2), which by modeling and possible detection of the S(2) and S(3) lines has a range 1.0 >= OPR >= 0.15, although this result must be treated with caution. The fact that the ortho-to-para ratio is lower than that expected for equilibrium at the gas kinetic temperature may be indicative of circulation of material from cold, purely molecular regions into the boundary layer, possibly due to turbulent diffusion. The explanation of these data may thus be suggestive of processes that are having a significant effect on the structure and evolution of molecular clouds and the star formation that takes place within them. C1 [Goldsmith, Paul F.; Velusamy, Thangasamy; Li, Di; Langer, William D.] Jet Prop Lab, Pasadena, CA 91103 USA. RP Goldsmith, PF (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91103 USA. EM Paul.F.Goldsmith@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Jet Propulsion Laboratory, California Institute of Technology FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the Spitzer Science Center for hosting an enjoyable stay during which P. F. G. was able to make substantial progress on this research. We are very grateful to Franck Le Petit for his support in using the Meudon PDR code and answering numerous questions about details of its operation. We thank David Neufeld for discussions about the H2 molecule and David Hollenbach for valuable comments about UV pumping of H2, as well as numerous other suggestions that materially improved this paper. We are grateful to Luisa Rebull, Debbie Padgett, and Helen Kirk for providing critical information about the B stars associated with Taurus. We thank Bill Reach for sharing information about the stellar population and radiation field limits in Taurus, and Darek Lis for discussions about observations of PDR regions. We appreciate substantial work by Jorge Pineda to compare results of various PDR codes and the very helpful comments of an anonymous referee. This research has made use of NASA's Astrophysics Data System and of the SIMBAD database, operated at CDS, Strasbourg, France. NR 37 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1370 EP 1382 DI 10.1088/0004-637X/715/2/1370 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100052 ER PT J AU Ahn, HS Allison, PS Bagliesi, MG Barbier, L Beatty, JJ Bigongiari, G Brandt, TJ Childers, JT Conklin, NB Coutu, S DuVernois, MA Ganel, O Han, JH Jeon, JA Kim, KC Lee, J Lee, MH Maestro, P Malinin, A Marrocchesi, PS Minnick, S Mognet, SI Na, GW Nam, J Nam, S Nutter, S Park, IH Park, NH Seo, ES Sina, R Walpole, P Wu, J Yang, J Yoon, YS Zei, R Zinn, SY AF Ahn, H. S. Allison, P. S. Bagliesi, M. G. Barbier, L. Beatty, J. J. Bigongiari, G. Brandt, T. J. Childers, J. T. Conklin, N. B. Coutu, S. DuVernois, M. A. Ganel, O. Han, J. H. Jeon, J. A. Kim, K. C. Lee, J. Lee, M. H. Maestro, P. Malinin, A. Marrocchesi, P. S. Minnick, S. Mognet, S. I. Na, G. W. Nam, J. Nam, S. Nutter, S. Park, I. H. Park, N. H. Seo, E. S. Sina, R. Walpole, P. Wu, J. Yang, J. Yoon, Y. S. Zei, R. Zinn, S. Y. TI MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; balloons; diffusion; Galaxy: abundances ID SILICON CHARGE DETECTOR; CREAM EXPERIMENT; CROSS-SECTIONS; 1ST FLIGHT; SPECTRA; ELEMENTS; PROPAGATION; SECONDARY; TRANSPORT; HYDROGEN AB We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 +/- 0.123(stat) +/- 0.030(syst), 0.076 +/- 0.019(stat) +/- 0.013(syst), 0.115 +/- 0.031(stat) +/- 0.004(syst), 0.153 +/- 0.039(stat) +/- 0.005(syst), 0.180 +/- 0.045(stat) +/- 0.006(syst), and 0.139 +/- 0.043(stat) +/- 0.005(syst), respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 +/- 0.013(stat) +/- 0.009(-0.017)(syst+0.010esc). The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the similar to TeV per nucleon region. C1 [Jeon, J. A.; Na, G. W.; Nam, J.; Nam, S.; Park, I. H.; Park, N. H.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinin, A.; Seo, E. S.; Sina, R.; Walpole, P.; Wu, J.; Yoon, Y. S.; Zinn, S. Y.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Allison, P. S.; Beatty, J. J.; Brandt, T. J.; Yoon, Y. S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Univ Siena, Dept Phys, I-53100 Siena, Italy. [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Ist Nazl Fis Nucl, I-53100 Siena, Italy. [Barbier, L.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Childers, J. T.; DuVernois, M. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Conklin, N. B.; Coutu, S.; Mognet, S. I.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Minnick, S.] Kent State Univ, Dept Phys, New Philadelphia, OH 44663 USA. [Nutter, S.] Univ Kentucky, Dept Phys & Geol, Highland Hts, KY 41099 USA. [Seo, E. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Park, IH (reprint author), Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. EM ipark@ewha.ac.kr RI maestro, paolo/E-3280-2010; Beatty, James/D-9310-2011; Marrocchesi, Pier Simone/N-9068-2015; Yoon, Young Soo/O-8580-2014; OI maestro, paolo/0000-0002-4193-1288; Beatty, James/0000-0003-0481-4952; Marrocchesi, Pier Simone/0000-0003-1966-140X; Yoon, Young Soo/0000-0001-7023-699X; Bigongiari, Gabriele/0000-0003-3691-0826 FU NASA [NNX08AC11G, NNX08AC15G, NNX08AC16G]; Creative Research Initiatives (RCMST) of MEST/NRF; INFN FX The work reported in this paper was supported in the U.S. by NASA grants NNX08AC11G, NNX08AC15G, NNX08AC16G and their predecessor grants, in Korea by the Creative Research Initiatives (RCMST) of MEST/NRF and in Italy by INFN. The authors acknowledge NASA/WFF for provision and operation of flight support systems; Art Ruitberg, Suong Le, and Curtis Dunsmore of NASA/GSFC, and Carlos Urdiales of Southwest Research Institute for assistance with HV design and potting; CERN for provision of excellent accelerator beams; the Fermi National Accelerator Lab Thin Films Group for high-quality polishing and aluminization of optical elements; and Columbia Scientific Ballooning Facility, National Science Foundation's Office of Polar Programs, and Raytheon Polar Services Company for outstanding support of launch, flight and recovery operations in Antarctica. NR 30 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1400 EP 1407 DI 10.1088/0004-637X/715/2/1400 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100054 ER PT J AU Abbott, BP Abbott, R Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Alshourbagy, M Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Armandula, H Armor, P Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, C Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, M Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Boccara, C Bodiya, TP Bogue, L Bondu, F Bonelli, L Bork, R Boschi, V Bose, S Bosi, L Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Bridges, DO Brillet, A Brinkmann, M Brisson, V Brooks, AF Brown, DA Brummit, A Brunet, G Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Carbognani, F Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Cokelaer, T Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Corda, C Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Danilishin, SL D'Antonio, S Danzmann, K Dari, A Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Edwards, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Franzen, A Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Gholami, I Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Goezetler, S Gossler, S Gouaty, R Granata, M Granata, V Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Greverie, C Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Guidi, G Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Huet, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Jaranowski, P Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krishnan, B Krolak, A Kumar, R Kwee, P La Penna, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majorana, E Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Menzinger, F Mercer, RA Meshkov, S Messenger, C Meyer, MS Michel, C Milano, L Miller, J Minelli, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Muhammad, D Mukherjee, S Mukhopadhyay, H Mullavey, A Uller-Ebhardt, HM Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Numata, K Ochsner, E O'Dell, J Ogin, GH O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameshwaraiah, V Pardi, S Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Penn, S Perreca, A Persichetti, G Pichot, M Piergiovanni, F Pierro, V Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Russell, P Ryan, K Sakata, S Salemi, F de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Terenzi, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, C Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, P Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Was, M Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Yvert, M Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME zur Muhlen, H Zweizig, J AF Abbott, B. P. Abbott, R. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Alshourbagy, M. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Armandula, H. Armor, P. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, C. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Boccara, C. Bodiya, T. P. Bogue, L. Bondu, F. Bonelli, L. Bork, R. Boschi, V. Bose, S. Bosi, L. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Carbognani, F. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cokelaer, T. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Corda, C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dari, A. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Franzen, A. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Goezetler, S. Gossler, S. Gouaty, R. Granata, M. Granata, V. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Guidi, G. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Huet, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Jaranowski, P. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krishnan, B. Krolak, A. Kumar, R. Kwee, P. La Penna, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mackowski, J. -M. Mageswaran, M. Mailand, K. Majorana, E. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Menzinger, F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Michel, C. Milano, L. Miller, J. Minelli, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Muhammad, D. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Uller-Ebhardt, H. M. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Numata, K. Ochsner, E. O'Dell, J. Ogin, G. H. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameshwaraiah, V. Pardi, S. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Pichot, M. Piergiovanni, F. Pierro, V. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Russell, P. Ryan, K. Sakata, S. Salemi, F. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Terenzi, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Was, M. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Yvert, M. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. zur Muehlen, H. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gravitational waves ID 25 APRIL 1998; SHORT-DURATION GRBS; REDSHIFT DISTRIBUTIONS; LUMINOSITY FUNCTION; RELATIVISTIC JETS; UNUSUAL SUPERNOVA; INVERSE PROBLEM; LOCAL UNIVERSE; ACCRETION DISK; CORE-COLLAPSE AB We present the results of a search for gravitational-wave bursts (GWBs) associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for GWB signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with a median limit of D similar to 12 Mpc(E-GW(iso)/0.01 M(circle dot)c(2))(1/2) for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mossavi, K.; Uller-Ebhardt, H. M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; La Penna, P.; Marque, J.; Menzinger, F.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; zur Muehlen, H.] EGO, I-56021 Cascina, Pi, Italy. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] Univ Paris 07, Observ Paris, CNRS, APC,UMR7164,IN2P3,CEA,DSM IRFU, F-75221 Paris 05, France. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Beker, M.; Bulten, H. J.; Goezetler, S.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mors, K.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astro Obs, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAM, PL-00716 Warsaw, Poland. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Buskulic, D.; Dietz, A.; Granata, V.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Guidi, G.; Numata, K.; Piergiovanni, F.; Stroeer, A.; Vetrano, F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Martelli, F.; Sturani, R.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Edwards, M.; Fafone, V.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pagliaroli, G.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Rocchi, A.; Terenzi, R.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Morgia, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colacino, C. N.; Corsi, A.; Frei, Z.; Raffai, P.; Rapagnani, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Colla, A.; Colombini, M.; Frasca, S.; Gammaitoni, L.; Ricci, F.; Travasso, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dari, A.; Neri, I.] Univ Perugia, I-6123 Perugia, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.; Pagliaroli, G.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Doomes, E. E.; McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. [Flaminio, R.; Franc, J.; Mackowski, J. -M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.; Re, V.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Prodi, G. A.; Re, V.; Salemi, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Prodi, G. A.; Salemi, F.] Univ Trent, I-38050 Trento, Italy. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Terenzi, R.] INAF, IFSI, I-00133 Rome, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Drago, M.] Univ Padua, I-35131 Padua, Italy. RP Abbott, BP (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Ju, Li/C-2623-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Finn, Lee Samuel/A-3452-2009; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Bigotta, Stefano/F-8652-2011; Neri, Igor/F-1482-2010; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; OI Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; O'Shaughnessy, Richard/0000-0001-5832-8517; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Coccia, Eugenio/0000-0002-6669-5787; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Pitkin, Matthew/0000-0003-4548-526X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Neri, Igor/0000-0002-9047-9822; Galdi, Vincenzo/0000-0002-4796-3600; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lueck, Harald/0000-0001-9350-4846; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We are indebted to the observers of the electromagnetic events and the GCN for providing us with valuable data. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge research support by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P0900023-v16. NR 97 TC 52 Z9 52 U1 3 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1438 EP 1452 DI 10.1088/0004-637X/715/2/1438 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100057 ER PT J AU Abadie, J Abbott, BP Abbott, R Accadia, T Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, CD Carbognani, F Cardenas, L Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Driggers, J Dueck, J Duke, I Dumas, JC Edgar, M Edwards, M Effler, A Ehrens, P Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goetz, E Goggin, LM Gonzalez, G Gossler, S Gouaty, R Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E Kim, H King, PJ Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, TGF Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Ochsner, E O'Dell, J Ogin, GH Oldenburg, R O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Radkins, H Raffai, P Raics, Z Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, AJ Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thorne, KA Thorne, KS Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Accadia, T. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Cardenas, L. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Driggers, J. Dueck, J. Duke, I. Dumas, J. -C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goetz, E. Goggin, L. M. Gonzalez, G. Gossler, S. Gouaty, R. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. Kim, H. King, P. J. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, T. G. F. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. J. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thorne, K. A. Thorne, K. S. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration VIRGO Collaboration TI SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gamma-ray burst: general; gravitational waves ID NEUTRON-STAR MERGERS; COMPACT BINARIES; MISSION; SUPERNOVA; INTERFEROMETER; SGR-1806-20; GRB-060614; GRB-070201; ORIGIN; FLARE AB Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [-5, +1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Driggers, J.; Ehrens, P.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO CALTECH, Pasadena, CA 91125 USA. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Romano, R.] Complesso Univ Monte St Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Allen, B.; Aulbert, C.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Grote, H.; Hayama, K.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rehbein, H.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R.; Papa, M. A.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, Pi, Italy. [Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO MIT, Cambridge, MA 02139 USA. [Barsuglia, M.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Denis Diderot Paris 7, CNRS, IN2P3, Observ Paris,DSM,IRFU,CEA,UMR7164, Paris, France. [Bartos, I.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Nikhef, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Beker, M. G.; Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Maksimovic, I.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, LMA, IN2P3, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Bridges, D. O.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Brown, D. A.; Capano, C. D.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Smith, J. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astro Obs, PL-00478 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Cain, J.; Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Lam, P. K.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Minenkov, Y.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Morgia, A.; Pagliaroli, G.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Pagliaroli, G.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Doomes, E. E.; McGuire, S. C.] INAF, IFSI, I-00133 Rome, Italy. [Drago, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eutvus Univ, ELTE, H-1053 Budapest, Hungary. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Prodi, G. A.; Re, V.] Grp Collegato Trento, INFN, I-38050 Trento, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Trento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. RP Abadie, J (reprint author), LIGO CALTECH, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Finn, Lee Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Howell, Eric/H-5072-2014; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Nawrodt, Ronny/J-5155-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; Freise, Andreas/F-8892-2011; OI Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Khan, Rubab/0000-0001-5100-5168; Finn, Lee Samuel/0000-0002-3937-0688; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Howell, Eric/0000-0001-7891-2817; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lueck, Harald/0000-0001-9350-4846; Neri, Igor/0000-0002-9047-9822; Gammaitoni, Luca/0000-0002-4972-7062; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We are indebted to the observers of the electromagnetic events and the GCN for providing us with valuable data. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge research support by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 59 TC 74 Z9 74 U1 3 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1453 EP 1461 DI 10.1088/0004-637X/715/2/1453 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100058 ER PT J AU Crepp, J Serabyn, E Carson, J Ge, J Kravchenko, I AF Crepp, J. Serabyn, E. Carson, J. Ge, J. Kravchenko, I. TI ON-SKY DEMONSTRATION OF A LINEAR BAND-LIMITED MASK WITH APPLICATION TO VISUAL BINARY STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; instrumentation: high angular resolution; planetary systems ID EPSILON-ERIDANI; PLANET FORMATION; GIANT PLANETS; CIRCUMBINARY PLANETS; EXTRASOLAR PLANETS; ORBITAL ELEMENTS; MULTIPLE SYSTEMS; IMAGE MASKS; DQ TAU; CORONAGRAPH AB We have designed and built the first band-limited coronagraphic mask used for ground-based high-contrast imaging observations. The mask resides in the focal plane of the near-infrared camera PHARO at the Palomar Hale telescope and receives a well-corrected beam from an extreme adaptive optics system. Its performance on-sky with single stars is comparable to current state-of-the-art instruments: contrast levels of similar to 10(-5) or better at 0 ''.8 in K-s after post-processing, depending on how well non-common-path errors are calibrated. However, given the mask's linear geometry, we are able to conduct additional unique science observations. Since the mask does not suffer from pointing errors down its long axis, it can suppress the light from two different stars simultaneously, such as the individual components of a spatially resolved binary star system, and search for faint tertiary companions. In this paper, we present the design of the mask, the science motivation for targeting binary stars, and our preliminary results, including the detection of a candidate M-dwarf tertiary companion orbiting the visual binary star HIP 48337, which we are continuing to monitor with astrometry to determine its association. C1 [Crepp, J.; Ge, J.; Kravchenko, I.] Univ Florida, Gainesville, FL 32611 USA. [Crepp, J.] CALTECH, Pasadena, CA 91125 USA. [Serabyn, E.; Carson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carson, J.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Charleston, SC 29424 USA. [Kravchenko, I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Crepp, J (reprint author), Univ Florida, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA. EM jcrepp@astro.caltech.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU NASA [NNG06GC49G]; UCF-UF-SRI program FX We thank Karl Stapelfeldt for support at the JPL microdevices lab to cut and clean the BLM prior to installation, and Dimitri Mawet for helpful conversations at the observatory. J.C. acknowledges support from the NASA postdoctoral program. This work was funded by the UCF-UF-SRI program and NASA grant NNG06GC49G. Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 71 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1533 EP 1538 DI 10.1088/0004-637X/715/2/1533 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100064 ER PT J AU Rachmeler, LA Pariat, E DeForest, CE Antiochos, S Torok, T AF Rachmeler, L. A. Pariat, E. DeForest, C. E. Antiochos, S. Toeroek, T. TI SYMMETRIC CORONAL JETS: A RECONNECTION-CONTROLLED STUDY SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; Sun: activity; Sun: corona ID X-RAY JETS; COLLISIONLESS MAGNETIC RECONNECTION; TWISTED FLUX TUBES; KINK INSTABILITY; NUMERICAL SIMULATIONS; SOLAR ATMOSPHERE; FIELD PROPERTIES; MASS EJECTIONS; CURRENT SHEETS; ACTIVE-REGION AB Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field. C1 [Rachmeler, L. A.] Univ Colorado, Boulder, CO 80304 USA. [Pariat, E.; Toeroek, T.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. [DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA. [Antiochos, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rachmeler, LA (reprint author), Univ Colorado, Boulder, CO 80304 USA. EM laurel.rachmeler@colorado.edu RI Antiochos, Spiro/D-4668-2012 OI Antiochos, Spiro/0000-0003-0176-4312 FU NASA; European Commission [MTRM-CT-2006-035484, 218816] FX The authors thank P. Demoulin for insightful comments and discussions. This work was supported in part by the NASA HTP, LWS-TR&T, and SHP-SR&T programs. Financial support by the European Commission through the SOLAIRE network (MTRM-CT-2006-035484) is gratefully acknowledged. The research leading to these results has received funding from the European Commission's Seventh Framework Program (FP7/2007-2013) under the grant agreement 218816 (SOTERIA project, www.soteria-space.eu). The ARMS numerical simulations were performed on DoD High Performance Computing Modernization Program resources at NRL-DC. FLUX is open source software available from http://flux.boulder.swri.edu. Thanks is also given to the PDL development team http://pdl.perl.org. NR 67 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1556 EP 1565 DI 10.1088/0004-637X/715/2/1556 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100066 ER PT J AU Sajina, A Yan, L Armus, L Choi, P Fadda, D Helou, G Spoon, H AF Sajina, Anna Yan, Lin Armus, Lee Choi, Philip Fadda, Dario Helou, George Spoon, Henrik TI SPITZER MID-INFRARED SPECTROSCOPY OF INFRARED LUMINOUS GALAXIES AT z similar to 2. II. DIAGNOSTICS (vol 664, pg 713, 2007) SO ASTROPHYSICAL JOURNAL LA English DT Correction ID ACTIVE GALACTIC NUCLEI C1 [Sajina, Anna; Yan, Lin; Armus, Lee; Helou, George] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Choi, Philip] Pomona Coll, Claremont, CA 91711 USA. [Fadda, Dario] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Spoon, Henrik] Cornell Univ, Ithaca, NY 14853 USA. RP Sajina, A (reprint author), Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1592 EP 1592 DI 10.1088/0004-637X/715/2/1592 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100070 ER PT J AU Hammel, HB Wong, MH Clarke, JT de Pater, I Fletcher, LN Hueso, R Noll, K Orton, GS Perez-Hoyos, S Sanchez-Lavega, A Simon-Miller, AA Yanamandra-Fisher, PA AF Hammel, H. B. Wong, M. H. Clarke, J. T. de Pater, I. Fletcher, L. N. Hueso, R. Noll, K. Orton, G. S. Perez-Hoyos, S. Sanchez-Lavega, A. Simon-Miller, A. A. Yanamandra-Fisher, P. A. TI JUPITER AFTER THE 2009 IMPACT: HUBBLE SPACE TELESCOPE IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID COMET SHOEMAKER-LEVY-9; ZONAL WINDS; STRATOSPHERE; STABILITY; SPECTRUM; AEROSOL AB We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July. The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions. C1 [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Wong, M. H.; Noll, K.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wong, M. H.; de Pater, I.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Clarke, J. T.] Boston Univ, Boston, MA 02215 USA. [Fletcher, L. N.; Orton, G. S.; Yanamandra-Fisher, P. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.] Univ Basque Country, Bilbao 48013, Spain. [Simon-Miller, A. A.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hammel, HB (reprint author), Space Sci Inst, 4750 Walnut Ave,Suite 205, Boulder, CO 80301 USA. EM hbh@alum.mit.edu RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Perez-Hoyos, Santiago/L-7543-2014; Clarke, John/C-8644-2013 OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X; FU NASA [NAS 5-26555]; STScI [GO-12003, GO-12045] FX This Letter is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy Inc. under NASA contract NAS 5-26555. Analyses of these data from programs GO-12003 and GO-12045 were supported by STScI under the associated research grants. We commend and thank the STSCI staff and management for their fortitude during these unusually challenging observations. L.N.F. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory (California Institute of Technology, Pasadena, CA). NR 25 TC 26 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2010 VL 715 IS 2 BP L150 EP L154 DI 10.1088/2041-8205/715/2/L150 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 608NU UT WOS:000278591800019 ER PT J AU Sanchez-Lavega, A Wesley, A Orton, G Hueso, R Perez-Hoyos, S Fletcher, LN Yanamandra-Fisher, P Legarreta, J de Pater, I Hammel, H Simon-Miller, A Gomez-Forrellad, JM Ortiz, JL Garcia-Melendo, E Puetter, RC Chodas, P AF Sanchez-Lavega, A. Wesley, A. Orton, G. Hueso, R. Perez-Hoyos, S. Fletcher, L. N. Yanamandra-Fisher, P. Legarreta, J. de Pater, I. Hammel, H. Simon-Miller, A. Gomez-Forrellad, J. M. Ortiz, J. L. Garcia-Melendo, E. Puetter, R. C. Chodas, P. TI THE IMPACT OF A LARGE OBJECT ON JUPITER IN 2009 JULY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID SHOEMAKER-LEVY 9; SHORT-PERIOD COMETS; RECONSTRUCTION; EVOLUTION; RATES AB On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55 degrees S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory in the opposite direction and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4800 km east-west and 2500 km north-south, with those produced by the SL9 fragments and dynamical calculations of pre-impact orbit indicates that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890 nm and K (2.03-2.36 mu m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary clouds. C1 [Sanchez-Lavega, A.; Hueso, R.; Perez-Hoyos, S.] Univ Basque Country, Dpto Fis Aplicada 1, Escuela Super Ingenieros, Bilbao 48013, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW 2582, Australia. [Orton, G.; Yanamandra-Fisher, P.; Chodas, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fletcher, L. N.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Legarreta, J.] Escuela Univ Ingn Tecn Ind, Bilbao 48012, Spain. [de Pater, I.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hammel, H.] Space Sci Inst, Boulder, CO 80301 USA. [Simon-Miller, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gomez-Forrellad, J. M.; Garcia-Melendo, E.] Fundacio Observ Esteve Duran, Barcelona 08553, Spain. [Ortiz, J. L.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Puetter, R. C.] Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Sanchez-Lavega, A (reprint author), Univ Basque Country, Dpto Fis Aplicada 1, Escuela Super Ingenieros, Alameda Urquijo S-N, Bilbao 48013, Spain. EM agustin.sanchez@ehu.es RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Perez-Hoyos, Santiago/L-7543-2014; OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; LEGARRETA ETXAGIBEL, JON JOSU/0000-0001-6501-2705; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X FU Spanish MEC [AYA2006-07735]; MICIIN [AYA2009-10701]; Grupos Gobierno Vasco [IT-464-07]; NASA FX This work was supported by the Spanish MEC AYA2006-07735 and MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. G.O. and P.Y.F. acknowledge support from NASA grants to JPL. L.N.F. was supported by NASA Postdoctoral Program at the Jet Propulsion Laboratory (Caltech, USA). J.L.O. acknowledges AYA2008-06202-C03-01. NR 26 TC 25 Z9 25 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2010 VL 715 IS 2 BP L155 EP L159 DI 10.1088/2041-8205/715/2/L155 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 608NU UT WOS:000278591800020 ER PT J AU Wu, JW Evans, NJ Shirley, YL Knez, C AF Wu, Jingwen Evans, Neal J., II Shirley, Yancy L. Knez, Claudia TI THE PROPERTIES OF MASSIVE, DENSE CLUMPS: MAPPING SURVEYS OF HCN AND CS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: formation; ISM: clouds; ISM: molecules; stars: formation; submillimeter: ISM ID STAR-FORMATION RATE; LUMINOUS INFRARED GALAXIES; MOLECULAR CLOUD CORES; COMPACT HII-REGIONS; H-II REGIONS; PROTOSTELLAR CANDIDATES; PHYSICAL CONDITIONS; CONTINUUM OBSERVATIONS; DUST CONTINUUM; OUTER GALAXY AB We have mapped over 50 massive, dense clumps with four dense gas tracers: HCN J = 1-0 and 3-2; and CS J = 2-1 and 7-6 transitions. Spectral lines of optically thin H(13)CN 3-2 and C(34)S 5-4 were also obtained toward the map centers. These maps usually demonstrate single well-peaked distributions at our resolution, even with higher J transitions. The size, virial mass, surface density, and mean volume density within a well-defined angular size ( FWHM) were calculated from the contour maps for each transition. We found that transitions with higher effective density usually trace the more compact, inner part of the clumps but have larger linewidths, leading to an inverse linewidth-size relation using different tracers. The mean surface densities are 0.29, 0.33, 0.78, 1.09 g cm(-2) within FWHM contours of CS 2-1, HCN 1-0, HCN 3-2, and CS 7-6, respectively. We find no correlation of L(IR) with surface density and a possible inverse correlation with mean volume density, contrary to some theoretical expectations. Molecular line luminosities L'(mol) were derived for each transition. We see no evidence in the data for the relation between L'(mol) and mean density posited by modelers. The correlation between L'(mol) and the virial mass is roughly linear for each dense gas tracer. No obvious correlation was found between the line luminosity ratio and infrared luminosity, bolometric temperature, or the L(IR)/M(Vir) ratio. A nearly linear correlation was found between the infrared luminosity and the line luminosity of all dense gas tracers for these massive, dense clumps, with a lower cutoff in luminosity at L(IR) = 10(4.5) L(circle dot). The L(IR)-L'(HCN1-0) correlation agrees well with the one found in galaxies. These correlations indicate a constant star formation rate per unit mass from the scale of dense clumps to that of distant galaxies when the mass is measured for dense gas. These results support the suggestion that starburst galaxies may be understood as having a large fraction of gas in dense clumps. C1 [Wu, Jingwen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evans, Neal J., II] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Knez, Claudia] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Wu, JW (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS78, Cambridge, MA 02138 USA. EM jwu@cfa.harvard.edu; nje@astro.as.utexas.edu; yshirley@as.arizona.edu FU Submillimeter Array of the Smithsonian Observatory; NSF [AST-0607793]; McDonald Observatory FX We thank D. Narayanan and M. Krumholz for lively discussions that illuminated their models. J.W. thanks the postdoctoral fellowship support from the Submillimeter Array of the Smithsonian Observatory while completing this work. This work was supported in part by NSF Grant AST-0607793 and by McDonald Observatory. NR 99 TC 91 Z9 91 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 313 EP 357 DI 10.1088/0067-0049/188/2/313 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400001 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Antolini, E Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Belli, F Berenji, B Bisello, D Blandford, RD Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Busetto, G Buson, S Caliandro, GA Cameron, RA Campana, R Canadas, B Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Ceccanti, M Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbet, R Davis, DS DeKlotz, M den Hartog, PR Dermer, CD de Angelis, A de Luca, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Fabiani, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Healey, SE Hill, AB Horan, D Hughes, RE Iafrate, G Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocevski, D Kuss, M Lande, J Landriu, D Latronico, L Lee, SH Lemoine-Goumard, M Lionetto, AM Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marangelli, B Marelli, M Massaro, E Mazziotta, MN McConville, W McEnery, JE Michelson, PF Minuti, M Mitthumsiri, W Mizuno, T Moiseev, AA Mongelli, M Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paccagnella, A Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pinchera, M Piron, F Porter, TA Poupard, L Raino, S Rando, R Ray, PS Razzano, M Razzaque, S Rea, N Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Sadrozinski, HFW Salvetti, D Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Scolieri, G Sgro, C Shaw, MS Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Stephens, TE Striani, E Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Tinebra, F Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Watters, K Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Antolini, E. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Belli, F. Berenji, B. Bisello, D. Blandford, R. D. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Campana, R. Canadas, B. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Ceccanti, M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbet, R. Davis, D. S. DeKlotz, M. den Hartog, P. R. Dermer, C. D. de Angelis, A. de Luca, A. de Palma, F. Digel, S. W. Dormody, M. do Couto E Silva, E. Drell, P. S. Dubois, R. Dumora, D. Fabiani, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Healey, S. E. Hill, A. B. Horan, D. Hughes, R. E. Iafrate, G. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Landriu, D. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Lionetto, A. M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marangelli, B. Marelli, M. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Minuti, M. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Mongelli, M. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paccagnella, A. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pinchera, M. Piron, F. Porter, T. A. Poupard, L. Raino, S. Rando, R. Ray, P. S. Razzano, M. Razzaque, S. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Salvetti, D. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Scolieri, G. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stephens, T. E. Striani, E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Tinebra, F. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Watters, K. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma rays: general ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; SPECTRUM RADIO-SOURCES; ALL-SKY SURVEY; SPACE-TELESCOPE; MILKY-WAY; LIKELIHOOD RATIO; EGRET SOURCES; SUPERNOVA-REMNANTS; GLOBULAR-CLUSTER AB We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Ray, P. S.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.] Lund Observ, SE-22100 Lund, Sweden. [Axelsson, M.; Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ceccanti, M.; Fabiani, D.; Kuss, M.; Latronico, L.; Minuti, M.; Pesce-Rollins, M.; Pinchera, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Landriu, D.; Naumann-Godo, M.; Poupard, L.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, CNRS,CEA IRFU,Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Iafrate, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Bisello, D.; Busetto, G.; Buson, S.; Gustafsson, M.; Paccagnella, A.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Bisello, D.; Busetto, G.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Belli, F.; Canadas, B.; Lionetto, A. M.; Morselli, A.; Striani, E.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Belli, F.; Canadas, B.; Lionetto, A. M.; Striani, E.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Bonnell, J.; Celik, Oe.; Cillis, A. N.; Corbet, R.; Davis, D. S.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonnell, J.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M. N.; Mongelli, M.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Campana, R.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Caraveo, P. A.; Marelli, M.; Salvetti, D.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Corbet, R.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cillis, A. N.] Parbellon IAFE, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [de Angelis, A.; Frailis, M.; Guillemot, L.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.; Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.; Nakajima, H.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Massaro, E.; Tinebra, F.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paccagnella, A.] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.; Stephens, T. E.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Scolieri, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stephens, T. E.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM jean.ballet@cea.fr; digel@stanford.edu; knodlseder@cesr.fr RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Campana, Riccardo/F-5272-2015; Rea, Nanda/I-2853-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Ozaki, Masanobu/K-1165-2013; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; OI Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; De Luca, Andrea/0000-0001-6739-687X; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Stephens, Thomas/0000-0003-3065-6871; Iafrate, Giulia/0000-0002-6185-8292; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Funk, Stefan/0000-0002-2012-0080; Campana, Riccardo/0000-0002-4794-5453; Rea, Nanda/0000-0003-2177-6388; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338 FU K. A. Wallenberg Foundation; European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; CEA; CNES; Universite Paris Diderot FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. WallenbergFoundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The catalog work used a cluster of computing nodes at Saclay funded by CEA, CNES, and Universite Paris Diderot. NR 101 TC 577 Z9 578 U1 3 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 405 EP 436 DI 10.1088/0067-0049/188/2/405 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400004 ER PT J AU Cotton, WD Ragland, S Pluzhnik, EA Danchi, WC Traub, WA Willson, LA Lacasse, MG AF Cotton, W. D. Ragland, S. Pluzhnik, E. A. Danchi, W. C. Traub, W. A. Willson, L. A. Lacasse, M. G. TI SiO MASERS IN ASYMMETRIC MIRAS. IV. chi CYGNI, R AQUILAE, R LEO MINORIS, RU HERCULIS, U HERCULIS, AND U ORIONIS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE radio lines: stars; stars: AGB and post-AGB; stars: atmospheres ID LATE-TYPE STARS; GIANT BRANCH STARS; VARIABLE-STARS; WATER MASERS; RADIO PHOTOSPHERES; ANGULAR DIAMETERS; VLBA OBSERVATIONS; EVOLVED STARS; STELLAR IMAGE; IK TAURI AB This is the fourth paper in a series of multi-epoch observations at 7 mm wavelength of the SiO masers in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by IOTA and with VLBA measurements of the SiO masers. In this paper, we present the observations of chi Cygni (chi Cyg), R Aquilae (R Aql), R Leo Minoris (R LMi), RU Herculis (RU Her), U Herculis (U Her), and U Orionis (U Ori). Several radial features with velocity gradients were observed, all with velocities close to systemic furthest from the star and redshifted closer to the stellar surface. Systemic velocities are estimated for several of the stars. No compelling evidence of asymmetry is seen in the maser distributions. All maser rings are approximately twice the near-IR uniform disk diameter and are comparable in size to the extended molecular envelope when such measurements are available. C1 [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ragland, S.] WM Keck Observ, Kamuela, HI 96743 USA. [Pluzhnik, E. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Traub, W. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Willson, L. A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50014 USA. [Lacasse, M. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu FU NSF [AST-0456047] FX We acknowledge support from NSF of the IOTA observations through grant AST-0456047. The authors thank the anonymous referee for comments leading to an improved paper. NR 50 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 506 EP 525 DI 10.1088/0067-0049/188/2/506 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400010 ER PT J AU Duncan, BN Yoshida, Y Olson, JR Sillman, S Martin, RV Lamsal, L Hu, YT Pickering, KE Retscher, C Allen, DJ Crawford, JH AF Duncan, Bryan N. Yoshida, Yasuko Olson, Jennifer R. Sillman, Sanford Martin, Randall V. Lamsal, Lok Hu, Yongtao Pickering, Kenneth E. Retscher, Christian Allen, Dale J. Crawford, James H. TI Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Surface ozone; Air quality indicator; OMI; HCHO; NO2 ID EASTERN UNITED-STATES; ISOPRENE EMISSIONS; NITROGEN-OXIDES; AIR-QUALITY; PRECURSOR RELATIONSHIPS; NEW-YORK; URBAN; PHOTOCHEMISTRY; SENSITIVITY; REDUCTIONS AB We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration. Published by Elsevier Ltd. C1 [Duncan, Bryan N.; Yoshida, Yasuko; Pickering, Kenneth E.; Retscher, Christian] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Yoshida, Yasuko; Retscher, Christian] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Olson, Jennifer R.; Crawford, James H.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA. [Sillman, Sanford] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Martin, Randall V.; Lamsal, Lok] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hu, Yongtao] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Allen, Dale J.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Duncan, BN (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. EM Bryan.N.Duncan@nasa.gov RI Duncan, Bryan/A-5962-2011; Pickering, Kenneth/E-6274-2012; Lamsal, Lok/G-4781-2012; Pfister, Gabriele/A-9349-2008; Crawford, James/L-6632-2013; Martin, Randall/C-1205-2014; Hu, Yongtao/H-7543-2016; Allen, Dale/F-7168-2010; OI Crawford, James/0000-0002-6982-0934; Martin, Randall/0000-0003-2632-8402; Hu, Yongtao/0000-0002-5161-0592; Allen, Dale/0000-0003-3305-9669; Sillman, Sanford/0000-0001-6250-1191 FU NASA FX This work was supported by the NASA's Earth Science Research Program. NR 55 TC 47 Z9 51 U1 10 U2 88 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2010 VL 44 IS 18 BP 2213 EP 2223 DI 10.1016/j.atmosenv.2010.03.010 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 613ON UT WOS:000278988700006 ER PT J AU Fishman, J Creilson, JK Parker, PA Ainsworth, EA Vining, GG Szarka, J Booker, FL Xu, XJ AF Fishman, Jack Creilson, John K. Parker, Peter A. Ainsworth, Elizabeth A. Vining, G. Geoffrey Szarka, John Booker, Fitzgerald L. Xu, Xiaojing TI An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air pollution; Crop damage; Ozone; Remote sensing; Soybean; Yield ID AIR-QUALITY FORECASTS; TROPOSPHERIC OZONE; UNITED-STATES; SURFACE OZONE; YIELD; METAANALYSIS; POLLUTION; EXPOSURE; GROWTH; RESIDUALS AB Elevated concentrations of ground-level ozone (O(3)) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O(3) can significantly decrease crop productivity, independent verifications of yield losses at current ambient O(3) concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O(3) measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O(3) measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O(3) levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually. Published by Elsevier Ltd. C1 [Fishman, Jack; Creilson, John K.; Xu, Xiaojing] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Creilson, John K.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. [Parker, Peter A.] NASA, Langley Res Ctr, Syst Engn Directorate, Hampton, VA 23681 USA. [Ainsworth, Elizabeth A.] Univ Illinois, USDA, ARS, Photosynth Res Unit, Urbana, IL 61801 USA. [Ainsworth, Elizabeth A.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Vining, G. Geoffrey; Szarka, John] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA. [Booker, Fitzgerald L.] N Carolina State Univ, USDA, ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA. [Booker, Fitzgerald L.] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA. RP Fishman, J (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401A, Hampton, VA 23681 USA. EM jack.fishman@nasa.gov NR 41 TC 45 Z9 45 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2010 VL 44 IS 18 BP 2248 EP 2256 DI 10.1016/j.atmosenv.2010.01.015 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 613ON UT WOS:000278988700010 ER PT J AU Gauthier, ML Petersen, WA Carey, LD AF Gauthier, Michael L. Petersen, Walter A. Carey, Lawrence D. TI Cell mergers and their impact on cloud-to-ground lightning over the Houston area SO ATMOSPHERIC RESEARCH LA English DT Article DE Lightning; Radar; Cell merger ID MAJOR URBAN AREAS; SUMMER SEASON; RADAR; PRECIPITATION; CONVECTION; SATELLITE; CUMULUS; ISLAND; TRMM AB A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic "forcing" of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban-merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity. CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of Eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (046%) in ground flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston. Published by Elsevier B.V. C1 [Gauthier, Michael L.] USAF Acad, Dept Phys, Colorado Springs, CO 80840 USA. [Petersen, Walter A.] NASA Marshall Space Flight Ctr, NSSTC Earth Sci Off VP61, Huntsville, AL 35804 USA. [Carey, Lawrence D.] Univ Alabama, Natl Space Sci & Technol Ctr, Ctr Earth Syst Sci, Huntsville, AL 35805 USA. RP Gauthier, ML (reprint author), USAF Acad, Dept Phys, 2354 Fairchild Hall,Suite 2A29, Colorado Springs, CO 80840 USA. EM Michael.Gauthier@USAFA.edu FU U.S. Air Force Academy through the Air Force Institute of Technology; NASA; NSF [ATM-0442011] FX This research was supported by funding from the U.S. Air Force Academy through the Air Force Institute of Technology (MLG), NASA's Earth Sciences Program (WAP), and NSF grant ATM-0442011 (LDC). The views expressed in this paper are those of the authors and do not reflect the official policy or position of the U.S. Air Force, Department of Defense, or the U.S. Government. NR 28 TC 7 Z9 9 U1 1 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD JUN PY 2010 VL 96 IS 4 BP 626 EP 632 DI 10.1016/j.atmosres.2010.02.010 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 607BV UT WOS:000278474200013 ER PT J AU Johnston, SL Campbell, MR Scheuring, R Feiveson, AH AF Johnston, Smith L. Campbell, Mark R. Scheuring, Rick Feiveson, Alan H. TI Risk of Herniated Nucleus Pulposus Among US Astronauts SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE spaceflight; back pain; back injury; cervical injury; lumbar injury; disc disease; microgravity; weightlessness ID FIGHTER PILOTS; INTERVERTEBRAL-DISK; BACK-PAIN; GZ FORCES; BED REST; MICROGRAVITY; INJURY; SPINE; MRI; DEGENERATION AB JOHNSTON SL, CAMPBELL MR, SCHEURING R, FEIVESON AH. Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med 2010; 81:566-74. Introduction: Astronauts have complained of back pain occurring during spaceflight, presumably due to the elongation of the spine from the lack of gravity. Herniated nucleus pulposus (HNP) is known to occur in aviators exposed to high G, and has been diagnosed in several astronauts in the immediate post-spaceflight period. It is unknown whether astronauts exposed to microgravity are at added risk for developing HNP in the post-spaceflight period due to possible in-flight intervertebral disc changes. Methods: For a preset study period, incidence rates of HNP were compared between the U.S. astronaut population and a matched control population not involved in spaceflight using the Longitudinal Study of Astronaut Health database. Using a Weibull survival model, time trends of the risk of HNP prior to and after spaceflight were compared within the astronaut group. HNP incidences in other populations that have previously been reported in the literature were also compared with results in this study. Results: The incidence of HNP was 4.3 times higher in the U.S. astronaut population (N = 321) compared to matched controls (N = 983) not involved in spaceflight. For astronauts, there was relatively more HNP in the cervical region of the spine (18 of 44) than for controls (3 of 35); however, there was no clear increase of HNP incidence in those astronauts who were high performance jet aircraft pilots. There was evidence suggesting that the risk is increased immediately after spaceflight. Conclusions: Astronauts are at higher risk of incurring HNP especially immediately following spaceflight. C1 [Johnston, Smith L.; Scheuring, Rick; Feiveson, Alan H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Campbell, MR (reprint author), 420 DeShong,300, Paris, TX 75460 USA. EM mcamp@1starnet.com NR 38 TC 34 Z9 37 U1 0 U2 3 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2010 VL 81 IS 6 BP 566 EP 574 DI 10.3357/ASEM.2427.2010 PG 9 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 604VA UT WOS:000278305400006 PM 20540448 ER PT J AU Lee, TF Nelson, CS Dills, P Riishojgaard, LP Jones, A Li, L Miller, S Flynn, LE Jedlovec, G McCarty, W Hoffman, C McWilliams, G AF Lee, Thomas F. Nelson, Craig S. Dills, Patrick Riishojgaard, Lars Peter Jones, Andy Li, Li Miller, Steven Flynn, Lawrence E. Jedlovec, Gary McCarty, William Hoffman, Carl McWilliams, Gary TI NPOESS Next-Generation Operational Global Earth Observations SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID IRRADIANCE MONITOR; INSTRUMENT DESIGN; OBSERVING SYSTEM; MODIS; AIRS; CAPABILITIES; IMAGERY; SENSOR AB The United States is merging its two polar-orbiting operational environmental satellite programs operated by the Department of Commerce and the Department of Defense into a single system, which is called the National Polar-orbiting Operational Environmental Satellite System (NPOESS). During the next decade, NPOESS will provide global operational data to meet many of the needs of weather forecasters, climate researchers, and global decision makers for remotely sensed Earth science data and global environmental monitoring. The NPOESS Preparatory Project (NPP) will be launched in 2011 as a precursor to NPOESS to reduce final development risks for NPOESS and to provide continuity of global imaging and atmospheric sounding data from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) missions. Beginning in 2014, NPOESS spacecraft will be launched into an afternoon orbit and in 2016 into an early-morning orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operation (MetOp) spacecraft will complement NPOESS in a midmorning orbit. The joint constellation will provide global coverage with a data refresh rate of approximately four hours. NPOESS will observe more phenomena simultaneously from space and deliver a data volume significantly greater than its operational predecessors with substantially improved data delivery to users. Higher-resolution (spatial and spectral) and more accurate imaging and atmospheric sounding data will enable improvements in short-to medium-range weather forecasts. Multispectral and hyperspectral instruments on NPOESS will provide global imagery and sounding products useful to the forecaster that are complementary to those available from geostationary satellites. NPOESS will support the operational needs of meteorological, oceanographic, environmental, climatic, and space environmental remote sensing programs and provide continuity of data for climate researchers. This article that describes NPOESS was completed and accepted for publication prior to the White House decision in February 2010 ordering a major restructuring of the NPOESS program. The Department of Commerce will now assume primary responsibility for the afternoon polar-orbiting operational environmental satellite orbit and the Department of Defense will take primary responsibility for the early morning orbit. However, NPP, as described in this article, is still scheduled to be launched in 2011. Several of the instruments and program elements described in this article are also likely to be carried forward into future U. S. polar-orbiting operational environmental satellite missions. C1 [Lee, Thomas F.; Li, Li] USN, Res Lab, Monterey, CA 93943 USA. [Nelson, Craig S.] Riverside Technol Inc, Silver Spring, MD USA. [Dills, Patrick] Cooperat Program Operat Meteorol Educ & Training, Boulder, CO USA. [Riishojgaard, Lars Peter] NOAA, Joint Ctr Satellite Data Assimilat, Ctr Sci, Camp Springs, MD USA. [Jones, Andy; Miller, Steven] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Flynn, Lawrence E.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. [Jedlovec, Gary] NASA, Global Hydrol & Climate Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Jedlovec, Gary] NASA, Short Term Predict Res & Transit Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McCarty, William] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarty, William] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Hoffman, Carl; McWilliams, Gary] NPOESS Integrated Program Off, Silver Spring, MD USA. RP Lee, TF (reprint author), USN, Res Lab, 7 Grace Hopper Ave,Stop 2, Monterey, CA 93943 USA. EM thomas.lee@nrlmry.navy.mil RI Flynn, Lawrence/B-6321-2009; Jones, Andrew/D-3291-2012; McCarty, Will/E-9359-2012 OI Flynn, Lawrence/0000-0001-6856-2614; Jones, Andrew/0000-0002-0995-4957; FU National Polar-orbiting Operational Environmental Satellite System Integrated Program Office, Silver Spring, Maryland; Office of Naval Research [PE-0602435N]; Navy at Space and Naval Warfare Systems Command [PEO C4I, PMW-120, PE-0603207N] FX The support of the research sponsors 1) the National Polar-orbiting Operational Environmental Satellite System Integrated Program Office located in Silver Spring, Maryland; 2) the Office of Naval Research under Program Element PE-0602435N; and 3) the Oceanographer of the Navy through the program office at the Space and Naval Warfare Systems Command, PEO C4I and PMW-120 under Program Element PE-0603207N, is gratefully acknowledged. We thank Jeffrey Hawkins from NRL and John Furgerson from the IPO for several insightful suggestions. NR 30 TC 19 Z9 19 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2010 VL 91 IS 6 BP 727 EP + DI 10.1175/2009BAMS2953.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 628HT UT WOS:000280107300002 ER PT J AU Mclain, JS AF Mclain, Jeffrey S. TI MANAGING THE TUOLUMNE RIVER FOR SALMONIDS: ASSESSMENT OF THE 1995 SETTLEMENT AGREEMENT SO CALIFORNIA FISH AND GAME LA English DT Article DE California; Chinook salmon; Oncorhynchus mykiss; Oncorhynchus tshawytscha; San Joaquin River; steelhead; Tuolumne River; Yosemite AB The Tuolumne River originates at elevations over 3,900 meters in Yosemite Valley, California along the Western Sierra and is the largest tributary to the San Joaquin River of the Central Valley, draining an area of approximately 2,500 km(2). The Tuolumne River was once home to a healthy population of spring and fall-run Chinook salmon, Oncorhynchus tshawytscha, the spring-run likely ascending upstream as high as the boundary of Yosemite National Park, at an elevation of nearly 760 meters. Although historical records of the presence of Central Valley steelhead, Oncorhynchus mykiss are poor, they were believed to be well distributed in the Tuolumne River and its smaller tributaries. A series of dams for water supply, hydroelectric generation, and flood control were constructed starting in the 1890s. These dams cut off access by native anadromous fish to as much as 90 h. of their spawning habitat. In 1996 the Federal Energy Regulatory Commission issued an order amending a 1964 license, which included a 1995 Settlement Agreement. The 1995 Settlement Agreement designated a Technical Advisory Committee to oversee implementation of the agreement and its requirements. A review of the hydrographs of the Tuolumne River during the first 8 years under the Settlement Agreement revealed they were significantly different in timing and magnitude than recommended by resource agencies. This paper discusses management implications of the Settlement Agreement, and also offers recommendations for improvement. C1 [Mclain, Jeffrey S.] US Fish & Wildlife Serv, Sacramento, CA 95825 USA. RP Mclain, JS (reprint author), Natl Marine Fisheries Serv, 650 Capitol Mall, Sacramento, CA 95814 USA. EM Jeff.McLain@noaa.gov NR 14 TC 0 Z9 0 U1 4 U2 10 PU CALIFORNIA FISH AND GAME EDITOR PI SACRAMENTO PA 1416 NINTH ST, SACRAMENTO, CA 95814 USA SN 0008-1078 J9 CALIF FISH GAME JI Calif. Fish Game PD SUM PY 2010 VL 96 IS 3 BP 173 EP 187 PG 15 WC Fisheries; Zoology SC Fisheries; Zoology GA 703OE UT WOS:000285987300001 ER PT J AU Kamikawa, DJ Stevenson, DE AF Kamikawa, Daniel J. Stevenson, Duane E. TI NEW RECORDS OF ALDROVANDIA OLEOSA (NOTACANTHIFORMES: HALOSAURIDAE) FROM THE EASTERN NORTH PACIFIC OCEAN SO CALIFORNIA FISH AND GAME LA English DT Editorial Material C1 [Kamikawa, Daniel J.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Stevenson, Duane E.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Assessment & Conservat Engn Div, Seattle, WA 98115 USA. RP Kamikawa, DJ (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, 2032 SE Oregon State Univ Dr, Newport, OR 97365 USA. EM Dan.Kamikawa@noaa.gov NR 7 TC 1 Z9 1 U1 0 U2 1 PU CALIFORNIA FISH AND GAME EDITOR PI SACRAMENTO PA 1416 NINTH ST, SACRAMENTO, CA 95814 USA SN 0008-1078 J9 CALIF FISH GAME JI Calif. Fish Game PD SUM PY 2010 VL 96 IS 3 BP 216 EP 220 PG 5 WC Fisheries; Zoology SC Fisheries; Zoology GA 703OE UT WOS:000285987300005 ER PT J AU Zhang, P Imhoff, ML Wolfe, RE Bounoua, L AF Zhang, Ping Imhoff, Marc L. Wolfe, Robert E. Bounoua, Lahouari TI Characterizing urban heat islands of global settlements using MODIS and nighttime lights products SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article ID LAND-SURFACE TEMPERATURE; MULTISENSOR DATA; CLIMATE MODEL; TROPICAL CITY; PARAMETERS; VEGETATION; CITIES; INTENSITY; FEATURES; INDEXES AB Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 degrees C UHI is found in cities built in biomes dominated by forests; 1.9 degrees C UHI in cities embedded in grass-shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 degrees C in summer and 1.4 degrees C in winter. Globally, the average summer daytime UHI is 4.7 degrees C for settlements larger than 500 km(2) compared with 2.5 degrees C for settlements smaller than 50 km(2) and larger than 10 km(2). The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined. C1 [Zhang, Ping] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, Ping] Earth Resource Technol Inc, Annapolis Jct, MD 20701 USA. [Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, P (reprint author), NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Ping.zhang-1@nasa.gov RI Zhang, Ping/D-7257-2012; Wolfe, Robert/E-1485-2012 OI Wolfe, Robert/0000-0002-0915-1855 NR 43 TC 26 Z9 28 U1 1 U2 15 PU CANADIAN AERONAUTICS & SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 0703-8992 EI 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD JUN PY 2010 VL 36 IS 3 SI SI BP 185 EP 196 PG 12 WC Remote Sensing SC Remote Sensing GA 681VZ UT WOS:000284352700004 ER PT J AU Hwang, JS Kim, HR Suh, M Taylor, PT Kutina, J Hu, WJ AF Hwang, Jong Sun Kim, Hyung Rae Suh, Mancheol Taylor, Patrick T. Kutina, Jan Hu Wei-Jian TI Long-wavelength geopotential fields study of East Asia from satellite data SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION LA Chinese DT Article DE Satellite observations; Gravity; magnetic; GRACE; CHAMP; East Asia ID SPHERICAL-EARTH GRAVITY; ANOMALY CORRELATIONS AB Kutina et al. proposed the existence of a large fracture zone extending from northern China across the Yellow sea, Korean peninsula, East Sea (a. k. a., Sea of Japan) and on to Honshu Island, Japan, which they called the 'Forty-North Fracture Zone'. We investigated this proposed large tectonic feature from making large-scale regional gravity and magnetic anomaly maps by using GRACE and CHAMP satellite potential field data. The regional study area extended from 24 degrees to 56 degrees north latitude and 90 degrees E to 150 degrees E and the detailed area from 32 degrees N to 42 degrees N and 122 degrees E to 132 degrees E. Recently, Taylor et al. constructed the magnetic anomaly maps directly from CHAMP track data collected between June and December, 2005 after removing the core-generated and external fields from the measurements and then reduced these data to the pole to seek any tectonic features. They also produced a mathematical model using available geologic and geophysical information for their interpretation. In this study, we augmented a gravity anomaly field map from the GRACE data measured during a month of October, 2003. The measured potential differences data were converted to vertical gravity anomaly values using Gauss-Legendre quadrature method, and long wavelengths over 1100 km of the anomalies were removed by subtracting the latest EGM96 field to compare with the magnetic data. A curious latitudinal structure was found in both gravity and magnetic anomaly fields that showed an inverse correlation. A forward modeling was performed from using a spherical prism model and the wavenumber correlation analysis between these two anomaly fields was made to delineate the common features over the study area, and these results were discussed in relation to the existence of the 'Forty-North Fracture Zone' in the East Asian region. C1 [Hwang, Jong Sun; Taylor, Patrick T.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA. [Hwang, Jong Sun] Korea Inst Geosci & Mineral Resources, Petr & Marine Resources Res Div, Taejon 305350, South Korea. [Kim, Hyung Rae; Suh, Mancheol] Kongju Nat Univ, Dept Geoenvironm Sci, Kong Ju 314701, Chungnam, South Korea. [Kutina, Jan] American Univ, Dept Chem, Lab Global Tecton & Metallogeny, Washington, DC 20016 USA. [Hu Wei-Jian] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China. RP Hwang, JS (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA. EM hwang1975@gmail.com; kimhr@kongju.ac.kr RI Taylor, Patrick/D-4707-2012; Hu, Weijian/A-2594-2015 OI Taylor, Patrick/0000-0002-1212-9384; NR 19 TC 0 Z9 0 U1 0 U2 6 PU SCIENCE CHINA PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0001-5733 J9 CHINESE J GEOPHYS-CH JI Chinese J. Geophys.-Chinese Ed. PD JUN PY 2010 VL 53 IS 6 BP 1327 EP 1335 DI 10.3969/j.issn.0001-5733.2010.06.011 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 619QT UT WOS:000279445500011 ER PT J AU Gerson, AL Bruck, HA Hopkins, AR Segal, KN AF Gerson, Alan L. Bruck, Hugh A. Hopkins, Alan R. Segal, Kenneth N. TI Curing effects of single-wall carbon nanotube reinforcement on mechanical properties of filled epoxy adhesives SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Nano-structures; Mechanical properties; Thermosetting resin; Cure ID POLYMER NANOCOMPOSITES; COMPOSITES; MODEL AB Enhancing epoxy adhesives using nanoscale fillers requires understanding processing-structure-property relationships as a function of nanoscale filler loading. In particular, the effects of adding nanoscale reinforcement to filled epoxies, such as those qualified for space applications, have yet to be characterized. In this effort, the addition of single-walled carbon nanotubes (SWNTs) to Hysol 9309.2 epoxy was investigated using a multi-scale mechanical characterization approach. Effects of SWNTs on the kinetics of epoxy curing were characterized and modeled using macromechanical dynamic mechanical analysis (DMA). Adhesion between SWNTs and microfiber reinforcement was identified with scanning electron microscope (SEM), and effects of SWNTs on mechanical properties of the filled epoxy were quantified using micromechanical tensile testing. Effects of SWNT reinforcement on mechanical behavior of the epoxy matrix were also characterized using nanomechanical characterization. This multi-scale mechanical characterization enabled the effects of SWNTs to be isolated from the epoxy and filler phases inherent in the adhesive. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bruck, Hugh A.] Aerosp Corp, Space Mat Lab, Dept Mat Sci, Los Angeles, CA 90009 USA. [Gerson, Alan L.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Hopkins, Alan R.; Segal, Kenneth N.] NASA, Goddard Space Flight Ctr, Code Mech Engn Branch 543, Greenbelt, MD 20770 USA. RP Bruck, HA (reprint author), Aerosp Corp, Space Mat Lab, Dept Mat Sci, POB 92957,M2-242, Los Angeles, CA 90009 USA. EM bruck@umd.edu FU Innovative Partnerships Program (IPP) Office at Goddard Space Flight Center [N000140910640]; Aerospace Corporation's Independent Research and Development Program (IRD) FX The authors would like to acknowledge financial support from The Innovative Partnerships Program (IPP) Office at Goddard Space Flight Center, ONR award N000140910640, and The Aerospace Corporation's Independent Research and Development Program (IR&D). NR 18 TC 22 Z9 22 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JUN PY 2010 VL 41 IS 6 BP 729 EP 736 DI 10.1016/j.compositesa.2010.02.002 PG 8 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 593XK UT WOS:000277496100004 ER PT J AU Fletcher, A Gupta, MC Dudley, KL Vedeler, E AF Fletcher, Alan Gupta, Mool C. Dudley, Kenneth L. Vedeler, Erik TI Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Carbon nanotubes; Polymers; Nano composites; Electrical properties ID POLYMER COMPOSITES; CARBON NANOTUBE; NANOFIBER AB A novel elastomer foamed nanocomposite has been developed with high electromagnetic dissipation and shielding properties. This light weight foamed fluorocarbon incorporates multi-walled carbon nanotubes at low loading concentrations to achieve levels of conductivity and energy shielding that surpass the requirements for electromagnetic static discharge (ESD) and electromagnetic interference (EMI) shielding. Foaming the elastomer reduces that weight by 30% with minimal impact on ESD or EMI characteristics. The percolation threshold is at about 2% carbon nanotubes and the saturation conductivity occurs at 8% carbon nanotubes by weight. Combining the good electrical properties with the flexibility and fluid resistance of fluorocarbon yields a very versatile yet light weight material for a variety of ESD and EMI applications. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fletcher, Alan] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Dudley, Kenneth L.; Vedeler, Erik] NASA, Langley Res Ctr, Electromagnet Res Branch, Hampton, VA 23681 USA. RP Gupta, MC (reprint author), 351 McCormick Rd,POB 400743, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu FU NASA Langley FX Starting material and technical consulting was obtained from Hyperion Catalysis International. Fluorocarbon compounding advise was kindly provided by Eric Thomas formerly of DuPont Performance Elastomers and Allen Sohlo of Dyneon Corp. EMI shielding and nanocomposite information was provided by Max Alexander of the Air Force Research Laboratory. We also thank NASA Langley for their Langley Professor program support. NR 11 TC 65 Z9 67 U1 6 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD JUN PY 2010 VL 70 IS 6 BP 953 EP 958 DI 10.1016/j.compscitech.2010.02.011 PG 6 WC Materials Science, Composites SC Materials Science GA 595TE UT WOS:000277635200010 ER PT J AU Beghin, C Sotin, C Hamelin, M AF Beghin, Christian Sotin, Christophe Hamelin, Michel TI Titan's native ocean revealed beneath some 45 km of ice by a Schumann-like resonance SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Titan; Atmospheres; Ionospheres; Magnetospheres; Planet interiors ID HUYGENS PROBE; ELECTRICAL-CONDUCTIVITY; DIELECTRIC-PROPERTIES; AMMONIUM-SULFATE; ATMOSPHERE; DESCENT; SURFACE; MODEL; SATELLITES; CALLISTO AB After five years of thorough analysis of data from the Huygens Probe that descended into Titan's atmosphere in January 2005, we report major findings inferred from measurements of low frequency waves and atmospheric conductivity. The data account for the observation of a Schumann-like resonance trapped within Titan's atmospheric cavity. On Earth, this phenomenon is triggered by lightning and was anticipated to be observed on Titan, as it provides a tool to reveal the presence of a ground conductive boundary to sustain the resonance of the cavity. The Huygens observations show that the major electric field component of the signal is horizontal, which is inconsistent with lightning sources. We interpret, however, the observed signal as a second spherical harmonic of Titan's cavity, triggered and sustained by strong electric currents induced in the ionosphere by Saturn's magnetospheric plasma flow. The present study describes the characteristics of such trapped modes that allow us to constrain the parameters of the cavity and to infer the presence of a conductive layer at 45 km (+/- 15 km) below the surface. By comparison with the presence of subsurface conductive ocean in the Galilean icy satellites, we conclude that Titan should have pursued similar processes of internal dynamics. To date, this result represents the only evidence for a buried ocean in Titan. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Beghin, Christian] Univ Orleans, CNRS, Lab Phys & Chim Espace & Environm, F-45071 Orleans, France. [Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hamelin, Michel] Univ Versailles St Quentin, IPSL, LATMOS, F-94107 St Maur, France. RP Beghin, C (reprint author), Univ Orleans, CNRS, Lab Phys & Chim Espace & Environm, 3A Ave Rech Sci, F-45071 Orleans, France. EM cbeghin@cnrs-orleans.fr NR 47 TC 21 Z9 21 U1 0 U2 4 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD JUN PY 2010 VL 342 IS 6 BP 425 EP 433 DI 10.1016/j.crte.2010.03.003 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 626RD UT WOS:000279983700001 ER PT J AU Bare, AY Grimshaw, KL Rooney, JJ Sabater, MG Fenner, D Carroll, B AF Bare, A. Y. Grimshaw, K. L. Rooney, J. J. Sabater, M. G. Fenner, D. Carroll, B. TI Mesophotic communities of the insular shelf at Tutuila, American Samoa SO CORAL REEFS LA English DT Article DE Mesophotic coral ecosystem; Insular shelf; Submerged banks; Coral reefs; Tutuila; American Samoa ID SCLERACTINIAN CORALS; REEF; DEEP; ZONATION AB An investigation into the insular shelf and submerged banks surrounding Tutuila, American Samoa, was conducted using a towed camera system. Surveys confirmed the presence of zooxanthellate scleractinian coral communities at mesophotic depths (30-110 m). Quantification of video data, separated into 10-m-depth intervals, yielded a vertical, landward-to-seaward and horizontal distribution of benthic assemblages. Hard substrata composed a majority of bottom cover in shallow water, whereas unconsolidated sediments dominated the deep insular shelf and outer reef slopes. Scleractinian coral cover was highest atop mid-shelf patch reefs and on the submerged bank tops in depths of 30-50 m. Macroalgal cover was highest near shore and on reef slopes approaching the bank tops at 50-60 m. Percent cover of scleractinian coral colony morphology revealed a number of trends. Encrusting corals belonging to the genus Montipora were most abundant at shallow depths with cover gradually decreasing as depth increased. Massive corals, such as Porites spp., displayed a similar trend. Percent cover values of plate-like corals formed a normal distribution, with the highest cover observed in the 60-70 m depth range. Shallow plate-like corals belonged mostly to the genus Acropora and appeared to be significantly prevalent on the northeastern and eastern banks. Deeper plate-like corals on the reef slopes were dominated by Leptoseris, Pachyseris, or Montipora genera. Branching coral cover was high in the 80-110 m depth range. Columnar and free-living corals were also occasionally observed from 40-70 m. C1 [Bare, A. Y.; Grimshaw, K. L.; Rooney, J. J.] Univ Hawaii, Joint Inst Marine & Atmospher Res, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv,Kewalo Res Facil, Honolulu, HI 96814 USA. [Sabater, M. G.; Fenner, D.; Carroll, B.] Amer Samoa Dept Marine & Wildlife Resources, Pago Pago, AS 96799 USA. RP Bare, AY (reprint author), Univ Hawaii, Joint Inst Marine & Atmospher Res, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv,Kewalo Res Facil, 1125-B Ala Moana Blvd, Honolulu, HI 96814 USA. EM abare@hawaii.edu; John.Rooney@noaa.gov FU NOAA FX Funding to the NOAA Pacific Islands Fisheries Science Center's Coral Reef Ecosystem Division for scientific expeditions to American Samoa was provided by the NOAA Coral Reef Conservation Program. We greatly appreciate the field assistance of Emily Hirsch, Frances Lichowski, and Gillian Clague. We also express our gratitude to Kurt Hagedorn and Andy Wearing of the M/V Bonavista II. NR 21 TC 20 Z9 20 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4028 J9 CORAL REEFS JI Coral Reefs PD JUN PY 2010 VL 29 IS 2 BP 369 EP 377 DI 10.1007/s00338-010-0600-y PG 9 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 592WJ UT WOS:000277412000010 ER PT J AU Samanta, A Anderson, BT Ganguly, S Knyazikhin, Y Nemani, RR Myneni, RB AF Samanta, Arindam Anderson, Bruce T. Ganguly, Sangram Knyazikhin, Yuri Nemani, Ramakrishna R. Myneni, Ranga B. TI EARTH Interactions SO EARTH INTERACTIONS LA English DT Article DE Forcing; Feedback; Climate ID STRATOSPHERIC WATER-VAPOR; BREWER-DOBSON CIRCULATION; CLIMATE-CHANGE; GREENHOUSE GASES; ALBEDO FEEDBACK; OVERSHOOT; SENSITIVITY; FORCINGS; SYSTEM; WELL AB Recent research indicates that the warming of the climate system resulting from increased greenhouse gas (GHG) emissions over the next century will persist for many centuries after the cessation of these emissions, principally because of the persistence of elevated atmospheric carbon dioxide (CO(2)) concentrations and their attendant radiative forcing. However, it is unknownwhether the responses of other components of the climate system-including those related to Greenland and Antarctic ice cover, the Atlantic thermohaline circulation, the West African monsoon, and ecosystem and human welfare would be reversed even if atmospheric CO(2) concentrations were to recover to 1990 levels. Here, using a simple set of experiments employing a current-generation numerical climate model, the authors examine the response of the physical climate system to decreasing CO(2) concentrations following an initial increase. Results indicate that many characteristics of the climate system, including global temperatures, precipitation, soil moisture, and sea ice, recover as CO(2) concentrations decrease. However, other components of the Earth system may still exhibit nonlinear hysteresis. In these experiments, for instance, increases in stratospheric water vapor, which initially result from increased CO(2) concentrations, remain present even as CO(2) concentrations recover. These results suggest that identification of additional threshold behaviors in response to human-induced global climate change should focus on subcomponents of the full Earth system, including cryosphere, biosphere, and chemistry. C1 [Samanta, Arindam] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. RP Samanta, A (reprint author), Boston Univ, Dept Geog & Environm, 675 Commonwealth Ave, Boston, MA 02215 USA. EM arindam.sam@gmail.com RI Samanta, Arindam/B-9550-2009; ganguly, sangram/B-5108-2010; Myneni, Ranga/F-5129-2012 FU NASA AMES Research Center; Boston University; National Center for Atmospheric Research FX We acknowledge support from A. Michaelis (NASA AMES Research Center), M. Dugan (Boston University), and R. Neale (National Center for Atmospheric Research). NR 37 TC 1 Z9 1 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD JUN PY 2010 VL 14 AR 7 DI 10.1175/2010EI325.1 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 614QQ UT WOS:000279075200001 ER PT J AU Narock, T Cragin, M AF Narock, Tom Cragin, Melissa TI Earth and space science informatics infrastructure SO EARTH SCIENCE INFORMATICS LA English DT Editorial Material ID DESIGN C1 [Narock, Tom] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. [Cragin, Melissa] Univ Illinois, Grad Sch Lib & Informat Sci, Urbana, IL USA. RP Narock, T (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. EM Thomas.W.Narock@nasa.gov OI Narock, Tom/0000-0002-9785-4496 NR 12 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 1 EP 3 DI 10.1007/s12145-009-0041-8 PG 3 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100001 ER PT J AU Worrilow, K King, T Walker, R Rose, ME Moore, W Joy, S AF Worrilow, Kica King, Todd Walker, Raymond Rose, Mark E. Moore, William Joy, Steven TI Designing science web sites SO EARTH SCIENCE INFORMATICS LA English DT Article; Proceedings Paper CT ESSI Workshop CY AUG 03-05, 2009 CL Baltimore, MD SP ESSI DE Website; Design; Science; Process AB From a scientist's viewpoint a web site is one tool used to conduct research. From an artist's viewpoint web sites are a form of visual composition. From a developer's point of view a web site is a type of application. While web sites are a relatively new medium with a particular set of constraints, they do adhere to the same basic design principles that apply to other art forms. These design principles are the basic assumptions that affect the arrangement of elements within a composition. A successful design uses the principles and elements to achieve a visual goal in the composition. A web site designed for scientists has unique properties which are not shared by many other types of web sites. These properties influence the overall visual design of the web sites. Recently at the Institute of Geophysics and Planetary Physics at UCLA undertook a re-design of a number of its websites. In the effort, the use of visual design principles combined with the properties of a science web site were put to the test. In all, six different web sites were designed each with a difference science focus. We describe the process used to design the web sites which involve forming teams of designers, scientists and developers. We present example pages from each design and conclude with a discussion of what was learned during the process. C1 [King, Todd; Walker, Raymond; Moore, William; Joy, Steven] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Worrilow, Kica] Kica Design, Marina Del Rey, CA 90292 USA. [Rose, Mark E.] NASA, Ames Res Ctr, Perot Syst Govt Serv Inc PSGS, Moffett Field, CA 94035 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM tking@igpp.ucla.edu NR 6 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 51 EP 57 DI 10.1007/s12145-010-0058-z PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100006 ER PT J AU Tilmes, C Yesha, Y Halem, M AF Tilmes, Curt Yesha, Yelena Halem, Milton TI Tracking provenance of earth science data SO EARTH SCIENCE INFORMATICS LA English DT Article DE Data processing; Provenance AB Tremendous volumes of data have been captured, archived and analyzed. Sensors, algorithms and processing systems for transforming and analyzing the data are evolving over time. Web Portals and Services can create transient data sets on-demand. Data are transferred from organization to organization with additional transformations at every stage. Provenance in this context refers to the source of data and a record of the process that led to its current state. It encompasses the documentation of a variety of artifacts related to particular data. Provenance is important for understanding and using scientific datasets, and critical for independent confirmation of scientific results. Managing provenance throughout scientific data processing has gained interest lately and there are a variety of approaches. Large scale scientific datasets consisting of thousands to millions of individual data files and processes offer particular challenges. This paper uses the analogy of art history provenance to explore some of the concerns of applying provenance tracking to earth science data. It also illustrates some of the provenance issues with examples drawn from the Ozone Monitoring Instrument (OMI) Data Processing System (OMIDAPS) (Tilmes et al. 2004) run at NASA's Goddard Space Flight Center by the first author. C1 [Tilmes, Curt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yesha, Yelena; Halem, Milton] Univ Maryland, Baltimore, MD 21250 USA. RP Tilmes, C (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Curt.Tilmes@nasa.gov; yeyesha@umbc.edu; halem@umbc.edu RI Tilmes, Curt/D-5637-2012; OI Tilmes, Curt/0000-0002-6512-0287 NR 11 TC 10 Z9 11 U1 1 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 59 EP 65 DI 10.1007/s12145-010-0046-3 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100007 ER PT J AU King, T Thieman, J Roberts, DA AF King, Todd Thieman, James Roberts, D. Aaron TI SPASE 2.0: a standard data model for space physics SO EARTH SCIENCE INFORMATICS LA English DT Article DE SPASE; Data model; Ontology; Vocabulary; Heliophysics; Space physics; Standard AB SPASE-for Space Physics Archive Search and Extract-is a group with a charter to promote collaboration and sharing of data for the Space Plasma Physics community. A major activity is the definition of the SPASE Data Model which defines the metadata necessary to describe resources in the broader heliophysics data environment. The SPASE Data Model is primarily a controlled vocabulary with hierarchical relationships and with the ability to form associations between described resources. It is the result of many years of effort by an international collaboration (see http://www.spase-group.org) to unify and improve on existing Space and Solar Physics data models. The genesis of the SPASE group can be traced to 1998 when a small group of individuals saw a need for a data model. Today SPASE has a large international participation from many of the major space research organizations. The design of the data model is based on a set of principles derived from evaluation of the existing heliophysics data environment. The development guidelines for the data model are consistent with ISO-2788 (expanded in ANSI/NISO Z39.19) and the administration for the data model is comparable to that described in the ISO standards ISO-11179 and ISO-20943. Since the release of version 1.0 of the data model in 2005, the model has undergone a series of evolutions. SPASE released version 2.0 of its data model in April 2009. This version presents a significant change from the previous release. It includes the capability to describe a wider range of data products and to describe expert annotations which can be associated with a resource. Additional improvements include an enhanced capability to describe resource associations and a more unified approach to describing data products. Version 2.0 of the SPASE Data Model provides a solid foundation for continued integration of worldwide research activities and the open sharing of data. C1 [King, Todd] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Thieman, James; Roberts, D. Aaron] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. EM tking@igpp.ucla.edu; james.r.thieman@nasa.gov; aaron.roberts@nasa.gov FU National Aeronautics and Space Administration [NNX09AF15G] FX This work was supported in part by the National Aeronautics and Space Administration under Grant No. NNX09AF15G. NR 12 TC 4 Z9 5 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 67 EP 73 DI 10.1007/s12145-010-0053-4 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100008 ER PT J AU Marshall, JJ Downs, RR Samadi, S AF Marshall, James J. Downs, Robert R. Samadi, Shahin TI Relevance of software reuse in building advanced scientific data processing systems SO EARTH SCIENCE INFORMATICS LA English DT Article DE Reuse; Data systems; Earth science; Software development; Software adoption AB Reuse of software and related components can contribute to the development of systems for processing scientific data. The reuse of components, which can be from any stage of the development life cycle, provides opportunities to realize benefits such as reduced costs and learning curves. However, the reuse of existing components also comes with risks that must be recognized in order to be mitigated. The National Aeronautics and Space Administration established the Earth Science Data Systems Software Reuse Working Group to support software reuse among members of the community of Earth science data systems developers. This is done through a variety of activities, including research, education, and public out-reach, which are conducted to help encourage and enable reuse within the community. Considerations for realizing the benefits of software reuse and minimizing risks are presented along with recent working group activities to improve reuse capabilities for the community of Earth science data systems developers. C1 [Marshall, James J.] NASA, Goddard Space Flight Ctr, INNOVIM NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Downs, Robert R.] Columbia Univ, CIESIN, Palisades, NY 10964 USA. [Samadi, Shahin] INNOVIM, INNOVIM NASA Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Marshall, JJ (reprint author), NASA, Goddard Space Flight Ctr, INNOVIM NASA Goddard Space Flight Ctr, Mailstop 614-9, Greenbelt, MD 20771 USA. EM James.J.Marshall@nasa.gov; rdowns@ciesin.columbia.edu; Shahin.Samadi@nasa.gov RI Marshall, James/A-9611-2009; Downs, Robert/B-4153-2013 OI Marshall, James/0000-0002-6867-5616; Downs, Robert/0000-0002-8595-5134 FU National Aeronautics and Space Administration [NNG08HZ11C] FX The authors are grateful to the members of the National Aeronautics and Space Administration (NASA) Earth Science Data Systems Software Reuse Working Group who have contributed to the efforts described in this paper, to the anonymous reviewers of earlier drafts who kindly offered suggestions for improving the paper, and to Chris A. Mattmann and Neal Most who offered valuable suggestions for improving earlier drafts of the paper. The authors also appreciate the support for this work that has been received from the National Aeronautics and Space Administration, especially support received for Robert Downs under contract NNG08HZ11C. NR 24 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 95 EP 100 DI 10.1007/s12145-010-0054-3 PG 6 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100011 ER PT J AU Boller, RA Braun, SA Miles, J Laidlaw, DH AF Boller, Ryan A. Braun, Scott A. Miles, Jadrian Laidlaw, David H. TI Application of uncertainty visualization methods to meteorological trajectories SO EARTH SCIENCE INFORMATICS LA English DT Article DE Uncertainty visualization; Multi-field visualization; Flow visualization; Time-varying data; Meteorological visualization techniques ID VECTOR-FIELDS; MODEL; RESOLUTION; ACCURACY; ERRORS AB We present an application of uncertainty visualization to air parcel trajectories generated from a global meteorological model. We derive an approximation of advection uncertainty due to interpolation and incorporate this uncertainty into our visualization of trajectories. Our work enables efficient visual pruning of unlikely results, especially in regions of atmospheric shear, potentially reducing erroneous interpretations. Finally, we apply these methods to a real-world meteorological problem to demonstrate its use. C1 [Boller, Ryan A.; Braun, Scott A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Miles, Jadrian; Laidlaw, David H.] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA. RP Boller, RA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Ryan.A.Boller@nasa.gov FU Software Engineering Division at NASA/Goddard Space Flight Center FX The authors wish to thank E.J. Kalafarski/Brown University for implementation of the Runge-Kutta integration algorithm along with Jim Byrnes and the Software Engineering Division at NASA/Goddard Space Flight Center for their support of this research. NR 21 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 119 EP 126 DI 10.1007/s12145-010-0052-5 PG 8 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100014 ER PT J AU King, T Merka, J Narock, T Walker, R Bargatze, L AF King, Todd Merka, Jan Narock, Thomas Walker, Raymond Bargatze, Lee TI A registry framework and Rosetta attributes for distributed science SO EARTH SCIENCE INFORMATICS LA English DT Article; Proceedings Paper CT ESSI Workshop CY AUG 03-05, 2009 CL Baltimore, MD SP ESSI DE Data model; Framework; Registry; SPASE; Task oriented registry; Virtual observatory AB Information is shared within organizations and between organizations at an ever increasing rate. One system design that enables sharing in a distributed environment is a Virtual Observatory. A Virtual Observatory is built with clearly specified and standardized components. One essential component is a data model for the exchange of metadata. Well designed data models are compatible with the tenets of the ISO-11179 and ISO-20943 standards for metadata registries. Another essential component is the specification for persistent universal identifiers which are used to reference resources provided through the system. Identifiers are used both to link harvested information back to the original resource description and by services to retrieve a resource. Harvested information is maintained in a registry. To harvest information from a set of metadata it is necessary to understand the schema of the metadata. We propose an approach to the formation of universal identifiers which enables one to clearly discern the schema of the source metadata. A primary registry containing a broad set of base information exists in every Virtual Observatory. Specialized Task Oriented Registries (TOR) are typically derived from the primary registry. The schema in a TOR is often flat and items in the TOR can be managed in a similar manner to that prescribed in ISO-11179. The need for interoperability within a data environment and between data environments leads to the identification of broad-based, common attributes we call "Rosetta Attributes" which will enable general cross domain searches. Access to metadata is the final component of a Virtual Observatory. Access is provided by a registry service. A specification for a minimal registry service is presented. C1 [King, Todd; Walker, Raymond; Bargatze, Lee] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Walker, Raymond] Univ Calif Los Angeles, Earth & Space Sci Dept, Los Angeles, CA 90095 USA. [Merka, Jan; Narock, Thomas] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. [Merka, Jan; Narock, Thomas] Univ Maryland, Baltimore, MD 21250 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM tking@igpp.ucla.edu OI Narock, Tom/0000-0002-9785-4496 NR 15 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 127 EP 133 DI 10.1007/s12145-010-0047-2 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100015 ER PT J AU Bignell, J LaFave, J AF Bignell, John LaFave, James TI Analytical fragility analysis of southern Illinois wall pier supported highway bridges SO EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS LA English DT Article DE fragility analysis; wall pier; bridge; earthquake; liquefaction; New Madrid Seismic Zone ID LIQUEFACTION RESISTANCE; INTENSITY AB An analytical fragility analysis was conducted in order to characterize the seismic vulnerability of existing southern Illinois wall pier supported highway bridges to potential earthquakes. To perform this fragility analysis, a detailed inventory survey was first taken of the wall pier bridges identified in an earlier random sampling of southern Illinois priority emergency route bridges. From the survey three types of wall pier bridges were identified. Of those identified, hammerhead and regular wall pier supported bridges represented nearly 90% of the population. Incorporating structural variations determined from the random sample survey, nearly 100 three-dimensional nonlinear finite element models were constructed. Each model was subjected to a randomly assigned synthetic earthquake representative of those that could potentially occur within the region. From these analyses, a series of wall pier supported bridge fragility curves were produced. In addition, a liquefaction fragility analysis was conducted in order to characterize the seismic vulnerability of southern Illinois wall pier supported highway bridge sites to liquefaction in potential earthquakes. To perform this second fragility analysis, wall pier bridges within the southern Illinois random sample that may be susceptible to liquefaction were identified. A soil profile from each of these susceptible bridge sites was then subjected to randomly assigned bedrock motions, and an Arias intensity liquefaction analysis was carried out. From these analyses, a fragility curve for the potentially liquefiable wall pier supported bridge sites was produced. Overall results of this study indicate that southern Illinois wall pier supported bridges are moderately vulnerable to structural damage in a 2% probability of exceedance in 50 year earthquake, and in some cases they could also be highly vulnerable to on-site liquefaction events. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Bignell, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [LaFave, James] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. RP Bignell, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 303-410, Pasadena, CA 91109 USA. EM jlbignell@gmail.com FU Illinois Department of Transportation (IDOT) [IHR-R36]; National Computational Science Alliance (NCSA) [BCS400001N] FX Contract/grant sponsor: Illinois Department of Transportation (IDOT); contract/grant number: IHR-R36; Contract/grant sponsor: National Computational Science Alliance (NCSA); contract/grant number: BCS400001N NR 40 TC 5 Z9 5 U1 0 U2 7 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0098-8847 J9 EARTHQ ENG STRUCT D JI Earthq. Eng. Struct. Dyn. PD JUN PY 2010 VL 39 IS 7 BP 709 EP 729 DI 10.1002/eqe.966 PG 21 WC Engineering, Civil; Engineering, Geological SC Engineering GA 591VC UT WOS:000277332100001 ER PT J AU van Donkelaar, A Martin, RV Brauer, M Kahn, R Levy, R Verduzco, C Villeneuve, PJ AF van Donkelaar, Aaron Martin, Randall V. Brauer, Michael Kahn, Ralph Levy, Robert Verduzco, Carolyn Villeneuve, Paul J. TI Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE aerosol; aerosol optical depth; AOD; particulate matter; PM2.5 ID GROUND-LEVEL PM2.5; AIR-POLLUTION; UNITED-STATES; QUALITY; MORTALITY; THICKNESS; MODIS; CITIES; COHORT AB BACKGROUND: Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 mu m (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. OBJECTIVE: In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. METHODS: We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. RESULTS: We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km x 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 mu g/m(3). The World Health Organization Air Quality PM2.5 Interim Target-1 (35 mu g/m(3) annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 mu g/m(3) over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0133; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 mu g/m(3). CONCLUSIONS: Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. C1 [van Donkelaar, Aaron; Martin, Randall V.; Verduzco, Carolyn] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brauer, Michael] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V5Z 1M9, Canada. [Kahn, Ralph; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villeneuve, Paul J.] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada. [Villeneuve, Paul J.] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0L2, Canada. RP van Donkelaar, A (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, 6300 Coburg Rd, Halifax, NS B3H 3J5, Canada. EM Aaron.van.Donkelaar@dal.ca RI Levy, Robert/M-7764-2013; Martin, Randall/C-1205-2014; Kahn, Ralph/D-5371-2012; Chem, GEOS/C-5595-2014; OI Levy, Robert/0000-0002-8933-5303; Martin, Randall/0000-0003-2632-8402; Kahn, Ralph/0000-0002-5234-6359; Brauer, Michael/0000-0002-9103-9343 FU Health Canada [4500171909, 4500220294]; Natural Sciences and Engineering Research of Canada; Killam Trust FX This study was funded by contracts from Health Canada (4500171909 and 4500220294). A.v.D. was supported by graduate fellowships from the Natural Sciences and Engineering Research of Canada and the Killam Trust. NR 45 TC 398 Z9 402 U1 43 U2 301 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUN PY 2010 VL 118 IS 6 BP 847 EP 855 DI 10.1289/ehp.0901623 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 608NP UT WOS:000278591300031 PM 20519161 ER PT J AU Kharecha, PA Kutscher, CF Hansen, JE Mazria, E AF Kharecha, Pushker A. Kutscher, Charles F. Hansen, James E. Mazria, Edward TI Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Review ID LIFE-CYCLE; ELECTRICITY-GENERATION; ENERGY EFFICIENCY; POWER-GENERATION; CARBON CAPTURE; NUCLEAR-POWER; BIOMASS; SYSTEMS; STORAGE; DESIGN AB The global climate problem becomes tractable if CO2 emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by similar to 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO2 in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential, A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future. C1 [Kharecha, Pushker A.; Hansen, James E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kharecha, Pushker A.; Hansen, James E.] Columbia Univ, Earth Inst, New York, NY 10025 USA. [Kutscher, Charles F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mazria, Edward] 2030 Inc Architecture 2030, Santa Fe, NM 87505 USA. RP Kharecha, PA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM pushker@giss.nasa.gov FU Lenfest Foundation FX This paper was motivated by, and is based in part on, a workshop on energy use and climate change mitigation held on Nov. 3, 2008 in Washington, DC. The workshop was funded by the Lenfest Foundation, and the presentations as well as participant biographies are archived at www.mediafire.com/nov3workshop. The views in this paper are solely those of the authors and do not necessarily represent the views of their institutions or the other workshop participants. We are grateful to all of the workshop participants and to Maggie Betancourt and Evelyn DeJesus-Quiles for helping to coordinate the logistics. Colleagues at NREL and Architecture 2030 were very helpful in providing figure data, references, and comments. We also thank Revis James, Anelia Milbrandt, Kathy O'Dell, Jeff Tester, Colin Williams, and Elsevier Publishing for granting permission to reproduce figures, and three anonymous reviewers for providing constructive comments on the draft manuscript. NR 92 TC 13 Z9 13 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 1 PY 2010 VL 44 IS 11 BP 4050 EP 4062 DI 10.1021/es903884a PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 600RA UT WOS:000278003500007 PM 20429611 ER PT J AU Mijajlovic, M Biggs, MJ Djurdjevic, DP AF Mijajlovic, Milan Biggs, Mark J. Djurdjevic, Dusan P. TI On Potential Energy Models for EA-based Ab Initio Protein Structure Prediction SO EVOLUTIONARY COMPUTATION LA English DT Article DE Biochemistry; biomaterials; biomedical engineering; bionanotechnology; EA adaptivity; nanotechnology; surface binding proteins ID DETERMINISTIC GLOBAL OPTIMIZATION; HYDROGEN-BOND INTERACTIONS; OCCURRING AMINO-ACIDS; ATOM FORCE-FIELD; GENETIC ALGORITHM; MET-ENKEPHALIN; NONBONDED INTERACTIONS; MOLECULAR-MECHANICS; EVOLUTIONARY ALGORITHMS; GEOMETRICAL PARAMETERS AB Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models. C1 [Mijajlovic, Milan] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Biggs, Mark J.] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia. [Djurdjevic, Dusan P.] P&G Tech Ctr Ltd, Newcastle Upon Tyne, Tyne & Wear, England. RP Mijajlovic, M (reprint author), NASA, Ames Res Ctr, Exobiol Branch, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM mark.biggs@adelaide.edu.au OI Biggs, Mark/0000-0002-2131-3677 FU University of Edinburgh; Overseas Research Support (ORS) Scheme; Royal Academy of Engineering; Leverhulme Trust; eDIKT initiative FX MM thanks the University of Edinburgh and Overseas Research Support (ORS) Scheme for financial support. MJB thanks the Royal Academy of Engineering and the Leverhulme Trust for the award of a RAEng/Leverhulme Senior Research Fellowship. This work has made use of resources provided by the Edinburgh Compute and Data Facility (www.ecdf.ed.ac.uk), which is partially supported by the eDIKT initiative (www.edikt.org.uk). NR 80 TC 3 Z9 3 U1 1 U2 5 PU M I T PRESS PI CAMBRIDGE PA 238 MAIN STREET, STE 500, CAMBRIDGE, MA 02142-1046 USA SN 1063-6560 J9 EVOL COMPUT JI Evol. Comput. PD SUM PY 2010 VL 18 IS 2 BP 255 EP 275 DI 10.1162/evco.2010.18.2.18204 PG 21 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA 588VF UT WOS:000277101800004 PM 20210597 ER PT J AU Ray, AE Connon, SA Sheridan, PP Gilbreath, J Shields, M Newby, DT Fujita, Y Magnuson, TS AF Ray, Allison E. Connon, Stephanie A. Sheridan, Peter P. Gilbreath, Jeremy Shields, Malcolm Newby, Deborah T. Fujita, Yoshiko Magnuson, Timothy S. TI Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6 SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE 16S rRNA genes; gene inserts; intragenomic heterogeneity; intervening sequence (IVS); helix 6 ID NOV-SP NOV.; HALOARCULA-MARISMORTUI; INTERVENING SEQUENCES; COPY NUMBER; BACTERIAL; OPERONS; SUBSURFACE; DIVERSITY; ENUMERATION; DIVERGENCE AB Two different versions of the 16S rRNA gene, one of which contained an unusual 100-bp insertion in helix 6, were detected in isolate UFO1 acquired from the Oak Ridge Integrated Field-Research Challenge (ORIFRC) site in Tennessee. rRNA was extracted from UFO1 and analyzed by reverse transcriptase-quantitative PCR with insert- and non-insert-specific primers; only the noninsert 16S rRNA gene sequence was detected. Similarly, PCR-based screening of a cDNA library (190 clones) constructed from reverse-transcribed rRNA from UFO1 did not detect any clones containing the 100-bp insert. Examination of cDNA with primers specific to the insert-bearing 16S rRNA gene, but downstream of the insert, suggests that the insert was excised from rRNA. Inspection of other 16S rRNA genes in the GenBank database revealed that a homologous insert sequence, also found in helix 6, has been reported in other environmental clones, including those acquired from ORIFRC enrichments. These findings demonstrate the existence of widely divergent copies of the 16S rRNA gene within the same organism, which may confound 16S rRNA gene-based methods of estimating microbial diversity in environmental samples. C1 [Ray, Allison E.; Newby, Deborah T.; Fujita, Yoshiko] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Ray, Allison E.; Connon, Stephanie A.; Sheridan, Peter P.; Gilbreath, Jeremy; Shields, Malcolm; Magnuson, Timothy S.] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA. [Connon, Stephanie A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Ray, AE (reprint author), Idaho Natl Lab, Biol Syst Dept, POB 1625, Idaho Falls, ID 83415 USA. EM alikona.ray@gmail.com RI Connon, Stephanie/K-1959-2012; Fujita, Yoshiko/S-2007-2016 OI Fujita, Yoshiko/0000-0002-4472-4102 FU Idaho National Laboratory; Inland Northwest Research Alliance [ISU-004]; US Department of Energy [DE-FG02-04ER63626] FX We would like to thank Hope Lee, Aren Eddingsaas, James Henriksen, Amber Miller, Joni Barnes, Lynn Wendt, and Cindy Breckenridge for helpful advice and technical assistance. We thank Erin O'Leary-Jepson and Michelle Andrews of the Idaho State University Molecular Research Core Facility for 16S rRNA gene sequencing. We also extend our thanks to David Reed and Frank Roberto, of the INL for reviewing this manuscript and providing helpful comments. This work was supported by the Idaho National Laboratory, the Inland Northwest Research Alliance (Grant Number ISU-004 to T. S. M., and Graduate Fellowship to A. E. R.), and the US Department of Energy (Grant Number DE-FG02-04ER63626 to T. S. M.). NR 51 TC 7 Z9 7 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD JUN PY 2010 VL 72 IS 3 BP 343 EP 353 DI 10.1111/j.1574-6941.2010.00868.x PG 11 WC Microbiology SC Microbiology GA 591RR UT WOS:000277321300003 PM 20557571 ER PT J AU Geng, T Zheng, F Kuznetsov, AV Roberts, WL Paxson, DE AF Geng, Tao Zheng, Fei Kuznetsov, Andrey V. Roberts, William L. Paxson, Daniel E. TI Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Pulsejet; Valve model; Exhaust flow field; Vortex location; Turbulence ID VORTEX RING FORMATION; VALVELESS PULSEJET; TUBE; CIRCULATION; SCALE; JET AB Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion and ground based power generation systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamics (CFD) simulations focused primarily on pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data. C1 [Geng, Tao; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Paxson, Daniel E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kuznetsov, AV (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Campus Box 7910, Raleigh, NC 27695 USA. EM avkuznet@eos.ncsu.edu NR 27 TC 3 Z9 3 U1 4 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 EI 1573-1987 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD JUN PY 2010 VL 84 IS 4 BP 653 EP 667 DI 10.1007/s10494-010-9247-6 PG 15 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 606DT UT WOS:000278402700006 ER PT J AU Xiong, XX Cao, CY Chander, G AF Xiong, Xiaoxiong (Jack) Cao, Changyong Chander, Gyanesh TI An overview of sensor calibration inter-comparison and applications SO FRONTIERS OF EARTH SCIENCE LA English DT Review DE radiometer; MODIS; AVHRR; ETM; calibration; inter-comparison AB Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies. C1 [Xiong, Xiaoxiong (Jack)] NASA, GSFC, Sci Explorat Directorate, Greenbelt, MD 20771 USA. [Cao, Changyong] NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD 20746 USA. [Chander, Gyanesh] US Geol Survey, SGT Inc, EROS Ctr, Sioux Falls, SD 57198 USA. RP Xiong, XX (reprint author), NASA, GSFC, Sci Explorat Directorate, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov RI Cao, Changyong/F-5578-2010 NR 55 TC 7 Z9 7 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2095-0195 J9 FRONT EARTH SCI-PRC JI Front. Earth Sci. PD JUN PY 2010 VL 4 IS 2 BP 237 EP 252 DI 10.1007/s11707-010-0002-z PG 16 WC Geosciences, Multidisciplinary SC Geology GA V29CD UT WOS:000208725600011 ER PT J AU Tangalos, GE Beard, BL Johnson, CM Alpers, CN Shelobolina, ES Xu, H Konishi, H Roden, EE AF Tangalos, G. E. Beard, B. L. Johnson, C. M. Alpers, C. N. Shelobolina, E. S. Xu, H. Konishi, H. Roden, E. E. TI Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks SO GEOBIOLOGY LA English DT Article ID FE(III) OXIDE REDUCTION; ACID-MINE WATERS; FE ISOTOPE; DISSIMILATORY FE(III); WESTERN-AUSTRALIA; SULFATE REDUCTION; TRANSVAAL SUPERGROUP; AQUATIC SEDIMENTS; MN(IV) REDUCTION; MARINE-SEDIMENTS AB The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)(am)] that allow dissimilatory iron reduction (DIR) to predominate over Fe-S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. delta 56Fe values for bulk HCl- and HF-extractable Fe were approximate to 0. These near-zero bulk delta 56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero delta 56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (delta 56Fe approximate to -1.5 to -0.5 parts per thousand) aqueous Fe(II) coupled to partial reduction of Fe(III)(am) by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)(am) are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)(am) of approximately -2 parts per thousand. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-delta 56Fe minerals during BIF genesis. C1 [Tangalos, G. E.; Beard, B. L.; Johnson, C. M.; Shelobolina, E. S.; Xu, H.; Konishi, H.; Roden, E. E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Tangalos, G. E.; Beard, B. L.; Johnson, C. M.; Shelobolina, E. S.; Xu, H.; Konishi, H.; Roden, E. E.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Alpers, C. N.] US Geol Survey, Calif Water Sci Ctr, Sacramento, CA USA. RP Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM eroden@geology.wisc.edu OI Alpers, Charles/0000-0001-6945-7365 FU NASA Astrobiology Institute; National Science Foundation [0525417]; US Geological Survey FX This research was funded by the NASA Astrobiology Institute (University of California-Berkeley and University of Wisconsin-Madison nodes) and the National Science Foundation (Biogeosciences Program Award 0525417). Logistical support for field sampling was provided by the US Geological Survey in cooperation with the US Environmental Protection Agency. We thank Kurt Konhauser and three anonymous reviewers whose thoughtful criticism substantially improved the manuscript. NR 96 TC 23 Z9 26 U1 2 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD JUN PY 2010 VL 8 IS 3 BP 197 EP 208 DI 10.1111/j.1472-4669.2010.00237.x PG 12 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 596NW UT WOS:000277692900004 PM 20374296 ER PT J AU Berger, EL Lauretta, DS Zega, TJ Keller, LP AF Berger, E. L. Lauretta, D. S. Zega, T. J. Keller, L. P. TI Stardust and CI-chondrite sulfides SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Berger, E. L.; Lauretta, D. S.] Univ Arizona, Lunar & Planetary Lab, Dept Planetary Sci, Tucson, AZ 85721 USA. [Zega, T. J.] USN, Res Lab, Washington, DC 20375 USA. [Keller, L. P.] Johnson Space Ctr, Robert M Walker Lab Space Sci, ARES, Houston, TX 77573 USA. EM elberger@lpl.arizona.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A81 EP A81 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401344 ER PT J AU Bodnarik, J Evans, L Floyd, S Lim, L Mcclanahan, T Namkung, M Parsons, A Schweitzer, J Starr, R Trombka, J AF Bodnarik, J. Evans, L. Floyd, S. Lim, L. Mcclanahan, T. Namkung, M. Parsons, A. Schweitzer, J. Starr, R. Trombka, J. TI In situ instrumentation for subsurface planetary geochemistry SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; Mcclanahan, T.; Namkung, M.; Parsons, A.; Starr, R.; Trombka, J.] NASA GSFC, Greenbelt, MD 20771 USA. [Schweitzer, J.] Univ Connecticut, Storrs, CT 06269 USA. EM julia.g.bodnarik@nasa.gov RI Lim, Lucy/C-9557-2012; Namkung, Min/E-1533-2012; Parsons, Ann/I-6604-2012 OI Lim, Lucy/0000-0002-9696-9654; NR 2 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A100 EP A100 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401381 ER PT J AU Chabot, NL McDonough, WF Saslow, SA Ash, RD Draper, DS Jones, JH Agee, CB AF Chabot, Nancy L. McDonough, William F. Saslow, Sarah A. Ash, Richard D. Draper, David S. Jones, John H. Agee, Carl B. TI Partitioning behavior at pressure in the Fe-S System SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Chabot, Nancy L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McDonough, William F.; Saslow, Sarah A.; Ash, Richard D.] Univ Maryland, College Pk, MD 20742 USA. [Draper, David S.; Jones, John H.] NASA Johnson Space Ctr, Houston, TX 77058 USA. [Agee, Carl B.] Univ New Mexico, Albuquerque, NM 87131 USA. EM Nancy.Chabot@JHUAPL.edu RI Chabot, Nancy/F-5384-2015 OI Chabot, Nancy/0000-0001-8628-3176 NR 7 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A155 EP A155 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400559 ER PT J AU Czaja, AD Johnson, CM Beard, BL Van Kranendonk, MJ AF Czaja, Andrew D. Johnson, Clark M. Beard, Brian L. Van Kranendonk, Martin J. TI Iron isotopes reveal an abiological origin for a 2.75 Ga BIF from the Yilgarn Craton, Western Australia SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Van Kranendonk, Martin J.] Dept Mines & Petr, Perth, WA 6009, Australia. [Van Kranendonk, Martin J.] Univ Western Australia, Sch Earth & Environm, Crawley, WA 6009, Australia. EM czaja@wisc.edu RI Van Kranendonk, Martin/J-8755-2012 NR 0 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A201 EP A201 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400652 ER PT J AU Flynn, GJ Wirick, S Keller, LP Jacobsen, C Sandford, SA AF Flynn, G. J. Wirick, S. Keller, L. P. Jacobsen, C. Sandford, S. A. TI Constraints on the formation mechanism of early Solar System organic matter in primitive IDPs SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Flynn, G. J.] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Wirick, S.; Jacobsen, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Keller, L. P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Sandford, S. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM george.Flynn@plattsburgh.edu RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A298 EP A298 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400845 ER PT J AU Foustoukos, DI Stern, JC AF Foustoukos, D. I. Stern, J. C. TI Oxidation of organics under hydrothermal conditions: Implications for the evolution of methane on Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Foustoukos, D. I.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Stern, J. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM dfoustoukos@ciw.edu; Jennifer.C.Stern@nasa.gov RI Stern, Jennifer/E-3135-2012 OI Stern, Jennifer/0000-0002-0162-8807 NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A302 EP A302 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400853 ER PT J AU Gleeson, D Williamson, C Wright, K Spear, J Pappalardo, R Grasby, S Templeton, A AF Gleeson, Damnhait Williamson, Chase Wright, Katherine Spear, John Pappalardo, Robert Grasby, Steve Templeton, Alexis TI Low temperature S biomineralization at a supraglacial spring system in the Canadian High Arctic SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Gleeson, Damnhait; Wright, Katherine; Templeton, Alexis] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Williamson, Chase; Spear, John] Colorado Sch Mines, Golden, CO 80401 USA. [Gleeson, Damnhait; Pappalardo, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Grasby, Steve] Geol Survey Canada, Calgary, AB T2L 2A7, Canada. EM alexis.templeton@colorado.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A338 EP A338 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401051 ER PT J AU Goldblatt, C Zanhle, K AF Goldblatt, Colin Zanhle, Kevin TI The subduction origin of mantle nitrogen SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Goldblatt, Colin; Zanhle, Kevin] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM colin.goldblatt@nasa.gov; kevin.j.zahnle@nasa.gov NR 1 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A342 EP A342 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401059 ER PT J AU Hecht, MH Kounaves, SP AF Hecht, M. H. Kounaves, S. P. TI Aqueous chemistry on Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Kounaves, S. P.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Hecht, M. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM michael.h.hecht@jpl.nasa.gov; samuel.kounaves@tufts.edu NR 3 TC 0 Z9 0 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A393 EP A393 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401162 ER PT J AU Huberty, JM Konishi, H Fournelle, JH Heck, PR Valley, JW Xu, H AF Huberty, J. M. Konishi, H. Fournelle, J. H. Heck, P. R. Valley, J. W. Xu, H. TI Silician magnetite from the Dales Gorge Banded Iron Formation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Huberty, J. M.; Konishi, H.; Fournelle, J. H.; Heck, P. R.; Valley, J. W.; Xu, H.] Univ Wisconsin, NASA, Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. [Heck, P. R.] Field Museum, Dept Geol, Chicago, IL 60605 USA. EM jason@geology.wisc.edu RI Valley, John/B-3466-2011; Heck, Philipp/C-6092-2012 OI Valley, John/0000-0003-3530-2722; NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A434 EP A434 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401243 ER PT J AU Hurowitz, JA Fischer, WW Tosca, NJ Milliken, RE AF Hurowitz, J. A. Fischer, W. W. Tosca, N. J. Milliken, R. E. TI Fe-redox, aridification, and acidic surface waters on early Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Hurowitz, J. A.; Milliken, R. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fischer, W. W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tosca, N. J.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. NR 4 TC 0 Z9 0 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A439 EP A439 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401254 ER PT J AU Johnson, JR Ashley, J Bell, JF Farrand, W Fleischer, I Jolliff, B Herkenhoff, K Yen, A AF Johnson, J. R. Ashley, J. Bell, J. F., III Farrand, W. Fleischer, I. Jolliff, B. Herkenhoff, K. Yen, A. TI Surface alteration of Fe-Ni meteorites analyzed by the Opportunity Mars Exploration Rover SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Johnson, J. R.; Herkenhoff, K.] Astrogeol Sci Ctr, USGS, Flagstaff, AZ 86001 USA. [Ashley, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Bell, J. F., III] Cornell Univ, Dept Astron, Astron, Ithaca, NY 14853 USA. [Farrand, W.] Space Sci Inst, Boulder, CO 80301 USA. [Fleischer, I.] Inst Anorgan & Analyt Chem, D-55128 Mainz, Germany. [Jolliff, B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Yen, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. EM jrjohnson@usgs.gov; James.Ashley@asu.edu; jfb8@cornell.edu; farrand@SpaceScience.org; irisflei@students.uni-mainz.de; blj@levee.wustl.edu; kherkenhoff@usgs.gov; albert.s.yen@jpl.nasa.gov RI Johnson, Jeffrey/F-3972-2015 NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A473 EP A473 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401515 ER PT J AU Jolliff, BL Shearer, CK Papanastassiou, DA AF Jolliff, B. L. Shearer, C. K. Papanastassiou, D. A. TI Analysis of samples from regolith in the Moon's South Pole-Aitken Basin SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Jolliff, B. L.] Washington Univ, St Louis, MO 63130 USA. [Shearer, C. K.] Univ New Mexico, Albuquerque, NM 87131 USA. [Papanastassiou, D. A.] Jet Prop Lab, Pasadena, CA 91109 USA. EM blj@wustl.edu; cshearer@unm.edu; dimitri.a.papanastassiou@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A476 EP A476 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401522 ER PT J AU Jones, JH AF Jones, J. H. TI Olivine/liquid partitioning, heats of fusion, and the illusion of linearity SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Jones, J. H.] NASA, Lyndon B Johnson Space Ctr, KR, Houston, TX 77058 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A480 EP A480 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401529 ER PT J AU Kuhlman, KR Garrison, DH Hiroi, T Pieters, C AF Kuhlman, K. R. Garrison, D. H. Hiroi, T. Pieters, C. TI Lunar space weathering via exposure to ultraviolet radiation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Garrison, D. H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hiroi, T.; Pieters, C.] Brown Univ, Dept Geo Sci, Providence, RI 02912 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A543 EP A543 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401656 ER PT J AU Li, WQ Beard, BL Johnson, CM AF Li, Weiqiang Beard, Brian L. Johnson, Clark M. TI Mg isotope exchange rate and fractionation factor between epsomite and aqueous solution constrained by three isotope method SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Madison, WI 53706 USA. [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] NASA, Astrobiol Inst, Washington, DC USA. EM wli@geology.wisc.edu NR 2 TC 0 Z9 0 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A594 EP A594 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401757 ER PT J AU Marais, DJD AF Marais, D. J. Des CA Athena Sci Team TI Potentially habitable ancient environments in Gusev crater, Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Marais, D. J. Des; Athena Sci Team] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. EM david.j.desmarais@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A227 EP A227 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400704 ER PT J AU McClain, CR Bontempi, P Maring, H AF McClain, Charles R. Bontempi, Paula Maring, Hal TI The NASA decadal survey aerosol, cloud, ecosystems mission SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [McClain, Charles R.] NASA, Goddard Space Flight Ctr, Ocean Biol Proc Grp, Greenbelt, MD 20771 USA. [Bontempi, Paula; Maring, Hal] NASA Headquarters, Sci Mission Directorate, Washington, DC 20546 USA. EM charles.r.mcclain@nasa.gov; paula.bontempi@nasa.gov; hal.maring@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A685 EP A685 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402073 ER PT J AU McCollom, TM Bach, W Hoehler, T AF McCollom, T. M. Bach, W. Hoehler, T. TI Hydrogen generation for microbial activity in ultramafic-hosted hydrothermal systems SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [McCollom, T. M.] Univ Colorado, Lab Atmospher & Space Phys, CB392, Boulder, CO 80309 USA. [Bach, W.] Univ Bremen, Dept Geosci, D-28334 Bremen, Germany. [Hoehler, T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM mccollom@lasp.colorado.edu NR 10 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A686 EP A686 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402076 ER PT J AU Mills, B Boyle, R Goldblatt, C Lenton, T Watson, A AF Mills, Benjamin Boyle, Richard Goldblatt, Colin Lenton, Timothy Watson, Andrew TI What happened in the Neoproterozoic? Investigations using a simplified Earth system model SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Mills, Benjamin; Boyle, Richard; Lenton, Timothy; Watson, Andrew] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England. [Goldblatt, Colin] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM b.mills@uea.ac.uk NR 8 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A711 EP A711 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402125 ER PT J AU Mittlefehldt, DW AF Mittlefehldt, David W. TI Asteroidal differentiation - the record in meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromaterials Res Off, Houston, TX 77059 USA. EM david.w.mittlefehldt@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A715 EP A715 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402133 ER PT J AU Nakamura, N Nyquist, L Reese, Y Shih, CY AF Nakamura, N. Nyquist, L. Reese, Y. Shih, C. -Y. TI Stable chlorine isotope study of standard rocks and Allende meteorite by TIMS SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Nakamura, N.; Nyquist, L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Reese, Y.] ESCG Muniz Engn, Houston, TX 77058 USA. [Shih, C. -Y.] ESCG Jacobs Sverdrup, Houston, TX 77058 USA. EM noboru.nakamura@nasa.gov NR 5 TC 0 Z9 0 U1 3 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A745 EP A745 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402194 ER PT J AU Oehler, DZ Robert, F Walter, MR Sugitani, K Meibom, A Mostefaoui, S Gibson, E AF Oehler, D. Z. Robert, F. Walter, M. R. Sugitani, K. Meibom, A. Mostefaoui, S. Gibson, E. TI Biological diversity in the Archean: New results from NanoSIMS SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Oehler, D. Z.; Gibson, E.] NASA Johnson Space Ctr, Houston, TX USA. [Robert, F.; Meibom, A.; Mostefaoui, S.] Museum Natl Hist Nat, Lab Mineral & Cosmochim, F-75231 Paris, France. [Walter, M. R.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Sugitani, K.] Nagoya Univ, Dept Environ Engn & Architecture, Nagoya, Aichi 4648601, Japan. EM dorothy.z.oehler@nasa.gov; robert@mnhn.fr; malcolm.walter@unsw.edu.au; sugi@info.human.nagoya-u.ac.jp NR 3 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A771 EP A771 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402246 ER PT J AU Ohmoto, H Bevacqua, DC Johnson, I Watanabe, Y AF Ohmoto, Hiroshi Bevacqua, David C. Johnson, Ian Watanabe, Yumiko TI Geochemical cycles of Fe, Mo, U, Cu, Cr, REEs, and S during the period 3.5-3.2 Ga ago SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 Penn State Univ, NASA, Astrobiol Inst, University Pk, PA 16803 USA. Penn State Univ, Dept Geosci, University Pk, PA 16803 USA. EM hqo@psu.edu NR 0 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A774 EP A774 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402251 ER PT J AU Peslier, AH Woodland, AB Lazarov, M AF Peslier, A. H. Woodland, A. B. Lazarov, M. TI Controls of H incorporation in pyroxenes and garnets from FTIR data on Kaapvaal craton xenoliths SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Peslier, A. H.] ESCG, Jacobs Technol, Houston, TX 77058 USA. [Peslier, A. H.] NASA JSC, ARES, Houston, TX 77058 USA. [Woodland, A. B.; Lazarov, M.] U Frankfurt, D-60438 Frankfurt, Germany. EM anne.h.peslier@nasa.gov RI Peslier, Anne/F-3956-2010 NR 8 TC 1 Z9 1 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A808 EP A808 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402320 ER PT J AU Quinn, RC Grunthaner, FJ Mielke, RE Chun, WW White, VE AF Quinn, R. C. Grunthaner, F. J. Mielke, R. E. Chun, W. W. White, V. E. TI In situ fabrication of chemical sensing arrays in extreme environments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Quinn, R. C.] NASA Ames, SETI Inst, Moffett Field, CA 94035 USA. [Grunthaner, F. J.; Mielke, R. E.; Chun, W. W.; White, V. E.] NASA Jet Prop Lab, Pasadena, CA 91109 USA. EM Richard.C.Quinn@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A842 EP A842 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402387 ER PT J AU Schrader, CM Cohen, BA AF Schrader, C. M. Cohen, B. A. TI Petrology of the crystalline rocks hosting the Santa Fe impact structure SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Schrader, C. M.] Oak Ridge Associated Univ, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Cohen, B. A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM Christian.M.Schrader@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A927 EP A927 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402557 ER PT J AU Singer, SW Woebken, D Burow, LC Prufert-Bebout, L Bebout, BM Pett-Ridge, J Spormann, AM Weber, PK AF Singer, Steven W. Woebken, Dagmar Burow, Luke C. Prufert-Bebout, Lee Bebout, Brad M. Pett-Ridge, Jennifer Spormann, Alfred M. Weber, Peter K. TI NanoSIP: Combining stable isotope probing and high resolution secondary ion mass spectrometry to identify diazotrophs in stratified marine microbial communities SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Singer, Steven W.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woebken, Dagmar; Burow, Luke C.; Spormann, Alfred M.] Stanford Univ, Stanford, CA 94305 USA. [Prufert-Bebout, Lee; Bebout, Brad M.] NASA, Ames Res Ctr, Washington, DC 20546 USA. [Pett-Ridge, Jennifer; Spormann, Alfred M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM SWSinger@lbl.gov; dwoebken@stanford.edu; lburow@stanford.edu; Leslie.E.Bebout@mail.nasa.gov; brad.m.bebout@nasa.gov; pettridge2@llnl.gov; spormann@stanford.edu; weber21@llnl.gov RI Abu Laban , Dr. Nidal /E-5809-2011 NR 0 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A966 EP A966 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402636 ER PT J AU Stern, JC Mcadam, AC Franz, HB Mahaffy, PR AF Stern, Jennifer C. Mcadam, Amy C. Franz, Heather B. Mahaffy, Paul R. TI Evolved Gas Analysis coupled with Cavity Ringdown Spectrometry for in situ delta C-13 measurements of Mars analog materials SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN ID CARBONATE C1 [Stern, Jennifer C.; Mcadam, Amy C.; Franz, Heather B.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Franz, Heather B.] Univ Maryland, College Pk, MD 20742 USA. EM Jennifer.C.Stern@nasa.gov RI McAdam, Amy/E-1556-2012; Stern, Jennifer/E-3135-2012; Franz, Heather/F-3508-2012 OI Stern, Jennifer/0000-0002-0162-8807; NR 4 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A993 EP A993 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402689 ER PT J AU Ullman, DJ Carlson, AE Legrande, AN Anslow, FS Caffee, MW Licciardi, JM Syverson, KM AF Ullman, David J. Carlson, Anders E. Legrande, Allegra N. Anslow, Faron S. Caffee, Marc W. Licciardi, Joseph M. Syverson, Kent M. TI Testing forcing mechanisms of deglaciation: Cosmogenic dating of Laurentide Ice Sheet retreat in Wisconsin and surface mass balance modeling SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Ullman, David J.; Carlson, Anders E.] Univ WI Madison, Dept Geosci, Madison, WI USA. [Legrande, Allegra N.] Columbia Univ, CCSR, New York, NY USA. [Legrande, Allegra N.] Columbia Univ, NASA,GISS, New York, NY USA. [Anslow, Faron S.] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Caffee, Marc W.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Licciardi, Joseph M.] Univ NH, Dept Earth Sci, Durham, NH USA. [Syverson, Kent M.] Univ WI Eau Claire, Dept Geol, Eau Claire, WI USA. EM ullman@wisc.edu RI LeGrande, Allegra/D-8920-2012 OI LeGrande, Allegra/0000-0002-5295-0062 NR 5 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1063 EP A1063 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400167 ER PT J AU van Acken, D Brandon, AD AF van Acken, D. Brandon, A. D. TI Osmium isotopes in aubrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [van Acken, D.] NASA Johnson Space Ctr, Houston, TX 77058 USA. [van Acken, D.; Brandon, A. D.] Univ Houston, Houston, TX 77204 USA. EM dvanacken@uh.edu; abrandon@uh.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1070 EP A1070 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400181 ER PT J AU Vance, S Christensen, LE Webster, CR AF Vance, Steve Christensen, Lance E. Webster, Christopher R. TI In situ measurement of CH3SH on Earth and Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Vance, Steve; Christensen, Lance E.; Webster, Christopher R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM svance@jpl.nasa.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1071 EP A1071 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400183 ER PT J AU Wang, YF Xu, HF Merino, E AF Wang, Yifeng Xu, Huifang Merino, Enrique TI Nonlinear dynamics of Banded Iron Formation precipitation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Xu, Huifang] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Xu, Huifang] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Merino, Enrique] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1110 EP A1110 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400261 ER PT J AU Willis, PA Fisher, AM Greer, HF Mora, MF Mair, D Jiao, H AF Willis, P. A. Fisher, A. M. Greer, H. F. Mora, M. F. Mair, D. Jiao, H. TI Micro total analysis system development for in situ chemical exploration of Titan and Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Willis, P. A.; Fisher, A. M.; Greer, H. F.; Mora, M. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mair, D.] Fluigence LLC, Santa Clara, CA 95054 USA. [Jiao, H.] Los Gatos Res Inc, Mountain View, CA 94941 USA. EM Peter.A.Willis@jpl.nasa.gov RI Willis, Peter/I-6621-2012 NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1134 EP A1134 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400309 ER PT J AU Xu, HF AF Xu, Huifang TI Dolomite, dolomitization, and dolomite problem: A new song with old tune SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Xu, Huifang] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu NR 0 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1160 EP A1160 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400360 ER PT J AU Yan, BZ Han, YM Peteet, D AF Yan, Beizhan Han, Yongming Peteet, Dorothy TI Reconstruction of biomass combustion history using black carbon and polycyclic aromatic hydrocarbons SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Yan, Beizhan] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Han, Yongming] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710075, Peoples R China. [Peteet, Dorothy] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RI Han, Yongming/I-8824-2014 NR 0 TC 0 Z9 0 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1170 EP A1170 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400381 ER PT J AU Zahnle, K Claire, M Wing, B AF Zahnle, K. Claire, M. Wing, B. TI Biogenic sulfur gases, MIF-S, and the rise of free oxygen SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Zahnle, K.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Claire, M.] Univ Washington, Dept Astron, Astrobiol Program, Seattle, WA 98195 USA. [Wing, B.] McGill Univ, Montreal, PQ H3A 2A7, Canada. EM Kevin.J.Zahnle@NASA.gov; mclaire@astro.washington.edu NR 0 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1195 EP A1195 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400431 ER PT J AU Liu, Z Owen, S Dong, DA Lundgren, P Webb, F Hetland, E Simons, M AF Liu, Zhen Owen, Susan Dong, Danan Lundgren, Paul Webb, Frank Hetland, Eric Simons, Mark TI Integration of transient strain events with models of plate coupling and areas of great earthquakes in southwest Japan SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Transient deformation; Subduction zone processes ID SLOW SLIP EVENTS; HIKURANGI SUBDUCTION ZONE; LOW-FREQUENCY EARTHQUAKES; TIME-DEPENDENT INVERSION; ASEISMIC FAULT SLIP; NANKAI TROUGH; SILENT SLIP; CRUSTAL DEFORMATION; EPISODIC TREMOR; TOKAI REGION AB P>We model the crustal deformation caused by two long-term subduction slip transients in southwest Japan, which we refer to as the 2000-2004 Tokai and the 2002-2004 Bungo Channel slow slip events (SSEs). We use re-analysed GEONET position time-series, and a Kalman filter based network inversion method to image the spatiotemporal slip variation of the two events on the plate interface during the period of 1998-2004.67 and 2000-2005. Both events are found to have complex slip histories with multiple subevents. In addition to a newly identified slip subevent in 2002-2003, we find that the major event in the Bungo Channel SSE initiated in early 2003 beneath the northeastern corner of the region and expanded southwestward, in contrast to the slip characteristics suggested by other studies. The re-analysed GPS data in the Tokai region shows a renewed slip activity for the Tokai SSE in early 2003-2004 at a similar location as in the period of 2001-2002. The equivalent M(w) for both the Tokai and Bungo Channel SSEs are about 7.0. Our results show that the Tokai SSE appears to start before the Miyaki-Kozu seismovolcanic event. Integrating plate coupling and SSEs shows that the transient slip zones are located in a region between the locked zones and the epicentres of the low frequency earthquakes (LFEs). At least part of the interseismic slip deficit is released by episodic SSEs beneath the Bungo Channel region. We find excellent temporal correspondence between transient slip and adjacent LFEs for both SSE, suggesting that they are closely related and possibly reflect that long-term slow slip may modulate the occurrence of LFEs. C1 [Liu, Zhen; Owen, Susan; Dong, Danan; Lundgren, Paul; Webb, Frank] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simons, Mark] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hetland, Eric] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Liu, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM zliu@jpl.nasa.gov RI Hetland, Eric/D-4297-2012; Simons, Mark/N-4397-2015; Liu, Zhen/D-8334-2017 OI Simons, Mark/0000-0003-1412-6395; FU National Aeronautics and Space Administration FX We thank Kelin Wang for sending us his composite plate geometry model in his paper. We also thank Akio Katsumata at Meteorological Research Institute, Japan for sending us LFE catalogue. David Shelly at USGS sent us his relocated LFE catalogue in western Shikoku. Reviews by Y. Hsu, L. Wallace, and editor J. Beavan improved this manuscript. The commercial software Gocad from Paradigm Geophysical (http://www.pdgm.com) was used in fault surface modelling. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program. NR 86 TC 11 Z9 11 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2010 VL 181 IS 3 BP 1292 EP 1312 DI 10.1111/j.1365-246X.2010.04599.x PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596WO UT WOS:000277716400007 ER PT J AU Liu, Z Owen, S Dong, DA Lundgren, P Webb, F Hetland, E Simons, M AF Liu, Zhen Owen, Susan Dong, Danan Lundgren, Paul Webb, Frank Hetland, Eric Simons, Mark TI Estimation of interplate coupling in the Nankai trough, Japan using GPS data from 1996 to 2006 SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Satellite geodesy; Seismicity and tectonics; Subduction zone processes ID LOW-FREQUENCY EARTHQUAKES; PHILIPPINE SEA PLATE; ARC-ARC COLLISION; SOUTHWEST JAPAN; PERMANENT GPS; CRUSTAL DEFORMATION; VELOCITY-FIELD; SUBDUCTION; SLIP; MODEL AB P>We used three-component surface velocities in southwest Japan to estimate plate coupling on the subducting plate interface at the Nankai trough. We analyzed continuous GPS data from the Japanese GEONET network from 1996 to 2006 using a consistent analysis strategy that generates bias-fixed solutions for the entire network. We applied systematic time-series analysis methods to estimate common mode error, which improved position solutions for the entire network. To allow for differences in regional deformation sources, we modelled the plate coupling on the plate interface beneath Shikoku island to Kii Peninsula and the Tokai-Suruga trough separately. The results show strong coupling at a depth of similar to 10-30 km off Shikoku and Kii Peninsula. The spatial variation in plate coupling coincides well with the coseismic rupture zones of the past large earthquakes. Maximum slip deficit rates of similar to 2-3 cm yr-1 at the depth of similar to 5-25 km are found beneath the Tokai area, consistent with results from other studies. The downdip limits of the highly coupled areas and transition zones beneath Shikoku and the Kii Peninsula correspond approximately to estimates of the 450 degrees C isotherms. Good correlation is observed between the lateral variations of the slip deficit distribution, low frequency earthquakes, and coseismic slip. This correlation suggests that temperature, and possibly fluid variations, contribute to such correlation in space. The interplate slip deficit derived from the GPS velocities over the 10 yr of observations is generally compatible with the results over shorter time spans, suggesting that plate coupling in SW Japan does not change significantly over the period of these GPS measurements. C1 [Liu, Zhen; Owen, Susan; Dong, Danan; Lundgren, Paul; Webb, Frank] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simons, Mark] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hetland, Eric] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Liu, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM zliu@jpl.nasa.gov RI Hetland, Eric/D-4297-2012; Simons, Mark/N-4397-2015; Liu, Zhen/D-8334-2017 OI Simons, Mark/0000-0003-1412-6395; FU National Aeronautics and Space Administration; Gordon and Betty Moore Foundation FX We thank K. Wang and Junichi Nakajima for sending us their composite plate geometry model for the Philippine Sea slab. We thank Akio Katsumata at Meteorological Research Institute, Japan for providing us low frequency earthquake catalogue. We also thank GSI for providing us the raw data of GEONET. Reviews by J. Freymueller, L. Wallace, and editor J. Beavan improved this manuscript. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program. This research was supported in part by the Gordon and Betty Moore Foundation. This is Caltech Tectonic Observatory Contribution 109. NR 64 TC 18 Z9 18 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2010 VL 181 IS 3 BP 1313 EP 1328 DI 10.1111/j.1365-246X.2010.04600.x PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596WO UT WOS:000277716400008 ER PT J AU Morishima, R Stadel, J Moore, B AF Morishima, Ryuji Stadel, Joachim Moore, Ben TI From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets SO ICARUS LA English DT Article DE Accretion; Origin, Solar System; Planetary formation; Terrestrial planets ID TURBULENT PROTOPLANETARY DISKS; ISOTHERMAL GASEOUS DISK; DYNAMICAL SHAKE-UP; INNER SOLAR-SYSTEM; ORBITAL EVOLUTION; SECULAR RESONANCE; I MIGRATION; 3-DIMENSIONAL INTERACTION; TIDAL INTERACTION; CLOSE ENCOUNTERS AB We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today's eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular. (C) 2009 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morishima, Ryuji] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA. [Stadel, Joachim; Moore, Ben] Univ Zurich, Inst Theoret Phys, CH-8006 Zurich, Switzerland. RP Morishima, R (reprint author), CALTECH, Jet Prop Lab, M-S 230-205,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ryuji.morishima@jpl.nasa.gov NR 82 TC 41 Z9 41 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 517 EP 535 DI 10.1016/j.icarus.2009.11.038 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900003 ER PT J AU Kahre, MA Haberle, RM AF Kahre, Melinda A. Haberle, Robert M. TI Mars CO2 cycle: Effects of airborne dust and polar cap ice emissivity SO ICARUS LA English DT Article DE Mars, Atmosphere; Mars, Surface; Mars, Polar caps ID SEASONAL CO-2 CYCLE; MARTIAN ATMOSPHERE; GENERAL-CIRCULATION; INTERANNUAL VARIABILITY; PHYSICAL-PROPERTIES; VIKING OBSERVATIONS; SURFACE PRESSURE; SIMULATIONS; STORMS; HYDROGEN AB Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is "neutral" - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the "neutral" emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kahre, Melinda A.; Haberle, Robert M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kahre, Melinda A.] Bay Area Environm Res Ctr, Moffett Field, CA 94035 USA. RP Kahre, MA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM melinda.a.kahre@nasa.gov FU NASA FX This project was supported by NASA's Postdoctoral Program (NPP) and NASA's Planetary Atmospheres Program. NR 36 TC 12 Z9 12 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 648 EP 653 DI 10.1016/j.icarus.2009.12.016 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900016 ER PT J AU Roach, LH Mustard, JF Lane, MD Bishop, JL Murchie, SL AF Roach, Leah H. Mustard, John F. Lane, Melissa D. Bishop, Janice L. Murchie, Scott L. TI Diagenetic haematite and sulfate assemblages in Valles Marineris SO ICARUS LA English DT Article DE Mars, Surface; Spectroscopy; Mineralogy ID THERMAL EMISSION SPECTROMETER; MERIDIANI-PLANUM; LAYERED DEPOSITS; CRYSTALLINE HEMATITE; WEATHERING PRODUCTS; MARS PATHFINDER; BURNS FORMATION; SURFACE; MINERALOGY; STRATIGRAPHY AB Previous orbital mapping of crystalline gray haematite, ferric oxides, and sulfates has shown an association of this mineralogy with light-toned, layered deposits on the floor of Valles Marineris, in chaos terrains in the canyon's outflow channels, and in Meridiani Planum. The exact nature of the relationship between ferric oxides and sulfates within Valles Marineris is uncertain. The Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) spectrometer initially identified sulfate and ferric oxides in the layered deposits of Valles Marineris. The Thermal Emission Spectrometer (TES) has also mapped coarse (gray) haematite in or at the base of these deposits. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra and Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) imagery from the Mars Reconnaissance Orbiter (MRO) to explore the mineralogy and morphology of the large layered deposit in central Capri Chasma, part of the Valles Marineris canyon system that has large, clear exposures of sulfate and haematite. We find kieserite (MgSO4 center dot H2O) and ferric oxide (often crystalline red haematite) in the lower bedrock exposures and a polyhydrated sulfate without ferric oxides in the upper bedrock. This stratigraphy is duplicated in many other basinal chasmata, suggesting a common genesis. We propose the haematite and monohydrated sulfate formed by diagenetic alteration of a sulfate-rich sedimentary deposit, where the upper polyhydrated sulfate-rich, haematite-poor layers either were not buried sufficiently to convert to a monohydrated sulfate or were part of a later depositional phase. Based on the similarities between the Valles Marineris assemblages and the sulfate and haematite-rich deposits of Meridiani Planum, we hypothesize a common evaporite and diagenetic formation process for the Meridiani Planum sediments and the sulfate-bearing basinal Interior Layered Deposits. (C) 2009 Elsevier Inc. All rights reserved. C1 [Roach, Leah H.; Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Lane, Melissa D.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Roach, LH (reprint author), Brown Univ, Dept Geol Sci, 324 Brook St, Providence, RI 02912 USA. EM leah_roach@brown.edu RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 NR 93 TC 34 Z9 34 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 659 EP 674 DI 10.1016/j.icarus.2009.11.029 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900018 ER PT J AU Marion, GM Catling, DC Zahnle, KJ Claire, MW AF Marion, G. M. Catling, D. C. Zahnle, K. J. Claire, M. W. TI Modeling aqueous perchlorate chemistries with applications to Mars SO ICARUS LA English DT Article DE Cosmochemistry; Geological processes; Mars, Surface; Mineralogy ID PHOENIX LANDING SITE; MERIDIANI-PLANUM; LOW-TEMPERATURES; MINERAL SOLUBILITIES; IRON CHEMISTRY; SYSTEM; EQUILIBRIA; 25-DEGREES-C; CARBONATE; JAROSITE AB NASA's Phoenix lander identified perchlorate and carbonate salts on Mars. Perchlorates are rare on Earth, and carbonates have largely been ignored on Mars following the discovery by NASA's Mars Exploration Rovers of acidic precipitated minerals such as jarosite. In light of the Phoenix results, we updated the aqueous thermodynamic model FREZCHEM to include perchlorate chemistry. FREZCHEM models the Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O-2-CH4-Si-H2O system, with 95 solid phases. We added six perchlorate salts: NaClO4 center dot H2O, NaClO4 center dot 2H(2)O, KClO4, Mg(ClO4)(2)center dot 6H(2)O, Mg(ClO4)(2)center dot 8H(2)O, and Ca(ClO4)(2)center dot 6H(2)O. Modeled eutectic temperatures for Na, Mg, and Ca perchlorates ranged from 199 K (-74 degrees C) to 239 K (-34 degrees C) in agreement with experimental data. We applied FREZCHEM to the average solution chemistry measured by the Wet Chemistry Laboratory (WCL) experiment at the Phoenix site when soil was added to water. FREZCHEM was used to estimate SO42- and alkalinity concentrations that were missing from the WCL data. The amount of SO42- is low compared to estimates from elemental abundance made by other studies on Mars. In the charge-balanced solution, the dominant cations were Mg2+ and Na+ and the dominant anions were ClO4-, SO42-, and alkalinity. The abundance of calcite measured at the Phoenix site has been used to infer that the soil may have been subject to liquid water in the past, albeit not necessarily locally; so we used FREZCHEM to evaporate (at 280.65 K) and freeze (from 280.65 to 213.15 K) the WCL-measured solution to provide insight into salts that may have been in the soil. Salts that precipitated under both evaporation and freezing were calcite, hydromagnesite, gypsum, KClO4, and Mg(ClO4)(2)center dot 8H(2)O. Epsomite (MgSO4 center dot 7H(2)O) and NaClO4 center dot H2O were favored by evaporation at temperatures >0 degrees C, while meridianite (MgSO4 center dot 11H(2)O), MgCl2 center dot 12H(2)O, and NaClO4 center dot 2H(2)O were favored at subzero temperatures. Incongruent melting of such highly hydrated salts could be responsible for vug formation elsewhere on Mars. All K+ precipitated as insoluble KClO4 during both evaporation and freezing simulations, accounting for 15.8% of the total perchlorates. During evaporation, 35.8% of perchlorates precipitated with Na+ and 48.4% with Mg2+. During freezing, 58.4% precipitated with Na+ and 24.8% with Mg2+. Given its low eutectic temperature, the existence of Mg(ClO4)(2) in either case allows for the possibility of liquid brines on Mars today. FREZCHEM also showed that Ca(ClO4)(2) would likely not have precipitated at the Phoenix landing site due to the strong competing sinks for Ca as calcite and gypsum. Overall, these results help constrain the salt mineralogy of the soil. Differences between evaporites and cryogenites suggest ways to discriminate between evaporation and freezing during salt formation. Future efforts, such as sample return or in situ X-ray diffraction, may make such a determination possible. (C) 2009 Elsevier Inc. All rights reserved. C1 [Marion, G. M.] Desert Res Inst, Reno, NV 89512 USA. [Catling, D. C.; Claire, M. W.] Univ Washington, Seattle, WA 98195 USA. [Zahnle, K. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Marion, GM (reprint author), Desert Res Inst, 2215 Raggio Pkwy, Reno, NV 89512 USA. EM giles.marion@dri.edu RI Catling, David/D-2082-2009; OI Catling, David/0000-0001-5646-120X FU NASA FX Funding was provided by a NASA DDF project, "Volcanic SO2, Atmospheric Photochemistry, and Climate on Early Mars." We thank Vincent Chevrier for assistance in tracking down perchlorate data sources. We thank Lisa Wable for assistance in preparing the manuscript. NR 57 TC 43 Z9 43 U1 1 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 675 EP 685 DI 10.1016/j.icarus.2009.12.003 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900019 ER PT J AU Masiero, J AF Masiero, Joseph TI Albedo heterogeneity on the surface of (1943) Anteros SO ICARUS LA English DT Article DE Asteroids, Surfaces; Polarimetry ID POLARIMETRIC OBSERVATIONS; 4 VESTA; POLARIZATION; TELESCOPE; ASTEROIDS; LIGHTCURVE AB We have investigated the effect of rotation on the polarization of scattered light for the near-Earth asteroid (1943) Anteros using the Dual Beam Imaging Polarimeter on the University of Hawaii's 2.2 m telescope. Anteros is an L-type asteroid that has not been previously observed polarimetrically. We find weak but significant variations in the polarization of Anteros as a function of rotation, indicating albedo changes across the surface. Specifically, we find that Anteros has a background albedo of p(v) = 0.18 +/- 0.02 with a dark spot of p(v) < 0.09 covering <2% of the surface. (C) 2010 Elsevier Inc. All rights reserved. C1 [Masiero, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Masiero, Joseph] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Masiero, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 264-767, Pasadena, CA 91106 USA. EM Joseph.Masiero@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU NASA PAST [NNG06G146G] FX J.M. was supported under NASA PAST Grant NNG06G146G. The author would like to thank Rob Jedicke and Alan Tokunaga for providing comments on the manuscript, as well as V. Rosenbush and an anonymous referee for helpful reviews that improved the paper. The author wishes to recognize and acknowledge the very significant cultural role and reverence that the summit on Mauna Kea has always had within the indigenous Hawaiian community. I am most fortunate to have the opportunity to conduct observations from this sacred mountain. NR 28 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 795 EP 799 DI 10.1016/j.icarus.2009.12.033 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900027 ER PT J AU Vernazza, P Carry, B Emery, J Hora, JL Cruikshank, D Binzel, RP Jackson, J Helbert, J Maturilli, A AF Vernazza, P. Carry, B. Emery, J. Hora, J. L. Cruikshank, D. Binzel, R. P. Jackson, J. Helbert, J. Maturilli, A. TI Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions SO ICARUS LA English DT Article DE Asteroids, Surfaces; Spectroscopy; Mineralogy; Meteorites ID THERMAL EMISSION-SPECTROSCOPY; SPITZER-SPACE-TELESCOPE; MAIN BELT ASTEROIDS; IRRADIANCE CALIBRATION; PARTICULATE SURFACES; MU-M; INFRARED OBSERVATIONS; REFLECTANCE SPECTRA; ANALOG MATERIALS; 13-MU-M SPECTRA AB We report an unexpected variability among mid-infrared spectra (IRTF and Spitzer data) of eight S-type asteroids for which all other remote sensing interpretations (e.g. VNIR spectroscopy, albedo) yield similar compositions. Compositional fitting making use of their mid-IR spectra only yields surprising alternative conclusions: (1) these objects are not "compositionally similar" as the inferred abundances of their main surface minerals (olivine and pyroxene) differ from one another by 35% and (2) carbonaceous chondrite and ordinary chondrite meteorites provide an equally good match to each asteroid spectrum. Following the laboratory work of Ramsey and Christensen (Ramsey, M.S., Christensen, P.R. [1998]. J. Geophys. Res, 103, 577-596), we interpret this variability to be physically caused by differences in surface particle size and/or the effect of space weathering processes. Our results suggest that the observed asteroids must be covered with very fine (<5 mu m) dust that masks some major and most minor spectral features. We speculate that the compositional analysis may be improved with a spectral library containing a wide variety of well characterized spectra (e.g., olivine, orthopyroxene, feldspar, iron, etc.) obtained from very fine powders. In addition to the grain size effect, space weathering processes may contribute as well to the reduction of the spectral contrast. This can be directly tested via new laboratory irradiation experiments. (C) 2010 Elsevier Inc. All rights reserved. C1 [Vernazza, P.] European Space Agcy, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Carry, B.] Observ Paris, Lab Etud Spatiales & Instrumentat Astrophys, F-92195 Meudon, France. [Carry, B.] European So Observ, Santiago 19, Chile. [Emery, J.] Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Hora, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cruikshank, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Binzel, R. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Jackson, J.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Helbert, J.; Maturilli, A.] DLR, Inst Planetary Res, D-12489 Berlin, Germany. RP Vernazza, P (reprint author), ESA ESTEC RSSD SCI, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM pierre.vernazza@esa.int OI Helbert, Jorn/0000-0001-5346-9505; Hora, Joseph/0000-0002-5599-4650 NR 84 TC 22 Z9 22 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 800 EP 809 DI 10.1016/j.icarus.2010.01.011 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900028 ER PT J AU Moore, C Miki, K Goldstein, DB Stapelfeldt, K Varghese, PL Trafton, LM Evans, RW AF Moore, C. Miki, K. Goldstein, D. B. Stapelfeldt, K. Varghese, P. L. Trafton, L. M. Evans, R. W. TI Monte Carlo modeling of Io's [OI] 6300 angstrom and [SII] 6716 angstrom auroral emission in eclipse SO ICARUS LA English DT Article DE Io; Aurorae; Jupiter, Satellites; Satellites, Atmospheres; Collisional physics ID SULFUR-DIOXIDE; PLASMA TORUS; SO2 ATMOSPHERE; ENERGETIC ELECTRONS; DRIVEN ATMOSPHERE; VOLCANIC PLUMES; CROSS-SECTIONS; UV EMISSIONS; PELE PLUME; SUBLIMATION AB We present a Monte Carlo (MC) model of [OI] 6300 angstrom and [SII] 6716 angstrom emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO(2), O, SO, S, and O(2) in to's atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 angstrom emission. The [OI] radiation lifetime of similar to 134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 x 10(9) cm(-3)) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io's perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation's viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake's observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of similar to 3, most likely because our model does not include direct dissociation-excitation of SO(2) and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io's changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 angstrom emission is much weaker than that of [OI] even if the [SII] excitation cross section is 10(3) times larger than excitation to [OI]. This is because the density of S(+) is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of similar to 10 smaller than that of [OI]. (C) 2010 Elsevier Inc. All rights reserved. C1 [Moore, C.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Stapelfeldt, K.; Evans, R. W.] CALTECH, JPL, Pasadena, CA 91125 USA. RP Moore, C (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 1 Univ Stn,C0600, Austin, TX 78712 USA. EM moorech@ices.utexas.edu RI Stapelfeldt, Karl/D-2721-2012 FU NASA [NAS5-26555, NAG5-11991, NNX08AQ49G]; STScl [HST-AR-10322.01-A] FX Based on observations with the NASA/ESA Hubble Space Telescope. Archival research support for Program 9535 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Associated Universities for Research in Astronomy, Incorporated, under NASA Contract NAS5-26555. This work was supported by STScl Grant HST-AR-10322.01-A and NASA Grants NAG5-11991 and NNX08AQ49G. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. NR 77 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 810 EP 833 DI 10.1016/j.icarus.2010.01.004 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900029 ER PT J AU Patterson, GW Collins, GC Head, JW Pappalardo, RT Prockter, LM Lucchitta, BK Kay, JP AF Patterson, G. Wesley Collins, Geoffrey C. Head, James W. Pappalardo, Robert T. Prockter, Louise M. Lucchitta, Baerbel K. Kay, Jonathan P. TI Global geological mapping of Ganymede SO ICARUS LA English DT Article DE Ganymede; Satellites, Surfaces; Jupiter, Satellites ID GALILEO NOMINAL MISSION; GROOVED TERRAIN; DARK TERRAIN; HIGH-RESOLUTION; EXTENSIONAL INSTABILITY; CRATERING RATES; IMPACT FEATURES; WATER-ICE; SATELLITES; JUPITER AB We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite's surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units. (C) 2009 Elsevier Inc. All rights reserved. C1 [Patterson, G. Wesley] Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, Laurel, MD 20723 USA. [Collins, Geoffrey C.; Kay, Jonathan P.] Wheaton Coll, Dept Phys & Astron, Norton, MA 02766 USA. [Patterson, G. Wesley; Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lucchitta, Baerbel K.] US Geol Survey, Flagstaff, AZ 86001 USA. [Kay, Jonathan P.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. RP Patterson, GW (reprint author), Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, MP3-E106,11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM wes.patterson@jhuapl.edu FU NASA [NNG05GJ787G] FX We thank Ken Tanaka and Jeff Moore for their careful review of this manuscript and the useful comments they provided. This work was supported under a grant awarded through NASA's Planetary Geology and Geophysics program (NNG05GJ787G). NR 71 TC 12 Z9 12 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 845 EP 867 DI 10.1016/j.icarus.2009.11.035 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900031 ER PT J AU Hasenkopf, CA Beaver, MR Trainer, MG Dewitt, HL Freedman, MA Toon, OB McKay, CP Tolbert, MA AF Hasenkopf, Christa A. Beaver, Melinda R. Trainer, Melissa G. Dewitt, H. Langley Freedman, Miriam A. Toon, Owen B. McKay, Christopher P. Tolbert, Margaret A. TI Optical properties of Titan and early Earth haze laboratory analogs in the mid-visible SO ICARUS LA English DT Article DE Titan; Spectroscopy; Experimental techniques; Photochemistry ID COMPLEX REFRACTIVE-INDEX; CAVITY RING; EARLY ATMOSPHERE; ORGANIC HAZE; AEROSOL SPECTROMETER; MODEL; SPECTROSCOPY; GREENHOUSE; PHOTOCHEMISTRY; METHANE AB Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at lambda = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 +/- 0.01 and an imaginary refractive index k = 0.023 +/- 0.007, and for the early Earth analog particles we find n = 1.81 +/- 0.02 and k = 0.055 +/- 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, TA., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog. (C) 2010 Elsevier Inc. All rights reserved. C1 [Hasenkopf, Christa A.; Beaver, Melinda R.; Dewitt, H. Langley; Freedman, Miriam A.; Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hasenkopf, Christa A.; Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Beaver, Melinda R.; Dewitt, H. Langley; Tolbert, Margaret A.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toon, Owen B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [McKay, Christopher P.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94503 USA. RP Hasenkopf, CA (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM Christa.Hasenkopf@colorado.edu RI Trainer, Melissa/E-1477-2012; Freedman, Miriam/A-4571-2013 OI Freedman, Miriam/0000-0003-4374-6518 FU NASA [NNX07AV55G, NNX07AF190, NNX08AG93G, NNX09AE12G]; National Science Foundation; EPA; NOAA FX This material is based on work supported by NASA Grants NNX07AV55G, NNX07AF190, NNX08AG93G, and NNX09AE12G. CAH was supported with a National Science Foundation Graduate Research Fellowship. MRB was supported by an EPA-STAR fellowship. MGT was supported by an appointment to the NASA Postdoctoral Program at the University of Colorado Center for Astrobiology administered by Oak Ridge Associated Universities. HLD is supported through a NASA-GSRP fellowship. MAF acknowledges support from the NOAA Climate and Global Change Postdoctoral Fellowship Program administered by the University of Corporation for Atmospheric Research. NR 47 TC 28 Z9 28 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 903 EP 913 DI 10.1016/j.icarus.2009.12.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900034 ER PT J AU Anderson, CM Samuelson, RE Bjoraker, GL Achterberg, RK AF Anderson, C. M. Samuelson, R. E. Bjoraker, G. L. Achterberg, R. K. TI Particle size and abundance of HC3N ice in Titan's lower stratosphere at high northern latitudes SO ICARUS LA English DT Article DE Titan; Radiative transfer ID COMPOSITE INFRARED SPECTROMETER; SPECTROSCOPIC DATABASE; POLAR STRATOSPHERE; ABSORPTION-SPECTRA; CLOUDS; TEMPERATURES; ATMOSPHERE; PAIRS; TROPOSPHERE; SURFACE AB Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan's thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the v(6) HC3N ice feature at 506 cm(-1) at latitudes 62 degrees N and 70 degrees N, from which we derive particle sizes and column abundances in Titan's lower stratosphere. We find mean particle radii of 3.0 mu m and 2.3 mu m for condensed HC3N at 62 degrees N and 70 degrees N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 x 10(16) mol cm(-2). Only upper limits for cloud abundances can be established at latitudes of 85 degrees N, 55 degrees N, 30 degrees N, 10 degrees N, and 15 degrees S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70 degrees N and 62 degrees N, respectively. Published by Elsevier Inc. C1 [Anderson, C. M.; Bjoraker, G. L.] NASA, GSFC, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Samuelson, R. E.; Achterberg, R. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Anderson, CM (reprint author), NASA, GSFC, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM carrie.m.anderson@nasa.gov RI Anderson, Carrie/C-8097-2012; Bjoraker, Gordon/D-5032-2012 FU Cassini project; Goddard Space Flight Center FX We would like to extend our thanks to F.M. Flasar for his useful comments concerning an initial draft of this paper. This research was supported in part by the Cassini project and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Perceptive remarks by two anonymous referres led to considerable improvement in the analysis. NR 30 TC 21 Z9 22 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 914 EP 922 DI 10.1016/j.icarus.2009.12.024 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900035 ER PT J AU Le Gall, A Janssen, MA Paillou, P Lorenz, RD Wall, SD AF Le Gall, A. Janssen, M. A. Paillou, P. Lorenz, R. D. Wall, S. D. CA Cassini Radar Team TI Radar-bright channels on Titan SO ICARUS LA English DT Article DE Titan; Radar observations; Radio observations; Satellites, Surfaces; Geological processes ID HUYGENS LANDING SITE; CASSINI RADAR; LIGHT-SCATTERING; REFRACTION SCATTERING; SPHEROIDAL PARTICLES; COHERENT BACKSCATTER; BACK-SCATTERING; SATURNS RINGS; SURFACE; SATELLITES AB During Cassini's T44 flyby of Titan (May 28, 2008), the Cassini SAR (synthetic aperture radar) revealed sinuous channels in the Southwest of Xanadu. These channels feature very large radar cross-sections, up to 5 dB, whereas the angle of incidence was relatively high, similar to 20 degrees. This backscatter is larger than allowed by the coherent backscatter model considered to explain the unusual reflective and polarization properties of the icy satellites and only a few radar scattering mechanisms can be responsible for such high radar returns. The presence of rounded (icy) pebbles with size larger than the radar wavelength (2.18 cm) is proposed to explain the large radar cross-sections measured in these units. The radar-bright channels are thus interpreted as riverbeds, where debris, likely shaped and transported by fluvial activity, have been deposited. Similar debris were observed in the landing site of the Huygens probe. This work may point the way to an explanation for the enhanced brightness of other fluvial regions of Titan. (C) 2009 Elsevier Inc. All rights reserved. C1 [Le Gall, A.; Janssen, M. A.; Wall, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Paillou, P.] Univ Bordeaux 1, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, Dept Space, Laurel, MD 20723 USA. RP Le Gall, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alice.Le.Gall@jpl.nasa.gov RI Lorenz, Ralph/B-8759-2016 OI Lorenz, Ralph/0000-0001-8528-4644 FU NASA FX We gratefully acknowledge those who designed, developed and operate the Cassini/Huygens mission, which is a joint endeavor of NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) and is managed by JPL/Caltech under a contract with NASA. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to thank H.U. Keller and M. Kuppers for sharing their size statistic analysis of the pebbles of the Huygens landing site. Fig. 7 is extracted from Keller et al. (2008). They are also grateful to Alain Reineix and Christophe Guiffaut from XLIM, Limoges, France who designed the TEMSI-FD code and whish to thank two anonymous reviewers for their insightful and thorough reviews. A. Le Gall is supported by the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities. NR 77 TC 24 Z9 24 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 948 EP 958 DI 10.1016/j.icarus.2009.12.027 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900039 ER PT J AU Robuchon, G Choblet, G Tobie, G Cadek, O Sotin, C Grasset, O AF Robuchon, G. Choblet, G. Tobie, G. Cadek, O. Sotin, C. Grasset, O. TI Coupling of thermal evolution and despinning of early Iapetus SO ICARUS LA English DT Article DE Ices; Iapetus; Interiors; Thermal histories; Rotational dynamics ID TEMPERATURE-DEPENDENT VISCOSITY; EARLY SOLAR-SYSTEM; ICY SATELLITES; GALILEAN SATELLITES; POLYCRYSTALLINE ICE; INTERNAL STRUCTURE; EQUATORIAL RIDGE; CONVECTION; ORIGIN; MANTLE AB The Cassini mission revealed two spectacular characteristics of Iapetus: (1) a geologically old and high equatorial ridge, which is unique in the Solar System and (2) a large flattening of 35 km consistent with the equilibrium figure for a hydrostatic body rotating with a period of 1611, whereas the current spin period is 79.33 days. This study describes three-dimensional simulations of solid-state convection within an undifferentiated Iapetus. It investigates the implications for the evolution of the interior thermal structure and its spin rate and global shape using radially layered viscoelastic models. The role of the concentration in the short-lived radiogenic element [(26)Al], just after accretion is completed, is specifically addressed. The first result is to show that whatever the [(26)Al] value, convection occurs. As suggested by Castillo-Rogez et al. [Castillo-Rogez, J., Matson, D., Sotin, C., Johnson, T., Lunine, J., Thomas, P. [2007] Icarus, 190, 179-202], convection reduces the warming of the interior compared to the conductive evolution and therefore limits the conditions for despinning. In our calculations, two conceptual linear viscoelastic models are used. When considering a Maxwell rheology, the interior temperature (viscosity) never reaches a value high (low) enough to induce despinning. In order to promote dissipation at low temperature, a Burgers rheology, which includes an additional dissipation peak, is introduced. For favorable parameter values, this latter rheology leads to despinning. However, only models associated with large amounts of short-lived radiogenic elements ([(26)Al] >= 25 ppb) lead to the observed flattening. This suggests that the accretion process needs to be completed shortly after the formation of CAIs (Calcium-Aluminum-rich Inclusions) (<= 4 Myr). For[(26)Al] varying between 72 and 46 ppb, the observed flattening is obtained only for a limited range of initial spin period, between 9.5 and 10.2 h. For [(26)Al] ranging between 30 and 15 ppb, initial spin rates smaller than 8.5 h are required. For smaller values of [(26)Al], the body is too cold and viscous to acquire a significant flattening even if a rotation period close to the body disruption limit is considered. Even with a thin lithosphere during the early stage, our simulations show that Iapetus never reaches the equilibrium figure for a hydrostatic body due to the non-zero rigidity of the lithosphere. The 35 km value of the flattening is the result of the partial relaxation of an ancient larger flattening ranging between 45 and 80 km, depending on the evolution of the lithosphere thickness mainly controlled by the radiogenic content. A thin lithosphere is consistent with an early building of the equatorial ridge. The lithosphere thickening due to interior cooling can explain the preservation of the ridge throughout the remaining evolution of Iapetus. (C) 2009 Elsevier Inc. All rights reserved. C1 [Robuchon, G.; Choblet, G.; Tobie, G.; Grasset, O.] Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. [Choblet, G.; Tobie, G.; Grasset, O.] Univ Nantes, CNRS, UMR 6112, F-44322 Nantes, France. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cadek, O.] Charles Univ Prague, Fac Math & Phys, Dept Geophys, Prague, Czech Republic. RP Robuchon, G (reprint author), Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. EM guillaume.robuchon@univ-nantes.fr RI Cadek, Ondrej/P-6527-2016 OI Cadek, Ondrej/0000-0001-8331-3093 FU Ministry of Education in the Czech Republic [MSM 0021620860]; NASA; Charles University [GAUK 280/2006/BGEO/MFF] FX We thank Julie Castillo-Rogez for her comments during the course of this study. G. Choblet, O. Grasset, G. Robuchon and G. Tobie benefited from ANR ETHER and PNP-INSU in France. O. Cadek benefited from Charles University Grant GAUK 280/2006/BGEO/MFF as well as the research project MSM 0021620860 of the Ministry of Education in the Czech Republic. Part of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. NR 69 TC 20 Z9 20 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 959 EP 971 DI 10.1016/j.icarus.2009.12.002 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900040 ER PT J AU Anderson, RC Beegle, LW Peters, GH Fleming, GM Jandura, L Kriechbaum, K Manatt, K Okon, A Pounders, E Sollitt, L Sunshine, D AF Anderson, Robert C. Beegle, Luther W. Peters, Gregory H. Fleming, Gerald M., II Jandura, Louise Kriechbaum, Kristo Manatt, Kenneth Okon, Avi Pounders, Erik Sollitt, Luke Sunshine, Dan TI Particle transport and distribution on the Mars Science Laboratory Mission: Effects of triboelectric charging (vol 204, pg 545, 2009) SO ICARUS LA English DT Correction C1 [Anderson, Robert C.; Beegle, Luther W.; Peters, Gregory H.; Fleming, Gerald M., II; Jandura, Louise; Kriechbaum, Kristo; Manatt, Kenneth; Okon, Avi; Pounders, Erik; Sunshine, Dan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sollitt, Luke] Northrop Grumman Aeronaut Syst, Sensors & Instruments Dept, Redondo Beach, CA 90278 USA. RP Beegle, LW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Luther.Beegle@jpl.nasa.gov NR 3 TC 0 Z9 0 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 1013 EP 1013 DI 10.1016/j.icarus.2010.03.018 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900044 ER PT J AU Darr, S Ricks, W Lemos, KA AF Darr, Stephen Ricks, Wendell Lemos, Katherine A. TI Safer Systems: A NextGen Aviation Safety Strategic Goal SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article ID AUTOMATION AB The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen) [1]. The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goals of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies, and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces; 2) provide safety enhancements for airborne systems; and 3) provide safety enhancements for ground-based systems. Our goal is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies. C1 [Darr, Stephen] Dynam Aerosp Inc, Sharon, MA USA. [Ricks, Wendell; Lemos, Katherine A.] NASA, Hampton, VA USA. RP Darr, S (reprint author), Dynam Aerosp Inc, Sharon, MA USA. NR 11 TC 3 Z9 3 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUN PY 2010 VL 25 IS 6 BP 9 EP 14 PG 6 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 663PE UT WOS:000282899000002 ER PT J AU Del Castillo, L Moussessian, A McPherson, R Zhang, T Hou, ZW Dean, R Johnson, RW AF Del Castillo, Linda Moussessian, Alina McPherson, Ryan Zhang, Tan Hou, Zhenwei Dean, Robert Johnson, R. Wayne TI Flexible Electronic Assemblies for Space Applications SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB This describes the development and evaluation of advanced technologies for the integration of electronic devices within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible (liquid crystal polymer (LCP) and polyimide (PI) circuits, using gold thermo-compression flip chip bonding, and embedding them within the material. The influence of temperature and flexure on the electrical behavior of active embedded assemblies was evaluated. In addition, the long-term thermal cycle resistance of the passive daisy chain assemblies was determined within the Mil-Std (-55 degrees to +125 degrees C), extreme low #1 (-125 degrees to +85 degrees C), and extreme low #2 (-125 degrees to +125 degrees C) temperature ranges. The results of these evaluations will be discussed, along with the application of this technology for future NASA missions. C1 [Del Castillo, Linda; Moussessian, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McPherson, Ryan; Zhang, Tan; Hou, Zhenwei; Dean, Robert; Johnson, R. Wayne] Auburn Univ, Auburn, AL 36849 USA. RP Del Castillo, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUN PY 2010 VL 25 IS 6 BP 25 EP 29 PG 5 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 663PE UT WOS:000282899000005 ER PT J AU Campbell, JR Reid, JS Westphal, DL Zhang, JL Hyer, EJ Welton, EJ AF Campbell, James R. Reid, Jeffrey S. Westphal, Douglas L. Zhang, Jianglong Hyer, Edward J. Welton, Ellsworth J. TI CALIOP Aerosol Subset Processing for Global Aerosol Transport Model Data Assimilation SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Aerosols; laser radar; modeling; satellite applications AB A system for processing Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based 0.532 and 1.064 mu m elastic and polarization lidar datasets for global aerosol transport model assimilation is described. A method for constructing one-degree along-track and cloud-free signal composite averages, consistent with Navy Aerosol Analysis and Prediction System (NAAPS) model gridding, using CALIOP Level 1B attenuated backscatter and Level 2 cloud boundary-height products is outlined. Optimal vertical resolutions and relative signal uncertainties for the composite signal averages are described for both day and nighttime measurement scenarios. Depolarization profiles are described for the 0.532 mu m channel as well as attenuated color ratio profiles using 0.532 and 1.064 mu m attenuated backscatter measurements. Constrained by NAAPS model aerosol optical depths, processed attenuated backscatter profiles are inverted to solve for extinction and backscatter coefficients, their ratio, and extinction coefficient profiles which serve as the basis for data assimilation. C1 [Campbell, James R.; Hyer, Edward J.] USN, Res Lab, Univ Corp, Atmospher Res Visiting Scientist Programs, Monterey, CA 93943 USA. [Zhang, Jianglong] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Campbell, JR (reprint author), USN, Res Lab, Univ Corp, Atmospher Res Visiting Scientist Programs, Monterey, CA 93943 USA. EM jamesc@ucar.edu; jeffrey.reid@nrlmry.navy.mil; dou-glas.westphal@nrlmry.navy.mil; jzhang@aero.und.edu; ehyer@ucar.edu; Ellsworth.J.Welton@nasa.gov RI Hyer, Edward/E-7734-2011; Welton, Ellsworth/A-8362-2012; Campbell, James/C-4884-2012; Reid, Jeffrey/B-7633-2014 OI Hyer, Edward/0000-0001-8636-2026; Campbell, James/0000-0003-0251-4550; Reid, Jeffrey/0000-0002-5147-7955 FU National Aeronautics and Space Administration [NNH07AG441]; Office of Naval Research [32, 35] FX Manuscript received April 06, 2009; revised September 09, 2009; accepted December 15, 2009. Current version published May 19, 2010. This work was supported by the National Aeronautics and Space Administration under Grant NNH07AG441 and by the Office of Naval Research Codes 32 and 35. NR 0 TC 12 Z9 12 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2010 VL 3 IS 2 BP 203 EP 214 DI 10.1109/JSTARS.2010.2044868 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 599DJ UT WOS:000277890100005 ER PT J AU Llombart, N Cooper, KB Dengler, RJ Bryllert, T Siegel, PH AF Llombart, Nuria Cooper, Ken B. Dengler, Robert J. Bryllert, Tomas Siegel, Peter H. TI Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Reflector antennas; scanning antennas; submillimeter-wavelength imaging; terahertz radar; THz ID GREGORIAN ANTENNAS; ARRAY AB We present the design of a reflector system that can rapidly scan and refocus a terahertz beam for high-resolution standoff imaging applications. The proposed optical system utilizes a confocal Gregorian geometry with a small mechanical rotating mirror and an axial displacement of the feed. For operation at submillimeter wavelengths and standoff ranges of many meters, the imaging targets are electrically very close to the antenna aperture. Therefore the main reflector surface must be an ellipse, instead of a parabola, in order to achieve the best imaging performance. Here we demonstrate how a simple design equivalence can be used to generalize the design of a Gregorian reflector system based on a paraboloidal main reflector to one with an ellipsoidal main reflector. The system parameters are determined by minimizing the optical path length error, and the results are validated with numerical simulations from the commercial antenna software package GRASP. The system is able to scan the beam over 0.5 m in cross-range at a 25 m standoff range with less than 1% increase of the half-power beam-width. C1 [Llombart, Nuria; Cooper, Ken B.; Dengler, Robert J.; Bryllert, Tomas; Siegel, Peter H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bryllert, Tomas] Wasa Millimeter Wave AB, S-42341 Torslanda, Sweden. [Siegel, Peter H.] CALTECH, Dept Biol, Pasadena, CA 91125 USA. RP Llombart, N (reprint author), Univ Complutense Madrid, Opt Dept, E-28040 Madrid, Spain. EM nuria.llombart@opt.ucm.es; phs@caltech.edu FU National Aeronautics and Space Administration; Naval Explosive Ordnance Disposal Technology Division; DoD Physical Security Equipment Action Group (PSEAG) FX Manuscript received July 01, 2009; revised November 16, 2009; accepted December 25, 2009. Date of publication March 29, 2010; date of current version June 03, 2010. This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported under a contract to the California Institute of Technology, Division of Biology, by the Naval Explosive Ordnance Disposal Technology Division, with funding provided by the DoD Physical Security Equipment Action Group (PSEAG). NR 26 TC 29 Z9 30 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2010 VL 58 IS 6 BP 1834 EP 1841 DI 10.1109/TAP.2010.2046860 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 607UF UT WOS:000278531600001 ER PT J AU Pogorzelski, RJ AF Pogorzelski, Ronald J. TI Experimental Demonstration of the Extended Probe Instrument Calibration (EPIC) Technique SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Anechoic chambers (electromagnetic); antenna measurements; near-field far-field transformation AB A chamber calibration technique for spherical near-field antenna measurements proposed by Pogorzelski is experimentally demonstrated. The chamber was purposely degraded by introducing a metal plate situated so as to produce a strong specular reflection from the antenna under test to the chamber probe. The effects of this artifact were easily observed in the raw data. The chamber with the artifact was calibrated using an open ended waveguide calibration antenna and the resulting calibration coefficients were used to correct the raw measurement producing a result very similar to the measurement carried out in the undegraded chamber over about 30 to 35 dB of dynamic range. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pogorzelski, RJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM pogo@ieee.org NR 2 TC 4 Z9 4 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2010 VL 58 IS 6 BP 2093 EP 2097 DI 10.1109/TAP.2010.2048868 PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 607UF UT WOS:000278531600030 ER PT J AU Kashyap, AS Mantooth, HA Vo, TA Mojarradi, M AF Kashyap, Avinash S. Mantooth, H. Alan Vo, Tuan A. Mojarradi, Mohammad TI Compact Modeling of LDMOS Transistors for Extreme Environment Analog Circuit Design SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Cryogenic; extreme environment; high-voltage (HV) MOSFET; impurity freeze-out; laterally diffused MOS (LDMOS); MOS Model 20 (MM20) ID QUASI-SATURATION; MOSFETS; TEMPERATURES; IONIZATION AB The cryogenic characterization (93 K/-180 degrees C to 300 K/27 degrees C) and compact modeling of a high-voltage (HV) laterally diffused MOS (LDMOS) transistor that exhibits carrier freeze-out are presented in this paper. Unlike low-voltage MOS devices, it was observed that HVMOS structures experience freeze-out effects at much higher temperatures, resulting in an output current roll-off beyond a transition temperature. Standard compact models generally do not guarantee performance below 218 K (-55 degrees C), and freeze-out effects are certainly not incorporated in them. This causes the models to fail to track at lower temperatures, and designers relying on these models would be misled. In this paper, the temperature-scaling equations of the MOS Model 20 LDMOS model are modified to reflect the device operation down to 93 K, which is sufficient for designing sensor interface circuitry for lunar applications. The model is then validated against an LDMOS device designed by engineers at the Jet Propulsion Laboratory, using the IBM SiGe 5AM process. A modified parameter extraction procedure has also been developed. This generalized approach is compact model friendly and can also be implemented for other standard models. Analog circuits designed with this new model are currently being tested at the International Space Station. C1 [Kashyap, Avinash S.; Mantooth, H. Alan] Univ Arkansas, Fayetteville, AR 72701 USA. [Vo, Tuan A.; Mojarradi, Mohammad] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kashyap, AS (reprint author), Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA. EM avi.kash@gmail.com; mantooth@uark.edu; tuan.a.vo@jpl.nasa.gov; mohammad.m.mojarradi@jpl.nasa.gov FU National Aeronautics and Space Administration [NNL05AA37C]; Jet Propulsion Laboratory; IBM SiGe FX Manuscript received October 15, 2009; revised March 1, 2010; accepted March 5, 2010. Date of publication April 15, 2010; date of current version May 19, 2010. This work was supported by the National Aeronautics and Space Administration under Grant NNL05AA37C. The review of this paper was arranged by Editor M. A. Shibib.; The authors would like to thank C. Moore, A. Keyes, M. Watson, M. Beatty, L. Nadeau of the National Aeronautics and Space Administration, E. Kolawa of the Jet Propulsion Laboratory, and the IBM SiGe development group for their support and the SiGe ETDP team for the many contributions, including B. Blalock, W. Johnson, R. Garbos, R. Berger, F. Dai, G. Niu, L. Peltz, P. McCluskey, M. Alles, R. Reed, A. Joseph, C. Eckert, J. Holmes, and J. D. Cressler. The authors would also like to thank NXP Semiconductors for providing the Verilog-A code of the MM20 model and Lynguent for providing ModLyng. NR 18 TC 7 Z9 7 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD JUN PY 2010 VL 57 IS 6 BP 1431 EP 1439 DI 10.1109/TED.2010.2046073 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 599BD UT WOS:000277884100031 ER PT J AU Huang, SW Tsang, L Njoku, EG Chan, KS AF Huang, Shaowu Tsang, Leung Njoku, Eni G. Chan, Kuan Shan TI Backscattering Coefficients, Coherent Reflectivities, and Emissivities of Randomly Rough Soil Surfaces at L-Band for SMAP Applications Based on Numerical Solutions of Maxwell Equations in Three-Dimensional Simulations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave remote sensing; soil moisture; random rough surface; NMM3D ID MONTE-CARLO SIMULATIONS; BOUNDARY-CONDITION METHOD; SCATTERING; ENHANCEMENT; MOISTURE; WAVES AB We used Numerical Maxwell Model in 3-D Simulations (NMM3D) to study the backscattering coefficients, coherent reflectivities, and emissivities of soil surfaces using Gaussian random rough surfaces with exponential correlation functions. The surface area used is 8 by 8 square wavelengths. A total of close to 200 cases are computed by varying rms height, correlation length, and soil permittivity. We consider a 40 degrees incidence angle. For each case, 15 realizations of rough surface profiles are generated, and 30 solutions of Maxwell equations are computed because of two polarizations. The method for solving the Maxwell equations is based on the Method of Moments (MoM) with Rao-Wilton-Glisson (RWG) basis functions. The solutions are accelerated by the sparse matrix canonical grid method implemented on parallel computing. The rms height varies up to 0.126 wavelength. The results are compared with the Dubois formulation, Small Perturbation Method (SPM), Kirchhoff Approximation (KA), and Advanced Integral Equation Model (AIEM). The NMM3D results are also compared with VV and HH backscatter data of soil surfaces where ground truth rms heights and correlation lengths were both measured. Good agreement is found between the NMM3D results and experimental measurement data. Based on the computed cases, interpolation tables are derived that can be directly applied to L-band active and passive microwave remote sensing of soil moisture, such as for the upcoming Soil Moisture Active and Passive (SMAP) mission. C1 [Huang, Shaowu; Tsang, Leung] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chan, Kuan Shan] Natl Cent Univ, Ctr Space & Remote Sensing Res, Chungli 32054, Taiwan. RP Huang, SW (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM tsang@ee.washington.edu FU National Aeronautics and Space Administration's Soil Moisture Active and Passive mission FX Manuscript received October 18, 2009; revised December 22, 2009. Date of publication March 18, 2010; date of current version May 19, 2010. This work was supported by the National Aeronautics and Space Administration's Soil Moisture Active and Passive mission. NR 24 TC 46 Z9 47 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2010 VL 48 IS 6 BP 2557 EP 2568 DI 10.1109/TGRS.2010.2040748 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 597PY UT WOS:000277772200010 ER PT J AU Larsen, KW Jurgens, RF Haldemann, AFC Slade, MA Rumsey, HC AF Larsen, Kristopher W. Jurgens, Raymond F. Haldemann, Albert F. C. Slade, Martin A. Rumsey, Howard C., Jr. TI Terrestrial Quadstatic Interferometric Radar Observations of Mars SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Planets; radar data processing; radio interferometry; remote sensing ID MARTIAN TOPOGRAPHY; SURFACE-PROPERTIES; LUNAR TOPOGRAPHY; VENUS; EXPLORATION; LOCALIZATION; BRIGHTNESS; SCATTERING; IMAGES; TITAN AB A new technique for resolving the ambiguity inherent in delay-Doppler radar observations of Mars has been developed and implemented using a suite of data collected during 2001, 2003, and 2005 oppositions. New recording systems, processing techniques, and, most importantly, the addition of a fourth receiving telescope allow for the high-resolution mapping of Mars' radar properties. In this paper, we develop a maximum likelihood method to probabilistically estimate the contributions to the received radar signal from the ambiguous resolution cells. Our delay-Doppler interferometric radar observations are designed to map the radar properties of Mars surface while disregarding the historically typical goal of measuring topography, instead using Mars' topography as a priori knowledge. Example data from the September 27, 2003 observation over Mars' southern highlands, including Ma'adim Vallis and Gusev Crater, and the June 7, 2001 observation crossing Terra Meridiani are presented to demonstrate the effectiveness of the technique. Analysis of these observations predicted a root-mean-square ( rms) roughness, or slopes, for the Mars Exploration Rover ( MER) Spirit landing site of 1.80 degrees +/- 0.75 degrees. Similarly, analysis of the Gusev Crater landing site of MER Opportunity predicted rms slopes of 1.1 degrees +/- 0.1 degrees. Both predictions were validated by analysis of in situ rover images. C1 [Larsen, Kristopher W.; Jurgens, Raymond F.; Haldemann, Albert F. C.; Slade, Martin A.; Rumsey, Howard C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Larsen, KW (reprint author), Amer Phys Soc, Washington, DC 20004 USA. EM Larsen.Kristopher@gmail.com NR 47 TC 1 Z9 1 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2010 VL 48 IS 6 BP 2670 EP 2684 DI 10.1109/TGRS.2010.2040084 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 597PY UT WOS:000277772200020 ER PT J AU Skuza, JR Clavero, C Yang, K Wincheski, B Lukaszew, RA AF Skuza, J. R. Clavero, C. Yang, K. Wincheski, B. Lukaszew, R. A. TI Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films With Perpendicular Magnetic Anisotropy SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Magnetic domains; perpendicular magnetic anisotropy (PMA); perpendicular magnetic recording; thin films ID CHEMICAL ORDER; STRAIN RELAXATION; LAYER THICKNESS; GROWTH AB L1(0) order was optimized in FePd epitaxial thin films prepared using dc magnetron sputter deposition on MgO(001) substrates by investigating various growth temperatures. A series of films was grown at the optimal temperature with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured magnetic domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy. C1 [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Clavero, C.; Yang, K.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Wincheski, B.] NASA, Nondestruct Evaluat Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Skuza, JR (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM jrskuza@wm.edu RI Skuza, Jonathan/E-9048-2010; Clavero, Cesar/C-4391-2008; Yang, Kaida/K-7916-2012 OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141; Yang, Kaida/0000-0003-2018-2625 FU Virginia Space Grant Consortium; National Science Foundation [DMR-0355171]; Research Corporation; American Chemical Society [PRF-41319-AC10] FX The authors would like to thank K. Seo, J. Lu, and S. A. Wolf for technical collaboration. This work was supported by the Virginia Space Grant Consortium, National Science Foundation (DMR-0355171), Research Corporation (Cottrell Scholar Award), and the American Chemical Society (PRF-41319-AC10). NR 24 TC 15 Z9 15 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUN PY 2010 VL 46 IS 6 BP 1886 EP 1889 DI 10.1109/TMAG.2009.2039923 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 601DH UT WOS:000278037800159 ER PT J AU Fox, BP Simmons-Potter, K Thomes, WJ Kliner, DAV AF Fox, Brian P. Simmons-Potter, Kelly Thomes, William J., Jr. Kliner, Dahv A. V. TI Gamma-Radiation-Induced Photodarkening in Unpumped Optical Fibers Doped With Rare-Earth Constituents SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Co-60; dose rate effects; passive irradiation; photodarkening; radiation-induced absorption; rare-earth doped fibers; unpumped amplifier ID SILICA FIBERS; AMPLIFIERS; POWER; ENVIRONMENT; GLASSES; GAIN AB Fibers doped with rare-earth constituents such as Er(3+) and Yb(3+) are exceedingly important to designers of fiber-optical systems due to their ability to amplify signals in the near infra-red, low-absorption regions of conventional silicate fibers. Extending the range of operating conditions for these systems to include adverse radiation environments requires a detailed study of the behavior of the fiber when subjected to relevant radiation fluxes of various cumulative doses and dose rates. Of particular interest in many applications is the effect of gamma radiation, which is known to degrade optical signal transmittance by creating absorption centers in the material. A study of radiation-induced photodarkening effect in unpumped Er(3), Yb(3+), and Er(3+)/Yb(3+) co-doped fibers under Co(60) gamma-irradiation is the focus of this paper. Specifically, the temporal evolution of the fiber transmittance in the near infra-red region from similar to 1.0 mu m-1.6 mu m was investigated, subjected to a multitude of exposure conditions spanning different dose-rates and total accumulated doses. The Er(3+)/Yb(3+) co-doped fiber was found to be the most radiation resistant, while the Er(3+) doped fiber was found to be the most radiation sensitive in this wavelength region. Dose rate and compositional dependencies were also observed in all fibers. C1 [Fox, Brian P.; Simmons-Potter, Kelly] Univ Arizona, Tucson, AZ USA. [Thomes, William J., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kliner, Dahv A. V.] JDS Uniphase Corp, Milpitas, CA 95035 USA. RP Fox, BP (reprint author), Univ Arizona, Tucson, AZ USA. EM kspotter@ece.arizona.edu FU University of Arizona and the State of Arizona TRIF funds; Laboratory Directed Research and Development, Sandia National Laboratories [DE-AC04-94AL85000] FX Manuscript received August 17, 2009; revised November 13, 2009; accepted January 13, 2010. Date of current version June 16, 2010. This work was supported jointly by the University of Arizona and the State of Arizona TRIF funds and by Laboratory Directed Research and Development, Sandia National Laboratories, under Contract DE-AC04-94AL85000. NR 36 TC 21 Z9 22 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2010 VL 57 IS 3 BP 1618 EP 1625 DI 10.1109/TNS.2010.2043854 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 611JV UT WOS:000278812300014 ER PT J AU De Geronimo, G Rehak, P Ackley, K Carini, G Chen, W Fried, J Keister, J Li, SR Li, Z Pinelli, DA Siddons, DP Vernon, E Gaskin, JA Ramsey, BD Tyson, TA AF De Geronimo, Gianluigi Rehak, Pavel Ackley, Kim Carini, Gabriella Chen, Wei Fried, Jack Keister, Jeffrey Li, Shaorui Li, Zheng Pinelli, Donald A. Siddons, D. Peter Vernon, Emerson Gaskin, Jessica A. Ramsey, Brian D. Tyson, Trevor A. TI ASIC for SDD-Based X-Ray Spectrometers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; charge sharing; high rate; LVDS; PUR; SDD ID SILICON DRIFT DETECTORS; CHARGE-SENSITIVE PREAMPLIFIER; CMOS PEAK DETECT; CONTINUOUS RESET; READOUT CIRCUIT; HOLD CIRCUITS; PULSE; JFET; CONFIGURATION; SPECTROSCOPY AB We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm(2) and dissipates with the sensor biased about 15 m W/cm(2). As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 degrees C show a FWHM of 145 eV at the 5.9 keV peak of a (55)Fe source, and less than 80 eV on a test-pulse line at 200 eV. C1 [De Geronimo, Gianluigi; Rehak, Pavel; Ackley, Kim; Carini, Gabriella; Chen, Wei; Fried, Jack; Keister, Jeffrey; Li, Shaorui; Li, Zheng; Pinelli, Donald A.; Siddons, D. Peter; Vernon, Emerson] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gaskin, Jessica A.; Ramsey, Brian D.] George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Tyson, Trevor A.] New Jersey Inst Technol, Newark, NJ 07102 USA. RP De Geronimo, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM degeronimo@bnl.gov; rehak@bnl.gov; ackley@bnl.gov; carini@bnl.gov; weichen@bnl.gov; jfried@bnl.gov; jkeister@bnl.gov; shaoruili@bnl.gov; zhengl@bnl.gov; pinelli@bnl.gov; siddons@bnl.gov; evernon@bnl.gov; jessica.gaskin@nasa.gov; brian.ramsey@nasa.gov; Tyson@adm.njit.edu NR 43 TC 10 Z9 10 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2010 VL 57 IS 3 BP 1654 EP 1663 DI 10.1109/TNS.2010.2044809 PN 3 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 611JV UT WOS:000278812300019 ER PT J AU Simon, D Simon, DL AF Simon, Dan Simon, Donald L. TI Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared-Residuals Approach SO IEEE TRANSACTIONS ON RELIABILITY LA English DT Article DE Aircraft turbofan engine; chi-squared distribution; confusion matrix; diagnosis probability matrix; fault detection and isolation ID DIAGNOSIS; SUPERVISION; OBSERVERS; ACTUATOR; SYSTEMS AB Given a system which can fail in 1 of n different ways, a fault detection and isolation (FDI) algorithm uses sensor data to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, also called a diagnosis probability matrix, which indicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper, we perform FDI using sum-of-squared residuals (SSRs). We assume that the sensor residuals are s-independent and Gaussian, which gives the SSRs chi-squared distributions. We then generate analytic lower, and upper bounds on the confusion matrix elements. This approach allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bounds are verified with simulated aircraft engine data. C1 [Simon, Dan] Cleveland State Univ, Dept Elect & Comp Engn, Cleveland, OH 44115 USA. [Simon, Donald L.] NASA Glenn Res Ctr, Cleveland, OH USA. RP Simon, D (reprint author), Cleveland State Univ, Dept Elect & Comp Engn, Cleveland, OH 44115 USA. EM d.j.simon@csuohio.edu; donald.l.simon@grc.nasa.gov FU NASA FX Manuscript received April 05, 2009; revised July 08, 2009, September 04, 2009, and October 16, 2009; accepted October 26, 2009. Date of publication-April 19, 2010; date of current version June 03, 2010. This work was supported by the NASA Faculty Fellowship Program. Associate Editor: H. Li. NR 28 TC 5 Z9 5 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9529 J9 IEEE T RELIAB JI IEEE Trans. Reliab. PD JUN PY 2010 VL 59 IS 2 BP 287 EP 296 DI 10.1109/TR.2010.2046772 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 607VO UT WOS:000278535600003 ER PT J AU Blackmore, L Ono, M Bektassov, A Williams, BC AF Blackmore, Lars Ono, Masahiro Bektassov, Askar Williams, Brian C. TI A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control SO IEEE TRANSACTIONS ON ROBOTICS LA English DT Article DE Chance constraints; hybrid discrete-continuous systems; nonholonomic motion planning; planning under stochastic uncertainty ID MARKOV LINEAR-SYSTEMS; ROBUST-CONTROL AB Robotic systems need to be able to plan control actions that are robust to the inherent uncertainty in the real world. This uncertainty arises due to uncertain state estimation, disturbances, and modeling errors, as well as stochastic mode transitions such as component failures. Chance-constrained control takes into account uncertainty to ensure that the probability of failure, due to collision with obstacles, for example, is below a given threshold. In this paper, we present a novel method for chance-constrained predictive stochastic control of dynamic systems. The method approximates the distribution of the system state using a finite number of particles. By expressing these particles in terms of the control variables, we are able to approximate the original stochastic control problem as a deterministic one; furthermore, the approximation becomes exact as the number of particles tends to infinity. This method applies to arbitrary noise distributions, and for systems with linear or jump Markov linear dynamics, we show that the approximate problem can be solved using efficient mixed-integer linear-programming techniques. We also introduce an important weighting extension that enables the method to deal with low-probability mode transitions such as failures. We demonstrate in simulation that the new method is able to control an aircraft in turbulence and can control a ground vehicle while being robust to brake failures. C1 [Blackmore, Lars] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ono, Masahiro; Williams, Brian C.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Bektassov, Askar] Eni E&P, I-00144 Rome, Italy. RP Blackmore, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lars@jpl.nasa.gov; hiro_ono@mit.edu; askar.bektassov@gmail.com; williams@mit.edu FU National Aeronautics and Space Administration (NASA) [NNA04CK91A] FX This work was supported by the National Aeronautics and Space Administration (NASA) under the NASA Award NNA04CK91A. NR 57 TC 84 Z9 87 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1552-3098 J9 IEEE T ROBOT JI IEEE Trans. Robot. PD JUN PY 2010 VL 26 IS 3 BP 502 EP 517 DI 10.1109/TRO.2010.2044948 PG 16 WC Robotics SC Robotics GA 607XW UT WOS:000278541600008 ER PT J AU Giannakopoulou, D Pasareanu, CS AF Giannakopoulou, Dimitra Pasareanu, Corina S. TI Automated Compositional Verification SO IET SOFTWARE LA English DT Editorial Material C1 [Giannakopoulou, Dimitra; Pasareanu, Corina S.] NASA, Ames Res Ctr, Robust Software Engn Grp, Washington, DC 20546 USA. [Pasareanu, Corina S.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Giannakopoulou, D (reprint author), NASA, Ames Res Ctr, Robust Software Engn Grp, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8806 J9 IET SOFTW JI IET Softw. PD JUN PY 2010 VL 4 IS 3 BP 179 EP 180 DI 10.1049/iet-sen.2010.9053 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 617CO UT WOS:000279258600001 ER PT J AU Nishikawa, KI Nimiec, J Medvedev, M Zhang, B Hardee, P Mizuno, Y Nordlund, A Frederiksen, J Sol, H Pohl, M Hartmann, DH Oka, M Fishman, JF AF Nishikawa, K. -I. Nimiec, J. Medvedev, M. Zhang, B. Hardee, P. Mizuno, Y. Nordlund, A. Frederiksen, J. Sol, H. Pohl, M. Hartmann, D. H. Oka, M. Fishman, J. F. TI RADIATION FROM RELATIVISTIC SHOCKS WITH TURBULENT MAGNETIC FIELDS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT International Meeting on High-Energy Phenomena in Relativistic Outflows II CY OCT 26-30, 2009 CL Burnod Aires, ARGENTINA DE Weibel instability; particle acceleration; radiation ID RAY BURST SOURCES; PARTICLE-ACCELERATION; COLLISIONLESS SHOCKS; WEIBEL INSTABILITY; PROMPT EMISSION; PLASMA; GENERATION; EVOLUTION AB Using our new 3D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. We have also performed simulations with electron-ion jets. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability for electron-positron jets and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks for pair plasma case. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value for pair plasmas. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time-dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on simulations with a small system with two different cases for Lorentz factors (15 and 100). We obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. C1 [Nishikawa, K. -I.; Mizuno, Y.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Nimiec, J.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Medvedev, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Zhang, B.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Hardee, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Nordlund, A.; Frederiksen, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Sol, H.] Observ Paris, LUTH, F-92195 Meudon, France. [Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Hartmann, D. H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Oka, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fishman, J. F.] NASA, MSFC, Huntsville, AL 35805 USA. RP Nishikawa, KI (reprint author), Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. RI Nordlund, Aake/M-4528-2014; Frederiksen, Jacob Trier/P-6757-2015; Mizuno, Yosuke/D-5656-2017 OI Nordlund, Aake/0000-0002-2219-0541; Frederiksen, Jacob Trier/0000-0002-3560-0044; Mizuno, Yosuke/0000-0002-8131-6730 NR 26 TC 7 Z9 7 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUN PY 2010 VL 19 IS 6 BP 715 EP 721 DI 10.1142/S0218271810016865 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 615MU UT WOS:000279140200012 ER PT J AU Gehrels, N Cannizzo, JK AF Gehrels, N. Cannizzo, J. K. TI GAMMA-RAY BURSTS - OBSERVATIONS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT International Meeting on High-Energy Phenomena in Relativistic Outflows II CY OCT 26-30, 2009 CL Burnod Aires, ARGENTINA ID 28 FEBRUARY 1997; HOST GALAXY; AFTERGLOW; GRB-050709; EMISSION; REDSHIFT; SUPERNOVAE; TELESCOPE; DISCOVERY; ORIGIN AB We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high-energy emission. C1 [Gehrels, N.; Cannizzo, J. K.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, CRESST,UMBC, Greenbelt, MD 20771 USA. RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, CRESST,UMBC, Greenbelt, MD 20771 USA. EM neil.gehrels@nasa.gov; john.k.cannizzo@nasa.gov RI Gehrels, Neil/D-2971-2012 NR 33 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUN PY 2010 VL 19 IS 6 BP 977 EP 984 DI 10.1142/S021827181001710X PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 615MU UT WOS:000279140200047 ER PT J AU Ponomarev, AL Huff, J Cucinotta, FA AF Ponomarev, Artem L. Huff, Janice Cucinotta, Francis A. TI The analysis of the densely populated patterns of radiation-induced foci by a stochastic, Monte Carlo model of DNA double-strand breaks induction by heavy ions SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE radiation of human cells; DNA damage foci; DSB; NASA Radiation Track Image model; image segmentation; Monte Carlo method ID HISTONE H2AX PHOSPHORYLATION; GAMMA-H2AX FOCI; IONIZING-RADIATION; PARTICLE RADIATION; EXPOSURE; REPAIR; CELLS; RAYS; DISTRIBUTIONS; VOLUMES AB Purpose: To resolve the difficulty in counting merged DNA damage foci in high-LET (linear energy transfer) ion-induced patterns. Materials and methods: The analysis of patterns of RIF (radiation-induced foci) produced by high-LET Fe and Ti ions were conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Results: The model predicts the spatial and genomic distributions of DNA DSB (double-strand breaks) in a cell nucleus for a particular dose of radiation. We used the model to do analyses for three irradiation scenarios: (i) The ions were oriented perpendicular to the flattened nuclei in a cell culture monolayer; (ii) the ions were parallel to that plane; and (iii) round nucleus. In the parallel scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to determine the DSB yield. Using the model analysis, a researcher can refine the DSB yield per nucleus per particle. We showed that purely geometric artifacts, present in the experimental images, can be analytically resolved with the model, and that the quantisation of track hits and DSB yields can be provided to the experimentalists who use enumeration of radiation-induced foci in immunofluorescence experiment using proteins that detect DNA damage. C1 [Ponomarev, Artem L.; Huff, Janice; Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ponomarev, Artem L.; Huff, Janice] Univ Space Res Assoc, Houston, TX USA. RP Ponomarev, AL (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code SK,2101 NASA Pkwy,Bldg 37,119, Houston, TX 77058 USA. EM artem.l.ponomarev@nasa.gov FU NASA [DE-AIO2-09ER64843] FX The simulations were done on the NASA JSC Beowulf cluster machine. Funding was through the NASA Risk Assessment Project, #DE-AIO2-09ER64843 NR 19 TC 10 Z9 10 U1 2 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JUN PY 2010 VL 86 IS 6 BP 507 EP 515 DI 10.3109/09553001003717175 PG 9 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 620EO UT WOS:000279482000009 PM 20470200 ER PT J AU de los Rios, A Valea, S Ascaso, C Davila, A Kastovsky, J Mckay, CP Gomez-Silva, B Wierzchos, J AF de los Rios, Asuncion Valea, Sergio Ascaso, Carmen Davila, Alfonso Kastovsky, Jan Mckay, Christopher P. Gomez-Silva, Benito Wierzchos, Jacek TI Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert SO INTERNATIONAL MICROBIOLOGY LA English DT Article DE Archaea; Bacteria; Cyanobacteria; prokaryotic diversity; halite evaporites; Atacama Desert ID PROKARYOTIC GENETIC DIVERSITY; MULTIPOND SOLAR SALTERN; NORTHERN CHILE; HALOCOCCUS-SALIFODINAE; BACTERIAL DIVERSITY; SALINITY GRADIENT; ARCHAEAL ISOLATE; SP-NOV.; CYANOBACTERIA; LIFE AB Molecular biology and microscopy techniques were used to characterize the microbial communities inside halite evaporites from different parts of the Atacama Desert. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the evaporite rocks harbor communities predominantly made up of cyanobacteria, along with heterotrophic bacteria and archaea. Different DGGE profiles were obtained for the different sites, with the exception of the cyanobacterial profile, in which only one phylotype was detected across the three sites examined. Chroococcidiopsis-like cells were the only cyanobacterial components of the rock samples, although the phylogenetic study revealed their closer genetic affinity to Halothece genera. Gene sequences of the heterotrophic bacteria and archaea indicated their proximity to microorganisms found in other hypersaline environments. Microorganisms colonizing these halites formed microbial aggregates in the pore spaces between halite crystals, where microbial interactions occur. In this exceptional, salty, porous halite rock habitat, microbial consortia with a community structure probably conditioned by the environmental conditions occupy special microhabitats with physical and chemical properties that promote their survival. [Int Microbiol 2010; 13(2):79-89] C1 [de los Rios, Asuncion; Valea, Sergio; Ascaso, Carmen; Wierzchos, Jacek] CSIC, CCMA, Inst Recursos Natur, Madrid 28006, Spain. [Davila, Alfonso] SETI Inst, Mountain View, CA USA. [Kastovsky, Jan] Univ S Bohemia, Fac Sci, Ceske Budejovice, Czech Republic. [Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gomez-Silva, Benito] Univ Antofagasta, Biochem Unit, Antofagasta, Chile. RP de los Rios, A (reprint author), CSIC, CCMA, Inst Recursos Natur, 115 Bis, Madrid 28006, Spain. EM arios@ccma.csic.es RI Wierzchos, Jacek/F-7036-2011; Ascaso, Carmen/F-5369-2011; Davila, Alfonso/A-2198-2013; de los Rios, Asuncion/L-3694-2014 OI Wierzchos, Jacek/0000-0003-3084-3837; Ascaso, Carmen/0000-0001-9665-193X; Davila, Alfonso/0000-0002-0977-9909; de los Rios, Asuncion/0000-0002-0266-3516 FU Spanish Ministry of Science and Innovation [CGL2007-62875/BOS, CGL2006-04658, CTM2009-12838-CO4-O3]; CSIC, Spain [PIE-631A, PIE-200630/184] FX The authors thank Fernando Pinto and Maria J. Malo for their technical assistance, Sergio Perez-Ortega for useful comments concerning the phylogenetic analysis, and Ana Burton for revising the English. This work was supported by grant CGL2007-62875/BOS, CGL2006-04658 and CTM2009-12838-CO4-O3 from the Spanish Ministry of Science and Innovation and grants PIE-631A and PIE-200630/184 from the CSIC, Spain. NR 50 TC 40 Z9 40 U1 2 U2 39 PU VIGUERA EDITORES, S L PI BARCELONA PA PLAZA TETUAN, 7, BARCELONA, E-08010, SPAIN SN 1139-6709 J9 INT MICROBIOL JI Int. Microbiol. PD JUN PY 2010 VL 13 IS 2 BP 79 EP 89 DI 10.2436/20.1501.01.113 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 648PI UT WOS:000281706000004 PM 20890842 ER PT J AU Han, M Braun, SA Olson, WS Persson, POG Bao, JW AF Han, Mei Braun, Scott A. Olson, William S. Persson, P. Ola G. Bao, Jian-Wen TI Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 for a Winter Storm SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID REMOTE-SENSING APPLICATIONS; MELTING-LAYER MODEL; PART II; PRECIPITATION; SIMULATIONS; PARAMETERIZATION; SENSITIVITY; CONVECTION; MESOSCALE; EVOLUTION AB This paper uses observations from Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI) to evaluate the cloud microphysical schemes in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5; version 3.7.4) for a wintertime frontal precipitation system over the eastern Pacific Ocean. By incorporating a forward radiative transfer model, the radar reflectivity and brightness temperatures are simulated and compared with the observations at PR and TMI frequencies. The main purpose of this study is to identify key differences among the five schemes [including Simple ice, Reisner1, Reisner2, Schultz, and Goddard Space Flight Center (GSFC) microphysics scheme] in the MM5 that may lead to significant departures of simulated precipitation properties from both active (PR) and passive (TMI) microwave observations. Radiative properties, including radar reflectivity, attenuation, and scattering in precipitation liquid and ice layers are investigated. In the rain layer, most schemes are capable of reproducing the observed radiative properties to a reasonable degree; the Reisner2 simulation, however, produces weaker reflectivity and stronger attenuation than the observations, which is possibly attributable to the larger intercept parameter (N(0r)) applied in this run. In the precipitation ice layer, strong evidence regarding the differences in the microphysical and radiative properties between a narrow cold-frontal rainband (NCFR) and a wide cold-frontal rainband (WCFR) within this frontal precipitation system is found. The performances of these schemes vary significantly on simulating the microphysical and radiative properties of the frontal rainband. The GSFC scheme shows the least bias, while the Reisner1 scheme has the largest bias in the reflectivity comparison. It appears more challenging for the model to replicate the scattering signatures obtained by the passive sensor (TMI). Despite the common problem of excessive scattering in the WCFR (stratiform precipitation) region in every simulation, the magnitude of the scattering maximum seems better represented in the Reisner2 scheme. The different types of precipitation ice, snow, and graupel are found to behave differently in the relationship of scattering versus reflectivity. The determinative role of the precipitation ice particle size distribution (intercept parameters) is extensively discussed through sensitivity tests and a single-layer radiative transfer model. C1 [Han, Mei] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Han, Mei; Braun, Scott A.; Olson, William S.] NASA, Mesoscale Atmospher Proc Branch, Atmospheres Lab, GSFC, Greenbelt, MD 20771 USA. [Olson, William S.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Persson, P. Ola G.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Persson, P. Ola G.; Bao, Jian-Wen] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Han, M (reprint author), NASA, Mesoscale Atmospher Proc Branch, Atmospheres Lab, GSFC, Code 613-1, Greenbelt, MD 20771 USA. EM mei.han@nasa.gov RI Han, Mei/H-2344-2012 FU NASA FX The authors thank Dr. Paul Schultz at the NOAA/ESRL for his great help on understanding the Schultz scheme in the MM5. The author is very grateful for many beneficial discussions related to cloud modeling and radar with Drs. Xiaowen Li, Lin Tian, Mircea Grecu, Steve Lang, and Lihua Li at NASA/GSFC. Suggestions from Dr. Grant W. Petty at University of Wisconsin-Madison in the early stage of this study are greatly appreciated. The authors also gratefully acknowledge two anonymous reviewers and Dr. Benjamin Johnson at NASA/GSFC for their very valuable comments. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA Precipitation Measurement Mission science program. NR 33 TC 7 Z9 7 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUN PY 2010 VL 49 IS 6 BP 1129 EP 1148 DI 10.1175/2010JAMC2327.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634SC UT WOS:000280604200005 ER PT J AU Komatsu, H Hashimoto, H Kume, T Tanaka, N Yoshifuji, N Otsuki, K Suzuki, M Kumagai, T AF Komatsu, Hikaru Hashimoto, Hirofumi Kume, Tomonori Tanaka, Nobuaki Yoshifuji, Natsuko Otsuki, Kyoichi Suzuki, Masakazu Kumagai, Tomo'omi TI Modeling Seasonal Changes in the Temperature Lapse Rate in a Northern Thailand Mountainous Area SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID INDO-CHINA PENINSULA; CRYPTOMERIA-JAPONICA PLANTATION; NOCTURNAL DRAINAGE FLOW; DRY VALLEY SLOPES; SURFACE CONDUCTANCE; CANOPY CONDUCTANCE; SLOPING FOREST; GROWING-SEASON; WATER-BALANCE; MONSOON AB Temperature data in the mountain forest regions are often extrapolated from temperature data recorded at base stations at lower elevation. Such extrapolation is often based on elevation differences between target regions and base stations at low elevation assuming a constant temperature lapse rate throughout the year. However, this assumption might be problematic where slope circulation is active and decoupled from the regional circulation. To model the seasonal change in the lapse rate, the authors compared daily maximum (T-max) and minimum temperatures (T-min) observed at a mountain forest site (Kog-Ma; 1300-m altitude) with those observed at the bottom of the basin (Chiang-Mai; 314-m altitude) in northern Thailand, where slope circulation is active and decoupled from the regional circulation. The difference in T-max between Kog-Ma and Chiang-Mai (Delta T-max; Kog-Ma minus Chiang-Mai) was relatively unchanged throughout the year. However, the difference in T-min between Kog-Ma and Chiang-Mai (Delta T-min) changed seasonally. Thus, assuming a constant lapse rate throughout the year could cause large errors in extrapolating T-min data in mountainous areas in northern Thailand. The difference Delta T-min was related to nighttime net radiation (Rn), suggesting that nocturnal drainage flow affects the determination of Delta T-min. This relationship would be useful in formulating seasonal changes in the lapse rate for T-min. As Rn data are generally unavailable for meteorological stations, an index that relates to the lapse rate for T-min and is calculated from T-max and T-min data is proposed. This index might be useful for accurately estimating T-min values in mountainous regions in northern Thailand. C1 [Komatsu, Hikaru; Yoshifuji, Natsuko; Otsuki, Kyoichi; Kumagai, Tomo'omi] Kyushu Univ, Kasuya Res Forest, Fukuoka 8112415, Japan. [Hashimoto, Hirofumi] Calif State Univ Monterey Bay, Div Sci & Environm Policy, Seaside, CA USA. [Hashimoto, Hirofumi] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kume, Tomonori] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 10764, Taiwan. [Tanaka, Nobuaki] Univ Tokyo, Grad Sch Agr & Life Sci, Univ Forests Aichi, Tokyo, Japan. RP Komatsu, H (reprint author), Kyushu Univ, Kasuya Res Forest, 394 Tsubakuro, Fukuoka 8112415, Japan. EM komatsu@forest.kyushu-u.ac.jp RI Kumagai, Tomo'omi/A-4791-2011 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [20780119, 20248014]; Core Research for Evolution Science and Technology of the Japan Science and Technology Agency FX This research was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology through a Grant-in-Aid for Scientific Research (20780119 and 20248014) and by Core Research for Evolution Science and Technology of the Japan Science and Technology Agency. We express our great appreciation to the Thai Meteorological Department and Prof. Jun Matsumoto (TokyoMetropolitan University, Japan) for allowing us to use rainfall data recorded at Chiang-Mai. We also thank Dr. Daisuke Komori (The University of Tokyo, Japan) and Dr. Takehiko Satomura (Kyoto University, Japan) for describing the instrumentation used at the Chiang-Mai station. We are grateful to Dr. Yoshiyuki Miyazawa (Kyushu University, Japan) for fruitful discussion on the photosynthesis of evergreen trees. We acknowledge three anonymous reviewers for providing critical comments. NR 66 TC 6 Z9 6 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUN PY 2010 VL 49 IS 6 BP 1233 EP 1246 DI 10.1175/2010JAMC2297.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634SC UT WOS:000280604200011 ER PT J AU Priestley, KJ Thomas, S Smith, GL AF Priestley, Kory J. Thomas, Susan Smith, G. Louis TI Validation of Point Spread Functions of CERES Radiometers by the Use of Lunar Observations SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID ENERGY SYSTEM CERES; CLOUDS AB The Clouds and the Earth's Radiant Energy System (CERES) scanning radiometers have been operating to make raster scans of the moon on a quarterly basis to validate the point response function for the three channels of flight models 1-4 aboard the Terra and Aqua spacecraft. Instrument pointing accuracy was verified by this method to 0.28 for the total channel of FM-3. The point response functions were computed from the lunar observations and were found to be nominal with the exception of the FM-2 window channel, which was found to have a region of high sensitivity. This anomaly is attributed to a delamination of the detector flake from the heat sink in that region. The influence of this anomaly is accounted for by the in-flight calibration and has no adverse effect on the application of the data. C1 [Priestley, Kory J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thomas, Susan] Sci Syst Applicat Inc, Hampton, VA USA. [Smith, G. Louis] Natl Inst Aerosp, Hampton, VA USA. RP Priestley, KJ (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM g.louis.smith@nasa.gov FU Earth Science Office of NASA; Sciences Directorate of the Langley Research Center; National Institute for Aerospace FX The authors gratefully acknowledge the support of the CERES Program by the Earth Science Office of NASA and the Sciences Directorate of the Langley Research Center for contract support of Science Systems Applications, Inc. and National Institute for Aerospace. NR 10 TC 10 Z9 10 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUN PY 2010 VL 27 IS 6 BP 1005 EP 1011 DI 10.1175/2010JTECHA1322.1 PG 7 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 615AR UT WOS:000279103600005 ER PT J AU Kuttippurath, J Kleinbohl, A Bremer, H Kullmann, H Notholt, J Sinnhuber, BM Feng, WH Chipperfield, M AF Kuttippurath, Jayanarayanan Kleinboehl, Armin Bremer, Holger Kuellmann, Harry Notholt, Justus Sinnhuber, Bjoern-Martin Feng, Wuhu Chipperfield, Martyn TI Aircraft measurements and model simulations of stratospheric ozone and N2O: implications for chemistry and transport processes in the models SO JOURNAL OF ATMOSPHERIC CHEMISTRY LA English DT Article DE Airborne measurements; Stratospheric ozone; Chemical transport model; ASUR; CTMB; SLIMCAT; UCI; Parameterised chemistry ID GENERAL-CIRCULATION MODEL; MIDLATITUDE STRATOSPHERE; TROPICAL STRATOSPHERE; 3-DIMENSIONAL MODEL; MIDDLE ATMOSPHERE; SATELLITE DATA; CLIMATOLOGY; VALIDATION; SPECTROMETER; TEMPERATURE AB Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February-March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O-3 and N2O, among others, spanning a latitude from 5A degrees S to 80A degrees N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February-March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O-3 and N2O values, where the differences are within 1 ppmv for O-3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O-3 (1-1.5 ppmv) and the tropical lower stratospheric N2O (15-30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes. C1 [Kuttippurath, Jayanarayanan] UPMC, LATMOS, CNRS, Paris, France. [Kuttippurath, Jayanarayanan; Kleinboehl, Armin; Bremer, Holger; Kuellmann, Harry; Notholt, Justus; Sinnhuber, Bjoern-Martin] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Kleinboehl, Armin] NASA, JPL, CALTECH, Pasadena, CA USA. [Bremer, Holger] Phys Tech Bundesanstalt, D-3300 Braunschweig, Germany. [Sinnhuber, Bjoern-Martin] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany. [Feng, Wuhu; Chipperfield, Martyn] Univ Leeds, Sch Environm, Leeds, W Yorkshire, England. RP Kuttippurath, J (reprint author), UPMC, LATMOS, CNRS, 4 Pl Jussieu, Paris, France. EM jayan@aero.jussieu.fr RI Sinnhuber, Bjorn-Martin/A-7007-2013; Chipperfield, Martyn/H-6359-2013; FENG, WUHU/B-8327-2008; Notholt, Justus/P-4520-2016 OI Sinnhuber, Bjorn-Martin/0000-0001-9608-7320; Chipperfield, Martyn/0000-0002-6803-4149; FENG, WUHU/0000-0002-9907-9120; Notholt, Justus/0000-0002-3324-885X FU German contribution [FKZ 50EE 0022]; ESA [349] FX The authors thank Dr. C. McLinden and Dr. S. Olsen for their discussion about the parameterised chemistry schemes with them and for the UCI and UCI-GISS model data. The HALOE v18 climatology was provided by Dr. William Randel and is greatly appreciated. They also thank M. Milz, G. Stiller and T. von Clarmann for the MIPAS IMK v3 data. JK thank Dr. Gang Hong for Dr. Hong's help during the study period. The in-house Bremen ozone climatology was acquired through http://www.iup.physik.uni-bremen.de/gome/o3climatology. The authors thank M. Weber and L.N. Lamsal for making available the climatology for this study. The HALOE v19 data were downloaded from http://haloe.gats-inc.com/home/index.php, the SHADOZ data from http://croc.gsfc.nasa.gov/shadoz/, and the POAM-3 data from http://wvms.nrl.navy.mil/POAM/poam.html. The authors thank the HALOE, SHADOZ, and POAM scientific teams for their data. The project was funded by the German contribution to the ENVISAT validation under the contract FKZ 50EE 0022 and is a part of the ESA proposal A.O.ID 349. NR 61 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-7764 EI 1573-0662 J9 J ATMOS CHEM JI J. Atmos. Chem. PD JUN PY 2010 VL 66 IS 1-2 BP 41 EP 64 DI 10.1007/s10874-011-9191-4 PG 24 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 806ES UT WOS:000293789700004 ER PT J AU Yu, JY Kao, HY Lee, T AF Yu, Jin-Yi Kao, Hsun-Ying Lee, Tong TI Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific SO JOURNAL OF CLIMATE LA English DT Article ID TROPOSPHERIC BIENNIAL OSCILLATION; EL-NINO; SOUTHERN-OSCILLATION; MONSOON RAINFALL; OCEAN; ENSO; NONLINEARITY; CIRCULATIONS; ANOMALIES; MODEL AB Interannual sea surface temperature (SST) variability in the central equatorial Pacific consists of a component related to eastern Pacific SST variations (called Type-1 SST variability) and a component not related to them (called Type-2 SST variability). Lead-lagged regression and ocean surface-layer temperature balance analyses were performed to contrast their control mechanisms. Type-1 variability is part of the canonical, which is characterized by SST anomalies extending from the South American coast to the central Pacific, is coupled with the Southern Oscillation, and is associated with basinwide subsurface ocean variations. This type of variability is dominated by a major 4-5-yr periodicity and a minor biennial (2-2.5 yr) periodicity. In contrast, Type-2 variability is dominated by a biennial periodicity, is associated with local air-sea interactions, and lacks a basinwide anomaly structure. In addition, Type-2 SST variability exhibits a strong connection to the subtropics of both hemispheres, particularly the Northern Hemisphere. Type-2 SST anomalies appear first in the northeastern subtropical Pacific and later spread toward the central equatorial Pacific, being generated in both regions by anomalous surface heat flux forcing associated with wind anomalies. The SST anomalies undergo rapid intensification in the central equatorial Pacific through ocean advection processes, and eventually decay as a result of surface heat flux damping and zonal advection. The southward spreading of trade wind anomalies within the northeastern subtropics-to-central tropics pathway of Type-2 variability is associated with intensity variations of the subtropical high. Type-2 variability is found to become stronger after 1990, associated with a concurrent increase in the subtropical variability. It is concluded that Type-2 interannual variability represents a subtropical-excited phenomenon that is different from the conventional ENSO Type-1 variability. C1 [Yu, Jin-Yi; Kao, Hsun-Ying] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kao, HY (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jyyu@uci.edu RI Yu, Jin-Yi/G-3413-2011 OI Yu, Jin-Yi/0000-0001-6156-7623 FU NSF [ATM-0925396]; NASA [NNX06AF49H]; JPL [1290687] FX We thank two anonymous reviewers and Dr. Shang-Ping Xie for their constructive and helpful comments. This research was support by NSF Grant ATM-0925396, NASA Grant NNX06AF49H, and JPL Subcontract 1290687. The GECCO data was downloaded from http://www.ecco-group.org. Data analyses were performed at University of California, Irvine's Earth System Modeling Facility. NR 36 TC 86 Z9 92 U1 5 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN PY 2010 VL 23 IS 11 BP 2869 EP 2884 DI 10.1175/2010JCLI3171.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 611AR UT WOS:000278783300004 ER PT J AU Twigg, ME Picard, YN Caldwell, JD Eddy, CR Mastro, MA Holm, RT Neudeck, PG Trunek, AJ Powell, JA AF Twigg, M. E. Picard, Y. N. Caldwell, J. D. Eddy, C. R., Jr. Mastro, M. A. Holm, R. T. Neudeck, P. G. Trunek, A. J. Powell, J. A. TI Diffraction Contrast of Threading Dislocations in GaN and 4H-SiC Epitaxial Layers Using Electron Channeling Contrast Imaging SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Defects - Recognition, Imaging and Physics in Semiconductors (DRIP XIII) CY SEP 13-17, 2009 CL Oglebay, WV SP Minerals, Met & Mat Soc, FEI, Semilab, Quantum Focus, Off Naval Res, Air Force Off Sci Res, Army Res Off DE Dislocations; gallium nitride; silicon carbide; scanning electron microscopy; electron channeling; electron diffraction ID SURFACE AB Forescattered electron channeling contrast imaging (ECCI) offers the potential for imaging and analyzing extended defects in a scanning electron microscope (SEM). Indeed, it is shown that ECCI is able to determine the Burgers vector of threading dislocations with the aid of carefully determined experimental parameters and accompanying image simulations. Simulations are compared with ECC images from samples with features that are relatively easily studied and modeled: those based on specially engineered 4H-SiC mesa substrates. These mesas serve as substrates for both homoepitaxial 4H-SiC layers and heteroepitaxial GaN layers in which images of threading dislocations (TDs) have been recorded using ECCI and found to strongly resemble diffraction contrast simulations of TD intensity profiles. C1 [Twigg, M. E.; Picard, Y. N.; Caldwell, J. D.; Eddy, C. R., Jr.; Mastro, M. A.; Holm, R. T.] USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA. [Picard, Y. N.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Neudeck, P. G.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Trunek, A. J.] OAI, Cleveland, OH 44135 USA. [Powell, J. A.] Sest Inc, Cleveland, OH 44135 USA. RP Twigg, ME (reprint author), USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA. EM twigg@estd.nrl.navy.mil RI Caldwell, Joshua/B-3253-2008; OI Caldwell, Joshua/0000-0003-0374-2168; Picard, Yoosuf/0000-0002-2853-5213 NR 19 TC 6 Z9 6 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2010 VL 39 IS 6 BP 743 EP 746 DI 10.1007/s11664-010-1143-2 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 596UW UT WOS:000277712000025 ER PT J AU Holdeman, JD Clisset, JR Moder, JP AF Holdeman, J. D. Clisset, J. R. Moder, J. P. TI Spreadsheet Calculations for Jets in Crossflow From Single and Opposed Rows With Alternating Hole Sizes SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE flow; jets ID MULTIPLE JETS AB The primary purpose of this study was to show the expected results for cases of single and opposed rows of jets from alternating large and small round holes. Previous publications demonstrated that the NASA empirical model gave results that were an excellent representation of mean experimental scalar results and that the model could confidently be used to investigate configurations for which results have not been published in the open literature. Calculations for cases of opposed rows of jets that would overpenetrate slightly in an inline configuration showed that better mixing was attained when one row was shifted to make a staggered configuration so that a small hole was opposite from a larger one. However, the result was no better than for an optimum inline configuration with all the holes of the same size. Staggering the rows does not make much difference in an optimum inline configuration. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance, but, at a given downstream location, the variation between cases was small. C1 [Moder, J. P.] NASA, Glenn Res Ctr, Prop Syst Div, Combust Branch, Cleveland, OH 44135 USA. [Clisset, J. R.] Univ Florida, Gainesville, FL 32611 USA. EM jjdholdeman@aol.com FU NASA Glenn Research Center; United Technologies Research Center; Michigan State University; University of California-Irvine; Gas Turbine Combustion FX The authors would particularly like to thank Mr. Richard E. Walker (Aerojet Liquid Rocket Co., retired) and Dr. Ram Srinivasan (then of Garrett Turbine Engine Co.) for their contributions to the NASA JIC empirical model, and to Professor William E. Lear of the University of Florida for suggesting that the original computer code, written in Applesoft (R) BASIC on a 64K Apple //e (R), could be rendered in an Excel (R) spreadsheet and for directing the development of the spreadsheet at UF. The authors also wish to acknowledge the contributions to the spreadsheet made by Mr. Gilbert F. Canton (then at UF) and Mr. Joel P. Scheuer (then a LERCIP participant at NASA Glenn) and appreciate the support and encouragement from Mr. Timothy D. Smith, Dr. Clarence T. Chang, and Dr. C. John Marek (retired) at the NASA Glenn Research Center, Mr. David S. Liscinsky of the United Technologies Research Center, Professor John F. Foss of Michigan State University, Professor G. Scott Samuelsen of the University of California-Irvine, and the late Professor Arthur H. Lefebvre, author of Gas Turbine Combustion. NR 12 TC 2 Z9 3 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUN PY 2010 VL 132 IS 6 AR 064502 DI 10.1115/1.4000129 PG 7 WC Engineering, Mechanical SC Engineering GA 576WS UT WOS:000276181300020 ER PT J AU Mazarico, E Neumann, GA Rowlands, DD Smith, DE AF Mazarico, Erwan Neumann, G. A. Rowlands, D. D. Smith, D. E. TI Geodetic constraints from multi-beam laser altimeter crossovers SO JOURNAL OF GEODESY LA English DT Article DE Laser altimeter; Crossover; Orbit determination; Moon; Multi-beam ID MARS GLOBAL SURVEYOR; NEAR-SHOEMAKER; GRAVITY-FIELD; MOON AB The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric "crossovers", to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those "swath crossovers". They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO. C1 [Mazarico, Erwan; Neumann, G. A.; Rowlands, D. D.; Smith, D. E.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Mazarico, Erwan] Oak Ridge Associated Univ, NASA Postdoctral Program, NASA GSFC, Oak Ridge, TN 37831 USA. [Smith, D. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Mazarico, E (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM erwan.m.mazarico@nasa.gov RI Rowlands, David/D-2751-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU NASA; Lunar Reconnaissance Orbiter project FX EM was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We thank the Lunar Reconnaissance Orbiter project for their support of this work. We thank three anonymous reviewers for comments which improved the manuscript. NR 19 TC 10 Z9 12 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD JUN PY 2010 VL 84 IS 6 BP 343 EP 354 DI 10.1007/s00190-010-0379-1 PG 12 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 594PU UT WOS:000277550500001 ER PT J AU Ferguson, IM Dracup, JA Duffy, PB Pegion, P Schubert, S AF Ferguson, Ian M. Dracup, John A. Duffy, Philip B. Pegion, Philip Schubert, Siegfried TI Influence of SST Forcing on Stochastic Characteristics of Simulated Precipitation and Drought SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SEA-SURFACE TEMPERATURE; MOISTURE-RAINFALL FEEDBACK; NINO-SOUTHERN OSCILLATION; WESTERN UNITED-STATES; LONG-TERM DROUGHT; US GREAT-PLAINS; SOIL-MOISTURE; SEASONAL PREDICTION; GCM SIMULATIONS; NORTH-AMERICA AB Recent studies demonstrate that ocean-atmosphere forcing by persistent sea surface temperature (SST) anomalies is a primary driver of seasonal-to-interannual hydroclimatic variability, including drought events. Other studies, however, conclude that although SST anomalies influence the timing of drought events, their duration and magnitude over continental regions is largely governed by land-atmosphere feedbacks. Here the authors evaluate the direct influence of SST anomalies on the stochastic characteristics of precipitation and drought in two ensembles of AGCM simulations forced with observed (interannually varying) monthly SST and their climatological annual cycle, respectively. Results demonstrate that ocean-atmosphere forcing contributes to the magnitude and persistence of simulated seasonal precipitation anomalies throughout the tropics but over few mid- and high-latitude regions. Significant autocorrelation of simulated seasonal anomalies over oceans is directly forced by persistent SST anomalies; over land, SST anomalies are shown to enhance autocorrelation associated with land-atmosphere feedbacks. SST anomalies are shown to have no significant influence on simulated drought frequency, duration, or magnitude over most midlatitude land regions. Results suggest that severe and sustained drought events may occur in the absence of persistent SST forcing and support recent conclusions that ocean-atmosphere forcing primarily influences the timing of drought events, while duration and magnitude are governed by other mechanisms such as land-atmosphere feedbacks. Further analysis is needed to assess the potential model dependence of results and to quantify the relative contribution of land-atmosphere feedbacks to the long-term stochastic characteristics of precipitation and drought. C1 [Ferguson, Ian M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Dracup, John A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Duffy, Philip B.] Climate Cent Inc, Palo Alto, CA USA. [Duffy, Philip B.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pegion, Philip; Schubert, Siegfried] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Ferguson, IM (reprint author), Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. EM imfergus@mines.edu RI Pegion, Philip/E-5247-2012 NR 70 TC 6 Z9 6 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2010 VL 11 IS 3 BP 754 EP 769 DI 10.1175/2009JHM1132.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PI UT WOS:000279367700011 ER PT J AU Entekhabi, D Reichle, RH Koster, RD Crow, WT AF Entekhabi, Dara Reichle, Rolf H. Koster, Randal D. Crow, Wade T. TI Performance Metrics for Soil Moisture Retrievals and Application Requirements SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LAND-SURFACE MODELS; REMOTE-SENSING FOOTPRINTS; FORECAST VERIFICATION; TEMPORAL STABILITY; VARIABILITY; VEGETATION; DYNAMICS; CLIMATE; SGP97 AB Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals (satellite measurements) with respect to true fields. These metrics are related; nevertheless, each has advantages and disadvantages. In this study the authors explore the relation between the RMSE and correlation metrics in the presence of biases in the mean as well as in the amplitude of fluctuations (standard deviation) between estimated and true fields. Such biases are common, for example, in satellite retrievals of soil moisture and impose constraints on achievable and meaningful RMSE targets. Last, an approach is introduced for converting a requirement in an application's product into a corresponding requirement for soil moisture accuracy. The approach can help with the formulation of soil moisture measurement requirements. It can also help determine the utility of a given retrieval product for applications. C1 [Entekhabi, Dara] MIT, Ralph M Parsons Lab Environm Sci & Engn, Cambridge, MA 02139 USA. [Reichle, Rolf H.; Koster, Randal D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Crow, Wade T.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA. RP Entekhabi, D (reprint author), MIT, Ralph M Parsons Lab Environm Sci & Engn, 48-216G, Cambridge, MA 02139 USA. EM darae@mit.edu RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NASA FX This study by members of the SMAP Science Definition Team was supported by NASA funding for the SMAP project. NR 27 TC 101 Z9 101 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2010 VL 11 IS 3 BP 832 EP 840 DI 10.1175/2010JHM1223.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PI UT WOS:000279367700017 ER PT J AU Barringer, H Rydeheard, D Havelund, K AF Barringer, Howard Rydeheard, David Havelund, Klaus TI Rule Systems for Run-time Monitoring: from EAGLE to RULER SO JOURNAL OF LOGIC AND COMPUTATION LA English DT Article DE Run-time verification; rule systems; temporal logic; grammars ID RUNTIME VERIFICATION; NORMAL-FORM; GRAMMARS; RETURNS; THEOREM; CALLS AB In Barringer et al. (2004. Vol. 2937, LNCS), EAGLE was introduced as a general purpose rule-based temporal logic for specifying run-time monitors. A novel interpretative trace-checking scheme via stepwise transformation of an EAGLE monitoring formula was defined and implemented. However, even though EAGLE presents an elegant formalism for the expression of complex trace properties, EAGLE'S interpretation scheme is complex and appears difficult to implement efficiently. In this article, we introduce RULER, a primitive conditional rule-based system, which has a simple and easily implemented algorithm for effective run-time checking, and into which one can compile a wide range of temporal logics and other specification formalisms used for run-time verification. As a formal demonstration, we provide a translation scheme for linear-time propositional temporal logic with a proof of translation correctness. We then introduce a parameterized version of RULER, in which rule names may have rule-expression or data parameters, which then coincides with the same expressivity as EAGLE with data arguments. RULER with just rule-expression parameters extend the expressiveness of RULER strictly beyond the class of context-free languages. For the language classes expressible in propositional RULER, the addition of rule-expression and data parameters enables more compact translations. Finally, we outline a few simple syntactic extensions of 'core' RULER that can lead to further conciseness of specification but still enabling easy and efficient implementation. C1 [Barringer, Howard; Rydeheard, David] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Havelund, Klaus] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Barringer, H (reprint author), Univ Manchester, Sch Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England. EM howard.barringer@manchester.ac.uk; david.rydeheard@manchester.ac.uk; klaus.havelund@jpl.nasa.gov FU National Aeronautics and Space Administration FX The work of this author was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 17 TC 36 Z9 36 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0955-792X J9 J LOGIC COMPUT JI J. Logic Comput. PD JUN PY 2010 VL 20 IS 3 SI SI BP 675 EP 706 DI 10.1093/logcom/exn076 PG 32 WC Computer Science, Theory & Methods; Logic SC Computer Science; Science & Technology - Other Topics GA 613TN UT WOS:000279004000003 ER PT J AU Hodges, DH Rajagopal, A Ho, JC Yu, WB AF Hodges, Dewey H. Rajagopal, Anurag Ho, Jimmy C. Yu, Wenbin TI STRESS AND STRAIN RECOVERY FOR THE IN-PLANE DEFORMATION OF AN ISOTROPIC TAPERED STRIP-BEAM SO JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES LA English DT Article DE beam theory; elasticity; asymptotic methods ID SECTION AB The variational-asymptotic method was recently applied to create a beam theory for a thin strip-beam with a width that varies linearly with respect to the axial coordinate. For any arbitrary section, ratios of the cross-sectional stiffness coefficients to their customary values for a uniform beam depend on the rate of taper. This is because for a tapered beam the outward-directed normal to a lateral surface is not perpendicular to the longitudinal axis. This changes the lateral-surface boundary conditions for the cross-sectional analysis, in turn producing different formulae for the cross-sectional elastic constants as well as for recovery of stress, strain and displacement over a cross-section. The beam theory is specialized for the linear case and solutions are compared with those from plane-stress elasticity for stress, strain and displacement. The comparison demonstrates that for beam theory to yield such excellent agreement with elasticity theory, one must not only use cross-sectional elastic constants that are corrected for taper but also the corrected recovery formulae, which are in turn based on cross-sectional in-and out-of-plane warping corrected for taper. C1 [Hodges, Dewey H.; Rajagopal, Anurag] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Ho, Jimmy C.] NASA, Ames Res Ctr, Sci & Technol Corp, Moffett Field, CA 94035 USA. [Yu, Wenbin] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. RP Hodges, DH (reprint author), Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, 270 Ferst Dr, Atlanta, GA 30332 USA. EM dhodges@gatech.edu; r_anurag87@gatech.edu; jimmy.c.ho@us.army.mil; wenbin@engineering.usu.edu RI Yu, Wenbin/B-1916-2009 NR 8 TC 7 Z9 7 U1 0 U2 3 PU MATHEMATICAL SCIENCE PUBL PI BERKELEY PA UNIV CALIFORNIA, DEPT MATHEMATICS, BERKELEY, CA 94720-3840 USA SN 1559-3959 J9 J MECH MATER STRUCT JI J. Mech. Mater. Struct. PD JUN PY 2010 VL 5 IS 6 BP 963 EP 975 DI 10.2140/jomms.2010.5.963 PG 13 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 703XB UT WOS:000286013500006 ER PT J AU Lyulin, OM Kassi, S Sung, K Brown, LR Campargue, A AF Lyulin, O. M. Kassi, S. Sung, K. Brown, L. R. Campargue, A. TI Determination of the low energy values of (CH4)-C-13 transitions in the 2 nu(3) region near 1.66 mu m from absorption spectra at 296 and 81 K SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Methane; CH4; (CH4)-C-13; Absorption spectroscopy; HITRAN; GOSAT; Empirical lower states ID MOLECULAR LINE PARAMETERS; SPECTROSCOPIC DATABASE; METHANE TRANSITIONS; LASER SPECTROSCOPY; INFRARED-SPECTRUM; GLOBAL ANALYSIS; CM(-1); STRENGTHS; BAND; (CO)-C-12-O-16 AB The high resolution absorption spectra of (CH4)-C-13 were recorded at 81 K by differential absorption spectroscopy using a cryogenic cell and a series of distributed feed back (DFB) diode lasers and at room temperature by Fourier transform spectroscopy. The investigated spectral region corresponds to the high energy part of the (CH4)-C-13 tetradecad dominated by the 2 nu(3) overtone near 5988 cm(-1). Empirical line lists were constructed containing, respectively, 1629 (CH4)-C-13 transitions detected at 81 K (5852-6124 cm(-1)) and 3481 features (including 85 lines of (CH4)-C-12) measured at room temperature (5850-6150 cm(-1)); the smallest measured intensities are about 3 x 10(-26) and 4 x 10(-25) cm/molecule at 81 and 296 K, respectively. The lower state energy values were derived for 1196 (CH4)-C-13 transitions from the variation of the line intensities between 81 and 296 K. These transitions represent 99.2% and 84.6% of the total absorbance in the region, at 81 and 296 K. respectively. Over 400 additional weak features were measured at 81 K and could not be matched to lines observed at room temperature. The quality of the resulting empirical low energy values is demonstrated by the excellent agreement with the already-assigned transitions and the clear propensity of the empirical low values to be close to integers. The two line lists at 81 and at 296 K provided as Supplementary material will enable future theoretical analyses of the upper (CH4)-C-13 tetradecad. (C) 2010 Elsevier Inc. All rights reserved. C1 [Lyulin, O. M.; Kassi, S.; Campargue, A.] Univ Grenoble 1, Spectrometrie Phys Lab, CNRS, UMR 5588, F-38402 St Martin Dheres, France. [Sung, K.; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lyulin, O. M.] Russian Acad Sci, Lab Theoret Spect, Inst Atmospher Opt, Siberian Branch, Tomsk 634055, Russia. RP Campargue, A (reprint author), Univ Grenoble 1, Spectrometrie Phys Lab, CNRS, UMR 5588, BP 87, F-38402 St Martin Dheres, France. EM Alain.Campargue@ujf-grenoble.fr RI Sung, Keeyoon/I-6533-2015 FU ANR [BLAN08-2_321467]; RFBR [RFBR 09-05-92508-NKa]; CRDF [RUG1-2954-TO-09]; Groupement de Recherche International SAMIA (France); RFBR (Russia) [N 09-05-93105]; CAS (China) FX O.M.L. (IAO, Tomsk) is grateful to the French Embassy in Moscow for a two months visiting support at Grenoble University. This work is part of the ANR project "CH4@Titan" (Ref: BLAN08-2_321467). The supports by RFBR (Grant RFBR 09-05-92508-NKa), CRDF (Grant RUG1-2954-TO-09) and by the Groupement de Recherche International SAMIA between CNRS (France), RFBR (N 09-05-93105, Russia) and CAS (China) is acknowledged. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 37 TC 20 Z9 23 U1 2 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUN PY 2010 VL 261 IS 2 BP 91 EP 100 DI 10.1016/j.jms.2010.03.008 PG 10 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 610DM UT WOS:000278710900004 ER PT J AU Nikolaev, P Holmes, W Sosa, E Boul, P Arepalli, S Yowell, L AF Nikolaev, Pavel Holmes, William Sosa, Edward Boul, Peter Arepalli, Sivaram Yowell, Leonard TI Effect of Vaporization Temperature on the Diameter and Chiral Angle Distributions of Single-Walled Carbon Nanotubes SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Carbon; Nanotubes; Laser Ablation; Synthesis; Chiral Angle; Diameter Mechanism ID LASER-ABLATION PROCESS; CATALYTIC GROWTH; SEPARATION; DYNAMICS AB Pulsed laser vaporization synthesis of single-wall carbon nanotubes on Co/Ni and Rh/Pd catalysts was explored with respect to variations in the production temperature. The nanotube type populations were determined via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that lowered production temperature leads to smaller nanotube diameters and exceptionally narrow (n, m) type distributions, with marked preference towards large chiral angles for both catalysts. Interestingly, larger nanotube diameters tend to be associated with larger chiral angles. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n, m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven. SWCNT synthesized at lower temperatures appear quite attractive as a starting material for nanotube type separation experiments. C1 [Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77258 USA. RP Nikolaev, P (reprint author), Sungkyunkwan Univ, Dept Energy Sci, 300 Cheoncheon Dong, Suwon 440746, South Korea. FU NASA [NNJ05HI05C]; State of Texas [SAA-AT-07-021, RAN 0798, UTA07-099] FX Authors would like to acknowledge financial support from NASA under contract #NNJ05HI05C and from State of Texas, Space Act Agreement #SAA-AT-07-021 (RAN 0798) (UTA07-099). Authors thank R. Bruce Weisman of Rice University for access to the Nanospectralyzer for photoluminescence measurements. NR 47 TC 9 Z9 9 U1 2 U2 15 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUN PY 2010 VL 10 IS 6 SI SI BP 3780 EP 3789 DI 10.1166/jnn.2010.2008 PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 569UC UT WOS:000275626500006 PM 20355368 ER PT J AU Oye, MM Yim, S Fu, A Schwanfelder, K Meyyappan, M Nguyen, CV AF Oye, Michael M. Yim, Setha Fu, Alan Schwanfelder, Kevin Meyyappan, M. Nguyen, Cattien V. TI Surface Smoothness Effect for the Direct Growth of Carbon Nanotubes on Bulk FeCrAl Metal Substrates SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Carbon Nanotube; FeCrAl; Bulk Metal Catalyst Substrate; Growth Morpholog ID CHEMICAL-VAPOR-DEPOSITION; MECHANISMS; FILM AB We investigate effects of surface smoothness and surface chemistry on the nature of multi-walled CNTs (MWCNTs) grown directly on FeCrAl substrates. A single sample was grown that contained a gradation in surface morphologies ranging from 2.9 nm to 30.2 nm RMS. The MWCNTs were grown using ethylene and H(2) gases. Characterization was done using atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger elemental surface analysis. In smooth regions, MWCNTs demonstrated high-density vertical aligned growths; however, patches of similar to 10-20 mu m where poor MWCNT growth occurred. In contrast, rough regions of the surface exhibited a continuous blanket layer of MWCNTs, albeit growth was spaghetti-like throughout this layer. The variation in nature of MWCNT growths was directly dependent on the surface roughness, which can affect surface growth chemistry of MWCNTs. Auger elemental analysis determined carbon was observed everywhere on the surface, but carbon was strongest over the smooth regions of high density growth; while relatively less carbon was detected over the patches with poor MWCNT growth, as well as over the blanket layer of the rough region. Oxygen was also measured, which was detected both within the patches of poor MWCNT growth in the smooth regions and over the blanket layer of the rough region. However, measurements of Cr and Al were exhibiting mixed trends: Cr was detected more strongly than Al over the rough region; whereas the opposite was observed in the patches of poor MWCNT growth in the smooth region. The surface smoothness affects the surface chemistry involving the nature of MWCNT growth and may also affect the surface chemistry involving the metal substrate itself; therefore, comparisons on the nature of MWCNT growths must also take careful consideration of the surface smoothness. C1 [Oye, Michael M.; Yim, Setha; Fu, Alan; Schwanfelder, Kevin; Meyyappan, M.; Nguyen, Cattien V.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nguyen, CV (reprint author), ELORET Corp, Sunnyvale, CA USA. FU NASA FX Work by Michael M. Oye, Setha Yim, Alan Fu, Kevin Schwanfelder, and Cattien V. Nguyen was supported by a NASA contract to FLORET Corporation. Michael M. Oye, Setha Yim, Kevin Schwanfelder, and Cattien V. Nguyen are employed by FLORET Corporation (465 S. Mathilda Ave.; Sunnyvale, CA 94086 USA). Alan Fu is a high school student intern from Palo Alto High School (50 Embarcaderc, Rd.; Palo Alto, CA 94301 USA). NR 18 TC 7 Z9 7 U1 1 U2 8 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUN PY 2010 VL 10 IS 6 SI SI BP 4082 EP 4088 DI 10.1166/jnn.2010.1991 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 569UC UT WOS:000275626500057 PM 20355419 ER PT J AU Smith, MAH Benner, DC Predoi-Cross, A Devi, VM AF Smith, M. A. H. Benner, D. Chris Predoi-Cross, A. Devi, V. Malathy TI Multispectrum analysis of (CH4)-C-12 in the nu(4) spectral region: II. Self-broadened half widths, pressure-induced shifts, temperature dependences and line mixing SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Methane; Line broadening; Widths; Pressure-induced shifts; Off-diagonal relaxation matrix elements; Line mixing; Temperature dependence ID MOLECULAR SPECTROSCOPIC DATABASE; DIODE-LASER SPECTROSCOPY; BAND Q-BRANCH; METHANE LINES; COEFFICIENTS WIDTHS; 4635 CM(-1); V(2) BAND; ABSORPTION; CH4; (HCN)-C-12-N-14 AB Accurate values for line positions, absolute line intensities, self-broadened half width and self-pressure-induced shift coefficients have been measured for over 400 allowed and forbidden transitions in the nu 4 band of methane ((CH4)-C-12). Temperature dependences of half width and pressure-induced shift coefficients were also determined for many of these transitions. The spectra used in this study were recorded at temperatures between 210 and 314K using the National Solar Observatory's 1 m Fourier transform spectrometer at the McMath-Pierce solar telescope. The complete data set included 60 high-resolution (0.006-0.01 cm(-1)) absorption spectra of pure methane and methane mixed with dry air. The analysis was performed using a multispectrum nonlinear least squares curve fitting technique where a number of spectra (20 or more) were fit simultaneously in spectral intervals 5-15 cm(-1) wide. In addition to the line broadening and shift parameters, line mixing coefficients (using the off-diagonal relaxation matrix element formalism) were determined for more than 50 A-, E-, and F-species transition pairs in J manifolds of the P- and R-branches. The measured self-broadened half width and self-shift coefficients, their temperature dependences and the line mixing parameters are compared to self-broadening results available in the literature and to air-broadened parameters determined for these transitions from the same set of spectra. Published by Elsevier Ltd. C1 [Smith, M. A. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Benner, D. Chris; Devi, V. Malathy] Coll William & Mary, Williamsburg, VA 23187 USA. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. RP Smith, MAH (reprint author), NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. EM Mary.Ann.H.Smith@NASA.gov FU National Aeronautics and Space Administration; National Sciences and Engineering Research Council of Canada (NSERC) FX The authors thank Claude Plymate and Mike Dulick of the National Solar Observatory for their assistance with the FTS laboratory measurements at Kitt Peak. Research at the College of William and Mary is supported under contracts and cooperative agreements with the National Aeronautics and Space Administration. A. Predoi-Cross acknowledges the support received from the National Sciences and Engineering Research Council of Canada (NSERC). The authors thank NASA's Upper Atmospheres Research Program for its support of the McMath-Pierce FTS laboratory facility. We also thank Larry Rothman for his wise counsel and friendship over the years of this study and many more. NR 32 TC 16 Z9 16 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1152 EP 1166 DI 10.1016/j.jqsrt.2010.01.017 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800010 ER PT J AU Drouin, BJ Yu, SS Miller, CE Muller, HSP Lewen, F Bruenken, S Habara, H AF Drouin, Brian J. Yu, Shanshan Miller, Charles E. Mueller, Holger S. P. Lewen, Frank Bruenken, Sandra Habara, Hideta TI Terahertz spectroscopy of oxygen, O-2, in its (3)Z(g)(-) and (1)Delta electronic states THZ Spectroscopy of O-2 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Oxygen; Rotational spectroscopy; Terahertz spectroscopy; Atmospheric species; O-16/O-18 ratio ID SUBMILLIMETER-WAVE SPECTRUM; MICROWAVE-ABSORPTION LINES; BROAD-BAND SPECTROSCOPY; GROUND-STATE; ATMOSPHERIC OXYGEN; ROTATIONAL TRANSITIONS; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; FINE-STRUCTURE; FREQUENCIES AB High precision rotational spectra of isotopic oxygen O-2 (with O-16 or O-18) in its (3)Sigma(-)(g) electronic ground state have been measured in selected frequency regions between 0.4 and 2.0THz. The main isotopic species, O-16(2), was also investigated in its first excited electronic state (1)Delta. The new data, analyzed together with previous measurements, yielded improved spectroscopic parameters. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Drouin, Brian J.; Yu, Shanshan; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mueller, Holger S. P.; Lewen, Frank; Bruenken, Sandra; Habara, Hideta] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Brian.J.Drouin@jpl.nasa.gov; hspm@ph1.uni-koeln.de RI Brunken, Sandra/B-1880-2010; Yu, Shanshan/D-8733-2016 OI Brunken, Sandra/0000-0001-7175-4828; FU Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungs Gemeinschaft (DFG) [SFB 494]; Land Nordrhein-Westfalen (NRW) FX H.S.P.M. is grateful for recent support by the Bundesministerium fur Bildung und Forschung (BMBF) administered by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). This paper presents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. A large portion of the work in Cologne was supported by the Deutsche Forschungs Gemeinschaft (DFG) in the framework of the collaborative research grant SFB 494. Additional support by the Land Nordrhein-Westfalen (NRW) is also acknowledged. NR 40 TC 18 Z9 18 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1167 EP 1173 DI 10.1016/j.jqsrt.2009.12.006 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800011 ER PT J AU Gordon, IE Kassi, S Campargue, A Toon, GC AF Gordon, Iouli E. Kassi, Samir Campargue, Alain Toon, Geoffrey C. TI First identification of the a(1) Delta(g)-X-3 Sigma(-)(g) electric quadrupole transitions of oxygen in solar and laboratory spectra SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Electric quadrupole; Singlet delta; Oxygen; Solar spectrum; Cavity ring down spectroscopy ID CAVITY RINGDOWN SPECTROSCOPY; LINE PARAMETERS COMPILATION; 1.5 MU-M; ATMOSPHERIC OXYGEN; MOLECULAR-OXYGEN; BAND; INTENSITIES; EINSTEIN; COEFFICIENTS; ISOTOPOMERS AB Electric quadrupole transitions in the a(1)Delta(g)-X-3 Sigma(-)(g) band of O-16(2) near 1.27 mu m are reported for the first time. They were first detected in atmospheric solar spectra acquired with a ground-based Fourier transform spectrometer (FTS) in Park Falls, WI. Subsequently high-sensitivity ON cavity ring down spectroscopy (CW-CRDS) experiments were carried out at Grenoble University in the 7717-7917 cm(-1) region in order to provide quantitative intensity information for the electric quadrupole transitions. Measured intensities were used as input data for the calculation of the complete list of electric quadrupole transitions with Delta J= +/- 2, +/- 1 and 0. The calculation was carried out for the intermediate coupling case and assuming that these transitions are possible only through mixing of the Omega=0 component of the ground electronic state and b(1)Sigma(+)(g) state induced by spin-orbit coupling. The calculated line list agrees well with experimental measurements and was used to improve the residuals of the fitted solar atmospheric spectrum. Emission probability for the electric quadrupole band was determined to be (1.02 +/- 0.10) x 10(-6)s(-1). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Atom & Mol Phys Div, Cambridge, MA 02138 USA. [Kassi, Samir; Campargue, Alain] Univ Grenoble 1, CNRS, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France. [Toon, Geoffrey C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gordon, IE (reprint author), Harvard Smithsonian Ctr Astrophys, Atom & Mol Phys Div, Cambridge, MA 02138 USA. EM igordon@cfa.harvard.edu OI Gordon, Iouli/0000-0003-4763-2841 FU NASA; ANR; NASA EOS HITRAN FX The authors are grateful to Rebecca Washenfelder and Jean-Francois Blavier who set up the TCCON FTS at Park Falls, WI, and recorded the atmospheric solar absorption spectra used here. We acknowledge Paul Wennberg for the use of these data and the NASA Carbon Cycle program which funds TCCON. We also thank Andrew Orr-Ewing for providing such a good O2 magnetic dipole line list, that the missing quadrupole lines became so prominent. We also thank Robert Field and Charles Miller for fruitful discussions and Laurence Rothman and Robert Gamache for providing input parameters and the program for calculation of HITRAN line positions calculation. The HITRAN database managed for over 35 years by Dr. Rothman is an essential tool in many fields. The authors have all benefited from using it many times and are honored to contribute to it or validate its data. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at Grenoble University under the ANR project "IDEO". IEG is supported through NASA EOS HITRAN Grant. NR 35 TC 22 Z9 22 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1174 EP 1183 DI 10.1016/j.jqsrt.2010.01.008 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800012 ER PT J AU Toth, RA Sung, K Brown, LR Crawford, TJ AF Toth, Robert A. Sung, Keeyoon Brown, Linda R. Crawford, Timothy J. TI Line positions and strengths of 41 bands including 10 OCS isotopologues in the 3850-4200 cm(-1) region SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Carbonyl sulfide; OCS; Frequencies; Intensities; Strengths; Venus; Near IR ID FOURIER-TRANSFORM SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS; LASER PHOTOACOUSTIC-SPECTROSCOPY; CARBONYL SULFIDE; MU-M; INTENSITIES; (OCS)-O-16-C-12-S-32; CO; SPECTRUM; DATABASE AB The present analysis substantially improves the spectroscopic characterization of near infrared OCS in a window region (3850-4200 cm(-1)) important for atmospheric studies of Venus. Previous studies in this spectral region cataloged numerous OCS line positions, but accurate line intensities were measured for only three strong bands. In this paper, the corresponding line intensities are obtained for 41 OCS bands, including weak isotopic bands reported for the first time. The 2 nu(3) (0002-0000) band is analyzed for 10 OCS isotopologues (adding (OCS)-O-16-C-13-S-34, (OCS)-O-17-C-12-S-32, (OCS)-O-16-C-12-S-36, (OCS)-O-18-C-12-S-34, and (OCS)-O-16-C-13-S-33). In addition, observations of 0332-0330 of the main isotope, (OCS)-O-16-C-12-S-32, provides accurate vibration-rotation parameters for the upper state (and the lower state, 0330 of (OCS)-O-16-C-12-S-32). Finally, one unidentified band is seen at 3969.3 cm(-1); its lower state is clearly the ground state of (OCS)-O-16-C-12-S-32. S. The line strengths of these seven previously unanalyzed bands plus 34 other bands of the OCS isotopologues, (OCS)-O-16-C-12-S-32, (OCS)-O-16-C-12-S-34, (OCS)-O-16-C-13-S-32, (OCS)-O-16-C-12-S-33, and (OCS)-O-18-C-12-S-32, were least-squares fitted to determine strength parameters, S-v and Herman-Wallis coefficients. Finally, the intensities of 17 additional very weak bands were estimated to provide an extensive new database of OCS line parameters to support remote sensing of Venus. The integrated intensity in cm(-1)/(molecule cm(-2)) at 296 K is 8.1 x 10(-19) for the 3800-4200 cm(-1) region. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Toth, RA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MailStop 183-301, Pasadena, CA 91109 USA. EM ratoth@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015 NR 32 TC 6 Z9 6 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1193 EP 1208 DI 10.1016/j.jqsrt.2009.10.014 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800014 ER PT J AU Devi, VM Rinsland, CP Benner, DC Sams, RL Blake, TA AF Devi, V. Malathy Rinsland, C. P. Benner, D. Chris Sams, R. L. Blake, T. A. TI Multispectrum analysis of the nu(9) band of (C2H6)-C-12: Positions, intensities, self- and N-2-broadened half-width coefficients SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE 33.20.Ea ID MOLECULAR SPECTROSCOPIC DATABASE; RESOLUTION INFRARED-SPECTRUM; DIODE-LASER SPECTRA; NU-9 BAND; TEMPERATURE-DEPENDENCE; UPPER TROPOSPHERE; ETHANE C2H6; MU-M; ATMOSPHERE; LINES AB Line positions, intensities, Lorentz self- and N-2-broadened half-width coefficients have been measured for (P)Q(3), (P)Q(2), (P)Q(1), (R)Q(0), (R)Q(1), (R)Q(2), and (R)Q(3) sub-band transitions in the nu(9) fundamental band of (C2H6)-C-12. A multispectrum nonlinear least-squares fitting technique was used to fit up to 17 high-resolution (similar to 0.00156 cm(-1)), room temperature absorption spectra of pure (99.99% chemical purity) natural sample of ethane and lean mixtures of the high-purity ethane diluted with N-2. A Bruker IFS 120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington was used to record the data. A standard Voigt line shape was assumed to fit all the data since no line mixing or other non Voigt line shapes were required to fit any of the spectra used in the analysis. Short spectral intervals (similar to 2-2.5 cm(-1)) of all 17 spectra covering a specific (P)Q or (R)Q sub-band were fit simultaneously. For the first time in an ethane band, pressure-broadened half-width coefficients were determined for the torsional-split components. However, for better reliability of the retrieved coefficients for the weaker components (transitions with large intensity ratios of 4:1 or 3:1 for most K levels between the strong and weak components), constraints were used such that the half-width coefficients of both torsional-split components for a given J were identical for a specific broadening gas. No pressure-induced shift coefficients were necessary to fit the spectra to their noise level. The present study revealed for the first time the dependence of self- and N-2-broadened half-width coefficients upon the J, K quantum numbers of the transitions in ethane. A number of transitions belonging to the nu(9)+nu(4)-nu(4) and the nu(9)+2 nu(4)-2 nu(4) hot bands were also observed in the fitted regions and measurements were made when possible. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Rinsland, C. P.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Sams, R. L.; Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@larc.nasa.gov FU Department of Energy's Office of Biological and Environmental research located at Pacific Northwest National Laboratory (PNNL); United States Department of Energy [DE-AC05-76RLO1830]; NASA; College of William and Mary FX The authors thank Dr. Jon T. Hougen from the National Institute of Standards and Technology, Gaithersburg, MD for many useful discussions on ethane molecule and selection rules, and also for reading the manuscript and providing critical suggestions. The experimental data for the present study were recorded at the W. R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under Contract DE-AC05-76RLO1830. NASA's planetary atmospheres program supported the work performed at NASA Langley Research Center and the College of William and Mary. NR 38 TC 14 Z9 12 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1234 EP 1251 DI 10.1016/j.jqsrt.2009.10.017 PG 18 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800017 ER PT J AU Kuai, L Natraj, V Shia, RL Miller, C Yung, YL AF Kuai, Le Natraj, Vijay Shia, Run-Lie Miller, Charles Yung, Yuk L. TI Channel selection using information content analysis: A case study of CO2 retrieval from near infrared measurements SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Retrieval; Channel selection; Information analysis; Carbon dioxide ID SPECTROSCOPIC DATABASE; SOUNDERS; SPACE; MODEL; GOSAT AB A major challenge in retrieving CO2 concentrations from thermal infrared remote sensing comes from the fact that measurements in the 4.3 and 15 mu m absorption bands (AIRS or TES) are sensitive to both temperature and CO2 variations. This complicates the selection of absorption channels with maximum CO2 concentration information content. In contrast, retrievals using near infrared (NIR) CO2 absorption bands are relatively insensitive to temperature and are most sensitive to changes of CO2 near the surface, where the sources and sinks are located. The Orbiting Carbon Observatory (OCO) was built to measure reflected sunlight in three NIR spectral regions (the 0.76 mu m O-2 A-band and two CO2 bands at 1.61 and 2.06 mu m). In an effort to significantly increase the speed of accurate CO2 retrieval algorithms for OCO, we performed an information content analysis to identify the 20 best channels from each CO2 spectral region to use in OCO retrievals. Retrievals using these 40 channels provide as much as 75% of the total CO2 information content compared to retrievals using all 1016 channels in each spectral region. The CO2 retrievals using our selected channels have a precision better than 0.1 ppm. This technique can be applied to the retrieval of other geophysical variables (e.g., temperature or CH4), or modified for other instruments, such as AIRS or TES. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kuai, Le; Shia, Run-Lie; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Natraj, Vijay; Miller, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kuai, L (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM kl@gps.caltech.edu FU Orbiting Carbon Observatory (OCO); NASA Earth System Science Pathfinder (ESSP) mission FX This research is supported by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission. The authors would like to thank Denis O'Brien, Igor Polonsky and Chris O'Dell from Colorado State University for providing us the orbit simulator code and for helping with its development and maintenance, and James McDuffie from the Jet Propulsion Laboratory (JPL) for providing covariance information. NR 33 TC 6 Z9 7 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1296 EP 1304 DI 10.1016/j.jqsrt.2010.02.011 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800023 ER PT J AU Hou, TH Boston, KG Baughman, JM Walker, S Johnston, WM AF Hou, T. H. Boston, K. G. Baughman, J. M. Walker, S. Johnston, W. M. TI Composite-to-composite Bonding using Scotch-Weld (TM) AF-555M Structural Adhesive SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES LA English DT Article DE AF-555M adhesive; T800H/3900-2 composite; composite-to-composite adhesive bonding; single-lap shear strength AB Processing and properties of composite-to-composite bonding using Scotch-Weld (TM) AF-555M structural adhesive were investigated. Bonding surfaces of T800H/3900-2 composite were prepared by co-curing the dry and wet peel-plies. Surface topologies of the peel-plies and the co-cured composite surfaces were examined by microscopy, contour mapping using a coordinate measuring machine equipped with a ruby sphere probe, and contact angle goniometry. Curing of the adhesive was conducted in an autoclave or vacuum press at 177 degrees C (350 degrees F) for 2 h under 310 KPa (45 psi). Common bagging practices for composite fabrication in an autoclave were followed. It was found that a prolonged vacuum application (i.e., overnight) prior to the application of temperature and pressure was a critical element to produce porosity-free, high-quality bonds with this adhesive system. Following this procedure, a strong bond line was consistently produced, which routinely provided a single-lap shear strength more than 10% higher than the nominal value of the adhesive (i.e., 35.9 MPa or 5200 psi) when tested at room temperature. An adhesive failure mode at the interface was noted on the fractured surfaces of specimens with strong bonds whereas a premature cohesive failure mode was more evident for the specimens with weaker bonds, probably due to porosities in the bond lines. Photomicrographs showed that the weak single-lap shear strengths occurred on specimens with significant porosity in the bond line, apparently caused by entrapped air from insufficient vacuum application prior to curing. The results of this study are discussed herein. C1 [Hou, T. H.; Boston, K. G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Baughman, J. M.; Walker, S.; Johnston, W. M.] Lockheed Martin Engn & Serv Co, Hampton, VA 23666 USA. RP Hou, TH (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM tan-hung.hou-1@nasa.gov NR 12 TC 1 Z9 1 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0731-6844 J9 J REINF PLAST COMP JI J. Reinf. Plast. Compos. PD JUN PY 2010 VL 29 IS 11 BP 1702 EP 1711 DI 10.1177/0731684409341679 PG 10 WC Materials Science, Composites; Polymer Science SC Materials Science; Polymer Science GA 602DB UT WOS:000278117600010 ER PT J AU Sehirlioglu, A Sayir, A Dynys, F AF Sehirlioglu, Alp Sayir, Ali Dynys, Fred TI Doping of BiScO3-PbTiO3 Ceramics for Enhanced Properties SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE; ELECTRICAL-PROPERTIES; PIEZOELECTRIC SYSTEM; DIELECTRIC ANOMALIES; (1-X)BISCO3-XPBTIO(3); MICROSTRUCTURE; PIEZOCERAMICS AB Compositional modification of ferroelectric BiScO3-PbTiO3 (BS-PT) ceramics was investigated by Zr-Sc center dot doping as a function of temperature and electric field. Zr doping decreased the Curie temperature; yet depoling temperature was higher as determined from the weak field measurements. Weight change measurements explain the difference in sintering behavior, emphasizing the effects of sacrificial powder on the defect structure. Possible mechanisms are discussed in collaboration with the crystal structure analysis. Pb'(Bi) replacement was shown as a possible charge balance mechanism. Pb'(Bi) is supported by the weight loss data, crystal structure analysis and the weak-field electrical and electromechanical measurements. However, high field measurements contradicted the postulated Pb'(Bi) mechanism. Unipolar and bipolar high field polarization, strain and dielectric constant measurements indicated that the donor doping creates A-site vacancies; a similar observation to Pb(Zr,Ti)O-3 (PZT)-based ceramics. At higher temperatures, the property dependence on the composition decreased suggesting that thermally assisted domain motion eliminated the dependence of the domain wall mobility on the extrinsic contributions (i.e., defect structure induced by doping). Effect of Zr-Sc center dot doping on electrical and electromechanical properties are reported and discussed as a function of temperature. C1 [Sehirlioglu, Alp] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Sayir, Ali; Dynys, Fred] NASA, John Glenn Res Ctr, Cleveland, OH 44135 USA. RP Sehirlioglu, A (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. EM alp.sehirlioglu@case.edu FU Air Force Office of Scientific Research [FA 9550-06-1-0260] FX This work was supported by Air Force Office of Scientific Research Grant FA 9550-06-1-0260. NR 33 TC 27 Z9 28 U1 1 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2010 VL 93 IS 6 BP 1718 EP 1724 DI 10.1111/j.1551-2916.2010.03648.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 604WL UT WOS:000278309100042 ER PT J AU Sippel, JA Zhang, FQ AF Sippel, Jason A. Zhang, Fuqing TI Factors Affecting the Predictability of Hurricane Humberto (2007) SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ENSEMBLE KALMAN FILTER; TROPICAL CYCLONE INTENSITY; DOPPLER RADAR OBSERVATIONS; SEA INTERACTION THEORY; MESOSCALE PREDICTABILITY; MOIST CONVECTION; CYCLOGENESIS; DYNAMICS; PRECIPITATION; ASSIMILATION AB This study uses ensemble Kalman filter analyses and short-range ensemble forecasts to study factors affecting the predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Humberto is known for both its rapid intensification and extreme forecast uncertainty, which makes it an ideal case in which to examine the origins of tropical cyclone strength forecast error. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. During the analysis period, it is found that variations in midlevel moisture, low-level convective instability, and strength of a front to the north of the cyclone likely lead to differences in net precipitation, which ultimately leads to storm strength spread. Stronger storms are favored when the atmosphere is more moist and unstable and when the front is weaker, possibly because some storms in the ensemble begin entraining cooler and drier postfrontal air during this period. Later during the free forecast, variable entrainment of postfrontal air becomes a leading cause of strength spread. Surface moisture differences are the primary contributor to intensity forecast differences, and convective instability differences play a secondary role. Eventually mature tropical cyclone dynamics and differences in landfall time result in very rapid growth of ensemble spread. These results are very similar to a previous study that investigated a 2004 Gulf of Mexico low with a different model and analysis technique, which gives confidence that they are relevant to tropical cyclone formation and intensification in general. Finally, the rapid increase in forecast uncertainty despite relatively modest differences in initial conditions highlights the need for ensembles and advanced data assimilation techniques. C1 [Sippel, Jason A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zhang, Fuqing] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Sippel, JA (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD USA. EM jason.sippel@nasa.gov RI Zhang, Fuqing/E-6522-2010 OI Zhang, Fuqing/0000-0003-4860-9985 FU U.S. Office of Naval Research [N000140410471, N000140910526]; NSF [ATM-084065]; Oak Ridge Associated Universities through a contract with NASA FX This research started as part of the first author's doctoral dissertation at Texas A&M University and continued during the author's tenure at NASA's Goddard Space Flight Center under the NASA Postdoctoral Program. The authors have benefited from discussions with John Nielsen-Gammon, Scott Braun, and Larry Carey. Thanks are also due to Yonghui Weng for help on the ensemble simulation. Finally, the authors appreciate comments that significantly improved this study from Journal of the Atmospheric Sciences editor Shigeo Yoden, reviewer Ron McTaggart-Cowan, and two anonymous reviewers. Research completed at Texas A&M University was sponsored in by the U.S. Office of Naval Research under Grants N000140410471 and N000140910526 and by NSF Grant ATM-084065. The remaining work, completed under the NASA Postdoctoral Program, was sponsored by Oak Ridge Associated Universities through a contract with NASA. NR 34 TC 36 Z9 38 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2010 VL 67 IS 6 BP 1759 EP 1778 DI 10.1175/2010JAS3172.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PN UT WOS:000279368200005 ER PT J AU Mishchenko, MI AF Mishchenko, M. I. TI The amplitude of the coherent backscattering intensity peak for discrete random media: Effect of packing density SO KINEMATICS AND PHYSICS OF CELESTIAL BODIES LA English DT Article ID GALILEAN SATELLITES; POLARIZATION RATIOS; ENHANCEMENT FACTORS; LIGHT; PARTICLES; JUPITER; DIFFUSE; LAYER AB The amplitude of the coherent backscattering intensity peak is computed for a medium composed of densely packed, randomly positioned particles. The cyclical component of the Stokes reflection matrix at exactly the backscattering direction is expressed in terms of the ladder component, and the ladder component is rigorously computed by numerically solving the vector radiative transfer equation. The effect of packing density is accounted for by multiplying the single-scattering Mueller matrix by the static structure factor computed in the Percus-Yevick approximation. It is shown that increasing packing density can substantially reduce the amplitude of the copolarized coherent backscattering peak, especially for smaller particles, and can make it significantly lower than 2. The effect of packing density on the amplitude of the cross-polarized peak is significantly weaker. C1 [Mishchenko, M. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Mishchenko, M. I.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RI Mishchenko, Michael/D-4426-2012 FU NASA Radiation Sciences Program FX The author is grateful to P.V. Litvinov, Yu.G. Shkuratov, V.P. Tishkovets, and E.G. Yanovitskij for many fruitful discussions. Partial funding for this research was provided by the NASA Radiation Sciences Program managed by H. Maring. NR 29 TC 0 Z9 0 U1 0 U2 2 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 0884-5913 J9 KINEMAT PHYS CELEST+ JI Kinemat. Phys. Celest. Bodies PD JUN PY 2010 VL 26 IS 3 BP 95 EP 103 DI 10.3103/S0884591310030013 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619MQ UT WOS:000279434700001 ER PT J AU Moczydlowska, M Schopf, JW Willman, S AF Moczydlowska, Malgorzata Schopf, J. William Willman, Sebastian TI Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity SO LETHAIA LA English DT Article DE Biological affinity; cell; wall; Cryogenian; microfossils; ultrastructure. ID HAEMATOCOCCUS-PLUVIALIS; NEOPROTEROZOIC ACRITARCHS; OUTER WALLS; CHLOROPHYCEAE; AUSTRALIA; EDIACARAN; VOLVOX; ALGAE; VOLVOCALES; CHLORELLA AB Recently established protocols and methods in advanced microscopy and spectrometry applied to studies of ancient unicellular organic-walled microfossils of uncertain biological affinities (acritarchs) provide new evidence of the fine ultrastructure of cell walls and their biochemistry that support the interpretation of some such microfossils as photosynthesizing microalgae. The micro-scale and nanoscale ultrastructure of the cell walls of late Cryogenian sphaeromorphic acritarchs from the Chichkan Formation (Kazakhstan) revealed by the advanced techniques and studied originally by Kempe et al. (2005) is here further analysed and compared with that of modern microalgal analogues. On the basis of such comparison, we interpret the preserved cell wall ultrastructure to reflect original layering and lamination within sub-layers of the fossil wall, rather than being a result of taphonomic and diagenetic alteration. The outer thick layer represents the primary wall and the inner layer the secondary wall of the cell, whereas the laminated amorphous sub-layers, 10-20 nm in thickness and revealed by transmission electron and atomic force microscopy, are recognized as trilaminar sheath structure. Because two-layered cell walls, trilaminar sheaths and the position of the TLS within the fossil cell wall are characteristic of the mature developmental state in cyst morphogenesis in modern microalgae, we infer that the Chichkan sphaeromorphs are probably resting cells (aplanospores) of chlorophyceaen green microalgae from the order Volvocales. square Biological affinity, cell wall, Cryogenian, microfossils, ultrastructure. C1 [Moczydlowska, Malgorzata; Willman, Sebastian] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. [Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Ctr Study Evolut & Origin Life, Inst Geophys & Planetary Phys,Mol Biol Inst, Los Angeles, CA 90095 USA. [Schopf, J. William] Univ Calif Los Angeles, NASA, Astrobiol Inst, Los Angeles, CA 90095 USA. RP Moczydlowska, M (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM malgo.vidal@pal.uu.se; schopf@ess.ucla.edu; sebastian.willman@geo.uu.se FU Swedish Research Council (Vetenskapsradet) [621-2004-5316]; CSEOL (UCLA/IGPP Center for the Study of Evolution and the Origin of Life); NASA Astrobiology Institute; Elsevier FX Research by M. Moczydlowska and S. Willman was supported through the Swedish Research Council (Vetenskapsradet) grant No. 621-2004-5316 to M. Moczydlowska. The study has been inspired during the discussions with colleagues participating in the World Summit on Ancient Microscopic Fossils, 27 July to 2 August 2008, University of California, Los Angeles, organized by J. William Schopf and supported by CSEOL (UCLA/IGPP Center for the Study of Evolution and the Origin of Life), NASA Astrobiology Institute, and Elsevier. NR 54 TC 13 Z9 15 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0024-1164 J9 LETHAIA JI Lethaia PD JUN PY 2010 VL 43 IS 2 BP 129 EP 136 DI 10.1111/j.1502-3931.2009.00175.x PG 8 WC Paleontology SC Paleontology GA 591TX UT WOS:000277328700001 ER PT J AU Joy, KH Crawford, IA Russell, SS Kearsley, AT AF Joy, Katherine H. Crawford, Ian A. Russell, Sara S. Kearsley, Anton T. TI Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID MILLER RANGE 05035; AL GANI 400; PECORA ESCARPMENT-02007; BOMBARDMENT HISTORY; IRON CONCENTRATION; CENTRAL-HIGHLANDS; ICEFIELD 02205; MARE BASALTS; MOON; SURFACE AB Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA-ICP-MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#(< 70)), have high Sc/Sm ratios (typically > 10), and have low incompatible trace element (ITE) concentrations (i.e., typically < 3.2 ppm Sm, < 1.5 ppm Th). Feldspathic impact melt in DaG 400, PCA 02007, and MAC 88104/05 are similar in composition to that estimated composition for upper feldspathic lunar crust (Korotev et al. 2003). However, these melt types are more mafic (i.e., less Eu, less Sr, more Sc) than feldspathic impact melts returned by the Apollo 16 mission (e.g., the group 3 and 4 varieties). Mafic impact melt clasts are common in MET 01210 and less common in PCA 02007 and MAC 88104/05. We show that unlike the Apollo mafic impact melt groups (Jolliff 1998), these meteorite impact melts were not formed from melting large amounts of KREEP-rich (typically > 10 ppm Sm), High Magnesium Suite (typically > 70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios < 2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP-poor and Sc-rich, and represent mixing between feldspathic lithologies and low-Ti or very low-Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer-Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low-Ti basalt contribution. C1 [Joy, Katherine H.; Crawford, Ian A.] Joint UCL Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, London WC1E 6BT, England. [Joy, Katherine H.; Russell, Sara S.; Kearsley, Anton T.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Joy, Katherine H.] USRA, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, Katherine H.] NASA, Lunar Sci Inst, Washington, DC USA. [Crawford, Ian A.] Birkbeck Coll, Dept Earth & Planetary Sci, London WC1E 7HX, England. RP Joy, KH (reprint author), Joint UCL Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, Gower St, London WC1E 6BT, England. EM joy@lpi.usra.edu RI Crawford, Ian/H-7510-2012; OI Crawford, Ian/0000-0001-5661-7403; Joy, Katherine/0000-0003-4992-8750 FU Leverhulme Trust; STFC; LPI/NLSI FX Many thanks to Guy Consolmango and the Vatican Observatory for loaning the DaG 400 sample to the NHM and to MWG/NASA for the loan of Antarctic samples. Many thanks also to Mr. John Spratt (NHM), Dr. Sarah James (formally of the NHM), and Dr. Andy Beard (Birkbeck/UCL) for their assistance with analytical procedures. Many thanks for thorough reviews and helpful comments of Drs. Randy Korotev, James Day, Jeff Taylor, Barbara Cohen, Christian Koeberl, and an anonymous reviewer. We would like to acknowledge the resources made available through the Lunar Meteorite List Website (Randy Korotev), the Lunar Meteorite Compendium (Kevin Righter), the Lunar Sample Compendium (Chuck Meyer), and the Virtual Moon Atlas. Thanks to the Leverhulme Trust, STFC, and LPI/NLSI for financial support. This is LPI contribution number 1600. NR 139 TC 25 Z9 25 U1 2 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 917 EP 946 DI 10.1111/j.1945-5100.2010.01067.x PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100001 ER PT J AU Hung, CC McNatt, J AF Hung, Ching-Cheh McNatt, Jeremiah TI Synthesis and stability of iron nanoparticles for lunar environment studies SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SIMULATION AB Simulants of lunar dust are needed when researching the lunar environment. However, unlike the true lunar dust, today's simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of a lunar dust simulant. (1) The first is to sequentially treat a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 degrees C in nitrogen, at room temperature in air, and then at 1050 degrees C in nitrogen. The product includes glass beads that are gray in color, can be attracted by a magnet, and contains alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy agglutinate, which contains FeO. (2) The second is to heat a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 degrees C in nitrogen. This process simulates lunar dust reactions with the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe(3)O(4) nanoparticles, which appear to grow after the fabrication process. This growth became undetectable after 6 months of ambient air storage, but may last for several years or longer. C1 [Hung, Ching-Cheh; McNatt, Jeremiah] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Hung, CC (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 309-2, Cleveland, OH 44135 USA. EM ching-cheh.hung-1@nasa.gov FU NASA Glenn Research Center; NASA GRC FX The authors would like to acknowedge J. Gaier, A. Hepp, and K. Street for fruitful discussions regarding this work. We appreciate the efforts of D. Hull for the TEM work, as well as the efforts of R. Rogers, R. Mattingly, and the late R. Garlick for producing XRD data of iron nanoparticles over a 14 yr period. We are thankful for the financial support of the NASA Glenn Research Center's Independent Research and Development (IR&D) program and NASA GRC In Situ Resource Utilization Project (ISRU-Roxygen). NR 12 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 965 EP 972 DI 10.1111/j.1945-5100.2010.01075.x PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100003 ER PT J AU Chaban, GM Pizzarello, S AF Chaban, Galina M. Pizzarello, Sandra TI Ab initio calculations of 6-and 7-carbon meteoritic amino acids and their diastereomers SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID MURCHISON METEORITE; DEUTERIUM ENRICHMENT; CHEMISTRY AB To better explain the unusual distribution and relative abundances of several 6- and 7-carbon amino acids found in meteorites, their thermodynamic properties were studied using accurate ab initio techniques. In addition to optimized structures and relative energies, vibrational frequency and thermochemical analysis of different diastereomers were performed at temperatures relevant to conditions of synthesis of these amino acids in meteorites. The results of calculations were compared with the measured content of the amino acids in the Murchison meteorite. The distribution of several longer chain amino acids in meteorites seems to point to at least some thermodynamic control in their formation. For diastereomeric compounds, on the other hand, the comparison suggests that their synthetic conditions, or those of their precursors, were far from thermodynamic equilibrium. C1 [Chaban, Galina M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pizzarello, Sandra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Chaban, GM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM galina.m.chaban@nasa.gov FU NASA Astrobiology and Exobiology Program FX We would like to thank NASA Science Mission Directorate for computer time award on the NASA Advanced Supercomputing facility at the NASA Ames Research Center. This work was supported in part (S. P.) by the NASA Astrobiology and Exobiology Program. NR 17 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 1053 EP 1060 DI 10.1111/j.1945-5100.2010.01083.x PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100008 ER PT J AU Ghoshal, A Prosser, WH Kim, HS Chattopadhyay, A Copeland, B AF Ghoshal, Anindya Prosser, William H. Kim, Heung Soo Chattopadhyay, Aditi Copeland, Ben TI Development of embedded piezoelectric acoustic sensor array architecture SO MICROELECTRONICS RELIABILITY LA English DT Article ID COMPOSITE STRUCTURES; LAMB WAVES; PLATES; SCATTERING; DAMAGE; MODE AB This paper examines development of novel piezoelectric acoustic sensors, which are capable of sensing high frequency acoustic emissions in a composite/metallic plate. The fabrication of the piezoelectric acoustic sensors, made from piezoceramic ribbons, is described in the paper. An attempt was made to build directionality into the sensing system itself. Continuous sensors placed at right angles on a plate are discussed as a new approach to measure and locate the source of the acoustic waves. Novel signal processing algorithms based on bio-inspired neural systems for spatial filtering of large numbers of embedded sensor arrays in laminated composite media are presented. It is expected that the present work would help in the development of microelectronic sensing aiding diagnostics and prognostics techniques for highly efficient health monitoring of integrated aerospace vehicles and structures. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ghoshal, Anindya] United Technol Res Ctr, E Hartford, CT 06108 USA. [Prosser, William H.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. [Kim, Heung Soo] Dongguk Univ Seoul, Dept Mech Robot & Energy Engn, Seoul 100715, South Korea. [Chattopadhyay, Aditi] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. [Copeland, Ben] NASA, Langley Res Ctr, Mat Branch, Hampton, VA 23681 USA. RP Ghoshal, A (reprint author), United Technol Res Ctr, 411 Silver Lane,MS 129-73, E Hartford, CT 06108 USA. EM anindo_ghoshal@yahoo.com RI Kim, Heung Soo /F-6611-2011 OI Kim, Heung Soo /0000-0001-7057-5174 NR 25 TC 7 Z9 7 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0026-2714 J9 MICROELECTRON RELIAB JI Microelectron. Reliab. PD JUN PY 2010 VL 50 IS 6 BP 857 EP 863 DI 10.1016/j.microrel.2010.01.037 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 609GQ UT WOS:000278644400016 ER PT J AU Andrews, JC Almeida, E van der Meulen, MCH Alwood, JS Lee, C Liu, YJ Chen, J Meirer, F Feser, M Gelb, J Rudati, J Tkachuk, A Yun, WB Pianetta, P AF Andrews, Joy C. Almeida, Eduardo van der Meulen, Marjolein C. H. Alwood, Joshua S. Lee, Chialing Liu, Yijin Chen, Jie Meirer, Florian Feser, Michael Gelb, Jeff Rudati, Juana Tkachuk, Andrei Yun, Wenbing Pianetta, Piero TI Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE X-ray microscopy; imaging; bone ultrastructure; bone mineral density; trabeculae; lacuna; osteocyte ID ATOMIC-FORCE MICROSCOPY; LACUNAR-CANALICULAR SYSTEM; LASER-SCANNING MICROSCOPY; COMPUTED-TOMOGRAPHY; BONE-STRUCTURE; IN-SITU; MICROCOMPUTED TOMOGRAPHY; ELECTRON-MICROSCOPY; TRABECULAR BONE; CELLS AB A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 mu m(2) field of view has been used for high-resolution (30-40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 mu m), untreated samples that preserve tissue micro-and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30-40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51-54% of pure crystal density and plate-like areas had 44-53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. C1 [Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Almeida, Eduardo] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [van der Meulen, Marjolein C. H.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Alwood, Joshua S.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Lee, Chialing] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA. [Liu, Yijin] Inst High Energy Phys, Beijing 100039, Peoples R China. [Chen, Jie] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China. [Meirer, Florian] Vienna Univ Technol, Inst Atom & Subatom Phys, Vienna, Austria. [Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing] Xradia Inc, Concord, CA 94520 USA. RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jandrews@slac.stanford.edu RI van der Meulen, Marjolein/D-1549-2010; Liu, Yijin/O-2640-2013; Meirer, Florian/H-7642-2016 OI van der Meulen, Marjolein/0000-0001-6637-9808; Liu, Yijin/0000-0002-8417-2488; Meirer, Florian/0000-0001-5581-5790 FU National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering [R01-EB004321]; NIH [R01-AG028664]; National Aeronautics and Space Administration [RAD2004-0000-0110]; Department of Energy, Office of Basic Energy Sciences FX This work has been supported by the National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering grant number R01-EB004321. Mouse loading experiments were supported by NIH grant number R01-AG028664 (to M. C. H. M.) and E.A. is supported by National Aeronautics and Space Administration Grant number RAD2004-0000-0110. SSRL is supported by the Department of Energy, Office of Basic Energy Sciences. NR 47 TC 53 Z9 53 U1 1 U2 39 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD JUN PY 2010 VL 16 IS 3 BP 327 EP 336 DI 10.1017/S1431927610000231 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 599HS UT WOS:000277902600011 PM 20374681 ER PT J AU Hochhalter, JD Littlewood, DJ Christ, RJ Veilleux, MG Bozek, JE Ingraffea, AR Maniatty, AM AF Hochhalter, J. D. Littlewood, D. J. Christ, R. J., Jr. Veilleux, M. G. Bozek, J. E. Ingraffea, A. R. Maniatty, A. M. TI A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID STRUCTURALLY SMALL CRACKS; CRITICAL PLANE APPROACH; ALUMINUM-ALLOY; CRYSTAL PLASTICITY; LIFE PREDICTION; CYCLE FATIGUE; GROWTH; INCLUSIONS; INITIATION; DAMAGE AB The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 (Bozek et al 2008 Modelling Simul. Mater. Sci. 16 065007). The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and finite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, influences the nucleation mechanism. Also, the baseline models, replication models and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated. C1 [Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.] Cornell Univ, Cornell Fracture Grp, Ithaca, NY 14853 USA. [Littlewood, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Christ, R. J., Jr.] Northrop Grumman Integrated Syst, Technol Dev, Bethpage, NY 11714 USA. [Maniatty, A. M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Hochhalter, JD (reprint author), NASA, Langley Res Ctr, Durabil Damage Tolerance & Reliabil Branch, MS 188E, Hampton, VA 23681 USA. EM Jacob.D.Hochhalter@nasa.gov FU Defense Advanced Research Projects Agency [HR0011-04-C-0003]; NASA [ARMD-NNX07AB69A] FX This paper is dedicated to Dr John Papazian, who passed away before seeing its publication. John assembled, and was inspirational leader of, our research team. His keen insights, always timely suggestions and warm collegiality will be missed. The authors would also like to thank Professor Anthony Rollett for his involved discussions and guidance. This work is partially sponsored by the Defense Advanced Research Projects Agency under contract HR0011-04-C-0003. Dr Leo Christodoulou is the DARPA Program Manager. This work is also partially funded by NASA under contract ARMD-NNX07AB69A. Dr Ed Glaessgen is the NASA Contract Monitor. The simulations needed to complete this study were carried out at NASA LaRC computing facilities. NR 35 TC 21 Z9 21 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUN PY 2010 VL 18 IS 4 AR 045004 DI 10.1088/0965-0393/18/4/045004 PG 33 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 588QF UT WOS:000277087400004 ER PT J AU Furlanetto, SR Stoever, SJ AF Furlanetto, Steven R. Stoever, Samuel Johnson TI Secondary ionization and heating by fast electrons SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE atomic processes; intergalactic medium; diffuse radiation ID DARK-MATTER DECAYS; 1ST BLACK-HOLES; 21 CM SIGNATURE; HIGH-REDSHIFT; INTERGALACTIC MEDIUM; ENERGETIC PARTICLES; IMPACT IONIZATION; THERMAL ELECTRONS; X-RAYS; REIONIZATION AB We examine the fate of fast electrons (with energies E > 10 eV) in a thermal gas of primordial composition. To follow their interactions with the background gas, we construct a Monte Carlo model that includes: (1) electron-electron scattering (which transforms the electron kinetic energy into heat), (2) collisional ionization of hydrogen and helium (which produces secondary electrons that themselves scatter through the medium) and (3) collisional excitation (which produces secondary photons, whose fates we also follow approximately). For the last process, we explicitly include all transitions to upper levels n < 4, together with a well-motivated extrapolation to higher levels. In all cases, we use recent calculated cross-sections at E < 1 keV and the Bethe approximation to extrapolate to higher energies. We compute the fractions of energy deposited as heat, ionization (tracking H i and the helium species separately) and excitation (tracking H i Ly alpha separately) under a broad range of conditions appropriate to the intergalactic medium. The energy deposition fractions depend on both the background ionized fraction and the electron energy but are nearly independent of the background density. We find good agreement with some, but not all, previous calculations at high energies. Electronic tables of our results are available. C1 [Furlanetto, Steven R.; Stoever, Samuel Johnson] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Furlanetto, Steven R.] NASA Ames Res Ctr, NASA Lunar Sci Inst, Moffett Field, CA 94043 USA. [Stoever, Samuel Johnson] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Furlanetto, SR (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM sfurlane@astro.ucla.edu FU NSF [AST-0829737, PHY-0552500]; David and Lucile Packard Foundation; NASA [NNA09DB30A]; UCLA FX We thank M. Valdes for helpful comments. SRF was partially supported by the NSF through grant AST-0829737, by the David and Lucile Packard Foundation and by NASA through the LUNAR programme. The LUNAR consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon. SJS was supported by a Research Experiences for Undergraduates grant at UCLA, NSF PHY-0552500. We thank Agner Fog for making a public version of the Mersenne Twister algorithm available and Igor Bray and Yuri Ralchenko for making the CCC data base available electronically. NR 45 TC 51 Z9 51 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2010 VL 404 IS 4 BP 1869 EP 1878 DI 10.1111/j.1365-2966.2010.16401.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600JG UT WOS:000277981400017 ER PT J AU Braun, SA AF Braun, Scott A. TI Reevaluating the Role of the Saharan Air Layer in Atlantic Tropical Cyclogenesis and Evolution SO MONTHLY WEATHER REVIEW LA English DT Article ID VERTICAL WIND SHEAR; AFRICAN EASTERLY JET; UPPER-TROPOSPHERIC TROUGHS; PREDICTION SCHEME SHIPS; WATER-VAPOR RADIANCES; HURRICANE-BONNIE 1998; NUMERICAL SIMULATIONS; WAVE DISTURBANCES; NORTH-ATLANTIC; INNER-CORE AB The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air frequently present over the tropical Atlantic Ocean, has long been appreciated. The nature of its impacts on hurricanes remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The potential negative impacts of the SAL include 1) vertical wind shear associated with the African easterly jet: 2) warm air aloft, which increases thermodynamic stability at the base of the SAL; and 3) dry air, which produces cold downdrafts. Multiple NASA satellite datasets and NCEP global analyses are used to characterize the SAL's properties and evolution ill relation to tropical cyclones and to evaluate these potential negative influences. The SAL is shown to occur in a large-scale environment that is already characteristically dry as a result of large-scale subsidence. Strong surface heating and deep dry convective mixing enhance the dryness at low levels (primarily below similar to 700 hPa), but moisten the air at midlevels. Therefore, mid-to-upper-level dryness is not generally a defining characteristic of the SAL, but is instead often a signature of subsidence. The results further show that storms generally form on the southern side of the jet, where the background cyclonic vorticity is high. Based upon its depiction in NCEP Global Forecast System meteorological analyses, the jet often helps to form the northern side of the storms and is present to equal extents for both strengthening and weakening storms, suggesting that jet-induced vertical wind shear may not be a frequent negative influence. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. Composite analyses of the early stages of tropical cyclones occurring in association with the SAL support the inferences from the individual cases noted above. Furthermore, separate composites for strongly strengthening and for weakening storms show few substantial differences in the SAL characteristics between these two groups, suggesting that the SAL is not a determinant of whether a storm will intensify or weaken in the days after formation. Key differences between these cases are found mainly at upper levels where the flow over strengthening storms allows for an expansive outflow and produces little vertical shear, while for weakening storms, the shear is stronger and the outflow is significantly constrained. C1 NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Braun, SA (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-1, Greenbelt, MD 20771 USA. EM scott.a.braun@nasa.gov FU NASA FX The authors thank Karen Mohr and Ron McTaggart-Cowan for their helpful comments on the manuscript. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA Hurricane Science Research Program. NR 87 TC 46 Z9 47 U1 3 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2010 VL 138 IS 6 BP 2007 EP 2037 DI 10.1175/2009MWR3135.1 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 622QE UT WOS:000279677500002 ER PT J AU Bleck, R Benjamin, S Lee, J MacDonald, AE AF Bleck, Rainer Benjamin, Stan Lee, Jin MacDonald, Alexander E. TI On the Use of an Adaptive, Hybrid-Isentropic Vertical Coordinate in Global Atmospheric Modeling SO MONTHLY WEATHER REVIEW LA English DT Article ID SHALLOW-WATER EQUATIONS; WEATHER PREDICTION; SIGMA MODEL; NUMERICAL INVESTIGATIONS; DIFFERENCE SCHEME; SIMULATION; SYSTEMS AB This article is one in a series describing the functionality of the Flow-Following, Finite-Volume Icosahedral Model (FIM) developed at NOAA's Earth System Research Laboratory. Emphasis in this article is on the design of the vertical coordinate-the "flow following" aspect of FIM. The coordinate is terrain-following near the ground and isentropic in the free atmosphere. The spatial transition between the two coordinates is adaptive and is based on the arbitrary Lagrangian-Eulerian (ALE) paradigm. The impact of vertical resolution trade-offs between the present hybrid approach and traditional terrain-following coordinates is demonstrated in a three-part case study. C1 [Bleck, Rainer] NOAA, ESRL, Global Syst Div, Boulder, CO 80303 USA. [Bleck, Rainer] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. RP Bleck, R (reprint author), NOAA, ESRL, Global Syst Div, 325 Broadway, Boulder, CO 80303 USA. EM rainer.bleck@noaa.gov RI Bleck, Rainer/C-6417-2015; Benjamin, Stan/C-5818-2015; Lee, JIN-LUEN/G-5364-2015 OI Benjamin, Stan/0000-0002-5751-8236; NR 47 TC 13 Z9 13 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2010 VL 138 IS 6 BP 2188 EP 2210 DI 10.1175/2009MWR3103.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 622QE UT WOS:000279677500011 ER PT J AU Kaul, AB Yang, EH AF Kaul, Anupama B. Yang, Eui-Hyeok TI A Special Issue on Nanoscale Materials, Structures and Devices for Sensors and Systems Applications SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Editorial Material C1 [Kaul, Anupama B.] CALTECH, Jet Prop Labs, Pasadena, CA 91125 USA. [Yang, Eui-Hyeok] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. [Kaul, Anupama B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Yang, Eui-Hyeok] Stevens Inst Technol, Multiuser Micro Device Lab MDL, Hoboken, NJ 07030 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Labs, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 63 EP 64 DI 10.1166/nnl.2010.1061 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900001 ER PT J AU Son, KA Liao, AN Lung, G Gallegos, M Hatake, T Harris, RD Scheick, LZ Smythe, WD AF Son, Kyung-ah Liao, Anna Lung, Gerald Gallegos, Manuel Hatake, Toshiro Harris, Richard D. Scheick, Leif Z. Smythe, William D. TI GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE AlGaN/GaN; MOS Transistor; Schottky-Free; High Temperature; Radiation-Hard ID FIELD-EFFECT TRANSISTORS; MOBILITY TRANSISTORS; HYDROSTATIC-PRESSURE; ALGAN/GAN HEMTS; DEPENDENCE; DC; DEVICES AB We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on AlGaN/GaN metal-oxide-semiconductor (MOS) transistors that are targeted for 500 degrees C operation and > 2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al(2)O(3) gate dielectric layer. The AlGaN/GaN MOS transistors fabricated with the wide-bandgap gate oxide layer enable Schottky-free gate electrodes, resulting in a much reduced gate leakage current and an improved sub-threshold current than the current AlGaN/GaN field effect transistors. In this study, characterization of our AlGaN/GaN MOS transistors is carried out over the temperature range of 25 degrees C to 500 degrees C. The I(ds)-V(gs) and I(ds)-V(gs) curves measured as a function of temperature show an excellent pinch-off behavior up to 450 degrees C. Off-state degradation is not observed up to 400 degrees C, but it becomes measurable at 450 degrees C. The off-state current is increased at 500 degrees C due to the gate leakage current, and the AlGaN/GaN MOS HEMT does not get pinched-off completely. Radiation hardness testing of the AlGaN/GaN MOS transistors is performed using a 50 MeV (60)Co gamma source to explore effects of TID (total ion dose). Excellent I(ds)-V(gs), and I(ds)-V(gs) characteristics are measured even after exposures to a TID of 2 Mrad. A slight decrease of saturation current (Delta I(dss) similar to 3 mA/mm) is observed due to the 2 Mrad irradiation. C1 [Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatake, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Son, KA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 21 TC 6 Z9 6 U1 1 U2 10 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 89 EP 95 DI 10.1166/nnl.2010.1063 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900006 ER PT J AU Prokopuk, N Son, KA Waltz, C AF Prokopuk, Nicholas Son, Kyung-Ah Waltz, Chad TI Free Standing Nanocrossbar Arrays with Molecular Throughput SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Electron Tunneling; Nanogap; Chemical Etch ID MONOLAYER/TI DEVICES; NANOGAP ELECTRODES; VAPOR-DEPOSITION; FABRICATION; TI; PATHWAYS; CIRCUITS; SURFACES; GLASSES; SWITCH AB We report a new approach for fabricating vacant nanocrossbar arrays using a combination of lithography and selective chemical etch. Two parallel arrays of gold wires are lithographically patterned orthogonal to each other with a chromium layer (2-5 nm thick) sandwiched between the wire arrays. A silicon oxide mesh is sputtered over the metal ensemble leaving the crossing points free of the oxide layer. The chromium layer is subsequently removed via selective chemical etch leaving a gold architecture with vertical separations that are on the order of a few nanometers. The silicon oxide mesh anchors the gold wires in place creating a robust nanoarchitecture. The nanogaps can be filled with fluids resulting in a change of the junction's resistance. The variability in the vertical separations between the wires within an array is only a few Angstroms. These results demonstrate that molecular-sized gaps can be created without the use of a molecular template. C1 [Prokopuk, Nicholas; Waltz, Chad] NAVAIR Res Dept, Chem Branch, China Lake, CA 93555 USA. [Son, Kyung-Ah] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Prokopuk, N (reprint author), NAVAIR Res Dept, Chem Branch, China Lake, CA 93555 USA. FU NAWCWD, China Lake; National Aeronautics and Space Administration FX Nicholas Prokopuk thanks the Defense Threat Reduction Agency for funding. This work was partially supported by the Independent Applied Research Program at NAWCWD, China Lake under the sponsorship of ONR. The research in this paper was carried out partly at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 30 TC 0 Z9 0 U1 0 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1941-4900 EI 1941-4919 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 96 EP 101 DI 10.1166/nnl.2010.1064 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900007 ER PT J AU Kaul, AB Khan, AR Megerian, KG Epp, L Bagge, L Jennings, AT Jang, D Greer, JR AF Kaul, A. B. Khan, A. R. Megerian, K. G. Epp, L. Bagge, L. Jennings, A. T. Jang, D. Greer, J. R. TI Nano-Electro-Mechanical Switches Derived from Carbon-Based Nanomaterials SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Nanoelectronics; NEMS; Mechanical Resonators; SWNTs; CNFs; In Situ Characterization ID NANOFIBERS AB We provide an overview of our work where carbon-based nanostructures have been applied to two-dimensional (2D) planar and three-dimensional (3D) vertically-oriented nano-electro-mechanical (NEM) switches. In the first configuration, laterally oriented single-walled nanotubes (SWNTs) synthesized using thermal chemical vapor deposition (CVD) were implemented for forming bridge-type 2D NEMS switches, where switching voltages were on the order of a few volts. In the second configuration, vertically oriented carbon nanofibers (CNFs) synthesized using plasma-enhanced (PE) CVD have been explored for their potential application in 3D NEMS. We have performed nanomechanical measurements on such vertically oriented tubes using nanoindentation to determine the mechanical robustness of the CNFs. Electrostatic switching was demonstrated in the CNFs synthesized on refractory metallic nitride substrates, where a nanoprobe was used as the actuating electrode inside a scanning-electron-microscope. The switching voltages were determined to be in the tens of volts range and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical pull-in voltage which was compared to experimental results. C1 [Kaul, A. B.; Khan, A. R.; Megerian, K. G.; Epp, L.; Bagge, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jennings, A. T.; Jang, D.; Greer, J. R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Jang, Dongchan/C-9510-2012 OI Jang, Dongchan/0000-0002-2814-9734 FU National Aeronautics and Space Administration; internal Research and Technology Development (RTD) program FX We sincerely acknowledge Robert Kowalczyk for his assistance with the PECVD growth chamber and performing chamber upgrades as necessary, in addition to Dr. Choonsup Lee, Dr. Richard L. Baron and Dr. Paul von Allmen for useful discussions. We would also like to thank Shelby Hutchens of the California Institute of Technology (Caltech) and Brian Peters of Agilent Technologies for the images taken in Figures 2(a) and (b). We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 21 TC 1 Z9 1 U1 0 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 163 EP 169 DI 10.1166/nnl.2010.1076 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900017 ER PT J AU Kaul, AB Megerian, KG Bagge, L Epp, L LeDuc, HG Coles, JB Eastwood, M Green, RO Foote, M AF Kaul, A. B. Megerian, K. G. Bagge, L. Epp, L. LeDuc, H. G. Coles, J. B. Eastwood, M. Green, R. O. Foote, M. TI Carbon Nanomaterials for Nanoelectronics and Optical Applications SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Nano-Sensors; Pressure Sensors; Resonators; NEMS; Optical Absorbers; Black Bodies ID SWITCHES AB Carbon-based nanomaterials have been actively applied to a diverse array of space-based applications in electronics and optics at the Jet Propulsion Laboratory. In the area of nano-electromechanical-systems (NEMS), we describe the implementation of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) to dc nanorelays, as well as for AC resonator applications, which are under consideration for extreme environment electronics. We have also implemented single-walled nanotubes (SWNTs) to physical sensing, specifically for forming miniaturized pressure sensors for vacuum micro-cavity applications, where the mechanism of operation in such sensors relies on the thermal conductivity principle. Finally, we have also initiated an effort to apply arrays of vertically oriented CNTs for optical applications, specifically as broad-band optical absorbers, potentially for calibration targets. In this paper, we provide an overview of the recent results in the three application areas of carbon nanomaterials. C1 [Kaul, A. B.; Megerian, K. G.; Bagge, L.; Epp, L.; LeDuc, H. G.; Coles, J. B.; Eastwood, M.; Green, R. O.; Foote, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration; internal Research and Technology Development (RTD) program FX We would like to thank Robert Kowalczyk for making system modifications to the dc PECVD growth chamber, Choonsup Lee, Richard Baron and Paul von Allmen for useful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 16 TC 2 Z9 2 U1 0 U2 8 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 170 EP 174 DI 10.1166/nnl.2010.1077 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900018 ER PT J AU Johnson, SW Thedinga, JF Neff, AD Harris, PM Lindeberg, MR Maselko, JM Rice, SD AF Johnson, Scott W. Thedinga, John F. Neff, A. Darcie Harris, Patricia M. Lindeberg, Mandy R. Maselko, Jacek M. Rice, Stanley D. TI Fish Assemblages in Nearshore Habitats of Prince William Sound, Alaska SO NORTHWEST SCIENCE LA English DT Article ID VALDEZ OIL-SPILL; SHALLOW-WATER HABITATS; LIFE-HISTORY; REPRODUCTIVE SUCCESS; SOUTHEASTERN ALASKA; CLUPEA-PALLASI; NORTHERN GULF; PACIFIC; COMMUNITIES; ABUNDANCE AB We sampled fish at eight locations in western Prince William Sound (PWS), Alaska, in April, July, and September 2006, and July 2007, to identify species assemblages and habitat use. At each location, fish were sampled with a 37-m long variable mesh beach seine in three nearshore habitats: bedrock outcrops, eelgrass meadows, and cobble beaches with kelp. A total of 49,060 fish representing 45 species were captured in 95 beach seine hauls. Catch-per-unit-effort (CPUE, all species) did not differ by season but did differ by habitat type CPUE was greater in eelgrass and kelp than in bedrock. Seasonal pulses in catch were evident for some species; pink salmon were captured only in spring and summer, Pacific herring only in summer and fall, and capelin only in fall. Species richness was greater in summer (34) than in spring (23) or fall (28), and greater in eelgrass (34) than in bedrock (22) or kelp (33). Species that were good discriminators among seasonal collections were pink salmon, saffron cod, crescent gunnel, and Pacific herring, whereas species that were good discriminators among habitat collections were crescent gunnel, tubesnout, bay pipefish, saffron cod, and Arctic shanny. Of the most abundant species captured, most were juveniles based on estimated size at maturity. The summer fish assemblage in western PWS has changed over the last 20 years, especially with the appearance in large numbers of saffron cod. Sites in this study can be monitored periodically to track future changes in fish assemblages and habitat that may result from local and regional human disturbance. C1 [Johnson, Scott W.; Thedinga, John F.; Neff, A. Darcie; Harris, Patricia M.; Lindeberg, Mandy R.; Maselko, Jacek M.; Rice, Stanley D.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. RP Johnson, SW (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM scott.johnson@noaa.gov FU North Pacific Research Board [249]; NOAA FX We thank the crews of the RV Solstice and RV Pandalus for their invaluable support at sea. We would especially like to thank Matthew Eagleton of the NMFS regional office in Anchorage for providing logistical support. We also thank Dugan Greenwell. Kris Holderied, John Hudson, Sarah Lyn McConahay, John Moran, Sue Saupe, Fletcher Sewall, and Ash win Sreenivasan for help with field and laboratory work. Funding for this research was provided by the North Pacific Research Board (Publication 249) and the NOAA Fisheries Essential Fish Habitat Program. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NR 44 TC 5 Z9 5 U1 5 U2 21 PU WASHINGTON STATE UNIV PI PULLMAN PA PO BOX 645020, PULLMAN, WA 99164-5910 USA SN 0029-344X J9 NORTHWEST SCI JI Northwest Sci. PD SUM PY 2010 VL 84 IS 3 BP 266 EP 280 PG 15 WC Ecology SC Environmental Sciences & Ecology GA 652VU UT WOS:000282039700006 ER PT J AU VanZwieten, JH Driscoll, FR VanZwieten, TS Marikle, SP AF VanZwieten, J. H., Jr. Driscoll, F. R. VanZwieten, T. S. Marikle, S. P. TI Development of an adaptive disturbance rejection system for the rapidly deployable stable platform-part 1: Mathematical modeling and open loop response SO OCEAN ENGINEERING LA English DT Article DE RDSP; RDSC; Spar; Simulation; Sea base; Wave disturbances; Load disturbances; Open loop response; Seakeeping; Crane ship AB A Rapidly Deployable Stable Platform (RDSP) concept was investigated at Florida Atlantic University in response to military and civilian needs for ocean platforms with improved sea-keeping characteristics. The RDSP is designed to have enhanced sea-keeping abilities through the combination of a novel hull and thruster design coupled with active control. The RDSP is comprised of a catamaran that attaches via a hinge to a spar, enabling it to transit like a trimaran and then reconfigure so that the spar lifts the catamaran out of the water, creating a stable spar platform. The focus of this research is the mathematical modeling, simulation, and response characterization of the RDSP to provide a foundation for controller design, testing, and tuning. The mathematical model includes a detailed representation of residual drag, friction drag, added mass, hydrostatic and hydrodynamic pressure, and control actuator dynamics. Validation has been performed by comparing the simulation predicted motions of the RDSP operating in waves to the measured motions of the 1/10th scale prototype measured at sea. Resulting from this paper is an empirical assessment of the response characteristics of the RDSP that quantifies the performance under extreme conditions and provides a solid basis for controller development and testing. (C) 2010 Elsevier Ltd. All rights reserved. C1 [VanZwieten, J. H., Jr.] Florida Atlantic Univ, Ctr Ocean Energy Technol, Dania, FL 33004 USA. [Driscoll, F. R.; Marikle, S. P.] Florida Atlantic Univ, Dept Ocean & Mech Engn, Dania, FL 33004 USA. [VanZwieten, T. S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP VanZwieten, JH (reprint author), Florida Atlantic Univ, Ctr Ocean Energy Technol, 101 N Beach Rd, Dania, FL 33004 USA. EM jvanzwi@fau.edu FU Office of Naval Research [N00014-06-1-0461] FX The authors gratefully acknowledge the Office of Naval Research, code 33, program manager Kelly Cooper for funding this work under grant N00014-06-1-0461. The authors would also like to thank FAU's senior design class of 2005 for developing and assembling the original 1/10th scale prototype RDSP, which was modified to produce the RDSP prototype used to validate the simulation presented in this paper. NR 18 TC 2 Z9 3 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD JUN PY 2010 VL 37 IS 8-9 BP 833 EP 846 DI 10.1016/j.oceaneng.2010.02.014 PG 14 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 605OA UT WOS:000278355700016 ER PT J AU Weber, AL AF Weber, Arthur L. TI Sugar-Driven Prebiotic Synthesis of Ammonia from Nitrite SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article DE Ammonia synthesis; Nitrite; Reduction; Sugar chemistry; Ferric; Prebiotic synthesis; Origin of life ID MILD AQUEOUS CONDITIONS; ACID SYNTHESIS; DISPROPORTIONATION; TRANSFORMATIONS; FORMALDEHYDE; METABOLISM; REDUCTION; ORIGIN; MODEL; LIFE AB Reaction of 3-5 carbon sugars, glycolaldehyde, and alpha-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible alpha-hydroxycarbonyl group or an alpha-dicarbonyl group. Small amounts of aqueous Fe(+3) catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia's reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species. C1 NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Weber, AL (reprint author), NASA, SETI Inst, Ames Res Ctr, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM arthur.l.weber@nasa.gov FU Exobiology Program of the National Aeronautics and Space Administration [NNX08AP48A] FX I thank Esther Varon for technical assistance in these studies. This investigation was supported by a grant (NNX08AP48A) from the Exobiology Program of the National Aeronautics and Space Administration. NR 21 TC 2 Z9 2 U1 2 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD JUN PY 2010 VL 40 IS 3 BP 245 EP 252 DI 10.1007/s11084-010-9208-z PG 8 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 587WY UT WOS:000277028000001 PM 20213158 ER PT J AU Kruger, H Dikarev, V Anweiler, B Dermott, SF Graps, AL Grun, E Gustafson, BA Hamilton, DP Hanner, MS Horanyi, M Kissel, J Linkert, D Linkert, G Mann, I McDonnell, JAM Morfill, GE Polanskey, C Schwehm, G Srama, R AF Krueger, H. Dikarev, V. Anweiler, B. Dermott, S. F. Graps, A. L. Gruen, E. Gustafson, B. A. Hamilton, D. P. Hanner, M. S. Horanyi, M. Kissel, J. Linkert, D. Linkert, G. Mann, I. McDonnell, J. A. M. Morfill, G. E. Polanskey, C. Schwehm, G. Srama, R. TI Three years of Ulysses dust data: 2005 to 2007 SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Interstellar dust; Interplanetary dust; Dust dynamics; Interstellar medium; Dust in-situ measurements ID INTERSTELLAR NEUTRAL HELIUM; INNER SOLAR-SYSTEM; JOVIAN SYSTEM; METEOROID ENVIRONMENT; KINETIC-PARAMETERS; RADIATION PRESSURE; MASS-DISTRIBUTION; ASTEROID BELT; 1 AU; GALILEO AB The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse (i = 79 degrees, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in February 1992. Since then it has made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-board dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10(-16) g <= m <= 10(-7) g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin; the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Krueger, H.; Kissel, J.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Krueger, H.; Anweiler, B.; Gruen, E.; Linkert, D.; Linkert, G.; Srama, R.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Dikarev, V.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Dermott, S. F.; Gustafson, B. A.] Univ Florida, SSRB 211, Gainesville, FL 32609 USA. [Graps, A. L.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Gruen, E.; Horanyi, M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hamilton, D. P.] Univ Maryland, College Pk, MD 20742 USA. [Hanner, M. S.] Univ Massachusetts, Dept Astron, LGRT 619, Amherst, MA 01003 USA. [Mann, I.] Kinki Univ, Sch Sci & Engn, Osaka 5778502, Japan. [McDonnell, J. A. M.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Polanskey, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schwehm, G.] ESAC, Villanueva De La Canada 28691, Spain. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. RP Kruger, H (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krueger@mps.mpg.de OI Horanyi, Mihaly/0000-0002-5920-9226 FU Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 ON 9107, 50 QJ 9503]; Max-Planck-Institut fur Kernphysik; Max-Planck-Institut fur Sonnensys-temforschung FX We dedicate this work to the memory of Dietmar Linkert who passed away in spring 2009. He was Principal Engineer for space instruments at MPI fur Kernphysik including the dust instruments flown on the HEOS-2, Helios, Galileo, Ulysses and Cassini missions. His friends and colleagues around the world appreciated his experience and sought his professional advice. We thank the Ulysses project at ESA and NASA/JPL for effective and successful mission operations. This work has been supported by the Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) under Grants 50 ON 9107 and 50 QJ 9503. Support by Max-Planck-Institut fur Kernphysik and Max-Planck-Institut fur Sonnensys-temforschung is also gratefully acknowledged. The authors also wish to thank two anonymous referees for their valuable comments for the manuscript. NR 73 TC 15 Z9 15 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 951 EP 964 DI 10.1016/j.pss.2009.11.002 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200001 ER PT J AU Kruger, H Bindschadler, D Dermott, SF Graps, AL Grun, E Gustafson, BA Hamilton, DP Hanner, MS Horanyi, M Kissel, J Linkert, D Linkert, G Mann, I McDonnell, JAM Moissl, R Morfill, GE Polanskey, C Roy, M Schwehm, G Srama, R AF Krueger, H. Bindschadler, D. Dermott, S. F. Graps, A. L. Gruen, E. Gustafson, B. A. Hamilton, D. P. Hanner, M. S. Horanyi, M. Kissel, J. Linkert, D. Linkert, G. Mann, I. McDonnell, J. A. M. Moissl, R. Morfill, G. E. Polanskey, C. Roy, M. Schwehm, G. Srama, R. TI Galileo dust data from the jovian system: 2000 to 2003 SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Circumplanetary dust; Planetary rings; Dust/magnetosphere interaction; Interplanetary dust; Dusty plasmas ID JUPITERS GOSSAMER RINGS; PLANETARY SATELLITES; INTERSTELLAR DUST; STREAM PARTICLES; ULYSSES; IO; MAGNETOSPHERE; INTERPLANETARY; DETECTOR; CLOUDS AB The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 R(J) (jovian radius R(J)=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon lo. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min(-1). Surprisingly large impact rates up to 100 min(-1) occurred in August/September 2000 when Galileo was far away (approximate to 280 R(J)) from Jupiter, implying dust ejection rates in excess of 100 kg s(-1). This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the lo torus. Strong variability in the lo dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from lo or the lo torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a four-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R(J) jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. Strong electronics degradation of the dust instrument due to the harsh radiation environment of Jupiter led to increased calibration uncertainties of the dust data. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Krueger, H.; Kissel, J.; Moissl, R.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Krueger, H.; Gruen, E.; Linkert, D.; Linkert, G.; Srama, R.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Bindschadler, D.; Polanskey, C.; Roy, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dermott, S. F.; Gustafson, B. A.] Univ Florida, SSRB 211, Gainesville, FL 32609 USA. [Graps, A. L.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Gruen, E.; Horanyi, M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hamilton, D. P.] Univ Maryland, College Pk, MD 20742 USA. [Hanner, M. S.] Univ Massachusetts, Astron Dept LGRT 619, Amherst, MA 01003 USA. [Mann, I.] Kinki Univ, Sch Sci & Engn, Osaka 5778502, Japan. [McDonnell, J. A. M.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Schwehm, G.] ESAC, Villanueva De La Canada 28691, Spain. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. RP Kruger, H (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krueger@mps.mpg.de OI Horanyi, Mihaly/0000-0002-5920-9226 FU German Bundesministerium fur Bildung und Forschung through Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 QJ 9503 3]; MPI fur Kernphysik; MPI fur Sonnensystemforschung FX We dedicate this work to the memory of Dietmar Linkert who passed away in spring 2009. He was Principal Engineer for space instruments at MPI fur Kernphysik including the dust instruments flown on the HEOS-2, Helios, Galileo, Ulysses and Cassini missions. His friends and colleagues around the world appreciated his experience and sought his professional advice. The authors wish to thank the Galileo project at NASA/JPL for effective and successful mission operations. This research was supported by the German Bundesministerium fur Bildung und Forschung through Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR, grant 50 QJ 9503 3). Support by MPI fur Kernphysik and MPI fur Sonnensystemforschung is also gratefully acknowledged. The authors also wish to thank two anonymous referees for their valuable comments for the manuscript. NR 68 TC 5 Z9 5 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 965 EP 993 DI 10.1016/j.pss.2010.03.003 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200002 ER PT J AU ten Kate, IL Cardiff, EH Dworkin, JP Feng, SH Holmes, V Malespin, C Stern, JG Swindle, TD Glavin, DP AF ten Kate, I. L. Cardiff, E. H. Dworkin, J. P. Feng, S. H. Holmes, V. Malespin, C. Stern, J. G. Swindle, T. D. Glavin, D. P. TI VAPoR - Volatile Analysis by Pyrolysis of Regolith - an instrument for in situ detection of water, noble gases, and organics on the Moon SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Evolved Gas Analysis; Lunar Regolith; Lunar Volatiles; Mass Spectrometer; Lunar Water Ice ID LUNAR TRANSIENT PHENOMENA; LATE HEAVY BOMBARDMENT; CARBONACEOUS CHONDRITES; MURCHISON METEORITE; MARS; APOLLO-16; NITROGEN; SUPPORT; SCIENCE; SURFACE AB We present the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument design and demonstrate the validity of an in situ pyrolysis mass spectrometer for evolved gas analyses of lunar and planetary regolith samples. In situ evolved gas analyses of the lunar regolith have not yet been carried out and no atmospheric or evolved gas measurements have been made at the lunar poles. VAPoR is designed to do both kinds of measurements, is currently under development at NASA's Goddard Space Flight Center, and will be able to heat powdered regolith samples or rock drill fines up to 1400 degrees C in vacuo. To validate the instrument concept, evolved gas species released from different planetary analogs were determined as a function of temperature using a laboratory breadboard. Evolved gas measurements of an Apollo 16 regolith sample and a fragment of the carbonaceous meteorite Murchison were made by VAPoR and our results compared with existing data. The results imply that in situ evolved gas measurements of the lunar regolith at the polar regions by VAPoR will be a very powerful tool for identifying water and other volatile signatures of lunar or exogenous origin as potential resources for future human exploration. (C) 2010 Elsevier Ltd. All rights reserved. C1 [ten Kate, I. L.; Cardiff, E. H.; Dworkin, J. P.; Feng, S. H.; Holmes, V.; Glavin, D. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [ten Kate, I. L.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Holmes, V.] Bast Technol, Lanham, MD 20706 USA. [Malespin, C.] Auburn Univ Phys, Allison Labs 206, Auburn, AL 36849 USA. [Stern, J. G.] Georgia Inst Technol, Dept Biol, Atlanta, GA 30332 USA. [Swindle, T. D.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP ten Kate, IL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Inge.L.tenKate@NASA.gov RI Malespin, Charles/F-3445-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012; Stern, Joshua/A-2691-2010 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997; Stern, Joshua/0000-0003-0626-5467 FU NASA [06-LSSO06-0002, 07-ASTID07-0020]; Goddard Internal Research and Development FX The authors thank P. Lowman, T. McCoy, L. Welzenbach, and G. Lofgren for the samples used in this study. The authors also thank Marvin Noreiga and the late Bob Abell for their invaluable help in keeping the VAPoR instrument running, Geronimo Villanueva for his help with the 1DL code used to analyze the data, and Bart Hendriks and Douwe van Hinsbergen for their geological discussions. We also recognize the NASA Lunar Sortie Science Opportunities (grant #06-LSSO06-0002) and Astrobiology Science and Technology Instrument Development (grant #07-ASTID07-0020) programs, Goddard Internal Research and Development funding for supporting this research. NR 54 TC 14 Z9 14 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 1007 EP 1017 DI 10.1016/j.pss.2010.03.006 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200004 ER PT J AU Colavita, MM AF Colavita, M. M. TI Simultaneous Water Vapor and Dry Air Path Length Measurements with the Keck Interferometer Nuller SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID PALOMAR TESTBED INTERFEROMETER; OUTER SCALES; MT WILSON; TURBULENCE; SPECTRA; DELAY; VLTI; MIDI AB K-band phase and group delay measurements of atmospheric turbulence are used as part of the Keck Interferometer nuller cophasing system to provide high-bandwidth path length compensation at N band. Because of atmospheric dispersion, the path length fluctuations from dry air and water vapor must be estimated separately, and the computation of the N-band feedforward quantities from the K-band measurements is described. Simultaneous K and N-band sky data are presented that show good correspondence with the underlying atmospheric models. Simultaneous power spectra of dry air and water vapor path length turbulence measured on an 85 m baseline with the Keck Interferometer over 44 nights between 2007 June and 2009 July are also presented. From the median power spectra, the rms path length fluctuations at K band from water vapor are found to be 48 times smaller than those for dry air, and the absolute level of the water vapor path length fluctuations is found to be a factor of 2 smaller than predicted based on archival data from the CSO test radio interferometer. It is postulated that part of the difference is attributable to surface-layer water vapor turbulence, which would be smaller at the elevation of the Keck telescopes than for the test antennas, similar to surface-layer effects seen in dry air seeing at Mauna Kea. The midfrequency power spectral amplitude better characterizes the residuals for a feedforward compensation system, and this value is found to be a factor of 65 smaller at K band for water vapor than for dry air; the difference compared to the ratio of the rms values is attributable to the lower effective wind speed of the water vapor turbulence, and thus lower control bandwidths are required for compensation than a simple scaling based on rms fluctuations would indicate. The water vapor coherence time is also shown to have modest correlations with both precipitable water vapor and the dry air coherence time, although the variability of the water vapor turbulence strength is larger than that of the dry air turbulence. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Colavita, MM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Mark.Colavita@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); W. M. Keck Foundation FX Thanks to Rachel Akeson and Oliver Lay for helpful comments, and to Claude Felizardo for assistance with the data processing. Thanks also to the referee for helpful suggestions. The Keck Interferometer is funded by the National Aeronautics and Space Administration (NASA). Observations presented were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 31 TC 6 Z9 6 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2010 VL 122 IS 892 BP 712 EP 721 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600NK UT WOS:000277993400008 ER PT J AU Becker-Reshef, I Justice, C Sullivan, M Vermote, E Tucker, C Anyamba, A Small, J Pak, E Masuoka, E Schmaltz, J Hansen, M Pittman, K Birkett, C Williams, D Reynolds, C Doorn, B AF Becker-Reshef, Inbal Justice, Chris Sullivan, Mark Vermote, Eric Tucker, Compton Anyamba, Assaf Small, Jen Pak, Ed Masuoka, Ed Schmaltz, Jeff Hansen, Matthew Pittman, Kyle Birkett, Charon Williams, Derrick Reynolds, Curt Doorn, Bradley TI Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project SO REMOTE SENSING LA English DT Article DE agriculture; monitoring; MODIS; croplands; GLAM AB In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. Timely information on global crop production is indispensable for combating the growing stress on the world's crop production and for securing both short-term and long-term stable and reliable supply of food. Global agriculture monitoring systems are critical to providing this kind of intelligence and global earth observations are an essential component of an effective global agricultural monitoring system as they offer timely, objective, global information on croplands distribution, crop development and conditions as the growing season progresses. The Global Agriculture Monitoring Project (GLAM), a joint NASA, USDA, UMD and SDSU initiative, has built a global agricultural monitoring system that provides the USDA Foreign Agricultural Service (FAS) with timely, easily accessible, scientifically-validated remotely-sensed data and derived products as well as data analysis tools, for crop-condition monitoring and production assessment. This system is an integral component of the USDA's FAS Decision Support System (DSS) for agriculture. It has significantly improved the FAS crop analysts' ability to monitor crop conditions, and to quantitatively forecast crop yields through the provision of timely, high-quality global earth observations data in a format customized for FAS alongside a suite of data analysis tools. FAS crop analysts use these satellite data in a 'convergence of evidence' approach with meteorological data, field reports, crop models, attache reports and local reports. The USDA FAS is currently the only operational provider of timely, objective crop production forecasts at the global scale. These forecasts are routinely used by the other US Federal government agencies as well as by commodity trading companies, farmers, relief agencies and foreign governments. This paper discusses the operational components and new developments of the GLAM monitoring system as well as the future role of earth observations in global agricultural monitoring. C1 [Becker-Reshef, Inbal; Justice, Chris; Sullivan, Mark; Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Tucker, Compton; Anyamba, Assaf; Small, Jen; Pak, Ed; Masuoka, Ed; Schmaltz, Jeff] NASA, Goddard Space & Flight Ctr, Greenbelt, MD 20771 USA. [Hansen, Matthew; Pittman, Kyle] S Dakota State Univ, Geog Informat Sci Ctr Excellence, Brookings, SD 57007 USA. [Birkett, Charon] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Williams, Derrick; Reynolds, Curt] Foreign Agr Serv, USDA, Washington, DC 20250 USA. [Doorn, Bradley] NASA Head Quarters, Washington, DC 20546 USA. RP Becker-Reshef, I (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM ireshef@hermes.geog.edu; justice@hermes.geog.umd.edu; mbs@hermes.geog.umd.edu; eric@ltdri.org; Compton.j.tucker@nasa.gov; Asaph.anyamba-1@nasa.gov; jennifer.l.small@nasa.gov; Edwin.w.pak@nasa.gov; Edward.j.masuoka@nasa.gov; jeff.schmaltz@nasa.gov; matthew.hansen@sdstate.edu; kyle.pittman@sdstate.edu; cmb@essic.umd.edu; derrick.williams@fas.usda.gov; curt.reynolds@fas.usda.gov; bradley.doorn@nasa.gov RI Vermote, Eric/K-3733-2012 FU NASA; USDA Foreign Agricultural Service [NNS06AA03A] FX The Global Agricultural Monitoring Project is made possible through funding provided by the NASA Applied Science Program and the USDA Foreign Agricultural Service, grant code NNS06AA03A. NR 25 TC 50 Z9 53 U1 2 U2 27 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2010 VL 2 IS 6 BP 1589 EP 1609 DI 10.3390/rs2061589 PG 21 WC Remote Sensing SC Remote Sensing GA V24HN UT WOS:000208401600011 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996-aEuro parts per thousand 2009): Catalog and Summary of Properties SO SOLAR PHYSICS LA English DT Article DE Coronal mass ejections; Interplanetary coronal mass ejections; Interplanetary magnetic field; Magnetic clouds; Solar wind plasma ID RIEGER-TYPE PERIODICITIES; FLIGHT-CENTER INSTRUMENTS; WIND HELIUM ABUNDANCE; INTER-PLANETARY SHOCK; MAGNETIC CLOUDS; ENERGETIC PARTICLES; CHARGE STATES; IONIZATION STATE; SOURCE LOCATION; SUNSPOT AREAS AB In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 -aEuro parts per thousand 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a "comprehensive" catalog of these events. In this paper, we present a revised and updated catalog of the a parts per thousand 300 near-Earth ICMEs in 1996 -aEuro parts per thousand 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied "magnetic clouds", with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 FU NASA FX We are indebted to all the experimenters who have produced and generously made available the various data sets used to compile this catalog. The LASCO CME catalog is generated and maintained at the CDAWData Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. This work was funded by a NASA Heliosphysics Guest Investigator award. NR 103 TC 212 Z9 213 U1 2 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD JUN PY 2010 VL 264 IS 1 BP 189 EP 237 DI 10.1007/s11207-010-9568-6 PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610OM UT WOS:000278742600013 ER PT J AU Krupp, N Khurana, KK Iess, L Lainey, V Cassidy, TA Burger, M Sotin, C Neubauer, F AF Krupp, N. Khurana, K. K. Iess, L. Lainey, V. Cassidy, T. A. Burger, M. Sotin, C. Neubauer, F. TI Environments in the Outer Solar System SO SPACE SCIENCE REVIEWS LA English DT Review DE Planetary magnetospheres; Plasma transport; Jupiter; Saturn; Icy moons; Magnetosphere moon interaction ID LOW-ENERGY PLASMA; FLOW PAST IO; GALILEAN SATELLITES; MAGNETIC-FIELD; INTERNAL STRUCTURE; JOVIAN MAGNETOSPHERE; GRAVITY-FIELD; NEPTUNE MAGNETOSPHERE; ACCURATE EPHEMERIDES; URANIAN SATELLITES AB The outer planets of our solar system Jupiter, Saturn, Uranus, and Neptune are fascinating objects on their own. Their intrinsic magnetic fields form magnetic environments (so called magnetospheres) in which charged and neutral particles and dust are produced, lost or being transported through the system. These magnetic environments of the gas giants can be envisaged as huge plasma laboratories in space in which electromagnetic waves, current systems, particle transport mechanisms, acceleration processes and other phenomena act and interact with the large number of moons in orbit around those massive planets. In general it is necessary to describe and study the global environments (magnetospheres) of the gas giants, its global configuration with its large-scale transport processes; and, in combination, to study the local environments of the moons as well, e.g. the interaction processes between the magnetospheric plasma and the exosphere/atmosphere/magnetosphere of the moon acting on time scales of seconds to days. These local exchange processes include also the gravity, shape, rotation, astrometric observations and orbital parameters of the icy moons in those huge systems. It is the purpose of this chapter of the book to describe the variety of the magnetic environments of the outer planets in a broad overview, globally and locally, and to show that those exchange processes can dramatically influence the surfaces and exospheres/atmospheres of the moons and they can also be used as a tool to study the overall physics of systems as a whole. C1 [Krupp, N.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Khurana, K. K.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Iess, L.] Univ Roma La Sapienza, Dipartimento Ingn Aerosp & Astronaut, Rome, Italy. [Lainey, V.] IMCCE Observ Paris, Paris, France. [Cassidy, T. A.] Univ Virginia, Charlottesville, VA USA. [Burger, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Neubauer, F.] Univ Cologne, Cologne, Germany. RP Krupp, N (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krupp@mps.mpg.de RI IESS, Luciano/F-4902-2011; Burger, Matthew/C-1310-2011 OI IESS, Luciano/0000-0002-6230-5825; FU EC [001637]; German Space Agency DLR [50OH0801, 50OH0802]; Max Planck Society; NASA FX This work was financed through the EC contract No. 001637 (RICA) EURO-PLANET. Work at the Max-Planck-Institut fur Sonnensystemforschung has been supported by the German Space Agency DLR through the contracts 50OH0801 and 50OH0802 and by the Max Planck Society. Work in the US has been supported by NASA. V.L. thanks J.-E. Arlot and A. Vienne for fruitful discussions. NR 136 TC 2 Z9 2 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 11 EP 59 DI 10.1007/s11214-010-9653-z PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200003 ER PT J AU Prockter, LM Lopes, RMC Giese, B Jaumann, R Lorenz, RD Pappalardo, RT Patterson, GW Thomas, PC Turtle, EP Wagner, RJ AF Prockter, Louise M. Lopes, Rosaly M. C. Giese, Bernd Jaumann, Ralf Lorenz, Ralph D. Pappalardo, Robert T. Patterson, Gerald W. Thomas, Peter C. Turtle, Elizabeth P. Wagner, Roland J. TI Characteristics of Icy Surfaces SO SPACE SCIENCE REVIEWS LA English DT Review DE Icy satellites; Europa; Ganymede; Titan; Enceladus; Cryovolcanism ID INFRARED MAPPING SPECTROMETER; CASSINI IMAGING SCIENCE; GALILEO NOMINAL MISSION; SMALL INNER SATELLITES; SOUTH-POLAR FRACTURES; CONAMARA CHAOS REGION; TITANS SURFACE; GROOVED TERRAIN; WATER-ICE; PLANETARY SCIENCE AB The surfaces of the Solar System's icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. C1 [Prockter, Louise M.; Lorenz, Ralph D.; Patterson, Gerald W.; Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Lopes, Rosaly M. C.; Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Giese, Bernd; Jaumann, Ralf; Wagner, Roland J.] Inst Planetary Res, German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Thomas, Peter C.] Cornell Univ, Ithaca, NY 14853 USA. RP Prockter, LM (reprint author), Johns Hopkins Univ, Appl Phys Lab, MP3-E169,11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Louise.Prockter@jhuapl.edu RI Turtle, Elizabeth/K-8673-2012; Patterson, Gerald/E-7699-2015; Lorenz, Ralph/B-8759-2016; Lopes, Rosaly/D-1608-2016 OI Turtle, Elizabeth/0000-0003-1423-5751; Lorenz, Ralph/0000-0001-8528-4644; Lopes, Rosaly/0000-0002-7928-3167 FU National Aeronautics and Space Administration FX We thank two anonymous reviewers for their helpful comments, and Olivier Grasset for his tireless efforts in putting together this volume. The portions of this work performed by RTP and RMCL were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 283 TC 10 Z9 10 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 63 EP 111 DI 10.1007/s11214-010-9649-8 PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200004 ER PT J AU Dalton, JB Cruikshank, DP Stephan, K McCord, TB Coustenis, A Carlson, RW Coradini, A AF Dalton, J. B. Cruikshank, D. P. Stephan, K. McCord, T. B. Coustenis, A. Carlson, R. W. Coradini, A. TI Chemical Composition of Icy Satellite Surfaces SO SPACE SCIENCE REVIEWS LA English DT Review DE Composition; Icy satellites; Infrared spectroscopy ID INFRARED MAPPING SPECTROMETER; HUBBLE-SPACE-TELESCOPE; HUYGENS LANDING SITE; EXTREME ULTRAVIOLET OBSERVATIONS; PHOTOCHEMICAL FLOW REACTOR; TITANS UPPER-ATMOSPHERE; HYDRATED SALT MINERALS; KUIPER-BELT OBJECTS; JUPITERS MOON IO; 5 MU-M AB Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood. C1 [Dalton, J. B.; Carlson, R. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cruikshank, D. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Stephan, K.] German Aerosp Ctr DLR, D-12489 Berlin, Germany. [McCord, T. B.] Bear Fight Inst, Winthrop, WA 98862 USA. [Coustenis, A.] Observ Paris, LESIA, F-92195 Meudon, France. [Coradini, A.] IFSI, I-00133 Rome, Italy. RP Dalton, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dalton@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA; European Space Agency (ESA); German Aerospace Center (DLR); Italian Istituto di Fisica della Spazio Interplanetario (IFSI) FX A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. The authors acknowledge the support of the NASA Outer Planets and Cassini Data Analysis programs, the European Space Agency (ESA), the German Aerospace Center (DLR), and the Italian Istituto di Fisica della Spazio Interplanetario (IFSI). NR 342 TC 37 Z9 37 U1 5 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 113 EP 154 DI 10.1007/s11214-010-9665-8 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200005 ER PT J AU Coustenis, A Tokano, T Burger, MH Cassidy, TA Lopes, RM Lorenz, RD Retherford, KD Schubert, G AF Coustenis, A. Tokano, T. Burger, M. H. Cassidy, T. A. Lopes, R. M. Lorenz, R. D. Retherford, K. D. Schubert, G. TI Atmospheric/Exospheric Characteristics of Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Atmospheres; Exospheres; Icy satellites; Titan; Io; Enceladus; Europa ID HUBBLE-SPACE-TELESCOPE; GALILEO ULTRAVIOLET SPECTROMETER; COMPOSITE INFRARED SPECTROMETER; VOLCANICALLY DRIVEN ATMOSPHERE; RADIO OCCULTATION MEASUREMENTS; TITANS SOUTH-POLE; IOS PELE PLUME; ADAPTIVE OPTICS; SO2 ATMOSPHERE; CASSINI RADAR AB The atmospheres/exospheres of icy satellites greatly vary from one to the next in terms of density, composition, structure or steadiness. Titan is the only icy satellite with a dense atmosphere comparable in many ways to that of the Earth's atmosphere. Titan's atmosphere prevents the surface from direct interaction with the plasma environment, but gives rise to Earth-like exchanges of energy, matter and momentum. The atmospheres of other satellites are tenuous. Enceladus' atmosphere manifests itself in a large water vapor plume emanating from surface cracks near the south pole. Io's SO2 atmosphere originates from volcanoes. Europa's tenuous O-2 atmosphere is produced by intense radiation bombardment. This chapter reviews the characteristics of the atmospheres of Titan, Enceladus, Io and Europa based on observations. C1 [Coustenis, A.] Observ Paris, LESIA, F-92195 Meudon, France. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-5000 Cologne, Germany. [Burger, M. H.] Univ Maryland, Greenbelt, MD 20771 USA. [Burger, M. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cassidy, T. A.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Lopes, R. M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Retherford, K. D.] SW Res Inst, San Antonio, TX USA. [Schubert, G.] Univ Calif Los Angeles, Los Angeles, CA USA. RP Coustenis, A (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM athena.coustenis@obspm.fr RI Burger, Matthew/C-1310-2011; Lorenz, Ralph/B-8759-2016; Lopes, Rosaly/D-1608-2016 OI Lorenz, Ralph/0000-0001-8528-4644; Lopes, Rosaly/0000-0002-7928-3167 NR 194 TC 4 Z9 4 U1 3 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 155 EP 184 DI 10.1007/s11214-009-9615-5 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200006 ER PT J AU Fortes, AD Choukroun, M AF Fortes, A. Dominic Choukroun, Mathieu TI Phase Behaviour of Ices and Hydrates SO SPACE SCIENCE REVIEWS LA English DT Review DE Water ice; Methane clathrate; Ammonia; Methanol; Sulfuric acid; Sulfates; Polymorphism; Phase relations ID NEUTRON POWDER DIFFRACTION; AMMONIA-WATER SYSTEM; HIGH-PRESSURE PHASE; OUTER SOLAR-SYSTEM; EQUATION-OF-STATE; METHANE CLATHRATE HYDRATE; SULFURIC-ACID-SOLUTIONS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; ICY SATELLITES AB The primary volatile 'rock-forming' minerals in the icy satellites of the outer solar system include water-ice and various hydrated crystals of methane and ammonia. The rich polymorphism of these substances as a function of pressure and temperature are described in this chapter. This polymorphism has a fundamental influence on the exchange of mass and energy between the core and the surface of icy satellites. We describe the current state-of-the-art in our understanding of the high pressure phase behaviour and the measurements of thermoelastic and transport properties of these substances. In addition we describe the structures and properties of hydrated phases of methanol, sulfuric acid, and various sulfate salts. C1 [Fortes, A. Dominic] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Choukroun, Mathieu] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. RP Fortes, AD (reprint author), UCL Birkbeck, Ctr Planetary Sci, Gower St, London WC1E 6BT, England. EM andrew.fortes@ucl.ac.uk; mathieu.choukroun@jpl.nasa.gov RI Fortes, Andrew/C-1349-2011; Choukroun, Mathieu/F-3146-2017 OI Fortes, Andrew/0000-0001-5907-2285; Choukroun, Mathieu/0000-0001-7447-9139 FU UK Science and Technology Facilities Council (STFC) [PP/E006515/1]; NASA; Oak Ridge Associated Universities FX ADF is supported by an Advanced Fellowship from the UK Science and Technology Facilities Council (STFC), grant number PP/E006515/1. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2009. All rights reserved. Government sponsorship acknowledged. NR 254 TC 52 Z9 52 U1 7 U2 77 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 185 EP 218 DI 10.1007/s11214-010-9633-3 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200007 ER PT J AU Dalton, JB AF Dalton, J. B. TI Spectroscopy of Icy Moon Surface Materials SO SPACE SCIENCE REVIEWS LA English DT Review DE Ice; Infrared spectroscopy; Remote sensing; Planetary science ID GALILEO PHOTOPOLARIMETER-RADIOMETER; ULTRAVIOLET SPECTROMETER EXPERIMENT; NEAR-INFRARED SPECTROSCOPY; OUTER SOLAR-SYSTEM; POLYCYCLIC AROMATIC-HYDROCARBONS; COMPLEX REFRACTIVE-INDEXES; CM(-1) OPTICAL-CONSTANTS; SOLID CARBON MONOXIDE; 5 MU-M; WATER-ICE AB Remote sensing of icy objects in the outer solar system relies upon availability of appropriate laboratory measurements. Surface deposits of specific substances often provide our most direct route to understanding interior composition, thereby informing theories of endogenic surface modification, exogenic surface processing and processes involving exchange of material with the interiors. Visible to near-infrared reflectance spectra of properly prepared compounds are required to enable retrieval of surface abundances through linear and nonlinear mixture analysis applied to spacecraft observations of icy bodies. This chapter describes the techniques, conditions and approaches necessary to provide reference spectra of use to theoretical models of icy satellite surface compositions, and summarizes the current state of knowledge represented in the published literature. C1 CALTECH, Jet Prop Lab, Planetary Ices Grp, Pasadena, CA 91109 USA. RP Dalton, JB (reprint author), CALTECH, Jet Prop Lab, Planetary Ices Grp, MS 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dalton@jpl.nasa.gov FU NASA; Jet Propulsion Laboratory FX The author wishes to express his gratitude to Barbara Amago, Robert Powers and Marion Hernandez of the Jet Propulsion Laboratory Technical Library for their assistance with this article. Corey Jamieson, Jake Cooper and Saveelah Talib contributed to Table 3. This work was supported by the NASA Outer Planets Research Program and the Jet Propulsion Laboratory Research and Technology Development Program. NR 258 TC 14 Z9 14 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 219 EP 247 DI 10.1007/s11214-010-9658-7 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200008 ER PT J AU Cassidy, T Coll, P Raulin, F Carlson, RW Johnson, RE Loeffler, MJ Hand, KP Baragiola, RA AF Cassidy, T. Coll, P. Raulin, F. Carlson, R. W. Johnson, R. E. Loeffler, M. J. Hand, K. P. Baragiola, R. A. TI Radiolysis and Photolysis of Icy Satellite Surfaces: Experiments and Theory SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiolysis; Photolysis; Sputtering; Tholins; Ices ID SOLAR-SYSTEM SURFACES; WATER-ICE; ION IRRADIATION; SULFURIC-ACID; GALILEAN SATELLITES; OPTICAL-CONSTANTS; TITANS THOLINS; X-RAY; MU-M; EUROPA AB The transport and exchange of material between bodies in the outer solar system is often facilitated by their exposure to ionizing radiation. With this in mind we review the effects of energetic ions, electrons and UV photons on materials present in the outer solar system. We consider radiolysis, photolysis, and sputtering of low temperature solids. Radiolysis and photolysis are the chemistry that follows the bond breaking and ionization produced by incident radiation, producing, e.g., O-2 and H-2 from irradiated H2O ice. Sputtering is the ejection of molecules by incident radiation. Both processes are particularly effective on ices in the outer solar system. Materials reviewed include H2O ice, sulfur-containing compounds (such as SO2 and S-8), carbon-containing compounds (such as CH4), nitrogen-containing compounds (such as NH3 and N-2), and mixtures of those compounds. We also review the effects of ionizing radiation on a mixture of N-2 and CH4 gases, as appropriate to Titan's upper atmosphere, where radiolysis and photolysis produce complex organic compounds (tholins). C1 [Cassidy, T.; Carlson, R. W.; Hand, K. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cassidy, T.; Johnson, R. E.] Univ Virginia, Engn Phys Program, Charlottesville, VA 22904 USA. [Coll, P.] Univ Paris 07, Lab Interuniv Syst Atmospher, Creteil, France. [Raulin, F.] Univ Paris 7 & Paris 12, Lab Interuniv Syst Atmospher, UMR 7583, Creteil, France. [Johnson, R. E.] New York Univ, Dept Phys, New York, NY 10003 USA. [Loeffler, M. J.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Baragiola, R. A.] Univ Virginia, Lab Atom & Surface Phys, Charlottesville, VA 22904 USA. RP Cassidy, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tac2z@virginia.edu RI Loeffler, Mark/C-9477-2012 NR 96 TC 29 Z9 29 U1 3 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 299 EP 315 DI 10.1007/s11214-009-9625-3 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200011 ER PT J AU Hussmann, H Choblet, G Lainey, V Matson, DL Sotin, C Tobie, G Van Hoolst, T AF Hussmann, Hauke Choblet, Gael Lainey, Valery Matson, Dennis L. Sotin, Christophe Tobie, Gabriel Van Hoolst, Tim TI Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Satellites; Energy sources; Rotation; Tides; Orbital dynamics; Heat transfer ID JUPITERS GALILEAN SATELLITES; PRANDTL NUMBER FLUID; GEYSER-LIKE PLUMES; TIDAL DISSIPATION; SOLAR-SYSTEM; THERMAL-CONVECTION; DEPENDENT VISCOSITY; INTERIOR STRUCTURE; VOLCANIC ACTIVITY; SOUTH-POLE AB Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites' interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites-as opposed to single objects-important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state-usually leading to the 1:1 spin orbit coupling-and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed. C1 [Hussmann, Hauke] DLR Inst Planetary Res, D-12489 Berlin, Germany. [Choblet, Gael; Tobie, Gabriel] Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. [Lainey, Valery] Observ Paris 77, IMCCE, F-75014 Paris, France. [Matson, Dennis L.; Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Hoolst, Tim] Royal Observ Belgium, B-1180 Brussels, Belgium. RP Hussmann, H (reprint author), DLR Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM hauke.hussmann@dlr.de FU NASA; Helmholtz Association FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Part of this work has been supported by the Helmholtz Association through the alliance 'Planetary Evolution and Life'. NR 117 TC 15 Z9 15 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 317 EP 348 DI 10.1007/s11214-010-9636-0 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200012 ER PT J AU Burger, MH Wagner, R Jaumann, R Cassidy, TA AF Burger, Matthew H. Wagner, Roland Jaumann, Ralf Cassidy, Timothy A. TI Effects of the External Environment on Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Planetary science; Atmospheres; Magnetospheres; Outer solar system; Satellites; Solar system evolution; Surfaces; Impact histories ID IO PLASMA TORUS; CASSINI UVIS OBSERVATIONS; JUPITER-FAMILY COMETS; ELECTRON-IMPACT IONIZATION; OUTER SOLAR-SYSTEM; CROSS-SECTIONS; IMAGING SCIENCE; GALILEAN SATELLITES; COLLISIONAL EVOLUTION; AZIMUTHAL VARIABILITY AB In order to understand the evolution of planetary satellite surfaces and atmospheres it is important to understand their external environments. In this paper we look at the interactions between plasma in planetary magnetospheres and satellite atmospheres responsible for the production and loss of atmospheric mass. We focus on the processes which take place in the tenuous atmospheres of the Galilean satellites and in the Enceladus water plume. We also review the impact histories of satellites in the outer solar system, and compare the record of impacts in the inner and outer solar system. C1 [Burger, Matthew H.] Univ Maryland, Greenbelt, MD USA. [Burger, Matthew H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wagner, Roland; Jaumann, Ralf] DLR, Berlin, Germany. [Cassidy, Timothy A.] Univ Virginia, Charlottesville, VA USA. RP Burger, MH (reprint author), Univ Maryland, Greenbelt, MD USA. EM Matthew.H.Burger@nasa.gov RI Burger, Matthew/C-1310-2011 NR 123 TC 8 Z9 8 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 349 EP 374 DI 10.1007/s11214-010-9645-z PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200013 ER PT J AU Tobie, G Giese, B Hurford, TA Lopes, RM Nimmo, F Postberg, F Retherford, KD Schmidt, J Spencer, JR Tokano, T Turtle, EP AF Tobie, G. Giese, B. Hurford, T. A. Lopes, R. M. Nimmo, F. Postberg, F. Retherford, K. D. Schmidt, J. Spencer, J. R. Tokano, T. Turtle, E. P. TI Surface, Subsurface and Atmosphere Exchanges on the Satellites of the Outer Solar System SO SPACE SCIENCE REVIEWS LA English DT Review DE Subsurface; Surface; Atmosphere; Icy moons ID INFRARED MAPPING SPECTROMETER; CASSINI RADAR OBSERVATIONS; SOUTH-POLAR FRACTURES; LARGE IMPACT FEATURES; ICE SHELL THICKNESS; TITANS SURFACE; ENCELADUS PLUME; HUYGENS PROBE; HEAT-FLUX; GALILEAN SATELLITES AB The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites' surfaces. C1 [Tobie, G.] Univ Nantes Atlantique, Lab Planetol & Geodynam Nantes, F-44322 Nantes 03, France. [Tobie, G.] CNRS, UMR 6112, F-44322 Nantes 03, France. [Giese, B.] Inst Planetary Res, German Aerosp Ctr, D-12489 Berlin, Germany. [Hurford, T. A.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Lopes, R. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nimmo, F.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Postberg, F.] Heidelberg Univ, Inst Earth Sci, D-69120 Heidelberg, Germany. [Postberg, F.] Max Planck Inst Kernphys MPI Nucl Phys, D-69117 Heidelberg, Germany. [Retherford, K. D.] SW Res Inst, San Antonio, TX 78228 USA. [Schmidt, J.] Univ Potsdam, D-14469 Potsdam, Germany. [Spencer, J. R.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. [Turtle, E. P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Tobie, G (reprint author), Univ Nantes Atlantique, Lab Planetol & Geodynam Nantes, F-44322 Nantes 03, France. EM gabriel.tobie@univ-nantes.fr RI Hurford, Terry/F-2625-2012; Turtle, Elizabeth/K-8673-2012; Lopes, Rosaly/D-1608-2016 OI Turtle, Elizabeth/0000-0003-1423-5751; Lopes, Rosaly/0000-0002-7928-3167 FU INSU; NASA FX We thank L. Soderblom for helpful suggestions and corrections. Supports from INSU's Programme National de Planetologie, NASA's Planetary Geology and Geophysics and Outer Planets Research programmes are gratefully acknowledged. NR 214 TC 6 Z9 6 U1 1 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 375 EP 410 DI 10.1007/s11214-010-9641-3 PG 36 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200014 ER PT J AU Schubert, G Hussmann, H Lainey, V Matson, DL McKinnon, WB Sohl, F Sotin, C Tobie, G Turrini, D Van Hoolst, T AF Schubert, G. Hussmann, H. Lainey, V. Matson, D. L. McKinnon, W. B. Sohl, F. Sotin, C. Tobie, G. Turrini, D. Van Hoolst, T. TI Evolution of Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Outer planet moons; Io; Europa; Enceladus; Dione; Titan; Iapetus; Rhea; Tethys; Phoebe; Pluto; Charon; Satellite evolution ID KUIPER-BELT OBJECTS; NEAR-INFRARED SPECTROSCOPY; GIANT IMPACT ORIGIN; OUTER SOLAR-SYSTEM; IOS HEAT-FLOW; THERMAL EVOLUTION; IRREGULAR SATELLITES; GALILEAN SATELLITES; TIDAL DISSIPATION; VISCOELASTIC MODELS AB Evolutionary scenarios for the major satellites of Jupiter, Saturn, Neptune, and Pluto-Charon are discussed. In the Jovian system the challenge is to understand how the present Laplace resonance of Io, Europa, and Ganymede was established and to determine whether the heat being radiated by Io is in balance with the present tidal dissipation in the moon. In the Saturnian system, Enceladus and Titan are the centers of attention. Tidal heating is the likely source of activity at the south pole of Enceladus, although the details of how the heating occurs are not understood. An evolutionary scenario based on accretion and internal differentiation is presented for Titan, whose present substantial orbital eccentricity is not associated with any dynamical resonance. The source and maintenance of methane in Titan's present atmosphere remain uncertain. Though most attention on the Saturnian moons focuses on Titan and Enceladus, the mid-size satellites Iapetus, Rhea, Tethys, and the irregular satellite Phoebe also draw our interest. An evolutionary scenario for Iapetus is presented in which spin down from an early rapidly rotating state is called upon to explain the satellite's present oblate shape. The prominent equatorial ridge on Iapetus is unexplained by the spin down scenario. A buckling instability provides another possible explanation for the oblateness and equatorial ridge of Iapetus. Rhea is the only medium-size Saturnian satellite for which there are gravity data at present. The interpretation of these data are uncertain, however, since it is not known if Rhea is in hydrostatic equilibrium. Pluto and Charon are representative of the icy dwarf planets of the Kuiper belt. Did they differentiate as they evolved, and do either of them have a subsurface liquid water ocean? New Horizons might provide some answers when it arrives at these bodies. C1 [Schubert, G.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Schubert, G.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Hussmann, H.; Sohl, F.] Inst Planetary Res, German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Lainey, V.] CNRS, IMCCE Observ Paris, UMR 8028, F-75014 Paris, France. [Matson, D. L.] JPL 183 335, Pasadena, CA 91109 USA. [McKinnon, W. B.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [McKinnon, W. B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tobie, G.] Univ Nantes, Nantes, France. [Turrini, D.] INAF IFSI, I-00133 Rome, Italy. [Van Hoolst, T.] Royal Observ Belgium, B-1180 Brussels, Belgium. RP Schubert, G (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. EM schubert@ucla.edu; Hauke.Hussmann@dlr.de; Valery.Lainey@imcce.fr; dennis.l.matson@jpl.nasa.gov; mckinnon@wustl.edu; Frank.Sohl@dlr.de; christophe.sotin@jpl.nasa.gov; gabriel.tobie@univ-nantes.fr; diego.turrini@ifsi-roma.inaf.it; tim.vanhoolst@oma.be OI Turrini, Diego/0000-0002-1923-7740 FU NASA [NNG06GG70G]; New Horizons project FX GS acknowledges support from the NASA Outer Planets Research and Planetary Geology and Geophysics (NASA NNG06GG70G) programs. WBM thanks the New Horizons project for support and S. A. Stern for comments. NR 158 TC 27 Z9 27 U1 4 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 447 EP 484 DI 10.1007/s11214-010-9635-1 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200017 ER PT J AU Sohl, F Choukroun, M Kargel, J Kimura, J Pappalardo, R Vance, S Zolotov, M AF Sohl, Frank Choukroun, Mathieu Kargel, Jeffrey Kimura, Jun Pappalardo, Robert Vance, Steve Zolotov, Mikhail TI Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes SO SPACE SCIENCE REVIEWS LA English DT Review DE Outer solar system; Water oceans; Oceanic composition; Chemical evolution; Organic compounds; High-pressure ices; Clathrate hydrates; Hydrothermal activity; Porous rock; Serpentinization; Europa; Ganymede; Callisto; Titan; Enceladus ID HYDRATED SALT MINERALS; INTERNAL STRUCTURE; GALILEAN SATELLITES; HIGH-PRESSURES; NONSYNCHRONOUS ROTATION; HYDROTHERMAL SYSTEMS; CLATHRATE FORMATION; INTERIOR STRUCTURE; TECTONIC PROCESSES; TIDAL DISSIPATION AB The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock. C1 [Sohl, Frank] German Aerosp Ctr DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Choukroun, Mathieu; Pappalardo, Robert; Vance, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Kargel, Jeffrey] Univ Arizona, Dept Hydrol, Tucson, AZ 85721 USA. [Kimura, Jun] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Zolotov, Mikhail] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Sohl, F (reprint author), German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM frank.sohl@dlr.de; mathieu.choukroun@jpl.nasa.gov; kargel@hwr.arizona.edu; junkim@ep.sci.hokudai.ac.jp; robert.pappalardo@jpl.nasa.gov; svance@jpl.nasa.gov; zolotov@asu.edu RI Kimura, Jun/D-6050-2013; Choukroun, Mathieu/F-3146-2017 OI Kimura, Jun/0000-0002-5825-0454; Choukroun, Mathieu/0000-0001-7447-9139 FU Helmholtz Association; National Aeronautics and Space Administration; NASA; Caltech Postdoctoral Program FX The authors are grateful to the organizers of the EuroPlanet-ISSIWorkshop Exchange Processes on Icy Satellites, held November 2008 in the inspiring environment of the International Space Science Institute, Bern, Switzerland; two anonymous reviewers for their constructive comments; and O. Grasset for the manuscript handling. We would like to thank G. Tobie for providing the clathrate hydrates densities calculations. This research has been supported by the Helmholtz Association through the research alliance Planetary Evolution and Life. A portion of this work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Doctors Choukroun, Pappalardo and Vance acknowledge support from the NASA Astrobiology Institute's Astrobiology of Icy Worlds program at the Jet Propulsion Laboratory. Doctors Choukroun and Vance acknowledge support from the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. S. Vance acknowledges support from the Caltech Postdoctoral Program. F. Sohl acknowledges discussions with H. Hussmann, V. Stamenkovic, and F. W. Wagner. NR 134 TC 32 Z9 32 U1 8 U2 55 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 485 EP 510 DI 10.1007/s11214-010-9646-y PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200018 ER PT J AU Raulin, F Hand, KP Mckay, CP Viso, M AF Raulin, Francois Hand, Kevin P. Mckay, Christopher P. Viso, Michel TI Exobiology and Planetary Protection of icy moons SO SPACE SCIENCE REVIEWS LA English DT Review DE Exobiology; Prebiotic chemistry; Extraterrestrial life; Europa's ocean; Enceladus liquid water reservoir; Habitability; Planetary protection ID NEUTRAL MASS-SPECTROMETER; ENERGY-REQUIREMENTS; HYDROTHERMAL SYSTEMS; HYPOTHESIZED OCEAN; INTERNAL STRUCTURE; HYDROGEN-PEROXIDE; TITANS ATMOSPHERE; SURFACE ORGANICS; MICROBIAL LIFE; METHANE CYCLE AB The outer solar system is an important area of investigation for exobiology, the study of life in the universe. Several moons of the outer planets involve processes and structures comparable to those thought to have played an important role in the emergence of life on Earth, such as the formation and exchange of organic materials between different reservoirs. The study of these prebiotic processes on, and in, outer solar system moons is a key goal for exobiology, together with the question of habitability and the search for evidence of past or even present life. This chapter reviews the aspects of prebiotic chemistry and potential presence of life on Europa, Enceladus and Titan, based on the most recent data obtained from space missions as well as theoretical and experimental laboratory models. The habitability of these extraterrestrial environments, which are likely to include large reservoirs of liquid water in their internal structure, is discussed as well as the particular case of Titan's hydrocarbon lakes. The question of planetary protection, especially in the case of Europa, is also presented. C1 [Raulin, Francois] Univ Paris 7 & Paris 12, Creteil, France. [Raulin, Francois] LISA CNRS, Creteil, France. [Hand, Kevin P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Viso, Michel] CNES DSP EU, Paris, France. RP Raulin, F (reprint author), Univ Paris 7 & Paris 12, Creteil, France. EM Francois.Raulin@lisa.univ-paris12.fr; khand@jpl.nasa.gov; chris.mckay@nasa.gov; michel.viso@cnes.fr NR 106 TC 8 Z9 8 U1 3 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 511 EP 535 DI 10.1007/s11214-009-9610-x PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200019 ER PT J AU Lazarus, SM Splitt, ME Lueken, MD Ramachandran, R Li, XA Movva, S Graves, SJ Zavodsky, BT AF Lazarus, Steven M. Splitt, Michael E. Lueken, Michael D. Ramachandran, Rahul Li, Xiang Movva, Sunil Graves, Sara J. Zavodsky, Bradley T. TI Evaluation of Data Reduction Algorithms for Real-Time Analysis SO WEATHER AND FORECASTING LA English DT Article ID MEASURING INFORMATION-CONTENT; NUMERICAL WEATHER PREDICTION; DATA ASSIMILATION; ATMOSPHERIC-TEMPERATURE; REMOTE MEASUREMENTS; OBJECTIVE ANALYSIS; RECURSIVE FILTER; ANALYSIS SYSTEM; SATELLITE; DENSITY AB Data reduction tools are developed and evaluated using a data analysis framework. Simple (nonadaptive) and intelligent (adaptive) thinning algorithms are applied to both synthetic and real data and the thinned datasets are ingested into an analysis system. The approach is motivated by the desire to better represent high-impact weather features (e. g., fronts, jets, cyclones, etc.) that are often poorly resolved in coarse-resolution forecast models and to efficiently generate a set of initial conditions that best describes the current state of the atmosphere. As a precursor to real-data applications, the algorithms are applied to one- and two-dimensional synthetic datasets. Information gleaned from the synthetic experiments is used to create a thinning algorithm that combines the best aspects of the intelligent methods (i.e., their ability to detect regions of interest) while reducing the impacts of spatial irregularities in the data. Both simple and intelligent thinning algorithms are then applied to Atmospheric Infrared Sounder (AIRS) temperature and moisture profiles. For a given retention rate, background, and observation error, the optimal 1D analyses (i.e., lowest MSE) tend to have observations that are near regions of large curvature and gradients. Observation error leads to the selection of spurious data in homogeneous regions of the intelligent algorithms. In the 2D experiments, simple thinning tends to perform better within the homogeneous data regions. Analyses produced using AIRS data demonstrate that observations selected via a combination of the simple and intelligent approaches reduce clustering, provide a more even distribution along the satellite swath edges, and, in general, have lower error and comparable computational requirements compared to standard operational thinning methodologies. C1 [Lazarus, Steven M.; Splitt, Michael E.] Florida Inst Technol, Melbourne, FL 32901 USA. [Lueken, Michael D.] NCEP Environm Modeling Ctr, Camp Springs, MD USA. [Ramachandran, Rahul; Li, Xiang; Movva, Sunil; Graves, Sara J.] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA. [Zavodsky, Bradley T.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Lazarus, SM (reprint author), Florida Inst Technol, 150 W Univ Blvd, Melbourne, FL 32901 USA. EM slazarus@fit.edu OI Splitt, Michael/0000-0002-7690-5100; Lazarus, Steven/0000-0002-5918-1059 FU NASA [NNG06GG18A] FX This research was supported by funding under NASA Grant NNG06GG18A. NR 36 TC 4 Z9 4 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 J9 WEATHER FORECAST JI Weather Forecast. PD JUN PY 2010 VL 25 IS 3 BP 837 EP 851 DI 10.1175/2010WAF2222296.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PM UT WOS:000279368100002 ER PT J AU Rozante, JR Moreira, DS de Goncalves, LGG Vila, DA AF Rozante, Jose Roberto Moreira, Demerval Soares de Goncalves, Luis Gustavo G. Vila, Daniel A. TI Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America SO WEATHER AND FORECASTING LA English DT Article ID INTERPOLATION; SATELLITE AB The measure of atmospheric model performance is highly dependent on the quality of the observations used in the evaluation process. In the particular case of operational forecast centers, large-scale datasets must be made available in a timely manner for continuous assessment of model results. Numerical models and surface observations usually work at distinct spatial scales (i.e., areal average in a regular grid versus point measurements), making direct comparison difficult. Alternatively, interpolation methods are employed for mapping observational data to regular grids and vice versa. A new technique (hereafter called MERGE) to combine Tropical Rainfall Measuring Mission (TRMM) satellite precipitation estimates with surface observations over the South American continent is proposed and its performance is evaluated for the 2007 summer and winter seasons. Two different approaches for the evaluation of the performance of this product against observations were tested: a cross-validation subsampling of the entire continent and another subsampling of only areas with sparse observations. Results show that over areas with a high density of observations, the MERGE technique's performance is equivalent to that of simply averaging the stations within the grid boxes. However, over areas with sparse observations, MERGE shows superior results. C1 [Rozante, Jose Roberto; Moreira, Demerval Soares] CPTEC INPE, Ctr Weather Forecasts & Climate Studies, BR-12630000 Cachoeira Paulista, SP, Brazil. [de Goncalves, Luis Gustavo G.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [de Goncalves, Luis Gustavo G.; Vila, Daniel A.] Univ Maryland, Earth Syst Interdisciplinary Ctr, College Pk, MD 20742 USA. [Vila, Daniel A.] Univ Maryland, Cooperat Inst Climate Studies, College Pk, MD 20742 USA. RP Rozante, JR (reprint author), CPTEC INPE, Ctr Weather Forecasts & Climate Studies, Rodovia Presidente Dutra KM 40, BR-12630000 Cachoeira Paulista, SP, Brazil. EM roberto.rozante@cptec.inpe.br RI Vila, Daniel/G-8379-2012; de Goncalves, Luis Gustavo/G-2522-2012; Moreira, Demerval/J-9046-2014; OI Vila, Daniel/0000-0002-1015-5650; Moreira, Demerval/0000-0001-9147-7426; de Goncalves, Luis Gustavo/0000-0002-1571-0916 FU FAPESP [04/09469-0] FX The authors are grateful to the FAPESP-Serra do Mar project (04/09469-0) and to Megan Marie Bela for helping to revise the English in this manuscript. NR 14 TC 39 Z9 44 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 EI 1520-0434 J9 WEATHER FORECAST JI Weather Forecast. PD JUN PY 2010 VL 25 IS 3 BP 885 EP 894 DI 10.1175/2010WAF2222325.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PM UT WOS:000279368100005 ER PT J AU Castillo-Rogez, JC Schmidt, BE AF Castillo-Rogez, Julie C. Schmidt, B. E. TI Geophysical evolution of the Themis family parent body SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAIN BELT ASTEROIDS; WATER; SURFACE; BODIES; ICE; ORGANICS; ANTIOPE; CERES AB We model the geophysical evolution of the Themis family parent body. This study is motivated by the recent detection of water ice at the surface of 24 Themis, the first detection of free water on the surface of an asteroid. The Themis family members display a variety of spectral properties and densities, a possible indication that their parent was differentiated at the time of break-up. Differentiation of the parent body is better explained if it accreted as a mixture of ice within a few My after the production of CAIs. From these models we highlight a number of issues that provide a strong rationale for further ground-based and future space exploration of that family. Citation: Castillo-Rogez, J. C., and B. E. Schmidt (2010), Geophysical evolution of the Themis family parent body, Geophys. Res. Lett., 37, L10202, doi:10.1029/2009GL042353. C1 [Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schmidt, B. E.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Castillo-Rogez, JC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM julie.c.castillo@jpl.nasa.gov OI Schmidt, Britney/0000-0001-7376-8510 FU National Aeronautics and Space Administration FX The authors are much thankful to Andy Rivkin for his insightful comments and valuable suggestions. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. NR 29 TC 21 Z9 21 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 29 PY 2010 VL 37 AR L10202 DI 10.1029/2009GL042353 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 603UX UT WOS:000278234700003 ER PT J AU Cull, S Arvidson, RE Morris, RV Wolff, M Mellon, MT Lemmon, MT AF Cull, Selby Arvidson, R. E. Morris, R. V. Wolff, M. Mellon, M. T. Lemmon, M. T. TI Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; WATER-ICE; VIKING; VARIABILITY; REFLECTANCE; ULTRAVIOLET; CAP AB The combination of ground observations from the Mars Phoenix Lander and orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provided a detailed view of the formation of late summer surface water ice at the landing site and surrounding regions. CRISM observations of the landing site during and immediately after Phoenix operations were analyzed to track the seasonal and diurnal ice cycles during the late spring to late summer, and a nonlinear mixing model was used to estimate grain sizes and relative abundances of water ice and dust. The surface around the Phoenix landing site was ice-free from late spring through midsummer, although transient patches of mobile ices were observed in an 85 m diameter crater to the northeast of the landing site. At the similar to 10 km diameter Heimdal Crater, located similar to 10 km east of the landing site, permanent patches of water ice were observed to brighten during the late spring and darken during the summer, possibly as fine-grained water ice that was cold trapped onto the ice during late spring sintered into larger grains or finally sublimated, exposing larger-grained ice. CRISM spectra first show evidence of widespread ice during the night at solar longitude (L-s) similar to 109 degrees, similar to 9 sols before Phoenix's Surface Stereo Imager detected it. CRISM spectra first show evidence of afternoon surface ice and water ice clouds after L-s similar to 155 degrees, after Phoenix operations ended. C1 [Cull, Selby; Arvidson, R. E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. [Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Mellon, M. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Morris, R. V.] NASA, ARES, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Wolff, M.] Space Sci Inst, Boulder, CO 80301 USA. RP Cull, S (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. RI Lemmon, Mark/E-9983-2010; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; FU NASA FX We acknowledge support from NASA as part of the Phoenix and CRISM Science Teams. We would like to thank the CRISM and HiRISE teams for their Phoenix monitoring campaign and Hugh Kieffer and an anonymous reviewer for their insightful reviews. NR 43 TC 14 Z9 14 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 29 PY 2010 VL 115 AR E00E19 DI 10.1029/2009JE003410 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 603ZO UT WOS:000278247200001 ER PT J AU Ferguson, FT Heist, RH Nuth, JA AF Ferguson, Frank T. Heist, Richard H. Nuth, Joseph A. TI The influence of buoyant convection on the nucleation of n-propanol in thermal diffusion cloud chambers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE cloud chambers; convection; nucleation; thermal diffusion ID CARRIER GAS-PRESSURE; HOMOGENEOUS NUCLEATION; 2-DIMENSIONAL TRANSPORT; SUPERSATURATED VAPOR; BACKGROUND GASES; OPERATION; CONDENSATION; BINARY; RATES; MODEL AB A two-dimensional numerical model has been applied to three thermal diffusion cloud chamber (TDCC) investigations of n-propanol in helium taken by two different research groups to provide a quantitative example of how the results in these chambers can be affected by buoyant convection. In the first set of TDCC data, corrections for buoyancy resolve an apparent discontinuity in critical supersaturation data and also yield nucleation rate data that tend to agree better with higher rate, expansion-based studies at the same temperature. In the second TDCC study, the nucleation of propanol was studied over an extended pressure range. When the model was applied to these data, the possible variation in supersaturation values due to convection induced by conditions at the chamber sidewall was found to be comparable in magnitude to the experimentally observed range and may be responsible for some of this observed pressure dependence. In the third TDCC study, the combination of an error in a transport property and buoyant convection appear responsible for a perceived pressure effect in the experimental data. After correcting for this transport property and for buoyancy, the results at higher temperatures agree quite closely with the predictions of classical nucleation theory. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3429618] C1 [Ferguson, Frank T.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Heist, Richard H.] Embry Riddle Aeronaut Univ, Coll Engn, Daytona Beach, FL 32114 USA. [Nuth, Joseph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ferguson, FT (reprint author), Catholic Univ Amer, Dept Chem, 620 Michigan Ave, Washington, DC 20064 USA. EM frank.ferguson@nasa.gov RI Ferguson, Frank/C-9493-2012; Nuth, Joseph/E-7085-2012 NR 48 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2010 VL 132 IS 20 AR 204510 DI 10.1063/1.3429618 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 603BO UT WOS:000278183100023 PM 20515103 ER PT J AU Coddington, OM Pilewskie, P Redemann, J Platnick, S Russell, PB Schmidt, KS Gore, WJ Livingston, J Wind, G Vukicevic, T AF Coddington, O. M. Pilewskie, P. Redemann, J. Platnick, S. Russell, P. B. Schmidt, K. S. Gore, W. J. Livingston, J. Wind, G. Vukicevic, T. TI Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DISCRETE-ORDINATE-METHOD; RADIATIVE-TRANSFER; EFFECTIVE RADIUS; SHIP TRACKS; ALBEDO; STRATOCUMULUS; SENSITIVITY; SCATTERING; TRANSPORT; ATLANTIC AB Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 mu m) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 mu m, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact. C1 [Coddington, O. M.; Pilewskie, P.; Schmidt, K. S.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Redemann, J.; Russell, P. B.; Gore, W. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Livingston, J.] SRI Int, Menlo Pk, CA 94025 USA. [Platnick, S.; Wind, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vukicevic, T.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Redemann, J.] Bay Area Environm Res Inst, Sonoma, CA USA. RP Coddington, OM (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM odele.coddington@lasp.colorado.edu RI Coddington, Odele/F-6342-2012; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Vukicevic, Tomislava/B-1386-2014; Platnick, Steven/J-9982-2014 OI Coddington, Odele/0000-0002-4338-7028; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX08AI83G]; NOAA [NA06OAR4310085] FX Numerous people contributed to the ICARTT and INTEX-A field programs. In addition to the work provided by the people referenced in this manuscript, we would like to thank Dan Wolfe for leading the radiosonde effort aboard the Ronald H. Brown. We would also like to thank two anonymous reviewers for their comments and suggestions to improve the manuscript. This study was supported by NASA grant NNX08AI83G and NOAA grant NA06OAR4310085. NR 37 TC 25 Z9 25 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 28 PY 2010 VL 115 AR D10211 DI 10.1029/2009JD012829 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603VS UT WOS:000278236800001 ER PT J AU de Vine, G Ware, B McKenzie, K Spero, RE Klipstein, WM Shaddock, DA AF de Vine, Glenn Ware, Brent McKenzie, Kirk Spero, Robert E. Klipstein, William M. Shaddock, Daniel A. TI Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna SO PHYSICAL REVIEW LETTERS LA English DT Article ID LISA AB We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10(9) and clock phase noise by 6 x 10(4), recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in postprocessing marks the first experimental validation of the LISA measurement scheme. C1 [de Vine, Glenn; Ware, Brent; McKenzie, Kirk; Spero, Robert E.; Klipstein, William M.; Shaddock, Daniel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Shaddock, Daniel A.] Australian Natl Univ, Dept Phys, Canberra, ACT, Australia. RP de Vine, G (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM glenn.devine@jpl.nasa.gov RI Shaddock, Daniel/A-7534-2011 OI Shaddock, Daniel/0000-0002-6885-3494 FU National Aeronautics and Space Administration FX This research was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology (CIT), under contract with the National Aeronautics and Space Administration; in part, supported by appointments to the NASA Postdoctoral Program at JPL, administered by Oak Ridge Associated Universities via NASA contract. The authors acknowledge Peter Halverson, Akiko Hirai, Martin Regehr, and Andreas Kuhnert for contributions. NR 14 TC 24 Z9 24 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 28 PY 2010 VL 104 IS 21 AR 211103 DI 10.1103/PhysRevLett.104.211103 PG 4 WC Physics, Multidisciplinary SC Physics GA 602PA UT WOS:000278150100008 PM 20867084 ER PT J AU Dupont, JC Haeffelin, M Morille, Y Noel, V Keckhut, P Winker, D Comstock, J Chervet, P Roblin, A AF Dupont, J. -C. Haeffelin, M. Morille, Y. Noel, V. Keckhut, P. Winker, D. Comstock, J. Chervet, P. Roblin, A. TI Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE PROPERTIES; TROPICAL CIRRUS; PART III; CLIMATOLOGY; ALGORITHM; FACILITY; MODIS; DEPOLARIZATION; RETRIEVALS; VALIDATION AB Ground-based lidar and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data sets gathered over four midlatitude sites, two U. S. and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such data sets. The consistency in average cloud height (both base and top height) between the CALIOP and ground data sets ranges from -0.4 km to +0.5 km. The cloud geometrical thickness distributions vary significantly between the different data sets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9 km, i.e., by more than 50%. Cloud optical thickness distributions in subvisible, semitransparent, and moderate intervals differ by more than 50% between ground-and space-based data sets. The cirrus clouds with optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the nonopaque cirrus class. An important part of this work consists in quantifying the different possible causes of discrepancies between CALIOP and surface lidar. The differences in average cloud base altitude between ground and CALIOP data sets can be attributed to (1) irregular sampling of seasonal variations in the ground-based data, (2) day-night differences in detection capabilities by CALIOP, and (3) the restriction to situations without low-level clouds in ground-based data. Cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data but by the day-night differences in detection capabilities of CALIOP and by the restriction to situations without low-level clouds in ground-based data. C1 [Dupont, J. -C.; Haeffelin, M.; Morille, Y.; Noel, V.] Ecole Polytech, IPSL, LMD, F-91128 Palaiseau, France. [Comstock, J.] PNNL, Richland, WA 99352 USA. [Chervet, P.; Roblin, A.] Off Natl Etud & Rech Aerosp, F-91751 Palaiseau, France. [Keckhut, P.] Univ Versailles St Quentin, IPSL, SA, F-78280 Guyancourt, France. [Winker, D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Dupont, JC (reprint author), Ecole Polytech, IPSL, LMD, F-91128 Palaiseau, France. EM dupont@lmd.polytechnique.fr RI Noel, Vincent/C-3702-2013 OI Noel, Vincent/0000-0001-9494-0340 FU Centre National d'Etudes Spatiales (CNES); Centre National de la Recherche Scientifique (CNRS); Office National d'Etude et de Recherche Aerospatiale (ONERA); U.S. Department of Energy; NASA FX The authors would like to thank the Centre National d'Etudes Spatiales (CNES), the Centre National de la Recherche Scientifique (CNRS), the Office National d'Etude et de Recherche Aerospatiale (ONERA), and the Climate Change Research Division of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program for their support in this study. The data at the COVE site are funded by the NASA Earth Observing System project. We extend our acknowledgments to the technical and computer staff of each observatory for taking the observations and making the data set easily accessible and to the ICARE datacenter for providing CALIOP level-2 data. The NR 39 TC 23 Z9 23 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2010 VL 115 AR D00H24 DI 10.1029/2009JD011943 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603VP UT WOS:000278236500001 ER PT J AU Holt, JW Fishbaugh, KE Byrne, S Christian, S Tanaka, K Russell, PS Herkenhoff, KE Safaeinili, A Putzig, NE Phillips, RJ AF Holt, J. W. Fishbaugh, K. E. Byrne, S. Christian, S. Tanaka, K. Russell, P. S. Herkenhoff, K. E. Safaeinili, A. Putzig, N. E. Phillips, R. J. TI The construction of Chasma Boreale on Mars SO NATURE LA English DT Article ID NORTH POLAR-REGION; LAYERED DEPOSITS; GEOLOGIC HISTORY; STRATIGRAPHY; ORIGIN AB The polar layered deposits of Mars contain the planet's largest known reservoir of water ice(1,2) and the prospect of revealing a detailed Martian palaeoclimate record(3,4), but the mechanisms responsible for the formation of the dominant features of the north polar layered deposits (NPLD) are unclear, despite decades of debate. Stratigraphic analyses of the exposed portions of Chasma Boreale-a large canyon 500 km long, up to 100 km wide, and nearly 2 km deep-have led most researchers to favour an erosional process for its formation following initial NPLD accumulation. Candidate mechanisms include the catastrophic outburst of water(5), protracted basal melting(6), erosional undercutting(7), aeolian downcutting(7-9) and a combination of these processes(10). Here we use new data from the Mars Reconnaissance Orbiter to show that Chasma Boreale is instead a long-lived, complex feature resulting primarily from non-uniform accumulation of the NPLD. The initial valley that later became Chasma Boreale was matched by a second, equally large valley that was completely filled in by subsequent deposition, leaving no evidence on the surface to indicate its former presence. We further demonstrate that topography existing before the NPLD began accumulating influenced successive episodes of deposition and erosion, resulting in most of the present-day topography. Long-term and large-scale patterns of mass balance achieved through sedimentary processes, rather than catastrophic events, ice flow or highly focused erosion, have produced the largest geomorphic anomaly in the north polar ice of Mars. C1 [Holt, J. W.; Christian, S.] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. [Fishbaugh, K. E.] Smithsonian Natl Air & Space Museum, Washington, DC 20560 USA. [Byrne, S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Christian, S.] Bryn Mawr Coll, Bryn Mawr, PA 19010 USA. [Tanaka, K.; Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Russell, P. S.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Safaeinili, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Putzig, N. E.; Phillips, R. J.] SW Res Inst, Boulder, CO 80302 USA. RP Holt, JW (reprint author), Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. EM jack@ig.utexas.edu RI Holt, John/C-4896-2009; Byrne, Shane/B-8104-2012 FU Institute for Geophysics of the Jackson School of Geosciences; NASA [NAG5-12693]; Mars Reconnaissance Orbiter (MRO); Italian Space Agency FX We thank P. Choudhary for assistance with radar data analysis. Work at the University of Texas was supported by the Institute for Geophysics of the Jackson School of Geosciences, a NASA grant (NAG5-12693) to J.W.H. and a Mars Reconnaissance Orbiter (MRO) Participating Scientist grant to J.W.H. MRO is operated for NASA by Caltech's Jet Propulsion Laboratory. SHARAD was provided to MRO by the Italian Space Agency through a contract with Thales Alenia Space Italia, and is operated by the INFOCOM Department, University of Rome. We thank the SHARAD Operations Center in Rome for their critical support. We honour the memory of our co-author and colleague A. S. This is UTIG contribution number 2186. NR 26 TC 19 Z9 19 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAY 27 PY 2010 VL 465 IS 7297 BP 446 EP 449 DI 10.1038/nature09050 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 601FM UT WOS:000278043700027 PM 20505721 ER PT J AU Kumar, M Tsurutani, B AF Kumar, Mohi Tsurutani, Bruce TI Investigations From Sun to Earth: An Interview With Bruce Tsurutani SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Editorial Material C1 [Kumar, Mohi] Amer Geophys Union, Washington, DC 20009 USA. [Tsurutani, Bruce] NASA, CALTECH, Jet Prop Lab, Washington, DC 20546 USA. RP Kumar, M (reprint author), Amer Geophys Union, Washington, DC 20009 USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY 26 PY 2010 VL 8 AR S05005 DI 10.1029/2010SW000593 PG 2 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 604AH UT WOS:000278249200001 ER PT J AU Cao, L Bala, G Caldeira, K Nemani, R Ban-Weiss, G AF Cao, Long Bala, Govindasamy Caldeira, Ken Nemani, Ramakrishna Ban-Weiss, George TI Importance of carbon dioxide physiological forcing to future climate change SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE global warming; runoff; evapotranspiration; hydrological cycle; plant stomata ID STOMATAL CONDUCTANCE; CO2; PHOTOSYNTHESIS; RESPONSES; RUNOFF; PLANT; MODEL AB An increase in atmospheric carbon dioxide (CO(2)) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO(2) using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO(2), the radiative effect of CO(2) causes mean surface air temperature over land to increase by 2.86 +/- 0.02 K (+/-1 standard error), whereas the physiological effects of CO(2) on land plants alone causes air temperature over land to increase by 0.42 +/- 0.02 K. Combined, these two effects cause a land surface warming of 3.33 +/- 0.03 K. The radiative effect of doubling CO(2) increases global runoff by 5.2 +/- 0.6%, primarilyby increasing precipitation over the continents. The physiological effect increases runoff by 8.4 +/- 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 +/- 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO(2)-radiative forcing, whereas relative humidity over land decreases in response to CO(2)-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO(2) on land plants will increase global warming beyond that caused by the radiative effects of CO(2). C1 [Cao, Long; Caldeira, Ken; Ban-Weiss, George] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA. [Bala, Govindasamy] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Bala, Govindasamy] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Nemani, Ramakrishna] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. RP Cao, L (reprint author), Carnegie Inst, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA. EM longcao@stanford.edu RI Caldeira, Ken/E-7914-2011; OI Ban-Weiss, George/0000-0001-8211-2628 NR 14 TC 91 Z9 93 U1 6 U2 36 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 25 PY 2010 VL 107 IS 21 BP 9513 EP 9518 DI 10.1073/pnas.0913000107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 601JP UT WOS:000278054700009 PM 20445083 ER PT J AU Ho, CM Morabito, DD Woo, R AF Ho, Christian M. Morabito, David D. Woo, Richard TI Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction SO RADIO SCIENCE LA English DT Article ID DENSITY FLUCTUATIONS; WIND AB In this study, we develop a complete theoretical approach to derive the angle-of-arrival fluctuations (AAF) of radio signals passing through the turbulent solar plasma medium during solar superior conjunctions. Using the power spectra of phase fluctuations measured at various solar elongation angles (or impact heliocentric distances) from the Cassini spacecraft, we have defined the dependence of the AAF variance on the heliocentric distance as similar to r(-3.5) within a range very close to the Sun. This quantity decreases with increasing distance, with a slope significantly less steep than that previously expected. The AAF expression is theoretically derived by assuming a frozen turbulence and by converting a phase temporal variation into a spatial variation. To perform this calculation, the solar plasma medium is treated as an anisotropic ionized medium by applying the Booker electron irregularity spectrum model and the phase expression in term of the electron refractive index. Using the phase spectral measurements from the Cassini spacecraft during a solar superior conjunction, coefficients of the expression are calibrated, and the final AAF results are quantitatively obtained. C1 [Ho, Christian M.; Morabito, David D.; Woo, Richard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ho, CM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM cmho@mail.jpl.nasa.gov FU National Aeronautics and Space Administration FX We are indebted to Albert D. Wheelon, a CalTech trustee and pro bono consultant to JPL, for his valuable consulting in the theoretical aspects of the work. The authors thank Miles Sue of JPL for his comments and suggestions. We are grateful to the referees for their valuable review comments. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD MAY 25 PY 2010 VL 45 AR RS3005 DI 10.1029/2009RS004176 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 604AE UT WOS:000278248900001 ER PT J AU Olaya, D Dresselhaus, PD Benz, SP Herr, A Herr, QP Ioannidis, AG Miller, DL Kleinsasser, AW AF Olaya, David Dresselhaus, Paul D. Benz, Samuel P. Herr, Anna Herr, Quentin P. Ioannidis, Alexander G. Miller, Donald L. Kleinsasser, A. W. TI Digital circuits using self-shunted Nb/NbxSi1-x/Nb Josephson junctions SO APPLIED PHYSICS LETTERS LA English DT Article DE critical current density (superconductivity); digital circuits; Josephson effect; niobium compounds; shift registers ID INTEGRATED-CIRCUITS; TUNNEL-JUNCTIONS; FREQUENCY; TECHNOLOGY AB Superconducting digital circuits based on Josephson junctions with amorphous niobium-silicon (a-NbSi) barriers have been designed, fabricated, and tested. Single-flux-quantum (SFQ) shift registers operated with +/- 30% bias margins, confirming junction reproducibility and uniformity. Static digital dividers operated up to 165 GHz for a single value of bias current, which was only marginally slower than circuits fabricated with externally shunted AlOx-barrier junctions having a comparable critical current density of 4.5 kA/cm(2). In comparison, self-shunted a-NbSi junctions enabled a doubling in circuit density. This and their relatively thick 10 nm barriers could increase the yield of complex SFQ circuits. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432065] C1 [Olaya, David; Dresselhaus, Paul D.; Benz, Samuel P.] NIST, Boulder, CO 80305 USA. [Herr, Anna; Herr, Quentin P.; Ioannidis, Alexander G.; Miller, Donald L.] Northrop Grumman Corp, Linthicum, MD 21203 USA. [Kleinsasser, A. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Olaya, D (reprint author), NIST, Boulder, CO 80305 USA. EM david.olaya@nist.gov FU Defense Microelectronics Activity [H94003-04-D-0004-0091] FX The authors acknowledge useful conversations with H. Rogalla and J. Niemeyer, and the valuable help of G. L. Kerber at JPL. This work was supported in part by the Defense Microelectronics Activity under Contract No. H94003-04-D-0004-0091. U.S. government work, not subjected to U.S. copyright. NR 15 TC 7 Z9 8 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 24 PY 2010 VL 96 IS 21 AR 213510 DI 10.1063/1.3432065 PG 3 WC Physics, Applied SC Physics GA 603BP UT WOS:000278183200086 ER PT J AU Jackson, TL Farrell, WM Delory, GT Nithianandam, J AF Jackson, Telana L. Farrell, William M. Delory, Gregory T. Nithianandam, Jeyasingh TI Martian dust devil electron avalanche process and associated electrochemistry SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID OXIDANT ENHANCEMENT; STORMS; MARS; FIELD; GENERATION; SIMULATION; METHANE; CLOUDS; MODEL AB Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work, these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models. C1 [Jackson, Telana L.; Farrell, William M.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Delory, Gregory T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Nithianandam, Jeyasingh] Morgan State Univ, Dept Elect Engn, Baltimore, MD 21251 USA. RP Jackson, TL (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM telana.l.jackson@nasa.gov RI Jackson, Telana/E-9102-2012; Farrell, William/I-4865-2013 FU Mars Fundamental Research Program; NASA co-op program at the Goddard Space Flight Center FX We gratefully acknowledge support from the Mars Fundamental Research Program and the NASA co-op program at the Goddard Space Flight Center. NR 31 TC 8 Z9 8 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 22 PY 2010 VL 115 AR E05006 DI 10.1029/2009JE003396 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 600FM UT WOS:000277970000001 ER PT J AU Sim, SA Miller, L Long, KS Turner, TJ Reeves, JN AF Sim, S. A. Miller, L. Long, K. S. Turner, T. J. Reeves, J. N. TI Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - II SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; methods: numerical; galaxies: active; galaxies: individual: PG1211+143; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; RECOMBINATION RATE COEFFICIENTS; PHOTOIONIZATION CROSS-SECTIONS; CARLO TRANSITION-PROBABILITIES; K-VACANCY STATES; IONIZATION EQUILIBRIUM; ATOMIC DATABASE; EMISSION-LINES; ANALYTIC FITS; AUGER DECAY AB Highly ionized fast accretion disc winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of active galactic nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here, we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disc wind models than that was possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now able to compute spectra for outflows containing far more diverse plasma conditions. We present example calculations that illustrate the variety of spectral features predicted by parametrized outflow models and demonstrate their applicability to the interpretation of data by comparison with observations of the bright quasar PG1211+143. We find that the major features in the observed 2-10 keV spectrum of this object can be well reproduced by our spectra, confirming that it likely hosts a massive outflow. C1 [Sim, S. A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Long, K. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.] NASA, GSFC, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 8EH, Staffs, England. RP Sim, SA (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. EM ssim@MPA-Garching.MPG.de FU NASA [NNX09AO92G] FX SAS thanks Caroline D'Angelo for many useful discussions and helpful suggestions. TJT acknowledges NASA Grant NNX09AO92G. We thank the anonymous referee for several constructive comments. NR 52 TC 47 Z9 47 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1369 EP 1384 DI 10.1111/j.1365-2966.2010.16396.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800023 ER PT J AU Degenaar, N Jonker, PG Torres, MAP Kaur, R Rea, N Israel, GL Patruno, A Trap, G Cackett, EM D'Avanzo, P Lo Curto, G Novara, G Krimm, H Holland, ST De Luca, A Esposito, P Wijnands, R AF Degenaar, N. Jonker, P. G. Torres, M. A. P. Kaur, R. Rea, N. Israel, G. L. Patruno, A. Trap, G. Cackett, E. M. D'Avanzo, P. Lo Curto, G. Novara, G. Krimm, H. Holland, S. T. De Luca, A. Esposito, P. Wijnands, R. TI Multiwavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; stars: neutron; X-rays: binaries; X-rays: bursts; X-rays: individual: 1RXH J173523; 7-354013; X-rays: individual: IGR J17353-3539 ID X-RAY-BURSTS; JEM-X; TELESCOPE; BINARY; EXTRACTION; SUPERBURST; EVOLUTION; SOFTWARE; MISSION; IMAGER AB On 2008 May 14, the Burst Alert Telescope onboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of similar to 2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of similar to 3.5 x 10-8 erg cm-2 s-1, we infer a source distance of D less than or similar to 9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R = 15.9 during the X-ray burst to R = 18.9 thereafter. Analysis of post-burst Swift/X-ray Telescope observations as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of similar to 2 x 1035 (D/9.5 kpc)2 erg s-1. Optical and infrared photometry together with the detection of a narrow H alpha emission line (full width at half maximum = 292 +/- 9 km s-1, equivalent width = -9.0 +/- 0.4 A) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The H alpha emission demonstrates that the donor star is hydrogen rich, which effectively rules out that this system is an ultracompact X-ray binary. C1 [Degenaar, N.; Kaur, R.; Rea, N.; Patruno, A.; Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Jonker, P. G.] SRON, Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Jonker, P. G.; Torres, M. A. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rea, N.] ICE CSIC, IEEC, Fac Ciencias, Barcelona 08193, Spain. [Israel, G. L.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Trap, G.] CEA Saclay, DSM, IRFU, SAp, F-91191 Gif Sur Yvette, France. [Trap, G.] Univ Paris 07, CNRS, CEA, Observ Paris, F-75205 Paris 13, France. [Cackett, E. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [D'Avanzo, P.; Lo Curto, G.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Novara, G.; De Luca, A.; Esposito, P.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Novara, G.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Krimm, H.; Holland, S. T.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Krimm, H.; Holland, S. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Degenaar, N (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. EM degenaar@uva.nl RI Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Israel, GianLuca/0000-0001-5480-6438; De Luca, Andrea/0000-0001-6739-687X; Esposito, Paolo/0000-0003-4849-5092 FU Netherlands Organization for Scientific Research (NWO); Ramon y Cajal; NASA [PF8-90052] FX We are grateful to the referee, Craig Heinke, for useful comments that helped improve this manuscript. This work was based on observations made with ESO Telescopes at the Paranal and La Silla Observatories under programme IDs: 281.D-5030(A) and 60.A9700(D) and made use of the public data archive of Swift and INTEGRAL, as well as public data from the XMM-Newton slew survey. Support for this work was provided by the Netherlands Organization for Scientific Research (NWO). NR acknowledges support from a Ramon y Cajal Research position. EMC gratefully acknowledges support provided by NASA through the Chandra Fellowships Program, grant number PF8-90052. We acknowledge the use of the software package MOLLY written by Prof. Tom Marsh. NR 56 TC 19 Z9 19 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1591 EP 1602 DI 10.1111/j.1365-2966.2010.16388.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800043 ER PT J AU Keenan, FP Milligan, RO Jess, DB Aggarwal, KM Mathioudakis, M Thomas, RJ Brosius, JW Davila, JM AF Keenan, F. P. Milligan, R. O. Jess, D. B. Aggarwal, K. M. Mathioudakis, M. Thomas, R. J. Brosius, J. W. Davila, J. M. TI Emission lines of Fe xi in the 257-407 A wavelength region observed in solar spectra from EIS/Hinode and SERTS SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE atomic data; Sun: activity; Sun: corona; Sun: UV radiation ID ULTRAVIOLET RESEARCH TELESCOPE; EFFECTIVE COLLISION STRENGTHS; ELECTRON-IMPACT EXCITATION; EXTREME-ULTRAVIOLET; ACTIVE-REGION; ATOMIC DATABASE; IMAGING SPECTROMETER; BEAM-FOIL; SPECTROGRAPH; INTENSITIES AB Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N(e)) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N(e) = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N(e) = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced. C1 [Keenan, F. P.; Jess, D. B.; Aggarwal, K. M.; Mathioudakis, M.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Milligan, R. O.; Thomas, R. J.; Brosius, J. W.; Davila, J. M.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Lab Solar Phys, Greenbelt, MD 20771 USA. [Brosius, J. W.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Keenan, FP (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM F.Keenan@qub.ac.uk OI Jess, David/0000-0002-9155-8039 FU STFC; EPSRC; NASA [NAG5-13321]; Solar Physics Office of NASA's Space Physics Division; AWE Aldermaston FX DBJ and KMA acknowledge financial support from STFC and EPSRC, respectively. ROM acknowledges support from the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. Support for the post- launch operation is provided by JAXA and NAOJ, STFC, NASA, ESA and NSC (Norway). The SERTS rocket programme is supported by RTOP grants from the Solar Physics Office of NASA's Space Physics Division. JWB acknowledges additional NASA support under grant NAG5-13321. FPK is grateful to AWE Aldermaston for the award of a William Penney Fellowship. The authors thank Peter van Hoof for the use of his Atomic Line List. CHIANTI is a collaborative project involving the Naval Research Laboratory (USA), Rutherford Appleton Laboratory (UK) and the Universities of Florence (Italy) and Cambridge (UK). We are very grateful to the referee, Peter Young, for his comments on an earlier version of the paper, in particular regarding the analysis of the EIS spectra. NR 34 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1617 EP 1624 DI 10.1111/j.1365-2966.2010.16389.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800045 ER PT J AU Sutton, PJ Jones, G Chatterji, S Kalmus, P Leonor, I Poprocki, S Rollins, J Searle, A Stein, L Tinto, M Was, M AF Sutton, Patrick J. Jones, Gareth Chatterji, Shourov Kalmus, Peter Leonor, Isabel Poprocki, Stephen Rollins, Jameson Searle, Antony Stein, Leo Tinto, Massimo Was, Michal TI X-Pipeline: an analysis package for autonomous gravitational-wave burst searches SO NEW JOURNAL OF PHYSICS LA English DT Article ID NETWORK ANALYSIS; INVERSE PROBLEM; LIGO; SIGNALS AB Autonomous gravitational-wave searches-fully automated analyses of data that run without human intervention or assistance-are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candidates, which in turn will allow for follow-up observations by other observatories and the maximum exploitation of their scientific potential. A fully automated analysis would also circumvent the traditional 'by hand' setup and tuning of burst searches that is both labourious and time consuming. We demonstrate a fully automated search with X-Pipeline, a software package for the coherent analysis of data from networks of interferometers for detecting bursts associated with gamma-ray bursts (GRBs) and other astrophysical triggers. We discuss the methods X-Pipeline uses for automated running, including background estimation, efficiency studies, unbiased optimal tuning of search thresholds and prediction of upper limits. These are all done automatically via Monte Carlo with multiple independent data samples and without requiring human intervention. As a demonstration of the power of this approach, we apply X-Pipeline to LIGO data to compute the sensitivity to gravitational-wave emission associated with GRB 031108. We find that X-Pipeline is sensitive to signals approximately a factor of 2 weaker in amplitude than those detectable by the cross-correlation technique used in LIGO searches to date. We conclude with comments on the status of X-Pipeline as a fully autonomous, near-realtime-triggered burst search in the current LSC-Virgo Science Run. C1 [Sutton, Patrick J.; Jones, Gareth] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Chatterji, Shourov; Stein, Leo] MIT, Cambridge, MA 02139 USA. [Kalmus, Peter; Searle, Antony] CALTECH, Pasadena, CA 91125 USA. [Leonor, Isabel] Univ Oregon, Eugene, OR 97403 USA. [Poprocki, Stephen] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Rollins, Jameson] Columbia Univ, New York, NY 10027 USA. [Tinto, Massimo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Was, Michal] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. RP Sutton, PJ (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM patrick.sutton@astro.cf.ac.uk OI Stein, Leo/0000-0001-7559-9597 FU STFC [PP/F001096/1]; National Aeronautics and Space Administration; California Institute of Technology; Ecole normale superieure Paris; NSF; National Science Foundation [PHY-0107417]; [05-BEFS05-0014] FX We thank Kipp Cannon and Ray Frey for valuable comments on an earlier draft of this paper. PJS and GJ were supported in part by STFC grant number PP/F001096/1. For MT, the research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. MT was supported under research task number 05-BEFS05-0014. MW was supported by the California Institute of Technology and the Ecole normale superieure Paris. LS and SP were supported by an NSF REU Site grant. We thank the LIGO Scientific Collaboration for permission to use data from the time of GRB 031108 for our tests. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement number PHY-0107417. This paper has been assigned LIGO document number LIGO-P0900097-v4. NR 46 TC 43 Z9 43 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 21 PY 2010 VL 12 AR 053034 DI 10.1088/1367-2630/12/5/053034 PG 32 WC Physics, Multidisciplinary SC Physics GA 609CT UT WOS:000278633400003 ER PT J AU Pugh-Thomas, D Walsh, BM Gupta, MC AF Pugh-Thomas, Devin Walsh, Brian M. Gupta, Mool C. TI Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing SO APPLIED OPTICS LA English DT Article ID FLUORESCENCE LIFETIME; CROSS-SECTIONS; ALEXANDRITE; SENSOR; EFFICIENCY; CRYSTALS; LASERS; ER3+; TM3+; HO3+ AB Characterization of absorption, emission, and temperature-dependent luminescent features is of significant interest for the development of optical temperature sensors and photonic devices. In this work, we conduct a comprehensive study to evaluate the orientation axis-dependent absorption and emission cross sections of Cr3+ ions in BeAl2O4. In addition, we present new data for the temperature-dependent Stark-level energies for alexandrite. Laser-induced temperature-dependent luminescence data from 300-520 K on the R-line transitions are presented for application to high-temperature sensing. (C) 2010 Optical Society of America C1 [Pugh-Thomas, Devin; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Walsh, Brian M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Gupta, MC (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu FU NASA; NASA/National Institute of Aerospace (NIA) FX The authors thank William S. Luck and William C. Edwards for their support. We also acknowledge fellowship support from the NASA Graduate Student Researchers program. We thank NASA/National Institute of Aerospace (NIA) for support through the Langley Professor program. NR 20 TC 5 Z9 6 U1 3 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2010 VL 49 IS 15 BP 2891 EP 2897 DI 10.1364/AO.49.002891 PG 7 WC Optics SC Optics GA 599BA UT WOS:000277883700020 PM 20490251 ER PT J AU Diner, DJ Davis, A Hancock, B Geier, S Rheingans, B Jovanovic, V Bull, M Rider, DM Chipman, RA Mahler, AB McClain, SC AF Diner, David J. Davis, Ab Hancock, Bruce Geier, Sven Rheingans, Brian Jovanovic, Veljko Bull, Michael Rider, David M. Chipman, Russell A. Mahler, Anna-Britt McClain, Stephen C. TI First results from a dual photoelastic-modulator-based polarimetric camera SO APPLIED OPTICS LA English DT Article ID AEROSOL OPTICAL DEPTH; POLARIZATION MODULATION; CIRCULAR-DICHROISM; MULTIANGLE; BIREFRINGENCE; VALIDATION; SURFACES; MISR AB We report on the construction and calibration of a dual photoelastic-modulator (PEM)-based polarimetric camera operating at 660 nm. This camera is our first prototype for a multispectral system being developed for airborne and spaceborne remote sensing of atmospheric aerosols. The camera includes a dual-PEM assembly integrated into a three-element, low-polarization reflective telescope and provides both intensity and polarization imaging. A miniaturized focal-plane assembly consisting of spectral filters and patterned wire-grid polarizers provides wavelength and polarimetric selection. A custom push-broom detector array with specialized signal acquisition, readout, and processing electronics captures the radiometric and polarimetric information. Focal-plane polarizers at orientations of 0 degrees and -45 degrees yield the normalized Stokes parameters q Q/I and u U/I respectively, which are then coregistered to obtain degree of linear polarization (DOLP) and angle of linear polarization. Laboratory test data, calibration results, and outdoor imagery acquired with the camera are presented. The results show that, over a wide range of DOLP, our challenging objective of uncertainty within +/- 0.005 has been achieved. (C) 2010 Optical Society of America C1 [Diner, David J.; Davis, Ab; Hancock, Bruce; Geier, Sven; Rheingans, Brian; Jovanovic, Veljko; Bull, Michael; Rider, David M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chipman, Russell A.; Mahler, Anna-Britt; McClain, Stephen C.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Diner, DJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM David.J.Diner@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; University of Arizona College of Optical Sciences under subcontract with JPL FX We thank several colleagues for their efforts. At JPL, Nasrat Raouf guided the development of coatings and spectral filters; Gary Gutt designed the camera optical system; Chris Wrigley, Amy Wu, and Thomas Cunningham assisted in design and testing of the LabMSPI electronics and detectors; and Ghobad Saghri helped in the acquisition of imagery. At UofA, Greg Smith, Brigit Marshall, and Brittany Lynn assisted in building and calibrating the PSG. Brian Cairns of the Goddard Institute for Space Studies provided comments that helped clarify parts of the manuscript. Discussions with Craig Bohren of Pennsylvania State University inspired a deeper appreciation of PEM history. This research is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, and at the University of Arizona College of Optical Sciences under subcontract with JPL. NR 33 TC 38 Z9 40 U1 2 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2010 VL 49 IS 15 BP 2929 EP 2946 DI 10.1364/AO.49.002929 PG 18 WC Optics SC Optics GA 599BA UT WOS:000277883700025 PM 20490256 ER PT J AU Comerford, JM Moustakas, LA Natarajan, P AF Comerford, Julia M. Moustakas, Leonidas A. Natarajan, Priyamvada TI OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; dark matter; galaxies: clusters: individual (3C 220, A 370, Cl 0024, Cl 0939; Cl 2244, MS 0451, MS 1137, MS 2137); galaxies: evolution; galaxies: formation; gravitational lensing: strong ID HUBBLE-SPACE-TELESCOPE; RELAXED GALAXY CLUSTERS; X-RAY-CLUSTERS; UNIVERSAL DENSITY PROFILE; MASS-TEMPERATURE RELATION; MEDIUM-SENSITIVITY SURVEY; DARK-MATTER HALOS; M-T RELATION; XMM-NEWTON; DISTANT CLUSTER AB Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, sigma(8), is constrained using observed clusters of galaxies, although current estimates of sigma(8) from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 < z < 0.8, we find that the observed cluster concentration-mass relation can be used to reduce the M-T scatter by a factor of 6. Typically only relaxed clusters are used to estimate sigma(8), but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of sigma(8) measurements from clusters are twofold: the errors on sigma(8) are reduced and the cluster sample size is increased. Therefore, the statistics on sigma(8) determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories. C1 [Comerford, Julia M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Natarajan, Priyamvada] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Natarajan, Priyamvada] Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. RP Comerford, JM (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. OI Moustakas, Leonidas/0000-0003-3030-2360 FU National Science Foundation; NASA [ATFP08-0169] FX J. M. C. acknowledges support of this work by a National Science Foundation Graduate Research Fellowship. The work of L. A. M. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, with the support of NASA ATFP08-0169. P. N. thanks the Radcliffe Institute for Advanced Study and the Center for Astrophysics (CfA) for providing an intellectually stimulating atmosphere that enabled this work. NR 85 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 162 EP 171 DI 10.1088/0004-637X/715/1/162 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100014 ER PT J AU Haghighipour, N Vogt, SS Butler, RP Rivera, EJ Laughlin, G Meschiari, S Henry, GW AF Haghighipour, Nader Vogt, Steven S. Butler, R. Paul Rivera, Eugenio J. Laughlin, Greg Meschiari, Stefano Henry, Gregory W. TI THE LICK-CARNEGIE EXOPLANET SURVEY: A SATURN-MASS PLANET IN THE HABITABLE ZONE OF THE NEARBY M4V STAR HIP 57050 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; planetary systems; stars: individual (HIP 57050) ID CARBON-DIOXIDE CLOUDS; M-CIRCLE-PLUS; M-DWARF STARS; LUMINOSITY-RELATION; MAIN-SEQUENCE; SUPER-EARTHS; METALLICITY; CATALOG; SEARCH; SYSTEM AB Precision radial velocities (RV) from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of Msin i similar to 0.3 M(J), an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the RV variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of similar to 230 K. The star has a metallicity of [Fe/H] = 0.32 +/- 0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet -metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is similar to 7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with Hubble Space Telescope. At the expected planetary effective temperature, the atmosphere may contain water clouds. C1 [Haghighipour, Nader] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Vogt, Steven S.; Rivera, Eugenio J.; Laughlin, Greg; Meschiari, Stefano] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Henry, Gregory W.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. RP Haghighipour, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. RI Butler, Robert/B-1125-2009; OI Meschiari, Stefano/0000-0002-2930-0416 FU NASA Astrobiology Institute [NNA04CC08A, NNX09AN05G, NNX07AR40G]; NSF [AST-0307493, AST-0908870, AST-0449986] FX N. H. acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and the NASA EXOB grant NNX09AN05G. S. S. V. gratefully acknowledges support from the NSF grants AST-0307493 and AST-0908870, and from the NASA Keck PI program. R. P. B. gratefully acknowledges support from the NASA OSS grant NNX07AR40G, the NASA Keck PI program, and from the Carnegie Institution of Washington. G. L. acknowledges support from NSF AST-0449986. G. W. H. acknowledges support from NASA, NSF, Tennessee State University, and the state of Tennessee through its Centers of Excellence program. We also gratefully acknowledge the major contributions over the past decade of fellow members of our previous California-Carnegie Exoplanet team, Geoff Marcy, Jason Wright, Debra Fischer, and Katie Peek, in helping to obtain some of the radial velocities presented in this paper. We are also thankful to the anonymous referee for a careful review of our paper and his/her suggestions that have improved our manuscript. The work herein is based on observations obtained at theW. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and we thank the UH-Keck, UC-Keck and NASA-Keck Time Assignment Committees for their support. We also extend our special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 43 TC 26 Z9 26 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 271 EP 276 DI 10.1088/0004-637X/715/1/271 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100022 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Antolini, E Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bogart, JR Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Celotti, A Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Costamante, L Cotter, G Cutini, S D'Elia, V Dermer, CD de Angelis, A de Palma, F De Rosa, A Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hayashida, M Hays, E Healey, SE Hill, AB Horan, D Hughes, RE Iafrate, G Itoh, R Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lavalley, C Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Malaguti, G Massaro, E Mazziotta, MN McConville, W McEnery, JE McGlynn, S Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piranomonte, S Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Stawarz, L Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Taylor, GB Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Ubertini, P Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Villata, M Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Antolini, E. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bogart, J. R. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Celotti, A. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Costamante, L. Cotter, G. Cutini, S. D'Elia, V. Dermer, C. D. de Angelis, A. de Palma, F. De Rosa, A. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Healey, S. E. Hill, A. B. Horan, D. Hughes, R. E. Iafrate, G. Itoh, R. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lavalley, C. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Malaguti, G. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piranomonte, S. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stawarz, L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Taylor, G. B. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Ubertini, P. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; catalogs; galaxies: active; gamma rays: galaxies ID VLBA CALIBRATOR SURVEY; GAMMA-RAY EMISSION; ALL-SKY SURVEY; BL-LACERTAE OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; CLASS BLAZAR SURVEY; RADIO-LOUD AGN; SPACE-TELESCOPE; DATA RELEASE; OPTICAL IDENTIFICATIONS AB We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 gamma-ray sources located at high Galactic latitudes (|b| > 10 degrees) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing gamma-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as gamma-ray fluxes and photon power-law spectral indices, redshifts, gamma-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the gamma-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Roth, M.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Conrad, J.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Labs, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.; Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; D'Elia, V.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celotti, A.] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Lavalley, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cotter, G.] Univ Oxford, Oxford OX1 3RH, England. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [De Rosa, A.; Ubertini, P.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Dumora, D.; Escande, L.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] CEN Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Escande, L.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.; Iafrate, G.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.; Malaguti, G.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, LAOG, UMR 5571, F-38041 Grenoble 09, France. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, Ctr Etud Spatiale Rayonnements, UPS, F-31028 Toulouse 4, France. [Massaro, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Piranomonte, S.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Taylor, G. B.] Univ New Mexico, Albuquerque, NM 87131 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM elisabetta.cavazzuti@asdc.asi.it; gasparrini@asdc.asi.it; sehealey@astro.stanford.edu; lott@cenbg.in2p3.fr; Gino.Tosti@pg.infn.it RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Baldini, Luca/0000-0002-9785-7726; Gasparrini, Dario/0000-0002-5064-9495; Villata, Massimo/0000-0003-1743-6946; Grandi, Paola/0000-0003-1848-6013; Cutini, Sara/0000-0002-1271-2924; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; De Rosa, Alessandra/0000-0001-5668-6863; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Malaguti, Giuseppe/0000-0001-9872-3378; Sgro', Carmelo/0000-0001-5676-6214; Iafrate, Giulia/0000-0002-6185-8292; D'Elia, Valerio/0000-0002-7320-5862; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Piranomonte, Silvia/0000-0002-8875-5453; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU K. A. Wallenberg Foundation; European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; W. M. Keck Foundation; ESO telescopes at the La Silla Observatory [083.B-0460(B), 084.B-0711(B)]; Alfred P. Sloan Foundation; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; National Science Foundation; U. S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This research has made us of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC).; Some of the results presented in this paper are based on observations obtained with the Hobby-Eberly Telescope (HET), a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat-Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph (LRS) is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion. The LRS is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico.; This work is also partly based on optical spectroscopy performed at the Telescopio Nazionale Galileo (TNG), La Palma, Canary Islands (proposal AOT20/09B). These observations confirm some of the redshifts and classifications found with the HET. We thank the HET and TNG personnel for their assistance during the observing runs.; The data in this paper are based partly on observations obtained at the Hale Telescope, Palomar Observatory, as part of a collaborative agreement between the California Institute of Technology, its divisions Caltech Optical Observatories and the Jet Propulsion Laboratory (operated for NASA), and Cornell University.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; Some of the data in this paper are based on observations made with ESO telescopes at the La Silla Observatory under programs 083.B-0460(B) and 084.B-0711(B).; The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; Funding for the Sloan Digital Sky Survey (SDSS) and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, The University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 120 TC 312 Z9 315 U1 6 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 429 EP 457 DI 10.1088/0004-637X/715/1/429 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100036 ER PT J AU Kataoka, J Stawarz, L Cheung, CC Tosti, G Cavazzuti, E Celotti, A Nishino, S Fukazawa, Y Thompson, DJ McConville, WF AF Kataoka, J. Stawarz, L. Cheung, C. C. Tosti, G. Cavazzuti, E. Celotti, A. Nishino, S. Fukazawa, Y. Thompson, D. J. McConville, W. F. TI gamma-RAY SPECTRAL EVOLUTION OF NGC 1275 OBSERVED WITH FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 1275); galaxies: jets; gamma rays: general; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; PEAKED BL-LACERTAE; RADIO GALAXY; PARTICLE-ACCELERATION; PERSEUS CLUSTER; SOURCE LIST; W-COMAE; EMISSION; DISCOVERY; BLAZAR AB We report on a detailed investigation of the high-energy gamma-ray emission from NGC 1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray-emitting region is now measured to be separated by only 0.46 arcmin from the nucleus of NGC 1275, well within the 95% confidence error circle with radius similar or equal to 1.5 arcmin. Early Fermi Large Area Telescope (LAT) observations revealed a significant decade-timescale brightening of NGC 1275 at GeV photon energies, with a flux about 7 times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average > 100 MeV gamma-ray spectrum of NGC 1275 shows a possible deviation from a simple power-law shape, indicating a spectral cutoff around an observed photon energy of epsilon(gamma) = 42.2 +/- 19.6 GeV, with an average flux of F(gamma) = (2.31 +/- 0.13) x 10(-7) photons cm(-2) s(-1) and a power-law photon index, Gamma(gamma) = 2.13 +/- 0.02. The largest gamma-ray flaring event was observed in 2009 April-May and was accompanied by significant spectral variability above epsilon(gamma) greater than or similar to 1-2 GeV. The gamma-ray activity of NGC 1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the gamma-ray source was detected at the very end of the observation, with the observed energy of epsilon(gamma) = 67.4 GeV and an angular separation of about 2.4 arcmin from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed gamma-ray spectral evolution of NGC 1275 in the context of gamma-ray blazar sources in general. C1 [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Stawarz, L.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Cheung, C. C.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Cavazzuti, E.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Celotti, A.] SISSA, I-34014 Trieste, Italy. [Nishino, S.; Fukazawa, Y.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Thompson, D. J.; McConville, W. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McConville, W. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Kataoka, J (reprint author), Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. RI Thompson, David/D-2939-2012; Tosti, Gino/E-9976-2013 OI Thompson, David/0000-0001-5217-9135; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'EnergieAtomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Polish MNiSW [N-N203-380336] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'EnergieAtomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; We acknowledge S. Digel and J. Finke for their helpful comments to improve the manuscript. L. S. is grateful for the support from the Polish MNiSW through the grant N-N203-380336. NR 40 TC 37 Z9 37 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 554 EP 560 DI 10.1088/0004-637X/715/1/554 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100046 ER PT J AU Fukumura, K Kazanas, D Contopoulos, I Behar, E AF Fukumura, Keigo Kazanas, Demosthenes Contopoulos, Ioannis Behar, Ehud TI MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; methods: numerical; quasars: absorption lines; X-rays: galaxies ID GALAXY NGC-4151; BLACK-HOLES; OUTFLOWS; QUASARS; ULTRAVIOLET; ABSORPTION; SPECTRA; DRIVEN; LINE; SIMULATIONS AB We present the two-dimensional ionization structure of self-similarmagnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r). proportional to 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter xi (or equivalently r) and the angle theta. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic xi interval, dN(H)/dlog xi, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) proportional to 1/r, the AMD is found to be independent of xi, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, upsilon similar to 100-300 km s(-1) (at log xi similar to 2-3) for Fe XVII and upsilon similar to 1000-4000 km s(-1) (at log xi similar to 4-5) for Fe xxv, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate (m) over dot and the LOS angle theta. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing. m and increases steeply with the LOS inclination angle theta. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale " torii" invoked in AGN unification schemes. We indicate that a combination of the AMD and absorption line profile observations can uniquely determine these model parameters and their bearing on AGN population demographics. C1 [Fukumura, Keigo] Univ Maryland, Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. [Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron, Athens 11527, Greece. [Behar, Ehud] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Fukumura, K (reprint author), Univ Maryland, Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. EM Keigo.Fukumura@nasa.gov FU NASA ADP FX We are grateful to our anonymous referee for his/her constructive comments that improved the manuscript. We would like to thank Tim Kallman for his help with XSTAR incisive comments. We express our gratitude to George Chartas for his comments on the model, and to Takanori Sakamoto and Javier Garcia for their assistance with scripting and running XSTAR as well as helpful comments. This work was supported in part by NASA ADP grant. NR 59 TC 45 Z9 45 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 636 EP 650 DI 10.1088/0004-637X/715/1/636 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100053 ER PT J AU Enoto, T Rea, N Nakagawa, YE Makishima, K Sakamoto, T Esposito, P Gotz, D Hurley, K Israel, GL Kokubun, M Mereghetti, S Murakami, H Nakazawa, K Stella, L Tiengo, A Turolla, R Yamada, S Yamaoka, K Yoshida, A Zane, S AF Enoto, T. Rea, N. Nakagawa, Y. E. Makishima, K. Sakamoto, T. Esposito, P. Goetz, D. Hurley, K. Israel, G. L. Kokubun, M. Mereghetti, S. Murakami, H. Nakazawa, K. Stella, L. Tiengo, A. Turolla, R. Yamada, S. Yamaoka, K. Yoshida, A. Zane, S. TI WIDE-BAND SUZAKU ANALYSIS OF THE PERSISTENT EMISSION FROM SGR 0501+4516 DURING THE 2008 OUTBURST SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR 0501+4516); stars: neutron; X-rays: stars ID X-RAY PULSARS; HIGH-ENERGY CHARACTERISTICS; XMM-NEWTON; DISCOVERY; MAGNETARS; RXTE; TAIL AB We observed the soft gamma repeater SGR 0501+4516 with Suzaku for similar to 51 ks on 2008 August 26-27, about 4 days after its discovery. Following the first paper, which reported on the persistent soft X-ray emission and the wide-band spectrum of an intense short burst, this paper presents an analysis of the persistent broadband (1-70 keV) spectra of this source in outburst, taken with the X-ray Imaging Spectrometer (XIS) and the Hard X-ray Detector (HXD). Pulse-phase folding in the 12-35 keV HXD-PIN data on an ephemeris based on multi-satellite timing measurements at soft X-rays revealed the pulsed signals at greater than or similar to 99% confidence in the hard X-ray band. The wide-band spectrum clearly consists of a soft component and a separate hard component, crossing over at similar to 7 keV. When the soft component is modeled by a blackbody plus a Comptonized blackbody, the hard component exhibits a 20-100 keV flux of 4.8(-0.6)(+0.8) (stat.)(-0.4)(+ 0.8) (sys.) x 10(-11) erg s(-1) cm(-2) and a photon index of Gamma = 0.79(-0.18)(+ 0.01) (sys.). The hard X-ray data are compared with those obtained by INTEGRAL about 1 day later. Combining the present results with those on other magnetars, we discuss a possible correlation between the spectral hardness of magnetars and their characteristic age and magnetic field strengths. C1 [Enoto, T.; Makishima, K.; Nakazawa, K.; Yamada, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Rea, N.] Fac Ciencias, ICE CSIC, IEEC, Barcelona 08193, Spain. [Rea, N.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Nakagawa, Y. E.; Makishima, K.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Esposito, P.; Mereghetti, S.; Tiengo, A.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Esposito, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Goetz, D.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Israel, G. L.; Stella, L.] INAF Astron Observ Rome, I-00040 Monte Porzio Catone, RM, Italy. [Kokubun, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Murakami, H.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Turolla, R.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Turolla, R.; Zane, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Yamaoka, K.; Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. RP Enoto, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. RI Rea, Nanda/I-2853-2015; XRAY, SUZAKU/A-1808-2009; OI Rea, Nanda/0000-0003-2177-6388; Tiengo, Andrea/0000-0002-6038-1090; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; Esposito, Paolo/0000-0003-4849-5092 FU NWO; CNES; STFC; NASA [NNX09AI74G]; ASI/INAF [I/011/07/0] FX We thank the Suzaku operation team for successfully carrying out the ToO observation. We gratefully acknowledge the referee for providing detailed comments and suggestions, which significantly improved this paper. N.R. is supported by an NWO Veni Fellowship, D.G. thanks the CNES for financial support, and S.Z. acknowledges support from STFC. We thank Matthew Baring for a helpful discussion. K. H. is grateful for support under the INTEGRAL US Guest Investigator program, NASA grant NNX09AI74G. P. E. was supported by ASI through ASI/INAF contract I/011/07/0. NR 31 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 665 EP 670 DI 10.1088/0004-637X/715/1/665 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100056 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Bottcher, M Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Cui, W Dickherber, R Duke, C Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ Lamerato, A LeBohec, S Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Roustazadeh, P Schroedter, M Sembroski, GH Senturk, GD Smith, AW Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ripken, J Rodriguez, AY Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Boettcher, M. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Cui, W. Dickherber, R. Duke, C. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. Lamerato, A. LeBohec, S. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Roustazadeh, P. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Smith, A. W. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ripken, J. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI THE DISCOVERY OF gamma-RAY EMISSION FROM THE BLAZAR RGB J0710+591 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects: individual (RGB J0710+591, VER J0710+591); gamma rays: galaxies ID BL-LACERTAE OBJECTS; ATMOSPHERIC CHERENKOV TELESCOPES; ACTIVE GALACTIC NUCLEI; HOST GALAXIES; BACKGROUND-RADIATION; LAC OBJECTS; SAMPLE; CONSTRAINTS; ASTRONOMY; VERITAS AB The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5 sigma) above the background, corresponding to an integral flux of (3.9 +/- 0.8) x 10(-12) cm(-2) s(-1) (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 +/- 0.26(stat) +/- 0.20(sys). These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Gibbs, K.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boettcher, M.; Lamerato, A.; Roustazadeh, P.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS, Laboratoire AIM, CEA IRFU,CEA Saclay,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Gehrels, N.; Hays, E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM jperkins@cfa.harvard.edu; fortin@llr.in2p3.fr RI Funk, Stefan/B-7629-2015; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Funk, Stefan/0000-0002-2012-0080; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Frailis, Marco/0000-0002-7400-2135; Ward, John E/0000-0003-1973-0794; Caraveo, Patrizia/0000-0003-2478-8018; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Cesarini, Andrea/0000-0002-8611-8610; Sgro', Carmelo/0000-0001-5676-6214; Cui, Wei/0000-0002-6324-5772; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK; National Aeronautics and Space Administration; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science, and Technology (MEXT); High Energy Accelerator Research Organization (KEK) and Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The VERITAS Collaboration acknowledges support from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 44 TC 42 Z9 42 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2010 VL 715 IS 1 BP L49 EP L55 DI 10.1088/2041-8205/715/1/L49 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590NM UT WOS:000277233200011 ER PT J AU Mascarenhas, BS Helenbrook, BT Atkins, HL AF Mascarenhas, Brendan S. Helenbrook, Brian T. Atkins, Harold L. TI Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE p-Multigrid; Geometric multigrid; Discontinuous Galerkin; Convection-diffusion equation ID NAVIER-STOKES EQUATIONS; EULER EQUATIONS; SYSTEMS; FLOWS; GRIDS AB An improved p-multigrid algorithm for discontinuous Galerkin (DG) discretizations of convection-diffusion problems is presented. The general p-multigrid algorithm for DG discretizations involves a restriction from the p = 1 to p = 0 discontinuous polynomial solution spaces This restriction is problematic and has limited the efficiency of the p-multigrid method For purely diffusive problems, Helenbrook and Atkins have demonstrated rapid convergence using a method that restricts from a discontinuous to continuous polynomial solution space at p = 1 It is shown that this method is not directly applicable to the convection-diffusion (CD) equation because it results in a central-difference discretization for the convective term To remedy this, Ideas from the streamwise upwind Petrov-Galerkin (SUPG) formulation are used to devise a transition from the discontinuous to continuous space at p = 1 that yields an upwind discretization The results show that the new method converges rapidly for all Peclet numbers. (C) 2010 Elsevier Inc All rights reserved. C1 [Mascarenhas, Brendan S.] Optiwind LLC, Torrington, CT 06790 USA. [Helenbrook, Brian T.] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. [Atkins, Harold L.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Mascarenhas, BS (reprint author), Optiwind LLC, 59 Fields St, Torrington, CT 06790 USA. NR 21 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2010 VL 229 IS 10 BP 3664 EP 3674 DI 10.1016/j.jcp.2010.01.020 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 584WL UT WOS:000276784300006 ER PT J AU Lyman, JM Good, SA Gouretski, VV Ishii, M Johnson, GC Palmer, MD Smith, DM Willis, JK AF Lyman, John M. Good, Simon A. Gouretski, Viktor V. Ishii, Masayoshi Johnson, Gregory C. Palmer, Matthew D. Smith, Doug M. Willis, Josh K. TI Robust warming of the global upper ocean SO NATURE LA English DT Article ID SEA-LEVEL RISE; HEAT-CONTENT; TEMPERATURE; REEVALUATION; VARIABILITY; PROFILES; QUALITY; ARGO; XBT AB A large (similar to 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago(1) and is attributed to warming associated with anthropogenic greenhouse gases(2,3). The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean(3), but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets(4-7), the global radiation imbalance(8) and climate models(5). For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise(5,9-16). Patterns of inter-annual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2). C1 [Lyman, John M.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Lyman, John M.; Johnson, Gregory C.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Good, Simon A.; Palmer, Matthew D.; Smith, Doug M.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Gouretski, Viktor V.] Univ Hamburg, D-20144 Hamburg, Germany. [Ishii, Masayoshi] Meteorol Res Inst, Climate Res Dept, Tsukuba, Ibaraki 3050052, Japan. [Ishii, Masayoshi] Japan Agcy Marine Earth Sci & Technol, Kanazawa Ku, Yokohama, Kanagawa 2360001, Japan. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lyman, JM (reprint author), Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. EM john.lyman@noaa.gov RI Johnson, Gregory/I-6559-2012 OI Johnson, Gregory/0000-0002-8023-4020 FU US National Oceanic and Atmospheric Administration (NOAA) Climate Program Office; NOAA; DECC/Defra [GA01101] FX J.M.L. and G.C.J. were funded by the US National Oceanic and Atmospheric Administration (NOAA) Climate Program Office and NOAA Research. S. A. G., M. D. P. and D. M. S. were supported by the Joint DECC and Defra Integrated Climate Programme DECC/Defra (GA01101). C. Domingues, S. Levitus, T. Boyer, M. Ferrante and D. Trossman provided comments. C. Domingues, S. Levitus, and T. Boyer also provided corrected XBT profiles. This is Pacific Marine Environment Laboratory contribution number 3476 and Joint Institute for Marine and Atmospheric Research contribution number 09-372. NR 30 TC 178 Z9 189 U1 6 U2 98 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 20 PY 2010 VL 465 IS 7296 BP 334 EP 337 DI 10.1038/nature09043 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 598IO UT WOS:000277829200037 PM 20485432 ER PT J AU Sun, AY Green, R Rodell, M Swenson, S AF Sun, Alexander Y. Green, Ronald Rodell, Matthew Swenson, Sean TI Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DATA ASSIMILATION SYSTEM; CLIMATE EXPERIMENT GRACE; GRAVITY RECOVERY; TIME AB We present a robust optimization method for estimating aquifer storage parameters (specific yield or storativity) using the Gravity Recovery and Climate Experiment (GRACE) data, in situ well level observations, and other ancillary information. Uncertainty inherent in the remotely sensed and in situ time series can adversely affect the parameter estimation process and, in the worse case, make the solution completely meaningless. Our estimation problem is formulated to directly minimize the negative impact of data uncertainty by incorporating bounds on data variations. We demonstrate our method for the interconnected Edwards- Trinity Plateau and Pecos Valley aquifers in central Texas. The study area is divided into multiple zones based on the geology and monitor well coverage. Our estimated aquifer storage parameters are consistent with previous results obtained from pumping tests and model calibration, demonstrating the potential of using GRACE data for validating regional groundwater model parameters. Citation: Sun, A. Y., R. Green, M. Rodell, and S. Swenson (2010), Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty, Geophys. Res. Lett., 37, L10401, doi: 10.1029/2010GL043231. C1 [Sun, Alexander Y.; Green, Ronald] SW Res Inst, Geosci & Engn Div, San Antonio, TX 78238 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Swenson, Sean] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Swenson, Sean] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Sun, AY (reprint author), SW Res Inst, Geosci & Engn Div, San Antonio, TX 78238 USA. EM asun@cnwra.swri.edu RI Rodell, Matthew/E-4946-2012; Sun, Alexander/A-9959-2011 OI Rodell, Matthew/0000-0003-0106-7437; FU Southwest Research Institute(registered) FX This research was funded by an internal research and development fund from Southwest Research Institute (R). The authors wish to thank D. Mocko at NASA for providing the NLDAS datasets, and R. Anaya and R. Boghici at TWDB for providing the Edwards-Trinity Plateau data and for insightful discussions. NR 24 TC 13 Z9 13 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 19 PY 2010 VL 37 AR L10401 DI 10.1029/2010GL043231 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 600DA UT WOS:000277963200005 ER PT J AU Cosh, MH Tao, J Jackson, TJ McKee, L O'Neill, P AF Cosh, Michael H. Tao, Jing Jackson, Thomas J. McKee, Lynn O'Neill, Peggy TI Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006 SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Vegetation; field experimentation; thematic mapper; NDWI; agriculture ID REMOTE-SENSING DATA; SPECTRAL INDEX; IMAGERY AB Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m(2). The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. C1 [Cosh, Michael H.; Jackson, Thomas J.; McKee, Lynn] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Tao, Jing] Beijing Normal Univ, Sch Geog & Remote Sensing Sci, Beijing 100875, Peoples R China. [O'Neill, Peggy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cosh, MH (reprint author), USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. EM Michael.Cosh@ars.usda.gov; Tom.Jackson@ars.usda.gov; Lynn.McKee@ars.usda.gov; Peggy.E.ONeill@nasa.gov RI O'Neill, Peggy/D-2904-2013; Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 NR 14 TC 1 Z9 1 U1 1 U2 15 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD MAY 19 PY 2010 VL 4 AR 043532 DI 10.1117/1.3449090 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 602KM UT WOS:000278138100001 ER PT J AU Shultz, MJ Bisson, P Buch, V Groenzin, H Li, I AF Shultz, Mary Jane Bisson, Patrick Buch, Victoria Groenzin, Henning Li, Irene TI Aqueous hydrogen bonding probed with polarization and matrix isolation spectroscopy SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article; Proceedings Paper CT 18th International Conference on Horizons in Hydrogen Bond Research CY SEP 14-18, 2009 CL Lab Leon-Brillouin CEA-CNRS, Paris, FRANCE SP CEA Saclay, Univ Gottingen HO Lab Leon-Brillouin CEA-CNRS DE Ice; Water; Surface; Vibrational modes; Polarization; Sum frequency generation ID SUM-FREQUENCY GENERATION; LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS SIMULATIONS; VIBRATIONAL SPECTROSCOPY; SALT-SOLUTIONS; WATER-SURFACE; CARBON-TETRACHLORIDE; ROTATIONAL STRUCTURE; BINARY-SYSTEMS; IONS AB A major challenge in hydrogen-bond research is interpreting the vibrational spectrum of water, arguably the most fundamental hydrogen bonding system. This challenge remains despite over a half century of progress in vibrational spectroscopy, largely due to a combination of the huge oscillator strength and the enormous width of the hydrogen-bond region. Lack of assignment of the resonances in the hydrogen-bond region hinders investigation of interactions between water and solutes. This lack-of-interpretation issue is an even more significant problem for studies of the aqueous interface. Numerous solutes are known to have an effect, some very dramatic, on the shape of the surface spectrum. These effects, however, are but tantalizing teasers because lack of interpretation means that the changes cannot be used to diagnose the effect of solutes or impinging gas-phase molecules on the surface. In the reported work two techniques are used to probe the origin of vibrational resonances in the H-bonded region: the surface sensitive technique sum frequency generation (SFG) and room-temperature matrix isolation spectroscopy (RT-MIS). A polarization technique called polarization angle null (PAN) has been developed that extends SFG and enables identification of resonances. The result of applying PAN-SFG to single crystal, I(h) ice is identification of at least nine underlying resonances and assignment of two of these. One resonance is correlated with the crystal temperature and is a sensitive probe for interactions that disrupt long range order on the surface - it is a morphology reporter. The second is associated with weakly bonded, double-donor water molecules. This resonance is sensitive to interaction of hydrogen bond donors, i.e. acids, with the surface. Both modes are more correctly pictured as collective modes. These two assignments are the first definitive assignments in the hydrogen-bond region for the aqueous surface. The effect of salts on the vibrational spectrum of water is also probed with a recently developed room-temperature, matrix-isolation technique. The matrix environment demonstrates that salts containing large anions with small cations support water-water hydrogen bonds with a vibrational resonance that has similar characteristics as the SFG spectra of salt solutions. (c) 2010 Elsevier B.V. All rights reserved. C1 [Shultz, Mary Jane; Bisson, Patrick] Tufts Univ, Dept Chem, Pearson Lab, Medford, MA 02155 USA. [Buch, Victoria] Hebrew Univ Jerusalem, Fritz Haber Inst Mol Dynam, IL-91904 Jerusalem, Israel. [Groenzin, Henning] MB Technol GmbH, D-71063 Sindelfingen, Germany. [Li, Irene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shultz, MJ (reprint author), Tufts Univ, Dept Chem, Pearson Lab, Medford, MA 02155 USA. EM mary.shultz@tufts.edu OI Bisson, Patrick/0000-0002-4985-3077 NR 58 TC 4 Z9 4 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 J9 J MOL STRUCT JI J. Mol. Struct. PD MAY 19 PY 2010 VL 972 IS 1-3 SI SI BP 51 EP 58 DI 10.1016/j.molstruc.2009.12.051 PG 8 WC Chemistry, Physical SC Chemistry GA 604VS UT WOS:000278307200008 ER PT J AU Bardeen, CG Toon, OB Jensen, EJ Hervig, ME Randall, CE Benze, S Marsh, DR Merkel, A AF Bardeen, C. G. Toon, O. B. Jensen, E. J. Hervig, M. E. Randall, C. E. Benze, S. Marsh, D. R. Merkel, A. TI Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NOCTILUCENT CLOUDS; PHYSICAL PROCESSES; OPTICAL-CONSTANTS; SUMMER MESOSPHERE; METEORIC SMOKE; WATER-ICE; MODEL; TEMPERATURE; ATMOSPHERE; STRATOSPHERE AB Polar mesospheric clouds (PMC) routinely form in the cold summer mesopause region when water vapor condenses to form ice. We use a three-dimensional chemistry-climate model based on the Whole-Atmosphere Community Climate Model (WACCM) with sectional microphysics from the Community Aerosol and Radiation Model for Atmospheres (CARMA) to study the distribution and characteristics of PMCs formed by heterogeneous nucleation of water vapor onto meteoric smoke particles. We find good agreement between these simulations and cloud properties for the Northern Hemisphere in 2007 retrieved from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment from the Aeronomy of Ice in the Mesosphere (AIM) mission. The main discrepancy is that simulated ice number densities are less than those retrieved by SOFIE. This discrepancy may indicate an underprediction of nucleation rates in the model, the lack of small-scale gravity waves in the model, or a bias in the SOFIE results. The WACCM/CARMA simulations are not very sensitive to large changes in the barrier to heterogeneous nucleation, which suggests that large supersaturations in the model nucleate smaller meteoric smoke particles than are traditionally assumed. Our simulations are very sensitive to the temperature structure of the summer mesopause, which in the model is largely dependent upon vertically propagating gravity waves that reach the mesopause region, break, and deposit momentum. We find that cloud radiative heating is important, with heating rates of up to 8 K/d. C1 [Bardeen, C. G.; Toon, O. B.; Randall, C. E.; Benze, S.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Bardeen, C. G.; Toon, O. B.; Randall, C. E.; Benze, S.; Merkel, A.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hervig, M. E.] GATS Inc, Driggs, ID 83422 USA. [Jensen, E. J.] NASA, Ames Res Ctr, Moffett Field, CA 94395 USA. [Bardeen, C. G.; Marsh, D. R.; Merkel, A.] Natl Ctr Atmospher Res, Boulder, CO 80306 USA. RP Bardeen, CG (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM bardeenc@ucar.edu RI Marsh, Daniel/A-8406-2008 OI Marsh, Daniel/0000-0001-6699-494X FU National Science Foundation (NSF) [ATM0435713]; NASA [NNG05GQ75J, NNX08AK45G, NNG06GE80G, NAS5-03132]; NCAR FX The authors wish to thank Scott Bailey, Jerry Lumpe, Uwe Berger, Steve Massie, and Doug Kinnison for their assistance. We are grateful to the National Center for Atmospheric Research (NCAR) and the National Aeronautics and Space Administration (NASA) for the use of computer time to help run these simulations. We would also like to thank the SABER, CIPS, and SOFIE science teams for the use of their data and the NCAR for supporting our use of the WACCM model. The NCAR is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation (NSF). Partial support for Charles Bardeen was provided by a NASA Earth System Science Fellowship grant NNG05GQ75J and an NCAR Advanced Study Program Postdoctoral Fellowship. Additional support for this project came from NASA heliophysics guest investigator grant NNX08AK45G, NASA Aura grant NNG06GE80G, NSF grant ATM0435713, and NASA AIM grant NAS5-03132. NR 55 TC 21 Z9 21 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 18 PY 2010 VL 115 AR D10204 DI 10.1029/2009JD012451 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 600DQ UT WOS:000277965100002 ER PT J AU Naud, CM Chen, YH AF Naud, Catherine M. Chen, Yong-Hua TI Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HIGH-LEVEL CLOUDS; SATELLITE SOUNDERS 3I; CLIMATIC-CHANGE; IMAGERS ISCCP; SAGE-II AB Cloudiness over the Tibetan Plateau is difficult to estimate because ground-based measurements are sparse. Satellite observations are thus the best tool and one of the longest climatologies available, the International Satellite Cloud Climatology Project (ISCCP), relies on passive remote sensing to characterize cloud cover and altitude. Active remote sensing from space is used to assess the accuracy of the ISCCP observations over the Tibetan Plateau. August 2006 is chosen to conduct the assessment and compared to February 2007. Cloud cover from ISCCP is underestimated by about 18%, in part because of misdetection of low-level clouds at night. ISCCP cloud top pressures are overestimated by about 150-200 mb in August and 60-130 mb in February. However, the most accurate ISCCP cloud top pressures, with a maximum bias of about 50 mb, are obtained when there are thick single-layer clouds. Within the region, there is no evidence that the differences are directly dependent on elevation. Problems identified in other regions, such as multilayer clouds and optically thin clouds, explain most of the discrepancies in our study region. These results indicate that ISCCP cloud retrievals can be used to compile a realistic climatology at the highest altitudes where single-layer clouds dominate and that the retrievals are most accurate in winter. C1 [Naud, Catherine M.; Chen, Yong-Hua] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Naud, Catherine M.; Chen, Yong-Hua] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Naud, CM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM cnaud@giss.nasa.gov NR 34 TC 5 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 18 PY 2010 VL 115 AR D10203 DI 10.1029/2009JD013053 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 600DQ UT WOS:000277965100008 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Design strategies to minimize the radiative efficiency of global warming molecules SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE quantum chemistry calculations; climate change; fluorocarbons; infrared absorption; vibrational frequency ID GAUSSIAN BASIS FUNCTIONS; FIRST-ROW ATOMS; POTENTIALS; EMISSIONS; ANIONS; GAS AB A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers approximate to sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C-O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C-F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu; Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 FU National Aeronautics and Space Administration (NASA) FX P. P. B. thanks Dr. Xinchuan Huang for many insightful discussions. P. P. B. acknowledges a fellowship award from the National Aeronautics and Space Administration (NASA) postdoctoral program administered by the Oak Ridge Associated Universities on behalf of NASA. NR 21 TC 9 Z9 9 U1 0 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 18 PY 2010 VL 107 IS 20 BP 9049 EP 9054 DI 10.1073/pnas.0913590107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 598GH UT WOS:000277822600008 PM 20439762 ER PT J AU Berrilli, F Bigazzi, A Roselli, L Sabatini, P Velli, M Alimenti, F Cavallini, F Greco, V Moretti, PF Orsini, S Romoli, M White, SM AF Berrilli, F. Bigazzi, A. Roselli, L. Sabatini, P. Velli, M. Alimenti, F. Cavallini, F. Greco, V. Moretti, P. F. Orsini, S. Romoli, M. White, S. M. CA ADAHELI Team TI The ADAHELI solar mission: Investigating the structure of Sun's lower atmosphere SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Sun: photosphere; Sun: chromosphere; Methods: space mission ID OPTICAL TELESCOPE; ELECTRIC-CURRENTS; TIME STRUCTURES; QUIET SUN; WAVES; FLARE; IBIS; CHROMOSPHERE; MAGNETOGRAPH; OSCILLATIONS AB ADAHELI (A Dvanced Astronomy for HELlophysics) is a small-class (500 kg) low-budget (50 MEuro) satellite mission for the study of the solar photosphere and the chromosphere and for monitoring solar flare emission. ADAHELI's design has completed its Phase-A feasibility study in December 2008, in the framework of ASI's (Agenzia Spaziale ltaliana) 2007 "Small Missions" Program (calling for two missions at 50 MEeuros each, plus the launch budget). ADAHELI's main purpose is to explore Sun's lower atmosphere in the near-infrared, a region so far unexplored by solar observations from space. ADAHELI will carry out observations of the solar photosphere and of the chromosphere at high-temporal rate and high spatial and spectral resolutions. ADAHELI will contribute to the understanding of Space Weather through the study of particle acceleration during flares. A radiometer operating in the millimeter radio band will continuously monitor the solar disk, throughout the spacecraft's life time. ADAHELI's baseline instruments are a 50-cm high resolution telescope operating in the visible and the near-infrared, and a lightweight full-disk radiometer operating at millimeter wavelengths (90 GHz). The core of the telescope's focal plane suite is the spectral imager based on two Fabry-Perot interferometers, flying for the first time on a solar mission. The instrument will return fast-cadence, full bi-dimensional spectral images at high-resolution, thus improving on current slit-scan, mono-dimensional architectures. Moreover, the possibility of working in polarized light will enable full 3D magnetic field reconstruction on the photosphere and the chromosphere. An optional instrumental package is also being proposed to further extend ADAHELI's scope: a full-disk telescope for helioseismology based on a double Magneto-Optical Filter, a Neutral Particle Analyzer for magnetospheric research, an Extreme Ultraviolet imaging and spectro-radiometry instrument. These options fall outside the prescribed budget. ADAHELI, flying a Sun-Synchronous orbit at 800 km, will perform continuous, long-duration (4-h), daily acquisitions, with the possibility of extending them up to 24 h. ADAHELI's operating life is two years, plus one extension year. Launch would be nominally planned for 2014. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Bigazzi, A.] Altran Italia SpA, I-00185 Rome, Italy. [Berrilli, F.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Roselli, L.; Alimenti, F.] Univ Perugia, Dipartimento Ingn Elettron & Informaz, I-06125 Perugia, Italy. [Sabatini, P.] Carlo Gavazzi Space SpA, I-20151 Milan, Italy. [Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cavallini, F.] INAF Oss Astrofis Arcetri, I-50125 Florence, Italy. [Greco, V.] INOA Ist Naz Ott Applicata, I-50125 Florence, Italy. [Moretti, P. F.] Headquarters Consiglio Nazl Ric, I-00185 Rome, Italy. [Orsini, S.] INAF IFSI Area Tor Vergata, I-00133 Rome, Italy. [Romoli, M.] Univ Florence, Dipartimento Astron & Sci Spazio, I-50125 Florence, Italy. [White, S. M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Bigazzi, A (reprint author), SERCO SpA, ESA ESRIN, Via G Galilei, I-00044 Frascati, Italy. EM berrilli@roma2.infn.it; alberto.bigazzi@roma2.infn.it; roselli@diei.unipg.it; psabatini@cgspace.it; velli@arcetri.astro.it; alimenti@diei.unipg.it; fabio@arcetri.astro.it; vincenzo.greco@inoa.it; pierfrancesco.moretti@cnr.it; stefano.orsini@ifsi-roma.inaf.it; romoli@arcetri.astro.it; white@astro.umd.edu RI Romoli, Marco/H-6859-2012; OI ermolli, ilaria/0000-0003-2596-9523; CONSOLINI, Giuseppe/0000-0002-3403-647X; ALIMENTI, Federico/0000-0002-4523-2193; DEL MORO, DARIO/0000-0003-2500-5054; Cauzzi, Gianna/0000-0002-6116-7301; Romano, Paolo/0000-0001-7066-6674; Di Mauro, Maria Pia/0000-0001-7801-7484 NR 37 TC 17 Z9 17 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 17 PY 2010 VL 45 IS 10 BP 1191 EP 1202 DI 10.1016/j.asr.2010.01.026 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 598RX UT WOS:000277857000001 ER PT J AU Esplin, TL Cable, ML Gray, HB Ponce, A AF Esplin, Taran L. Cable, Morgan L. Gray, Harry B. Ponce, Adrian TI Terbium-Macrocycle Complexes as Chemical Sensors: Detection of an Aspirin Metabolite in Urine Using a Salicylurate-Specific Receptor Site SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC ENERGY LEVELS; LANTHANIDE AQUO IONS; INTRAMOLECULAR PROTON-TRANSFER; GENTISIC ACID; CAPILLARY-ELECTROPHORESIS; 2-HYDROXYHIPPURIC ACID; LIQUID-CHROMATOGRAPHY; ACETYLSALICYLIC-ACID; SALICYLATE; STATE AB Salicylurate (SU) is the major metabolite in urine of acetylsalicylic acid (aspirin) and can be used as a metric to monitor aspirin pharmacokinetics and as an indicator of appendicitis, anemia, and liver disease. Detection in urine and plasma currently requires solvent extraction or other sample handling prior to analysis. We present a simple method to quantify SU in urine via chelation to a terbium binary complex with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-bisacetate (DO2A). Binding of SU to form the [Tb(DO2A)(SU)](-) ternary complex triggers intense luminescence under UV excitation due to an absorbance-energy transfer-emission mechanism. Here we report characterization of the [Tb(DO2A)(SU)](-) ternary complex and application of this sensitized lanthanide luminescence method to quantify SU in urine samples following a low-dose aspirin regimen, C1 [Esplin, Taran L.; Cable, Morgan L.; Ponce, Adrian] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Cable, Morgan L.; Gray, Harry B.; Ponce, Adrian] CALTECH, Beckman Inst, Pasadena, CA 91125 USA. RP Ponce, A (reprint author), CALTECH, Jet Prop Lab, Planetary Sci Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ponce@caltech.edu FU Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration; NASA Astrobiology and Planetary Protection Programs (A.P.); Department of Homeland Security Chemical and Biological Research & Development Program; NIH; NSF; Arnold and Mabel Beckman Foundation FX The authors thank Mona Shahgholi for assistance with mass spectrometry. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration and was sponsored by the NASA Astrobiology and Planetary Protection Programs (A.P.), the Department of Homeland Security Chemical and Biological Research & Development Program (A.P.), the NASA Graduate Student Research Program (M.L.C.), and the NASA Undergraduate Student Research Program (T.L.E.). Work at the Beckman Institute was supported by the NIH, NSF, and the Arnold and Mabel Beckman Foundation (H.B.G.). NR 39 TC 19 Z9 19 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 17 PY 2010 VL 49 IS 10 BP 4643 EP 4647 DI 10.1021/ic1003066 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 592MS UT WOS:000277383900034 PM 20405964 ER PT J AU Lee, J Kim, J Song, CH Ryu, JH Ahn, YH Song, CK AF Lee, Jaehwa Kim, Jhoon Song, Chul H. Ryu, Joo-Hyung Ahn, Yu-Hwan Song, C. K. TI Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Algorithm; Aerosol optical depth; Fine-mode fraction; Aerosol type; Geostationary ID VALIDATION; MTSAT-1R; CHANNELS; AVHRR AB An aerosol retrieval algorithm for the first Geostationary Ocean Color Imager (GOCI) to be launched in March 2010 onboard the Communication, Ocean, and Meteorological Satellite (COMS) is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMIF), and aerosol type in 500 m x 500 m resolution. All the products are retrieved over clear water which is defined by surface reflectance ratio between 640 nm and 860 nm (SRR) less or equal to 2.5, while only AOD is retrieved over turbid water (SRR>2.5) due to high surface reflectance. To develop optimized algorithm for the target area of GOCI, optical properties of aerosol are analyzed from extensive observation of AERONET sunphotometers to generate lookup table. Surface reflectance of turbid water is determined from 30-day composite of Rayleigh- and gas corrected reflectance. By applying the present algorithm to MODIS top-of-the atmosphere reflectance, three different aerosol cases dominated by anthropogenic aerosol contains black carbon (BC), dust, and non-absorbing aerosol are analyzed to test the algorithm. The algorithm retrieves AOD, and size information together with aerosol type which are consistent with results inferred by RGB image in a qualitative way. The comparison of the retrieved AOD with those of MODIS collection 5 and AERONET sunphotometer observations shows reliable results. Especially, the application of turbid water algorithm significantly increases the accuracy in retrieving AOD at Anmyon station. The sensitivity study between MODIS and GOCI instruments in terms of relative sensitivity and scattering angle shows promising applicability of the present algorithm to future GOCI measurements. (C) 2010 Elsevier Inc. All rights reserved. C1 [Lee, Jaehwa; Kim, Jhoon] Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul 120749, South Korea. [Song, Chul H.] GIST, Dept Environm Engn, Gwangiu, South Korea. Korea Ocean Res & Dev Inst, Ocean Satellite Res Grp, Ansan, South Korea. [Lee, Jaehwa; Kim, Jhoon] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA. [Lee, Jaehwa; Kim, Jhoon] NASA, Aerosol & Cloud Grp, JPL, Pasadena, CA USA. [Song, C. K.] Natl Inst Environm Res, Inchon, South Korea. RP Kim, J (reprint author), Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul 120749, South Korea. EM jkim2@yonsei.ac.kr RI Kwon, Yulee/B-8433-2009; Song, Chang-Keun/S-2255-2016 OI Kwon, Yulee/0000-0002-6515-9181; Song, Chang-Keun/0000-0002-8811-2626 FU Korean Ocean Research and Development Institute (KORDI); Korea Meteorological Administration Research and Development Program [CATER 2006-3203]; Brain Korea 21 (BK21) FX We thank the Korean Ocean Research and Development Institute (KORDI) for the development and application of GOCI in this work. This work was funded by the Korea Meteorological Administration Research and Development Program under grant CATER 2006-3203. This research was partially supported by the Brain Korea 21 (BK21) program for J. Kim and J. Lee. We also thank the principal investigators and their staff for establishing and maintaining the AERONET sites. NR 25 TC 29 Z9 31 U1 6 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY 17 PY 2010 VL 114 IS 5 BP 1077 EP 1088 DI 10.1016/j.rse.2009.12.021 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 571UH UT WOS:000275780800013 ER PT J AU Heimann, A Johnson, CM Beard, BL Valley, JW Roden, EE Spicuzza, MJ Beukes, NJ AF Heimann, Adriana Johnson, Clark M. Beard, Brian L. Valley, John W. Roden, Eric E. Spicuzza, Michael J. Beukes, Nicolas J. TI Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in similar to 2.5 Ga marine environments SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Fe; isotopes; BIF; Kuruman; carbonates; Archean/Paleoproterozoic ID RARE-EARTH-ELEMENTS; PROTEROZOIC TRANSVAAL SUPERGROUP; AMORPHOUS FERRIC HYDROXIDE; WESTERN-AUSTRALIA; SOUTH-AFRICA; FE(III) REDUCTION; OXIDE REDUCTION; MICROBIAL CARBONATE; DIAGENETIC SIDERITE; FACIES TRANSITION AB Combined Fe, C, and O isotope measurements of similar to 2.5 Ga banded iron formation (BIF) carbonates from the Kuruman Iron Formation and underlying BIF and platform Ca-Mg carbonates of the Gamohaan Formation, South Africa, constrain the biologic and abiologic formation pathways in these extensive BIF deposits. Vertical intervals of up to 100 m were sampled in three cores that cover a lateral extent of similar to 250 km. BIF Fe carbonates have significant Fe isotope variability (delta(56)Fe = +1 to 1 parts per thousand) and relatively low delta(13)C (down to - 12 parts per thousand) and 6180 values (delta(18)O -+ 21 parts per thousand). In contrast, Gamohaan and stratigraphically-equivalent Campbellrand Ca-Mg carbonates have near-zero delta(13)C values and higher delta(18)O values. These findings argue against siderite precipitation from seawater as the origin of BIF Fe-rich carbonates. Instead, the C, O, and Fe isotope compositions of BIF Fe carbonates reflect authigenic pathways of formation in the sedimentary pile prior to lithification, where microbial dissimilatory iron reduction (DIR) was the major process that controlled the C, O, and Fe isotope compositions of siderite. Isotope mass-balance reactions indicate that the low-delta(13)C and low-delta(18)O values of BIF siderite, relative to those expected for precipitation from seawater, reflect inheritance of C and O isotope compositions of precursor organic carbon and ferric hydroxide that were generated in the photic zone and deposited on the seafloor. Carbon-Fe isotope relations suggest that BIF Fe carbonates formed through two end-member pathways: low-delta(13)C, low-delta(56)Fe Fe carbonates formed from remobilized, low-delta(56)Fe aqueous Fe(2+) produced by partial DIR of iron oxide, whereas low-delta(13)C, high-delta(56)Fe Fe carbonates formed by near-complete DIR of high-delta(56)Fe iron oxides that were residual from prior partial DIR. An important observation is the common occurrence of iron oxide inclusions in the high-delta(56)Fe siderite, supporting a model where such compositions reflect DIR "in place" in the soft sediment In contrast, the isotopic composition of low-Fe carbonates in limestone/dolomite may constitute a record of seawater environments, although our petrographic studies indicate that the presence of pyrite in most low-Fe carbonates may influence the Fe isotope compositions. The combined Fe, C, and O isotope data from Kuruman BIF carbonates indicate that BIF siderites that have negative, near-zero, or positive delta(56)Fe values may all record biological Fe cycling, where the range in delta(56)Fe values records differential Fe mobilization via DIR in the sediment prior to lithification. Our results demonstrate that the inventory of low-delta(56)Fe marine sedimentary rocks of Neoarchean to Paleoproterozoic age, although impressive in volume, may represent only a minimum of the total inventory of Fe that was cycled by bacteria. (C) 2010 Elsevier B.V. All rights reserved. C1 [Heimann, Adriana] E Carolina Univ, Dept Geol Sci, Greenville, NC 27858 USA. [Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.] NASA, Astrobiol Inst, Washington, DC USA. [Beukes, Nicolas J.] Univ Johannesburg, Dept Geol, Johannesburg, South Africa. RP Heimann, A (reprint author), E Carolina Univ, Dept Geol Sci, 101 Graham Bldg, Greenville, NC 27858 USA. EM heimanna@ecu.edu RI Valley, John/B-3466-2011 OI Valley, John/0000-0003-3530-2722 FU NASA Astrobiology Institute; National Science Foundation FX We thank John Fournelle for his help with electron microprobe, SEM, and EBSD determinations and Hiromi Konishi and Huifang Xu for performing preliminary TEM analysis. We thank Max Coleman for useful discussions. Journal reviews by editor Rick Carlson, Balz Kamber, and an anonymous reviewer helped to improve the manuscript. This research was funded by the NASA Astrobiology Institute and the National Science Foundation. NR 89 TC 71 Z9 75 U1 7 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 15 PY 2010 VL 294 IS 1-2 BP 8 EP 18 DI 10.1016/j.epsl.2010.02.015 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 607LS UT WOS:000278506200002 ER PT J AU Kappler, A Johnson, CM Crosby, HA Beard, BL Newman, DK AF Kappler, A. Johnson, C. M. Crosby, H. A. Beard, B. L. Newman, D. K. TI Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FE(II)-OXIDIZING PHOTOAUTOTROPHIC BACTERIA; PHOTOTROPHIC FE(II) OXIDATION; DISSIMILATORY FE(III); AQUEOUS FE(II); FERROUS IRON; CIRCUMNEUTRAL PH; FE; REDUCTION; HEMATITE; GEOCHEMISTRY AB Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Delta(56)Fe(Fe(OH)3-Fe(II)aq) fractionation factor of +3.0 parts per thousand. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Kappler, A.; Newman, D. K.] CALTECH, GPS Div, Pasadena, CA 91125 USA. [Johnson, C. M.; Crosby, H. A.; Beard, B. L.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Johnson, C. M.; Beard, B. L.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Kappler, A (reprint author), Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. EM andreas.kappler@uni-tuebingen.de RI Kappler, Andreas/G-7221-2016; OI Crosby, Heidi/0000-0002-0360-0779 FU German Research Foundation (DFG); Packard Foundation; NASA Astrobiology Institute; National Science Foundation FX The research was supported by a post-doc fellowship and an Emmy-Noether fellowship from the German Research Foundation (DFG) to A.K. and a grant from the Packard Foundation to D.K.N. Additional funding from the NASA Astrobiology Institute supported C.M.J. and B.L.B., and funding from the National Science Foundation supported B.L.B. and H.A.C. We would like to thank Ma Chi (Caltech) for help with the XRD. Sebastian Schaedler (University of Tuebingen) and Claus Burkhardt (NMI Reutlingen) are acknowledged for providing scanning electron micrographs. D.K.N. is an Investigator of the Howard Hughes Medical Institute. We thank AE Stephan Kraemer, Thomas Bullen, and an anonymous reviewer, whose comments helped improve the manuscript. NR 53 TC 27 Z9 30 U1 6 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2010 VL 74 IS 10 BP 2826 EP 2842 DI 10.1016/j.gca.2010.02.017 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 587JZ UT WOS:000276989400002 ER PT J AU Dyudina, UA Ingersoll, AP Ewald, SP Porco, CC Fischer, G Kurth, WS West, RA AF Dyudina, U. A. Ingersoll, A. P. Ewald, S. P. Porco, C. C. Fischer, G. Kurth, W. S. West, R. A. TI Detection of visible lightning on Saturn SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CASSINI IMAGING SCIENCE; MOIST CONVECTION; ELECTROSTATIC DISCHARGES; GALILEO IMAGES; GIANT PLANETS; JUPITER; ATMOSPHERE; CLOUDS; STORMS; MODEL AB Until now, evidence for lightning on Saturn has been indirect - through radio emissions and cloud morphology. Here we report the first visible detection of lightning, on the night side on August 17, 2009 at -36.4 degrees +/- 0.1 degrees planetocentric latitude and 10.6 degrees +/- 0.9 degrees west longitude. No other locations produced lightning detectable by either imaging or radio. The lightning images are consistent with a single cloud flashing once per minute. The visible energy of a single flash is comparable to that on Earth and Jupiter, and ranges up to 1.7 x 10(9) Joules. The diameter of the lightning flashes is similar to 200 km, which suggests the lightning is 125-250 km below cloud tops. This depth is above the base of the liquid H(2)O-NH(3) cloud and may be either in the NH(4)SH cloud or in the H(2)O ice cloud. Saturn's lower internal heat transport and likely 5-10 fold enrichment of water largely explain the lower occurrence rate of moist convection on Saturn relative to Jupiter. Citation: Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi: 10.1029/2010GL043188. C1 [Fischer, G.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Porco, C. C.] Space Sci Inst, Cassini Imaging Cent Lab Operat, Boulder, CO 80301 USA. [Dyudina, U. A.; Ingersoll, A. P.; Ewald, S. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Dyudina, UA (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM ulyana@gps.caltech.edu FU NASA; Austrian Science Fund [P21295-N16] FX This research was supported by the NASA Cassini Project. G. F. acknowledges support from the Austrian Science Fund FWF under the project P21295-N16. We thank J. Burns for commentson the manuscript. U.A.D. thanks P. Nicholson for estimates of ring brightness during the equinox needed for planning these observations. NR 31 TC 23 Z9 23 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 15 PY 2010 VL 37 AR L09205 DI 10.1029/2010GL043188 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 596SH UT WOS:000277705200007 ER PT J AU Lopez, JJ Greer, F Greer, JR AF Lopez, J. J. Greer, F. Greer, J. R. TI Enhanced resistance of single-layer graphene to ion bombardment SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AMORPHOUS-CARBON FILMS AB We report that single-layer graphene on a SiO(2)/Si substrate withstands ion bombardment up to similar to 7 times longer than expected when exposed to focused Ga(+) ion beam. The exposure is performed in a dual beam scanning electron microscope/focused ion beam system at 30 kV accelerating voltage and 41 pA current. Ga(+) ion flux is determined by sputtering a known volume of hydrogenated amorphous carbon film deposited via plasma-enhanced chemical vapor deposition. (C) 2010 American Institute of Physics. [doi:10.1063/1.3428466] C1 [Greer, J. R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Lopez, J. J.] E Los Angeles Coll, Los Angeles, CA 91754 USA. [Greer, F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Greer, JR (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM jrgreer@caltech.edu RI Lopez, Josue/E-7508-2012 OI Lopez, Josue/0000-0001-8855-1330 FU NRI INDEX Center FX We gratefully acknowledge financial support of the NRI INDEX Center. We thank M. J. Burek for useful discussions and assistance with the DualBeam system. Access to the Dual-Beam System was provided by the Kavli Nanoscience Institute (KNI) at Caltech. We also appreciate assistance from E. Miura and G. R. Rossman with Raman Spectroscopy, and we thank C. Daraio for access to the optical microscope. NR 22 TC 15 Z9 15 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2010 VL 107 IS 10 AR 104326 DI 10.1063/1.3428466 PG 4 WC Physics, Applied SC Physics GA 603BH UT WOS:000278182400166 ER PT J AU Buzulukova, N Fok, MC Pulkkinen, A Kuznetsova, M Moore, TE Glocer, A Brandt, PC Toth, G Rastatter, L AF Buzulukova, N. Fok, M. -C. Pulkkinen, A. Kuznetsova, M. Moore, T. E. Glocer, A. Brandt, P. C. Toth, G. Rastaetter, L. TI Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM-BATS-R-US coupled model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RICE CONVECTION MODEL; NUMERICAL-SIMULATION; GEOMAGNETIC STORMS; ALIGNED CURRENTS; MAGNETIC-FIELD; KINETIC-MODEL; PLASMA SHEET; SUBSTORM; PRECIPITATION; ENERGY AB We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models. C1 [Buzulukova, N.; Fok, M. -C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Rastaetter, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pulkkinen, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Brandt, P. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Toth, G.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. RP Buzulukova, N (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 673,Bldg 21-261B,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM nbuzulukova@gmail.com RI Glocer, Alex/C-9512-2012; Moore, Thomas/D-4675-2012; Rastaetter, Lutz/D-4715-2012; Kuznetsova, Maria/F-6840-2012; Fok, Mei-Ching/D-1626-2012; Toth, Gabor/B-7977-2013; feggans, john/F-5370-2012; Brandt, Pontus/N-1218-2016 OI Glocer, Alex/0000-0001-9843-9094; Moore, Thomas/0000-0002-3150-1137; Rastaetter, Lutz/0000-0002-7343-4147; Toth, Gabor/0000-0002-5654-9823; Brandt, Pontus/0000-0002-4644-0306 FU NASA FX This research was supported by NASA Science Mission Directorate, Heliophysics Division, Heliophysics Guest Investigators Program, under Work Breakdown Structure 955518. 02.01.02.57, and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The ACE SW and IMF data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The Dst, AU, AL, and SYMH indices were provided from the WDC for Geomagnetism, Kyoto. Simulation results for BATS-R-US and Ridley IE module have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request System ( http://ccmc.gsfc.nasa.gov). The CCMC is a multiagency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF, and ONR. The BATS-R-US model and Ridley IE solver were developed at Center for Space Environment Modeling, University of Michigan. We are indebted to M. Maddox for providing us with KAMELEON library. N. Buzulukova thanks A. Dorodnitsyn for proofreading of the manuscript. The computer programs to calculate ionospheric electrostatic potential in CRCM were written by S. Sazykin. The authors thank A. Ridley for providing AMIE-derived CPCP. NR 91 TC 21 Z9 21 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 15 PY 2010 VL 115 AR A05210 DI 10.1029/2009JA014621 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TO UT WOS:000277708600003 ER PT J AU Hashmi, AJ Eftekhar, AA Adibi, A Amoozegar, F AF Hashmi, Ali Javed Eftekhar, Ali Asghar Adibi, Ali Amoozegar, Farid TI Analysis of telescope array receivers for deep-space inter-planetary optical communication link between Earth and Mars SO OPTICS COMMUNICATIONS LA English DT Article DE Free space optical communication (FSO); Telescope array receiver; Monte-Carlo simulations; Mars exploration ID ATMOSPHERIC-TURBULENCE; PERFORMANCE AB Optical communication technology shows promising prospects to fulfill the large bandwidth communication requirements of future deep-space exploration missions that are launched by NASA and various other international space agencies. At Earth, a telescope with a large aperture diameter is required to capture very weak optical signals that are transmitted from distant planets and to support large bandwidth communication link. A single large telescope has the limitations of cost, single point failure in case of malfunction, difficulty in manufacturing high quality optics, maintenance, and trouble in providing communication operations when transmitting spacecraft is close to the Sun. An array of relatively smaller-sized telescopes electrically connected to form an aggregate aperture area equivalent to a single large telescope is a viable alternative to a monolithic gigantic aperture. In this paper, we present the design concept and analysis of telescope array receivers for an optical communication link between Earth and Mars. Pulse-position modulation (PPM) is used at the transmitter end and photon-counting detectors along with the direct-detection technique are employed at each telescope element in the array. We also present the optimization of various system parameters, such as detector size (i.e., receiver field of view), PPM slot width, and the PPM order M, to mitigate the atmospheric turbulence and background noise effects, and to maximize the communication system performance. The performance of different array architectures is evaluated through analytical techniques and Monte-Carlo simulations for a broad range of operational scenarios, such as, Earth-Mars conjunction, Earth-Mars opposition, and different background and turbulence conditions. It is shown that the performance of the telescope array-based receiver is equivalent to a single large telescope; and as compared to current RF technology, telescope array-based optical receivers can provide several orders of magnitude greater data rates for deep-space communication with Mars. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hashmi, Ali Javed; Eftekhar, Ali Asghar; Adibi, Ali] Georgia Inst Technol, Atlanta, GA 30332 USA. [Amoozegar, Farid] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Hashmi, AJ (reprint author), Georgia Inst Technol, 777 Atlantic Dr, Atlanta, GA 30332 USA. EM hashmi@gatech.edu; Farid.Amoozegar@jpl.na-sa.gov FU Jet Propulsion Laboratory (JPL), Pasadena, CA [NMO710820] FX This work was performed at Georgia Institute of Technology and supported by Jet Propulsion Laboratory (JPL), Pasadena, CA, under Contract Number NMO710820. NR 23 TC 10 Z9 11 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD MAY 15 PY 2010 VL 283 IS 10 BP 2032 EP 2042 DI 10.1016/j.optcom.2010.01.073 PG 11 WC Optics SC Optics GA 585NQ UT WOS:000276832900006 ER PT J AU Abadie, J Abbott, BP Abbott, R Accadia, T Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Arain, MA Araya, M Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, CD Carbognani, F Cardenas, L Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Driggers, J Dueck, J Duke, I Dumas, JC Edgar, M Edwards, M Effler, A Ehrens, P Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goetz, E Goggin, LM Gonzalez, G Gossler, S Gouaty, R Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E Kim, H King, PJ Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, TGF Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Ochsner, E O'Dell, J Ogin, GH Oldenburg, R O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Rabeling, DS Radkins, H Raffai, P Raics, Z Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Sperandio, L Stein, AJ Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thorne, KA Thorne, KS Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Accadia, T. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arain, M. A. Araya, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Cardenas, L. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Driggers, J. Dueck, J. Duke, I. Dumas, J. -C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goetz, E. Goggin, L. M. Gonzalez, G. Gossler, S. Gouaty, R. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. Kim, H. King, P. J. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, T. G. F. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Sperandio, L. Stein, A. J. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thorne, K. A. Thorne, K. S. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run SO PHYSICAL REVIEW D LA English DT Article ID PERFORMANCE AB We present results from an all-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed by three different analysis algorithms over the frequency band 50-6000 Hz. Data are analyzed for times with at least two of the four LIGO-Virgo detectors in coincident operation, with a total live time of 266 days. No events produced by the search algorithms survive the selection cuts. We set a frequentist upper limit on the rate of gravitational-wave bursts impinging on our network of detectors. When combined with the previous LIGO search of the data collected between November 2005 and November 2006, the upper limit on the rate of detectable gravitational-wave bursts in the 64-2048 Hz band is 2.0 events per year at 90% confidence. We also present event rate versus strength exclusion plots for several types of plausible burst waveforms. The sensitivity of the combined search is expressed in terms of the root-sum-squared strain amplitude for a variety of simulated waveforms and lies in the range 6 x 10(-22) Hz(-1/2) to 2 x 10(-20) Hz(-1/2). This is the first untriggered burst search to use data from the LIGO and Virgo detectors together, and the most sensitive untriggered burst search performed so far. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Driggers, J.; Ehrens, P.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Allen, B.; Aulbert, C.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Grote, H.; Hayama, K.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rehbein, H.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Paris 07, CEA, Observ Paris, APC,CNRS,UMR7164,IN2P3,DSM,IRFU, F-75221 Paris 05, France. [Chua, S. S. Y.; Lam, P. K.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chen, Y.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH CaRT, Pasadena, CA 91125 USA. [Clark, J.; Davies, G.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, PI, Italy. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Boccara, C.; Loriette, V.; Maksimovic, I.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico 2, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Bridges, D. O.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Lyon, France. [Amin, R. S.; Caudill, S.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kawamura, S.; Kokeyama, K.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Natl Inst Subat Phys, Nikhef, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Prodi, G. A.; Re, V.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Prodi, G. A.; Rabeling, D. S.; Re, V.] Univ Trent, I-38050 Povo, Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Astron Inst, PL-65265 Zielona Gora, Poland. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Capano, C. D.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Smith, J. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cain, J.; Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R.; Papa, M. A.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Vocca, Helios/F-1444-2010; Acernese, Fausto/E-4989-2010; Finn, Lee Samuel/A-3452-2009; Hammond, Giles/B-7861-2009; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Rowan, Sheila/E-3032-2010; McClelland, David/E-6765-2010; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Neri, Igor/F-1482-2010; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Howell, Eric/H-5072-2014; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; OI Khan, Rubab/0000-0001-5100-5168; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Vocca, Helios/0000-0002-1200-3917; Acernese, Fausto/0000-0003-3103-3473; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; McClelland, David/0000-0001-6210-5842; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Neri, Igor/0000-0002-9047-9822; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO 600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P0900108-v6. NR 39 TC 36 Z9 36 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY 15 PY 2010 VL 81 IS 10 AR 102001 DI 10.1103/PhysRevD.81.102001 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 602NS UT WOS:000278146700004 ER PT J AU Foster, G Annan, JD Jones, PD Mann, ME Mullan, B Renwick, J Salinger, J Schmidt, GA Trenberth, KE AF Foster, G. Annan, J. D. Jones, P. D. Mann, M. E. Mullan, B. Renwick, J. Salinger, J. Schmidt, G. A. Trenberth, K. E. TI Comment on "Influence of the Southern Oscillation on tropospheric temperature" by J. D. McLean, C. R. de Freitas, and R. M. Carter SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE-TEMPERATURE; VOLCANOS; ENSO AB McLean et al. (2009) (henceforth MFC09) claim that the El Nino-Southern Oscillation (ENSO), as represented by the Southern Oscillation Index (SOI), accounts for as much as 72% of the global tropospheric temperature anomaly and an even higher 81% of this anomaly in the tropics. They conclude that the SOI is a "dominant and consistent influence on mean global temperatures," "and perhaps recent trends in global temperatures." However, their analysis is inappropriate in a number of ways and overstates the influence of ENSO on the climate system. This comment first briefly reviews what is understood about the influence of ENSO on global temperatures and then shows that the analysis of MFC09 greatly overestimates the correlation between temperature anomalies and the SOI by inflating the power in the 2-6 year time window while filtering out variability on longer and shorter time scales. The suggestion in their conclusions that ENSO may be a major contributor to recent trends in global temperature is not supported by their analysis or any physical theory presented in their paper, especially as the analysis method itself eliminates the influence of trends on the purported correlations. C1 [Foster, G.] Tempo Analyt, Westbrook, ME 04092 USA. [Annan, J. D.] JAMSTEC, Res Inst Global Change, Kanazawa Ku, Kanagawa 2360001, Japan. [Jones, P. D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Mann, M. E.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Mullan, B.; Renwick, J.] NIWA, Climate Variabil Grp, Wellington 6241, New Zealand. [Salinger, J.] Univ Auckland, Sch Environm, Auckland 1142, New Zealand. [Schmidt, G. A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Trenberth, K. E.] NCAR, Climate Anal Sect, Boulder, CO 80307 USA. [Mann, M. E.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Foster, G (reprint author), Tempo Analyt, 146C Mech St, Westbrook, ME 04092 USA. EM jdannan@jamstec.go.jp RI Jones, Philip/C-8718-2009; Trenberth, Kevin/A-5683-2012; Schmidt, Gavin/D-4427-2012; Annan, James/A-3702-2010; Mann, Michael/B-8472-2017 OI Jones, Philip/0000-0001-5032-5493; Trenberth, Kevin/0000-0002-1445-1000; Schmidt, Gavin/0000-0002-2258-0486; Mann, Michael/0000-0003-3067-296X FU Ministry of the Environment, Japan [S-5-1]; National Science Foundation; U.S. Department Of Energy [DE-FG02-98ER62601] FX This work was supported by the Global Environment Research Fund (S-5-1) of the Ministry of the Environment, Japan. NCAR is supported by the National Science Foundation. P.D.J. has been supported by the U.S. Department Of Energy (grant DE-FG02-98ER62601). We are grateful to three reviewers for useful comments. NR 10 TC 4 Z9 4 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 14 PY 2010 VL 115 AR D09110 DI 10.1029/2009JD012960 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 596SP UT WOS:000277706000004 ER PT J AU Stano, GT Fuelberg, HE Roeder, WP AF Stano, Geoffrey T. Fuelberg, Henry E. Roeder, William P. TI Developing empirical lightning cessation forecast guidance for the Cape Canaveral Air Force Station and Kennedy Space Center SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UNITED-STATES; DETECTION NETWORK; FLORIDA; ELECTRIFICATION; THUNDERSTORMS; CLIMATOLOGY; PARAMETERS; MECHANISM; UPDRAFT; RATES AB This research addresses the 45th Weather Squadron's (45WS) need for improved guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy Space Center (KSC). KSC's Lightning Detection and Ranging (LDAR) network was the primary observational tool to investigate both cloud-to-ground and intracloud lightning. Five statistical and empirical schemes were created from LDAR, sounding, and radar parameters derived from 116 storms. Four of the five schemes were unsuitable for operational use since lightning advisories would be canceled prematurely, leading to safety risks to personnel. These include a correlation and regression tree analysis, three variants of multiple linear regression, event time trending, and the time delay between the greatest height of the maximum dBZ value to the last flash. These schemes failed to adequately forecast the maximum interval, the greatest time between any two flashes in the storm. The majority of storms had a maximum interval less than 10 min, which biased the schemes toward small values. Success was achieved with the percentile method (PM) by separating the maximum interval into percentiles for the 100 dependent storms. PM provides additional confidence to the 45WS forecasters, and a modified version was incorporated into their forecast procedures starting in the summer of 2008. This inclusion has resulted in similar to 5-10 min time savings. Last, an experimental regression variant scheme using non-real-time predictors produced precise results but prematurely ended advisories. This precision suggests that obtaining these parameters in real time may provide useful added information to the PM scheme. C1 [Stano, Geoffrey T.; Fuelberg, Henry E.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. RP Fuelberg, HE (reprint author), NASA, NASA Short Term Predict Res & Transit Program, 320 Sparkman Dr, Huntsville, AL 35812 USA. EM geoffrey.stano@nasa.gov; fuelberg@met.fsu.edu; william.roeder@patrick.af.mil FU NASA [NNK06EB17G] FX Special thanks go to Todd McNamara of the 45th Weather Squadron for his help with several technical aspects of this research, along with his operational knowledge. We also thank Lee Nelson for the use of his flash creation algorithm. Additional thanks goes to the numerous individuals who provided critiques and suggestions for improving this work at the 1st International Lightning Meteorology Conference (ILMC) in Tucson, Arizona, in 2006. This research was sponsored by NASA's Innovative Partner's Program under grant NNK06EB17G. NR 74 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 14 PY 2010 VL 115 AR D09205 DI 10.1029/2009JD013034 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 596SP UT WOS:000277706000005 ER PT J AU Holstein-Rathlou, C Gunnlaugsson, HP Merrison, JP Bean, KM Cantor, BA Davis, JA Davy, R Drake, NB Ellehoj, MD Goetz, W Hviid, SF Lange, CF Larsen, SE Lemmon, MT Madsen, MB Malin, M Moores, JE Nornberg, P Smith, P Tamppari, LK Taylor, PA AF Holstein-Rathlou, C. Gunnlaugsson, H. P. Merrison, J. P. Bean, K. M. Cantor, B. A. Davis, J. A. Davy, R. Drake, N. B. Ellehoj, M. D. Goetz, W. Hviid, S. F. Lange, C. F. Larsen, S. E. Lemmon, M. T. Madsen, M. B. Malin, M. Moores, J. E. Nornberg, P. Smith, P. Tamppari, L. K. Taylor, P. A. TI Winds at the Phoenix landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS-COLOR-IMAGER; MARTIAN ATMOSPHERE; ORBITER; SURFACE; CLIMATE; LAYER AB Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data are highly turbulent behavior during midday due to daytime turbulence with more stable conditions during nighttime. From L(s)similar to 77 degrees-123 degrees winds were generally similar to 4 m s(-1) from the east, with 360 degrees rotation during midday. From L(s) similar to 123 degrees-148 degrees daytime wind speeds increased to an average of 6-10 m s(-1) and were generally from the west. The highest wind speed recorded was 16 m s(-1) seen on L(s) similar to 147 degrees. Estimates of the surface roughness height are calculated from the smearing of the Kapton part of the Telltale during image exposure due to a 3 Hz turbulence and nighttime wind variability. These estimates yield 6 +/- 3 mm and 5 +/- 3 mm, respectively. The Telltale wind data are used to suggest that Heimdal crater is a source of nighttime temperature fluctuations. Deviations between temperatures measured at various heights are explained as being due to winds passing over the Phoenix Lander. Events concerning sample delivery and frost formation are described and discussed. Two different mechanisms of dust lifting affecting the Phoenix site are proposed based on observations made with Mars Color Imager on Mars Reconnaissance Orbiter and the Telltale. The first is related to evaporation of the seasonal CO(2) ice and is observed up to L(s) similar to 95 degrees. These events are not associated with increased wind speeds. The second mechanism is observed after L(s) similar to 111 degrees and is related to the passing of weather systems characterized by condensate clouds in orbital images and higher wind speeds as measured with the Telltale. C1 [Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Merrison, J. P.; Nornberg, P.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Bean, K. M.; Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Cantor, B. A.; Malin, M.] Malin Space Sci Syst Inc, San Diego, CA 92191 USA. [Davis, J. A.; Lange, C. F.] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2M7, Canada. [Davy, R.; Taylor, P. A.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Drake, N. B.] DE Shaw Res, New York, NY 10036 USA. [Ellehoj, M. D.; Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Goetz, W.; Hviid, S. F.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Larsen, S. E.] Tech Univ Denmark, Risoe Natl Lab, Wind Energy Dept, DK-4000 Roskilde, Denmark. [Moores, J. E.; Smith, P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85719 USA. [Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Holstein-Rathlou, C (reprint author), Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. EM holstein@phys.au.dk RI Nornberg, Per/A-6228-2012; Lemmon, Mark/E-9983-2010; Madsen, Morten/D-2082-2011; Davy, Richard/H-8387-2016; OI Lemmon, Mark/0000-0002-4504-5136; Madsen, Morten/0000-0001-8909-5111; Davy, Richard/0000-0001-9639-5980; Ellehoj, Mads/0000-0002-6961-2537; merrison, jonathan/0000-0003-4362-6356 FU Danish Natural Science Research Council; Canadian Space Agency FX The Telltale project has been supported by the Danish Natural Science Research Council. The support of the Canadian Space Agency for the work of J. A. Davis and C. F. Lange is gratefully acknowledged. The authors acknowledge A. Leung for CFD simulations of the Telltale, and J. Boddez and G. Heacock for creation of the Open Lander model used in the CFD simulations. L. Tamppari's contribution to the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 39 TC 36 Z9 36 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 14 PY 2010 VL 115 AR E00E18 DI 10.1029/2009JE003411 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596TD UT WOS:000277707500001 ER PT J AU Tamppari, LK Bass, D Cantor, B Daubar, I Dickinson, C Fisher, D Fujii, K Gunnlauggson, HP Hudson, TL Kass, D Kleinbohl, A Komguem, L Lemmon, MT Mellon, M Moores, J Pankine, A Pathak, J Searls, M Seelos, F Smith, MD Smrekar, S Taylor, P Holstein-Rathlou, C Weng, WS Whiteway, J Wolff, M AF Tamppari, Leslie K. Bass, Deborah Cantor, Bruce Daubar, Ingrid Dickinson, Cameron Fisher, David Fujii, Ken Gunnlauggson, Haraldur P. Hudson, Troy L. Kass, David Kleinboehl, Armin Komguem, Leonce Lemmon, Mark T. Mellon, Mike Moores, John Pankine, Alexey Pathak, Jagruti Searls, Mindi Seelos, Frank Smith, Michael D. Smrekar, Sue Taylor, Peter Holstein-Rathlou, Christina Weng, Wensong Whiteway, Jim Wolff, Mike TI Phoenix and MRO coordinated atmospheric measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID HUBBLE-SPACE-TELESCOPE; WATER-ICE CLOUDS; ORBITER CAMERA OBSERVATIONS; MARTIAN DUST STORMS; NORTH POLAR-REGION; MARS-COLOR-IMAGER; MGS TES; INTERANNUAL VARIABILITY; VERTICAL DISTRIBUTION; VAPOR AB The Phoenix and Mars Reconnaissance Orbiter (MRO) missions collaborated in an unprecedented campaign to observe the northern polar region summer atmosphere throughout the Phoenix mission (25 May to 2 November 2008; L-s = 76 degrees-150 degrees) and slightly beyond (similar to L-s = 158 degrees). Five atmospherically related campaigns were defined a priori and were executed on 37 separate Martian days (sols). Phoenix and MRO observed the atmosphere nearly simultaneously. We describe the observation strategy and history, the participating experiments, and some initial results. We find that there is general agreement between measurements from different instruments and platforms and that complementary measurements provide a consistent picture of the atmosphere. Seasonal water abundance behavior matches with historical measurements. Winds aloft, as measured by cloud motions, showed the same seasonally consistent, diurnal rotation as the winds measured at the lander, during the first part of the mission (L-s = 76 degrees-118 degrees). A diurnal cycle recorded from L-s similar to 108.3 degrees-109.1 degrees, in which a dust front was approaching the Phoenix Lander, is examined in detail. Cloud heights measured on subsequent orbits showed that in areas of active lifting, dust can be lofted quite high in the atmosphere, doubling in height over 2 h. The combination of experiments also revealed that there were discrete vertical layers of water ice and dust. Water vapor column abundances compared to near-surface water vapor pressure indicate that water is not well mixed from the surface to a cloud condensation height and that the depth of the layer that exchanges diurnally with the surface is 0.5-1 km. C1 [Tamppari, Leslie K.; Bass, Deborah; Fujii, Ken; Hudson, Troy L.; Kass, David; Kleinboehl, Armin; Pankine, Alexey; Smrekar, Sue] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cantor, Bruce] Malin Space Sci Syst Inc, San Diego, CA 92121 USA. [Daubar, Ingrid; Moores, John] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dickinson, Cameron; Komguem, Leonce; Pathak, Jagruti; Taylor, Peter; Weng, Wensong; Whiteway, Jim] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada. [Fisher, David] Geol Survey Canada, Ottawa, ON K1A 0E4, Canada. [Gunnlauggson, Haraldur P.; Holstein-Rathlou, Christina] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Mellon, Mike; Searls, Mindi] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Seelos, Frank] Johns Hopkins Univ, APL, Laurel, MD 20723 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Whiteway, Jim] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Wolff, Mike] Space Sci Inst, Boulder, CO 80301 USA. RP Tamppari, LK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM leslie.tamppari@jpl.nasa.gov RI Smith, Michael/C-8875-2012; Lemmon, Mark/E-9983-2010; Daubar, Ingrid/N-1408-2013; Mellon, Michael/C-3456-2016; Seelos, Frank/C-7875-2016 OI Lemmon, Mark/0000-0002-4504-5136; Seelos, Frank/0000-0001-9721-941X NR 73 TC 24 Z9 24 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 14 PY 2010 VL 115 AR E00E17 DI 10.1029/2009JE003415 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596TD UT WOS:000277707500002 ER PT J AU Burchill, JK Knudsen, DJ Clemmons, JH Oksavik, K Pfaff, RF Steigies, CT Yau, AW Yeoman, TK AF Burchill, J. K. Knudsen, D. J. Clemmons, J. H. Oksavik, K. Pfaff, R. F. Steigies, C. T. Yau, A. W. Yeoman, T. K. TI Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE F-REGION; MASS-SPECTROMETER OBSERVATIONS; POLAR WIND; MAGNETOSPHERIC PLASMA; EISCAT OBSERVATIONS; AURORAL ACTIVITY; OUTFLOW; ALTITUDE; ACCELERATION; ENERGIZATION AB We investigate the origin of low-energy (E-k < 10 eV) ion upflows in Earth's low-altitude dayside cusp region. The Cusp-2002 sounding rocket flew from Ny Alesund, Svalbard, on 14 December 2002, carrying plasma and field instrumentation to an altitude of 768 km. The Suprathermal Ion Imager, a two-dimensional energy/arrival angle spectrograph, observed large (> 500 m s(-1)) ion upflows within the cusp at altitudes between 640 km and 768 km. We report a significant correlation between ion upflow and precipitating magnetosheath electron energy flux in this altitude range. There is only very weak correlation between upflow and wave power in the VLF band. We find a small negative correlation between upflow and the magnitude of the DC electric field for fields less than about 70 mV m(-1). The apparent relation between upflow and electron energy flux suggests a mechanism whereby ions are accelerated by parallel electric fields that are established by the soft electrons. Significant ion upflows are not observed for electron energy fluxes less than about 10(10) eV cm(-2) s(-1). The lack of correspondence between |(E) over right arrow| and upflow on the one hand, and wave power and upflow on the other, does not rule out these processes but implies that, if operating, they are not local to the measurement region. We also observe narrow regions of large ion downflow that imply either a rebalancing of the ionosphere toward a low-T-e equilibrium during which gravity dominates over the pressure gradients or a convection of the upflowing ions away from the precipitation region, outside of which the ions must fall back into equilibrium at lower altitudes. C1 [Burchill, J. K.; Knudsen, D. J.; Yau, A. W.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Clemmons, J. H.] Aerosp Corp, Space Sci Applicat Lab, El Segundo, CA 90245 USA. [Oksavik, K.] Univ Ctr Svalbard, Dept Arctic Geophys, N-9171 Longyearbyen, Norway. [Pfaff, R. F.] NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Steigies, C. T.] Univ Kiel, Inst Expt & Angew Phys, D-24098 Kiel, Germany. [Yeoman, T. K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Burchill, JK (reprint author), Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM burchill@phys.ucalgary.ca RI Pfaff, Robert/F-5703-2012; Yau, Andrew/E-7007-2013; Yeoman, Timothy/L-9105-2014; OI Pfaff, Robert/0000-0002-4881-9715; Yau, Andrew/0000-0002-8210-0392; Yeoman, Timothy/0000-0002-8434-4825; Oksavik, Kjellmar/0000-0003-4312-6992 FU Canadian Space Agency; Natural Sciences and Engineering Research Council of Canada; NASA [NAG5-5264] FX This research was supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. The Cusp SII development was supported by a contract from the Canadian Space Agency. The Aerospace Corporation acknowledges NASA support through grant NAG5-5264. The authors acknowledge the contributions and expertise of the SII development team (K. Berg, G. Enno, P. King, C. Marcellus, and I. Wevers) at the Institute for Space Research of the University of Calgary. We would like to thank the PIs of the Northern Hemisphere SuperDARN radars (W. A. Bristow, R. A. Greenwald, T. Kikuchi, M. Lester, M. Pinnock, G. Sofko, and J.-P. Villain) for providing SuperDARN data for this interval. CUSTLASS is a PPARC UK National Facility operated by the University of Leicester. EISCAT is an international scientific association supported by research organizations of China (CRIRP), Finland (SA), France (CNRS, till the end of 2006), Germany (DFG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (STFC). J.K.B. appreciates helpful discussions on the ion upflow measurements with W. Peterson, J.-P. St. Maurice, L. Kagan, S. Buchert, B. Jackel, and P. Amerl. NR 58 TC 15 Z9 15 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 14 PY 2010 VL 115 AR A05206 DI 10.1029/2009JA015006 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TN UT WOS:000277708500003 ER PT J AU Samsonov, AA Sibeck, DG Yu, YQ AF Samsonov, A. A. Sibeck, D. G. Yu, Yiqun TI Transient changes in magnetospheric-ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GEOMAGNETIC SUDDEN COMMENCEMENT; 3-DIMENSIONAL MHD SIMULATION; LATITUDE BOUNDARY-LAYER; NUMERICAL-SIMULATION; BIRKELAND CURRENTS; ALIGNED CURRENTS; CURRENT SYSTEMS; IMF CONDITIONS; CONVECTION; IMPULSE AB We use results from a global MHD simulation to study the interaction of an interplanetary shock with the Earth's magnetosphere for a northward interplanetary magnetic field orientation. We connect intensifications of the transient northward Bz (NBZ) and Region 1 currents in the ionosphere with the appearance of two strong dynamo regions in the magnetosphere: the first on the high-latitude magnetopause near and behind the cusps and the second near the equatorial plane on the flanks. The ionospheric and magnetospheric transients are well synchronized and move antisunward gradually. According to the results obtained, the source of energy for the transient NBZ current is related to shock-intensified lobe reconnection, while the transient Region 1 current corresponds to the reflected fast shock predicted by Samsonov et al. (2007). We speculate that the electric circuits for the quasi-stationary field-aligned currents are similar to the transient electric circuits obtained in this paper. C1 [Samsonov, A. A.] St Petersburg State Univ, Dept Earth Phys, St Petersburg 198504, Russia. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yu, Yiqun] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Samsonov, AA (reprint author), St Petersburg State Univ, Dept Earth Phys, St Petersburg 198504, Russia. EM samsonov@geo.phys.spbu.ru RI Sibeck, David/D-4424-2012; Samsonov, Andrey/I-7057-2012; Yu, Yiqun/E-2710-2012 OI Samsonov, Andrey/0000-0001-8243-1151; Yu, Yiqun/0000-0002-1013-6505 FU NASA; Russian President [NSH-1243.2008.5]; GK [N 02.740.11.0331] FX The work was supported in part by NASA's THEMIS project and in part by grant of Russian President NSH-1243.2008.5 and GK grant N 02.740.11.0331. Simulation results have been provided by the Community Coordinated Modeling Center (CCMC) at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). In particular, we have studied the run "Andrey_Samsonov_120507_1." The BATS-R-US Model was developed by the CSEM group at the University on Michigan. The authors thank the reviewers for valuable comments. NR 39 TC 16 Z9 16 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 14 PY 2010 VL 115 AR A05207 DI 10.1029/2009JA014751 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TN UT WOS:000277708500002 ER PT J AU Feng, M McPhaden, MJ Lee, T AF Feng, Ming McPhaden, Michael J. Lee, Tong TI Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MERIDIONAL OVERTURNING CIRCULATION; INDONESIAN THROUGHFLOW; LEEUWIN CURRENT AB Historical sea level records reveal that a strengthening of the Pacific subtropical cells (STCs) since the early-1990's has reversed a multi-decadal weakening tendency. Stronger STCs correspond to a stronger Leeuwin Current in the southeast Indian Ocean (SEIO) and a stronger Indonesian Throughflow, due to dynamic connections of the Pacific and SEIO through equatorial and coastal waveguides. Multi-decadal trends of the STCs and their influence on the SEIO have confounded the detection of human induced global change signals in the short instrumental records of the two circulation systems. Citation: Feng, M., M. J. McPhaden, and T. Lee (2010), Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean, Geophys. Res. Lett., 37, L09606, doi:10.1029/2010GL042796. C1 [Feng, Ming] CSIRO Marine & Atmospher Res, Floreat, WA 6014, Australia. [Lee, Tong] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Feng, M (reprint author), CSIRO Marine & Atmospher Res, Underwood Ave, Floreat, WA 6014, Australia. EM ming.feng@csiro.au RI Feng, Ming/F-5411-2010; McPhaden, Michael/D-9799-2016 OI Feng, Ming/0000-0002-2855-7092; FU CSIRO; WAMSI; NOAA; NASA FX We thank Gary Meyers and Lidia Pigot for providing the IX1 XBT data. Tidal gauge sea level data are obtained from National Tidal Facility of Australia and University of Hawaii Sea Level Center. This research is sponsored by CSIRO and WAMSI, and partially supported by NOAA's Climate Program Office and NASA Physical Oceanography Program. We would thank two anonymous reviewers for constructive comments. NR 21 TC 55 Z9 56 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 13 PY 2010 VL 37 AR L09606 DI 10.1029/2010GL042796 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 596SC UT WOS:000277704600003 ER PT J AU Dong, SF Gille, ST Sprintall, J Fetzer, EJ AF Dong, Shenfu Gille, Sarah T. Sprintall, Janet Fetzer, Eric J. TI Assessing the potential of the Atmospheric Infrared Sounder (AIRS) surface temperature and specific humidity in turbulent heat flux estimates in the Southern Ocean SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID BULK PARAMETERIZATION; SEA FLUXES; WIND-SPEED; AIRS/AMSU/HSB; RETRIEVAL; CLOUDS AB Surface air temperature (T-A), sea surface temperature (T-O), and surface specific humidity (q(a)) satellite retrievals from the Atmospheric Infrared Sounder (AIRS) are compared with shipboard measurements across Drake Passage for the period from September 2002 to June 2007. The objective is to evaluate whether AIRS retrievals, in conjunction with microwave sea surface temperatures from the Advanced Microwave Scanning Radiometer (AMSRE), can provide sufficiently accurate parameters to estimate sensible and latent heat fluxes in the data-limited Southern Ocean. The collocated data show that both AIRS T-A and T-O are colder than those from shipboard measurements, with a time mean bias of -2.03 degrees C for TA and -0.22 degrees C for T-O. Results show that air-sea temperature difference (T-A-T-O), q(a), and relative humidity (RH) are the major factors contributing to the differences between satellite and shipboard temperature measurements. Differences in AIRS and shipboard T-A (Delta T-A) decrease with increasing T-A-T-O, and Delta T-A increases with increasing RH, whereas differences in AIRS and shipboard T-O (Delta T-O) increase with both increasing T-A-T-O and increasing q(a). The time mean q(a) from AIRS is lower than the shipboard qa by 0.69 g/ kg. Statistical analyses suggest that T-A-T-O, cloud, and q(a) are the major contributors to the qa difference (Delta q(a)). Delta q(a) becomes more negative with increasing T-A-T-O and increasing cloud fraction. Delta q(a) also becomes more negative as q(a) increases. Compared with T-A, T-O, and T-A -T-O, from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP), AIRS-derived and AMSRE-derived variables show more small-scale spatial structure, as is also typical of the ship observations. Although AIRS qa gives a better representation of the full range of values of shipboard qa, its deviation from shipboard qa is relatively large compared to NCEP q(a). Compared with several existing gridded flux products, turbulent fluxes estimated from AIRS and AMSRE data using bulk algorithms are better able to represent the full range of flux values estimated from shipboard parameters. C1 [Dong, Shenfu] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Gille, Sarah T.; Sprintall, Janet] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92037 USA. [Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dong, SF (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM shenfu.dong@noaa.gov RI Gille, Sarah/B-3171-2012; Dong, Shenfu/I-4435-2013; OI Dong, Shenfu/0000-0001-8247-8072; Gille, Sarah/0000-0001-9144-4368 NR 36 TC 12 Z9 12 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 13 PY 2010 VL 115 AR C05013 DI 10.1029/2009JC005542 PG 16 WC Oceanography SC Oceanography GA 596SZ UT WOS:000277707100003 ER PT J AU Lucas, LE Waliser, DE Murtugudde, R AF Lucas, Lisanne E. Waliser, Duane E. Murtugudde, Raghu TI Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID MIXED-LAYER MODEL; INTRASEASONAL VARIABILITY; EQUATORIAL PACIFIC; NORTHERN SUMMER; KELVIN WAVES; EL-NINO; SIMULATION; RADIATION; WIND; PRECIPITATION AB The study objective is to explore the relationship between the Madden-Julian Oscillation (MJO) and intraseasonal sea surface temperature (SST) variability in the eastern tropical Pacific Ocean. Previous studies have illustrated the connection between MJO and the production of zonally large (> 2000 km), persistent (similar to weeks) SST anomalies. Those studies suggested that vertical processes, such as advection and entrainment, forced remotely by winds in the western Pacific (via Kelvin waves) may be the mechanism controlling SST changes. To overcome limitations in situ observations (e. g., sparse and missing data/quantities) and to develop a more comprehensive physical understanding, this study examines the relationship using an ocean general circulation model. A simulation was conducted in which the model was forced by idealized MJO conditions constructed from observed forcing fields. Analysis of the model simulation shows an equatorial Kelvin wave initiated in the western Pacific Ocean. However, analysis of the model's mixed layer temperature heat budget shows that in the eastern Pacific meridional advection plays the major role in the sea surface temperature change, 61.8% of the warming phase and 70.7% of the cooling phase percent heat budget. Zonal advection is the second most important term to the warming phase (20.5%) with the vertical advection and mixing term being second for the cooling phase (37.6%). In addition, the results indicate that the primary component of the meridional advection is the advection of the mean meridional temperature gradient by MJO-forced meridional current anomalies. The implications and caveats of these results are discussed in relationship to results in prior studies. C1 [Lucas, Lisanne E.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA. [Waliser, Duane E.] CALTECH, Jet Prop Lab, Water & Carbon Cycles Grp, Pasadena, CA 91109 USA. [Murtugudde, Raghu] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Lucas, LE (reprint author), NOAA, Climate Program Off, 1315 East West Hwy,Room 12712, Silver Spring, MD 20910 USA. EM sandy.lucas@noaa.gov FU [NAG5-11033] FX This work was prepared in conjunction with the first author's dissertation research at State University of New York at Stony Brook. In this regard, the authors would like to thank Dong-Ping Wang, Robert Wilson, and Minghua Zhang for their comments and suggestions on this work. Support for this study was provided under grants NAG5-11033 (D. E. W., L. E. L.) and Salinity, QUICKSCAT, TRMM, and Indian Ocean Biogeochemistry grants (R. M.) as well as the National Science Foundation under grant ATM-0094416 (D. E. W.). This study's analysis and presentation benefited from the use of the NCAR Graphics Package and Seaspace Corporation's TeraScan software system. NR 47 TC 8 Z9 8 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 13 PY 2010 VL 115 AR C05012 DI 10.1029/2009JC005450 PG 21 WC Oceanography SC Oceanography GA 596SZ UT WOS:000277707100001 ER PT J AU Adimi, F Soebiyanto, RP Safi, N Kiang, R AF Adimi, Farida Soebiyanto, Radina P. Safi, Najibullah Kiang, Richard TI Towards malaria risk prediction in Afghanistan using remote sensing SO MALARIA JOURNAL LA English DT Article ID SYSTEMS AB Background: Malaria is a significant public health concern in Afghanistan. Currently, approximately 60% of the population, or nearly 14 million people, live in a malaria-endemic area. Afghanistan's diverse landscape and terrain contributes to the heterogeneous malaria prevalence across the country. Understanding the role of environmental variables on malaria transmission can further the effort for malaria control programme. Methods: Provincial malaria epidemiological data (2004-2007) collected by the health posts in 23 provinces were used in conjunction with space-borne observations from NASA satellites. Specifically, the environmental variables, including precipitation, temperature and vegetation index measured by the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectoradiometer, were used. Regression techniques were employed to model malaria cases as a function of environmental predictors. The resulting model was used for predicting malaria risks in Afghanistan. The entire time series except the last 6 months is used for training, and the last 6-month data is used for prediction and validation. Results: Vegetation index, in general, is the strongest predictor, reflecting the fact that irrigation is the main factor that promotes malaria transmission in Afghanistan. Surface temperature is the second strongest predictor. Precipitation is not shown as a significant predictor, as it may not directly lead to higher larval population. Autoregressiveness of the malaria epidemiological data is apparent from the analysis. The malaria time series are modelled well, with provincial average R(2) of 0.845. Although the R2 for prediction has larger variation, the total 6-month cases prediction is only 8.9% higher than the actual cases. Conclusions: The provincial monthly malaria cases can be modelled and predicted using satellite-measured environmental parameters with reasonable accuracy. The Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan is aimed to develop a cost-effective surveillance system that includes forecasting, early warning and detection. The predictive and early warning capabilities shown in this paper support this strategy. C1 [Adimi, Farida; Soebiyanto, Radina P.; Kiang, Richard] NASA, Goddard Space Flight Ctr, Global Change Data Ctr, Greenbelt, MD 20771 USA. [Adimi, Farida] Wyle Informat Syst, Mclean, VA 22102 USA. [Soebiyanto, Radina P.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Safi, Najibullah] Afghan Minist Publ Hlth, Natl Malaria Leishmaniasis Control Programme, Kabul, Afghanistan. RP Kiang, R (reprint author), NASA, Goddard Space Flight Ctr, Global Change Data Ctr, Greenbelt, MD 20771 USA. EM richard.kiang@nasa.gov FU NASA Applied Sciences Public Health Application Program FX This study was supported by NASA Applied Sciences Public Health Application Program. The authors are thankful for the data processing assistance of Patricia Hrubiak. The views expressed herein are the private ones of the authors and do not purport to represent those of the NASA or the Government of Afghanistan. NR 17 TC 28 Z9 29 U1 0 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-2875 J9 MALARIA J JI Malar. J. PD MAY 13 PY 2010 VL 9 AR 125 DI 10.1186/1475-2875-9-125 PG 11 WC Infectious Diseases; Parasitology; Tropical Medicine SC Infectious Diseases; Parasitology; Tropical Medicine GA 604TP UT WOS:000278301700001 PM 20465824 ER PT J AU Kress, BT Mertens, CJ Wiltberger, M AF Kress, B. T. Mertens, C. J. Wiltberger, M. TI Solar energetic particle cutoff variations during the 29-31 October 2003 geomagnetic storm SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAGNETIC-FIELD; RADIATION ENVIRONMENT; COSMIC-RADIATION; MODEL; SIMULATIONS; RIGIDITIES; LFM AB At low latitudes to midlatitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from solar energetic particles (SEPs). During severe geomagnetic storms, distortion of the Earth's field suppresses geomagnetic shielding, allowing SEPs access to the midlatitudes. A case study of the 26-31 October 2003 solar-geomagnetic event is used to examine how a severe geomagnetic storm affects SEP access to the Earth. Geomagnetic cutoffs are numerically determined in model geomagnetic fields using code developed by the Center for Integrated Space Weather Modeling (CISM) at Dartmouth College. The CISM-Dartmouth geomagnetic cutoff model is being used in conjunction with the High Energy and Charge Transport code (HZETRN) at the NASA Langley Research Center to develop a real-time data-driven prediction of radiation exposure at commercial airline altitudes. In this work, cutoff rigidities are computed on global grids and along several high-latitude flight routes before and during the geomagnetic storm. It is found that significant variations in SEP access to the midlatitudes and high latitudes can occur on time scales of an hour or less in response to changes in the solar wind dynamic pressure and interplanetary magnetic field. The maximum suppression of the cutoff is similar to 1 GV occurring in the midlatitudes during the main phase of the storm. The cutoff is also significantly suppressed by the arrival of an interplanetary shock. The maximum suppression of the cutoff due to the shock is approximately one half of the maximum suppression during the main phase of the storm. C1 [Kress, B. T.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab HB6127, Hanover, NH 03755 USA. [Mertens, C. J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. RP Kress, BT (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab HB6127, Hanover, NH 03755 USA. EM bkress@dartmouth.edu RI Wiltberger, Michael/B-8781-2008 OI Wiltberger, Michael/0000-0002-4844-3148 FU National Aeronautics and Space Administration [NNX07AO77G]; National Science Foundation [ATM-0120950] FX This material is based upon work supported by the National Aeronautics and Space Administration issued through the Applied Sciences Program and under grant NNX07AO77G issued through the LWS TR&T program. This material is also based upon work supported by the STC Program of the National Science Foundation under agreement ATM-0120950 Thank you to Chia-Lin Huang at Boston University and Larry Kepko at the University of New Hampshire for their help preparing the solar wind input file for the TS05 and LFM MHD geomagnetic field models. The authors are very grateful to their reviewers for assistance with this manuscript. NR 36 TC 20 Z9 21 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY 13 PY 2010 VL 8 AR S05001 DI 10.1029/2009SW000488 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 596TS UT WOS:000277709000001 ER PT J AU Marmorino, GO Holt, B Molemaker, MJ DiGiacomo, PM Sletten, MA AF Marmorino, George O. Holt, Benjamin Molemaker, M. Jeroen DiGiacomo, Paul M. Sletten, Mark A. TI Airborne synthetic aperture radar observations of "spiral eddy" slick patterns in the Southern California Bight SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID OCEAN SURFACE; EDDIES; FRONTS; IMAGES; SEA; BAY AB Repeat sampling on hourly time scales using an airborne synthetic aperture radar (SAR) is used to investigate the occurrence and evolving characteristics of spiral-shaped slick patterns, commonly presumed to be indicators of submesoscale ocean eddies, in the area around Santa Catalina Island, California (similar to 33.4 degrees N, 118.4 degrees W). Simultaneous SAR imagery and boat survey data are examined over two similar to 5 h long periods spaced 3 days apart in April 2003. The SAR imagery reveals several spiral-like patterns, roughly 5 km in diameter, occurring downstream of the western end of Catalina. We believe that the most likely formation mechanism for these patterns is current-wake instability related to the flow of the Southern California Countercurrent along the north shore of Catalina. In one case, there is an observed cold-core eddy and vortex sheet attached to the tip of the island, similar to island-wake simulations done by Dong and McWilliams (2007). In another case, the SAR imagery shows a series of slick patterns that, at least initially, resemble spiral eddies, but the data show no clear evidence of actual ocean eddies being present either at depth or through a rotating surface expression. A speculation is that such features signify island-wake eddies that are relatively weak and dissipate quickly. An unexpected finding was how quickly a spiral slick pattern could deteriorate, suggesting a time scale for the surface feature of the order of only several hours. An implication of this result is that care is needed when interpreting a single satellite SAR imagery for evidence of active submesoscale eddies. Recommendations are made for future field studies. C1 [Marmorino, George O.; Sletten, Mark A.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [DiGiacomo, Paul M.] NOAA NESDIS Ctr Satellite Applicat & Res, Camp Springs, MD 20746 USA. [Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Molemaker, M. Jeroen] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Marmorino, GO (reprint author), USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. EM marmorino@nrl.navy.mil RI DiGiacomo, Paul/F-5584-2010 OI DiGiacomo, Paul/0000-0003-4550-1899 FU Office of Naval Research through Naval Research Laboratory Work Unit [72-8179]; National Aeronautics and Space Administration through a contract with the Jet Propulsion Laboratory, California Institute of Technology; NRL [72-9201]; U.S. Navy; NOAA; U.S. Government [JA/7230-09-0260] FX This work was funded by the Office of Naval Research through Naval Research Laboratory Work Unit 72-8179 (G.O.M. and M.A.S.) and by the National Aeronautics and Space Administration through a contract with the Jet Propulsion Laboratory, California Institute of Technology (B.H. and P.M.D. plus UCLA boat). We thank JPL scientists Charles Morris (AIRSAR mission planning) and Bruce Chapman and William Fiechter (AIRSAR processing), Walter Klein of NASA Drydent Flight Research Center, who was mission manager for the AIRSAR flights, and Dave Foley of the NOAA Coastwatch Program for providing AVHRR data. We also thank Yi Chao of the Jet Propulsion Laboratory and Jei-Kook Choi of the Naval Oceanographic Office for the use of the ROMS output used in Figure 4. Final preparation of the manuscript was funded in part by NRL Work Unit 72-9201. We thank two anonymous reviewers for their insightful and helpful comments. The manuscript contents are solely those of the authors and do not constitute a statement of policy, decision, or position on behalf of NASA, the U.S. Navy, NOAA, or the U.S. Government. NRL contribution JA/7230-09-0260. NR 29 TC 7 Z9 8 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 12 PY 2010 VL 115 AR C05010 DI 10.1029/2009JC005863 PG 14 WC Oceanography SC Oceanography GA 596SX UT WOS:000277706900001 ER PT J AU May, AF Fleurial, JP Snyder, GJ AF May, Andrew F. Fleurial, Jean-Pierre Snyder, G. Jeffrey TI Optimizing Thermoelectric Efficiency in La3-xTe4 via Yb Substitution SO CHEMISTRY OF MATERIALS LA English DT Article ID EUROPIUM; PBTE AB A low temperature, solid state synthesis technique has enabled the production of homogeneous samples of La3-x-yYbyTe4. This allows the substitution of divalent Yb to be utilized to optimize the thermoelectric performance in lanthanum telluride. The addition of Yb2+ changes the electrical transport properties in a manner that can be well understood using valence counting rules and a corresponding change in the Fermi energy. The substitution of Yb2+ for La3+ results in a threefold finer control over the carrier density n, thus allowing the optimum n similar to 0.3 x 10(21) cm(-3) to be both predicted and prepared. The net result is an improvement in thermoelectric efficiency, with zT reaching similar to 1.2 at 1273 K. C1 [May, Andrew F.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Snyder, G. Jeffrey] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA. RP May, AF (reprint author), CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. EM may@caltech.edu RI May, Andrew/E-5897-2011; Snyder, G. Jeffrey/E-4453-2011; Snyder, G/I-2263-2015 OI May, Andrew/0000-0003-0777-8539; Snyder, G. Jeffrey/0000-0003-1414-8682; FU Jet Propulsion Laboratory and California Institute of Technology under contract with the National Aeronautics and Space Administration FX This work was performed at the Jet Propulsion Laboratory and California Institute of Technology under contract with the National Aeronautics and Space Administration. The authors thank L. Danielson for useful discussions. The authors also thank L.D. Zoltan for assistance with Seebeck coefficient measurements and T. Ikeda for assistance with WDS measurements. NR 20 TC 22 Z9 22 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 11 PY 2010 VL 22 IS 9 BP 2995 EP 2999 DI 10.1021/cm1004054 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 590AD UT WOS:000277194600040 ER PT J AU Mazarico, E Lemoine, FG Han, SC Smith, DE AF Mazarico, E. Lemoine, F. G. Han, Shin-Chan Smith, D. E. TI GLGM-3: A degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID FIELD; TOPOGRAPHY; CLEMENTINE; MISSION; KAGUYA AB In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(-4)l(-2)) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of similar to 0.2 and similar to 1-2 mm/s in the nominal and extended phases, respectively). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency. C1 [Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. [Smith, D. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Mazarico, E (reprint author), NASA, Goddard Space Flight Ctr, B34 W271, Greenbelt, MD 20771 USA. EM erwan.m.mazarico@nasa.gov RI Lemoine, Frank/D-1215-2013; Han, Shin-Chan/A-2022-2009; Mazarico, Erwan/N-6034-2014 OI Mazarico, Erwan/0000-0003-3456-427X FU NASA FX E. M. was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. S. C. H. was supported by NASA's programs in Lunar Advanced Science and Exploration Research and Mars Data Analysis. We acknowledge the Planetary Data System/Geosciences Node for providing the Lunar Prospector tracking data, and Alex Konopliv (JPL) for answering questions related to the interpretation of the Lunar Prospector orbit data files. David Rowlands (NASA Goddard Space Flight Center), Despina Pavlis, and John McCarthy (NASA Goddard Space Flight Center and SGT, Inc.) provided indispensable technical support with GEODYN and SOLVE. We acknowledge Jim Williams and colleagues at JPL for making available DE421. We thank the Lunar Reconnaissance Orbiter project for their support of this work. NR 37 TC 35 Z9 38 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 11 PY 2010 VL 115 AR E05001 DI 10.1029/2009JE003472 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596TB UT WOS:000277707300001 ER PT J AU Lu, G Mlynczak, MG Hunt, LA Woods, TN Roble, RG AF Lu, G. Mlynczak, M. G. Hunt, L. A. Woods, T. N. Roble, R. G. TI On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID IONOSPHERIC ELECTRODYNAMICS; SABER EXPERIMENT; AURORAL STORM; MODEL; LATITUDES; MIDDLE AB During geomagnetic storms Joule heating dissipation is the dominant form of magnetospheric energy input that is responsible for many chemical and dynamical variations in the thermosphere. One such thermospheric variation is the dramatic increase of thermospheric temperature and nitric oxide (NO) density and thus radiative emission by NO. This paper gives for the first time a quantitative assessment of the relationship between global Joule heating power and global NO radiative cooling power. It is found that, when averaged over a time interval of 24 h along with a time lag of 10 h, global Joule heating power is closely correlated with global NO cooling power. On average, the increased energy release through NO 5.3 mu m infrared emission accounts for about 80% of Joule heating energy input under disturbed conditions. The paper also presents a first attempt to parameterize global NO power using the K-p and F-10.7 indices. Under nonstorm conditions the best correlation is found when the daily global NO power lags behind the solar flux input by 1 day. The predicted NO power based on this parameterization scheme reproduces many features in the observed global NO power by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument over the 7 year period from 2002 to 2008. The predicted global NO power correlates well with the SABER measurements, with a correlation coefficient of 0.89. C1 [Lu, G.; Roble, R. G.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. [Mlynczak, M. G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Hunt, L. A.] Sci Syst & Applicat Inc, Hampton, VA USA. [Woods, T. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. RP Lu, G (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. EM ganglu@ucar.edu RI Lu, Gang/A-6669-2011; Mlynczak, Martin/K-3396-2012 FU National Science Foundation (NSF); NASA FX We wish to acknowledge the International Real-time Magnetic Observatory Network for the INTERMAGNET magnetometer network, the Geophysical Institute of the University of Alaska for the Alaska magnetometer stations, the Solar-Terrestrial Environment Laboratory of Nagoya University for the 210 magnetic meridian chain, the Finnish Meteorological Institute for the IMAGE chain, the Canadian Space Agency for the CARISMA magnetometer network, the Space Plasma Environment and Radio Science (SPEARS) in the Department of Communication Systems at Lancaster University for the SAMNET magnetometer chain, and the Danish Meteorological Institute for the Greenland magnetometer stations. J. Posch at Augsburg College, A. Weather at Siena College, and O. Troshichev at the Arctic and Antarctic Research Institute in Russia provided additional ground magnetometer data used in the study. We thank F. Rich and the Air Force Research Laboratory for preparing the DMSP particle data, and the University of Texas at Dallas for making the DMSP ion drift data available online. We are in debt to J. M. Ruohoniemi for providing the Super-DARN radar measurements. The F10.7 and Kp indices were retrieved from the CEDAR database at National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation (NSF). Work at HAO/NCAR was supported in part by the NASA Heliophysics Guest Investigators program. Work at LASP/CU is supported by a NASA TIMED SEE grant. NR 26 TC 25 Z9 25 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 11 PY 2010 VL 115 AR A05306 DI 10.1029/2009JA014662 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TJ UT WOS:000277708100003 ER PT J AU Brocksopp, C Jonker, PG Maitra, D Krimm, HA Pooley, GG Ramsay, G Zurita, C AF Brocksopp, C. Jonker, P. G. Maitra, D. Krimm, H. A. Pooley, G. G. Ramsay, G. Zurita, C. TI Disentangling jet and disc emission from the 2005 outburst of XTE J1118+480 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; stars: individual: XTE J1118+480; X-rays: binaries ID X-RAY TRANSIENT; HOLE CANDIDATE XTE-J1118+480; ACCRETING BLACK-HOLES; LOW/HARD STATE; SYNCHROTRON EMISSION; HARD-STATE; BINARY; RADIO; SPECTRUM; MODEL AB The black hole X-ray transient, XTE J1118+480, has now twice been observed in outbursts - 2000 and 2005 - and on both occasions remained in the low/hard X-ray spectral state. Here we present radio, infrared, optical, soft X-ray and hard X-ray observations of the more recent outburst. We find that the light curves have very different morphologies compared with the 2000 event and the optical decay is delayed relative to the X-ray/radio. We attribute this lesser degree of correlation to contributions of emission from multiple components, in particular the jet and accretion disc. Whereas the jet seemed to dominate the broad-band spectrum in 2000, in 2005 the accretion disc seemed to be more prominent and we use an analysis of the light curves and spectra to distinguish between the jet and disc emission. There also appears to be an optically thin component to the radio emission in the 2005 data, possibly associated with multiple ejection events and decaying as the outburst proceeds. These results add to the discussion that the term 'low/hard state' covers a wider range of properties than previously thought, if it is to account for XTE J1118+480 during these two outbursts. C1 [Brocksopp, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Jonker, P. G.] Netherlands Inst Space Res, SRON, NL-3584 CA Utrecht, Netherlands. [Jonker, P. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Maitra, D.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Maitra, D.] Univ Amsterdam, Ctr High Energy Astrophys, NL-1098 SJ Amsterdam, Netherlands. [Maitra, D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 20144 USA. [Pooley, G. G.] Univ Cambridge, Cavendish Lab, Mullard Radio Astron Observ, Cambridge CB3 0HE, England. [Ramsay, G.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Zurita, C.] Inst Astrofis Canarias, Tenerife 38200, Spain. RP Brocksopp, C (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM cb4@mssl.ucl.ac.uk FU Netherlands Organization for Scientific Research; Swift project; UK Science and Technology Facilities Council; National Science Foundation FX We thank Sandy Leggett for help with the UKIRT data reduction, Jorn Wilms for advice regarding the HEXTE analysis and the anonymous referee for useful suggestions which improved the paper. PGJ acknowledges support from a VIDI grant from the Netherlands Organization for Scientific Research. HAK is supported by the Swift project. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. The LT is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. The VLA is a facility of the National Radio Astronomy Observatory, which is operated by Associated Universities Inc., under cooperative agreement with the National Science Foundation. NR 49 TC 18 Z9 18 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2010 VL 404 IS 2 BP 908 EP 916 DI 10.1111/j.1365-2966.2010.16323.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 591TZ UT WOS:000277329000022 ER PT J AU Nucciotti, A Arnaboldi, C Ceruti, G Ferri, E Kilbourne, C Kraft-Bermuth, S Margesin, B Pessina, G Previtali, E Schaeffer, D Sisti, M AF Nucciotti, A. Arnaboldi, C. Ceruti, G. Ferri, E. Kilbourne, C. Kraft-Bermuth, S. Margesin, B. Pessina, G. Previtali, E. Schaeffer, D. Sisti, M. TI The first phase of the MARE project in Milano SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th Pisa Meeting on Advanced Detectors CY MAY 24-30, 2009 CL Isola Elba, ITALY DE Cryogenic detectors; Neutrino mass; Fundamental physics AB The international project "Microcalorimeter Arrays for a Rhenium Experiment" (MARE) aims at the direct and calorimetric measurement of the electron anti-neutrino mass with sub-electronvolt sensitivity. The experimental strategy consists in studying the beta spectrum of (187)Re near the end-point looking for the spectral distortion expected for a finite anti-neutrino mass. The MARE project has a staged approach: in the final experimental phase (MARE-2), several large arrays with as many as 10 000 detectors each will be deployed to collect the statistics required to probe the anti-neutrino mass with a sensitivity of at least 0.2 eV, comparable to the one expected for the Katrin experiment (KATRIN Lol, 2001, [1]). In the short term, smaller scale experiments are planned to reach sensitivities of the order of 1 eV (MARE-1). This contribution reports on the Milano group activity for the MARE project. (C) 2009. Elsevier B.V. All rights reserved. C1 [Nucciotti, A.; Arnaboldi, C.; Ceruti, G.; Ferri, E.; Kraft-Bermuth, S.; Pessina, G.; Previtali, E.; Schaeffer, D.; Sisti, M.] Univ Milano Bicocca, Milan, Italy. [Nucciotti, A.; Arnaboldi, C.; Ceruti, G.; Ferri, E.; Kraft-Bermuth, S.; Pessina, G.; Previtali, E.; Schaeffer, D.; Sisti, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Kilbourne, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Margesin, B.] Fdn Bruno Kessel, Trento, Italy. RP Nucciotti, A (reprint author), Univ Milano Bicocca, Milan, Italy. EM angelo.nucciotti@mib.infn.it RI Kraft-Bermuth, Saskia/G-4007-2012; Nucciotti, Angelo/I-8888-2012; Ferri, Elena/L-8531-2014; Margesin, Benno/K-5826-2015; Sisti, Monica/B-7550-2013; OI Kraft-Bermuth, Saskia/0000-0002-0864-7912; Nucciotti, Angelo/0000-0002-8458-1556; Ferri, Elena/0000-0003-1425-3669; Margesin, Benno/0000-0002-1120-3968; Sisti, Monica/0000-0003-2517-1909; Pessina, Gianluigi Ezio/0000-0003-3700-9757 NR 4 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 11 PY 2010 VL 617 IS 1-3 BP 509 EP 510 DI 10.1016/j.nima.2009.10.079 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 617CP UT WOS:000279258700158 ER PT J AU Matt, SP Pinzon, G de la Reza, R Greene, TP AF Matt, Sean P. Pinzon, Giovanni de la Reza, Ramiro Greene, Thomas P. TI SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (97.10Cv, 97.10.GZ, 97.10.KC, 97.21.+a) ID T-TAURI STARS; ORION NEBULA CLUSTER; MAIN-SEQUENCE STARS; LOW-MASS STARS; MAGNETOCENTRIFUGALLY DRIVEN FLOWS; POWERED STELLAR WINDS; ANGULAR-MOMENTUM LOSS; MAGNETOSPHERIC ACCRETION; ROTATION PERIODS; MAGNETOHYDRODYNAMIC SIMULATIONS AB We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, we neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than similar to 3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary. C1 [Matt, Sean P.; Greene, Thomas P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pinzon, Giovanni] Univ Nacl Colombia, Fac Ciencias, Observ Astron Nacl, Bogota, Colombia. [Pinzon, Giovanni] Univ Antonio Narino, Direcc Nacl Invest, Bogota, Colombia. [de la Reza, Ramiro] Observ Nacl, Rio De Janeiro, Brazil. RP Matt, SP (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. EM sean.p.matt@nasa.gov; gapinzone@unal.edu.co; delareza@on.br; thomas.p.greene@nasa.gov OI Matt, Sean/0000-0001-9590-2274 NR 103 TC 36 Z9 36 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2010 VL 714 IS 2 BP 989 EP 1000 DI 10.1088/0004-637X/714/2/989 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ER UT WOS:000276973100001 ER PT J AU Klimchuk, JA Karpen, JT Antiochos, SK AF Klimchuk, James A. Karpen, Judy T. Antiochos, Spiro K. TI CAN THERMAL NONEQUILIBRIUM EXPLAIN CORONAL LOOPS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; Sun: activity; Sun: corona; Sun: UV radiation; Sun: X-rays, gamma rays ID ACTIVE-REGION LOOPS; TRANSITION-REGION; PROMINENCE FORMATION; TRACE; DYNAMICS; CONDENSATION; TEMPERATURES; EXPLORER; MODEL AB Any successful model of coronal loops must explain a number of observed properties. For warm (similar to 1 MK) loops, these include (1) excess density, (2) flat temperature profile, (3) super-hydrostatic scale height, (4) unstructured intensity profile, and (5) 1000-5000 s lifetime. We examine whether thermal nonequilibrium can reproduce the observations by performing hydrodynamic simulations based on steady coronal heating that decreases exponentially with height. We consider both monolithic and multi-stranded loops. The simulations successfully reproduce certain aspects of the observations, including the excess density, but each of them fails in at least one critical way. Monolithic models have far too much intensity structure, while multi-strand models are either too structured or too long-lived. Our results appear to rule out the widespread existence of heating that is both highly concentrated low in the corona and steady or quasi-steady (slowly varying or impulsive with a rapid cadence). Active regions would have a very different appearance if the dominant heating mechanism had these properties. Thermal nonequilibrium may nonetheless play an important role in prominences and catastrophic cooling events (e. g., coronal rain) that occupy a small fraction of the coronal volume. However, apparent inconsistencies between the models and observations of cooling events have yet to be understood. C1 [Klimchuk, James A.; Karpen, Judy T.; Antiochos, Spiro K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Klimchuk, JA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Klimchuk, James/D-1041-2012; Antiochos, Spiro/D-4668-2012; Karpen, Judith/E-1484-2012 OI Klimchuk, James/0000-0003-2255-0305; Antiochos, Spiro/0000-0003-0176-4312; FU NASA FX This work was supported by the NASA Living With a Star program. A portion of it was performed while the authors were on the staff of the Naval Research Laboratory. We gratefully acknowledge useful conversations with Roberto Lionello, Jon Linker, Yung Mok, Karel Schrijver, and Daniele Spadaro. NR 42 TC 44 Z9 44 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2010 VL 714 IS 2 BP 1239 EP 1248 DI 10.1088/0004-637X/714/2/1239 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ER UT WOS:000276973100023 ER PT J AU Carilli, CL Daddi, E Riechers, D Walter, F Weiss, A Dannerbauer, H Morrison, GE Wagg, J Dave, R Elbaz, D Stern, D Dickinson, M Krips, M Aravena, M AF Carilli, C. L. Daddi, E. Riechers, D. Walter, F. Weiss, A. Dannerbauer, H. Morrison, G. E. Wagg, J. Dave, Romeel Elbaz, D. Stern, D. Dickinson, M. Krips, M. Aravena, M. TI IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT z=4.05: COLD MODE ACCRETION OR A MAJOR MERGER? SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: ISM; galaxies: star formation ID HIGH-REDSHIFT GALAXIES; MASSIVE DISK GALAXIES; STAR-FORMING GALAXIES; AEGIS FIELD GALAXIES; QUASAR HOST GALAXY; HUBBLE-DEEP-FIELD; ELLIPTIC GALAXIES; BIG-BANG; ULTRALUMINOUS GALAXIES; QUIESCENT GALAXIES AB We present a high-resolution (down to 0 ''.18), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of galaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the Very Large Array (VLA), the CO 6-5 emission with the Plateau de Bure Interferometer, and the 5-4 emission with Combined Array for Research in Millimeter Astronomy. The H(2) mass derived from the CO 1-0 emission is 1.3 x 10(11) (alpha/0.8) M(circle dot). High-resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of similar to 10 kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high-redshift quasar host galaxies and low-redshift starburst nuclei. The CO 4-3 integrated line strength is more than a factor of 2 lower than expected for thermal excitation. The excitation can be modeled with two gas components: a diffuse, lower excitation component with a radius similar to 4.5 kpc and a filling factor similar to 0.5, and a more compact, higher excitation component (radius similar to 2.5 kpc, filling factor similar to 0.13). The lower excitation component contains at least half the molecular gas mass of the system, depending on the relative conversion factor. The VLA CO 2-1 image at 0.'' 2 resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes similar to 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of similar to 570 km s(-1) (using an inclination angle of 45 degrees), from which we derive a dynamical mass of 3 x 10(11) M(circle dot) within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by similar to 1 '' from the Hubble Space Telescope 1-band emission, implying that the regions of most intense star formation are highly dust obscured on a scale of similar to 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. Qualitatively, the kinematic and structural properties of GN20 compare well to the most rapid star formers fed primarily by cold accretion in cosmological hydrodynamic simulations. Conversely, if GN20 is a major, gas-rich merger, then some process has managed to ensure that the star formation and molecular gas distribution has not been focused into one or two compact regions. C1 [Carilli, C. L.; Aravena, M.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Daddi, E.; Dannerbauer, H.; Elbaz, D.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,DSM,CNRS,DAPNIA,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Riechers, D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Weiss, A.] Max Planck Inst Radio Astron, D-53121 Bonn, Germany. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Wagg, J.] ESO ALMA, Santiago 19, Chile. [Dave, Romeel] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dickinson, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Krips, M.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. RP Carilli, CL (reprint author), Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. RI Daddi, Emanuele/D-1649-2012; Aravena, Manuel/O-2361-2014 OI Daddi, Emanuele/0000-0002-3331-9590; NR 103 TC 105 Z9 105 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2010 VL 714 IS 2 BP 1407 EP 1417 DI 10.1088/0004-637X/714/2/1407 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ER UT WOS:000276973100037 ER PT J AU Katsuda, S Hwang, U Petre, R Park, S Mori, K Tsunemi, H AF Katsuda, Satoru Hwang, Una Petre, Robert Park, Sangwook Mori, Koji Tsunemi, Hiroshi TI DISCOVERY OF X-RAY-EMITTING O-Ne-Mg-RICH EJECTA IN THE GALACTIC SUPERNOVA REMNANT PUPPIS A SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: individual objects (Puppis A); ISM: supernova remnants; X-rays: ISM ID SMALL-MAGELLANIC-CLOUD; NEUTRAL HYDROGEN; CYGNUS-LOOP; EMISSION; SUZAKU AB We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be similar to 2, similar to 2, and < 0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim. C1 [Katsuda, Satoru; Hwang, Una; Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, Una] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Park, Sangwook] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys, Miyazaki 8892192, Japan. [Tsunemi, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 600043, Japan. RP Katsuda, S (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. RI XRAY, SUZAKU/A-1808-2009 FU JSPS; NASA [NNG06EO90A] FX We are grateful to J. Garber and collaborators for fruitful discussions about the optical O-rich knots. We thank K. Borkowski for discussions about Fe L line emissivities. S. K. is supported by a JSPS Research Fellowship for Young Scientists and in part by NASA grant NNG06EO90A. NR 29 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2010 VL 714 IS 2 BP 1725 EP 1732 DI 10.1088/0004-637X/714/2/1725 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ER UT WOS:000276973100062 ER PT J AU Pariat, E Antiochos, SK DeVore, CR AF Pariat, E. Antiochos, S. K. DeVore, C. R. TI THREE-DIMENSIONAL MODELING OF QUASI-HOMOLOGOUS SOLAR JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; magnetic reconnection; magnetohydrodynamics (MHD); Sun: corona; Sun: magnetic topology ID X-RAY JETS; H-ALPHA SURGES; EXTREME-ULTRAVIOLET JETS; POLAR CORONAL HOLES; MAGNETIC RECONNECTION; FLUX EMERGENCE; ALFVEN WAVES; FINE-STRUCTURE; EMERGING FLUX; ACTIVE-REGION AB Recent solar observations (e. g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (3D) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes. C1 [Pariat, E.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. [Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [DeVore, C. R.] USN, Res Lab, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA. RP Pariat, E (reprint author), Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. EM etienne.pariat@obspm.fr RI Antiochos, Spiro/D-4668-2012; DeVore, C/A-6067-2015 OI Antiochos, Spiro/0000-0003-0176-4312; DeVore, C/0000-0002-4668-591X FU NASA FX This work was supported, in part, by the NASA HTP, LWS TR&T, and SR&T programs. The numerical simulations were performed on DoD High Performance Computing Modernization Program resources at NRL-DC. The authors express gratitude for the comments of the anonymous referee. E. P. thanks N.-E. Raouafi for stimulating discussion on links between jets and plumes and C. Parnell for advice on reconnection-rate estimations. NR 89 TC 85 Z9 86 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2010 VL 714 IS 2 BP 1762 EP 1778 DI 10.1088/0004-637X/714/2/1762 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ER UT WOS:000276973100066 ER PT J AU De Propris, R Rich, RM Mallery, RC Howard, CD AF De Propris, Roberto Rich, R. Michael Mallery, Ryan C. Howard, Christian D. TI A RADIAL VELOCITY AND CALCIUM TRIPLET ABUNDANCE SURVEY OF FIELD SMALL MAGELLANIC CLOUD GIANTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: stellar content; Magellanic Clouds ID DWARF SPHEROIDAL GALAXY; INFRARED CAII TRIPLET; EMPIRICAL CALIBRATION; STELLAR POPULATIONS; ROTATION CURVE; PROPER MOTION; STAR-CLUSTERS; OUTER EDGE; MILKY-WAY; KINEMATICS AB We present the results of a pilot wide-field radial velocity and metal abundance survey of red giants in 10 fields in the Small Magellanic Cloud (SMC). The targets lie at projected distances of 0.9 and 1.9 kpc from the SMC center (m - M = 18.79) to the north, east, south, and west. Two more fields are to the east at distances of 3.9 and 5.1 kpc. In this last field, we find only a few to no SMC giants, suggesting that the edge of the SMC in this direction lies approximately at 6 kpc from its center. In all eastern fields, we observe a double peak in the radial velocities of stars, with a component at the classical SMC recession velocity of similar to 160 km s(-1) and a high-velocity component at about 200 km s(-1), similar to observations in Hi. In the most distant field (3.9 kpc), the low-velocity component is at 106 km s(-1). The metal abundance distribution in all fields is broad and centered at about [Fe/H] similar to -1.25, reaching to solar and possibly slightly supersolar values and down to [Fe/H] of about -2.5. In the two innermost (0.9 kpc) northern and southern fields, we observe a secondary peak at metallicities of about similar to -0.6. This may be evidence of a second episode of star formation in the center, possibly triggered by the interactions that created the Stream and Bridge. C1 [De Propris, Roberto] Cerro Tololo Interamer Observ, La Serena, Chile. [Rich, R. Michael; Mallery, Ryan C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Howard, Christian D.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. RP De Propris, R (reprint author), Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. EM rdepropris@ctio.noao.edu FU National Aeronautics and Space Administration; National Science Foundation FX This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We thank the anonymous referee for a very helpful report that has substantially helped us to improve this Letter. NR 41 TC 17 Z9 17 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2010 VL 714 IS 2 BP L249 EP L253 DI 10.1088/2041-8205/714/2/L249 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590NA UT WOS:000277232000014 ER PT J AU Mitrescu, C L'Ecuyer, T Haynes, J Miller, S Turk, J AF Mitrescu, Cristian L'Ecuyer, Tristan Haynes, John Miller, Steven Turk, Joseph TI CloudSat Precipitation Profiling Algorithm-Model Description SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID PRESENT-WEATHER REPORTS; OCEANIC PRECIPITATION; FREQUENCIES; RETRIEVAL; LIDAR AB Identifying and quantifying the intensity of light precipitation at global scales is still a difficult problem for most of the remote sensing algorithms in use today. The variety of techniques and algorithms employed for such a task yields a rather wide spectrum of possible values for a given precipitation event, further hampering the understanding of cloud processes within the climate. The ability of CloudSat's millimeter-wavelength Cloud Profiling Radar (CPR) to profile not only cloud particles but also light precipitation brings some hope to the above problems. Introduced as version zero, the present work uses basic concepts of detection and retrieval of light precipitation using spaceborne radars. Based on physical principles of remote sensing, the radar model relies on the description of clouds and rain particles in terms of a drop size distribution function. Use of a numerical model temperature and humidity profile ensures the coexistence of mixed phases otherwise undetected by the CPR. It also provides grounds for evaluating atmospheric attenuation, important at this frequency. Related to the total attenuation, the surface response is used as an additional constraint in the retrieval algorithm. Practical application of the profiling algorithm includes a 1-yr preliminary analysis of global rainfall incidence and intensity. These results underscore once more the role of CloudSat rainfall products for improving and enhancing current estimates of global light rainfall, mostly at higher latitudes, with the goal of understanding its role in the global energy and water cycle. C1 [Mitrescu, Cristian] USN, Res Lab, Monterey, CA USA. [L'Ecuyer, Tristan] Colorado State Univ, Ft Collins, CO 80523 USA. [Haynes, John] Monash Univ, Clayton, Vic, Australia. [Miller, Steven] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Turk, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Mitrescu, C (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM cristian.mitrescu@ssaihq.com RI L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU NASA Earth Science Division [NNG07H43i]; Office of Naval Research [PE-0602435N] FX The support of our sponsors, NASA Earth Science Division Radiation Sciences Program CloudSat light precipitation project (NNG07H43i), and the Office of Naval Research under Program Element PE-0602435N, is gratefully acknowledged. NR 21 TC 26 Z9 26 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY 10 PY 2010 VL 49 IS 5 BP 991 EP 1003 DI 10.1175/2009JAMC2181.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 617TP UT WOS:000279305100011 ER PT J AU Behrangi, A Hsu, K Imam, B Sorooshian, S AF Behrangi, Ali Hsu, Koulin Imam, Bisher Sorooshian, Soroosh TI Daytime Precipitation Estimation Using Bispectral Cloud Classification System SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID SOLAR-RADIATION MEASUREMENTS; SATELLITE INFRARED TECHNIQUE; EFFECTIVE PARTICLE RADIUS; RAINFALL ESTIMATION; PASSIVE MICROWAVE; TROPICAL RAINFALL; OPTICAL-THICKNESS; NEURAL-NETWORK; VISIBLE DATA; IMAGERY AB Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 mu m) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04 degrees x 0.04 degrees latitude-longitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U. S. landmass east of 115 degrees W. One reference infrared-only and three different bispectral (visible and infrared) rain estimation scenarios were compared to investigate the technique's ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04 degrees, 0.08 degrees, 0.12 degrees, and 0.24 degrees latitude-longitude) scales. Overall, the results using daytime data during June-August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04 degrees resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24 degrees resolution, the gains were 34% and 32% for the two performance measures, respectively. C1 Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Irvine, CA USA. Univ Calif Irvine, Henry Samueli Sch Engn, Dept Civil & Environm Engn, Irvine, CA USA. RP Behrangi, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-301, Pasadena, CA 91109 USA. EM ali.behrangi@jpl.nasa.gov RI sorooshian, soroosh/B-3753-2008 OI sorooshian, soroosh/0000-0001-7774-5113 FU NASA [NNX08AU78H]; NASA-NEWS [NNX06AF93G]; NOAA/NESDISGOES-R; NSF [EAR-9876800] FX Partial financial support is made available from NASA Earth and Space Science Fellowship (NESSF) Award (NNX08AU78H), NASA-NEWS (Grant NNX06AF93G), NOAA/NESDISGOES-R Program Office (GPO), and NSF STC for Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA; Grant EAR-9876800) programs. The authors thank Mr. Dan Braithwaite for his technical assistance. NR 51 TC 20 Z9 22 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY 10 PY 2010 VL 49 IS 5 BP 1015 EP 1031 DI 10.1175/2009JAMC2291.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 617TP UT WOS:000279305100013 ER PT J AU Ahn, BK Graham, WR Rizzi, SA AF Ahn, B. -K. Graham, W. R. Rizzi, S. A. TI A structure-based model for turbulent-boundary-layer wall pressures SO JOURNAL OF FLUID MECHANICS LA English DT Article ID IMAGE VELOCIMETRY MEASUREMENTS; WAKE MODEL; FLUCTUATIONS; SIMULATION; REGION; SHEAR AB Practical prediction of structural vibrations due to a turbulent boundary layer currently depends on empirical representations of the unsteady wall pressures. Improvements in these representations would be greatly facilitated if a simple, physically based model were available to test ad hoc assumptions and provide rigorous interpolation of experimental data. A possible candidate is the attached-eddy model, developed from Townsend's initial ideas by Perry and co-workers in the context of turbulence velocity spectra. This approach employs the superposition of contributions from individual 'eddies', of varying size, to yield its predictions. It is shown here that the same methodology can be applied for wall pressures, once the field due to an eddy has been obtained via solution of the governing Poisson equation. Comparisons with large-eddy simulation and experimental data, spanning a two-decade Reynolds number range, show remarkably good agreement, given the simplicity of the model. It is concluded that this approach has the potential to provide useful physical insight and, subject to its extension to a time-resolved form, improvements to existing empirical formulations. C1 [Ahn, B. -K.; Graham, W. R.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Rizzi, S. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Graham, WR (reprint author), Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England. EM wrg@eng.cam.ac.uk FU Korean Government; University of Cambridge FX This work was supported by a Korean Government Scholarship and a Lundgren Research Award from the University of Cambridge. The authors would like to thank Dr. Tim Nickels of the Department of Engineering, University of Cambridge, for helpful discussions and advice, and Dr. Bart Singer of NASA Langley for providing his LES data for comparison purposes. NR 31 TC 2 Z9 2 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAY 10 PY 2010 VL 650 BP 443 EP 478 DI 10.1017/S0022112009993727 PG 36 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 603MK UT WOS:000278212500018 ER PT J AU Pickett, JS Grison, B Omura, Y Engebretson, MJ Dandouras, I Masson, A Adrian, ML Santolik, O Decreau, PME Cornilleau-Wehrlin, N Constantinescu, D AF Pickett, J. S. Grison, B. Omura, Y. Engebretson, M. J. Dandouras, I. Masson, A. Adrian, M. L. Santolik, O. Decreau, P. M. E. Cornilleau-Wehrlin, N. Constantinescu, D. TI Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PEARL PULSATIONS; PROPAGATION; FIELD; MICROPULSATIONS; GENERATION AB The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L similar to 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of similar to 30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H(+) ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the similar to 2-10 keV H(+) ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions. Citation: Pickett, J. S., et al. (2010), Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause, Geophys. Res. Lett., 37, L09104, doi:10.1029/2010GL042648. C1 [Pickett, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Adrian, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Constantinescu, D.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, D-38106 Braunschweig, Germany. [Cornilleau-Wehrlin, N.] CNRS, Observ Paris, Stn Radioastron Nancay, F-78140 Nancay, France. [Dandouras, I.] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Decreau, P. M. E.] Univ Orleans, CNRS, LPC2E, F-45071 Orleans 2, France. [Engebretson, M. J.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. [Grison, B.; Santolik, O.] Inst Atmospher Phys, Prague 14131, Czech Republic. [Masson, A.] European Space Agcy, Sci & Robot Explorat Directorate, NL-2201 NZ Noordwijk, Netherlands. [Omura, Y.] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 6110011, Japan. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Dandouras, I.] CNRS, UMR 5187, Toulouse, France. RP Pickett, JS (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM pickett@uiowa.edu; grison@ufa.cas.cz; omura@rish.kyoto-u.ac.jp; engebret@augsburg.edu; iannis.dandouras@cesr.fr; arnaud.masson@esa.int; mark.l.adrian@nasa.gov; os@ufa.cas.cz; pierrette.decreau@cnrs-orleans.fr; nicole.cornilleau@obs-nancay.fr; d.constantinescu@tu-bs.de RI Constantinescu, Ovidiu Dragos/C-4350-2012; Constantinescu, Dragos/A-6007-2013; Santolik, Ondrej/F-7766-2014; Grison, Benjamin/G-9440-2014; Omura, Yoshiharu/P-8565-2014; OI Grison, Benjamin/0000-0002-3440-6856; Omura, Yoshiharu/0000-0002-6683-3940; Dandouras, Iannis/0000-0002-7121-1118 FU NASA GSFC at University of Iowa [NNX07AI24G]; NSF at Augsburg College [ATM-0827903]; GACR [205/10/2279, ME10001] FX This work was supported at University of Iowa by NASA GSFC under grant NNX07AI24G, and at Augsburg College under NSF grant ATM-0827903. BG and OS acknowledge support under grants GACR 205/10/2279 and ME10001. The Cluster Active Archive (CAA) is acknowledged for supplying the EFW low frequency electric field data. NR 29 TC 67 Z9 67 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 8 PY 2010 VL 37 AR L09104 DI 10.1029/2010GL042648 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 593RO UT WOS:000277478100001 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Cominsky, LR Conrad, J Costamante, L Cutini, S Davis, DS Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Famier, C Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Georganopoulos, M Germani, S Giebels, B Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sambruna, R Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Stawarz, L Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M Hardcastle, MJ Kazanas, D AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Cominsky, L. R. Conrad, J. Costamante, L. Cutini, S. Davis, D. S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Famier, C. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Georganopoulos, M. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sambruna, R. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stawarz, L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. Hardcastle, M. J. Kazanas, D. CA Fermi-LAT Collaboration TI Fermi Gamma-Ray Imaging of a Radio Galaxy SO SCIENCE LA English DT Article ID ENERGY PARTICLE-ACCELERATION; X-RAY; SYNCHROTRON RADIATION; CENTAURUS-A; LOBES; EMISSION; ELECTRONS; DISCOVERY AB The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, S.; Romani, R. W.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, S.; Romani, R. W.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA Saclay, CEA IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Trieste, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Celik, Oe; Cheung, C. C.; Davis, D. S.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Sambruna, R.; Thompson, D. J.; Vasileiou, V.; Kazanas, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Celik, Oe; Davis, D. S.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Davis, D. S.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Famier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, UMR 5797, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.; Hanabata, Y.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Hardcastle, M. J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Cheung, CC (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Teddy.Cheung.ctr@nrl.navy.mil; fukazawa@hep01.hepl.hiroshima-u.ac.jp; jurgen.knodlseder@cesr.fr; stawarz@slac.stanford.edu RI Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; Morselli, Aldo/G-6769-2011; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Nolan, Patrick/A-5582-2009; giglietto, nicola/I-8951-2012; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Hardcastle, Martin/E-2264-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013 OI Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; giglietto, nicola/0000-0002-9021-2888; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; Hardcastle, Martin/0000-0003-4223-1117; Reimer, Olaf/0000-0001-6953-1385; FU U.S. Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nuclaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale de Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NASA; Royal Swedish Academy of Sciences FX The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and operation of the LAT, as well as for scientific data analysis. These organizations include NASA and the U.S. Department of Energy in the United States; Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nuclaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale de Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from Istituto Nazionale di Astrofisica in Italy and Centre National d'Etudes Spatiales in France for science analysis during the operations phase is also gratefully acknowledged. C. C. C. was supported by the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. J. Conrad is a Royal Swedish Academy of Sciences research fellow (funded by a grant from the K.A. Wallenberg Foundation). We thank N. Odegard for providing the WMAP image. NR 26 TC 108 Z9 108 U1 3 U2 13 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAY 7 PY 2010 VL 328 IS 5979 BP 725 EP 729 DI 10.1126/science.1184656 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 592DZ UT WOS:000277357100032 PM 20360067 ER PT J AU Gjesteland, T Ostgaard, N Connell, PH Stadsnes, J Fishman, GJ AF Gjesteland, T. Ostgaard, N. Connell, P. H. Stadsnes, J. Fishman, G. J. TI Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID BREAKDOWN AB Measurements from the Burst and Transient Source Experiment (BATSE) instrument on the Compton Gamma Ray Observatory (CGRO) are the only ones where characteristics of single terrestrial gamma ray flashes (TGFs) have been obtained thus far. However, it has been reported that the measurements suffer from significant dead time losses which complicates the analysis and raises question about earlier BATSE studies. These losses are due to the high-intensity flux combined with limitations of the time resolution of the instrument. Since these losses will affect both the spectrum and the temporal distribution of the individual TGFs, results based on BATSE data need to be revisited, including our own. We have therefore developed a Monte Carlo method to study the effects of these dead time losses. We show that the energy spectrum of TGFs becomes softer as the dead time losses increase. We also show that the time delay between the light curves of hard (E > 300 keV) and soft (E < 300 keV) photons increases significantly as the dead time losses increase. The Monte Carlo approach also enables us to identify the BATSE TGFs where the dead time effects can be corrected. These are the short-duration single-peaked TGFs. Without correcting for dead time losses we find that these short single-peak TGFs have a softer energy spectrum and larger time delay than the multipeaked TGFs. After correcting for dead time losses we perform a new analysis of production altitudes and find that the production altitude is reduced compared to analysis without dead time losses. The new production altitudes combined with dead time losses are also consistent with the apparent large time delays. Our method gives consistent results regarding production altitude and time delays and indicates that the corrected TGF intensities measured by BATSE are 3 to 4 times brighter than the uncorrected measurements would indicate. We also show that the production mechanism of these TGFs has a typical duration of 250 mu s. C1 [Gjesteland, T.; Ostgaard, N.; Stadsnes, J.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Connell, P. H.] Univ Valencia, Inst Mech Sci, E-46110 Valencia, Spain. [Fishman, G. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Gjesteland, T (reprint author), Univ Bergen, Dept Phys & Technol, Allegt 55, N-5007 Bergen, Norway. EM thomas.gjesteland@uib.no; nikolai.ostgaard@uib.no; paul.connell@uv.es; johan.stadsnes@ift.uib.no; fishman@msfc.nasa.gov RI Gjesteland, Thomas/H-6108-2012; Gjesteland, Thomas/I-7509-2016 FU Norwegian Research council [184790/V30] FX Thanks to Nikolai Lethinen and Brant Carlson for useful discussions. This study was supported by the Norwegian Research council under contract 184790/V30. NR 22 TC 39 Z9 39 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 5 PY 2010 VL 115 AR A00E21 DI 10.1029/2009JA014578 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 593SK UT WOS:000277480700001 ER PT J AU Zhao, C Wang, YH Yang, Q Fu, R Cunnold, D Choi, Y AF Zhao, Chun Wang, Yuhang Yang, Qing Fu, Rong Cunnold, Derek Choi, Yunsoo TI Impact of East Asian summer monsoon on the air quality over China: View from space SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC EMISSION SPECTROMETER; CHEMICAL-TRANSPORT MODEL; CONVECTIVE-TRANSPORT; CARBON-MONOXIDE; OZONE; POLLUTION; TES; SIMULATIONS; SATELLITE; CHEMISTRY AB Tropospheric O-3 columns retrieved from Ozone Monitoring Instrument and Microwave Limb Sounder measurements, CO columns retrieved from Measurements of Pollution in the Troposphere, and tropospheric O-3 and CO concentrations retrieved from the Tropospheric Emission Spectrometer from May to August in 2006 are analyzed using the Regional Chemical and Transport Model to investigate the impact of the East Asian summer monsoon on the air quality over China. The observed and simulated migrations of O-3 and CO are in good agreement, demonstrating that the summer monsoon significantly affects the air quality over southeastern China, and this influence extends to central East China from June to July. Enhancements of CO and O-3 over southeastern China disappear after the onset of the summer monsoon and reemerge in August after the monsoon wanes. The premonsoon high O-3 concentrations over southern China are due to photochemical production from pollutant emissions and the O-3 transport from the stratosphere. In the summer monsoon season, the O-3 concentrations are relatively low over monsoon-affected regions because of the transport of marine air masses and weak photochemical activity. We find that the monsoon system strongly modulates the pollution problem over a large portion of East China in summer, depending on its strength and tempo-spatial extension. Model results also suggest that transport from the stratosphere and long-range transport from East China and South/central Asia all make significant contributions to O-3 enhancements over West China. Satellite observations provide valuable information for investigating the monsoon impact on air quality, particularly for the regions with limited in situ measurements. C1 [Zhao, Chun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Choi, Yunsoo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fu, Rong] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Zhao, Chun; Wang, Yuhang; Yang, Qing; Cunnold, Derek] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Zhao, C (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. EM chun.zhao@pnl.gov RI Yang, Qing/H-3275-2011; Zhao, Chun/A-2581-2012; Fu, Rong/B-4922-2011; Wang, Yuhang/B-5578-2014 OI Yang, Qing/0000-0003-2067-5999; Zhao, Chun/0000-0003-4693-7213; FU National Science Foundation; NASA FX This work was supported by the National Science Foundation Atmospheric Chemistry Program and the NASA Atmospheric Chemistry Modeling and Analysis Program. The GEOS-CHEM model is managed at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program. NR 57 TC 35 Z9 35 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 4 PY 2010 VL 115 AR D09301 DI 10.1029/2009JD012745 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 593RQ UT WOS:000277478300002 ER PT J AU Nguyen, BN Meador, MAB Medoro, A Arendt, V Randall, J McCorkle, L Shonkwiler, B AF Nguyen, Baochau N. Meador, Mary Ann B. Medoro, Alexandra Arendt, Victoria Randall, Jason McCorkle, Linda Shonkwiler, Brian TI Elastic Behavior of Methyltrimethoxysilane Based Aerogels Reinforced with Tri-Isocyanate SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE aerogels; triisocyanate; cross-linking; mesoporous materials; hybrid materials; elastic recovery ID LINKED SILICA AEROGELS; AMINE-MODIFIED SILICA; STRUCTURE-PROPERTY RELATIONSHIPS; POROUS 3D NANOSTRUCTURES; MECHANICAL-PROPERTIES; POLYSTYRENE; FOAMS; VANADIA AB The elastic properties and/or flexibility of polymer reinforced silica aerogels having methyltrimethoxysilane (MTMS) and bis(trimethoxysilylpropyl)amine (BTMSPA) making up the silica structure are examined. The dipropylamine spacer from BTMSPA is used both to provide a flexible linking group in the silica structure, and as a reactive site via its secondary amine for reaction with a tri-isocyanate, Desmodur N3300A. The tri-isocyanate provides an extended degree of branching or reinforcement, resulting in increased compressive strength of the aerogel monoliths while the overall flexibility arising from the underlying silica structure is maintained. The compressive moduli of the reinforced aerogel monoliths in this study range from 0.001 to 158 MPa. Interestingly, formulations across this entire range of modulus recover nearly all of their length after two compressions to 25% strain. Differences in pore structure of the aerogels due to processing conditions and solvent are also discussed. C1 [Nguyen, Baochau N.; McCorkle, Linda] Ohio Aerosp Inst, Brookpark, OH 44142 USA. [Meador, Mary Ann B.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Randall, Jason] Univ Akron, NASA, Akron, OH 44325 USA. RP Nguyen, BN (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Brookpark, OH 44142 USA. EM Baochau.n.nguyen@nasa.gov; maryann.meador@masa.gov OI Meador, Mary Ann/0000-0003-2513-7372 FU NASA FX Financial support from NASA's Fundamental Aeronautics Program is gratefully acknowledged. The authors also thank Mr. Dan A. Scheiman for pycnometry measurements, Ms. Anna Palczer for the BET surface area data, and Bayer Corporation for supplying the Desmodur N3300A. NR 31 TC 41 Z9 44 U1 10 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAY PY 2010 VL 2 IS 5 BP 1430 EP 1443 DI 10.1021/am100081a PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 600HY UT WOS:000277977400025 PM 20426430 ER PT J AU Xu, ZH Yin, BS Hou, YJ Fan, ZS Liu, AK AF Xu Zhenhua Yin Baoshu Hou Yijun Fan Zhisong Liu, Antony K. TI A study of internal solitary waves observed on the continental shelf in the northwestern South China Sea SO ACTA OCEANOLOGICA SINICA LA English DT Article DE elevation internal solitary waves; diurnal internal tide; northwestern South China Sea ID SOLITONS; EVOLUTION AB Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects. C1 [Xu Zhenhua; Yin Baoshu; Hou Yijun] Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China. [Xu Zhenhua; Yin Baoshu; Hou Yijun] Chinese Acad Sci, KLOCAW, Qingdao 266071, Peoples R China. [Fan Zhisong] Ocean Univ China, Coll Phys & Environm Oceanog, Qingdao 266100, Peoples R China. [Liu, Antony K.] NASA, Goddard Space Flight Ctr, Ocean Sci Branch, Greenbelt, MD 20771 USA. RP Yin, BS (reprint author), Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China. EM bsyin@ms.qdio.ac.cn RI Xu, Zhenhua/H-8609-2012 OI Xu, Zhenhua/0000-0002-2341-4746 FU Chinese Academy of Sciences [KZCX1-YW-12]; National 863 Program [2008AA09A401, 2006AA09A109] FX The Key Program of Knowledge Innovation Project of Chinese Academy of Sciences under contract No.KZCX1-YW-12; the National 863 Program under contract Nos 2008AA09A401 and 2006AA09A109. NR 19 TC 14 Z9 19 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0253-505X J9 ACTA OCEANOL SIN JI Acta Oceanol. Sin. PD MAY PY 2010 VL 29 IS 3 BP 18 EP 25 DI 10.1007/s13131-010-0033-z PG 8 WC Oceanography SC Oceanography GA 618LR UT WOS:000279357100003 ER PT J AU Pirzadeh, SZ AF Pirzadeh, Shahyar Z. TI Advanced Unstructured Grid Generation for Complex Aerodynamic Applications SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 26th Applied Aerodynamics Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Inst Aeronaut & Astronaut AB A new approach for the distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of previous works, the new approach uses surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over the distribution of grid points in the field. All types of sources support anisotropic grid stretching, which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high-quality initial grids that would enhance the performance of many adaptation methods. C1 NASA, Langley Res Ctr, Configurat Aerodynam Branch, Hampton, VA 23681 USA. RP Pirzadeh, SZ (reprint author), NASA, Langley Res Ctr, Configurat Aerodynam Branch, Mail Stop 499, Hampton, VA 23681 USA. NR 10 TC 14 Z9 15 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAY PY 2010 VL 48 IS 5 BP 904 EP 915 DI 10.2514/1.41355 PG 12 WC Engineering, Aerospace SC Engineering GA 591JN UT WOS:000277296600004 ER PT J AU Samanta, A Appelo, D Colonius, T Nott, J Hall, J AF Samanta, Arnab Appeloe, Daniel Colonius, Tim Nott, Julian Hall, Jeffrey TI Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA Balloon Systems Conference CY MAY 04-09, 2009 CL Seattle, WA SP AIAA ID IMMERSED BOUNDARY METHOD AB Computational models are developed to predict the natural convection heat transfer and buoyancy for a Montgolfiere under conditions relevant to the Titan atmosphere. Idealized single- and double-walled balloon geometries are simulated using algorithms suitable for both laminar and (averaged) turbulent convection. Steady-state performance results are compared with existing heat transfer coefficient correlations. The laminar results, in particular, are used to test the validity of the correlations in the absence of uncertainties associated with turbulence modeling. Some discrepancies are observed, which appear to he primarily associated with temperature non-uniformity on the balloon surface. The predicted buoyancy for both the single- and double-walled balloons in the turbulent convection regime, predicted with standard two-equation turbulence models, showed trends similar to those with the empirical correlations. There was also good agreement with recently conducted experiments in a cryogenic facility designed to simulate the Titan atmosphere. C1 [Samanta, Arnab; Colonius, Tim] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Nott, Julian] Nott Technol LLC, Santa Barbara, CA 93101 USA. [Hall, Jeffrey] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA. RP Samanta, A (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. NR 10 TC 9 Z9 9 U1 1 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAY PY 2010 VL 48 IS 5 BP 1007 EP 1016 DI 10.2514/1.45854 PG 10 WC Engineering, Aerospace SC Engineering GA 591JN UT WOS:000277296600013 ER PT J AU El-Gabry, L Heidmann, J Ameri, A AF El-Gabry, Lamyaa Heidmann, James Ameri, Ali TI Penetration Characteristics of Film-Cooling Jets at High Blowing Ratio SO AIAA JOURNAL LA English DT Article ID TURBINE C1 [El-Gabry, Lamyaa] Amer Univ Cairo, New Cairo 11835, Egypt. [Heidmann, James] NASA, John H Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. [Ameri, Ali] Ohio State Univ, Columbus, OH 43210 USA. RP El-Gabry, L (reprint author), Amer Univ Cairo, New Cairo 11835, Egypt. FU NASA FX The authors would like to acknowledge the cooperation of David Bogard of the University of Texas at Austin for providing the test data used in the comparisons throughout this paper. The first author would also like to thank the NASA Glenn Faculty Fellowship Program for support of this research. NR 11 TC 3 Z9 3 U1 2 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD MAY PY 2010 VL 48 IS 5 BP 1020 EP 1024 DI 10.2514/1.42611 PG 5 WC Engineering, Aerospace SC Engineering GA 591JN UT WOS:000277296600015 ER PT J AU Woo, R AF Woo, Richard TI Revealing the True Solar Corona Imaging may have inadvertently led astrophysicists astray in understanding the Sun SO AMERICAN SCIENTIST LA English DT Article ID FILAMENTARY STRUCTURES; IMAGES; WIND; SUN C1 CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Woo, R (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM richard.woo@jpl.nasa.gov NR 26 TC 3 Z9 3 U1 0 U2 2 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD MAY-JUN PY 2010 VL 98 IS 3 BP 212 EP 219 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583YE UT WOS:000276715600019 ER PT J AU Probst, A Vaishampayan, P Osman, S Moissl-Eichinger, C Andersen, GL Venkateswaran, K AF Probst, Alexander Vaishampayan, Parag Osman, Shariff Moissl-Eichinger, Christine Andersen, Gary L. Venkateswaran, Kasthuri TI Diversity of Anaerobic Microbes in Spacecraft Assembly Clean Rooms SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ENRICHMENT CULTURES; ENVIRONMENTS; MICROARRAY; IDENTIFICATION; COMMUNITIES; CULTIVATION; RESISTANCE; BACTERIA; FACILITY; UNIFRAC AB Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities. C1 [Probst, Alexander; Vaishampayan, Parag; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Osman, Shariff; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [Moissl-Eichinger, Christine] Univ Regensburg, Lehrstuhl Mikrobiol, D-93053 Regensburg, Germany. [Moissl-Eichinger, Christine] Univ Regensburg, Archaeenzentrum, D-93053 Regensburg, Germany. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-2,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Moissl-Eichinger, Christine/A-6682-2015; Andersen, Gary/G-2792-2015 OI Moissl-Eichinger, Christine/0000-0001-6755-6263; Andersen, Gary/0000-0002-1618-9827 FU National Aeronautics and Space Administration; Mars Program Office at the JPL FX The research described in this publication was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by the Mars Program Office at the JPL.; We are grateful to K. Buxbaum for funding, to J. A. Spry for proofreading and critique of the manuscript, to S. Foster for editing, and to all of the members of the JPL Biotechnology and Planetary Protection Group for technical assistance. We especially thank Wayne Schubert for assistance and maintenance of the anaerobic glove box and J. Nick Benardini for sampling MSL components and assembly facilities. We are also grateful to Todd DeSantis at Lawrence Berkeley National Laboratory for his input on PhyloChip analysis and for use of the Greengenes suite of molecular analysis tools (http://greengenes.lbl.gov). NR 42 TC 28 Z9 28 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2010 VL 76 IS 9 BP 2837 EP 2845 DI 10.1128/AEM.02167-09 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 586KP UT WOS:000276907400019 PM 20228115 ER PT J AU Wagstaff, KL Corsetti, FA AF Wagstaff, Kiri L. Corsetti, Frank A. TI An Evaluation of Information-Theoretic Methods for Detecting Structural Microbial Biosignatures SO ASTROBIOLOGY LA English DT Article DE Biosignatures; Stromatolites; gzip; Compression ID SEDIMENTARY STRUCTURES; MATHEMATICAL-THEORY; WRINKLE STRUCTURES; FOSSIL RECORD; STROMATOLITES; COMMUNICATION; COMPRESSION; MODEL; LIFE AB The first observations of extraterrestrial environments will most likely be in the form of digital images. Given an image of a rock that contains layered structures, is it possible to determine whether the layers were created by life (biogenic)? While conclusive judgments about biogenicity are unlikely to be made solely on the basis of image features, an initial assessment of the importance of a given sample can inform decisions about follow-up searches for other types of possible biosignatures (e.g., isotopic or chemical analysis). In this study, we evaluated several quantitative measures that capture the degree of complexity in visible structures, in terms of compressibility (to detect order) and the entropy (spread) of their intensity distributions. Computing complexity inside a sliding analysis window yields a map of each of these features that indicates how they vary spatially across the sample. We conducted experiments on both biogenic and abiogenic terrestrial stromatolites and on laminated structures found on Mars. The degree to which each feature separated biogenic from abiogenic samples (separability) was assessed quantitatively. None of the techniques provided a consistent, statistically significant distinction between all biogenic and abiogenic samples. However, the PNG compression ratio provided the strongest distinction (2.80 in standard deviation units) and could inform future techniques. Increasing the analysis window size or the magnification level, or both, improved the separability of the samples. Finally, data from all four Mars samples plotted well outside the biogenic field suggested by the PNG analyses, although we caution against a direct comparison of terrestrial stromatolites and martian non-stromatolites. C1 [Wagstaff, Kiri L.] CALTECH, Jet Prop Lab, Machine Learning & Instrument Auton Grp, Pasadena, CA 91109 USA. [Corsetti, Frank A.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. RP Wagstaff, KL (reprint author), CALTECH, Jet Prop Lab, Machine Learning & Instrument Auton Grp, 4800 Oak Grove Dr,Mail Stop 306-463, Pasadena, CA 91109 USA. EM kiri.wagstaff@jpl.nasa.gov OI Wagstaff, Kiri/0000-0003-4401-5506 FU NASA; Jet Propulsion Laboratory, California Institute of Technology, NASA FX We thank Dr. John Spear for allowing us to analyze the Artichoke stromatolite, Dr. Will Berelson for discussion of the Artichoke stromatolite, Dr. Stanley Awramik and Dr. David Pierce for access to the Bitter Springs stromatolite, and Dr. David Wolpert for several discussions about the use of self-dissimilarity for biogenicity analysis. Dr. David Bottjer and Dr. Ken Nealson provided discussion and insight during the course of this work. We are also grateful to three anonymous reviewers for helping us improve the manuscript, specifically in enumerating the drawbacks of entropy-based analysis for the purposes of biogenicity estimation. This work was partly funded by a NASA Exobiology Program grant and by an internal R&TD grant from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 34 TC 4 Z9 4 U1 1 U2 13 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2010 VL 10 IS 4 BP 363 EP 379 DI 10.1089/ast.2008.0301 PG 17 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 607YX UT WOS:000278544300001 PM 20528192 ER PT J AU Oehler, DZ Robert, F Walter, MR Sugitani, K Meibom, A Mostefaoui, S Gibson, EK AF Oehler, Dorothy Z. Robert, Francois Walter, Malcolm R. Sugitani, Kenichiro Meibom, Anders Mostefaoui, Smail Gibson, Everett K. TI Diversity in the Archean Biosphere: New Insights from NanoSIMS SO ASTROBIOLOGY LA English DT Article DE NanoSIMS; Archean; Pilbara; Organic microfossil; Spindle; Microstructure; Early evolution; Farrel Quartzite ID BLUE-GREEN-ALGAE; WESTERN-AUSTRALIA; PILBARA CRATON; PUTATIVE MICROFOSSILS; TRANSVAAL SUPERGROUP; MOLECULAR FOSSILS; SOUTH-AFRICA; LIFE; STROMATOLITES; CHERTS AB The origin of organic microstructures in the similar to 3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide similar to 3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least similar to 3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry. C1 [Oehler, Dorothy Z.; Gibson, Everett K.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Robert, Francois; Meibom, Anders; Mostefaoui, Smail] Museum Natl Hist Nat, LMCM, F-75231 Paris, France. [Walter, Malcolm R.] Univ New S Wales, Australian Ctr Astrobiol, Kensington, NSW 2033, Australia. [Sugitani, Kenichiro] Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan. RP Oehler, DZ (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy.z.oehler@nasa.gov FU Astromaterials Research and Exploration Science Directorate at NASA Johnson Space Center; Australian Centre for Astrobiology; Department of Environmental Engineering and Architecture in the Graduate School of Environmental Studies, Nagoya University; Centre National de la Recherche Scientifique (CNRS); Japan Society for the Promotion of Science [19340150]; Region Ile de France; Ministere delegue a l'Enseignement superieur et a la Recherche FX We are grateful for the support of the Astromaterials Research and Exploration Science Directorate at NASA Johnson Space Center; the Australian Centre for Astrobiology; the Department of Environmental Engineering and Architecture in the Graduate School of Environmental Studies, Nagoya University; and the Centre National de la Recherche Scientifique (CNRS). Doctor L. Remusat (Laboratoire d'Etude de la Matiere Extraterrestre, CNRS) assisted with image-processing software. This work was additionally supported by a PNP grant from the CNRS to F. R. and a NASA Exobiology and Evolutionary Biology Grant to E. K. G. and D.O. Financial support to K. S. from the Japan Society for the Promotion of Science (the Joint Research Program, Japan-Australia and a grant-in-aid, No. 19340150) is gratefully acknowledged. The National NanoSIMS facility at the Museum National d'Histoire Naturelle was established by funds from the CNRS, Region Ile de France, Ministere delegue a l'Enseignement superieur et a la Recherche, and the Museum itself. NR 55 TC 30 Z9 31 U1 3 U2 20 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2010 VL 10 IS 4 BP 413 EP 424 DI 10.1089/ast.2009.0426 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 607YX UT WOS:000278544300005 PM 20528196 ER PT J AU Stalport, F Guan, YY Coll, P Szopa, C Macari, F Raulin, F Chaput, D Cottin, H AF Stalport, Fabien Guan, Yuan Yong Coll, Patrice Szopa, Cyril Macari, Frederique Raulin, Francois Chaput, Didier Cottin, Herve TI UVolution, a Photochemistry Experiment in Low Earth Orbit: Investigation of the Photostability of Carboxylic Acids Exposed to Mars Surface UV Radiation Conditions SO ASTROBIOLOGY LA English DT Article DE Space mission; Mars; Astrobiology; UV radiation; Organic matter ID CARBONACEOUS ANTARCTIC MICROMETEORITES; SIMULATED MARTIAN CONDITIONS; ORGANIC-COMPOUNDS; AMINO-ACIDS; ULTRAVIOLET-RADIATION; ATMOSPHERE; SEARCH; LIFE; DEGRADATION; METEORITES AB The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer. C1 [Stalport, Fabien] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 07, CNRS, UMR 7583, LISA, Creteil, France. [Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 12, CNRS, UMR 7583, LISA, Creteil, France. [Szopa, Cyril] Univ Paris 06, UPMC, Paris, France. [Szopa, Cyril] Univ Versailles St Quentin, Paris, France. [Szopa, Cyril] CNRS INSU, LATMOS IPSL, Paris, France. [Chaput, Didier] Ctr Natl Etud Spatiales, F-31055 Toulouse, France. RP Stalport, F (reprint author), NASA, Goddard Space Flight Ctr, Code 699,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Fabien.Stalport@lisa.univ-paris12.fr RI Cottin, Herve/H-5654-2013; szopa, cyril/C-6865-2015 OI Cottin, Herve/0000-0001-9170-5265; szopa, cyril/0000-0002-0090-4056 FU ESA; CNES; French Program for Planetology (PNP); COMAT aerospace (Toulouse, France); Kayser Threde (Munchen, Germany) FX This program has been selected by ESA in the frame of the AO Life and Physical Sciences and Applied Research Projects 2004. The authors would like to acknowledge the support of ESA (especially Rene Demets), CNES (especially Michel Viso for the human, financial, and technical support), French Program for Planetology (PNP), COMAT aerospace (Toulouse, France), and Kayser Threde (Munchen, Germany). The authors also acknowledge the reviewers and Daniel Glavin for helpful comments. NR 44 TC 16 Z9 16 U1 1 U2 17 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2010 VL 10 IS 4 BP 449 EP 461 DI 10.1089/ast.2009.0413 PG 13 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 607YX UT WOS:000278544300008 PM 20528199 ER PT J AU Lanyi, GE Boboltz, DA Charlot, P Fey, AL Fomalont, EB Geldzahler, BJ Gordon, D Jacobs, CS Ma, C Naudet, CJ Romney, JD Sovers, OJ Zhang, LD AF Lanyi, G. E. Boboltz, D. A. Charlot, P. Fey, A. L. Fomalont, E. B. Geldzahler, B. J. Gordon, D. Jacobs, C. S. Ma, C. Naudet, C. J. Romney, J. D. Sovers, O. J. Zhang, L. D. TI THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; catalogs; quasars: general; radio continuum: galaxies; reference systems; techniques: interferometric ID BASE-LINE INTERFEROMETRY; RADIO INTERFEROMETRY; SERVICE; SYSTEM; DELAY; VLBI AB We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08 and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs. C1 [Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.; Sovers, O. J.; Zhang, L. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boboltz, D. A.; Fey, A. L.] USN Observ, Washington, DC 20392 USA. [Charlot, P.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Charlot, P.] CNRS, UMR 5804, Lab Astrophys Bordeaux, F-33271 Floirac, France. [Fomalont, E. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Geldzahler, B. J.] NASA, Washington, DC 20546 USA. [Gordon, D.] NASA, Goddard Space Flight Ctr, NVI Inc, Greenbelt, MD 20771 USA. [Romney, J. D.] Natl Radio Astron Observ, Socorro, NM 87801 USA. RP Lanyi, GE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ma, Chopo/D-4751-2012 FU NASA; California Institute of Technology; United States Naval Observatory (USNO); NSF; NRAO FX This research was partly supported by NASA contracts, including contracts between NASA and the California Institute of Technology, and the United States Naval Observatory (USNO). The research has also made use of the USNO Radio Reference Frame Image Database (RRFID). VLBA instrumental allocation is supported by NSF, and the authors appreciate the support of the NRAO staff. We wish to express our respect to the late George M. Resch who was an initiator of this endeavor. NR 33 TC 18 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2010 VL 139 IS 5 BP 1695 EP 1712 DI 10.1088/0004-6256/139/5/1695 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581HV UT WOS:000276513700001 ER PT J AU Charlot, P Boboltz, DA Fey, AL Fomalont, EB Geldzahler, BJ Gordon, D Jacobs, CS Lanyi, GE Ma, C Naudet, CJ Romney, JD Sovers, OJ Zhang, LD AF Charlot, P. Boboltz, D. A. Fey, A. L. Fomalont, E. B. Geldzahler, B. J. Gordon, D. Jacobs, C. S. Lanyi, G. E. Ma, C. Naudet, C. J. Romney, J. D. Sovers, O. J. Zhang, L. D. TI THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; quasars: general; radio continuum: galaxies; surveys ID BASE-LINE INTERFEROMETRY; HIGH RADIO FREQUENCIES; VLBA OBSERVATIONS; ASTROMETRIC SUITABILITY; JETS; AGN AB We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of similar to 5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability. A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade. C1 [Charlot, P.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Charlot, P.] CNRS, UMR 5804, Lab Astrophys Bordeaux, F-33271 Floirac, France. [Boboltz, D. A.; Fey, A. L.] USN Observ, Washington, DC 20392 USA. [Fomalont, E. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Geldzahler, B. J.] NASA, Washington, DC 20546 USA. [Gordon, D.] NASA, Goddard Space Flight Ctr, NVI Inc, Greenbelt, MD 20771 USA. [Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.; Zhang, L. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Romney, J. D.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Sovers, O. J.] Remote Sensing Anal Syst, Altadena, CA 91001 USA. RP Charlot, P (reprint author), Univ Bordeaux, Observ Aquitain Sci Univers, BP 89, F-33271 Floirac, France. RI Ma, Chopo/D-4751-2012 FU NASA; California Institute of Technology; U.S. Naval Observatory FX This research was partially supported through NASA contracts with the California Institute of Technology and the U.S. Naval Observatory. This research made use of the USNO Radio Reference Frame Image Database (RRFID). NR 23 TC 17 Z9 17 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2010 VL 139 IS 5 BP 1713 EP 1770 DI 10.1088/0004-6256/139/5/1713 PG 58 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581HV UT WOS:000276513700002 ER PT J AU Surdej, J Delacroix, C Coleman, P Dominik, M Habraken, S Hanot, C Le Coroller, H Mawet, D Quintana, H Sadibekova, T Sluse, D AF Surdej, J. Delacroix, C. Coleman, P. Dominik, M. Habraken, S. Hanot, C. Le Coroller, H. Mawet, D. Quintana, H. Sadibekova, T. Sluse, D. TI THE OPTIMAL GRAVITATIONAL LENS TELESCOPE SO ASTRONOMICAL JOURNAL LA English DT Article DE gravitational lensing: strong; methods: laboratory; quasars: general; techniques: high angular resolution ID MAXIMUM-ENTROPY METHOD; INVERSION; RECONSTRUCTION; NEBULAE AB Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster,...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach. C1 [Surdej, J.; Hanot, C.; Sadibekova, T.] Univ Liege, Dept Astrophys Geophys & Oceanog, AEOS Grp, B-4000 Liege, Belgium. [Delacroix, C.; Habraken, S.] Univ Liege, Dept Phys, Hololab Grp, B-4000 Liege, Belgium. [Coleman, P.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Dominik, M.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Le Coroller, H.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Mawet, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Quintana, H.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, CL-22 Santiago, Chile. [Sluse, D.] Heidelberg Univ, Astron Rech Inst, D-69120 Heidelberg, Germany. [Sluse, D.] Heidelberg Univ, Zentrum Astron, D-69120 Heidelberg, Germany. RP Surdej, J (reprint author), Univ Liege, Dept Astrophys Geophys & Oceanog, AEOS Grp, Allee 6,Aout 17, B-4000 Liege, Belgium. EM surdej@astro.ulg.ac.be OI Dominik, Martin/0000-0002-3202-0343; Delacroix, Christian/0000-0003-0150-4430 FU Communaute francaise de Belgique-Actions de recherche concertees-Academie Universitaire Wallonie-Europe; Humboldt Fellowship; Belgian F.R.S.-FNRS; Liege University; FONDAP Centro de Astrofisica FX The authors wish to dedicate the present work to the memory of Prof. Sjur Refsdal (1935-2009) who has been a pioneer in the field of gravitational lensing theory. Sjur Refsdal has also been a very keen friend and collaborator. The authors from the Liege University acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie Universitaire Wallonie-Europe and thank the Faculty of Sciences (Liege University), in particular Prof. J.-M. Bouquegneau, for making a mass production of gravitational lens simulators possible. D. S. acknowledges the support of a Humboldt Fellowship and H. Q. acknowledges partial support from the Belgian F.R.S.-FNRS during his sabbatical stay in the Liege University and the FONDAP Centro de Astrofisica. NR 15 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2010 VL 139 IS 5 BP 1935 EP 1941 DI 10.1088/0004-6256/139/5/1935 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581HV UT WOS:000276513700016 ER PT J AU Kastner, JH Buchanan, C Sahai, R Forrest, WJ Sargent, BA AF Kastner, Joel H. Buchanan, Catherine Sahai, Raghvendra Forrest, William J. Sargent, Benjamin A. TI THE DUSTY CIRCUMSTELLAR DISKS OF B[e] SUPERGIANTS IN THE MAGELLANIC CLOUDS SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; Magellanic Clouds; stars: early-type; stars: emission-line, Be; supergiants ID SPITZER-SPACE-TELESCOPE; MU-M SOURCES; HERBIG AE/BE STARS; WOLF-RAYET STARS; POST-AGB STARS; ABSOLUTE CALIBRATION; PROTOPLANETARY DISKS; MASSIVE STARS; CLASSIFICATION; EVOLUTION AB To better ascertain the nature of the infrared excesses that are characteristic of B[e] supergiants, we obtained Spitzer IRS spectroscopy and IRAC/MIPS imaging for a sample of nine B[e] supergiant stars in the Magellanic Clouds. We find that all nine stars display mid- to far-IR spectral and spatial characteristics indicative of the presence of circumstellar dust disks. Several of the sample B[e] supergiants display crystalline silicate features in their IRS spectra, consistent with grain processing in long-lived (i.e., orbiting) disks. Although it is possible that these disks are primordial in origin, large shell structures (with size scales of tens of parsec) are associated with five of the nine B[e] supergiants, suggesting that mass loss has provided the circumstellar material now orbiting these stars. Hence-via analogy to the class of post-asymptotic giant branch stars with binary companions and dusty, circumbinary disks-we speculate that B[e] supergiant stars may be post-red supergiants in binary systems with orbiting, circumbinary disks that are derived from post-main-sequence mass loss. C1 [Kastner, Joel H.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Buchanan, Catherine] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Sahai, Raghvendra] NASA, JPL, Pasadena, CA USA. [Forrest, William J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Sargent, Benjamin A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Kastner, JH (reprint author), Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA. EM jhk@cis.rit.edu; clb@unimelb.edu.au FU JPL/Caltech Spitzer Space Telescope General Observer grants [NMO710076/1287901, NMO710076/1301044]; NASA [NMO710651, 399.20.40.06, 399.20.00.08] FX Support for this research was provided by JPL/Caltech Spitzer Space Telescope General Observer grants NMO710076/1287901 and NMO710076/1301044 to RIT. R. S. acknowledges additional support from NASA Long Term Space Astrophysics and Astrophysics Data Analysis grants (NMO710651, 399.20.40.06, and 399.20.00.08, respectively). NR 51 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2010 VL 139 IS 5 BP 1993 EP 2002 DI 10.1088/0004-6256/139/5/1993 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581HV UT WOS:000276513700021 ER PT J AU Fletcher, LN Drossart, P Burgdorf, M Orton, GS Encrenaz, T AF Fletcher, L. N. Drossart, P. Burgdorf, M. Orton, G. S. Encrenaz, T. TI Neptune's atmospheric composition from AKARI infrared spectroscopy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: individual: Neptune; infrared: planetary systems; techniques: spectroscopic; planets and satellites: atmospheres; planets and satellites: composition ID GIANT PLANETS; SOLAR-SYSTEM; ISO SPECTRA; MU-M; URANUS; CONSTRAINTS; METHANE; SATURN; ABUNDANCE; CO AB Aims. Disk-averaged infrared spectra of Neptune between 1.8 and 13 mu m, obtained by the AKARI infrared camera (IRC) in May 2007, have been analysed to (a) determine the globally-averaged stratospheric temperature structure; (b) derive the abundances of stratospheric hydrocarbons; and (c) detect fluorescent emission from CO at 4.7 mu m. Methods. Mid-infrared spectra (SG1 and SG2 channels of AKARI/IRC), with spectral resolutions of 47 and 34 respectively, were modelled using a line-by-line radiative transfer code to determine the temperature structure between 1-1000 mu bar and the abundances of CH4, CH3D and higher-order hydrocarbons. A full non-LTE radiative model was then used to determine the best fitting CO profile to reproduce the fluorescent emission observed at 4.7 mu m in the NG channel (with a spectral resolution of 135). Results. The globally-averaged stratospheric temperature structure is quasi-isothermal between 1-1000 mu bar, which suggests little variation in global stratospheric conditions since studies by the Infrared Space Observatory a decade earlier. The derived CH4 mole fraction of (9.0 +/- 3.0) x 10(-4) at 50 mbar, decreasing to (0.9 +/- 0.3) x 10(-4) at 1 mu bar, is larger than that expected if the tropopause at 56 K acts as an efficient cold trap, but consistent with the hypothesis that CH4 leaking through the warm south polar tropopause (62-66 K) is globally redistributed by stratospheric motion. The ratio of D/H in CH4 of 3.0 +/- 1.0 x 10(-4) supports the conclusion that Neptune is enriched in deuterium relative to the other giant planets. We determine a mole fraction of ethane of (8.5 +/- 2.1) x 10(-7) at 0.3 mbar, consistent with previous studies, and a mole fraction of ethylene of 5.0(-2.1)(+ 1.8) x 10(-7) at 2.8 mu bar. An emission peak at 4.7 mu m is interpreted as a fluorescent emission of CO, and requires a vertical distribution with both external and internal sources of CO. Finally, comparisons to previous L-band studies indicate significant variability of Neptune's flux densities in the 3.5-4.1 mu m range, related to changes in solar energy deposition. C1 [Fletcher, L. N.; Orton, G. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fletcher, L. N.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Drossart, P.; Encrenaz, T.] Univ Paris Diderot, LESIA, Observ Paris, UPMC, F-92195 Meudon, France. [Burgdorf, M.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Deutsch SOFIA Inst, Moffett Field, CA 94035 USA. RP Fletcher, LN (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU NASA, Jet Propulsion Laboratory FX This work is based on observations with AKARI, a JAXA project with the participation of ESA. Fletcher was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Orton carried out part of this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 44 TC 31 Z9 31 U1 2 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2010 VL 514 AR A17 DI 10.1051/0004-6361/200913358 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592VL UT WOS:000277409200017 ER PT J AU Heller, R Jackson, B Barnes, R Greenberg, R Homeier, D AF Heller, R. Jackson, B. Barnes, R. Greenberg, R. Homeier, D. TI Tidal effects on brown dwarfs: application to the eclipsing binary 2MASSJ05352184-0546085 The anomalous temperature reversal in the context of tidal heating SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE celestial mechanics; binaries: eclipsing; stars: evolution; stars: individual: 2MASSJ05352184-0546085; brown dwarfs ID LOW-MASS STARS; EXTRASOLAR PLANETARY SYSTEMS; 2MASS J05352184-0546085; GIANT PLANETS; EVOLUTIONARY MODELS; DYNAMICAL EVOLUTION; HOT JUPITERS; DISSIPATION; SPIN; ATMOSPHERES AB Context. 2MASS J05352184-0546085 (2M0535-05) is the only known eclipsing brown dwarf (BD) binary, and so may serve as a benchmark for models of BD formation and evolution. However, theoretical predictions of the system's properties seem inconsistent with observations: i) the more massive (primary) component is observed to be cooler than the less massive (secondary) one; ii) the secondary is more luminous (by approximate to 10(24) W) than expected. Previous explanations for the temperature reversal have invoked reduced convective efficiency in the structure of the primary, connected to magnetic activity and to surface spots, but these explanations cannot account for the enhanced luminosity of the secondary. Previous studies also considered the possibility that the secondary is younger than the primary. Aims. We study the impact of tidal heating to the energy budget of both components to determine if it can account for the observed temperature reversal and the high luminosity of the secondary. We also compare various plausible tidal models to determine a range of predicted properties. Methods. We apply two versions of two different, well-known models for tidal interaction, respectively: i) the "constant-phase-lag" model; and ii) the "constant-time-lag" model and incorporate the predicted tidal heating into a model of BD structure. The four models differ in their assumptions about the rotational behavior of the bodies, the system's eccentricity and putative misalignments psi between the bodies' equatorial planes and the orbital plane of the system. Results. The contribution of heat from tides in 2M0535-05 alone may only be large enough to account for the discrepancies between observation and theory in an unlikely region of the parameter space. The tidal quality factor Q(BD) of BDs would have to be 10(3.5) and the secondary needs a spin-orbit misalignment of greater than or similar to 50 degrees. However, tidal synchronization time scales for 2M0535-05 restrict the tidal dissipation function to log(Q(BD)) greater than or similar to 4.5 and rule out intense tidal heating in 2M0535-05. We provide the first constraint on Q for BDs. Conclusions. Tidal heating alone is unlikely to be responsible for the surprising temperature reversal within 2M0535-05. But an evolutionary embedment of tidal effects and a coupled treatment with the structural evolution of the BDs is necessary to corroborate or refute this result. The heating could have slowed down the BDs' shrinking and cooling processes after the birth of the system approximate to 1 Myr ago, leading to a feedback between tidal inflation and tidal heating. Observations of old BD binaries and measurements of the Rossiter-McLaughlin effect for 2M0535-05 can provide further constraints on Q(BD). C1 [Heller, R.] Hamburger Sternwarte Univ Hamburg, D-21029 Hamburg, Germany. [Jackson, B.; Greenberg, R.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Barnes, R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Barnes, R.] NASA, Virtual Planetary Lab, Washington, DC USA. [Homeier, D.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. RP Heller, R (reprint author), Hamburger Sternwarte Univ Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM rheller@hs.uni-hamburg.de; bjackson@lpl.arizona.edu; rory@astro.washington.edu; greenber@lpl.arizona.edu; derek@astro.physik.uni-goettingen.de FU DFG [1351]; NASA [NNH05ZDA001] FX Our sincere thanks go to J.L. Bean for initiating this collaboration. The advice of S. Dreizler on the computations of the RM effect and inspirations from A. Reiners on 2M0535-05 and BDs in general have been a valuable stimulation to this study. We acknowledge the help of Y.G.M. Chew and K. G. Stassun on the parametrization of the 2M0535-05 BD binary and we appreciate the contribution from Baraffe to the modeling of the BDs' structures. The referee Jean-Paul Zahn deserves our honest gratitude for his crucial remark on the tidal synchronization time scale. R. Heller is supported by a PhD scholarship of the DFG Graduiertenkolleg 1351 "Extrasolar Planets and their Host Stars". R. Barnes acknowledges funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under Cooperative Agreement No. NNH05ZDA001C. R. Greenberg, B. Jackson, and R. Barnes were also supported by a grant from NASA's Planetary Geology and Geophysics program. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 58 TC 7 Z9 7 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2010 VL 514 AR A22 DI 10.1051/0004-6361/200912826 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592VL UT WOS:000277409200022 ER PT J AU Kuulkers, E Zand, JJMI Atteia, JL Levine, AM Brandt, S Smith, DA Linares, M Falanga, M Sanchez-Fernandez, C Markwardt, CB Strohmayer, TE Cumming, A Suzuki, M AF Kuulkers, E. Zand, J. J. M. in ' t Atteia, J. -L. Levine, A. M. Brandt, S. Smith, D. A. Linares, M. Falanga, M. Sanchez-Fernandez, C. Markwardt, C. B. Strohmayer, T. E. Cumming, A. Suzuki, M. TI What ignites on the neutron star of 4U 0614+091? SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; binaries: close; stars: individual: 4U 0614+091; stars: neutron; X-rays: binaries; X-rays: bursts ID X-RAY-BURSTS; FIELD CAMERAS OBSERVATIONS; RICH DEGENERATE DONORS; IN-FLIGHT PERFORMANCE; TIMING-EXPLORER; BINARY 4U-0614+091; ALERT TELESCOPE; BEPPOSAX; MISSION; SUPERBURST AB The low-mass X-ray binary 4U0614+091 is a source of sporadic thermonuclear (type I) X-ray bursts. We find bursts with a wide variety of characteristics in serendipitous wide-field X-ray observations by the WATCH on EURECA, the ASMon RXTE, the WFCs on BeppoSAX, the FREGATE on HETE-2, the IBIS/ISGRI on INTEGRAL, and the BAT on Swift, as well as pointed observations with the PCA and HEXTE on RXTE. Most of the bursts are bright, i.e., they reach a peak flux of about 15 Crab, but a few are weak and only reach a peak flux below a Crab. One of the bursts shows a very strong photospheric radius-expansion phase. This allows us to evaluate the distance to the source, which we estimate to be 3.2 kpc. The burst durations vary generally from about 10 s to 5 min. However, after one of the intermediate-duration bursts, a faint tail is seen to at least about 2.4 h after the start of the burst. One very long burst was observed, which lasted for several hours. This superburst candidate was followed by a normal type-I burst only 19 days later. This is, to our knowledge, the shortest burst-quench time among the superbursters. The observation of a superburst in this system is difficult to reconcile if the system is accreting at about 1% of the Eddington limit. We describe the burst properties in relation to the persistent emission. No strong correlations are apparent, except that the intermediate-duration bursts occurred when 4U0614+091' s persistent emission was lowest and calm, and when bursts were infrequent (on average roughly one every month to 3 months). The average burst rate increased significantly after this period. The maximum average burst recurrence rate is about once every week to 2 weeks. The burst behaviour may be partly understood if there is at least an appreciable amount of helium present in the accreted material from the donor star. If the system is an ultra-compact X-ray binary with a CO white-dwarf donor, as has been suggested, this is unexpected. If the bursts are powered by helium, we find that the energy production per accumulated mass is about 2.5 times less than expected for pure helium matter. C1 [Kuulkers, E.; Sanchez-Fernandez, C.] ESA, European Space Astron Ctr, ISOC, Villanueva De La Canada 28691, Madrid, Spain. [Zand, J. J. M. in ' t] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Atteia, J. -L.] Univ Toulouse 3, Lab Astrophys Toulouse Tarbes, Observ Midi Pyrenees, CNRS,UMR5572, F-31400 Toulouse, France. [Levine, A. M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Brandt, S.] DTU, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Smith, D. A.] Guilford Coll, Dept Phys, Greensboro, NC 27410 USA. [Linares, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Linares, M.] Ctr High Energy Astrophys, NL-1090 GE Amsterdam, Netherlands. [Falanga, M.] Int Space Sci Inst, CH-3012 Bern, Switzerland. [Markwardt, C. B.] UMD CRESST GSFC, Greenbelt, MD 20771 USA. [Strohmayer, T. E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cumming, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Suzuki, M.] JAXA, ISS Sci Project Off ISAS, Tsukuba, Ibaraki 3058505, Japan. RP Kuulkers, E (reprint author), ESA, European Space Astron Ctr, ISOC, POB 78, Villanueva De La Canada 28691, Madrid, Spain. EM Erik.Kuulkers@esa.int RI Cumming, Andrew/A-6082-2013 OI Cumming, Andrew/0000-0002-6335-0169 FU ESA; NSERC; Canadian Institute for Advanced Research (CIFAR) FX Partly based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. The RXTE/ASM dwell average results are provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA's GSFC. The Swift/BAT transient monitor results are provided by the Swift/BAT team. We thank Jean Swank and Lucien Kuiper for discussions regarding the bursts seen with OSO-8 and in 2005 with INTEGRAL, respectively. EK thanks Andy Pollock for discussion regarding the burst recurrence times and small-number statistics. S.B. was partly supported by the Danish Space Board. A.C. acknowledges support from an NSERC Discovery Grant and the Canadian Institute for Advanced Research (CIFAR). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 118 TC 31 Z9 31 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2010 VL 514 AR A65 DI 10.1051/0004-6361/200913210 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LQ UT WOS:000280504800032 ER PT J AU Schuck, PW AF Schuck, P. W. TI THE PHOTOSPHERIC ENERGY AND HELICITY BUDGETS OF THE FLUX-INJECTION HYPOTHESIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: photosphere; Sun: surface magnetism ID CORONAL MASS EJECTIONS; KINEMATIC EVOLUTION; MAGNETIC HELICITY; ROPE MODEL; QUIET SUN; FLARES; ACCELERATION; LASCO; DYNAMICS; NETWORK AB The flux-injection hypothesis for driving coronal mass ejections (CMEs) requires the transport of substantial magnetic energy and helicity flux through the photosphere concomitant with the eruption. Under the magnetohydrodynamics approximation, these fluxes are produced by twisting magnetic field and/or flux emergence in the photosphere. A CME trajectory, observed 2000 September 12 and fitted with a flux-rope model, constrains energy and helicity budgets for testing the flux-injection hypothesis. Optimal velocity profiles for several driving scenarios are estimated by minimizing the photospheric plasma velocities for a cylindrically symmetric flux-rope magnetic field subject to the flux budgets required by the flux-rope model. Ideal flux injection, involving only flux emergence, requires hypersonic upflows in excess of the solar escape velocity 617 km s(-1) over an area of 6 x 10(8) km(2) to satisfy the energy and helicity budgets of the flux-rope model. These estimates are compared with magnetic field and Doppler measurements from Solar and Heliospheric Observatory/Michelson Doppler Imager on 2000 September 12 at the footpoints of the CME. The observed Doppler signatures are insufficient to account for the required energy and helicity budgets of the flux-injection hypothesis. C1 NASA, Goddard Space Flight Ctr, Space Weather Lab, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Schuck, PW (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Heliophys Sci Div, Room 250,Bldg 21,Code 674,8801 Greenbelt Rd, Greenbelt, MD 20771 USA. EM peter.schuck@nasa.gov NR 92 TC 7 Z9 7 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 68 EP 88 DI 10.1088/0004-637X/714/1/68 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000006 ER PT J AU Selwa, M Ofman, L AF Selwa, M. Ofman, L. TI THE ROLE OF ACTIVE REGION TOPOLOGY IN EXCITATION, TRAPPING, AND DAMPING OF CORONAL LOOP OSCILLATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: oscillations ID MODE KINK OSCILLATIONS; RESONANT ABSORPTION; TRANSVERSE OSCILLATIONS; NUMERICAL SIMULATIONS; WAVES; TRACE; SEISMOLOGY; PARAMETERS; EIT AB We investigate the role of magnetic field topology in dense coronal loop oscillation by the means of three-dimensional magnetohydrodynamic numerical simulations of two models of idealized active regions (ARs). The first AR model is initialized as a straight cylinder surrounded by the field lines of the same length and orientation. The second model consists of a potential dipole magnetic configuration and contains a loop with a higher density than its surroundings. Dipole field lines have position-dependent length and orientation in contrary to straight ones. We study different ways of excitation of transverse loop oscillations by an external pulse and a nearly eigenmode excitation implemented inside the loop. We find that perturbation acting directly on a single loop excites oscillations both in cylindrical and dipole loops. However, the leakage of the wave energy is larger in a curved loop compared to a straight loop. External excitation of the whole AR is efficient in the excitation of oscillation in the straight field configuration, but results in less efficient excitation in the case of dipole field. We show that excitation of collective motion of straight field lines having the same wave periods and planes of the oscillations requires much less energy than excitation of dipole field lines having position-dependent orientation and wave periods and being excited individually, not having a collective mode of oscillation. We conclude that coherent motion of straight field lines is one of the factors that decrease the energy leakage from an oscillating loop, while individual motions of dipole field lines require more energy from the source to produce the loop oscillations, and also lead to higher damping rate compared to the straight field case. We discuss Transition Region and Coronal Explorer (TRACE) observations of coronal loop oscillations in view of our theoretical findings. We show several examples of time signatures of transversal loop oscillations observed by TRACE that agree with numerical simulations of externally excited oscillations. C1 [Selwa, M.; Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Selwa, M.; Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Selwa, M (reprint author), Univ St Andrews N Haugh, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. EM mselwa@mcs.st-and.ac.uk; Leon.Ofman@nasa.gov FU NASA [NNG06GI55G, NNX09AG10G] FX M. S. expresses her sincere thanks to Dr. Tongjiang Wang for stimulating discussions. This work was financially supported by the NASA SEC Theory program and NASA grants NNG06GI55G and NNX09AG10G. Computer simulations were performed on Columbia supercomputer at NASA Ames Research Center. NR 33 TC 12 Z9 12 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 170 EP 177 DI 10.1088/0004-637X/714/1/170 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000015 ER PT J AU Edmondson, JK Antiochos, SK DeVore, CR Lynch, BJ Zurbuchen, TH AF Edmondson, J. K. Antiochos, S. K. DeVore, C. R. Lynch, B. J. Zurbuchen, T. H. TI INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: magnetic topology; solar wind ID OPEN MAGNETIC-FIELD; HEAT-FLUX DROPOUTS; SOLAR-WIND; MASS EJECTIONS; SUN; EVOLUTION; MODELS; DISCONNECTION; TOPOLOGY; BREAKOUT AB We investigate the effect of magnetic reconnection between open and closed fields, often referred to as "interchange" reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations. C1 [Edmondson, J. K.; Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeVore, C. R.] USN, Res Lab, Washington, DC 20375 USA. [Edmondson, J. K.; Zurbuchen, T. H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48105 USA. [Lynch, B. J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Edmondson, JK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jkedmond@umich.edu RI Antiochos, Spiro/D-4668-2012; Lynch, Benjamin/B-1300-2013; DeVore, C/A-6067-2015; OI Antiochos, Spiro/0000-0003-0176-4312; DeVore, C/0000-0002-4668-591X; Lynch, Benjamin/0000-0001-6886-855X FU NASA FX This work was supported, in part, by the NASA HTP, TR&T, and SR&T Programs, and has benefited greatly from the authors' participation in the NASA TR&T focused science team on the solar-heliospheric magnetic field. All the high performance computing capabilities were provided by the DoD HPCMP. J.K.E. gratefully acknowledges support of a NASA GSRP grant for his PhD research. NR 50 TC 31 Z9 31 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 517 EP 531 DI 10.1088/0004-637X/714/1/517 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000041 ER PT J AU Loewenstein, M Kusenko, A AF Loewenstein, Michael Kusenko, Alexander TI DARK MATTER SEARCH USING CHANDRA OBSERVATIONS OF WILLMAN 1 AND A SPECTRAL FEATURE CONSISTENT WITH A DECAY LINE OF A 5 keV STERILE NEUTRINO SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; galaxies: individual (Willman 1); X-rays: galaxies ID DWARF SPHEROIDAL GALAXY; X-RAY; MILKY-WAY; KINEMATICS; BULGE; MASS; M31; SUPERNOVA; DISCOVERY; PROFILE AB We report the results of a search for an emission line from radiatively decaying dark matter in the Chandra X-ray Observatory spectrum of the ultra-faint dwarf spheroidal galaxy Willman 1. 99% confidence line flux upper limits over the 0.4-7 keV Chandra bandpass are derived and mapped to an allowed region in the sterile neutrino mass-mixing angle plane that is consistent with recent constraints from Suzaku X-ray Observatory and Chandra observations of the Ursa Minor and Draco dwarf spheroidals. A significant excess to the continuum, detected by fitting the particle-background-subtracted source spectrum, indicates the presence of a narrow emission feature with energy 2.51 +/- 0.07(0.11) keV and flux [3.53 +/- 1.95(2.77)] x 10(-6) photons cm(-2) s(-1) at 68% (90%) confidence. Interpreting this as an emission line from sterile neutrino radiative decay, we derive the corresponding allowed range of sterile neutrino mass and mixing angle using two approaches. The first assumes that dark matter is solely composed of sterile neutrinos, and the second relaxes that requirement. The feature is consistent with the sterile neutrino mass of 5.0 +/- 0.2 keV and a mixing angle in a narrow range for which neutrino oscillations can produce all of the dark matter and for which sterile neutrino emission from the cooling neutron stars can explain pulsar kicks, thus bolstering both the statistical and physical significance of our measurement. C1 [Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Kusenko, Alexander] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kusenko, Alexander] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. RP Loewenstein, M (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RI XRAY, SUZAKU/A-1808-2009 FU National Aeronautics and Space Administration [G08-9091X, G09-0090X]; DOE [DE-FG03-91ER40662]; NASA ATFP [NNX08AL48G] FX The authors thank James Bullock and Manoj Kaplinghat for discussions of mass profiles, target selection, and other key issues related to this work; and, the referee for a thorough and constructive report. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award nos. G08-9091X and G09-0090X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The work of A. K. was supported in part by DOE grant DE-FG03-91ER40662 and NASA ATFP grant NNX08AL48G. NR 54 TC 53 Z9 53 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 652 EP 662 DI 10.1088/0004-637X/714/1/652 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000052 ER PT J AU Pandey, SB Swenson, CA Perley, DA Guidorzi, C Wiersema, K Malesani, D Akerlof, C Ashley, MCB Bersier, D Cano, Z Gomboc, A Ilyin, I Jakobsson, P Kleiser, IKW Kobayashi, S Kouveliotou, C Levan, AJ McKay, TA Melandri, A Mottram, CJ Mundell, CG O'Brien, PT Phillips, A Rex, JM Siegel, MH Smith, RJ Steele, IA Stratta, G Tanvir, NR Weights, D Yost, SA Yuan, F Zheng, W AF Pandey, S. B. Swenson, C. A. Perley, D. A. Guidorzi, C. Wiersema, K. Malesani, D. Akerlof, C. Ashley, M. C. B. Bersier, D. Cano, Z. Gomboc, A. Ilyin, I. Jakobsson, P. Kleiser, I. K. W. Kobayashi, S. Kouveliotou, C. Levan, A. J. McKay, T. A. Melandri, A. Mottram, C. J. Mundell, C. G. O'Brien, P. T. Phillips, A. Rex, J. M. Siegel, M. H. Smith, R. J. Steele, I. A. Stratta, G. Tanvir, N. R. Weights, D. Yost, S. A. Yuan, F. Zheng, W. TI GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general ID GAMMA-RAY BURST; LARGE-AREA TELESCOPE; HIGH-ENERGY; FERMI OBSERVATIONS; LIGHT CURVES; SPECTRAL COMPONENT; COMPTON EMISSION; OPTICAL FLASH; SWIFT; 080319B AB The optical-infrared afterglow of the Large Area Telescope (LAT)-detected long-duration burst, GRB 090902B, has been observed by several instruments. The earliest detection by ROTSE-IIIa occurred 80 minutes after detection by the Gamma-ray Burst Monitor instrument on board the Fermi Gamma-Ray Space Telescope, revealing a bright afterglow and a decay slope suggestive of a reverse shock origin. Subsequent optical-IR observations followed the light curve for 6.5 days. The temporal and spectral behavior at optical-infrared frequencies is consistent with synchrotron fireball model predictions; the cooling break lies between optical and XRT frequencies similar to 1.9 days after the burst. The inferred electron energy index is p = 1.8 +/- 0.2, which would however imply an X-ray decay slope flatter than observed. The XRT and LAT data have similar spectral indices and the observed steeper value of the LAT temporal index is marginally consistent with the predicted temporal decay in the radiative regime of the forward shock model. Absence of a jet break during the first 6 days implies a collimation-corrected gamma-ray energy E(gamma) > 2.2 x 10(52) erg, one of the highest ever seen in a long-duration gamma-ray bursts. More events combining GeV photon emission with multiwavelength observations will be required to constrain the nature of the central engine powering these energetic explosions and to explore the correlations between energetic quanta and afterglow emission. C1 [Pandey, S. B.; Akerlof, C.; McKay, T. A.; Yuan, F.; Zheng, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Swenson, C. A.] Penn State Univ, Davey Lab 525, University Pk, PA 16802 USA. [Perley, D. A.; Kleiser, I. K. W.; Rex, J. M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Guidorzi, C.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Wiersema, K.; O'Brien, P. T.; Tanvir, N. R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Ashley, M. C. B.; Phillips, A.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Bersier, D.; Cano, Z.; Kobayashi, S.; Melandri, A.; Mottram, C. J.; Mundell, C. G.; Siegel, M. H.; Smith, R. J.; Steele, I. A.] Liverpool JMU, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Gomboc, A.] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia. [Ilyin, I.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, NSSTC, Huntsville, AL 35805 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Stratta, G.] ASI SDC, I-00044 Frascati, Italy. [Weights, D.] Univ Hertfordshire, Dept Phys Sci, Hatfield AL10 9AB, Herts, England. [Yost, S. A.] Coll St Benedict, Dept Phys, Collegeville, MN 56321 USA. RP Pandey, SB (reprint author), Univ Michigan, Randall Lab Phys, 450 Church St, Ann Arbor, MI 48109 USA. RI McKay, Timothy/C-1501-2009; Jakobsson, Pall/L-9950-2015; Stratta, Maria Giuliana/L-3045-2016 OI McKay, Timothy/0000-0001-9036-6150; Jakobsson, Pall/0000-0002-9404-5650; Stratta, Maria Giuliana/0000-0003-1055-7980 FU NASA [NNX08AV63G]; NSF [PHY-0801007]; DNRF FX This research has made use of the data obtained through the High Energy Astrophysics Science Archive Research Center online service, provided by the NASA/Goddard Space Flight Center. The ROTSE project is supported by the NASA grant NNX08AV63G and the NSF grant PHY-0801007. SBP is temporarily on leave from the Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India. The authors associated with the WHT and the UKIRT acknowledge the Isaac Newton Group of Telescopes at La Palma and the Science and Technology Facilities Council of UK, respectively. DARK is funded by DNRF. We also thank Gabor Furesz for his observations with the NOT. NR 61 TC 30 Z9 30 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 799 EP 804 DI 10.1088/0004-637X/714/1/799 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000063 ER PT J AU Samal, PK Saha, R Delabrouille, J Prunet, S Jain, P Souradeep, T AF Samal, Pramoda Kumar Saha, Rajib Delabrouille, Jacques Prunet, Simon Jain, Pankaj Souradeep, Tarun TI COSMIC MICROWAVE BACKGROUND POLARIZATION AND TEMPERATURE POWER SPECTRA ESTIMATION USING LINEAR COMBINATION OF WMAP 5 YEAR MAPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; methods: data analysis; polarization ID ANISOTROPY-PROBE DATA; INFLATIONARY UNIVERSE; SKY MAPS; RADIOMETER CHARACTERIZATION; COSMOLOGICAL PARAMETERS; FOREGROUND EMISSION; GRAVITATIONAL-WAVES; CMB ANISOTROPY; RADIATION; FIRAS AB We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrum using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1) C-l/2 pi) is 532 mu K-2, approximately 2.5 times the estimate (213.4 mu K-2) made by the WMAP team. C1 [Samal, Pramoda Kumar; Jain, Pankaj] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India. [Saha, Rajib] Jet Prop Lab, Pasadena, CA 91109 USA. [Saha, Rajib] CALTECH, Pasadena, CA 91125 USA. [Delabrouille, Jacques] CNRS, Lab APC, F-75205 Paris, France. [Prunet, Simon] Inst Astrophys, F-75014 Paris, France. [Souradeep, Tarun] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. RP Samal, PK (reprint author), Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India. FU CSIR, India [CSIR-SRF-9/92(340)/2004-EMR-I]; National Aeronautics and Space Administration FX We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis. Some of the results of this work are derived using the publicly available HEALPIx package (Gorski et al. 2005). (The HEALPIX distribution is publicly available from the Web site http://healpix.jpl.nasa.gov.) We acknowledge the use of the PSM, developed by the Component Separation Working Group (WG2) of the Planck Collaboration. Pramoda K. Samal acknowledges CSIR, India for financial support under the research grant CSIR-SRF-9/92(340)/2004-EMR-I. A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 66 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 840 EP 851 DI 10.1088/0004-637X/714/1/840 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000068 ER PT J AU Jolly, A Fayt, A Benilan, Y Jacquemart, D Nixon, CA Jennings, DE AF Jolly, A. Fayt, A. Benilan, Y. Jacquemart, D. Nixon, C. A. Jennings, D. E. TI THE nu(8) BENDING MODE OF DIACETYLENE: FROM LABORATORY SPECTROSCOPY TO THE DETECTION OF C-13 ISOTOPOLOGUES IN TITAN'S ATMOSPHERE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; molecular data; planets and satellites: atmospheres; planets and satellites: detection ID COMPOSITE INFRARED SPECTROMETER; ISOTOPIC-RATIOS; BAND INTENSITIES; HYDROCARBONS; CASSINI/CIRS; SPECTRUM; C4H2; SATURN; HC3N; DICYANOACETYLENE AB The strong nu(8) band of diacetylene at 627.9 cm(-1) has been investigated to improve the spectroscopic line data used to model the observations, particularly in Titan's atmosphere by Cassini/Composite Infrared Spectrometer. Spectra have first been recorded in the laboratory at 0.5 and 0.1 cm(-1) resolution and temperature as low as 193 K. Previous analysis and line lists present in the GEISA database appeared to be insufficient to model the measured spectra in terms of intensity and hot band features. To improve the situation and in order to be able to take into account all rovibrational transitions with a non-negligible intensity, a global analysis of C4H2 has been carried out to improve the description of the energy levels up to E-v = 1900 cm(-1). The result is a new extensive line list which enables us to model very precisely the temperature variation as well as the numerous hot band features observed in the laboratory spectra. One additional feature, observed at 622.3 cm(-1), was assigned to the nu(6) mode of a C-13 isotopologue of diacetylene. The nu(8) bands of both C-13 isotopomers were also identified in the 0.1 cm(-1) resolution spectrum. Finally, a C-13/C4H2 line list was added to the model for comparison with the observed spectra of Titan. We obtain a clear detection of C-13 monosubstituted diacetylene at 622.3 cm(-1) and 627.5 cm(-1) (blended nu(8) bands), deriving a mean C-12/C-13 isotopic ratio of 90 +/- 8. This value agrees with the terrestrial (89.4, inorganic standard) and giant planet values (88 +/- 7), but is only marginally consistent with the bulk carbon value in Titan's atmosphere, measured in CH4 by Huygens GCMS to be 82 +/- 1, indicating that isotopic fractionation during chemical processing may be occurring, as suggested for ethane formation. C1 [Jolly, A.; Benilan, Y.] Univ Paris 07, LISA, CNRS, UMR 7583, F-94010 Creteil, France. [Jolly, A.; Benilan, Y.] Univ Paris 12, LISA, CNRS, UMR 7583, F-94010 Creteil, France. [Fayt, A.] Catholic Univ Louvain, Lab Spect Mol, B-1348 Louvain, Belgium. [Jacquemart, D.] Univ Paris 06, LADIR, CNRS, UMR 7075, F-75252 Paris 05, France. [Nixon, C. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, C. A.; Jennings, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jolly, A (reprint author), Univ Paris 07, LISA, CNRS, UMR 7583, 61 Ave Gen Gaulle, F-94010 Creteil, France. RI Nixon, Conor/A-8531-2009; Jennings, Donald/D-7978-2012 OI Nixon, Conor/0000-0001-9540-9121; FU NASA [NNX09AK55G]; Cassini Flagship Mission; Programme National de Planetologie (PNP); CNES FX A. F. thanks Eric Arie for the original spectra of the nu9 and nu8 bands and he expresses his gratitude to Veli-Matti Horneman who kindly agreed to synthesize the diacetylene sample and to record new spectra over a quite broad range. C.A.N. and D.E.J. acknowledge the support of the NASA Cassini Data Analysis Program Grant NNX09AK55G, and the Cassini Flagship Mission. A.J. and Y.B. acknowledge the support of the Programme National de Planetologie (PNP) and CNES. NR 48 TC 15 Z9 15 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 852 EP 859 DI 10.1088/0004-637X/714/1/852 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000069 ER PT J AU Heinke, CO Altamirano, D Cohn, HN Lugger, PM Budac, SA Servillat, M Linares, M Strohmayer, TE Markwardt, CB Wijnands, R Swank, JH Knigge, C Bailyn, C Grindlay, JE AF Heinke, C. O. Altamirano, D. Cohn, H. N. Lugger, P. M. Budac, S. A. Servillat, M. Linares, M. Strohmayer, T. E. Markwardt, C. B. Wijnands, R. Swank, J. H. Knigge, C. Bailyn, C. Grindlay, J. E. TI DISCOVERY OF A SECOND TRANSIENT LOW-MASS X-RAY BINARY IN THE GLOBULAR CLUSTER NGC 6440 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dense matter; pulsars: general; stars: neutron; X-rays: binaries ID PULSAR SAX J1808.4-3658; GALACTIC-CENTER REGION; LONG-TERM EVOLUTION; EARLY-TYPE GALAXIES; NEUTRON-STAR; NGC-6440; VARIABILITY; EMISSION; CHANDRA; COUNTERPART AB We have discovered a new transient low-mass X-ray binary, NGC 6440 X-2, with Chandra/ACIS, RXTE/PCA, and Swift/XRT observations of the globular cluster NGC 6440. The discovery outburst (2009 July 28-31) peaked at L-X similar to 1.5 x 10(36) erg s(-1) and lasted for < 4 days above L-X = 10(35) erg s(-1). Four other outbursts (2009 May 29-June 4, August 29-September 1, October 1-3, and October 28-31) have been observed with RXTE/PCA (identifying millisecond pulsations) and Swift/XRT (confirming a positional association with NGC 6440 X-2), with similar peak luminosities and decay times. Optical and infrared imaging did not detect a clear counterpart, with best limits of V > 21, B > 22 in quiescence from archival Hubble Space Telescope imaging, g' > 22 during the August outburst from Gemini-South GMOS imaging, and J greater than or similar to 18.5 and K greater than or similar to 17 during the July outburst from CTIO 4 m ISPI imaging. Archival Chandra X-ray images of the core do not detect the quiescent counterpart (L-X < (1-2) x 10(31) erg s(-1)) and place a bolometric luminosity limit of LNS < 6 x 10(31) erg s(-1) (one of the lowest measured) for a hydrogen atmosphere neutron star. A short Chandra observation 10 days into quiescence found two photons at NGC 6440 X-2's position, suggesting enhanced quiescent emission at L-X similar to 6 x 10(31) erg s(-1). NGC 6440 X-2 currently shows the shortest recurrence time (similar to 31 days) of any known X-ray transient, although regular outbursts were not visible in the bulge scans before early 2009. Fast, low-luminosity transients like NGC 6440 X-2 may be easily missed by current X-ray monitoring. C1 [Heinke, C. O.; Budac, S. A.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Altamirano, D.; Linares, M.; Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Cohn, H. N.; Lugger, P. M.] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. [Servillat, M.; Grindlay, J. E.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Linares, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Strohmayer, T. E.; Markwardt, C. B.; Swank, J. H.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Knigge, C.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Bailyn, C.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. RP Heinke, CO (reprint author), Univ Alberta, Dept Phys, Room 238 CEB, Edmonton, AB T6G 2G7, Canada. EM heinke@ualberta.ca RI Swank, Jean/F-2693-2012; OI Heinke, Craig/0000-0003-3944-6109 NR 79 TC 35 Z9 35 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 894 EP 903 DI 10.1088/0004-637X/714/1/894 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000073 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Asano, K Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J den Hartog, PR Dermer, CD de Luca, A de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Gotthelf, EV Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hays, E Hobbs, G Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Johnston, S Kamae, T Kanai, Y Kanbach, G Katagiri, H Kataoka, J Kawai, N Keith, M Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Manchester, RN Marelli, M Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Rea, N Reimer, A Reimer, O Reposeur, T Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Weltevrede, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Asano, K. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. den Hartog, P. R. Dermer, C. D. de Luca, A. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Gotthelf, E. V. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hays, E. Hobbs, G. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Kanai, Y. Kanbach, G. Katagiri, H. Kataoka, J. Kawai, N. Keith, M. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Weltevrede, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI DETECTION OF THE ENERGETIC PULSAR PSR B1509-58 AND ITS PULSAR WIND NEBULA IN MSH 15-52 USING THE FERMI-LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G320.4-1.2, MSH 15-52); pulsars: individual (PSR B1509-58, PSR J1513-5908) ID GAMMA-RAY PULSARS; X-RAY; SUPERNOVA REMNANT; LIGHT CURVES; RADIO OBSERVATIONS; OUTER MAGNETOSPHERE; SPACE TELESCOPE; EGRET DATA; VELA-X; EMISSION AB We report the detection of high-energy gamma-ray emission from the young and energetic pulsar PSR B1509-58 and its pulsar wind nebula (PWN) in the composite supernova remnant G320.4-1.2 (aka MSH 15-52). Using 1 yr of survey data with the Fermi-Large Area Telescope (LAT), we detected pulsations from PSR B1509-58 up to 1 GeV and extended gamma-ray emission above 1 GeV spatially coincident with the PWN. The pulsar light curve presents two peaks offset from the radio peak by phases 0.96 +/- 0.01 and 0.33 +/- 0.02. New constraining upper limits on the pulsar emission are derived below 1 GeV and confirm a severe spectral break at a few tens of MeV. The nebular spectrum in the 1-100 GeV energy range is well described by a power law with a spectral index of (1.57 +/- 0.17 +/- 0.13) and a flux above 1 GeV of (2.91 +/- 0.79 +/- 1.35) x 10(-9) cm(-2) s(-1). The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. The LAT spectrum of the nebula connects nicely with Cherenkov observations, and indicates a spectral break between GeV and TeV energies. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chekhtman, A.; Chiang, J.; Claus, R.; den Hartog, P. R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Chiang, J.; Claus, R.; den Hartog, P. R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 1528551, Japan. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56527 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai IEEC, Barcelona, Spain. [Camilo, F.; Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-201333 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-16091 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CNRS, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hobbs, G.; Johnston, S.; Keith, M.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kanai, Y.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kanbach, G.; Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Allafort, A.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etude Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM hartog@stanford.edu; grodin@cenbg.in2p3.fr; lemoine@cenbg.in2p3.fr; nakamori@hp.phys.titech.ac.jp RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Starck, Jean-Luc/D-9467-2011; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012 OI Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Marelli, Martino/0000-0002-8017-0338; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; De Luca, Andrea/0000-0001-6739-687X; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Starck, Jean-Luc/0000-0003-2177-7794; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. We thank our colleagues for their assistance with the radio timing observations. NR 66 TC 40 Z9 40 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2010 VL 714 IS 1 BP 927 EP 936 DI 10.1088/0004-637X/714/1/927 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583SV UT WOS:000276701000076 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Costamante, L Dermer, CD de Angelis, A de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Guiriec, S Hayashida, M Hays, E Hill, AB Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mansutti, O Massaro, E Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Costamante, L. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Guiriec, S. Hayashida, M. Hays, E. Hill, A. B. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mansutti, O. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI-LARGE AREA TELESCOPE OBSERVATIONS OF THE EXCEPTIONAL GAMMA-RAY OUTBURSTS OF 3C 273 IN 2009 SEPTEMBER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: galaxies; quasars: individual (3C 273) ID ACTIVE GALACTIC NUCLEI; VARIABILITY; BLAZARS; SAMPLE AB We present the light curves and spectral data of two exceptionally luminous gamma-ray outbursts observed by the Large Area Telescope experiment on board the Fermi Gamma-ray Space Telescope from 3C 273 in 2009 September. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study, in some details, their spectral and temporal structures. The rise and the decay are asymmetric on timescales of 6 hr, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in 2009 August. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Larsson, S.; Garde, M. Llena; Meurer, C.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Garde, M. Llena; Meurer, C.; Ryde, F.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.; Mansutti, O.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.; Mansutti, O.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hill, A. B.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Massaro, E.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ryde, F.; Ylinen, T.] AlbaNova, Dept Phys, Royal Inst Technol KTH, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM enrico.massaro@uniroma1.it; gino.tosti@pg.infn.it RI Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Mansutti, Oriana/0000-0001-5758-4658; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003 FU K. A. Wallenberg Foundation; European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT, as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique- and, the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italianaand, the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d' Etudes Spatiales NR 27 TC 30 Z9 30 U1 4 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L73 EP L78 DI 10.1088/2041-8205/714/1/L73 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300015 ER PT J AU Cassata, P Giavalisco, M Guo, YC Ferguson, H Koekemoer, AM Renzini, A Fontana, A Salimbeni, S Dickinson, M Casertano, S Conselice, CJ Grogin, N Lotz, JM Papovich, C Lucas, RA Straughn, A Gardner, JP Moustakas, L AF Cassata, P. Giavalisco, M. Guo, Yicheng Ferguson, H. Koekemoer, A. M. Renzini, A. Fontana, A. Salimbeni, S. Dickinson, M. Casertano, S. Conselice, C. J. Grogin, N. Lotz, J. M. Papovich, C. Lucas, R. A. Straughn, A. Gardner, Jonathan P. Moustakas, L. TI THE MORPHOLOGY OF PASSIVELY EVOLVING GALAXIES AT z similar to 2 FROM HUBBLE SPACE TELESCOPE/WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: fundamental parameters ID STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; MASSIVE GALAXIES; SIZE EVOLUTION; POPULATION SYNTHESIS; QUIESCENT GALAXIES; DATA RELEASE; Z-SIMILAR-TO-2; CHANDRA; REDSHIFT AB We present near-IR images, obtained with the Hubble Space Telescope and the WFC3/IR camera, of six passive and massive galaxies at redshift 1.3 < z < 2.4 (specific star formation rate < 10(-2) Gyr(-1); stellar mass M similar to 10(11) M(circle dot)), selected from the Great Observatories Origins Deep Survey. These images, which have a spatial resolution of similar to 1.5 kpc, provide the deepest view of the optical rest-frame morphology of such systems to date. We find that the light profile of these galaxies is regular and well described by a Sersic model with index typical of today's spheroids. Their size, however, is generally much smaller than today's early types of similar stellar masses, with four out of six galaxies having r(e) similar to 1 kpc or less, in quantitative agreement with previous similar measures made at rest-frame UV wavelengths. The images reach limiting surface brightness mu similar to 26.5 mag arcsec(-2) in the F160W bandpass; yet, there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find that these galaxies have very weak "morphological k-correction" between the rest-frame UV (from the Advanced Camera for Surveys z band) and the rest-frame optical (WFC3 H band): the Sersic index, physical size, and overall morphology are independent or only mildly dependent on the wavelength, within the errors. C1 [Cassata, P.; Giavalisco, M.; Guo, Yicheng; Salimbeni, S.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Ferguson, H.; Koekemoer, A. M.; Casertano, S.; Grogin, N.; Lucas, R. A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Renzini, A.] Osservatorio Astron Padova INAF OAPD, I-35122 Padua, Italy. [Fontana, A.] INAF Osservatorio Aston Roma, I-00040 Rome, Italy. [Dickinson, M.; Lotz, J. M.] NOAO Tucson, Tucson, AZ 85719 USA. [Conselice, C. J.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Papovich, C.] Texas A&M Univ, Dept Phys, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Straughn, A.; Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Moustakas, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Cassata, P (reprint author), Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. EM paolo@astro.umass.edu RI Conselice, Christopher/B-4348-2013; OI Conselice, Christopher/0000-0003-1949-7638; Moustakas, Leonidas/0000-0003-3030-2360; fontana, adriano/0000-0003-3820-2823; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [HST-GO-09425.01-A, HST-GO-09583.01-A, HST-GO-09822.45-A]; [NAS5-26555] FX Based on observations made with the NASA/ESA Hubble Space Telescope operated by the Association of Universities for Research in Astronomy (AURA), Inc., under contract NAS5-26555.; We acknowledge the anonymous referee for the useful comments. P. C., M. G., and S. S. acknowledge support from NASA grants HST-GO-09425.01-A, HST-GO-09583.01-A, and HST-GO-09822.45-A. NR 49 TC 59 Z9 59 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L79 EP L83 DI 10.1088/2041-8205/714/1/L79 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300016 ER PT J AU Ferkinhoff, C Hailey-Dunsheath, S Nikola, T Parshley, SC Stacey, GJ Benford, DJ Staguhn, JG AF Ferkinhoff, C. Hailey-Dunsheath, S. Nikola, T. Parshley, S. C. Stacey, G. J. Benford, D. J. Staguhn, J. G. TI FIRST DETECTION OF THE [O III] 88 mu m LINE AT HIGH REDSHIFTS: CHARACTERIZING THE STARBURST AND NARROW-LINE REGIONS IN EXTREME LUMINOSITY SYSTEMS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: high-redshift; galaxies: individual (APM 08279+5255, SMM J02399-0136); galaxies: starburst; submillimeter: galaxies ID FAR-INFRARED SPECTROSCOPY; APM 08279+5255; INTERSTELLAR-MEDIUM; PHYSICAL CONDITIONS; STAR-FORMATION; GALAXIES; EMISSION; M82; RESOLUTION; Z=2.8 AB We have made the first detections of the 88 mu m [O III] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z = 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities similar to 10(11) L(circle dot). For APM 08279, the [O III] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(eff) > 36,000 K, similar to the starburst found in M82. The model implies similar to 35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 88 mu m line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cm(-3). For SMM J02399, the [O III] line likely arises from H II regions formed by hot (T(eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O III] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05. C1 [Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Benford, D. J.; Staguhn, J. G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Ferkinhoff, C (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM cferkinh@astro.cornell.edu; steve@mpe.mpg.de RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NSF [AST-0096881, AST-0352855, AST-0705256, AST-0722220]; NASA [NGT5-50470] FX This work was supported by NSF grants AST-0096881, AST-0352855, AST-0705256, and AST-0722220, and by NASA grant NGT5-50470. We thank our colleagues T. L. Herter and H. Spoon for useful discussion, and the CSO staff for their excellent support of ZEUS operations. We also thank the reviewer for his prompt and helpful comments on this Letter. NR 32 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L147 EP L151 DI 10.1088/2041-8205/714/1/L147 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300030 ER PT J AU Georganopoulos, M Finke, JD Reyes, LC AF Georganopoulos, Markos Finke, Justin D. Reyes, Luis C. TI A METHOD FOR SETTING UPPER LIMITS TO THE EXTRAGALACTIC BACKGROUND LIGHT WITH FERMI-LAT AND TeV OBSERVATIONS OF BLAZARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE diffuse radiation; galaxies: active; gamma rays: galaxies; quasars: general; quasars: individual (PKS 2155-304, 1ES 1218+304) ID ENERGY GAMMA-RAYS; ACTIVE GALACTIC NUCLEI; SPECTRA; RADIATION; CONSTRAINTS; ABSORPTION; COMPTONIZATION; EVOLUTION; JET; MARKARIAN-421 AB We propose a method for setting upper limits to the extragalactic background light (EBL). Our method uses simultaneous Fermi-LAT and ground-based TeV observations of blazars and is based on the assumption that the intrinsic spectral energy distribution (SED) of TeV blazars lies below the extrapolation of the Fermi-LAT SED from GeV to TeV energies. By extrapolating the Fermi-LAT spectrum, which for TeV blazars is practically unattenuated by photon-photon pair production with EBL photons, a firm upper limit on the intrinsic SED at TeV energies is provided. The ratio of the extrapolated spectrum to the observed TeV spectrum provides upper limits to the optical depth for the propagation of the TeV photons due to pair production on the EBL, which in turn sets firm upper limits to EBL models. We demonstrate our method using simultaneous observations from Fermi-LAT and ground-based TeV telescopes of the blazars PKS 2155-304 and 1ES 1218+304, and show that high EBL density models are disfavored. We also discuss how our method can be optimized and how Fermi and X-ray monitoring observations of TeV blazars can guide future TeV campaigns, leading to potentially much stronger constraints on EBL models. C1 [Georganopoulos, Markos] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Finke, Justin D.] USN, Res Lab, Washington, DC 20375 USA. [Reyes, Luis C.] Univ Chicago, Kavli Inst Cosmol Phys KIPC, Chicago, IL 60637 USA. RP Georganopoulos, M (reprint author), Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. FU NASA [NNX08AG77G, NNX09AR88G]; NASA Swift Guest Investigator [DPR-NNG05ED411]; NASA GLAST Science Investigation [DPR-S-1563-Y]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142] FX We thank Luigi Costamante for useful discussions. M. G. acknowledges support from the NASA grants ATFP NNX08AG77G and Fermi NNX09AR88G. J.D.F. was partially supported by NASA Swift Guest Investigator Grant DPR-NNG05ED411 and NASA GLAST Science Investigation DPR-S-1563-Y. L. C. R. acknowledges the support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. NR 46 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L157 EP L161 DI 10.1088/2041-8205/714/1/L157 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300032 ER PT J AU Hailey-Dunsheath, S Nikola, T Stacey, GJ Oberst, TE Parshley, SC Benford, DJ Staguhn, JG Tucker, CE AF Hailey-Dunsheath, S. Nikola, T. Stacey, G. J. Oberst, T. E. Parshley, S. C. Benford, D. J. Staguhn, J. G. Tucker, C. E. TI DETECTION OF THE 158 mu m [C II] TRANSITION AT z=1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: high-redshift; galaxies: individual (MIPS J142824.0+352619); galaxies: ISM; galaxies: starburst; infrared: galaxies; submillimeter: general ID ULTRALUMINOUS INFRARED GALAXIES; SUBMILLIMETER GALAXIES; HIGH-REDSHIFT; PHOTODISSOCIATION REGIONS; INTERSTELLAR-MEDIUM; PHYSICAL CONDITIONS; EARLY UNIVERSE; STAR-FORMATION; NGC 253; EMISSION AB We report the detection of 158 mu m [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L(IR) similar to 10(13) L(circle dot)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L([C II])/L(FIR) approximate to 2 x 10(-3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n similar to 10(4.2) cm(-3), and that are illuminated by a far-UV radiation field similar to 10(3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L([C II])/L(FIR) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L([C II])/L(FIR) and L(CO)/L(FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs. C1 [Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Benford, D. J.; Staguhn, J. G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. RP Hailey-Dunsheath, S (reprint author), Max Planck Inst Extraterr Phys, Postfach 1312, D-85741 Garching, Germany. EM steve@mpe.mpg.de RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NSF [AST-0096881, AST-0352855, AST-0705256, AST-0722220]; NASA [NGT5-50470, NNG05GK70H] FX We thank Javier Gracia-Carpio for kindly providing unpublished CO data and the CSO staff for their support of ZEUS operations. We also thank an anonymous referee for many helpful comments on an earlier draft of this manuscript. This work was supported by NSF grants AST-0096881, AST-0352855, AST-0705256, and AST-0722220, and by NASA grants NGT5-50470 and NNG05GK70H. NR 40 TC 59 Z9 59 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L162 EP L166 DI 10.1088/2041-8205/714/1/L162 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300033 ER PT J AU Hamaguchi, K Grosso, N Kastner, JH Weintraub, DA Richmond, M AF Hamaguchi, Kenji Grosso, Nicolas Kastner, Joel H. Weintraub, David A. Richmond, Michael TI SUZAKU OBSERVATION OF STRONG FLUORESCENT IRON LINE EMISSION FROM THE YOUNG STELLAR OBJECT V1647 ORI DURING ITS NEW X-RAY OUTBURST SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: formation; stars: individual (V1647 Ori); stars: pre-main sequence; X-rays: stars ID ILLUMINATING MCNEIL-NEBULA; FU ORIONIS; STAR; ACCRETION; VARIABILITY; VIEW AB The Suzaku X-ray satellite observed the young stellar object (YSO) V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in 2008 August. During the 87 ks observation with a net exposure of 40 ks, V1647 Ori showed a high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other YSOs. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT similar to 5 keV). It also shows a fluorescent iron K alpha line with a remarkably large equivalent width (EW) of similar to 600 eV. Such a large EW suggests that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron K alpha line, so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008. C1 [Hamaguchi, Kenji] NASA, Goddard Space Flight Ctr, CRESST & Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Grosso, Nicolas] Univ Strasbourg, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Grosso, Nicolas] CNRS, UMR 7550, F-67000 Strasbourg, France. [Kastner, Joel H.; Richmond, Michael] Rochester Inst Technol, Rochester, NY 14623 USA. [Weintraub, David A.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Hamaguchi, K (reprint author), NASA, Goddard Space Flight Ctr, CRESST & Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM Kenji.Hamaguchi@nasa.gov RI XRAY, SUZAKU/A-1808-2009 FU NASA's Astrobiology Institute [RTOP 344-53-51]; NASA/GSFC [NNX09AC11G] FX We greatly appreciate the Suzaku review committee's positive response to our DDT request. This work is performed while K. H. was supported by the NASA's Astrobiology Institute (RTOP 344-53-51) to the Goddard Center for Astrobiology. J.K.'s research on X-rays from erupting YSOs is supported by NASA/GSFC XMM-Newton Guest Observer grant NNX09AC11G to RIT. NR 30 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L16 EP L20 DI 10.1088/2041-8205/714/1/L16 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300004 ER PT J AU Jang-Condell, H Kuchner, MJ AF Jang-Condell, Hannah Kuchner, Marc J. TI RADIATIVE TRANSFER MODELS OF A POSSIBLE PLANET IN THE AB AURIGAE DISK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; circumstellar matter; planetary systems; protoplanetary disks; stars: individual (AB Aur) ID INTERMEDIATE-MASS STARS; HERBIG AE SYSTEMS; PROTOPLANETARY DISKS; SPIRAL STRUCTURE; POLARIZED-LIGHT; HIGH-RESOLUTION; SCATTERING; SIGNATURES; PERTURBATIONS; EMISSION AB Recent coronagraphic imaging of the AB Aurigae disk has revealed a region of low polarized scattered light suggestive of perturbations from a planet at a radius of similar to 100 AU. We model this darkened region using our fully non-plane-parallel radiative-transfer code combined with a simple hydrostatic equilibrium approximation to self-consistently solve for the structure of the disk surface as seen in scattered light. By comparing the observations to our models, we find that the observations are consistent with the absence of a planet, with an upper limit of 1 M(J). C1 [Jang-Condell, Hannah] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Jang-Condell, Hannah; Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jang-Condell, H (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM hannah@astro.umd.edu RI Kuchner, Marc/E-2288-2012; OI Jang-Condell, Hannah/0000-0002-7639-1322 FU NASA Center for Computational Sciences (NCCS) at Goddard Space Flight Center; Jet Propulsion Laboratory (JPL) FX The authors are indebted to Ben Oppenheimer for generously providing the observational data needed for this Letter. We also thank an anonymous referee for helpful comments that greatly improved our Letter. Simulations presented in this Letter were carried out using the "borg" cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland. Resources supporting this work were also provided by the NASA High-End Computing (HEC) Program through the NASA Center for Computational Sciences (NCCS) at Goddard Space Flight Center. H.J.-C. acknowledges support from a Michelson Postdoctoral Fellowship under contract with the Jet Propulsion Laboratory (JPL). JPL is managed for NASA by the California Institute of Technology. NR 27 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L142 EP L146 DI 10.1088/2041-8205/714/1/L142 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300029 ER PT J AU Oesch, PA Carollo, CM Feldmann, R Hahn, O Lilly, SJ Sargent, MT Scarlata, C Aller, MC Aussel, H Bolzonella, M Bschorr, T Bundy, K Capak, P Ilbert, O Kneib, JP Koekemoer, AM Kovac, K Leauthaud, A Le Floc'h, E Massey, R McCracken, HJ Pozzetti, L Renzini, A Rhodes, J Salvato, M Sanders, DB Scoville, N Sheth, K Taniguchi, Y Thompson, D AF Oesch, P. A. Carollo, C. M. Feldmann, R. Hahn, O. Lilly, S. J. Sargent, M. T. Scarlata, C. Aller, M. C. Aussel, H. Bolzonella, M. Bschorr, T. Bundy, K. Capak, P. Ilbert, O. Kneib, J. -P. Koekemoer, A. M. Kovac, K. Leauthaud, A. Le Floc'h, E. Massey, R. McCracken, H. J. Pozzetti, L. Renzini, A. Rhodes, J. Salvato, M. Sanders, D. B. Scoville, N. Sheth, K. Taniguchi, Y. Thompson, D. TI THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: irregular; galaxies: spiral; galaxies: structure ID EARLY-TYPE GALAXIES; DARK-MATTER HALOES; STELLAR MASS; LUMINOSITY FUNCTIONS; DISK GALAXIES; EVOLUTION; ENVIRONMENT; DEPENDENCE; MERGERS; POPULATION AB We use similar to 8600 COSMOS galaxies at mass scales > 5 x 10(10)M(circle dot) to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, disk-dominated galaxies, and irregular systems evolves from z = 0.2 to z = 1. The morphological evolution depends strongly on mass. At M > 3 x 10(11) M(circle dot), no evolution is detected in the morphological mix: ellipticals dominate since z = 1, and the Hubble sequence has quantitatively settled down by this epoch. At the 10(11)M(circle dot) mass scale, little evolution is detected, which can be entirely explained by major mergers. Most of the morphological evolution from z = 1 to z = 0.2 takes place at masses 5 x 10(10)-10(11) M(circle dot), where (1) the fraction of spirals substantially drops and the contribution of early types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from similar to 10% at z = 1 to >30% at z = 0.2 (for comparison, the elliptical fraction grows from similar to 15% to similar to 20%). Thus, at these masses, transformations from late to early types result in diskless elliptical morphologies with a statistical frequency of only 30%-40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (2) The disk-dominated galaxies, which contribute similar to 15% to the intermediate-mass galaxy population at z = 1, virtually disappear by z = 0.2. The merger rate since z = 1 is too low to account for the disappearance of these massive disk-dominated systems, which most likely grow a bulge via secular evolution. C1 [Oesch, P. A.; Carollo, C. M.; Feldmann, R.; Hahn, O.; Lilly, S. J.; Aller, M. C.; Bschorr, T.; Kovac, K.] Swiss Fed Inst Technol, Inst Astron, CH-8092 Zurich, Switzerland. [Sargent, M. T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Scarlata, C.; Capak, P.; Massey, R.; Rhodes, J.; Salvato, M.; Scoville, N.; Sheth, K.; Thompson, D.] CALTECH, Pasadena, CA 91125 USA. [Aussel, H.] Univ Paris 07, CNRS, UMR 158, AIM Unite Mixte Rech,CEA, Paris, France. [Bolzonella, M.; Pozzetti, L.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Bundy, K.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94705 USA. [Capak, P.; Sheth, K.] CALTECH, Spitzer Space Ctr, Pasadena, CA 91125 USA. [Ilbert, O.; Sanders, D. B.; Thompson, D.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Ilbert, O.; Kneib, J. -P.] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Koekemoer, A. M.] STScI, Baltimore, MD 21218 USA. [Leauthaud, A.] Univ Calif Berkeley, LBNL, Berkeley, CA 94720 USA. [Leauthaud, A.] Univ Calif Berkeley, BCCP, Berkeley, CA 94720 USA. [Le Floc'h, E.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Massey, R.] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [McCracken, H. J.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Renzini, A.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Taniguchi, Y.] Ehime Univ, Res Ctr Space & Cosm Evolut, Matsuyama, Ehime 7908577, Japan. [Thompson, D.] Univ Arizona, LBT Observ, Tucson, AZ 85721 USA. RP Oesch, PA (reprint author), Swiss Fed Inst Technol, Inst Astron, CH-8092 Zurich, Switzerland. RI Hahn, Oliver/A-7715-2015; Kneib, Jean-Paul/A-7919-2015; Bolzonella, Micol/O-9495-2015; OI Hahn, Oliver/0000-0001-9440-1152; Kneib, Jean-Paul/0000-0002-4616-4989; Bolzonella, Micol/0000-0003-3278-4607; Pozzetti, Lucia/0000-0001-7085-0412; Oesch, Pascal/0000-0001-5851-6649; Koekemoer, Anton/0000-0002-6610-2048 FU Swiss National Foundation (SNF); NASA [NAS 5-26555] FX We thank the COSMOS and zCOSMOS collaborations for many stimulating discussions. P.O. acknowledges support from the Swiss National Foundation (SNF). This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555; also based on data collected at: the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX, and the University of Hawaii. NR 47 TC 57 Z9 57 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L47 EP L51 DI 10.1088/2041-8205/714/1/L47 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300010 ER PT J AU Sargent, MT Carollo, CM Kampczyk, P Lilly, SJ Scarlata, C Capak, P Ilbert, O Koekemoer, AM Kneib, JP Leauthaud, A Massey, R Oesch, PA Rhodes, J Schinnerer, E Scoville, N Taniguchi, Y AF Sargent, M. T. Carollo, C. M. Kampczyk, P. Lilly, S. J. Scarlata, C. Capak, P. Ilbert, O. Koekemoer, A. M. Kneib, J. -P. Leauthaud, A. Massey, R. Oesch, P. A. Rhodes, J. Schinnerer, E. Scoville, N. Taniguchi, Y. TI THE OPACITY OF GALACTIC DISKS AT z similar to 0.7 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; dust, extinction; galaxies: spiral; surveys ID SPECTRAL ENERGY-DISTRIBUTION; DIGITAL SKY SURVEY; SPIRAL GALAXIES; STRUCTURAL PARAMETERS; LUMINOSITY FUNCTION; SURFACE BRIGHTNESS; COSMOS FIELD; EVOLUTION; DUST; REDSHIFT AB We compare the surface brightness-inclination relation for a sample of COSMOS pure disk galaxies at z similar to 0.7 with an artificially redshifted sample of Sloan Digital Sky Survey (SDSS) disks well matched to the COSMOS sample in terms of rest-frame photometry and morphology, as well as their selection and analysis. The offset between the average surface brightness of face-on and edge-on disks in the redshifted SDSS sample matches that predicted by measurements of the optical depth of galactic disks in the nearby universe. In contrast, large disks at z similar to 0.7 have a virtually flat surface brightness-inclination relation, suggesting that they are more opaque than their local counterparts. This could be explained by either an increased amount of optically thick material in disks at higher redshift or a different spatial distribution of the dust. C1 [Sargent, M. T.; Schinnerer, E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Sargent, M. T.; Carollo, C. M.; Kampczyk, P.; Lilly, S. J.; Oesch, P. A.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Scarlata, C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Ilbert, O.; Kneib, J. -P.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Leauthaud, A.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Massey, R.] Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Taniguchi, Y.] Ehime Univ, Res Ctr Space & Cosm Evolut, Matsuyama, Ehime 7908577, Japan. RP Sargent, MT (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM markmr@mpia.de RI Kneib, Jean-Paul/A-7919-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Oesch, Pascal/0000-0001-5851-6649; Koekemoer, Anton/0000-0002-6610-2048; Schinnerer, Eva/0000-0002-3933-7677 FU Swiss National Science Foundation; DFG [SCHI 536/3-2]; NASA [HST-GO-09822] FX We gratefully acknowledge the anonymous referee's helpful suggestions and the contribution of the COSMOS collaboration and its more than 100 scientists worldwide. P. K., P.A.O., C. S., and M. T. S. acknowledge support from the Swiss National Science Foundation. This research was also financed by DFG grant SCHI 536/3-2. The HST COSMOS Treasury program was supported through NASA grant HST-GO-09822. NR 44 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L113 EP L117 DI 10.1088/2041-8205/714/1/L113 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300023 ER PT J AU Sterling, AC Moore, RL DeForest, CE AF Sterling, Alphonse C. Moore, Ronald L. DeForest, Craig E. TI HINODE SOLAR OPTICAL TELESCOPE OBSERVATIONS OF THE SOURCE REGIONS AND EVOLUTION OF "TYPE II" SPICULES AT THE SOLAR POLAR LIMB SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: atmosphere; Sun: chromosphere; Sun: magnetic topology; Sun: photosphere ID CORONAL MASS EJECTIONS; BRIGHT POINTS; PHOTOSPHERIC OSCILLATIONS; TRANSITION REGION; CHROMOSPHERE; FLARES; GRAINS; WAVES; FLOWS; LIGHT AB We examine solar spicules using high-cadence Ca II data of the north pole coronal hole region, using the Solar Optical Telescope (SOT) on the Hinode spacecraft. The features we observe are referred to as "Type II" spicules by De Pontieu et al. in 2007. By convolving the images with the inverse-point-spread function for the SOT Ca II filter, we are able to investigate the roots of some spicules on the solar disk, and the evolution of some spicules after they are ejected from the solar surface. We find that the source regions of at least some of the spicules correspond to locations of apparent-fast-moving (similar to few x 10 km s(-1)), transient (few 100 s), Ca II brightenings on the disk. Frequently the spicules occur when these brightenings appear to collide and disappear. After ejection, when seen above the limb, many of the spicules fade by expanding laterally (i.e., roughly transverse to their motion away from the solar surface), splitting into two or more spicule "strands," and the spicules then fade without showing any downward motion. Photospheric/chromospheric acoustic shocks alone likely cannot explain the high velocities (similar to 100 km s(-1)) of the spicules. If the Ca II brightenings represent magnetic elements, then reconnection among those elements may be a candidate to explain the spicules. Alternatively, many of the spicules could be small-scale magnetic eruptions, analogous to coronal mass ejections, and the apparent fast motions of the Ca II brightenings could be analogs of flare loops heated by magnetic reconnection in these eruptions. C1 [Sterling, Alphonse C.; Moore, Ronald L.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [DeForest, Craig E.] SW Res Inst, Boulder, CO 80302 USA. RP Sterling, AC (reprint author), JAXA Inst Space & Astronaut Sci, Hinode Grp, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM alphonse.sterling@nasa.gov; ron.moore@nasa.gov; deforest@boulder.swri.edu FU NASA's Science Mission Directorate FX A. C. S. and R. L. M. were supported by funding from NASA's Science Mission Directorate through the Solar Physics Supporting Research and Technology Program and the Heliophysics Guest Investigator Program. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC Norway). NR 36 TC 23 Z9 24 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L1 EP L6 DI 10.1088/0004-637X/714/1/L1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300001 ER PT J AU Thilker, DA Bianchi, L Schiminovich, D de Paz, AG Seibert, M Madore, BF Wyder, T Rich, RM Yi, S Barlow, T Conrow, T Forster, K Friedman, P Martin, C Morrissey, P Neff, S Small, T AF Thilker, David A. Bianchi, Luciana Schiminovich, David Gil de Paz, Armando Seibert, Mark Madore, Barry F. Wyder, Ted Rich, R. Michael Yi, Sukyoung Barlow, Tom Conrow, Tim Forster, Karl Friedman, Peter Martin, Chris Morrissey, Patrick Neff, Susan Small, Todd TI NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: individual (NGC 404); galaxies: interactions; galaxies: structure ID COLOR-MAGNITUDE DIAGRAM; STAR-FORMATION RATES; RED SEQUENCE; STELLAR POPULATIONS; NEUTRAL HYDROGEN; LOCAL UNIVERSE; MOLECULAR GAS; FORMATION LAW; IONIZED-GAS; HI SURVEY AB We have discovered recent star formation in the outermost portion ((1-4) x R(25)) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's Hi ring (formed by a merger event according to del Rio et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density (Sigma(SFR)) is similar to 2.2 x 10(-5) M(circle dot) yr(-1) kpc(-2). Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10(-3) M(circle dot) yr(-1). The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming Hi ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to similar to 1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels. C1 [Thilker, David A.; Bianchi, Luciana] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Gil de Paz, Armando] Univ Complutense Madrid, Dept Astrofis, E-28040 Madrid, Spain. [Gil de Paz, Armando] Univ Complutense Madrid, CC Atmosfera, E-28040 Madrid, Spain. [Seibert, Mark; Madore, Barry F.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd] CALTECH, Pasadena, CA 91125 USA. [Rich, R. Michael] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Yi, Sukyoung] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Neff, Susan] NASA, Goddard Space Flight Ctr, Lab Astron & Solar Phys, Greenbelt, MD 20771 USA. RP Thilker, DA (reprint author), Johns Hopkins Univ, Ctr Astrophys Sci, 3400 N Charles St, Baltimore, MD 21218 USA. EM dthilker@pha.jhu.edu RI Gil de Paz, Armando/J-2874-2016 OI Gil de Paz, Armando/0000-0001-6150-2854 FU Space Telescope Science Institute under U.S. Government [NAG W-2166] FX GALEX is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. This research has made use of the NASA/IPAC Extragalactic Database (NED). We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. Some images presented in this Letter were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). NR 52 TC 48 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2010 VL 714 IS 1 BP L171 EP L175 DI 10.1088/2041-8205/714/1/L171 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587EC UT WOS:000276971300035 ER PT J AU Kuntz, KD Snowden, SL AF Kuntz, K. D. Snowden, S. L. TI THE CHANDRA M101 MEGASECOND: DIFFUSE EMISSION SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: individual (M101, NGC5457); galaxies: ISM; X-rays: galaxies ID X-RAY-EMISSION; MULTIVARIATE STATISTICAL-ANALYSIS; SPIRAL GALAXY LUMINOSITIES; XMM-NEWTON OBSERVATIONS; INITIAL MASS FUNCTION; SUPERNOVA-REMNANTS; STAR-FORMATION; STELLAR POPULATIONS; RADIAL VARIATION; HII-REGIONS AB Because M101 is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray-emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in M101. The bulk of the X-ray emission is correlated with the star formation traced by the far-UV (FUV) emission. The global FUV/X-ray correlation is nonlinear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production in star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (less than or similar to 3%), unresolved X-ray point sources (less than or similar to 4%), and individual supernova remnants (similar to 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three-component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness. C1 [Kuntz, K. D.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Snowden, S. L.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Kuntz, KD (reprint author), Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM kuntz@pha.jhu.edu; snowden@milkyway.gsfc.nasa.gov RI Snowden, Steven/D-5292-2012 FU Chandra GO [5600587]; ESA Member States; NASA [NAS5-26555]; NASA Office of Space Science [NAG5-7584] FX K. D. K. was funded by Chandra GO grant 5600587.; This research has made use of data obtained from the Chandra X-ray Observatory, the Chandra Data Archive, and the CIAO software package provided by the Chandra X-ray Center (CXC). This paper was based in part on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. NR 64 TC 27 Z9 27 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2010 VL 188 IS 1 BP 46 EP 74 DI 10.1088/0067-0049/188/1/46 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 591LQ UT WOS:000277302500003 ER PT J AU McClure, MK Furlan, E Manoj, P Luhman, KL Watson, DM Forrest, WJ Espaillat, C Calvet, N D'Alessio, P Sargent, B Tobin, JJ Chiang, HF AF McClure, M. K. Furlan, E. Manoj, P. Luhman, K. L. Watson, D. M. Forrest, W. J. Espaillat, C. Calvet, N. D'Alessio, P. Sargent, B. Tobin, J. J. Chiang, Hsin-Fang TI THE EVOLUTIONARY STATE OF THE PRE-MAIN SEQUENCE POPULATION IN OPHIUCHUS: A LARGE INFRARED SPECTROGRAPH SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE infrared: stars; open clusters and associations: individual (rho Ophiuchi); stars: pre-main sequence ID T-TAURI STARS; SPECTRAL ENERGY-DISTRIBUTIONS; YOUNG STELLAR OBJECTS; SPITZER IRS SPECTRA; MULTIPLE PROTOSTELLAR SYSTEMS; RHO-OPHIUCHI; CLASS-I; MOLECULAR CLOUDS; GRAIN-GROWTH; CIRCUMSTELLAR DISKS AB Variations in molecular cloud environments have the potential to affect the composition and structure of the circumstellar disks therein. To this end, comparative analyses of nearby star-forming regions are essential to informing theoretical work. In particular, the Ophiuchus molecular clouds are ideal for comparison as they are more compact with much higher extinction than Taurus, the low-mass exemplar, and experience a moderate amount of external radiation. We have carried out a study of a collection of 136 young stellar objects in the < 1 Myr old Ophiuchus star-forming region, featuring Spitzer Infrared Spectrograph spectra from 5 to 36 mu m, supplemented with photometry from 0.3 mu m to 1.3 mm. By classifying these objects using the McClure new molecular cloud extinction law to establish an extinction-independent index, we arrive at a similar to 10% embedded objects fraction, producing an embedded lifetime of 0.2 Myr, similar to that in Taurus. We analyze the degree of dust sedimentation and dust grain processing in the disks, finding that the disks are highly settled with signs of significant dust processing even at similar to 0.3 Myr. Finally, we discuss the wealth of evidence for radial gap structures which could be evidence for disk-planet interactions and explore the effects of stellar multiplicity on the degree of settling and radial structure. C1 [McClure, M. K.; Espaillat, C.; Calvet, N.; Tobin, J. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [McClure, M. K.; Manoj, P.; Watson, D. M.; Forrest, W. J.; Sargent, B.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Furlan, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Luhman, K. L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Luhman, K. L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [D'Alessio, P.] Univ Nacl Autonoma Mexico, Ctr Radioastron & Astrofis, Morelia 58089, Michoacan, Mexico. [Chiang, Hsin-Fang] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP McClure, MK (reprint author), Univ Michigan, Dept Astron, 500 Church St,830 Dennison Bldg, Ann Arbor, MI 48109 USA. EM melisma@umich.edu; Elise.Furlan@jpl.nasa.gov; manoj@pas.rochester.edu; kluhman@astro.psu.edu; dmw@pas.rochester.edu; forrest@pas.rochester.edu; ccespa@umich.edu; ncalvet@umich.edu; p.dalessio@astrosmo.unam.mx; bsargent@pas.rochester.edu; jjtobin@umich.edu; hchiang2@illinois.edu OI McClure, Melissa/0000-0003-1878-327X; Furlan, Elise/0000-0001-9800-6248 FU NASA [1407, 1257184]; JPL [960803]; Cornell subcontracts [314195714]; PAPIIT-UNAM, Mexico; National Science Foundation [AST-0544588]; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Support for this work was provided by NASA through contract number 1257184 issued by JPL/Caltech, JPL contract 960803 to Cornell University, and Cornell subcontracts 314195714 to the University of Rochester. E. F. was partly supported by a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities through a contract with NASA, and partly supported by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL/Caltech under a contract with NASA. P. D. acknowledges a grant from PAPIIT-UNAM, Mexico. This publication made use of NASA's Astrophysics Data System Abstract Service as well as the SIMBAD database and Vizier catalog service, operated by the Centre de Donnees astronomiques de Strasbourg. K. L. was supported by grant AST-0544588 from the National Science Foundation. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. NR 108 TC 64 Z9 64 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2010 VL 188 IS 1 BP 75 EP 122 DI 10.1088/0067-0049/188/1/75 PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 591LQ UT WOS:000277302500004 ER PT J AU Rosolowsky, E Dunham, MK Ginsburg, A Bradley, ET Aguirre, J Bally, J Battersby, C Cyganowski, C Dowell, D Drosback, M Evans, NJ Glenn, J Harvey, P Stringfellow, GS Walawender, J Williams, JP AF Rosolowsky, Erik Dunham, Miranda K. Ginsburg, Adam Bradley, E. Todd Aguirre, James Bally, John Battersby, Cara Cyganowski, Claudia Dowell, Darren Drosback, Meredith Evans, Neal J., II Glenn, Jason Harvey, Paul Stringfellow, Guy S. Walawender, Josh Williams, Jonathan P. TI THE BOLOCAM GALACTIC PLANE SURVEY. II. CATALOG OF THE IMAGE DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; dust, extinction; Galaxy: structure; radio continuum: ISM; stars: formation ID C2D LEGACY CLOUDS; DUST CONTINUUM EMISSION; STAR-FORMATION; INITIAL CONDITIONS; MOLECULAR CLOUDS; DENSE CORES; OPHIUCHUS; PERSEUS AB We present a catalog of 8358 sources extracted from images produced by the Bolocam Galactic Plane Survey (BGPS). The BGPS is a survey of the millimeter dust continuum emission from the northern Galactic plane. The catalog sources are extracted using a custom algorithm, Bolocat, which was designed specifically to identify and characterize objects in the large-area maps generated from the Bolocam instrument. The catalog products are designed to facilitate follow-up observations of these relatively unstudied objects. The catalog is 98% complete from 0.4 Jy to 60 Jy over all object sizes for which the survey is sensitive (<3'.5). We find that the sources extracted can best be described as molecular clumps-large dense regions in molecular clouds linked to cluster formation. We find that the flux density distribution of sources follows a power law with dN/dS alpha S(-2.4+/-0.1) and that the mean Galactic latitude for sources is significantly below the midplane: < b > = (-0 degrees.095 +/- 0 degrees.001). C1 [Rosolowsky, Erik] Univ British Columbia Okanagan, Dept Phys & Astron, Kelowna, BC V1V 1V7, Canada. [Dunham, Miranda K.; Evans, Neal J., II; Harvey, Paul] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Ginsburg, Adam; Bally, John; Battersby, Cara; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S.] Univ Colorado, CASA, Boulder, CO 80309 USA. [Bradley, E. Todd] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Aguirre, James] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Cyganowski, Claudia] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Dowell, Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91104 USA. [Drosback, Meredith] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Walawender, Josh] Inst Astron, Hilo, HI 96720 USA. [Williams, Jonathan P.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Rosolowsky, E (reprint author), Univ British Columbia Okanagan, Dept Phys & Astron, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada. EM erik.rosolowsky@ubc.ca RI Ginsburg, Adam/E-6413-2011; OI Williams, Jonathan/0000-0001-5058-695X; Ginsburg, Adam/0000-0001-6431-9633 FU National Science Foundation [AST-0708403, AST-0502605, AST-0607793]; NSERC of Canada FX The BGPS is supported by the National Science Foundation through the NSF grant AST-0708403. E. R. acknowledges partial support from an NSF AAP Fellowship (AST-0502605) and a Discovery Grant from NSERC of Canada. N.J.E. and M.K.N. acknowledge support from the NSF grant AST-0607793. We acknowledge the cultural role and reverence that the summit of Mauna Kea has within the Hawaiian community. We are fortunate to conduct observations from this mountain. The Green Bank Telescope is operated by the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 28 TC 132 Z9 132 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2010 VL 188 IS 1 BP 123 EP 138 DI 10.1088/0067-0049/188/1/123 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 591LQ UT WOS:000277302500005 ER PT J AU Stern, D Jimenez, R Verde, L Stanford, SA Kamionkowski, M AF Stern, Daniel Jimenez, Raul Verde, Licia Stanford, S. Adam Kamionkowski, Marc TI COSMIC CHRONOMETERS: CONSTRAINING THE EQUATION OF STATE OF DARK ENERGY. II. A SPECTROSCOPIC CATALOG OF RED GALAXIES IN GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations ID REDSHIFT SURVEY CATALOGS; IRAC SHALLOW SURVEY; DIGITAL SKY SURVEY; WIDE-FIELD SURVEY; DISTANT CLUSTER; VELOCITY DISPERSIONS; SURVEY EDISCS; ULTRAVIOLET; SIGNATURES; EMISSION AB We present a spectroscopic catalog of (mostly) red galaxies in 24 galaxy clusters in the redshift range 0.17 < z < 0.92 obtained with the LRIS instrument on the Keck I telescope. Here we describe the observations and the galaxy spectra, including the discovery of three cD galaxies with LINER emission spectra, and the spectroscopic discovery of four new galaxy-galaxy lenses in cluster environments. C1 [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, Raul; Verde, Licia] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain. [Stanford, S. Adam] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Kamionkowski, Marc] CALTECH, Pasadena, CA 91125 USA. RP Stern, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-506, Pasadena, CA 91109 USA. EM stern@zwolfkinder.jpl.nasa.gov OI Kamionkowski, Marc/0000-0001-7018-2055; Verde, Licia/0000-0003-2601-8770; Jimenez, Raul/0000-0002-3370-3103 FU NASA; Spanish Ministerio de Ciencia e Innovacion; European Union; DoE [DE-FG03-92-ER40701]; Gordon and Betty Moore Foundation FX The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. We thank M. Kasliwal for assistance with the P60 scheduling, F. Harrison and R. Griffith for assisting with the 2009 March Keck observations, L. Moustakas for useful discussions of the new gravitational lenses, and A. Barth and A. Edge for interesting discussions of the cD galaxy spectra. We also thank H. Ebeling for checking our MACS spectroscopic results against his unpublished results; in almost all cases, our results agreed with Delta z <= 0.004. We are grateful to the referee for a timely and helpful report. Astrometry for two of the 2005 masks was provided by astrometry. net (Lang et al. 2010). The work of DS was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R. J. and L. V. acknowledge support from the Spanish Ministerio de Ciencia e Innovacion and the European Union FP7 program. M. K. was supported by DoE DE-FG03-92-ER40701 and the Gordon and Betty Moore Foundation. This research made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Figure 8 is based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA). NR 54 TC 35 Z9 36 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2010 VL 188 IS 1 BP 280 EP 289 DI 10.1088/0067-0049/188/1/280 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 591LQ UT WOS:000277302500011 ER PT J AU Choi, Y Osterman, G Eldering, A Wang, YH Edgerton, E AF Choi, Yunsoo Osterman, Gregory Eldering, Annmarie Wang, Yuhang Edgerton, Eric TI Understanding the contributions of anthropogenic and biogenic sources to CO enhancements and outflow observed over North America and the western Atlantic Ocean by TES and MOPITT SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE CO; Biogenic source; Anthropogenic source; Convective outflow ID CARBON-MONOXIDE; TROPOSPHERIC CHEMISTRY; EMISSIONS; MODEL; INSTRUMENT AB We investigate the effects of anthropogenic and biogenic sources on tropospheric CO enhancements and outflow over North America and the Atlantic during July August 2006, the 3rd warmest summer on record. The analysis is performed using the 3D Regional chEmical trAnsport Model (REAM), satellite data from TES on the Aura satellite, MOPITT on the Terra satellite and surface monitor data from the SEARCH network. The satellite measurements of CO provide insight into the location of regional CO enhancements along with the ability to resolve vertical features. Satellite and surface monitor data are used to compare with REAM, illustrating model's ability to reproduce observed CO concentrations. The REAM model used in this study features CO emissions reduced by 50% from the 1999 EPA NEI and biogenic VOC emissions scaled by EPA-observed isoprene concentrations (20% reduction). The REAM simulations show large variations in surface CO, lower tropospheric CO and column CO, which are also observed by the surface observations and satellite data. Over the US, during July August 2006, the model estimates monthly CO production from anthropogenic sources (5.3 and 51 Tg CO) is generally larger than biogenic sources (4.3 and 3.5 Tg CO). However, the model shows that for very warm days, biogenic sources produce as much CO as anthropogenic sources, a result of increased biogenic production due to warmer temperatures. The satellite data show CO outflow occurs along the East Coast of the US and Canada in July and is more broadly distributed over the Atlantic in August. REAM results show the longitudinally exported CO enhancements from anthropogenic sources (3.3 and 3.9 Tg CO) are larger than biogenic sources (2 8 and 2.7 Tg CO) along the eastern boundary of REAM for July August 2006 We show that when compared with the impacts of both sources on increasing tropospheric CO exports, the relative Impacts in August are greater than in July because of preferable outflow transport (C) 2010 Elsevier Ltd. All rights reserved. C1 [Choi, Yunsoo; Osterman, Gregory; Eldering, Annmarie] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wang, Yuhang] Georgia Inst Technol, Atlanta, GA 30332 USA. [Edgerton, Eric] Atmospher Res & Anal Inc, Cary, NC 27513 USA. RP Choi, Y (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Wang, Yuhang/B-5578-2014 FU Jet Propulsion Laboratory at the California Institute of Technology FX We thank TES and MOPITT members for the TES and MOPITT data, two anonymous reviewers for their helpful comments, Guido van der Werf for the GFED inventory, and Daniel Jacob and Robert Yantosca for GEOS-Chem This work was funded by the Jet Propulsion Laboratory at the California Institute of Technology, under contract to NASA NR 34 TC 3 Z9 3 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2010 VL 44 IS 16 BP 2033 EP 2042 DI 10.1016/j.atmosenv.2010.01.029 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 599RR UT WOS:000277931300011 ER PT J AU Lien, MC Ruthruff, E Kouchi, S Lachter, J AF Lien, Mei-Ching Ruthruff, Eric Kouchi, Scott Lachter, Joel TI Even frequent and expected words are not identified without spatial attention SO ATTENTION PERCEPTION & PSYCHOPHYSICS LA English DT Article ID AUTOMATIC SEMANTIC ACTIVATION; SELECTIVE VISUAL-ATTENTION; SHORT-TERM-MEMORY; STROOP; RECOGNITION; DILUTION; CAPACITY; CONTEXT; MYTH; INFORMATION AB Previous studies have disagreed about the extent to which people extract meaning from words presented outside the focus of spatial attention. The present study examined a possible explanation for such discrepancies inspired by attenuation theory: Unattended words can be read more automatically when they are expected within a given context (e.g., due to frequent repetition). We presented a brief prime word in lowercase, followed by a target word in uppercase. Participants indicated whether the target word belonged to a particular category (e.g., "sports"). When we used a visual cue to draw attention to the location of the prime word, it produced substantial priming effects on target responses (i.e., especially fast responses when the prime and target words were identical or from the same category). When prime words were not attended, however, they produced no priming effects. This finding replicated even when there were only four words, each repeated 160 times during the experiment. It appears that very little word processing is possible without spatial attention, even for words that are expected and frequently presented. C1 [Lien, Mei-Ching] Oregon State Univ, Dept Psychol, Corvallis, OR 97331 USA. [Ruthruff, Eric] Univ New Mexico, Albuquerque, NM 87131 USA. [Lachter, Joel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lien, MC (reprint author), Oregon State Univ, Dept Psychol, Corvallis, OR 97331 USA. EM mei.lien@oregonstate.edu FU National Aeronautics and Space Administration FX We are grateful for the financial support of the Aviation Safety Program of the National Aeronautics and Space Administration. We thank Jennifer Burt, Ken Forster, Lynne Nygaard, and an anonymous reviewer for their comments on the earlier versions of the manuscript. Correspondence concerning this article should be sent to M.-C. Lien, Department of Psychology, Oregon State University, Corvallis, OR 97331-5303 (e-mail: mei.lien@oregonstate.edu). NR 47 TC 11 Z9 11 U1 2 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1943-3921 EI 1943-393X J9 ATTEN PERCEPT PSYCHO JI Atten. Percept. Psychophys. PD MAY PY 2010 VL 72 IS 4 BP 973 EP 988 DI 10.3758/APP.72.4.973 PG 16 WC Psychology; Psychology, Experimental SC Psychology GA 653DJ UT WOS:000282067100011 PM 20436194 ER PT J AU Kass, R Kass, J Binder, H Kraft, N AF Kass, Rachel Kass, James Binder, Heidi Kraft, Norbert TI Conflict-Handling Mode Scores of Three Crews Before and After a 264-Day Spaceflight Simulation SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE multicultural crew; isolation; training ID INTERPERSONAL ISSUES; SPACE AB KASS R, KASS J, BINDER H, KRAFT N. Conflict-handling mode scores of three crews before and after a 264-day spaceflight simulation. Aviat Space Environ Med 2010; 81:502-5. Introduction: In both the Russian and U S space programs, crew safety and mission success have at times been Jeopardized by critical incidents related to psychological, behavioral, and interpersonal aspects of crew performance The modes used for handling interpersonal conflict may play a key role in such situations Methods: This study analyzed conflict-handling modes of three crews of our people each before and after a 264-d spaceflight simulation that was conducted in Russia in 1999-2000 Conflict was defined is a situation in which the concerns of two or more individuals appeared to be incompatible Participants were assessed using the Thomas-Kilmann Conflict Mode Instrument, which uses 30 forced-choice items to produce scores for five modes of conflict handling Results were compared to norms developed using managers at middle and upper levels of business and government Results: Both before and after isolation, average scores for all crews were above 75% for Accommodating, below 25%., for Collaborating, and within the middle 50% for Competing, Avoiding, and Compromising Statistical analyses showed no significant difference between the crews and no statistically significant shift from pre- to post-isolation Discussion: A crew predisposition to use Accommodating most and Collaborating least may be practical in experimental settings, but is less likely to lie useful in resolving conflicts within Or between crews on actual flights Given that interpersonal conflicts exist in any environment, crews in future space missions might benefit from training in conflict management skills C1 [Kass, Rachel] Concordia Univ, Montreal, PQ H4B 1R6, Canada. [Kass, James] European Space Agcy, NL-2200 AG Noordwijk, Netherlands. NASA, Ames Res Ctr, SJSU Fdn, Moffett Field, CA 94035 USA. [Kraft, Norbert] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. [Binder, Heidi] Google Inc, Mountain View, CA USA. RP Kass, R (reprint author), Concordia Univ, 7141 Sherbrooke St W, Montreal, PQ H4B 1R6, Canada. OI Kass, James/0000-0002-3486-1699 FU JAXA; IBMP; CSA; European Space Agency FX The authors would like to thank the subjects tor participating in this experiment, and the Russian Institute for Biomedical Problems for the use of their isolation facility The isolation experiment was supported by JAXA, IBMP, CSA and the European Space Agency NR 17 TC 1 Z9 1 U1 0 U2 6 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD MAY PY 2010 VL 81 IS 5 BP 502 EP 505 DI 10.3357/ASEM.1623.2010 PG 4 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 589FY UT WOS:000277133500008 PM 20464818 ER PT J AU Summers, RL Martin, DS Platts, SH Mercado-Young, R Coleman, TG Kassemi, M AF Summers, Richard L. Martin, David S. Platts, Steven H. Mercado-Young, Rosario Coleman, Thomas G. Kassemi, Mohammad TI Ventricular Chamber Sphericity During Spaceflight and Parabolic Flight Intervals of Less Than 1 G SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE ventricular sphericity; circularity index; microgravity ID CARDIAC ATROPHY; WALL STRESS; BED REST; SHAPE; HYPERTROPHY; VOLUME AB SUMMERS RL, MARTIN DS, PLATTS SH, MERCADO-YOUNG R, COLEMAN TG, KASSEMI M Ventricular chamber sphericity during spaceflight and parabolic intervals of less than 1 G Aviat Space Environ Med 2010, 81:506-10. Introduction: Pathology driven alterations in the geometric shape of the heart have been found to result in regional changes in ventricular wall stress and a remodeling of the myocardium If reductions in the gravitational forces acting on the heart produce similar changes in the overall contour of the ventricles, this modification might also induce adaptations in the cardiac structure during long-term spaceflight In this study we examined the changes in left ventricle (IN) shape in spaceflight and during parabolic flights Methods: The diastole dimensions of the human IN were assessed with echocardiography during spaceflight and in parabolic flights which replicated the gravity of the Moon, Mars, and spaceflight and were compared to findings in Earth's gravity IV dimensions were translated into circularity indices and geometric aspect ratios and correlated with their corresponding gravitational conditions Results: During parabolic flight, a 1 near relationship (r = 0 99) was found between both the circularity index and geometric aspect ratio values and the respective gravitational fields in which they were measured During spaceflight (N = 4) and parabolic flights (N = 3), there was an average 4 1 and 4 4% higher circularity index and a 5 3 and 8 1 lower geometric aspect ratio, respectively Conclusions. A correlative trend was found between the degree of LV sphericity and the amount of gravitational force directed caudal to the longitudinal orientation of the body The importance of this finding is uncertain, but may have implications regarding physiologic adaptations in the myocardial structure secondary to changes in LV wall stress upon prolonged exposure to microgravity C1 [Summers, Richard L.; Coleman, Thomas G.] Univ Mississippi, Med Ctr, Dept Emergency Med, Jackson, MS 39216 USA. [Martin, David S.] Wyle Labs, Houston, TX USA. [Platts, Steven H.; Mercado-Young, Rosario] NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Space & Life Sci Directorate, Houston, TX 77058 USA. [Kassemi, Mohammad] NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res, Cleveland, OH USA. RP Summers, RL (reprint author), Univ Mississippi, Med Ctr, Dept Emergency Med, 2500 N State St, Jackson, MS 39216 USA. FU National Space Biomedical Research Institute through NASA [NCC 9-58, NA-405]; NASA; NASA Cardiovascular Laboratory at Johnson Space Center FX This work was supported by the National Space Biomedical Research Institute through NASA NCC 9-58 (PI S Wood, NA-405) and the NASA Education Outreach Program and the NASA Cardiovascular Laboratory at Johnson Space Center NR 20 TC 4 Z9 5 U1 2 U2 6 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD MAY PY 2010 VL 81 IS 5 BP 506 EP 510 DI 10.3357/ASEM.2526.2010 PG 5 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 589FY UT WOS:000277133500009 PM 20464819 ER PT J AU Rangwala, I Miller, JR Russell, GL Xu, M AF Rangwala, Imtiaz Miller, James R. Russell, Gary L. Xu, Ming TI Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century SO CLIMATE DYNAMICS LA English DT Article DE Climate change; High elevation; Tibetan Plateau; Global climate model; Specific humidity; Downward longwave ID TEMPERATURE; TRENDS AB We examine trends in climate variables and their interrelationships over the Tibetan Plateau using global climate model simulations to elucidate the mechanisms for the pattern of warming observed over the plateau during the latter half of the twentieth century and to investigate the warming trend during the twenty-first century under the SRES A1B scenario. Our analysis suggests a 4A degrees C warming over the plateau between 1950 and 2100. The largest warming rates occur during winter and spring. For the 1961-2000 period, the simulated warming is similar to the observed trend over the plateau. Moreover, the largest warming occurs at the highest elevation sites between 1950 and 2100. We find that increases in (1) downward longwave radiation (DLR) influenced by increases in surface specific humidity (q), and (2) absorbed solar radiation (ASR) influenced by decreases in snow cover extent are, in part, the reason for a large warming trend over the plateau, particularly during winter and spring. Furthermore, elevation-based increases in DLR (influenced by q) and ASR (influenced by snow cover and atmospheric aerosols) appear to affect the elevation dependent warming trend simulated in the model. C1 [Rangwala, Imtiaz] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Miller, James R.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA. [Russell, Gary L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Xu, Ming] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China. [Xu, Ming] Rutgers State Univ, Dept Ecol Evolut & Nat Resources, New Brunswick, NJ 08901 USA. RP Rangwala, I (reprint author), Rutgers State Univ, Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM imtiazr@envsci.rutgers.edu FU NJ Agricultural Experiment Station [32103] FX We would like to thank the anonymous reviewers for their helpful comments that have significantly improved our manuscript. Partial support for JRM has been provided by Project # 32103 from the NJ Agricultural Experiment Station. NR 27 TC 29 Z9 32 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2010 VL 34 IS 6 BP 859 EP 872 DI 10.1007/s00382-009-0564-1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 587VC UT WOS:000277021400007 ER PT J AU Rosenzweig, C Wilbanks, TJ AF Rosenzweig, Cynthia Wilbanks, Thomas J. TI The state of climate change vulnerability, impacts, and adaptation research: strengthening knowledge base and community SO CLIMATIC CHANGE LA English DT Article C1 [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wilbanks, Thomas J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Rosenzweig, C (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM crosenzweig@giss.nasa.gov; wilbankstj@ornl.gov NR 1 TC 28 Z9 29 U1 1 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD MAY PY 2010 VL 100 IS 1 BP 103 EP 106 DI 10.1007/s10584-010-9826-5 PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 599TR UT WOS:000277936900013 ER PT J AU Severinghaus, JP Albert, MR Courville, ZR Fahnestock, MA Kawamura, K Montzka, SA Muhle, J Scambos, TA Shields, E Shuman, CA Suwa, M Tans, P Weiss, RF AF Severinghaus, Jeffrey P. Albert, Mary R. Courville, Zoe R. Fahnestock, Mark A. Kawamura, Kenji Montzka, Stephen A. Muehle, Jens Scambos, Ted A. Shields, Erin Shuman, Christopher A. Suwa, Makoto Tans, Pieter Weiss, Ray F. TI Deep air convection in the firn at a zero-accumulation site, central Antarctica SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE convective zone; nitrogen isotopes; firn gas; snow metamorphism; ice core; greenhouse gas phasing ID ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; POLAR ICE; ATMOSPHERIC HYDROXYL; TRAPPED AIR; SIPLE-DOME; CLOSE-OFF; SNOW; AGE; CONSTRAINTS AB Ice cores provide unique archives of past atmospheres and climate, but interpretation of trapped-gas records and their climatic significance has been hampered by a poor knowledge of the prevalence of air convection in the firn layer on top of polar ice sheets. In particular, the phasing of greenhouse gases and climate from ice cores has been obscured by a discrepancy between empirical and model-based estimates of the age difference between trapped gases and enclosing ice, which may be due to air convection. Here we show that deep air convection (>23 m) occurs at a windy, near-zero-accumulation rate site in central Antarctica known informally as the Megadunes site (80.77914 degrees S, 124.48796 degrees E). Deep convection is evident in depth profiles of air withdrawn from the firn layer, in the observed pattern of the nitrogen isotope ratio (15)N/(14)N, the argon isotope ratio (40)Ar/(36)Ar, and in the mixing ratios of the anthropogenic halocarbons methyl chloroform (CH(3)CCl(3)) and HFC-134a (CH(2)FCF(3)). Transport parameters (diffusivities) were inferred and air was dated using measured carbon dioxide (CO(2)) and methane (CH(4)) mixing ratios, by comparing with the Law Dome atmospheric record, which shows that these are the oldest firn air samples ever recovered (CO(2) mean age = 1863 AD). The low accumulation rate and the consequent intense metamorphism of the firn (due to prolonged exposure to seasonal temperature cycling) likely contribute to deep air convection via large grain size and vertical cracks that act as conduits for vigorous air motion. The Megadunes site provides a possible modern analog for the glacial conditions in the Vostok, Dome Fuji, and Dome C ice core records and a possible explanation for lower-than-expected (15)N/(14)N ratios in trapped air bubbles at these times. A general conclusion is that very low accumulation rate causes deep air convection via its effect on firn structural characteristics. (C) 2010 Elsevier B.V. All rights reserved. C1 [Severinghaus, Jeffrey P.; Muehle, Jens; Shields, Erin; Weiss, Ray F.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92093 USA. [Albert, Mary R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Courville, Zoe R.] USA, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA. [Fahnestock, Mark A.] Univ New Hampshire, Ctr Study Complex Syst, Durham, NH 03824 USA. [Kawamura, Kenji] Natl Inst Polar Res, Itabashi Ku, Tokyo 1738515, Japan. [Montzka, Stephen A.; Tans, Pieter] NOAA Earth Syst Res Lab, Boulder, CO 80305 USA. [Scambos, Ted A.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80301 USA. [Shuman, Christopher A.] Univ Maryland, Goddard Earth Sci & Technol Ctr, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Suwa, Makoto] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. RP Severinghaus, JP (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92093 USA. EM jseveringhaus@ucsd.edu RI Kawamura, Kenji/C-7660-2011; Fahnestock, Mark/N-2678-2013; OI Montzka, Stephen/0000-0002-9396-0400; Kawamura, Kenji/0000-0003-1163-700X; Albert, Mary/0000-0001-7842-2359 FU NSF [OPP 02-30452, OPP 01-25276]; NOAA's Climate Program Office FX Richard Alley suggested the idea of sampling firn air at the Megadunes site. Michael Bender inspired much of this work and made the delta15N measurements in his lab at Princeton. Two anonymous reviewers substantially improved the manuscript. We thank Louise Albershardt of Ice Coring and Drilling Services for the drilling and for making do with an unfinished (and partially functioning) drill. Special thanks go to the 2003-2004 Light Ground Traverse for their extraordinary efforts in preparing the runway that enabled LC-130 landings at the Megadunes site. Support for this work came from NSF-OPP 02-30452 (J.P.S.), NSF-OPP 01-25276 (ancillary field data), and the Atmospheric Composition and Climate Program of NOAA's Climate Program Office (S.A.M.). NR 53 TC 36 Z9 36 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 1 PY 2010 VL 293 IS 3-4 BP 359 EP 367 DI 10.1016/j.epsl.2010.03.003 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 598ES UT WOS:000277816900014 ER PT J AU Flynn, K Haasch, M Shadwick, DS Johnson, R AF Flynn, Kevin Haasch, Mary Shadwick, Doug S. Johnson, Rodney TI Real-time PCR-based prediction of gonad phenotype in medaka SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Endocrine disruption; Bioassay; Intersex; Trenbolone; Histology ID GROWTH PROMOTER 17-BETA-TRENBOLONE; ORYZIAS-LATIPES; FATHEAD MINNOW; REPRODUCTIVE ENDOCRINOLOGY; MELENGESTROL ACETATE; TRENBOLONE ACETATE; FISH; 17-BETA-ESTRADIOL; SPERMATOGENESIS; DIFFERENTIATION AB An important endpoint in aquatic bioassays for potential endocrine disrupting chemicals (EDCs) is the gonadal phenotype of exposed fish, with special interest in intersex and sex-reversed individuals. Traditionally, the assessment of gonad phenotype is done via histology, which involves specialized and time-consuming techniques. The method detailed here increases the efficiency of the analysis by first determining the relative expression of four genes involved in gonad development/maintenance in Japanese medaka (Oryzias latipes), and then by using principal component analysis, assigning a phenotype to each gonad based upon the gene expression data. The gonad phenotype and the sexual genotype, which can be determined in medaka, can then be compared to assess potential adverse effects of exposure to endocrine disrupting chemicals. Published by Elsevier Inc. C1 [Flynn, Kevin; Haasch, Mary] US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div,Natl Res Council, Duluth, MN 55804 USA. [Shadwick, Doug S.] Comp Sci Corp, Res Triangle Pk, NC 27711 USA. RP Flynn, K (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div,Natl Res Council, 6201 Congdon Blvd, Duluth, MN 55804 USA. EM flynn.kevin@epa.gov FU USEPA FX The research described in this document has been funded wholly by the USEPA. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. NR 37 TC 1 Z9 1 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 EI 1090-2414 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD MAY PY 2010 VL 73 IS 4 BP 589 EP 594 DI 10.1016/j.ecoenv.2009.12.010 PG 6 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 588VW UT WOS:000277103600017 PM 20074805 ER PT J AU Werneth, CM Dhar, M Maung, KM Sirola, C Norbury, JW AF Werneth, Charles M. Dhar, Mallika Maung, Khin Maung Sirola, Christopher Norbury, John W. TI Numerical Gram-Schmidt orthonormalization SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article AB A numerical Gram-Schmidt orthonormalization procedure is presented for constructing an orthonormal basis function set from a non-orthonormal set, when the number of basis functions is large. This method will provide a pedagogical illustration of the Gram-Schmidt procedure and can be presented in classes on numerical methods or computational physics. C1 [Werneth, Charles M.; Dhar, Mallika; Maung, Khin Maung; Sirola, Christopher] Univ So Mississippi, Hattiesburg, MS 39406 USA. [Norbury, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Werneth, CM (reprint author), Univ So Mississippi, Hattiesburg, MS 39406 USA. EM charles.werneth@usm.edu; malli.dhar@gmail.com; khinmaungmaung@gmail.com; christopher.sirola@usm.edu; john.w.norbury@nasa.gov NR 4 TC 1 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 J9 EUR J PHYS JI Eur. J. Phys. PD MAY PY 2010 VL 31 IS 3 BP 693 EP 700 DI 10.1088/0143-0807/31/3/027 PG 8 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 589LU UT WOS:000277150500027 ER PT J AU Mulavara, AP Feiveson, AH Fiedler, J Cohen, H Peters, BT Miller, C Brady, R Bloomberg, JJ AF Mulavara, Ajitkumar P. Feiveson, Alan H. Fiedler, James Cohen, Helen Peters, Brian T. Miller, Chris Brady, Rachel Bloomberg, Jacob J. TI Locomotor function after long-duration space flight: effects and motor learning during recovery SO EXPERIMENTAL BRAIN RESEARCH LA English DT Article DE Functional mobility; Space flight; Locomotion; Adaptation; Recovery ID NEUROMUSCULAR ACTIVATION PATTERNS; CANADIAN VESTIBULAR EXPERIMENTS; SPATIAL ORIENTATION; TREADMILL WALKING; PRISM ADAPTATION; PROLONGED WEIGHTLESSNESS; SENSORIMOTOR ADAPTATION; MICROGRAVITY EXPOSURE; MOTION SICKNESS; EARTHS GRAVITY AB Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re-adaptation to Earth's 1-g environment on return from space flight. C1 [Mulavara, Ajitkumar P.; Fiedler, James] Univ Space Res Assoc, Houston, TX 77058 USA. [Feiveson, Alan H.; Bloomberg, Jacob J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Cohen, Helen] Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA. [Peters, Brian T.; Miller, Chris; Brady, Rachel] Wyle Integrated Sci & Engn Grp Inc, Houston, TX 77058 USA. RP Mulavara, AP (reprint author), Univ Space Res Assoc, 2101 NASA Pkwy,SK B272, Houston, TX 77058 USA. EM ajitkumar.p.mulavara@nasa.gov; jacob.j.bloomberg@nasa.gov NR 62 TC 27 Z9 27 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4819 J9 EXP BRAIN RES JI Exp. Brain Res. PD MAY PY 2010 VL 202 IS 3 BP 649 EP 659 DI 10.1007/s00221-010-2171-0 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 581KF UT WOS:000276520600013 PM 20135100 ER PT J AU Bushnell, DM AF Bushnell, Dennis M. TI Conquering Climate Change SO FUTURIST LA English DT Article C1 NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Bushnell, DM (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WORLD FUTURE SOC PI BETHESDA PA 7910 WOODMONT AVE, STE 450, BETHESDA, MD 20814 USA SN 0016-3317 J9 FUTURIST JI Futurist PD MAY-JUN PY 2010 VL 44 IS 3 BP 25 EP 27 PG 3 WC Social Issues SC Social Issues GA 585DA UT WOS:000276803300011 ER PT J AU Argus, DF Peltier, WR AF Argus, Donald F. Peltier, W. Richard TI Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Satellite geodesy; Global change from geodesy; Glaciology; Dynamics: gravity and tectonics; Kinematics of crustal and mantle deformation ID GLACIAL ISOSTATIC-ADJUSTMENT; BASE-LINE INTERFEROMETRY; REFERENCE FRAME; MANTLE VISCOSITY; AGE EARTH; GRAVITY; GRACE; GPS; FENNOSCANDIA; VELOCITY AB P>Using global positioning system, very long baseline interferometry, satellite laser ranging and Doppler Orbitography and Radiopositioning Integrated by Satellite observations, including the Canadian Base Network and Fennoscandian BIFROST array, we constrain, in models of postglacial rebound, the thickness of the ice sheets as a function of position and time and the viscosity of the mantle as a function of depth. We test model ICE-5G VM2 T90 Rot, which well fits many hundred Holocene relative sea level histories in North America, Europe and worldwide. ICE-5G is the deglaciation history having more ice in western Canada than ICE-4G; VM2 is the mantle viscosity profile having a mean upper mantle viscosity of 0.5 x 1021 Pa s and a mean uppermost-lower mantle viscosity of 1.6 x 1021 Pa s; T90 is an elastic lithosphere thickness of 90 km; and Rot designates that the model includes (rotational feedback) Earth's response to the wander of the North Pole of Earth's spin axis towards Canada at a speed of approximate to 1 degrees Myr-1. The vertical observations in North America show that, relative to ICE-5G, the Laurentide ice sheet at last glacial maximum (LGM) at approximate to 26 ka was (1) much thinner in southern Manitoba, (2) thinner near Yellowknife (Northwest Territories), (3) thicker in eastern and southern Quebec and (4) thicker along the northern British Columbia-Alberta border, or that ice was unloaded from these areas later (thicker) or earlier (thinner) than in ICE-5G. The data indicate that the western Laurentide ice sheet was intermediate in mass between ICE-5G and ICE-4G. The vertical observations and GRACE gravity data together suggest that the western Laurentide ice sheet was nearly as massive as that in ICE-5G but distributed more broadly across northwestern Canada. VM2 poorly fits the horizontal observations in North America, predicting places along the margins of the Laurentide ice sheet to be moving laterally away from the ice centre at 2 mm yr-1 in ICE-4G and 3 mm yr-1 in ICE-5G, in disagreement with the observation that the interior of the North American Plate is deforming more slowly than 1 mm yr-1. Substituting VM5a T60 for VM2 T90, that is, introducing into the lithosphere at its base a layer with a high viscosity of 10 x 1021 Pa s, greatly improves the fit of the horizontal observations in North America. ICE-4G VM5a T60 Rot predicts most of the North American Plate to be moving horizontally more slowly than approximate to 1 mm yr-1, in agreement with the data. ICE-5G VM5a T60 Rot well fits both the vertical and horizontal observations in Europe. The space geodetic data cannot distinguish between models with and without rotational feedback, in the vertical because the velocity of Earth' centre is uncertain, and in the horizontal because the areas of the plate interiors having geodetic sites is not large enough to detect the small differences in the predictions of rotational feedback going across the plate interiors. C1 [Argus, Donald F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Peltier, W. Richard] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Argus, DF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM donald.f.argus@jpl.nasa.gov RI Argus, Donald/F-7704-2011; Peltier, William/A-1102-2008 FU Canadian Foundation for Climate and Atmospheric Sciences; NSERC [A9627] FX We are grateful to Dr Michael Craymer and scientists at National Resources Canada for providing estimates of the velocities of sites in the Canadian Base Network. We are grateful to Dr Rosemarie Drummond (University of Toronto) for collating the predictions of the postglacial rebound models. We thank John Beavan, Kosuki Heki and an anonymous reviewer for their careful reviews. Part of this research was performed at Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This research is also a contribution to the work of the Polar Climate Stability Network which is funded by the Canadian Foundation for Climate and Atmospheric Sciences and a consortium of Canadian universities Additional support was provided by NSERC Discovery Grant A9627. NR 55 TC 68 Z9 73 U1 3 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD MAY PY 2010 VL 181 IS 2 BP 697 EP 723 DI 10.1111/j.1365-246X.2010.04562.x PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 583RO UT WOS:000276697000006 ER PT J AU Chen, WT Lee, YH Adams, PJ Nenes, A Seinfeld, JH AF Chen, W. -T. Lee, Y. H. Adams, P. J. Nenes, A. Seinfeld, J. H. TI Will black carbon mitigation dampen aerosol indirect forcing? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CIRRUS CLOUD FORMATION; PARTICLE NUMBER; ICE NUCLEI; PARAMETERIZATION; NUCLEATION; COMPETITION; SATELLITE; VEHICLES; MODELS; MATTER AB If mitigation of black carbon (BC) particulate matter is accompanied by a decrease in particle number emissions, and thereby by a decrease in global cloud condensation nuclei (CCN) concentrations, a decrease in global cloud radiative forcing (a reverse "cloud albedo effect") results. We consider two present-day mitigation scenarios: 50% reduction of primary black carbon/organic carbon (BC/OC) mass and number emissions from fossil fuel combustion (termed HF), and 50% reduction of primary BC/OC mass and number emissions from all primary carbonaceous sources (fossil fuel, domestic biofuel, and biomass burning) (termed HC). Radiative forcing effects of these scenarios are assessed through present-day equilibrium climate simulations. Global average top-of-the-atmosphere changes in radiative forcing for the two scenarios, relative to present day conditions, are +0.13 +/- 0.33 W m(-2) (HF) and +0.31 +/- 0.33 W m(-2) (HC). Citation: Chen, W.-T., Y. H. Lee, P. J. Adams, A. Nenes, and J. H. Seinfeld (2010), Will black carbon mitigation dampen aerosol indirect forcing?, Geophys. Res. Lett., 37, L09801, doi: 10.1029/2010GL042886. C1 [Chen, W. -T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lee, Y. H.; Adams, P. J.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Adams, P. J.] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA. [Nenes, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Seinfeld, J. H.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Seinfeld, J. H.] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA. [Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Chen, WT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM seinfeld@caltech.edu RI Adams, Peter/D-7134-2013; Chen, Wei-Ting/A-4476-2012 OI Adams, Peter/0000-0003-0041-058X; Chen, Wei-Ting/0000-0002-9292-0933 FU U.S. Environmental Protection Agency [RD83337001]; NASA [NNX08AL85G] FX This work was supported by the U.S. Environmental Protection Agency under Science To Achieve Results (STAR) grant RD83337001 and NASA grant NNX08AL85G. NR 33 TC 53 Z9 53 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 1 PY 2010 VL 37 AR L09801 DI 10.1029/2010GL042886 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 590TZ UT WOS:000277252400005 ER PT J AU Kounaves, SP Hecht, MH Kapit, J Quinn, RC Catling, DC Clark, BC Ming, DW Gospodinova, K Hredzak, P McElhoney, K Shusterman, J AF Kounaves, Samuel P. Hecht, Michael H. Kapit, Jason Quinn, Richard C. Catling, David C. Clark, Benton C. Ming, Douglas W. Gospodinova, Kalina Hredzak, Patricia McElhoney, Kyle Shusterman, Jennifer TI Soluble sulfate in the martian soil at the Phoenix landing site SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID X-RAY SPECTROMETER; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; WATER ACTIVITY; MARS; CHEMISTRY; MINERALOGY; ROCKS; LIFE; VIEW AB Sulfur has been detected by X-ray spectroscopy in martian soils at the Viking, Pathfinder, Opportunity and Spirit landing sites. Sulfates have been identified by OMEGA and CRISM in Valles Marineris and by the spectrometers on the MER rovers at Meridiani and Gusev. The ubiquitous presence of sulfur has been interpreted as a widely distributed sulfate mineralogy. One goal of the Wet Chemistry Laboratory (WCL) on NASA's Phoenix Mars Lander was to determine soluble sulfate in the martian soil. We report here the first in-situ measurement of soluble sulfate equivalent to similar to 1.3(+/-0.5) wt% as SO(4) in the soil. The results and models reveal SO(4)(2-) predominately as MgSO(4) with some CaSO(4). If the soil had been wet in the past, epsomite and gypsum would be formed from evaporation. The WCL-derived salt composition indicates that if the soil at the Phoenix site were to form an aqueous solution by natural means, the water activity for a dilution of greater than similar to 0.015 g H(2)O/g soil would be in the habitable range of known terrestrial halophilic microbes. Citation: Kounaves, S. P., et al. (2010), Soluble sulfate in the martian soil at the Phoenix landing site, Geophys. Res. Lett., 37, L09201, doi: 10.1029/2010GL042613. C1 [Kounaves, Samuel P.; Kapit, Jason; Gospodinova, Kalina; Hredzak, Patricia; McElhoney, Kyle; Shusterman, Jennifer] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Hecht, Michael H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Quinn, Richard C.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Catling, David C.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Clark, Benton C.] Space Sci Inst, Boulder, CO 80301 USA. [Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Kounaves, SP (reprint author), Tufts Univ, Dept Chem, Medford, MA 02155 USA. EM samuel.kounaves@tufts.edu RI Catling, David/D-2082-2009; OI Catling, David/0000-0001-5646-120X; Kounaves, Samuel/0000-0002-2629-4831 NR 35 TC 38 Z9 38 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 1 PY 2010 VL 37 AR L09201 DI 10.1029/2010GL042613 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 590TZ UT WOS:000277252400003 ER PT J AU Dillon, RL Mazzola, JB AF Dillon, R. L. Mazzola, J. B. TI Management of disruption risk in global supply chains SO IBM JOURNAL OF RESEARCH AND DEVELOPMENT LA English DT Article AB Global supply chains (GSCs) are an integral part of the twenty-first century economy. A disruption occurring within a supply chain, whether it is attributable to a natural disaster or a human-induced event, presents substantial risk to organizations within the supply chain and the markets that it serves. In this paper, we discuss new research toward a risk-based modeling approach to managing a GSC disruption. We introduce the concept of a supply-risk network to capture potential disruptions. Using this framework, we formulate a GSC disruption-risk model that allows for organizations within the supply chain to strategically plan for the sourcing (i.e., procurement) and flow of goods throughout the supply chain in a manner that directly incorporates the risk of disruption. The GSC disruption-risk model is formulated as a two-stage stochastic integer programming problem with fixed recourse, which is an appropriate modeling approach when decisions can be made after uncertainties are resolved in order to ensure that the stochastic constraints hold. This formulation is illustrated with an example five-node network. Furthermore, we explore implications of increasing the reliability of nodes in the network. Finally, we conclude with implications for further theoretical research and for managerial practice. C1 [Dillon, R. L.] Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA. [Mazzola, J. B.] Univ N Carolina, Belk Coll Business, Charlotte, NC 28223 USA. [Dillon, R. L.] NASA, Dept Energy, New Tritium Supply Facil, Jet Prop Lab, Washington, DC USA. [Mazzola, J. B.] INSEAD, Fontainebleau, France. [Mazzola, J. B.] Wake Forest Univ, Winston Salem, NC 27109 USA. RP Dillon, RL (reprint author), Georgetown Univ, McDonough Sch Business, Washington, DC 20057 USA. EM rld9@georgetown.edu; jmazzola@uncc.edu NR 23 TC 0 Z9 0 U1 5 U2 14 PU IBM CORP PI ARMONK PA 1 NEW ORCHARD ROAD, ARMONK, NY 10504 USA SN 0018-8646 J9 IBM J RES DEV JI IBM J. Res. Dev. PD MAY-JUN PY 2010 VL 54 IS 3 AR 10 DI 10.1147/JRD.2010.2044674 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA V22ET UT WOS:000208259200008 ER PT J AU Li, H Treinish, LA Hosking, JRM AF Li, H. Treinish, L. A. Hosking, J. R. M. TI A statistical model for risk management of electric outage forecasts SO IBM JOURNAL OF RESEARCH AND DEVELOPMENT LA English DT Article AB Risk management of power outages caused by severe weather events, such as hurricanes, tornadoes, and thunderstorms, plays an important role in electric utility distribution operations. Damage prediction based on weather forecasts on an appropriate spatial scale can improve the efficiency of risk management by reducing the economic and societal costs associated with restoration efforts. We have developed a method of predicting the number of outages in a fashion that is suitable for use by electric utilities by using a Poisson regression model for spatial data in a Bayesian hierarchical framework. Particular attention is given to building models that incorporate uncertainty in the outage data from the perspective of multiple spatial resolutions and spatial correlation in the outage data. The outage-prediction model was developed using historical outage data from an electric utility company in the northeastern part of the United States. The model is being used by that company in the operations of its overhead electrical distribution system and emergency management operations. We discuss results to date and how the model is being applied. In addition to the damage forecasts, we have developed tools for risk visualization by displaying the uncertainty of the damage forecasts on geographic maps. C1 [Li, H.; Treinish, L. A.; Hosking, J. R. M.] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Li, H.] IBM Corp, Big Green Innovat Team, Yorktown Hts, NY 10598 USA. [Treinish, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Li, H (reprint author), IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM liho@us.ibm.com; lloydt@us.ibm.com; hosking@us.ibm.com NR 15 TC 5 Z9 5 U1 2 U2 9 PU IBM CORP PI ARMONK PA 1 NEW ORCHARD ROAD, ARMONK, NY 10504 USA SN 0018-8646 J9 IBM J RES DEV JI IBM J. Res. Dev. PD MAY-JUN PY 2010 VL 54 IS 3 AR 8 DI 10.1147/JRD.2010.2044836 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA V22ET UT WOS:000208259200006 ER PT J AU Clancy, RT Wolff, MJ Whitney, BA Cantor, BA Smith, MD McConnochie, TH AF Clancy, R. Todd Wolff, Michael J. Whitney, Barbara A. Cantor, Bruce A. Smith, Michael D. McConnochie, Timothy H. TI Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations SO ICARUS LA English DT Article DE Mars, Atmosphere; Mars, Climate; Mars; Atmospheres, Structure; Abundances, Atmospheres ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; VARIABILITY; SURFACE; CAMERA; CLOUDS; ICE AB Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm: in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240 degrees solar longitudes, L-s) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral (lambda = 5-40 mu m) dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, r(eff) = 1.5-2.0 mu m), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes (r(eff) similar to 0.5-1.0 mu m). These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By Ls = 230 degrees dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10 degrees S-40 degrees N latitudes. (C) 2009 Elsevier Inc. All rights reserved. C1 [Clancy, R. Todd; Wolff, Michael J.; Whitney, Barbara A.] Space Sci Inst, Boulder, CO 80301 USA. [Cantor, Bruce A.] Malin Space Sci Syst, San Diego, CA USA. [Smith, Michael D.; McConnochie, Timothy H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Clancy, RT (reprint author), Space Sci Inst, 4750 Walnut St,Ste 205, Boulder, CO 80301 USA. EM clancy@spacescience.org RI Smith, Michael/C-8875-2012 FU Mars Data Analysis Program (MDAP) [NNG05GA32G] FX We are indebted to the excellent TES and MOC operations staff for the collection of the analyzed MGS atmospheric limb observations. Very helpful reviews were provided by Scot Rafkin and Melinda Kahre. Grant support for this work was provided by the Mars Data Analysis Program (MDAP Grant NNG05GA32G). NR 33 TC 21 Z9 21 U1 2 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 98 EP 109 DI 10.1016/j.icarus.2009.10.011 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300010 ER PT J AU Gough, RV Tolbert, MA McKay, CP Toon, OB AF Gough, Raina V. Tolbert, Margaret A. McKay, Christopher P. Toon, Owen B. TI Methane adsorption on a martian soil analog: An abiogenic explanation for methane variability in the martian atmosphere SO ICARUS LA English DT Article DE Mars; Mars, Surface; Mars, Atmosphere; Regoliths ID GROUND ICE; RICH MONTMORILLONITE; HETEROGENEOUS UPTAKE; SURFACE-COMPOSITION; POLAR-REGIONS; WATER CYCLE; NITRIC-ACID; MARS; STABILITY; LIFE AB Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (gamma) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of gamma were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars. Published by Elsevier Inc. C1 [Gough, Raina V.; Tolbert, Margaret A.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Gough, Raina V.; Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [McKay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci ATOC, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Gough, RV (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM raina.gough@colorado.edu RI Gough, Raina/F-7574-2013 FU NASA [05-MFRP05-0066, NNX08AG93G] FX This work was supported by NASA Grants 05-MFRP05-0066 and NNX08AG93G. We would like to thank H. Sizemore, M. Trainer and M. Freedman for helpful discussions, Paul Rice for his help with the SEM, and Katherine Wright for her help imaging samples using fluorescence microscopy. NR 67 TC 15 Z9 15 U1 5 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 165 EP 174 DI 10.1016/j.icarus.2009.11.030 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300016 ER PT J AU Mangold, N Roach, L Milliken, R Le Mouelic, S Ansan, V Bibring, JP Masson, P Mustard, JF Murchie, S Neukum, G AF Mangold, N. Roach, L. Milliken, R. Le Mouelic, S. Ansan, V. Bibring, J. P. Masson, Ph. Mustard, J. F. Murchie, S. Neukum, G. TI A Late Amazonian alteration layer related to local volcanism on Mars SO ICARUS LA English DT Article DE Mars; Volcanism ID OLIGOCENE ASH BED; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; SULFATE MINERALS; REFLECTANCE; OXIDATION; SURFACE; REGION; ICE; DIAGENESIS AB Hydrated minerals on Mars are most commonly found in ancient terrains dating to the first billion years of the planet's evolution. Here we discuss the identification of a hydrated light-toned rock unit present in one Chasma of the Noctis Labyrinthus region. Stratigraphy and topography show that this alteration layer is part of a thin unit that drapes pre-existing bedrock. CRISM spectral data show that the unit contains hydrated minerals indicative of aqueous alteration. Potential minerals include sulfates such as bassanite (CaSO4 center dot(1)/2H2O) or possibly hydrated chloride salts. The proximity of a smooth volcanic plain and the similar crater model age (Late Amazonian, <100 Myr) of this plain and the draping deposits suggest that the alteration layer may be formed by the interaction of water with ash layers deposited during this geologically recent volcanic activity. The alteration phases may have formed due to the presence of snow in contact with hot ash, or eventually solid-gas interactions due to the volcanic activity. The relatively young age of the volcanic plain implies that recent alteration processes have occurred on Mars in relation with volcanic activity, but such local processes do not require conditions different than the current climate. (C) 2009 Elsevier Inc. All rights reserved. C1 [Mangold, N.; Le Mouelic, S.; Ansan, V.] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, UMR6112, F-44322 Nantes, France. [Roach, L.; Mustard, J. F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Milliken, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bibring, J. P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Murchie, S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Neukum, G.] Free Univ Berlin, D-74100 Berlin, Germany. RP Mangold, N (reprint author), Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, UMR6112, 2 Rue Houssiniere, F-44322 Nantes, France. EM nicolas.mangold@univ-nantes.fr RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU Institut National des Sciences de l'Univers (INSU); Centre National d'Etude Spatial (CNES) FX We acknowledge the effort of the HRSC Co-Investigator Team members and their associates who have contributed to this investigation in the preparatory phase. We thank F. Scholten and R. Schmidt for their technical help and advice, in using DLR's photogrammetry software, and two anonymous reviewers for their detailed comments. French authors were supported by the Programme National de Planetologie (PNP) of the Institut National des Sciences de l'Univers (INSU) and the Centre National d'Etude Spatial (CNES). NR 50 TC 27 Z9 27 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 265 EP 276 DI 10.1016/j.icarus.2009.10.015 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300022 ER PT J AU Ostro, SJ Magri, C Benner, LAM Giorgini, JD Nolan, MC Hine, AA Busch, MW Margot, JL AF Ostro, S. J. Magri, C. Benner, L. A. M. Giorgini, J. D. Nolan, M. C. Hine, A. A. Busch, M. W. Margot, J. L. TI Radar imaging of Asteroid 7 Iris SO ICARUS LA English DT Article DE Asteroids; Radar observations ID ORDINARY CHONDRITES; 4 VESTA; MODELS; SHAPE; KLEOPATRA; MATHILDE; ARECIBO; OBJECTS; 7-IRIS AB Arecibo radar images of Iris obtained in November 2006 reveal a topographically complex object whose gross shape is approximately ellipsoidal with equatorial dimensions within 15% of 253 x 228 km. The radar view of Iris was restricted to high southern latitudes, precluding reliable estimation of Iris' entire 3D shape, but permitting accurate reconstruction of southern hemisphere topography. The most prominent features, three roughly 50-km-diameter concavities almost equally spaced in longitude around the south pole, are probably impact craters. In terms of shape regularity and fractional relief, Iris represents a plausible transition between similar to 50-km-diameter asteroids with extremely irregular overall shapes and very large concavities, and very much larger asteroids (Ceres and Vesta) with very regular, nearly convex shapes and generally lacking monumental concavities. (C) 2009 Elsevier Inc. All rights reserved. C1 [Magri, C.] Univ Maine, Farmington, ME 04938 USA. [Ostro, S. J.; Benner, L. A. M.; Giorgini, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nolan, M. C.; Hine, A. A.] Arecibo Observ, Arecibo, PR 00612 USA. [Busch, M. W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Margot, J. L.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Magri, C (reprint author), Univ Maine, 173 High St,Preble Hall, Farmington, ME 04938 USA. EM magri@maine.edu RI Margot, Jean-Luc/A-6154-2012; Nolan, Michael/H-4980-2012 OI Margot, Jean-Luc/0000-0001-9798-1797; Nolan, Michael/0000-0001-8316-0680 FU National Science Foundation (NSF) [AST-0205975]; NASA FX We thank the Arecibo technical and support staffs for help with the radar observations. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation (NSF). We thank M. Kaasalainen for kindly providing information regarding the Iris lightcurve data set, E. Asphaug for helpful discussions, and an anonymous reviewer and I. de Pater for constructive reviews that improved the presentation of this work. C. Magri was partially supported by NSF Grant AST-0205975. Some of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This material is based in part upon work supported by NASA under the Science Mission Directorate Research and Analysis Programs. NR 43 TC 6 Z9 7 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 285 EP 294 DI 10.1016/j.icarus.2009.11.011 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300024 ER PT J AU Choi, DS Showman, AP Vasavada, AR AF Choi, David S. Showman, Adam P. Vasavada, Ashwin R. TI The evolving flow of Jupiter's White Ovals and adjacent cyclones SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Dynamics; Atmospheres, Structure ID GREAT-RED-SPOT; CASSINI IMAGING SCIENCE; MOIST CONVECTION; ATMOSPHERE; GALILEO; VORTICITY; DYNAMICS; BC; ANTICYCLONES; VELOCITY AB We present results regarding the dynamical meteorology of Jupiter's White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA's current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of similar to 90 m s(-1) in both its northern and southern peripheries. During the post-merger epoch, Oval BA's shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s(-1) slower, and its southern periphery was 20 m s(-1) than Oval DE's flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s(-1) from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at similar to 140-150 m s(-1). Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA's northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective. In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet's cloud-level energetics and dynamical meteorology. (C) 2009 Elsevier Inc. All rights reserved. C1 [Choi, David S.; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Choi, DS (reprint author), Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. EM dchoi@lpl.arizona.edu RI Choi, David/C-5215-2012 FU NASA [NNX08AW01H]; University of Arizona FX We thank Dr. Xylar Asay-Davis and Dr. Agustin Sanchez-Lavega for their constructive reviews which improved this manuscript. We thank Dr. Amy Simon-Miller and Michael Sussman for thoughtful discussions that improved this work. We thank Nathaniel Nerode for his work in compiling the raw Galileo images and producing mosaics for the PDS Atmospheres node. This research was supported by NASA Planetary Atmospheres grants to APS and a NASA Earth and Space Science Fellowship, #NNX08AW01H. Additional support was provided by the University of Arizona TRIF Imaging Fellowship. NR 44 TC 5 Z9 5 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 359 EP 372 DI 10.1016/j.icarus.2009.10.013 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300029 ER PT J AU Coustenis, A Jennings, DE Nixon, CA Achterberg, RK Lavvas, P Vinatier, S Teanby, NA Bjoraker, GL Carlson, RC Piani, L Bampasidis, G Flasar, FM Romani, PN AF Coustenis, A. Jennings, D. E. Nixon, C. A. Achterberg, R. K. Lavvas, P. Vinatier, S. Teanby, N. A. Bjoraker, G. L. Carlson, R. C. Piani, L. Bampasidis, G. Flasar, F. M. Romani, P. N. TI Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission SO ICARUS LA English DT Article DE Titan; Abundances, atmospheres; Organic chemistry; Satellites, atmospheres; Spectroscopy; Atmospheres, chemistry; Atmospheres, composition; Satellites, composition ID UPPER-ATMOSPHERE; COUPLING PHOTOCHEMISTRY; SPECTROSCOPIC DATABASE; LATITUDINAL VARIATIONS; INFRARED SPECTROMETER; SEASONAL-VARIATIONS; ISOTOPIC-RATIOS; HAZE FORMATION; STRATOSPHERE; HC3N AB This paper reports on the results from an extensive study of all nadir-looking spectra acquired by Cassini/CIRS during the 44 flybys performed in the course of the nominal mission (2004-2008). With respect to the previous study (Coustenis, A., and 24 colleagues [2007]. Icarus 189, 35-62, on flybys TB-T10) we present here a significantly richer dataset with, in particular, more data at high northern and southern latitudes so that the abundances inferred here at these regions are more reliable. Our enhanced high-resolution dataset allows us to infer more precisely the chemical composition of Titan all over the disk. We also include improved spectroscopic data for some molecules and updated temperature profiles. The latitudinal distributions of all of the gaseous species are inferred. We furthermore test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current General Circulation Models for Titan and compare our results on all the gaseous abundances with predictions from 1-D photochemical-radiative models to check the reliability of the chemical reactions and pathways. (C) 2009 Elsevier Inc. All rights reserved. C1 [Coustenis, A.; Vinatier, S.; Piani, L.] Observ Paris, LESIA, F-92195 Meudon, France. [Carlson, R. C.] NASA, Goddard Space Flight Ctr, Planet Syst Lab, Greenbelt, MD 20771 USA. [Nixon, C. A.; Achterberg, R. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lavvas, P.] Univ Arizona, Dept Planet Sci, Tucson, AZ 85721 USA. [Vinatier, S.] UPMC, IPSL, Meteorol Dynam Lab, CNRS, F-75252 Paris 05, France. [Teanby, N. A.] Univ Oxford, Dept Phys, Clarendon Lab, AOPP, Oxford OX1 3PU, England. [Carlson, R. C.] Catholic Univ Amer, IACS, Greenbelt, MD 20771 USA. [Piani, L.] Museum Hist Nat, F-75005 Paris, France. [Bampasidis, G.] Univ Athens, Fac Phys, GR-15783 Athens, Greece. RP Coustenis, A (reprint author), Observ Paris, LESIA, 5,Pl Jules Janssen, F-92195 Meudon, France. EM athena.coustenis@obspm.fr RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; Bjoraker, Gordon/D-5032-2012; Jennings, Donald/D-7978-2012; Piani, Laurette/J-9541-2016; OI Nixon, Conor/0000-0001-9540-9121; Piani, Laurette/0000-0003-0854-7468; Teanby, Nicholas/0000-0003-3108-5775 NR 42 TC 78 Z9 78 U1 0 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 461 EP 476 DI 10.1016/j.icarus.2009.11.027 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300035 ER PT J AU Delitsky, ML McKay, CP AF Delitsky, M. L. McKay, C. P. TI The photochemical products of benzene in Titan's upper atmosphere SO ICARUS LA English DT Article DE Titan; Atmospheres, Chemistry; Organic chemistry; Saturn, Satellites ID LASER FLASH-PHOTOLYSIS; POLYCYCLIC AROMATIC-HYDROCARBONS; PARA-LINKED POLYPHENYLS; MOLECULAR-STRUCTURE; LIQUID BENZENE; IONIZATION-POTENTIALS; ELECTRON-BOMBARDMENT; VIBRATIONAL-SPECTRA; TORSIONAL BARRIERS; ABSORPTION SPECTRA AB The Cassini spacecraft detected benzene high in Titan's atmosphere as well as the presence of large mass positive and negative ions. Previous work has suggested that these large mass ions could be composed of fused-ring polycyclic aromatic hydrocarbon compounds. These fused-ring PAHs, such as naphthalene and anthracene, are usually the result of high temperature processes that may not occur in Titan's thin, cold, upper thermosphere. Here we suggest that a different class of aromatic compounds, polyphenyls, may be a better explanation of the data. Polyphenyls can grow to be large polymeric structures and could condense to form the aerosols seen in Titan's cloud and hazes. They have similar properties to fused-ring PAHs (for example, electron affinity, ionization potential) and could be the negative ion species seen in the CAPS instrument data from the Cassini spacecraft. (C) 2009 Elsevier Inc. All rights reserved. C1 [Delitsky, M. L.] Calif Specialty Engn, Flintridge, CA 91012 USA. [McKay, C. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Delitsky, ML (reprint author), Calif Specialty Engn, POB 1522, Flintridge, CA 91012 USA. EM cal_specialty@yahoo.com; chris.mckay@nasa.gov NR 70 TC 16 Z9 17 U1 2 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 477 EP 484 DI 10.1016/j.icarus.2009.11.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300036 ER PT J AU Harmon, JK Nolan, MC Giorgini, JD Howell, ES AF Harmon, John K. Nolan, Michael C. Giorgini, Jon D. Howell, Ellen S. TI Radar observations of 8P/Tuttle: A contact-binary comet SO ICARUS LA English DT Article DE Comets; Comets, Nucleus; Radar observations ID KUIPER-BELT BINARIES; ENCOUNTERS; PHOTOMETRY; ASTEROIDS; FRACTION AB Arecibo radar imagery of Comet 8P/Tuttle reveals a 10-km-long nucleus with a highly bifurcated shape consistent with a contact binary. A separate echo component was also detected from large (>cm-size), slow-moving grains of the type expected to contribute to the Ursid meteor stream. (C) 2009 Elsevier Inc. All rights reserved. C1 [Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.] Natl Astron & Ionosphere Ctr, Arecibo Observ, Arecibo, PR 00612 USA. [Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Harmon, JK (reprint author), Natl Astron & Ionosphere Ctr, Arecibo Observ, HC3 Box 53995, Arecibo, PR 00612 USA. EM harmon@naic.edu; nolan@naic.edu; jon.d.giorgini@jpl.nasa.gov; ehowell@naic.edu RI Nolan, Michael/H-4980-2012 OI Nolan, Michael/0000-0001-8316-0680 NR 34 TC 15 Z9 15 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2010 VL 207 IS 1 BP 499 EP 502 DI 10.1016/j.icarus.2009.12.026 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584KJ UT WOS:000276750300039 ER PT J AU Vilnrotter, V Lee, D Cornish, T Tsao, P Paal, L Jamnejad, V AF Vilnrotter, V. Lee, D. Cornish, T. Tsao, P. Paal, L. Jamnejad, V. TI Uplink Array Concept Demonstration with the EPOXI Spacecraft SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB Uplink array technology is currently being developed for NASA's Deep Space Network (DSN), to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper belt, and beyond(1). The DSN uplink arrays employ N microwave antennas transmitting at X-band to produce signals that add coherently at the spacecraft, thereby providing a power gain of N(2) over a single antenna. This gain can be traded off directly for N(2) higher data rate at a given distance such as Mars, providing, for example, HD quality video broadcast form earth to a future manned mission, or it can provide a given data-rate for commands and software uploads at a distance N times greater than possible with a single antenna. The uplink arraying concept has been recently demonstrated using three operations 34-meter antennas of the Apollo complex at Goldstone, CA, which transmitted arrayed signals to the EPOXI spacecraft. Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demostrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to earth-rotation and spacecraft trajectory, and monitoring of the ground system phase for possible drifts caused by thermal effects over the 16 km fiber-optic signal distribution network. This provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI gain, and system stability over the entire five hour duration of this experiment. C1 [Vilnrotter, V.; Lee, D.; Cornish, T.; Tsao, P.; Paal, L.; Jamnejad, V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vilnrotter, V (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX The research described herein was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 5 TC 1 Z9 4 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD MAY PY 2010 VL 25 IS 5 BP 29 EP 35 PG 7 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 649SX UT WOS:000281794900005 ER PT J AU Hayden, DS Chien, S Thompson, DR Castano, R AF Hayden, David S. Chien, Steve Thompson, David R. Castano, Rebecca TI Using Onboard Clustering to Summarize Remotely Sensed Imagery SO IEEE INTELLIGENT SYSTEMS LA English DT Editorial Material C1 [Hayden, David S.] CALTECH, Jet Prop Lab, Artificial Intelligence Grp, Pasadena, CA 91125 USA. RP Hayden, DS (reprint author), CALTECH, Jet Prop Lab, Artificial Intelligence Grp, Pasadena, CA 91125 USA. EM dshayden@asu.edu; Steve.Chien@jpl.nasa.gov; david.r.thompson@jpl.nasa.gov; Rebecca.castano@jpl.nasa.gov NR 17 TC 2 Z9 2 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1541-1672 EI 1941-1294 J9 IEEE INTELL SYST JI IEEE Intell. Syst. PD MAY-JUN PY 2010 VL 25 IS 3 BP 86 EP 91 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 606TC UT WOS:000278449400014 ER PT J AU Shapiro, AA Tudryn, C Schatzel, D Tseng, S AF Shapiro, Andrew A. Tudryn, Carissa Schatzel, Donald Tseng, Stephen TI Electronic Packaging Materials for Extreme, Low Temperature, Fatigue Environments SO IEEE TRANSACTIONS ON ADVANCED PACKAGING LA English DT Article DE Chip-on-board; extreme environments; reliability; space electronics; wirebond fatigue ID INTERFACIAL REACTIONS AB Electronic packaging technology has been developed to withstand extreme temperature fatigue conditions from -120 degrees C to + 85 degrees C for over 1500 cycles. This temperature regime and number of thermal cycles exceeds typical military standard (MIL-STD) testing from 55 degrees C to + 125 degrees C and approximately 100 cycles. Chip-on-board ( COB) packaging was selected since it reduces mass (up to 98% savings) and increases functionality on a smaller surface area (as low as 40%) compared to standard surface mount packaging technology (SMT). Material combinations of different encapsulants, die attaches, and substrates for bare silicon die with 1 mil Au wire bonds were designed and continuously monitored in situ during thermal cycling. This paper will describe experimental and modeling results of surviving material combinations and key failures that occurred at various temperatures and cycle counts. C1 [Shapiro, Andrew A.; Tudryn, Carissa; Schatzel, Donald; Tseng, Stephen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shapiro, AA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX The authors would like to thank Dr. E. Kolowa and Dr. M. Majorradi for their invaluable support and advice. The authors would also like to thank Dr. D. Sheldon for his help in data analysis. This work was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 15 TC 4 Z9 4 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1521-3323 J9 IEEE T ADV PACKAGING JI IEEE Trans. Adv. Packag. PD MAY PY 2010 VL 33 IS 2 BP 408 EP 420 DI 10.1109/TADVP.2010.2044504 PG 13 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 591ZD UT WOS:000277343200013 ER PT J AU Hwang, I Kim, S Kim, Y Seah, CE AF Hwang, Inseok Kim, Sungwan Kim, Youdan Seah, Chze Eng TI A Survey of Fault Detection, Isolation, and Reconfiguration Methods SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY LA English DT Article DE Analytic redundancy; fault detection; fault isolation; fault reconfiguration; survey ID LIKELIHOOD RATIO APPROACH; MODEL-BASED DIAGNOSIS; BOUNDED STOCHASTIC DISTRIBUTIONS; ANALYTICAL REDUNDANCY RELATIONS; ACTUATOR FAILURE COMPENSATION; ASYMPTOTIC LOCAL APPROACH; UNKNOWN INPUT OBSERVERS; DETECTION FILTER DESIGN; HYBRID SYSTEMS; LINEAR-SYSTEMS AB Fault detection, isolation, and reconfiguration (FDIR) is an important and challenging problem in many engineering applications and continues to be an active area of research in the control community. This paper presents a survey of the various model-based FDIR methods developed in the last decade. In the paper, the FDIR problem is divided into the fault detection and isolation (FDI) step, and the controller reconfiguration step. For FDI, we discuss various model-based techniques to generate residuals that are robust to noise, unknown disturbance, and model uncertainties, as well as various statistical techniques of testing the residuals for abrupt changes (or faults). We then discuss various techniques of implementing reconfigurable control strategy in response to faults. C1 [Hwang, Inseok; Seah, Chze Eng] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA. [Kim, Sungwan] NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23665 USA. [Kim, Youdan] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea. RP Hwang, I (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA. EM ihwang@purdue.edu; sungwan.kim@nasa.gov; ydkim@snu.ac.kr; seah@purdue.edu RI KIM, SUNGWAN/E-4165-2012 NR 157 TC 327 Z9 350 U1 24 U2 118 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6536 J9 IEEE T CONTR SYST T JI IEEE Trans. Control Syst. Technol. PD MAY PY 2010 VL 18 IS 3 BP 636 EP 653 DI 10.1109/TCST.2009.2026285 PG 18 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 588EM UT WOS:000277050400009 ER PT J AU Li, L Gaiser, PW Gao, BC Bevilacqua, RM Jackson, TJ Njoku, EG Rudiger, C Calvet, JC Bindlish, R AF Li, Li Gaiser, Peter W. Gao, Bo-Cai Bevilacqua, Richard M. Jackson, Thomas J. Njoku, Eni G. Ruediger, Christoph Calvet, Jean-Christophe Bindlish, Rajat TI WindSat Global Soil Moisture Retrieval and Validation SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hydrology; land surface temperature; passive microwave remote sensing; soil moisture; vegetation ID VEGETATION OPTICAL DEPTH; BAND MICROWAVE EMISSION; LAND-SURFACE PROCESSES; AMSR-E; RADIOFREQUENCY INTERFERENCE; 37 GHZ; SATELLITE-OBSERVATIONS; SCANNING RADIOMETER; SSM/I OBSERVATIONS; NEURAL-NETWORK AB A physically based six-channel land algorithm is developed to simultaneously retrieve global soil moisture (SM), vegetation water content (VWC), and land surface temperature. The algorithm is based on maximum-likelihood estimation and uses dual-polarization WindSat passive microwave data at 10, 18.7, and 37 GHz. The global retrievals are validated at multi-spatial and multitemporal scales against SM climatologies, in situ network data, precipitation patterns, and Advanced Very High Resolution Radiometer (AVHRR) vegetation data. In situ SM observations from the U. S., France, and Mongolia for diverse land/vegetation cover were used to validate the results. The performance of the estimated volumetric SM was within the requirements for most science and operational applications (standard error of 0.04 m(3)/m(3), bias of 0.004 m(3)/m(3), and correlation coefficient of 0.89). The retrieved SM and VWC distributions are very consistent with global climatology and mesoscale precipitation patterns. The comparisons between the WindSat vegetation retrievals and the AVHRR Green Vegetation Fraction data also reveal the consistency of these two independent data sets in terms of spatial and temporal variations. C1 [Li, Li; Gaiser, Peter W.; Gao, Bo-Cai; Bevilacqua, Richard M.] USN, Res Lab, Washington, DC 20375 USA. [Jackson, Thomas J.; Bindlish, Rajat] USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ruediger, Christoph; Calvet, Jean-Christophe] CNRS, French Meteorol Serv Meteo France, GAME, CNRM, F-31057 Toulouse 1, France. [Ruediger, Christoph] Univ Melbourne, Dept Civil & Environm Engn, Parkville, Vic 3052, Australia. RP Li, L (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM li.li@nrl.navy.mil; peter.gaiser@nrl.navy.mil; gao@nrl.navy.mil; bevilacqua@nrl.navy.mil; tom.jackson@ars.usda.gov; eni.g.njoku@jpl.nasa.gov; jean-christophe.calvet@meteo.fr; rajat.bindlish@ars.usda.gov RI Xie, Xingmei/G-7311-2011; Calvet, Jean-Christophe/A-8762-2012; OI Calvet, Jean-Christophe/0000-0001-6425-6492; Rudiger, Christoph/0000-0003-4375-4446 FU Centre National de Recherches Meteorologiques (CNRM); Centre National d'Etudes Spatiales FX The work of C. Rudiger at the Centre National de Recherches Meteorologiques (CNRM) was supported by a postdoctoral research fellowship from the Centre National d'Etudes Spatiales. NR 73 TC 61 Z9 61 U1 3 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2010 VL 48 IS 5 BP 2224 EP 2241 DI 10.1109/TGRS.2009.2037749 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 585GY UT WOS:000276814300005 ER PT J AU Roithmayr, CM Hodges, DH AF Roithmayr, Carlos M. Hodges, Dewey H. TI Forces associated with non-linear non-holonomic constraint equations SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS LA English DT Article DE Kane's method; Constraint forces; Constraint torques; Lagrange multipliers; Undetermined multipliers; Non-holonomic constraint equations ID ORDER-N-FORMULATION; MECHANICAL SYSTEMS; MULTIBODY SYSTEMS; UNDETERMINED MULTIPLIERS; DYNAMICAL-SYSTEMS; UNIFIED APPROACH; MOTION; DERIVATION; PRINCIPLE AB A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by non-holonomic equations that are inherently non-linear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known non-holonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as non-holonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor first to form the former, larger set and subsequently perform matrix multiplications. Published by Elsevier Ltd. C1 [Roithmayr, Carlos M.] NASA, Vehicle Anal Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Hodges, Dewey H.] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA. RP Roithmayr, CM (reprint author), NASA, Vehicle Anal Branch, Langley Res Ctr, Mail Stop 451, Hampton, VA 23681 USA. EM c.m.roithmayr@larc.nasa.gov; dhodges@gatech.edu NR 42 TC 4 Z9 5 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7462 EI 1878-5638 J9 INT J NONLIN MECH JI Int. J. Non-Linear Mech. PD MAY PY 2010 VL 45 IS 4 BP 357 EP 369 DI 10.1016/j.ijnonlinmec.2009.12.009 PG 13 WC Mechanics SC Mechanics GA 577XC UT WOS:000276256300003 ER PT J AU Vaishampayan, P Probst, A Krishnamurthi, S Ghosh, S Osman, S McDowall, A Ruckmani, A Mayilraj, S Venkateswaran, K AF Vaishampayan, Parag Probst, Alexander Krishnamurthi, Srinivasan Ghosh, Sudeshna Osman, Shariff McDowall, Alasdair Ruckmani, Arunachalam Mayilraj, Shanmugam Venkateswaran, Kasthuri TI Bacillus horneckiae sp nov., isolated from a spacecraft-assembly clean room SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID MARS ODYSSEY SPACECRAFT; COMB. NOV; MICROBIAL DIVERSITY; GEN. NOV.; FACILITY; MICROORGANISMS; IDENTIFICATION; RECLASSIFICATION; ENVIRONMENTS; RESISTANT AB Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m(-2). The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA-DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus Bacillus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99%, but the similarity was only about 97% with their nearest neighbours Bacillus pocheonensis, Bacillus firmus and Bacillus bataviensis. DNA-DNA hybridization dissociation values were <24% to the closest related type strains. The novel strains had a G+C content 35.6 +/- 0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C(15:0) and anteiso-C(15:0) and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus Bacillus, for which the name Bacillus horneckiae sp. nov. is proposed. The type strain is 1P01SC(T) (=NRRL B-59162(T) =MTCC 9535(T)). C1 [Vaishampayan, Parag; Probst, Alexander; Ghosh, Sudeshna; Osman, Shariff; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Krishnamurthi, Srinivasan; Ruckmani, Arunachalam; Mayilraj, Shanmugam] Inst Microbial Technol, Microbial Type Culture Collect & Gene Bank MTCC, Chandigarh 160036, India. [McDowall, Alasdair] CALTECH, Broad Res Ctr, Pasadena, CA 91125 USA. [McDowall, Alasdair] CALTECH, Beckman Res Ctr, Pasadena, CA 91125 USA. RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Shanmugam, Mayilraj/F-8807-2010; Probst, Alexander/K-2813-2016 FU National Aeronautics and Space Administration; NRA FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by a 2007 NRA ROSES grant. We are grateful to I. Rummel and C. Conley for useful discussions, J. A. Spry for encouragement and all of the members of the JPL Biotechnology and Planetary Protection Group for technical assistance. S. Frye and R. Casey from the Diversi Lab, Houston, TX, and M. Ott from the Johnson Space Center are acknowledged for genotyping of the isolates. NR 34 TC 27 Z9 27 U1 2 U2 10 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD MAY PY 2010 VL 60 BP 1031 EP 1037 DI 10.1099/ijs.0.008979-0 PN 5 PG 7 WC Microbiology SC Microbiology GA 603UK UT WOS:000278233400005 PM 19666815 ER PT J AU Cureton, L AF Cureton, Linda TI Innovation: There Is Something New Under the Sun SO IT PROFESSIONAL LA English DT Article C1 NASA, Washington, DC 20546 USA. RP Cureton, L (reprint author), NASA, Washington, DC 20546 USA. EM linda.y.cureton@nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 J9 IT PROF JI IT Prof. PD MAY-JUN PY 2010 VL 12 IS 3 BP 54 EP 56 PG 3 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA V23FS UT WOS:000208329300011 ER PT J AU Lopes, LV Brentner, KS Morris, PJ AF Lopes, Leonard V. Brentner, Kenneth S. Morris, Philip J. TI Framework for a Landing-Gear Model and Acoustic Prediction SO JOURNAL OF AIRCRAFT LA English DT Article ID TRAILING-EDGE NOISE; LOW MACH NUMBERS; AIRFRAME NOISE; SOUND GENERATION; RADIATION AB A new system has been developed at Pennsylvania State University for the prediction of landing-gear noise. The system is designed to handle the complex landing-gear geometry of current aircraft, as well as provide predictions for future aircraft landing-gear designs The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic but generate noise representative of the physical components on landing gear. The method sums the noise radiation from each component of the landing gear in isolation, accounting for interference with adjacent components through an-estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made using the landing-gear-model-and-acoustic-prediction code, which computes the sound pressure levels at specified observer locations. The method can calculate the noise from the landing gear in isolation or installed on an aircraft for any type of landing gear (main or nose). This paper presents an introduction to the system and initial calibrations by using wind-tunnel experiments and the Aircraft Noise Prediction Program prediction formulas. Noise predictions using the landing-gear model and acoustic prediction are compared with wind-tunnel data for model landing gears of various levels of fidelity and Mach numbers. The initial landing-gear-model-and-acoustic-prediction predictions for dressed configurations show an increase in noise in the frequency range representative of the added landing-gear components. The landing-gear model and acoustic prediction is also compared with wind-tunnel measurements for much larger landing-gear geometry, measured in the Virginia Polytechnic Institute and State University acoustic wind tunnel. Predictions show the ability of the landing-gear model and acoustic prediction to predict the contribution of each component to the overall values. Although the landing-gear model and acoustic prediction is in an early stage of development, the present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise. C1 [Lopes, Leonard V.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Brentner, Kenneth S.; Morris, Philip J.] Penn State Univ, University Pk, PA 16802 USA. RP Lopes, LV (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM leonard.v.lopes@nasa.gov; ksbrentner@psu.edu; pjm@psu.edu FU NASA Langley Research Center [NAG 1-03025] FX This study was supported by NASA Langley Research Center under NASA grant NAG 1-03025, with technical officer David Lockard. NR 32 TC 1 Z9 2 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAY-JUN PY 2010 VL 47 IS 3 BP 763 EP 774 DI 10.2514/1.36925 PG 12 WC Engineering, Aerospace SC Engineering GA 611PL UT WOS:000278831800003 ER PT J AU Guruswamy, GP AF Guruswamy, G. P. TI Computational-Fluid-Dynamics- and Computational-Structural-Dynamics-Based Time-Accurate Aeroelasticity of Helicopter Rotor Blades SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT AIAA 39th Fluid Dynamics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP AIAA AB A modular capability to compute dynamic aeroelastic characteristics of rotor blades using the Euler/Navier-Stokes flow equations and finite element structural equations is presented. The approach is based on a time-accurate analysis procedure that is suitable for nonlinear fluid structure interaction problems. Fluids and structural solvers are time-accurately coupled in the C++ environment. Unsteady aerodynamic and aeroelastic results are validated with experimental data for nonrotating and rotating isolated blade's. C1 NASA, Ames Res Ctr, Applicat Branch, Adv Supercomput Div, Moffett Field, CA 94035 USA. RP Guruswamy, GP (reprint author), NASA, Ames Res Ctr, Applicat Branch, Adv Supercomput Div, Moffett Field, CA 94035 USA. EM guru.p.guruswany@nasa.gov NR 37 TC 2 Z9 3 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAY-JUN PY 2010 VL 47 IS 3 BP 858 EP 863 DI 10.2514/1.45744 PG 6 WC Engineering, Aerospace SC Engineering GA 611PL UT WOS:000278831800012 ER PT J AU Broeren, AP Whalen, EA Busch, GT Bragg, MB AF Broeren, Andy P. Whalen, Edward A. Busch, Greg T. Bragg, Michael B. TI Aerodynamic Simulation of Runback Ice Accretion SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 1st AIAA Atmospheric and Space Environments Conference CY JUN 22-25, 2009 CL San Antonio, TX SP Amer Inst Aeronaut & Astronaut ID AIRFOIL AERODYNAMICS; PERFORMANCE; SHAPES AB This paper presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic testing was performed on a full-scale, 72-in.-chord (1828.8-mm-chord), NACA 23012 airfoil model over a Reynolds number range of 4.7 x 10(6) to 16.0 x 10(6) and a Mach number range of 0.10 to 0.28. A high-fidelity ice-casting simulation of a runback ice accretion was attached to the model leading edge. For Re = 16.0 x 10(6) and M = 0.20, the artificial ice shape decreased the maximum lift coefficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1 to 15.0 deg. In general, the iced-airfoil performance was insensitive to Reynolds and Mach number changes over the range tested. Aerodynamic testing was also conducted on a quarter-scale NACA 23012 model [18 in. (457.2 mm) chord] at Re = 1.8 x 10(6) and M = 0.18, using low-fidelity geometrically scaled simulations of the full-scale casting. It was found that simple two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high-Reynolds-number, iced-airfoil aerodynamics. Higher-fidelity simulations of the runback ice accretion that included geometrically scaled three-dimensional features resulted in larger performance degradations than those measured on the full-scale model. Based upon this research, a new subclassification of spanwise-ridge ice is proposed that distinguishes between short and tall ridges. This distinction is made in terms of the fundamental aerodynamic characteristics as described in this paper. C1 [Broeren, Andy P.] NASA, John H Glenn Res Ctr Lewis Field, Icing Branch, Cleveland, OH 44135 USA. [Whalen, Edward A.] Boeing Co, St Louis, MO 63166 USA. [Busch, Greg T.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. RP Broeren, AP (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Icing Branch, Mail Stop 11-2,210000 Brookpk Rd, Cleveland, OH 44135 USA. NR 44 TC 6 Z9 7 U1 1 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAY-JUN PY 2010 VL 47 IS 3 BP 924 EP 939 DI 10.2514/1.46475 PG 16 WC Engineering, Aerospace SC Engineering GA 611PL UT WOS:000278831800019 ER PT J AU Rossow, VJ Brown, AP AF Rossow, Vernon J. Brown, Anthony P. TI Effect of Jet-Exhaust Streams on Structure of Vortex Wakes SO JOURNAL OF AIRCRAFT LA English DT Article ID AIRCRAFT C1 [Rossow, Vernon J.] NASA, Ames Res Ctr, Aviat Syst Div, Moffett Field, CA 94035 USA. [Brown, Anthony P.] Natl Res Council Canada, Flight Res Lab, Ottawa, ON K1A 0R6, Canada. RP Rossow, VJ (reprint author), NASA, Ames Res Ctr, Aviat Syst Div, Mail Stop 210-10, Moffett Field, CA 94035 USA. NR 26 TC 1 Z9 1 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD MAY-JUN PY 2010 VL 47 IS 3 BP 1076 EP 1083 DI 10.2514/1.47427 PG 8 WC Engineering, Aerospace SC Engineering GA 611PL UT WOS:000278831800037 ER PT J AU Zwart, SR Pierson, D Mehta, S Gonda, S Smith, SM AF Zwart, Sara R. Pierson, Duane Mehta, Satish Gonda, Steve Smith, Scott M. TI Capacity of Omega-3 Fatty Acids or Eicosapentaenoic Acid to Counteract Weightlessness-Induced Bone Loss by Inhibiting NF-kappa B Activation: From Cells to Bed Rest to Astronauts SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Article DE RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-kappa B; OSTEOCLASTS; EICOSAPENTAENOIC ACID; WEIGHTLESSNESS; WEIGHTLESSNESS SIMULATION ID N-3 FATTY-ACIDS; NUTRITIONAL-STATUS ASSESSMENT; INTERNATIONAL-SPACE-STATION; DIETARY FISH-OIL; SKELETAL-MUSCLE; SIMULATED MICROGRAVITY; CANCER CACHEXIA; COLONOCYTE APOPTOSIS; PROTEIN; OSTEOPOROSIS AB NF-kappa B is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappa B activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappa B ligand (RANKL) and on activation of NF-kappa B by tumor necrosis factor a (TNF-alpha) or exposure to modeled weightlessness. EPA (50 mu M for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappa B induced by 0.2 mu g/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappa B activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappa B was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (C) 2010 American Society for Bone and Mineral Research. 2010 ASBMR C1 [Zwart, Sara R.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Human Adaptat & Countermeasures Div SK3, Houston, TX 77058 USA. [Pierson, Duane] NASA, Lyndon B Johnson Space Ctr, Habitabil & Environm Factors Div, Houston, TX 77058 USA. [Mehta, Satish] Enterprise Advisory Serv Inc, Houston, TX USA. [Gonda, Steve; Smith, Scott M.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. RP Zwart, SR (reprint author), NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Human Adaptat & Countermeasures Div SK3, 2101 NASA Pkwy, Houston, TX 77058 USA. EM sara.zwart-1@nasa.gov FU NASA FX This article is dedicated to the memory of Dr Steven Gonda, our friend and colleague. We thank the Nutritional Biochemistry Laboratory team for their efforts in the bed rest data collection and specifically Barbara Rice and Holly Endris for the dietary intake analysis. We thank Gladys Block and associates at Nutrition-Quest for their continued efforts in development of the ISS Food Frequency Questionnaire. We thank the Flight Analogs Project personnel for their outstanding support of the bed rest studies, and the NASA Bone and Mineral Laboratory for the bone densitometry data from the bed rest and spaceflight studies. We thank Jane Krauhs for editing the manuscript. This study was funded by NASA. NR 61 TC 33 Z9 33 U1 1 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 J9 J BONE MINER RES JI J. Bone Miner. Res. PD MAY PY 2010 VL 25 IS 5 BP 1049 EP 1057 DI 10.1359/jbmr.091041 PG 9 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 604PX UT WOS:000278292100016 PM 19874203 ER PT J AU Schwartz, SE Charlson, RJ Kahn, RA Ogren, JA Rodhe, H AF Schwartz, Stephen E. Charlson, Robert J. Kahn, Ralph A. Ogren, John A. Rodhe, Henning TI Why Hasn't Earth Warmed as Much as Expected? SO JOURNAL OF CLIMATE LA English DT Article ID OCEAN HEAT-CONTENT; SEA-LEVEL RISE; CLIMATE SENSITIVITY; ANTHROPOGENIC AEROSOLS; OPTICAL-PROPERTIES; ENERGY; SIMULATIONS; IMBALANCE; EMISSIONS; MODELS AB The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period. C1 [Schwartz, Stephen E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Charlson, Robert J.] Univ Washington, Seattle, WA 98195 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ogren, John A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Rodhe, Henning] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. RP Schwartz, SE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ses@bnl.gov RI Schwartz, Stephen/C-2729-2008; Kahn, Ralph/D-5371-2012; Ogren, John/M-8255-2015 OI Schwartz, Stephen/0000-0001-6288-310X; Kahn, Ralph/0000-0002-5234-6359; Ogren, John/0000-0002-7895-9583 FU U.S. Department of Energy (Office of Science, OBER) [DE-AC02-98CH10886]; NASA's CALIPSO Mission [NAS1-99105]; NSF [ATM-0601177] FX Work by SES was supported by the U.S. Department of Energy (Office of Science, OBER) under Contract DE-AC02-98CH10886. Work by RJC was supported in part by NASA's CALIPSO Mission (Contract NAS1-99105) and NSF Grant ATM-0601177. NR 56 TC 41 Z9 42 U1 2 U2 33 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY PY 2010 VL 23 IS 10 BP 2453 EP 2464 DI 10.1175/2009JCLI3461.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 611AK UT WOS:000278782600001 ER PT J AU Del Genio, AD Wu, JB AF Del Genio, Anthony D. Wu, Jingbo TI The Role of Entrainment in the Diurnal Cycle of Continental Convection SO JOURNAL OF CLIMATE LA English DT Article ID SHALLOW CUMULUS CONVECTION; HIGH-RESOLUTION SIMULATION; MOIST CONVECTION; DEEP CONVECTION; ECMWF MODEL; PRECIPITATION; RAINFALL; LAND; SENSITIVITY; TRANSITION AB In continental convective environments, general circulation models typically produce a diurnal cycle of rainfall that peaks close to the noon maximum of insolation, hours earlier than the observed peak. One possible reason is insufficient sensitivity of their cumulus parameterizations to the state of the environment due to weak entrainment. The Weather Research and Forecasting (WRF) model, run at cloud-resolving (600 and 125 m) resolution, is used to study the diurnal transition from shallow to deep convection during the monsoon break period of the Tropical Warm Pool-International Cloud Experiment. The WRF model develops a transition from shallow to deep convection in isolated events by 1430-1500 local time. The inferred entrainment rate weakens with increasing time of day as convection deepens. Several current cumulus parameterizations are tested for their ability to reproduce the WRF behavior. The Gregory parameterization, in which entrainment rate varies directly with parcel buoyancy and inversely as the square of the updraft speed, is the best predictor of the inferred WRF entrainment profiles. The Gregory scheme depends on a free parameter that represents the fraction of buoyant turbulent kinetic energy generation on the cloud scale that is consumed by the turbulent entrainment process at smaller scales. A single vertical profile of this free parameter, increasing with height above the boundary layer but constant with varying convection depth, produces entrainment rate profiles consistent with those inferred from the WRF over the buoyant depth of the convection. Parameterizations in which entrainment varies inversely with altitude or updraft speed or increases with decreasing tropospheric relative humidity do not perform as well. Entrainment rate at cloud base decreases as convection depth increases; this behavior appears to be related to an increase in vertical velocity at downdraft cold pool edges. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wu, Jingbo] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM adelgenio@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU Department of Energy; NASA FX This research was supported by the Department of Energy Atmospheric System Research Program and by the NASA Precipitation Science Program. We thank three reviewers for constructive comments that improved the manuscript. NR 40 TC 55 Z9 55 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAY PY 2010 VL 23 IS 10 BP 2722 EP 2738 DI 10.1175/2009JCLI3340.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 611AK UT WOS:000278782600017 ER PT J AU Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J de Angelis, A de Palma, F Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Guiriec, S Gustafsson, M Harding, AK Hayashida, M Horan, D Hughes, RE Jeltema, TE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Panetta, JH Pepe, M Pesce-Rollins, M Piron, F Porter, TA Profumo, S Raino, S Razzano, M Reposeur, T Ritz, S Rodriguez, AY Roth, M Sadrozinski, HFW Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Tibaldo, L Torres, DF Tosti, G Usher, TL Vasileiou, V Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Gustafsson, M. Harding, A. K. Hayashida, M. Horan, D. Hughes, R. E. Jeltema, T. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Panetta, J. H. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Razzano, M. Reposeur, T. Ritz, S. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Tibaldo, L. Torres, D. F. Tosti, G. Usher, T. L. Vasileiou, V. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE gamma ray experiments; galaxy clusters; supersymmetry and cosmology; dark energy theory ID COMA CLUSTER; MASS; HALOES AB Nearby clusters and groups of galaxies are potentially bright sources of highenergy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than similar to 200GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gammaray flux by a factor of similar to 5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming. C1 [Jeltema, T. E.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Jeltema, T. E.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Edmonds, Y.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Edmonds, Y.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, CNRS, Lab AIM, CEA IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Nuss, E.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Nuss, E.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Chekhtman, A.; Cheung, C. C.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Farnier, C.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Reposeur, T.] Ctr Etud Nucl Bordeaux Gradignan, IN2P3, CNRS, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Reposeur, T.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Gehrels, N.; Harding, A. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Jeltema, TE (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. EM tesla@ucolick.org; profumo@scipp.ucsc.edu RI Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Moskalenko, Igor/A-1301-2007; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Starck, Jean-Luc/D-9467-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Johnson, Neil/G-3309-2014; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015 OI Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Moskalenko, Igor/0000-0001-6141-458X; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Starck, Jean-Luc/0000-0003-2177-7794; giglietto, nicola/0000-0002-9021-2888; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi/LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 44 TC 102 Z9 102 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2010 IS 5 AR 025 DI 10.1088/1475-7516/2010/05/025 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620HV UT WOS:000279490800015 ER PT J AU Bowling, A Harmeyer, S AF Bowling, Alan Harmeyer, Sean TI Repeatable Redundant Manipulator Control Using Nullspace Quasivelocities SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE redundant manipulators ID LOCAL TORQUE MINIMIZATION; PSEUDOINVERSE CONTROL; OBSTACLE AVOIDANCE; KINEMATIC CONTROL; ROBOTS; RESOLUTION; DRIFT; SINGULARITIES; OPTIMIZATION; BEHAVIOR AB This paper presents a repeatable control scheme for redundant manipulators. It is developed in terms of physically meaningful variables, a concept closely related to integrability and homogeneity. This approach sheds a different light on some well-known phenomena related to redundant manipulator control. The control is developed by determining enough physically meaningful variables to describe the manipulator's motions in the task and nullspaces, in a manner that allows them to be controlled independently. These variables are then used to develop physically meaningful controller error signals. As a consequence, all configurations in the workspace are repeatable, except for those at, or very close, to a kinematic singularity. The approach is illustrated on a 6DOF planar manipulator. C1 [Bowling, Alan] Univ Texas Arlington, Dept Mech & Aerosp Engn, Robot & Dynam Syst Lab, Arlington, TX 76019 USA. [Harmeyer, Sean] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Bowling, A (reprint author), Univ Texas Arlington, Dept Mech & Aerosp Engn, Robot & Dynam Syst Lab, Box 19018,500 W 1st St,Woolf Hall 315A, Arlington, TX 76019 USA. EM bowling@uta.edu FU National Science Foundation [IIS-0238487]; University of Notre Dame FX Many thanks to Professor Michael Lemmon, in the Department of Electrical Engineering at the University of Notre Dame, and Professor Kamesh Subbarao, in the Department of Mechanical and Aerospace Engineering at the University of Texas at Arlington, for their advice concerning stability and repeatability. This material is based upon work supported by the National Science Foundation under Grant No. IIS-0238487 and a Schmidt fellowship from the University of Notre Dame. NR 50 TC 4 Z9 4 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD MAY PY 2010 VL 132 IS 3 AR 031007 DI 10.1115/1.4001334 PG 11 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 589SV UT WOS:000277174800007 ER PT J AU Clinton, NE Potter, C Crabtree, B Genovese, V Gross, P Gong, P AF Clinton, Nicholas E. Potter, Christopher Crabtree, Bob Genovese, Vanessa Gross, Peggy Gong, Peng TI Remote Sensing-Based Time-Series Analysis of Cheatgrass (Bromus tectorum L.) Phenology SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID VEGETATION RESPONSES; CLIMATIC VARIABILITY; NORTH-AMERICA; UNITED-STATES; GREAT-BASIN; NDVI; PRECIPITATION; INVASION; COVER; MODIS AB The western United Stares is under invasion from cheatgrass (Bromus tectorum), an annual grass that alters the pattern of phenology in the ecosystems it infests This study was conducted to investigate methods for monitoring this invasion As a result of its annual phenology, cheatgrass is not only an extremely competitive invader, it is also detectible from time series of remotely sensed data Using the MODerate resolution imaging sped-to-radiometer (MODIS) normalized difference vegetation index (NDVI) and spatially interpolated precipitation data, we fit splines to monthly observations to generate time series of NDVI and precipitation from 2001 to 2005 in the state of Utah We generated a variety of existing metrics of phenology and developed several metrics to describe the relationship between the NDVI and the precipitation time series These metrics not only describe the pattern of response to precipitation in ecosystems of various infestation levels, but they are predictive of cheatgrass infestation We tested several popular data mining algorithms to investigate the predictive ability of the time series based metrics Our results show that presence absence can be predicted with 90% accuracy, and four categorical levels of infestation can be predicted with 71% accuracy The results show that time series based metrics are effective in prediction of cheatgrass abundance levels, are more effective than metrics based only on NDVI, and provide more information that existing approaches to cheatgrass mapping using phenology These results are important for designing strategies to monitor ecosystem health over long periods of lime at a landscape scale C1 [Clinton, Nicholas E.; Potter, Christopher; Genovese, Vanessa; Gross, Peggy] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crabtree, Bob] Yellowstone Ecol Res Ctr, Bozeman, MT 59714 USA. [Clinton, Nicholas E.; Gong, Peng] Univ Calif Berkeley, Dep Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Clinton, Nicholas E.; Gong, Peng] State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. RP Clinton, NE (reprint author), NASA, Ames Res Ctr, MS 244-15, Moffett Field, CA 94035 USA. RI Gong, Peng/L-8184-2013 NR 50 TC 19 Z9 19 U1 5 U2 36 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD MAY-JUN PY 2010 VL 39 IS 3 BP 955 EP 963 DI 10.2134/jeq2009.0158 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 589EL UT WOS:000277129100020 PM 20400591 ER PT J AU Fink, W Huntsberger, TL Aghazarian, H AF Fink, Wolfgang Huntsberger, Terrance L. Aghazarian, Hrand TI Dynamic Optimization of N-Joint Robotic Limb Deployments SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID FUTURE; ROVER AB We describe an approach using a stochastic optimization framework (SOF) for operating complex mobile systems with several degrees of freedom (DOFs), such as robotic limbs with N joints, in environments that can contain obstacles. As part of the SOF, we have employed an efficient simulated annealing algorithm normally used in computationally highly expensive optimization and search problems such as the traveling salesman problem and protein design. This algorithm is particularly suited to run onboard industrial robots, robots in telemedicine, remote spacecraft, planetary landers, and rovers, i.e., robotic platforms with limited computational capabilities. The robotic limb deployment optimization approach presented here offers an alternative to time-intensive robotic arm deployment path planning algorithms in general and in particular for robotic limb systems in which closed-form solutions do not exist. Application examples for a (N = 4)-DOF arm on a planetary exploration rover are presented. (C) 2009 Wiley Periodicals, Inc. C1 [Fink, Wolfgang] CALTECH, Div Phys Math & Astron, Visual & Autonomous Explorat Syst Res Lab, Pasadena, CA 91125 USA. [Fink, Wolfgang; Huntsberger, Terrance L.; Aghazarian, Hrand] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Fink, W (reprint author), CALTECH, Div Phys Math & Astron, Visual & Autonomous Explorat Syst Res Lab, Pasadena, CA 91125 USA. EM wfink@autonomy.caltech.edu FU JPL Research and Technology Development FX The work described was carried out at the Jet Propulsion Laboratory California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The research was supported by the JPL Research and Technology Development Program. NR 35 TC 3 Z9 3 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY-JUN PY 2010 VL 27 IS 3 BP 268 EP 280 DI 10.1002/rob.20323 PG 13 WC Robotics SC Robotics GA 585WV UT WOS:000276862000003 ER PT J AU Simon, KM James, TS Ivins, ER AF Simon, Karen M. James, Thomas S. Ivins, Erik R. TI Ocean loading effects on the prediction of Antarctic glacial isostatic uplift and gravity rates SO JOURNAL OF GEODESY LA English DT Article DE Glacial isostatic adjustment; Antarctica; GRACE; Gravity change; Crustal movement; GPS ID POSTGLACIAL SEA-LEVEL; GREENLAND ICE SHEETS; MANTLE VISCOSITY; VICTORIA LAND; MASS-BALANCE; CRUSTAL MOTIONS; WEST ANTARCTICA; GRACE; GPS; DEFORMATION AB The effect of regional ocean loading on predicted rates of crustal uplift and gravitational change due to glacial isostatic adjustment (GIA) is determined for Antarctica. The effect is found to be significant for the ICE-3G and ICE-5G loading histories (up to -8 mm/year and -3 mm/year change in uplift rate and -3 cm/year and -1 cm/year equivalent water height change (EWHC) of surface mass, respectively). The effect is smaller (+1 mm/year; +0.25 cm/year) for the IJ05 loading history. The impact of ocean loading on the rate of change of the long-wavelength zonal harmonics of the Earth's gravitational field is also significantly smaller for IJ05 than ICE-3G. A simple analytical formula is derived that is accurate to about 3% in a root-mean-square sense that relates predicted or observed gravitational change at the surface of the Earth (r = a) to the EWHC. A fundamental difference in the definition of the load histories accounts for the differing sensitivities to ocean loading. IJ05 defines its surface load history relative to the present-day surface load, rather than specifying an absolute loading history, and thus implicitly approximates the temporal and spatial mass exchange between grounded ice and open ocean. In contrast, ICE-3G and ICE-5G specify an absolute load history and explicit regional ocean loading substantially perturbs predicted GIA rates. Conclusions of previous studies that used IJ05 predictions without ocean loading are relatively robust. C1 [Simon, Karen M.; James, Thomas S.] Geol Survey Canada, Sidney, BC V8L 4B2, Canada. [Simon, Karen M.; James, Thomas S.] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC V8W 3V6, Canada. [Ivins, Erik R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Simon, KM (reprint author), Geol Survey Canada, Sidney, BC V8L 4B2, Canada. EM ksimon@nrcan.gc.ca RI James, Thomas/D-9301-2013; Ivins, Erik/C-2416-2011 OI James, Thomas/0000-0001-7321-047X; NR 55 TC 14 Z9 14 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2010 VL 84 IS 5 BP 305 EP 317 DI 10.1007/s00190-010-0368-4 PG 13 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 583GE UT WOS:000276660700003 ER PT J AU Bertiger, W Desai, SD Haines, B Harvey, N Moore, AW Owen, S Weiss, JP AF Bertiger, Willy Desai, Shailen D. Haines, Bruce Harvey, Nate Moore, Angelyn W. Owen, Susan Weiss, Jan P. TI Single receiver phase ambiguity resolution with GPS data SO JOURNAL OF GEODESY LA English DT Article DE Ambiguity fixing; GPS; POD; Precise point positioning; WLPBLIST ID ORBIT DETERMINATION; DELAY AB Global positioning system (GPS) data processing algorithms typically improve positioning solution accuracy by fixing double-differenced phase bias ambiguities to integer values. These "double-difference ambiguity resolution" methods usually invoke linear combinations of GPS carrier phase bias estimates from pairs of transmitters and pairs of receivers, and traditionally require simultaneous measurements from at least two receivers. However, many GPS users point position a single local receiver, based on publicly available solutions for GPS orbits and clocks. These users cannot form double differences. We present an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users. The algorithm processes dual- frequency GPS data from a single receiver together with wide-lane and phase bias estimates from the global network of GPS receivers that were used to generate the orbit and clock solutions for the GPS satellites. We constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates. For this precise point positioning, no other receiver data are required. When tested, our algorithm significantly improved repeatability of daily estimates of ground receiver positions, most notably in the east component by approximately 30% with respect to the nominal case wherein the carrier biases are estimated as real values. In this "static" test for terrestrial receiver positions, we achieved daily repeatability of 1.9, 2.1 and 6.0 mm in the east, north and vertical (ENV) components, respectively. For kinematic solutions, ENV repeatability is 7.7, 8.4, and 11.7 mm, respectively, representing improvements of 22, 8, and 14% with respect to the nominal. Results from precise orbit determination of the twin GRACE satellites demonstrated that the inter-satellite baseline accuracy improved by a factor of three, from 6 to 2 mm up to a long-term bias. Jason-2/Ocean Surface Topography Mission precise orbit determination tests results implied radial orbit accuracy significantly below the 10 mm level. Stability of time transfer, in low-Earth orbit, improved from 40 to 7 ps. We produced these results by applying this algorithm within the Jet Propulsion Laboratory's (JPL's) GIPSY/OASIS software package and using JPL's orbit and clock products for the GPS constellation. These products now include a record of the wide-lane and phase bias estimates from the underlying global network of GPS stations. This implies that all GIPSY-OASIS positioning users can now benefit from this capability to perform single-receiver ambiguity resolution. C1 [Bertiger, Willy; Desai, Shailen D.; Haines, Bruce; Harvey, Nate; Moore, Angelyn W.; Owen, Susan; Weiss, Jan P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Bertiger, W (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM willy.bertiger@jpl.nasa.gov NR 21 TC 170 Z9 174 U1 6 U2 52 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2010 VL 84 IS 5 BP 327 EP 337 DI 10.1007/s00190-010-0371-9 PG 11 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 583GE UT WOS:000276660700005 ER PT J AU Sun, DF Sridhar, B Grabbet, S AF Sun, Dengfeng Sridhar, Banavar Grabbet, Shon TI Disaggregation Method for an Aggregate Traffic Flow Management Model SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID OPTIMIZATION AB A linear time-varying aggregate traffic flow model can be used to develop traffic flow management strategies using optimization algorithms. However, there are few methods available in the literature to translate these aggregate solutions into practical control actions involving individual aircraft. In this paper, a computationally efficient disaggregation algorithm is proposed by employing a series of linear program and mixed integer linear program methods, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate traffic flow management schedules for a typical day in the U.S. National Airspace System. C1 [Sun, Dengfeng] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Sridhar, Banavar; Grabbet, Shon] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sun, DF (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. NR 20 TC 6 Z9 6 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY-JUN PY 2010 VL 33 IS 3 BP 666 EP 676 DI 10.2514/1.47469 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 597LY UT WOS:000277760000003 ER PT J AU Zeng, J Moulin, B de Callafon, R Brenner, MJ AF Zeng, Jie Moulin, Boris de Callafon, Raymond Brenner, Martin J. TI Adaptive Feedforward Control for Gust Load Alleviation SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Atmospheric Flight Mechanics Conference CY AUG 18-21, 2008 CL Honolulu, HI SP AIAA ID ACTIVE FLUTTER SUPPRESSION; CONTROL LAW; MODEL AB In this paper, an adaptive feedforward control framework is proposed for the suppression of aircraft structural vibrations induced by gust perturbations to increase the resilience of the flight control law in the presence of the aeroelastic/aeroservoelastic interactions. Currently, aircraft with nonadaptive control laws usually include roll-off or notch filters to avoid aeroelastic/aeroservoelastic interactions. However, if changes in the aircraft configuration are significant, the frequencies of the flexible modes of the aircraft may be shifted, and the notch filters could become totally ineffective. With the proposed approach, the flexible modes can be consistently estimated in real time via a proven system-identification algorithm. The identified flexible modes information is used in the proposed adaptive feedforward control algorithm to adjust the parametrization of the basis functions in a feedforward controller. Along with the recursive least-squares estimate, the feedforward controller is adjusted, and the structural vibration of the aircraft induced by the gust perturbation can be largely suppressed. An F/A-18 active aeroelastic wing aeroelastic model with gust perturbation based on the linear aeroelastic solver formulation is developed as a test bed to demonstrate the proposed adaptive feedforward control algorithm. C1 [Zeng, Jie; Moulin, Boris] ZONA Technol Inc, Scottsdale, AZ 85258 USA. [de Callafon, Raymond] Univ Calif San Diego, La Jolla, CA 92093 USA. [Brenner, Martin J.] NASA, Dryden Flight Res Ctr, Edwards AFB, CA 93523 USA. RP Zeng, J (reprint author), ZONA Technol Inc, Scottsdale, AZ 85258 USA. EM jzeng@zonatech.com; boris@zonatech.com; callafon@ucsd.edu; martin.j.brenner@nasa.gov NR 27 TC 19 Z9 24 U1 0 U2 10 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY-JUN PY 2010 VL 33 IS 3 BP 862 EP 872 DI 10.2514/1.46091 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 597LY UT WOS:000277760000018 ER PT J AU Marchand, BG Weeks, MW Smith, CW Scarritt, S AF Marchand, Belinda G. Weeks, Michael W. Smith, Chad W. Scarritt, Sara TI Onboard Autonomous Targeting for the Trans-Earth Phase of Orion SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation and Control Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Inst Aeronaut & Astronaut ID TRAJECTORY DESIGN AB The present investigation focuses on one aspect of the autonomous targeting process used onboard during the Orion trans-Earth injection phase, specifically, a fast and robust algorithm that identifies a feasible return trajectory, one that meets the entry constraints without exceeding the fuel available. Unlike earlier Apollo missions, Orion seeks to land near the polar regions of the moon. Thus, a substantial plane change maneuver is required before returning to Earth. To reduce the fuel expenditure associated with this plane change, a three-maneuver sequence is employed during the return phase. An autonomous onboard targeting process for precision entry (one that incorporates multiple coordinated trans-Earth maneuvers) is sought in the event of loss of communication with the ground. The latter scenario presents a very unique challenge: one never before required of any Apollo vehicle. The Apollo missions also benefited from flexible entry requirements in contrast to Orion. Precision targeting in multibody regimes has only been previously demonstrated in unmanned sample return missions such as Genesis. The formulation presented here ensures that the entry constraints are met without violating the available fuel budget. C1 [Marchand, Belinda G.; Smith, Chad W.; Scarritt, Sara] Univ Texas Austin, Austin, TX 78712 USA. [Weeks, Michael W.] NASA, Lyndon B Johnson Space Ctr, Aerosci & Flight Mech Div, Code EG6, Houston, TX 77058 USA. RP Marchand, BG (reprint author), Univ Texas Austin, 210 E 24th St, Austin, TX 78712 USA. NR 15 TC 5 Z9 5 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY-JUN PY 2010 VL 33 IS 3 BP 943 EP 956 DI 10.2514/1.42384 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 597LY UT WOS:000277760000025 ER PT J AU Leeghim, H Jaroux, BA AF Leeghim, H. Jaroux, B. A. TI Energy-Optimal Solution to the Lambert Problem SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article C1 [Leeghim, H.; Jaroux, B. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Leeghim, H (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM hyunjae.lee@nasa.gov; belgacem.a.jaroux@nasa.gov FU Korea Research Foundation, Republic of Korea [KRF-2008-357-D00043]; KAIST NASA ARC FX This work was supported by the Korea Research Foundation Grant (KRF-2008-357-D00043), Republic of Korea, and partially funded by KAIST NASA ARC Postdoctoral Program, 2009. The authors would like to acknowledge the constructive feedback from the Associate Editor (Robert Melton). NR 4 TC 2 Z9 2 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY-JUN PY 2010 VL 33 IS 3 BP 1008 EP 1010 DI 10.2514/1.46606 PG 3 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 597LY UT WOS:000277760000032 ER PT J AU Kandula, M AF Kandula, M. TI Transient Conduction in a Hollow Cylinder With Variable Thermal Conductivity SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE convection; finite difference methods; heat conduction; shapes (structures); temperature distribution; thermal conductivity ID HEAT-CONDUCTION AB A closed form approximate solution has been obtained for the transient temperature distribution in a hollow cylinder with a linear variation in thermal conductivity with temperature. The boundary conditions considered are convective heating (Newton's law) at the exposed inner surface and adiabatic outer surface. The solution is obtained using the method of optimal linearization, with the initial solution given by the integral method. The nonlinear analytical solution is shown to compare well with the finite difference solution. C1 NASA, ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. RP Kandula, M (reprint author), NASA, ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. EM max.kandula-1@nasa.gov NR 16 TC 0 Z9 0 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD MAY PY 2010 VL 132 IS 5 AR 054503 DI 10.1115/1.4000471 PG 3 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 566SJ UT WOS:000275393100021 ER PT J AU Wang, TS Canabal, F Chen, YS Cheng, G AF Wang, Ten-See Canabal, Francisco Chen, Yen-Sen Cheng, Gary TI Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA 39th Thermophysics Conference CY JUN 25-28, 2007 CL Miami, FL SP AIAA ID PERFORMANCE; NOZZLE AB The objective of this effort is to develop an efficient and accurate computational fluid dynamics and heat transfer methodology to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core nuclear thermal engine: the small engine. Several theoretical power profiles were imposed on the solid core to represent the effect of nuclear heating, and their effects on hydrogen conversion, heat transfer efficiency, and thrust performance were investigated and reported. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, and formulations of flow and heat transfer through porous media were implemented to describe those of thousands of flow channels inside the solid core. In addition, formulations of conjugate heat transfer were implemented in a previous study to describe the heat transfer between other supporting solid components and the working fluid. The computational domain covers the entire thrust chamber so that the heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of the small engine. Finite rate chemistry is found to be very important in predicting the proper energy balance, because naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency and higher thrust performance. C1 [Wang, Ten-See] NASA, George C Marshall Space Flight Ctr, Fluid Dynam Branch, Huntsville, AL 35812 USA. [Canabal, Francisco] NASA, George C Marshall Space Flight Ctr, Aerosci Branch, Huntsville, AL 35812 USA. [Chen, Yen-Sen] Engn Sci Inc, Huntsville, AL 35815 USA. [Cheng, Gary] Univ Alabama, Dept Mech Engn, Birmingham, AL 35294 USA. RP Wang, TS (reprint author), NASA, George C Marshall Space Flight Ctr, Fluid Dynam Branch, Mail Stop ER42, Huntsville, AL 35812 USA. NR 23 TC 6 Z9 6 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2010 VL 26 IS 3 BP 407 EP 414 DI 10.2514/1.47759 PG 8 WC Engineering, Aerospace SC Engineering GA 602CJ UT WOS:000278115600003 ER PT J AU Rai, MM AF Rai, Man Mohan TI Direct Numerical Simulations of the Transitional/Turbulent Wake of a Flat Plate SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 44th Joint Propulsion Conference CY JUL 20-23, 2008 CL Hartford, CT SP AIAA, ASME, SAE, ASEE ID TURBULENT NEAR-WAKE; CIRCULAR-CYLINDER; INSTABILITY; TRANSPORT; DYNAMICS; LAYER; THIN AB The near wake of a flit plate with a circular trailing edge is investigated via direct numerical simulations. The boundary layers on both the upper and lower surfaces toward the end of the plate are turbulent. Earlier experimental investigations have used thin plates with turbulent boundary layers to create the wake. This results in large theta/D values (theta is the momentum thickness toward the end of the plate and D is the diameter of the trailing edge). Here the emphasis is on relatively thick plates with blunt trailing edges, which result in theta/D values less than unity. Such flows are of considerable engineering interest, particularly in turbomachinery. The computations are performed with a high-order accurate upwind-biased finite-difference scheme that has been successfully used in the past for direct numerical simulations of cylinder wakes and transitional/turbulent flow on flat plates and turbine airfoils. The simulation is modeled after an experiment. Both the Reynolds number based on the boundary-layer thickness at the end of the plate and Re(D) closely approximate experimental data. The ratio theta/D is about 0.05. Computed turbulence statistics both in the plate boundary layer and in the wake are compared with experimental data. Contours of the time-averaged and instantaneous velocity and vorticity fields in the wake are also provided and compared with those obtained for cylinder wakes. C1 NASA, Ames Res Ctr, Explorat Technol Directorate, Moffett Field, CA 94035 USA. RP Rai, MM (reprint author), NASA, Ames Res Ctr, Explorat Technol Directorate, Moffett Field, CA 94035 USA. NR 30 TC 1 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2010 VL 26 IS 3 BP 575 EP 586 DI 10.2514/1.47244 PG 12 WC Engineering, Aerospace SC Engineering GA 602CJ UT WOS:000278115600022 ER PT J AU Rai, MM AF Rai, Man Mohan TI Direct Numerical Simulation of Transitional and Turbulent Flow on a Turbine Airfoil SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference CY JUL 09-12, 2006 CL Sacramento, CA SP AIAA, ASME, SAE, ASEE ID BOUNDARY-LAYER; INCOMING WAKES; HEAT-TRANSFER; CASCADE; PRESSURE; IMPLICIT; SCHEME AB A direct numerical simulation of transitional/turbulent flow on a low-speed turbine airfoil is presented here. The nonconservative form of the Navier-Stokes equations for compressible flows is used for this simulation. The numerical method used to solve these equations is a high-order-accurate upwind-biased iterative-implicit finite-difference scheme and is also presented here. The algorithm and the simulation are extensions of earlier efforts in direct simulations of transition and turbulence on flat plates. The present investigation has additional features, such as surface curvature, an adverse pressure gradient region on the airfoil, and trailing-edge vortex shedding. The results provided in the paper include the time-averaged pressure and the Stanton number distribution on the airfoil surface and turbulence statistics and flow visualization in the transitional/turbulent regions. Comparisons with experimental and computational data obtained for flows over flat plates and in channels are provided. The results indicate that the essential features of transition and turbulence have been captured. C1 NASA, Ames Res Ctr, Explorat Technol Directorate, Moffett Field, CA 94035 USA. RP Rai, MM (reprint author), NASA, Ames Res Ctr, Explorat Technol Directorate, Moffett Field, CA 94035 USA. NR 27 TC 4 Z9 4 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2010 VL 26 IS 3 BP 587 EP 600 DI 10.2514/1.46296 PG 14 WC Engineering, Aerospace SC Engineering GA 602CJ UT WOS:000278115600023 ER PT J AU Zhai, PW Hu, YX Chowdhary, J Trepte, CR Lucker, PL Josset, DB AF Zhai, Peng-Wang Hu, Yongxiang Chowdhary, Jacek Trepte, Charles R. Lucker, Patricia L. Josset, Damien B. TI A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Atmospheric and ocean optics; Propagation; Transmission; Attenuation; Radiative transfer; Scattering; Polarization ID SUCCESSIVE-ORDER; POLARIZED-LIGHT; CASE-1 WATERS; SCATTERING METHOD; TRANSFER EQUATION; PHASE FUNCTION; SATELLITE DATA; TRANSFER CODE; PART I; RADIANCE AB We report on an exact vector (polarized) radiative transfer (VRT) model for coupled atmosphere and ocean systems. This VRT model is based on the successive order of scattering (SOS) method, which virtually takes all the multiple scattering processes into account, including atmospheric scattering, oceanic scattering, reflection and transmission through the rough ocean surface. The isotropic Cox-Munk wave model is used to derive the ref and transmission matrices for the rough ocean surface. Shadowing effects are included by the shadowing function. We validated the SOS results by comparing them with those calculated by two independent codes based on the doubling/adding and Monte Carlo methods. Two error analyses related to the ocean color remote sensing are performed in the coupled atmosphere and ocean systems. One is the scalar error caused by ignoring the polarization in the whole system. The other is the error introduced by ignoring the polarization of the light transmitted through the ocean interface. Both errors are significant for the cases studied. This code fits for the next generation of ocean color study because it converges fast for absorbing medium as, for instance, ocean. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhai, Peng-Wang; Lucker, Patricia L.] SSAI, Hampton, VA 23666 USA. [Hu, Yongxiang; Trepte, Charles R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Chowdhary, Jacek] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Zhai, PW (reprint author), SSAI, 1 Enterprise Pkwy Suite 200, Hampton, VA 23666 USA. EM Pengwang.zhai-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 FU NASA FX This study is supported by the NASA Radiation Science program administrated Hal Maring and the Biogeochemistry program administrated by Paula Bontempi. We would like to thank A. Bricaud for the absorption coefficient data. We would also like to appreciate valuable discussions with Bing Lin about the shadowing effects for a rough surface. And we appreciate two anonymous reviewers for their thoughtful and helpful comments NR 70 TC 51 Z9 56 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2010 VL 111 IS 7-8 BP 1025 EP 1040 DI 10.1016/j.jqsrt.2009.12.005 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 576DN UT WOS:000276124500008 ER PT J AU Rosenzweig, C Bartges, S Powell, A Garcia, J Neofotis, P LaBelle, J Snyder, J Kong, AYY Hillel, D AF Rosenzweig, Cynthia Bartges, Sarah Powell, Alison Garcia, Jake Neofotis, Peter LaBelle, Judith Snyder, Joan Kong, Angela Yin Yee Hillel, Daniel TI Soil carbon sequestration potential in the Hudson Valley, New York-A pilot study utilizing COMET-VR SO JOURNAL OF SOIL AND WATER CONSERVATION LA English DT Editorial Material ID ORGANIC-MATTER; TILLAGE; SCALE C1 [Rosenzweig, Cynthia; Neofotis, Peter; Kong, Angela Yin Yee; Hillel, Daniel] NASA, Goddard Inst Space Studies, Ctr Climate Syst Res, New York, NY 10025 USA. [Bartges, Sarah; Powell, Alison] Barnard Univ, Dept Environm Sci, New York, NY USA. [Garcia, Jake] CUNY Hunter Coll, Dept Geog, New York, NY 10021 USA. [LaBelle, Judith; Snyder, Joan] Glynwood Ctr, Cold Spring on Hudson, NY USA. RP Rosenzweig, C (reprint author), NASA, Goddard Inst Space Studies, Ctr Climate Syst Res, New York, NY 10025 USA. RI daorui, han/G-3767-2011 NR 13 TC 1 Z9 1 U1 0 U2 2 PU SOIL WATER CONSERVATION SOC PI ANKENY PA 945 SW ANKENY RD, ANKENY, IA 50023-9723 USA SN 0022-4561 J9 J SOIL WATER CONSERV JI J. Soil Water Conserv. PD MAY-JUN PY 2010 VL 65 IS 3 BP 68A EP 71A DI 10.2489/jswc.65.3.68A PG 4 WC Ecology; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 596PQ UT WOS:000277697700003 ER PT J AU Galofaro, JT Vayner, BV Hillard, GB AF Galofaro, Joel T. Vayner, Boris V. Hillard, Grover B. TI Experimental Charging Behavior of Orion UltraFlex Array Designs SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 1st AIAA Atmospheric and Space Environments Conference CY JUN 22-25, 2009 CL San Antonio, TX SP Amer Inst Aeronaut & Astronaut AB The present ground-based investigations give the first definitive look, describing the charging behavior of Orion UltraFlex arrays in both the low-Earth-orbital and geosynchronous environments. Note the low-Earth-orbital charging environment also applies to the International Space Station. The geosynchronous charging environment includes the bounding case for all lunar mission environments. The UltraFlex photovoltaic array technology is targeted to become the sole power system for life support and onorbit power for the manned Orion crew exploration vehicle. The purpose of the experimental tests is to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues to ascertain if a single UltraFlex array design will be able to cope with the projected worst-case low-Earth-orbital and geosynchronous charging environments. Stage 1 low-Earth-orbital plasma testing revealed that, all four arrays successfully passed arc threshold bias tests down to -240 V. Stage 2 geosynchronous electron-gun-charging tests revealed that only the front-side area of indium tin oxide-coated array designs successfully passed the arc frequency tests. C1 [Galofaro, Joel T.; Hillard, Grover B.] NASA, John H Glenn Res Ctr Lewis Field, Photovolta & Space Environm Branch, Cleveland, OH 44135 USA. [Vayner, Boris V.] NASA, John H Glenn Res Ctr Lewis Field, Ohio Aerosp Inst, Cleveland, OH 44135 USA. RP Galofaro, JT (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Photovolta & Space Environm Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. NR 13 TC 1 Z9 1 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY-JUN PY 2010 VL 47 IS 3 BP 521 EP 532 DI 10.2514/1.47285 PG 12 WC Engineering, Aerospace SC Engineering GA 610QK UT WOS:000278749100013 ER PT J AU Bentley, JR Amonette, WE De Witt, JK Hagan, RD AF Bentley, Jason R. Amonette, William E. De Witt, John K. Hagan, R. Donald TI EFFECTS OF DIFFERENT LIFTING CADENCES ON GROUND REACTION FORCES DURING THE SQUAT EXERCISE SO JOURNAL OF STRENGTH AND CONDITIONING RESEARCH LA English DT Article DE velocity; inertial forces; weight training; resistive exercise ID STRENGTH; SPEED; CONTRACTION AB Bentley, JR, Amonette, WE, De Witt, JK, and Hagan, RD. Effects of different lifting cadences on ground reaction forces during the squat exercise. J Strength Cond Res 24(5): 1414-1420, 2010-The purpose of this investigation was to determine the effect of different lifting cadences on the ground reaction force (GRF) during the squat exercise. Squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF. The hypotheses were that faster squat cadences would result in greater peak GRF and that the contributions of the body and barbell, both of equivalent mass, to total system inertial force would not be different. Six experienced male subjects (31 +/- 4 years, 180 +/- 9 cm, 88.8 +/- 13.3 kg) performed 3 sets of 3 squats using 3 different cadences (fast cadence [FC] = 1-second descent/1-second ascent; medium cadence [MC] = 3-second descent/1-second ascent; and slow cadence [SC] = 4-second descent/2-second ascent) while lifting a barbell mass equal to their body mass. Ground reaction force and velocity sensor data were used to calculate inertial force contributions of both the body and barbell to total inertial force. Peak GRF were significantly higher in FC squats compared to MC (p = 0.0002) and SC (p = 0.0002). Ranges of GRF were also significantly higher in FC compared to MC (p < 0.05) and higher in MC compared to SC (p < 0.05). The inertial forces associated with the body were larger than those associated with the barbell, regardless of cadence. Faster squat cadences result in significantly greater peak GRF as a result of the inertia of the system. This study demonstrates that GRF was more dependent on descent cadence than on ascent cadence and that researchers should not use a single point on the body to approximate the location of the center of mass during squat exercise analysis. C1 [Bentley, Jason R.; De Witt, John K.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Amonette, William E.] Univ Houston Clear Lake, Houston, TX USA. [Hagan, R. Donald] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Bentley, JR (reprint author), Wyle Integrated Sci & Engn Grp, Houston, TX USA. EM jason_r_bentley@yahoo.com NR 17 TC 4 Z9 4 U1 1 U2 14 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1064-8011 J9 J STRENGTH COND RES JI J. Strength Cond. Res. PD MAY PY 2010 VL 24 IS 5 BP 1414 EP 1420 DI 10.1519/JSC.0b013e3181cb27e7 PG 7 WC Sport Sciences SC Sport Sciences GA 595KB UT WOS:000277608000036 PM 20386484 ER PT J AU Canuto, VM Cheng, Y Howard, AM AF Canuto, V. M. Cheng, Y. Howard, A. M. TI An Attempt to Derive the epsilon Equation from a Two-Point Closure SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SHEAR-DRIVEN; TURBULENCE; FLOWS; MODEL AB The goal of this paper is to derive the equation for the turbulence dissipation rate epsilon for a shear-driven flow. In 1961, Davydov used a one-point closure model to derive the epsilon equation from first principles but the final result contained undetermined terms and thus lacked predictive power. Both in 1987 (Schiestel) and in 2001 (Rubinstein and Zhou), attempts were made to derive the epsilon equation from first principles using a two-point closure, but their methods relied on a phenomenological assumption. The standard practice has thus been to employ a heuristic form of the epsilon equation that contains three empirical ingredients: two constants, c(1,epsilon) and c(2,epsilon), and a diffusion term D(epsilon). In this work, a two-point closure is employed, yielding the following results: 1) the empirical constants get replaced by c(1), c(2), which are now functions of Kand epsilon; 2) c(1) and c(2) are not independent because a general relation between the two that are valid for any K and epsilon are derived; 3) c(1), c(2) become constant with values close to the empirical values c(1,epsilon), c(2,epsilon) (i.e., homogenous flows); and 4) the empirical form of the diffusion term D(epsilon) is no longer needed because it gets substituted by the K-epsilon dependence of c(1), c(2), which plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy D(K), which now enters the new epsilon equation (i.e., inhomogeneous flows). Thus, the three empirical ingredients c(1,epsilon), c(2,epsilon), D(epsilon) are replaced by a single function c(1)(K, epsilon) or c(2)(K, epsilon), plus a D(K) term. Three tests of the new equation for epsilon are presented: one concerning channel flow and two concerning the shear-driven planetary boundary layer (PBL). C1 [Canuto, V. M.; Cheng, Y.; Howard, A. M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Canuto, V. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Cheng, Y.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Howard, A. M.] CUNY Medgar Evers Coll, Dept Phys Environm & Comp Sci, New York, NY USA. [Howard, A. M.] CUNY, Grad Sch, New York, NY USA. RP Cheng, Y (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM ycheng@giss.nasa.gov NR 16 TC 2 Z9 2 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2010 VL 67 IS 5 BP 1678 EP 1685 DI 10.1175/2009JAS3290.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 605CF UT WOS:000278324200024 ER PT J AU Yang, X Shi, C Wheeler, D Newhouse, R Chen, B Zhang, JZ Gu, C AF Yang, Xuan Shi, Chao Wheeler, Damon Newhouse, Rebecca Chen, Bin Zhang, Jin Z. Gu, Claire TI High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID MICROSTRUCTURED OPTICAL-FIBER; SILVER; SERS; PROBE; SPECTROSCOPY; SPECTRA; SAMPLES AB A high-sensitivity molecular sensor using a hollow-core photonic crystal fiber (HCPCF) based on surface-enhanced Raman scattering (SERS) has been experimentally demonstrated and theoretically analyzed. A factor of 100 in sensitivity enhancement is shown in comparison to direct sampling under the same conditions. With a silver nanoparticle colloid as the SERS substrate and Rhodamine 6G as a test molecule, the lowest detectable concentration is 10(-10) M with a liquid-core photonic crystal fiber (LCPCF) probe, and 10(-8) M for direct sampling. The high sensitivity provided by the LCPCF SERS probe is promising for molecular detection in various sensing applications. (C) 2010 Optical Society of America C1 [Yang, Xuan; Shi, Chao; Chen, Bin; Gu, Claire] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Yang, Xuan; Shi, Chao; Chen, Bin; Gu, Claire] NASA, Ames Res Ctr, Adv Studies Labs, Moffett Field, CA 94035 USA. [Wheeler, Damon; Newhouse, Rebecca; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Gu, C (reprint author), Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. EM claire@soe.ucsc.edu RI Yang, Xuan/G-5620-2012 FU National Science Foundation (NSF) [ECCS-0823921]; University of California; University Affiliated Research Center (UARC)/NASA; UC Santa Cruz FX We acknowledge the support from the National Science Foundation (NSF), ECCS-0823921, the University of California Microelectronics Innovation and Computer Research (MICRO) grant, University Affiliated Research Center (UARC)/NASA, and the UC Santa Cruz Special Research Grant. We thank Tammy Oslon in the Department of Chemistry and Biochemistry at University of California, Santa Cruz, for her contribution to making the silver nanoparticles. NR 34 TC 42 Z9 43 U1 7 U2 47 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2010 VL 27 IS 5 BP 977 EP 984 PG 8 WC Optics SC Optics GA 590QD UT WOS:000277241200006 PM 20448763 ER PT J AU Thomas, CN Withington, S Chuss, DT Wollack, EJ Moseley, SH AF Thomas, Christopher N. Withington, Stafford Chuss, David T. Wollack, Edward J. Moseley, S. Harvey TI Modeling the intensity and polarization response of planar bolometric detectors SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID ARRAYS AB Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays. (C) 2010 Optical Society of America C1 [Thomas, Christopher N.; Withington, Stafford] Cavendish Lab, Cambridge CB3 OHE, England. [Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thomas, CN (reprint author), Cavendish Lab, JJ Thompson Ave, Cambridge CB3 OHE, England. EM c.thomas@mrao.cam.ac.uk RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 17 TC 6 Z9 6 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2010 VL 27 IS 5 BP 1219 EP 1231 PG 13 WC Optics SC Optics GA 590QD UT WOS:000277241200034 PM 20448791 ER PT J AU deReynier, YL Levin, PS Shoji, NL AF deReynier, Yvonne L. Levin, Phillip S. Shoji, Noriko L. TI Bringing stakeholders, scientists, and managers together through an integrated ecosystem assessment process SO MARINE POLICY LA English DT Article DE Ecosystem-based management; Integrated ecosystem assessment; Public policy process; Ocean resource management ID QUALITATIVE RISK-ASSESSMENT; POLITICAL BUSINESS-CYCLE; FISHERIES MANAGEMENT; CALIFORNIA CURRENT; FISH COMMUNITY; INDICATORS; CONSERVATION; POLICY; BIODIVERSITY; CHALLENGES AB For decades, the scientific community has conducted essential background research and developed appropriate modeling tools in support of an ecosystem-based approach to natural resource management. Resource managers and the public, however, lack a clear roadmap for working with scientists to move beyond the traditional single-species approach. With current management processes so strongly focused on working in a species-by-species framework, there are entrenched cultural and institutional challenges to shifting those processes toward ecosystem-based management. We propose using the integrated ecosystem assessment process to both develop new management ideas for a particular ecosystem, and to help shift public policy processes and perceptions to embrace ecosystem approaches to management. Published by Elsevier Ltd. C1 [deReynier, Yvonne L.] NOAA, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Levin, Phillip S.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Ctr, Seattle, WA 98112 USA. [Shoji, Noriko L.] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96848 USA. RP deReynier, YL (reprint author), NOAA, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM yvonne.dereynier@noaa.gov NR 62 TC 18 Z9 18 U1 1 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-597X J9 MAR POLICY JI Mar. Pol. PD MAY PY 2010 VL 34 IS 3 BP 534 EP 540 DI 10.1016/j.marpol.2009.10.010 PG 7 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA 572OQ UT WOS:000275842800024 ER PT J AU Keller, AA Fruh, EL Johnson, MM Simon, V McGourty, C AF Keller, Aimee A. Fruh, Erica L. Johnson, Melanie M. Simon, Victor McGourty, Catherine TI Distribution and abundance of anthropogenic marine debris along the shelf and slope of the US West Coast SO MARINE POLLUTION BULLETIN LA English DT Article DE Eastern North Pacific; Benthic marine debris; Plastic; Trawl survey; US West Coast ID DEEP-SEA-FLOOR; CONTINENTAL-SHELF; MEDITERRANEAN-SEA; LITTER; CALIFORNIA; IMPACTS; GREECE; ISLAND; BIGHT AB As marine debris levels continue to grow worldwide, defining sources, composition, and distribution of debris, as well as potential effects, becomes increasingly important. We investigated composition and abundance of man-made, benthic marine debris at 1347 randomly selected stations along the US West Coast during Groundfish Bottom Trawl Surveys in 2007 and 2008. Anthropogenic debris was observed in 469 tows at depths of 55-1280 m. Plastic and metallic debris occurred in the greatest number of hauls followed by fabric and glass. Mean density was 67.1 items km(-2) throughout the study area but was significantly higher south of 36 degrees 00'N latitude. Mean density significantly increased with depth, ranging from 30 items km(-2) in shallow (55-183 m) water to 128 items km(-2) in the deepest depth stratum (550-1280 m). Debris densities observed along the US West Coast were comparable to those seen elsewhere and provide a valuable backdrop for future comparisons. Published by Elsevier Ltd. C1 [Keller, Aimee A.; Simon, Victor] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Seattle, WA 98112 USA. [Fruh, Erica L.; Johnson, Melanie M.; McGourty, Catherine] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. RP Keller, AA (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2725 Montlake Blvd E, Seattle, WA 98112 USA. EM aimee.keller@noaa.gov; erica.fruh@noaa.gov; melanie.johnson@noaa.gov; victor.simon@noaa.gov; catherine.mcgourty@noaa.gov FU NOAA FX The authors are indebted to the captains and crew of the chartered fishing vessels Ms. Julie, Noah's Ark, Excalibur and Raven for providing at-sea support. Keith Bosley, Dan Kamikawa, John Harms and John Buchanan greatly assisted in data collection. We especially thank Curt Whitmire for preparing GIS charts as needed throughout the study and Beth Hotness for data management. The project was funded in part by a 2008 Grant from the NOAA Marine Debris Program. NR 33 TC 32 Z9 32 U1 3 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD MAY PY 2010 VL 60 IS 5 BP 692 EP 700 DI 10.1016/j.marpolbul.2009.12.006 PG 9 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 616MX UT WOS:000279214600018 PM 20092858 ER PT J AU Franklin, RM Ploutz-Snyder, LL Szeverenyi, NM Kanaley, JA AF Franklin, Ruth M. Ploutz-Snyder, Lori L. Szeverenyi, Nikolaus M. Kanaley, Jill A. TI The Effects of an Acute Resistance Exercise Bout on IMCL Content in Obese Younger and Older Women SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Franklin, Ruth M.; Kanaley, Jill A.] Syracuse Univ, Syracuse, NY USA. [Ploutz-Snyder, Lori L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Szeverenyi, Nikolaus M.] Univ Calif San Diego, San Diego, CA 92103 USA. EM rmfrankl@syr.edu NR 0 TC 0 Z9 0 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 589 BP 1 EP 1 PG 1 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226300003 ER PT J AU Cook, SB Brown, KA Smith, SM Ploutz-Snyder, LL AF Cook, Summer B. Brown, Kimberly A. Smith, Scott M. Ploutz-Snyder, Lori L. TI Evaluation of Bone Markers during Unilateral Lower Limb Suspension and Blood Flow Restricted Exercise SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Cook, Summer B.; Brown, Kimberly A.; Ploutz-Snyder, Lori L.] Syracuse Univ, Syracuse, NY USA. [Smith, Scott M.] NASA, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 717 BP 41 EP 41 PG 1 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226300117 ER PT J AU Spiering, BA Lee, SMC Mulavara, AP Bentley, JR Buxton, RE Lawrence, EL Sinka, J Guilliams, ME Ploutz-Snyder, LL Bloomberg, JJ AF Spiering, Barry A. Lee, Stuart M. C. Mulavara, Ajitkumar P. Bentley, Jason R. Buxton, Roxanne E. Lawrence, Emily L. Sinka, Joseph Guilliams, Mark E. Ploutz-Snyder, Lori L. Bloomberg, Jacob J. TI Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Spiering, Barry A.; Lee, Stuart M. C.; Bentley, Jason R.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Mulavara, Ajitkumar P.; Ploutz-Snyder, Lori L.] Univ Space Res Assoc, Houston, TX USA. [Buxton, Roxanne E.] Univ Houston, Houston, TX USA. [Bloomberg, Jacob J.] NASA, Houston, TX USA. EM bspiering@fullerton.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 844 BP 80 EP 80 PG 1 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226300230 ER PT J AU Guined, JR Lee, SMC Brown, AK Stenger, MB Platts, SH AF Guined, Jamie R. Lee, Stuart M. C. Brown, Angela K. Stenger, Michael B. Platts, Steven H. TI Metabolic Cost of Simulated Egress while Wearing Compression Garments Used to Prevent Orthostatic Intolerance SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Guined, Jamie R.] Univ Houston, Houston, TX USA. [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Brown, Angela K.] MEI Technol, Houston, TX USA. [Platts, Steven H.] Natl Aeronaut & Space Adm, Houston, TX USA. EM jamie.r.guined@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2113 BP 512 EP 513 PG 2 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301767 ER PT J AU Norcross, JR Chappell, SP Gernhardt, ML AF Norcross, Jason R. Chappell, Steven P. Gernhardt, Michael L. TI Effect of Changing Weight and Mass on Human Performance in a Lunar Prototype Spacesuit SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Norcross, Jason R.; Chappell, Steven P.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Gernhardt, Michael L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM jason.norcross-1@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2116 BP 513 EP 514 PG 2 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301770 ER PT J AU Westby, CM Phillips, TR Stenger, MB Platts, SH AF Westby, Christian M. Phillips, Tiffany R. Stenger, Michael B. Platts, Steven H. TI 60 Days of Head-down Bedrest Alters Venous Compliance and Venoconstriction to Phenylephrine in Healthy Men SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Westby, Christian M.] Univ Space Res Assoc, Houston, TX USA. [Phillips, Tiffany R.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Platts, Steven H.] Natl Aeronaut & Space Adm, Houston, TX USA. EM Christian.Westby@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2119 BP 514 EP 515 PG 2 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301773 ER PT J AU Moore, AD Lee, SMC McCleary, FA Evetts, SN Feiveson, AH AF Moore, Alan D., Jr. Lee, Stuart M. C. McCleary, Frank A. Evetts, Simon N. Feiveson, Alan H. TI Oxygen Consumption and Heart Rate Responses in Graded Exercise during Long-Duration Space Flight SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Moore, Alan D., Jr.; Lee, Stuart M. C.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [McCleary, Frank A.] Lockheed Martin Space & Sci Solut, Houston, TX USA. [Evetts, Simon N.] Wyle GmbH, Cologne, Germany. [Feiveson, Alan H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM alan.d.moore@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2120 BP 515 EP 515 PG 1 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301774 ER PT J AU Platts, SH Brown, AK Lee, SMC Stenger, MB AF Platts, Steven H. Brown, Angela K. Lee, Stuart M. C. Stenger, Michael B. TI Splanchnic Compression Improves the Efficacy of Compression Stockings to Prevent Orthostatic Intolerance SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brown, Angela K.] MEI Technol, Houston, TX USA. [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. EM steven.platts-1@nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2121 BP 515 EP 515 PG 1 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301775 ER PT J AU Arzeno, NM Stenger, MB Ribeiro, LC Lee, SMC Platts, SH AF Arzeno, Natalia M. Stenger, Michael B. Ribeiro, Laura C. Lee, Stuart M. C. Platts, Steven H. TI Gender Differences in Baroreflex Sensitivity after Bed Rest SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Arzeno, Natalia M.; Stenger, Michael B.; Ribeiro, Laura C.; Lee, Stuart M. C.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2178 BP 535 EP 536 PG 2 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301831 ER PT J AU Stenger, MB Arzeno, NM Bloomberg, JJ Platts, SH AF Stenger, Michael B. Arzeno, Natalia M. Bloomberg, Jacob J. Platts, Steven H. TI Validation of Cardiovascular Parameters During NASA's Functional Task Test SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract CT 57th Annual Meeting of the American-College-Sports-Medicine/Inaugural World Congress on Exercise is Medicine CY JUN 05, 2010 CL Baltimore, MD SP Amer Coll Sports Med C1 [Stenger, Michael B.; Arzeno, Natalia M.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Bloomberg, Jacob J.; Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2010 VL 42 IS 5 SU 1 MA 2181 BP 536 EP 537 PG 2 WC Sport Sciences SC Sport Sciences GA 759FO UT WOS:000290226301834 ER PT J AU Clemett, SJ Sandford, SA Nakamura-Messenger, K Horz, F McKay, DS AF Clemett, Simon J. Sandford, Scott A. Nakamura-Messenger, Keiko Hoerz, Friedrich McKay, David S. TI Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID UNIDENTIFIED INFRARED-EMISSION; LASER MASS-SPECTROMETRY; ORGANIC-MATTER; INTERSTELLAR DUST; CARBONACEOUS CHONDRITES; ISOTOPIC COMPOSITIONS; PRIMITIVE METEORITES; MOLECULES; ORIGIN; HALLEY AB The successful return of the Stardust spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from comet 81P/Wild 2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N rich. Spectral analysis in combination with instrumental detection sensitivies suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C equivalent to N). While organic species in the Stardust samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N containing species in comets has astrobiological implications as comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars. C1 [Clemett, Simon J.] ERC Inc, Houston, TX 77058 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94305 USA. [Nakamura-Messenger, Keiko] Jacobs, Houston, TX 77058 USA. [Hoerz, Friedrich; McKay, David S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Clemett, SJ (reprint author), ERC Inc, Houston, TX 77058 USA. EM simon.j.clemett@jsc.nasa.gov FU National Aeronautics; Space Administration Cosmochemistry FX We are grateful to O. Clemett for fruitful discussions and advice, and for financial support from the National Aeronautics and Space Administration Cosmochemistry program. NR 89 TC 24 Z9 24 U1 0 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAY PY 2010 VL 45 IS 5 BP 701 EP 722 DI 10.1111/j.1945-5100.2010.01062.x PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 648TB UT WOS:000281715900001 ER PT J AU Bogard, DD Dixon, ET Garrison, DH AF Bogard, Donald D. Dixon, Eleanor T. Garrison, Daniel H. TI Ar-Ar ages and thermal histories of enstatite meteorites SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID CHONDRITE PARENT BODY; IMPACT-MELT BRECCIAS; I-XE; RUBIDIUM-STRONTIUM; ACAPULCO METEORITE; SYSTEMATIC-ERRORS; AR-39-AR-40 AGES; AR-40/AR-39 AGE; IRON-METEORITES; PLAGIOCLASE AB Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report (39)Ar-(40)Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous-textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar-Ar age spectra show unusual (39)Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show (40)Ar diffusion loss. Few additional Ar-Ar ages for enstatite meteorites are available in the literature. When all available Ar-Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50-4.54 Ga, whereas five other meteorites show only lower age limits over 4.35-4.46 Ga. Ar-Ar ages of several enstatite chondrites are as old or older as the oldest Ar-Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar-Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event. C1 [Bogard, Donald D.] NASA, Lyndon B Johnson Space Ctr, ARES Code KR, Houston, TX 77058 USA. [Dixon, Eleanor T.] US DOE, Natl Nucl Secur Adm, Washington, DC 20585 USA. [Garrison, Daniel H.] Barrios Technol JE23, Houston, TX 77058 USA. RP Bogard, DD (reprint author), NASA, Lyndon B Johnson Space Ctr, ARES Code KR, Houston, TX 77058 USA. EM donbogard@comcast.net FU NASA's Cosmochemistry Program; National Research Council FX We appreciate helpful review comments by A. Rubin, M. Trieloff, and T. Swindle. For furnishing samples, we thank E. Olsen of the Chicago Field Museum of Natural history, C. Moore of the Arizona State Center for Meteorite Studies, R. Hutchison of the British Museum of Natural History, T. McCoy of the Smithsonian Institution, K. Keil and colleagues at the University of Hawaii, A. Reid and the University of Cape Town, and the U.S. Antarctic Meteorite Program. This research was supported by NASA's Cosmochemistry Program. ETD acknowledges support from the National Research Council for a NASA postdoctoral fellowship. NR 84 TC 14 Z9 14 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAY PY 2010 VL 45 IS 5 BP 723 EP 742 DI 10.1111/j.1945-5100.2010.01060.x PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 648TB UT WOS:000281715900002 ER PT J AU Richard, J Smith, GP Kneib, JP Ellis, RS Sanderson, AJR Pei, L Targett, TA Sand, DJ Swinbank, AM Dannerbauer, H Mazzotta, P Limousin, M Egami, E Jullo, E Hamilton-Morris, V Moran, SM AF Richard, Johan Smith, Graham P. Kneib, Jean-Paul Ellis, Richard S. Sanderson, A. J. R. Pei, L. Targett, T. A. Sand, D. J. Swinbank, A. M. Dannerbauer, H. Mazzotta, P. Limousin, M. Egami, E. Jullo, E. Hamilton-Morris, V. Moran, S. M. TI LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z=0.2 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; galaxies: clusters: general ID HUBBLE-SPACE-TELESCOPE; DARK-MATTER HALOS; X-RAY MEASUREMENTS; TO-LIGHT RATIOS; SCALING RELATIONS; LENSED GALAXIES; CHANDRA SAMPLE; COOL CORES; FIELD; GAS AB We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey, based on high-resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observations using the Keck-I telescope. We use detailed parametrized models of the mass distribution in the cluster cores, to measure the total cluster mass and fraction of that mass associated with substructures within R = 250 kpc. These measurements are compared with the distribution of baryons in the cores, as traced by the old stellar populations and the X-ray emitting intracluster medium. Our main results include: (i) the distribution of Einstein radii is lognormal, with a peak and 1 sigma width of < log(10)theta(E)(z = 2)> = 1.16 +/- 0.28; (ii) we detect an X-ray/lensing mass discrepancy of < M(SL)/M(X)> = 1.3 at 3 sigma significance-clusters with larger substructure fractions displaying greater mass discrepancies, and thus greater departures from hydrostatic equilibrium and (iii) cluster substructure fraction is also correlated with the slope of the gas density profile on small scales, implying a connection between cluster-cluster mergers and gas cooling. Overall our results are consistent with the view that cluster-cluster mergers play a prominent role in shaping the properties of cluster cores, in particular causing departures from hydrostatic equilibrium, and possibly disturbing cool cores. Our results do not support recent claims that large Einstein radius clusters present a challenge to the cold dark matter paradigm. C1 [Richard, Johan; Swinbank, A. M.] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Smith, Graham P.; Sanderson, A. J. R.; Hamilton-Morris, V.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Kneib, Jean-Paul; Limousin, M.] Univ Aix Marseille, Lab Astrophys Marseille, CNRS, F-13388 Marseille 13, France. [Ellis, Richard S.; Pei, L.] CALTECH, Pasadena, CA 91125 USA. [Targett, T. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Sand, D. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dannerbauer, H.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Mazzotta, P.] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy. [Limousin, M.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Egami, E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Jullo, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moran, S. M.] Johns Hopkins Dept Phys & Astron, Baltimore, MD 21218 USA. RP Richard, J (reprint author), Univ Durham, Inst Computat Cosmol, Dept Phys, South Rd, Durham DH1 3LE, England. EM johan.richard@durham.ac.uk RI Kneib, Jean-Paul/A-7919-2015; Mazzotta, Pasquale/B-1225-2016 OI Kneib, Jean-Paul/0000-0002-4616-4989; Mazzotta, Pasquale/0000-0002-5411-1748 NR 91 TC 88 Z9 88 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2010 VL 404 IS 1 BP 325 EP 349 DI 10.1111/j.1365-2966.2009.16274.x PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584ZU UT WOS:000276794600054 ER PT J AU Gonzalez-Sanchez, A Teodoro, LFA AF Gonzalez-Sanchez, Alejandro Teodoro, Luis F. A. TI Drag-gravity torques on galaxies in clusters: radial small-scale alignment effects SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: evolution; galaxies: formation ID ANGULAR-MOMENTUM; LOCAL SUPERCLUSTER; TIDAL TORQUES; COMA CLUSTER; CD GALAXIES; DARK-MATTER; ORIENTATION; MORPHOLOGY AB We calculate the torque on galaxies in clusters due to gravity and to dynamical friction forces in order to study the possible origin of small-scale alignment effects as the result of interactions with their environment. The equation of motion for the position angle of a galaxy is derived by using a simple model. We find that weak radial alignment effects can be produced by this mechanism involving only the most massive galaxies. We also introduce a dependence on the cluster eccentricity to our equations in order to explore the alignment of galaxies with the cluster's major axis. We find that in the inner regions of high eccentricity clusters, alignments of massive galaxies with the cluster's major axis dominate over the radial ones. This mechanism could account for the observed alignment effects of the most massive galaxies with the major axis of their host cluster. Our results suggest that dynamical friction is a viable generator of alignment only for the most massive cluster galaxies. For the observed alignments of normal galaxies a primordial origin has to be explored. C1 [Gonzalez-Sanchez, Alejandro] Univ Juarez Autonoma Tabasco, Ctr Invest, Div Acad Ciencias Basicas, Cd Juarez, Tabasco, Mexico. [Gonzalez-Sanchez, Alejandro] Univ Autonoma Zacatecas, Unidad Acad Fis, Zacatecas, Mexico. [Teodoro, Luis F. A.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Teodoro, Luis F. A.] NASA, ELORET Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Gonzalez-Sanchez, A (reprint author), Univ Juarez Autonoma Tabasco, Ctr Invest, Div Acad Ciencias Basicas, Cd Juarez, Tabasco, Mexico. EM a.gonzales@physics.gla.ac.uk; luis@astro.gla.ac.uk FU Leverhulme Trust; COZCYT; SUTUAZ FX LFAT acknowledges the financial support of the Leverhulme Trust. AGS thanks COZCYT and SUTUAZ for support. We are grateful to the anonymous referee for constructive comments which have significantly improved the clarity of this Letter. NR 39 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2010 VL 404 IS 1 BP L11 EP L15 DI 10.1111/j.1745-3933.2010.00824.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584ZU UT WOS:000276794600003 ER PT J AU Tian, WW Leahy, DA Li, D AF Tian, W. W. Leahy, D. A. Li, D. TI Distance to the SNR CTB109/AXP 1E 2259+586 by H I absorption and self-absorption SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE pulsars: individual: AXP 1E 2259+586; H II regions; supernova remnants ID GALACTIC PLANE SURVEY; X-RAY PULSARS; DARK CLOUDS; SUPERNOVA; DISCOVERY; G109.1-1.0; DENSITY; REGIONS; GALAXY AB We suggest a revised distance to the supernova remnant G109.1-1.0 (CTB 109) and its associated anomalous X-ray pulsar (AXP) 1E 2259+586 by analysing 21-cm H I-line and (12)CO-line spectra of CTB 109, H II region Sh 152 and the adjacent molecular cloud complex. CTB 109 has been established to be interacting with a large molecular cloud (recession velocity at v = -55 km s(-1)). The highest radial velocities of absorption features towards CTB 109 (-56 km s(-1)) and Sh 152 (-65 km s(-1)) are larger than the recombination line velocity (-50 km s(-1)) of Sh 152 demonstrating the velocity reversal within the Perseus Arm. The molecular cloud has cold H I column density large enough to produce H I self-absorption (HISA) and H I narrow self-absorption (HINSA) if it was at the near side of the velocity reversal. Absence of both HISA and HINSA indicates that the cloud is at the far side of the velocity reversal within the Perseus Arm, so we obtain a distance for CTB 109 of 4 +/- 0.8 kpc. The new distance still leads to a normal explosion energy for CTB 109/AXP 1E 2259+586. C1 [Tian, W. W.] CAS, Natl Astron Observ, Beijing 100012, Peoples R China. [Tian, W. W.; Leahy, D. A.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Li, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Tian, WW (reprint author), CAS, Natl Astron Observ, Beijing 100012, Peoples R China. EM tww@bao.ac.cn FU CAS's Bairen Program; Natural Science Foundation of China; Natural Sciences and Engineering Research Council of Canada; Jet Propulsion Laboratory,; California Institute of Technology; National Research Council of Canada FX WWT acknowledges support of the CAS's Bairen Program and the Natural Science Foundation of China. DAL thanks support from the Natural Sciences and Engineering Research Council of Canada. DL's work is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The DRAO is operated as a national facility by the National Research Council of Canada. NR 34 TC 19 Z9 20 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2010 VL 404 IS 1 BP L1 EP L5 DI 10.1111/j.1745-3933.2010.00822.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 584ZU UT WOS:000276794600001 ER PT J AU Kelley, OA Stout, J Summers, M Zipser, EJ AF Kelley, Owen A. Stout, John Summers, Michael Zipser, Edward J. TI Do the Tallest Convective Cells over the Tropical Ocean Have Slow Updrafts? SO MONTHLY WEATHER REVIEW LA English DT Article ID STRATOSPHERE-TROPOSPHERE EXCHANGE; AVAILABLE POTENTIAL-ENERGY; PRECIPITATION RADAR; RETRIEVAL ALGORITHMS; VERTICAL VELOCITY; DEEP CONVECTION; TOGA COARE; MICROWAVE OBSERVATIONS; NUMERICAL SIMULATIONS; REGIONAL DIFFERENCES AB Far from continents, a few storms lift precipitation-size ice particles into the stratosphere, 17 to 18 km above the tropical ocean. This study is the first to examine the observed properties of a large sample of these extremely tall convective storm cells. The central questions in this study are whether the unusually tall ocean cells have the slow updrafts known to be typical of oceanic convection, and if so, how can these tall cells reach such extreme heights. The precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) satellite observed 174 extremely tall oceanic cells from 1998 to 2007. Relative updraft intensity is inferred from 17-km-tall oceanic cells having, on average, a 7-km lower 40-dBZ radar reflectivity height and an order of magnitude less lightning than do equally tall cells over the Sahel region of Africa, a region known for vigorous convective updrafts. Despite some ambiguity, the potential temperature and lapse rate of the NCEP reanalysis suggest that the environment in which these oceanic cells form is conducive to modest updrafts reaching extreme heights. Extrapolating based on the limited coverage of the TRMM satellite radar, it is likely that such extremely tall cells occur more often than once each day somewhere over the tropical ocean. C1 [Kelley, Owen A.; Stout, John] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stout, John; Summers, Michael] George Mason Univ, Fairfax, VA 22030 USA. [Zipser, Edward J.] Univ Utah, Salt Lake City, UT USA. RP Kelley, OA (reprint author), NASA, Goddard Space Flight Ctr, Code 610-2,Bldg 32, Greenbelt, MD 20771 USA. EM Owen.A.Kelley@nasa.gov NR 112 TC 14 Z9 15 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD MAY PY 2010 VL 138 IS 5 BP 1651 EP 1672 DI 10.1175/2009MWR3030.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 620LH UT WOS:000279500900010 ER PT J AU Cucinotta, FA Chappell, LJ AF Cucinotta, Francis A. Chappell, Lori J. TI Non-targeted effects and the dose response for heavy ion tumor induction SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE Non-targeted effects; Radiation carcinogenesis; Space radiation; High LET effects ID INDUCED GENOMIC INSTABILITY; SISTER-CHROMATID EXCHANGES; INITIATION-PROMOTION MODEL; IONIZING-RADIATION; ALPHA-PARTICLES; IN-VIVO; BIOLOGICAL EFFECTIVENESS; CHROMOSOMAL INSTABILITY; SPACE EXPLORATION; MYELOID-LEUKEMIA AB Non-targeted effects (NTE), including bystander effects in neighbor cells of cells directly hit by radiation tracks and genomic instability in the progeny of irradiated cells, challenge traditional radiation protection paradigms on Earth. It is thus of interest to understand how NTE could impact our understanding of cancer risks from galactic cosmic rays (GCR), which are comprised of high-energy protons and heavy ions. The most comprehensive data set for tumor induction by heavy ions is the induction of Harderian gland tumors in mice by high-energy protons, helium, neon, iron and niobium ions after doses of 0.05 to several Gy. We report on an analysis of these data that compares a dose response model motivated by the conventional targeted effects (TE) model to one which includes a dose response term descriptive of non-targeted effects (NTE) in cell culture. Results show that a NTE model provides an improved fit to the Harderian gland data over the TE model. Relative biological effectiveness (RBE) factors are shown to have much larger values at low doses based on a NTE model than the maximum RBE estimates based on estimates of the ratio of initial linear slopes of heavy ions compared to gamma-rays in the TE model. Our analysis provides important in vivo support for the deviation from linear dose responses at low doses for high LET radiation, which are best explained by a NTE model. Published by Elsevier B.V. C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Space Radiat Program, Houston, TX 77058 USA. [Chappell, Lori J.] USRA Div Life Sci, Houston, TX 77058 USA. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, Space Radiat Program, 2101 NASA Pkwy,Mail Code SK, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.gov NR 32 TC 39 Z9 40 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD MAY 1 PY 2010 VL 687 IS 1-2 SI SI BP 49 EP 53 DI 10.1016/j.mrfmmm.2010.01.012 PG 5 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 597JK UT WOS:000277752900009 PM 20085778 ER PT J AU Pulkkinen, A Hesse, M Habib, S Van der Zel, L Damsky, B Policelli, F Fugate, D Jacobs, W Creamer, E AF Pulkkinen, Antti Hesse, Michael Habib, Shahid Van der Zel, Luke Damsky, Ben Policelli, Fritz Fugate, David Jacobs, William Creamer, Elizabeth TI Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems SO NATURAL HAZARDS LA English DT Article DE Geomagnetically induced currents; Forecasting; Space weather; High-voltage power transmission systems ID WIND; CURRENTS; SURFACE; FIELD AB In this paper, central elements of the Solar Shield project, launched to design and establish an experimental system capable of forecasting the space weather effects on high-voltage power transmission system, are described. It will be shown how Sun-Earth system data and models hosted at the Community Coordinated Modeling Center (CCMC) are used to generate two-level magnetohydrodynamics-based forecasts providing 1-2 day and 30-60 min lead-times. The Electric Power Research Institute (EPRI) represents the end-user, the power transmission industry, in the project. EPRI integrates the forecast products to an online display tool providing information about space weather conditions to the member power utilities. EPRI also evaluates the economic impacts of severe storms on power transmission systems. The economic analysis will quantify the economic value of the generated forecasting system. The first version of the two-level forecasting system is currently running in real-time at CCMC. An initial analysis of the system's capabilities has been completed, and further analysis is being carried out to optimize the performance of the system. Although the initial results are encouraging, definite conclusions about system's performance can be given only after more extensive analysis, and implementation of an automatic evaluation process using forecasted and observed geomagnetically induced currents from different nodes of the North American power transmission system. The final output of the Solar Shield will be a recommendation for an optimal forecasting system that may be transitioned into space weather operations. C1 [Pulkkinen, Antti] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Hesse, Michael; Habib, Shahid; Policelli, Fritz; Creamer, Elizabeth] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Van der Zel, Luke; Damsky, Ben] Elect Power Res Inst, Charlotte, NC USA. [Fugate, David; Jacobs, William] Elect Res, Cabot, PA USA. RP Pulkkinen, A (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. EM antti.a.pulkkinen@nasa.gov RI Hesse, Michael/D-2031-2012 NR 34 TC 18 Z9 19 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X J9 NAT HAZARDS JI Nat. Hazards PD MAY PY 2010 VL 53 IS 2 BP 333 EP 345 DI 10.1007/s11069-009-9432-x PG 13 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 577PJ UT WOS:000276236000009 ER PT J AU Hurowitz, JA Fischer, W Tosca, NJ Milliken, RE AF Hurowitz, Joel A. Fischer, WoodwardW. Tosca, Nicholas J. Milliken, Ralph E. TI Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars SO NATURE GEOSCIENCE LA English DT Article ID MERIDIANI-PLANUM; BURNS FORMATION; HISTORY; SPECTROMETER; OPPORTUNITY; DIAGENESIS; MINERALOGY; SEDIMENTS; HYDROGEN; ESCAPE AB Observations from in situ experiments and planetary orbiters have shown that the sedimentary rocks found at Meridiani Planum, Mars were formed in the presence of acidic surface waters(1-4). The water was thought to be brought to the surface by groundwater upwelling(5,6), and may represent the last vestiges of the widespread occurrence of liquid water on Mars. However, it is unclear why the surface waters were acidic. Here we use geochemical calculations, constrained by chemical and mineralogical data from the Mars Exploration Rover Opportunity(7-10), to show that Fe oxidation and the precipitation of oxidized iron (Fe(3+)) minerals generate excess acid with respect to the amount of base anions available in the rocks present in outcrop. We suggest that subsurface waters of near-neutral pH and rich in Fe(2+) were rapidly acidified as iron was oxidized on exposure to O(2) or photo-oxidized by ultraviolet radiation at the martian surface. Temporal variation in surface acidity would have been controlled by the availability of liquid water, and as such, low-pH fluids could be a natural consequence of the aridification of the martian surface. Finally, because iron oxidation at Meridiani would have generated large amounts of gaseous H(2), ultimately derived from the reduction of H(2)O, we conclude that surface geochemical processes would have affected the redox state of the early martian atmosphere. C1 [Hurowitz, Joel A.; Milliken, Ralph E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fischer, WoodwardW.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tosca, Nicholas J.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Hurowitz, JA (reprint author), CALTECH, Jet Prop Lab, MS 183-401,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joel.a.hurowitz@jpl.nasa.gov FU California Institute of Technology; Origins Initiative Postdoctoral Fellowship FX Research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (J.A.H., R.E.M.). This work was also supported by the California Institute of Technology (W.W.F.)and by an Origins Initiative Postdoctoral Fellowship (N.J.T.). The authors thank Y. Yung, N. Heavens and J. Wilson for constructive comments. NR 30 TC 68 Z9 69 U1 8 U2 32 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2010 VL 3 IS 5 SI SI BP 323 EP 326 DI 10.1038/NGEO831 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 589XW UT WOS:000277188500013 ER PT J AU Samarkin, VA Madigan, MT Bowles, MW Casciotti, KL Priscu, JC Mckay, CP Joye, SB AF Samarkin, Vladimir A. Madigan, Michael T. Bowles, Marshall W. Casciotti, Karen L. Priscu, John C. Mckay, Christopher P. Joye, Samantha B. TI Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica SO NATURE GEOSCIENCE LA English DT Article ID NITRITE REDUCTION; N2O ISOTOPOMERS; SOIL; SERPENTINIZATION; DENITRIFICATION; NITRIFICATION; BUDGET; LIFE; MARS AB Nitrous oxide is a potent atmospheric greenhouse gas(1) that contributes to ozone destruction(2). Biological processes such as nitrification and denitrification are thought to drive nitrous oxide production in soils, which comprise the largest source of nitrous oxide to the atmosphere(1). Here we present measurements of the concentration and isotopic composition of nitrous oxide in soil pore spaces in samples taken near Don Juan Pond, a metabolically dormant hypersaline pond in Southern Victoria Land, Antarctica in 2006, 2007 and 2008, together with in situ fluxes of nitrous oxide from the soil to the atmosphere. We find fluxes of nitrous oxide that rival those measured in fertilized tropical soils(3). Laboratory experiments -in which nitrite-rich brine was reacted with a variety of minerals containing Fe(II)-reveal a new mechanism of abiotic water-rock reaction that could support nitrous oxide fluxes at Don Juan Pond. Our findings illustrate a dynamic and unexpected link between the geosphere and atmosphere. C1 [Samarkin, Vladimir A.; Bowles, Marshall W.; Joye, Samantha B.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Madigan, Michael T.] So Illinois Univ, Dept Microbiol, Carbondale, IL 62902 USA. [Casciotti, Karen L.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Priscu, John C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Mckay, Christopher P.] NASA, Exobiol Div, Moffett Field, CA 94035 USA. RP Joye, SB (reprint author), Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. EM mjoye@uga.edu OI Joye, Samantha/0000-0003-1610-451X FU US National Science Foundation [ANT-0739516]; McMurdo Microbial Observatory program [MCB-0237576, MCB-0237335] FX This research was supported by the US National Science Foundation's Antarctic Organisms and Ecosystems Program (ANT-0739516 to S.B.J., V. A. S. and M. T. M.) and the McMurdo Microbial Observatory program (MCB-0237576 to M. T. M. and MCB-0237335 to J.C.P.). We thank K. Welsh (MCM) and K. Hunter (UGA) for quantifying concentrations of dissolved inorganic nitrogen species; M. McIlvin and C. Frame (WHOI) for assistance with the N and O isotopic analyses; and C. Meile for helpful discussions. NR 29 TC 54 Z9 55 U1 8 U2 54 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2010 VL 3 IS 5 SI SI BP 341 EP 344 DI 10.1038/NGEO847 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 589XW UT WOS:000277188500017 ER PT J AU Gubarev, MV Kilaru, K Ramsey, BD AF Gubarev, M. V. Kilaru, K. Ramsey, B. D. TI An investigation of differential deposition for figure corrections in full-shell grazing-incidence X-ray optics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT International Workshop on X-Ray Mirror Design, Fabrication and Metrology CY SEP 22-24, 2009 CL Osaka Univ, Osaka, JAPAN SP SPring 8 HO Osaka Univ DE X-ray optics; Differential deposition AB We are investigating differential deposition as a way of correcting small figure errors inside full-shell grazing-incidence X-ray optics. The optics in our study are fabricated using the electroformed-nickel-replication technique, and the figure errors arise from fabrication errors in the mandrel, from which the shells are replicated, as well as errors induced during the electroforming and mounting process. Combining, these give sub-micron-scale figure deviations which limit the angular resolution of the optics to 10-15 arcsec. Sub-micron figure errors can be corrected by selectively depositing (physical vapor deposition) material inside the shell. The requirements for this filler material are that it must not degrade the ultra-smooth surface finish necessary for efficient X-ray reflection (similar to 5 A rms), and must not be highly stressed. In addition, a technique must be found to produce well controlled and defined beams within highly constrained geometries, as some of our mirror shells are less than 3 cm in diameter. We report on our efforts to date to implement this technique. Published by Elsevier B.V. C1 [Gubarev, M. V.; Ramsey, B. D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Kilaru, K.] Univ Alabama, Huntsville, AL 35899 USA. RP Gubarev, MV (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM Mikhail.V.Gubarev@nasa.gov NR 4 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2010 VL 616 IS 2-3 BP 273 EP 276 DI 10.1016/j.nima.2009.10.161 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 598YP UT WOS:000277876400034 ER PT J AU Baecker, N Frings-Meuthen, P Smith, SM Heer, M AF Baecker, Natalie Frings-Meuthen, Petra Smith, Scott M. Heer, Martina TI Short-term high dietary calcium intake during bedrest has no effect on markers of bone turnover in healthy men SO NUTRITION LA English DT Article DE Calcium; Bedrest; Bone resorption; Diet; Osteoporosis; Space flight ID BED REST; SPACE-FLIGHT; BIOCHEMICAL MARKERS; METABOLISM; DENSITY; HUMANS; COUNTERMEASURES; SUPPLEMENTATION; WEIGHTLESSNESS; OSTEOPOROSIS AB Objective: Immobilization and space flight are causes of disuse osteoporosis Increasing calcium intake may counteract this disuse-induced bone loss Methods: We conducted two bedrest experiments (crossover design bedrest versus ambulatory control) in a metabolic ward, studying the effect of 1000 mg/d of calcium intake (study A, length of intervention 14 d) compared with that of a high calcium intake of 2000 mg/d (study B, 6 d) on markers of bone turnover. Both studies were randomized, controlled studies with the subjects staying under well-controlled environmental conditions (study A, 9 male subjects, age 23 6 +/- 3 0 y; study B, 8 male subjects, age 25 5 +/- 2.9 y). Blood was drawn to analyze serum calcium, parathyroid hormone, procollagen type I C-terminal propeptide. and bone alkaline phosphatase Urine (24-h) was collected for analysis of calcium, C-terminal telopeptide of collagen type I, and N-terminal telopeptide of collagen type I Results: In both studies, serum calcium levels remained unchanged Procollagen type I C-terminal propeptide was lower (P = 0.03) in the bedrest phase than in the ambulatory phase in study A and tended to be lower (P = 0.08) in bedrest in study B. whereas bone alkaline phosphatase was not affected in either study Urinary calcium excretion was greater during bedrest than during the ambulatory phase (study A. P = 0.005. study B. P = 0 002) C-terminal telopeptide of collagen type I excretion was also greater during bedrest in both studies (study A. P < 0.001; study B, P < 0 001). Conclusion: Doubling calcium intake to 2000 mg/d does not prevent increased bone resorption induced by bedrest (C) 2010 Elsevier Inc All rights reserved. C1 [Baecker, Natalie; Frings-Meuthen, Petra; Heer, Martina] Deutsch Zentrum Luft & Raumfahrt, Inst Aerosp Med, Cologne, Germany. [Smith, Scott M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Baecker, N (reprint author), Deutsch Zentrum Luft & Raumfahrt, Inst Aerosp Med, Cologne, Germany. FU Directorate of Human Spaceflight of the German Aerospace Center, Germany FX The study was supported by the Directorate of Human Spaceflight of the German Aerospace Center, Germany NR 32 TC 8 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0899-9007 J9 NUTRITION JI Nutrition PD MAY PY 2010 VL 26 IS 5 BP 522 EP 527 DI 10.1016/j.nut.2009.06.006 PG 6 WC Nutrition & Dietetics SC Nutrition & Dietetics GA 589HY UT WOS:000277139000009 PM 19765953 ER PT J AU Stahl, HP AF Stahl, H. Philip TI Survey of cost models for space telescopes SO OPTICAL ENGINEERING LA English DT Article DE space telescope cost model; parametric cost model; cost model AB Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. However, great care is required. There is a lot of confusion and wrong information for space telescopes. Cost estimating relationships based on primary mirror diameter vary by an order of magnitude. Cost estimating relationships based only on mass lack sufficient detail to support concept analysis and can lead to inaccurate conclusions by encouraging excessively complex and technologically immature solutions. Similarly, using ground-based models leads to incorrect conclusions. This work surveys current and historical published cost models for space telescopes while attempting to interpret them in a common logical framework to enable a systematic intercomparison. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3430603] C1 NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, POB 9262, Huntsville, AL 35812 USA. EM H.Philip.Stahl@nasa.gov NR 24 TC 5 Z9 5 U1 0 U2 1 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD MAY PY 2010 VL 49 IS 5 AR 053005 DI 10.1117/1.3430603 PG 8 WC Optics SC Optics GA 622BB UT WOS:000279632000008 ER PT J AU Kojima, J Fischer, D Nguyen, QV AF Kojima, Jun Fischer, David Nguyen, Quang-Viet TI Subframe burst gating for Raman spectroscopy in combustion SO OPTICS LETTERS LA English DT Article ID ELEVATED PRESSURE; DIRECT-INJECTION; JET FLAMES; SCATTERING; DIAGNOSTICS AB We describe an architecture for spontaneous Raman scattering utilizing a frame-transfer CCD sensor operating in a subframe burst-gating mode to realize time-resolved combustion diagnostics. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 mu s) without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally polarized excitation lasers, the technique measures single-shot vibrational Raman scattering that is minimally contaminated by problematic optical background noise. (C) 2010 Optical Society of America C1 [Kojima, Jun] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Fischer, David; Nguyen, Quang-Viet] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kojima, J (reprint author), Ohio Aerosp Inst, 22800 Cedar Point Rd, Cleveland, OH 44142 USA. EM Jun.N.Kojima@nasa.gov FU Supersonics and Subsonic Fixed Wing projects under Fundamental Aeronautics FX The authors acknowledge financial support by the Supersonics and Subsonic Fixed Wing projects under Fundamental Aeronautics. Mr. Calhoun is acknowledged for his assistance in the operation of the facilities. NR 16 TC 5 Z9 5 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2010 VL 35 IS 9 BP 1323 EP 1325 DI 10.1364/OL.35.001323 PG 3 WC Optics SC Optics GA 590IU UT WOS:000277219800007 PM 20436556 ER PT J AU Cifticioglu, N McKay, DS AF Cifticioglu, Neva McKay, David S. TI Pathological Calcification and Replicating Calcifying-Nanoparticles: General Approach and Correlation SO PEDIATRIC RESEARCH LA English DT Review ID POLYCYSTIC KIDNEY-DISEASE; BETA-TRICALCIUM PHOSPHATE; STONE FORMATION; IN-VIVO; CLINICAL-IMPLICATIONS; PSAMMOMA BODIES; OVARIAN-CANCER; UNITED-STATES; NANOBACTERIA; CALCIUM AB Calcification, a phenomenon often regarded by pathologists little more than evidence of cell death, is becoming recognized to be important in the dynamics of a variety of diseases from which millions of beings suffer in all ages. In calcification, all that is needed for crystal formation to start is nidi (nuclei) and an environment of available dissolved components at or near saturation concentrations, along with the absence of inhibitors for crystal formation. Calcifying nanoparticles (CNP) are the first calcium phosphate mineral containing particles isolated from human blood and were detected in numerous pathologic calcification related diseases. Controversy and critical role of CNP as nidi and triggering factor in human pathologic calcification are discussed. (Pediatr Res 67: 490-499, 2010) C1 [Cifticioglu, Neva; McKay, David S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Cifticioglu, N (reprint author), Hulya Sok 41-16 GOP, TR-06700 Ankara, Turkey. EM nevaemail@gmail.com FU National Aeronautics and Space Administration FX Supported by the National Aeronautics and Space Administration Exobiology Program. NR 121 TC 11 Z9 14 U1 1 U2 10 PU INT PEDIATRIC RESEARCH FOUNDATION, INC PI BALTIMORE PA 351 W CAMDEN ST, BALTIMORE, MD 21201-2436 USA SN 0031-3998 J9 PEDIATR RES JI Pediatr. Res. PD MAY PY 2010 VL 67 IS 5 BP 490 EP 499 PG 10 WC Pediatrics SC Pediatrics GA 587DJ UT WOS:000276968000006 PM 20094006 ER PT J AU Lakew, B Aslam, S Jones, H Stevenson, T Cao, N AF Lakew, B. Aslam, S. Jones, H. Stevenson, T. Cao, N. TI 1/f Noise in the superconducting transition of a MgB2 thin film SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE MgB2 thin film; Bolometer; Noise spectral density; 1/f Noise; Excess noise ID 1-F NOISE; BOLOMETERS AB The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f (excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximate to 10(-1) W/K) that the measured noise voltage spectrum is 1/f limited and exhibits 1/f(a) dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximate to 61 nV/root Hz, using this value an upper limit of electrical NEP approximate to 0.67pW/root Hz is implied for a practical MgB2 bolometer operating at 36.1 K. Published by Elsevier B.V. C1 [Lakew, B.; Aslam, S.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Jones, H.] NASA, Goddard Space Flight Ctr, Microwave Instrument & Technol Branch, Greenbelt, MD 20771 USA. [Stevenson, T.; Cao, N.] NASA, Goddard Space Flight Ctr, Detector Syst Branch, Greenbelt, MD 20771 USA. [Cao, N.] MEI Technol Inc, Houston, TX 77058 USA. RP Aslam, S (reprint author), NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Code 693, Greenbelt, MD 20771 USA. EM shahid.aslam-1@nasa.gov RI Aslam, Shahid/D-1099-2012 NR 15 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY 1 PY 2010 VL 470 IS 9-10 BP 451 EP 455 DI 10.1016/j.physc.2010.03.009 PG 5 WC Physics, Applied SC Physics GA 604NO UT WOS:000278285900006 ER PT J AU Birn, J Borovsky, JE Hesse, M Schindler, K AF Birn, J. Borovsky, J. E. Hesse, M. Schindler, K. TI Scaling of asymmetric reconnection in compressible plasmas SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection; plasma magnetohydrodynamics; plasma simulation ID DAYSIDE MAGNETOPAUSE; CHALLENGE; MODELS AB The scaling of the reconnection rate with external parameters is reconsidered for antiparallel reconnection in a single-fluid magnetohydrodynamic (MHD) model, allowing for compressibility as well as asymmetry between the plasmas and magnetic fields in the two inflow regions. The results show a modest dependence of the reconnection rate on the plasma beta (ratio of plasma to magnetic pressure) in the inflow regions and demonstrate the importance of the conversion of magnetic energy to enthalpy flux (that is, convected thermal energy) in the outflow regions. The conversion of incoming magnetic to outgoing thermal energy flux remains finite even in the limit of incompressibility, while the scaling of the reconnection rate obtained earlier [P. A. Cassak and M. A. Shay, Phys. Plasmas 14, 102114 (2007)] is recovered. The assumptions entering the scaling estimates are critically investigated on the basis of two-dimensional resistive MHD simulations, confirming and even strengthening the importance of the enthalpy flux in the outflow from the reconnection site. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3429676] C1 [Birn, J.; Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schindler, K.] Ruhr Univ, D-44780 Bochum, Germany. RP Birn, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU U.S. Department of Energy; NASA FX This work was performed under the auspices of the U.S. Department of Energy, supported by NASA's Heliophysics Theory and SR&T Programs, and through a grant from NASA's MMS/SMART program. NR 26 TC 26 Z9 26 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 052108 DI 10.1063/1.3429676 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900009 ER PT J AU Lim, DSS Warman, GL Gernhardt, ML Mckay, CP Fong, T Marinova, MM Davila, AF Andersen, D Brady, AL Cardman, Z Cowie, B Delaney, MD Fairen, AG Forrest, AL Heaton, J Laval, BE Arnold, R Nuytten, P Osinski, G Reay, M Reid, D Schulze-Makuch, D Shepard, R Slater, GF Williams, D AF Lim, D. S. S. Warman, G. L. Gernhardt, M. L. McKay, C. P. Fong, T. Marinova, M. M. Davila, A. F. Andersen, D. Brady, A. L. Cardman, Z. Cowie, B. Delaney, M. D. Fairen, A. G. Forrest, A. L. Heaton, J. Laval, B. E. Arnold, R. Nuytten, P. Osinski, G. Reay, M. Reid, D. Schulze-Makuch, D. Shepard, R. Slater, G. F. Williams, D. TI Scientific field training for human planetary exploration SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Field science; Planetary exploration; Astronaut; Training; Pavilion lake ID PAVILION LAKE AB Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: (1) LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities (2) LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery (3) LDP#3: Provide a relevant experience the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning (4) LDP#4: Provide a social learning experience the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lim, D. S. S.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Fairen, A. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lim, D. S. S.; Davila, A. F.; Andersen, D.; Fairen, A. G.] SETI Inst, Mountain View, CA 94043 USA. [Warman, G. L.] ExperiencePoint, Menlo Pk, CA 94025 USA. [Gernhardt, M. L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Marinova, M. M.] CALTECH, Pasadena, CA 91125 USA. [Brady, A. L.] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. [Cardman, Z.] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. [Cowie, B.] Univ Calgary, Appl Geochem Grp, Calgary, AB, Canada. [Delaney, M. D.] Edge Div Ctr, N Vancouver, BC, Canada. [Forrest, A. L.; Laval, B. E.; Reid, D.] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada. [Heaton, J.; Nuytten, P.; Reay, M.] Nuytco Res, N Vancouver, BC, Canada. [Osinski, G.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. [Schulze-Makuch, D.] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA. [Shepard, R.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Slater, G. F.] McMaster Univ, Sch Geol & Geog, Hamilton, ON, Canada. [Williams, D.] McMaster Univ, McMaster Ctr Med Robot, Hamilton, ON, Canada. RP Lim, DSS (reprint author), NASA, Ames Res Ctr, Mail Stop 245-3, Moffett Field, CA 94035 USA. EM darlene.lim@nasa.gov RI Laval, Bernard/J-9861-2012; Davila, Alfonso/A-2198-2013; Slater, Greg/B-5163-2013; Cowie, Benjamin/C-3288-2014; Forrest, Alexander/C-3765-2014 OI Davila, Alfonso/0000-0002-0977-9909; Slater, Greg/0000-0001-7418-7566; Cowie, Benjamin/0000-0002-8834-0848; Forrest, Alexander/0000-0002-7853-9765 FU Canadian Space Agency; NASA FX The authors would like to thank the Canadian Space Agency's 'Canadian Analog Research Network' Program and NASA's Moon and Mars Analog Mission Activities (MMAMA) program for their continued support. We also thank the NASA ASTEP and Spaceward Bound program, NASA ESMD Analogs, the Natural Sciences and Engineering Research Council (NSERC) of Canada's Discovery Grant program, and the National Geographic Society. We are most grateful to all of the members of the PLRP for their continued field and intellectual support. We also thank the Ts'Kw'aylaxw First Nation, British Columbia Parks, Linda and Mickey Macri, and the Pavilion Community. This is PLRP publication number 09-03. NR 20 TC 8 Z9 8 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2010 VL 58 IS 6 BP 920 EP 930 DI 10.1016/j.pss.2010.02.014 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 604MS UT WOS:000278283700005 ER PT J AU Le Vine, DM Lagerloef, GSE Torrusio, SE AF Le Vine, David M. Lagerloef, Gary S. E. Torrusio, Sandra E. TI Aquarius and Remote Sensing of Sea Surface Salinity from Space SO PROCEEDINGS OF THE IEEE LA English DT Article DE Microwave radiometery; microwave remote sensing; ocean salinity ID L-BAND; DIELECTRIC-CONSTANT; OCEAN SALINITY; 1.4 GHZ; RADIOMETER; WATER; TEMPERATURE; SATELLITE; AIRCRAFT; EMISSION AB Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate. Aquarius is the primary instrument on the Aquarius/SAC-D mission which is a partnership between the space agencies in the USA (NASA) and Argentina (CONAE). Launch is scheduled for late in 2010. C1 [Le Vine, David M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lagerloef, Gary S. E.] Earth & Space Res, Seattle, WA 98121 USA. [Torrusio, Sandra E.] Comis Nacl Actividades Espaciales, Buenos Aires, DF, Argentina. RP Le Vine, DM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM David.M.LeVine@nasa.gov; lager@esr.org; storrusio@conae.gov.ar NR 68 TC 81 Z9 81 U1 2 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 688 EP 703 DI 10.1109/JPROC.2010.2040550 PG 16 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400005 ER PT J AU Entekhabi, D Njoku, EG O'Neill, PE Kellogg, KH Crow, WT Edelstein, WN Entin, JK Goodman, SD Jackson, TJ Johnson, J Kimball, J Piepmeier, JR Koster, RD Martin, N McDonald, KC Moghaddam, M Moran, S Reichle, R Shi, JC Spencer, MW Thurman, SW Tsang, L Van Zyl, J AF Entekhabi, Dara Njoku, Eni G. O'Neill, Peggy E. Kellogg, Kent H. Crow, Wade T. Edelstein, Wendy N. Entin, Jared K. Goodman, Shawn D. Jackson, Thomas J. Johnson, Joel Kimball, John Piepmeier, Jeffrey R. Koster, Randal D. Martin, Neil McDonald, Kyle C. Moghaddam, Mahta Moran, Susan Reichle, Rolf Shi, J. C. Spencer, Michael W. Thurman, Samuel W. Tsang, Leung Van Zyl, Jakob TI The Soil Moisture Active Passive (SMAP) Mission SO PROCEEDINGS OF THE IEEE LA English DT Article DE Freeze/thaw; geoscience; microwave; remote sensing; soil moisture ID L-BAND; MICROWAVE RADIOMETER; BARE; EMISSION; SMEX02; SENSOR AB The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere. The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers. Soil moisture measurements are also directly applicable to flood assessment and drought monitoring. SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP is scheduled for launch in the 2014-2015 time frame. C1 [Entekhabi, Dara] MIT, Cambridge, MA 02139 USA. [Njoku, Eni G.; Kellogg, Kent H.; Edelstein, Wendy N.; Goodman, Shawn D.; McDonald, Kyle C.; Spencer, Michael W.; Thurman, Samuel W.; Van Zyl, Jakob] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [O'Neill, Peggy E.; Piepmeier, Jeffrey R.; Koster, Randal D.; Martin, Neil; Reichle, Rolf] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crow, Wade T.; Jackson, Thomas J.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Entin, Jared K.] NASA Headquarters, Washington, DC 20546 USA. [Johnson, Joel] Ohio State Univ, Columbus, OH 43210 USA. [Kimball, John] Univ Montana, Polson, MT 59860 USA. [Moghaddam, Mahta] Univ Michigan, Ann Arbor, MI 48109 USA. [Moran, Susan] USDA, SW Watershed Res Ctr, Tucson, AZ 85719 USA. [Shi, J. C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Tsang, Leung] Univ Washington, Seattle, WA 98195 USA. RP Entekhabi, D (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM darae@mit.edu; eni.g.njoku@jpl.nasa.gov; peggy.e.oneill@nasa.gov; kent.h.kellogg@jpl.nasa.gov; crow@hydrolab.arsusda.gov; wendy.n.edelstein@jpl.nasa.gov; jared.k.entin@nasa.gov; shawn.d.goodman@jpl.nasa.gov; tom.jackson@ars.usda.gov; johnson.1374@osu.edu; johnk@ntsg.umt.edu; jeff.piepmeier@nasa.gov; randal.d.koster@nasa.gov; neil.f.martin@nasa.gov; kyle.c.mcdonald@jpl.nasa.gov; mmoghadd@umich.edu; susan.moran@ars.usda.gov; rolf.reichle@nasa.gov; shi@icess.ucsb.edu; michael.w.spencer@jpl.nasa.gov; sam.w.thurman@jpl.nasa.gov; leung@ee.washington.edu; jakob.j.vanzyl@jpl.nasa.gov RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; O'Neill, Peggy/D-2904-2013 OI Koster, Randal/0000-0001-6418-6383; FU National Aeronautics and Space Administration (NASA) FX This work was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 36 TC 673 Z9 682 U1 21 U2 191 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 704 EP 716 DI 10.1109/JPROC.2010.2043918 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400006 ER PT J AU Abdalati, W Zwally, HJ Bindschadler, R Csatho, B Farrell, SL Fricker, HA Harding, D Kwok, R Lefsky, M Markus, T Marshak, A Neumann, T Palm, S Schutz, B Smith, B Spinhirne, J Webb, C AF Abdalati, Waleed Zwally, H. Jay Bindschadler, Robert Csatho, Bea Farrell, Sinead Louise Fricker, Helen Amanda Harding, David Kwok, Ronald Lefsky, Michael Markus, Thorsten Marshak, Alexander Neumann, Thomas Palm, Stephen Schutz, Bob Smith, Ben Spinhirne, James Webb, Charles TI The ICESat-2 Laser Altimetry Mission SO PROCEEDINGS OF THE IEEE LA English DT Article DE Ice sheets; ICESat-2; laser altimetry; NASA; satellite; sea ice; vegetation ID GREENLAND ICE-SHEET; WEST ANTARCTICA; MASS-BALANCE; JAKOBSHAVN ISBRAE; ELEVATION CHANGES; GLAS ALTIMETRY; OUTLET GLACIER; DYNAMICS; FLUCTUATIONS; VARIABILITY AB Satellite and aircraft observations have revealed that remarkable changes in the Earth's polar ice cover have occurred in the last decade. The impacts of these changes, which include dramatic ice loss from ice sheets and rapid declines in Arctic sea ice, could be quite large in terms of sea level rise and global climate. NASA's Ice, Cloud and Land Elevation Satellite-2 (ICESat-2), currently planned for launch in 2015, is specifically intended to quantify the amount of change in ice sheets and sea ice and provide key insights into their behavior. It will achieve these objectives through the use of precise laser measurements of surface elevation, building on the groundbreaking capabilities of its predecessor, the Ice Cloud and Land Elevation Satellite (ICESat). In particular, ICESat-2 will measure the temporal and spatial character of ice sheet elevation change to enable assessment of ice sheet mass balance and examination of the underlying mechanisms that control it. The precision of ICESat-2's elevation measurement will also allow for accurate measurements of sea ice freeboard height, from which sea ice thickness and its temporal changes can be estimated. ICESat-2 will provide important information on other components of the Earth System as well, most notably large-scale vegetation biomass estimates through the measurement of vegetation canopy height. When combined with the original ICESat observations, ICESat-2 will provide ice change measurements across more than a 15-year time span. Its significantly improved laser system will also provide observations with much greater spatial resolution, temporal resolution, and accuracy than has ever been possible before. C1 [Abdalati, Waleed] Univ Colorado, Earth Sci & Observat Ctr, Boulder, CO 80302 USA. [Abdalati, Waleed] Univ Colorado, Dept Geog, Boulder, CO 80302 USA. [Zwally, H. Jay; Bindschadler, Robert; Harding, David; Markus, Thorsten; Marshak, Alexander; Neumann, Thomas] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Csatho, Bea] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Farrell, Sinead Louise] Univ Maryland, Cooperat Inst Climate Studies, College Pk, MD 20742 USA. [Fricker, Helen Amanda] Scripps Inst Oceanog, San Diego, CA 92121 USA. [Kwok, Ronald] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Lefsky, Michael] Colorado State Univ, Ft Collins, CO 80125 USA. [Palm, Stephen] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Schutz, Bob; Webb, Charles] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Smith, Ben] Univ Washington, Polar Sci Ctr, Seattle, WA 98195 USA. [Spinhirne, James] Univ Arizona, Tucson, AZ 85721 USA. RP Abdalati, W (reprint author), Univ Colorado, Earth Sci & Observat Ctr, Boulder, CO 80302 USA. EM waleed.abdalati@colorado.edu; zwally@icesat2.gsfc.nasa.gov; robert.a.bindschadler@nasa.gov; bcsatho@buffalo.edu; Sinead.Farrell@noaa.gov; hafricker@ucsd.edu; David.J.Harding@nasa.gov; ronald.kwok@jpl.nasa.gov; lefsky@gmail.com; thorsten.markus-1@nasa.gov; alexander.marshak-1@nasa.gov; thomas.neumann@nasa.gov; Stephen.P.Palm@nasa.gov; schutz@csr.utexas.edu; bsmith@apl.washington.edu; jspin@email.arizona.edu; cewebb@mail.utexas.edu RI Kwok, Ron/A-9762-2008; Lefsky, Michael/A-7224-2009; Farrell, Sinead/F-5586-2010; Neumann, Thomas/D-5264-2012; Markus, Thorsten/D-5365-2012; Marshak, Alexander/D-5671-2012; Harding, David/F-5913-2012 OI Kwok, Ron/0000-0003-4051-5896; Farrell, Sinead/0000-0003-3222-2751; FU NASA FX This work was supported by the ICESat-2 Program, NASA, and the Cryospheric Sciences Program, NASA. NR 70 TC 102 Z9 110 U1 9 U2 48 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 735 EP 751 DI 10.1109/JPROC.2009.2034765 PG 17 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400008 ER PT J AU Rott, H Yueh, SH Cline, DW Duguay, C Essery, R Haas, C Heliere, F Kern, M Macelloni, G Malnes, E Nagler, T Pulliainen, J Rebhan, H Thompson, A AF Rott, Helmut Yueh, Simon H. Cline, Donald W. Duguay, Claude Essery, Richard Haas, Christian Heliere, Florence Kern, Michael Macelloni, Giovanni Malnes, Eirik Nagler, Thomas Pulliainen, Jouni Rebhan, Helge Thompson, Alan TI Cold Regions Hydrology High-Resolution Observatory for Snow and Cold Land Processes SO PROCEEDINGS OF THE IEEE LA English DT Article DE Climate research; earth observation satellite; glaciers; snow cover; synthetic aperture radar; water resources ID BACKSCATTERING COEFFICIENT; MASS-BALANCE; SCATTERING; SAR; SIMULATIONS; VARIABILITY; TERRAIN; PROJECT; MODELS; FOREST AB Snow is a critical component of the global water cycle and climate system, and a major source of water supply in many parts of the world. There is a lack of spatially distributed information on the accumulation of snow on land surfaces, glaciers, lake ice, and sea ice. Satellite missions for systematic and global snow observations will be essential to improve the representation of the cryosphere in climate models and to advance the knowledge and prediction of the water cycle variability and changes that depend on snow and ice resources. This paper describes the scientific drivers and technical approach of the proposed Cold Regions Hydrology High-Resolution Observatory (CoReH(2)O) satellite mission for snow and cold land processes. The sensor is a synthetic aperture radar operating at 17.2 and 9.6 GHz, VV and VH polarizations. The dual-frequency and dual-polarization design enables the decomposition of the scattering signal for retrieving snow mass and other physical properties of snow and ice. C1 [Rott, Helmut] Univ Innsbruck, Inst Meteorol & Geophys, A-6020 Innsbruck, Austria. [Rott, Helmut; Nagler, Thomas] ENVEO IT, A-6020 Innsbruck, Austria. [Yueh, Simon H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cline, Donald W.] NOAA NOHRSC, Chanhassen, MN 55317 USA. [Duguay, Claude] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Essery, Richard] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland. [Haas, Christian] Univ Alberta, Edmonton, AB T6G 2E1, Canada. [Haas, Christian] Alfred Wegener Inst Polar & Marine Res, D-27568 Bremerhaven, Germany. [Heliere, Florence; Kern, Michael; Rebhan, Helge; Thompson, Alan] ESA ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Macelloni, Giovanni] IFAC CNR, I-50127 Florence, Italy. [Malnes, Eirik] NORUT IT, N-9291 Tromso, Norway. [Pulliainen, Jouni] Finnish Meteorol Inst, Helsinki 00560, Finland. RP Rott, H (reprint author), Univ Innsbruck, Inst Meteorol & Geophys, A-6020 Innsbruck, Austria. EM Helmut.Rott@uibk.ac.at; simon.yueh@jpl.nasa.gov; Donald.Cline@noaa.gov; crduguay@envmail.uwaterloo.ca; Richard.Essery@ed.ac.uk; Christian.Haas@ualberta.ca; Florence.Heliere@esa.int; Michael.Kern@esa.int; G.Macelloni@ifac.cnr.it; eirik.malnes@itek.norut.no; Thomas.Nagler@enveo.at; jouni.pulliainen@fmi.fi; Helge.Rebhan@esa.int; Alan.Thompson@esa.int RI Duguay, Claude/G-5682-2011; Macelloni, Giovanni /B-7518-2015; Haas, Christian/L-5279-2016; OI Duguay, Claude/0000-0002-1044-5850; Haas, Christian/0000-0002-7674-3500; Essery, Richard/0000-0003-1756-9095 FU European Space Agency under ESTEC [20756/07/NL/CB]; National Aeronautics and Space Administration FX This work was supported in part by the European Space Agency under ESTEC Contract 20756/07/NL/CB and in part by the National Aeronautics and Space Administration. NR 50 TC 59 Z9 62 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 752 EP 765 DI 10.1109/JPROC.2009.2038947 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400009 ER PT J AU Durand, M Fu, LL Lettenmaier, DP Alsdorf, DE Rodriguez, E Esteban-Fernandez, D AF Durand, Michael Fu, Lee-Lueng Lettenmaier, Dennis P. Alsdorf, Douglas E. Rodriguez, Ernesto Esteban-Fernandez, Daniel TI The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies SO PROCEEDINGS OF THE IEEE LA English DT Article DE Interferometry; hydrology; oceanograpy; remote sensing; synthetic aperture radar ID TOPEX/POSEIDON ALTIMETRY; RADAR INTERFEROMETRY; SATELLITE; MODEL; CIRCULATION; INUNDATION; LAKES; DISCHARGE AB The elevation of the ocean surface has been measured for over two decades from spaceborne altimeters. However, existing altimeter measurements are not adequate to characterize the dynamic variations of most inland water bodies, nor of ocean eddies at scales of less than about 100 km, notwithstanding that such eddies play a key role in ocean circulation and climate change. For terrestrial hydrology, in situ and spaceborne measurements of water surface elevation form the basis for estimates of water storage change in lakes, reservoirs, and wetlands, and of river discharge. However, storage in most inland water bodies, e. g., millions of Arctic lakes, is not readily measured using existing technologies. A solution to the needs of both surface water hydrology and physical oceanography communities is the measurement of water elevations along rivers, lakes, streams, and wetlands and over the ocean surface using swath altimetry. The proposed surface water and ocean topography (SWOT) mission will make such measurements. The core technology for SWOT is the Ka-band radar interferometer (KaRIN), which would achieve spatial resolution on the order of tens of meters and centimetric vertical precision when averaged over targets of interest. Average revisit times will depend upon latitude, with two to four revisits at low to mid latitudes and up to ten revisits at high latitudes per similar to 20-day orbit repeat period. C1 [Durand, Michael; Alsdorf, Douglas E.] Ohio State Univ, Byrd Polar Res Ctr, Sch Earth Sci, Columbus, OH 43210 USA. [Fu, Lee-Lueng; Rodriguez, Ernesto; Esteban-Fernandez, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lettenmaier, Dennis P.] Univ Washington, Seattle, WA 98195 USA. [Alsdorf, Douglas E.] Ohio State Univ, Climate Water & Carbon Program, Columbus, OH 43210 USA. RP Durand, M (reprint author), Ohio State Univ, Byrd Polar Res Ctr, Sch Earth Sci, Columbus, OH 43210 USA. EM durand.8@osu.edu; lee-lueng.fu@jpl.nasa.gov; dennisl@u.washington.edu; alsdorf.1@osu.edu; ernesto.rodriguez@jpl.nasa.gov; daniel.esteban-fernandez@jpl.nasa.gov RI Durand, Michael/D-2885-2013; lettenmaier, dennis/F-8780-2011 OI lettenmaier, dennis/0000-0003-3317-1327 FU NASA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, with NASA; Ohio State University FX This paper was supported by the NASA Terrestrial Hydrology Program and NASA Physical Oceanography program, by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, under a contract with NASA, and by the Climate, Water, and Carbon Program of the Ohio State University. NR 57 TC 87 Z9 88 U1 3 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 766 EP 779 DI 10.1109/JPROC.2010.2043031 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400010 ER PT J AU Lambrigtsen, B Brown, ST Gaier, TC Herrell, L Kangaslahti, PP Tanner, AB AF Lambrigtsen, Bjorn Brown, Shannon T. Gaier, Todd C. Herrell, Linda Kangaslahti, Pekka P. Tanner, Alan B. TI Monitoring the Hydrologic Cycle With the PATH Mission SO PROCEEDINGS OF THE IEEE LA English DT Article DE Aperture synthesis; atmospheric sounding; geostationary; hurricanes; hydrologic cycle; interferometer; microwave; radiometer; tropical cyclones ID PRECIPITATION; MODIS; RETRIEVAL; SENSOR; SYSTEM; IMPACT; WINDS; WATER; MODEL; LAND AB The Precipitation and All-weather Temperature and Humidity (PATH) mission is one of the NASA missions recommended by the NRC in its recent Earth Science "Decadal Survey." The focus of this mission is on the hydrologic cycle in the atmosphere, with applications from weather forecasting to climate research. PATH will deploy a microwave sounder, a passive radiometer that measures upwelling thermal radiation, in geostationary orbit and will for the first time provide a time-continuous view of atmospheric temperature and all three phases of water under nearly all weather conditions. This is possible because microwave radiation is sensitive to but also penetrates both clouds and precipitation, as has been demonstrated with similar sensors on low-earth-orbiting satellites. Data from those sensors, despite observing a particular location only twice a day, have had more impact on weather prediction accuracy than any other type of satellite sensor, and it is expected that PATH will have a similar impact with its ability to continuously observe the entire life cycle of storm systems. Such sensors have also played an important role in climate research and have been used to estimate long-term temperature trends in the atmosphere. An important application of PATH data will be to improve the representation of cloud formation, convection, and precipitation in weather and climate models, particularly the diurnal variation in those processes. In addition to measuring the three-dimensional distribution of temperature, water vapor, cloud liquid water, and ice, PATH also measures sea surface temperature under full cloud cover. Such observations make a number of important applications possible. Depending on the application focus and the geostationary orbit location, PATH can serve as anything from a hurricane and severe-storm observatory to an El Nino observatory. A geostationary orbit offers many advantages, as has been demonstrated with visible and infrared imagers and sounders deployed on weather satellites, but those sensors cannot penetrate clouds. It has not been possible until now to build a microwave radiometer with a large enough antenna aperture to attain a reasonable spatial resolution from a GEO orbit. A new approach, using aperture synthesis, has recently been developed by NASA at the Jet Propulsion Laboratory, and that is what makes PATH possible. Key technology enabling the large array of receivers in such a system has been developed, and a proof-of-concept demonstrator was completed in 2006. The state of the art in this area is now such that PATH mission development could start in 2010 and be ready for launch in 2015, but the actual schedule depends on the availability of funding. An option to fly PATH as a joint NASA-NOAA mission is being explored. C1 [Lambrigtsen, Bjorn; Brown, Shannon T.; Gaier, Todd C.; Herrell, Linda; Kangaslahti, Pekka P.; Tanner, Alan B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lambrigtsen, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lambrigtsen@jpl.nasa.gov; shannon.brown@jpl.nasa.gov; todd.gaier@jpl.nasa.gov; linda.herrell@jpl.nasa.gov; pekka.kangaslahti@jpl.nasa.gov; alan.tanner@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors are with the Jet Propulsion Laboratory, California Institute NR 36 TC 4 Z9 4 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD MAY PY 2010 VL 98 IS 5 BP 862 EP 877 DI 10.1109/JPROC.2009.2031444 PG 16 WC Engineering, Electrical & Electronic SC Engineering GA 593WQ UT WOS:000277493400015 ER PT J AU Eales, S Dunne, L Clements, D Cooray, A De Zotti, G Dye, S Ivison, R Jarvis, M Lagache, G Maddox, S Negrello, M Serjeant, S Thompson, MA Van Kampen, E Amblard, A Andreani, P Baes, M Beelen, A Bendo, GJ Benford, D Bertoldi, F Bock, J Bonfield, D Boselli, A Bridge, C Buat, V Burgarella, D Carlberg, R Cava, A Chanial, P Charlot, S Christopher, N Coles, P Cortese, L Dariush, A da Cunha, E Dalton, G Danese, L Dannerbauer, H Driver, S Dunlop, J Fan, L Farrah, D Frayer, D Frenk, C Geach, J Gardner, J Gomez, H Gonzalez-Nuevo, J Gonzalez-Solares, E Griffin, M Hardcastle, M Hatziminaoglou, E Herranz, D Hughes, D Ibar, E Jeong, WS Lacey, C Lapi, A Lawrence, A Lee, M Leeuw, L Liske, J Lopez-Caniego, M Muller, T Nandra, K Panuzzo, P Papageorgiou, A Patanchon, G Peacock, J Pearson, C Phillipps, S Pohlen, M Popescu, C Rawlings, S Rigby, E Rigopoulou, M Robotham, A Rodighiero, G Sansom, A Schulz, B Scott, D Smith, DJB Sibthorpe, B Smail, I Stevens, J Sutherland, W Takeuchi, T Tedds, J Temi, P Tuffs, R Trichas, M Vaccari, M Valtchanov, I van der Werf, P Verma, A Vieria, J Vlahakis, C White, GJ AF Eales, S. Dunne, L. Clements, D. Cooray, A. De Zotti, G. Dye, S. Ivison, R. Jarvis, M. Lagache, G. Maddox, S. Negrello, M. Serjeant, S. Thompson, M. A. Van Kampen, E. Amblard, A. Andreani, P. Baes, M. Beelen, A. Bendo, G. J. Benford, D. Bertoldi, F. Bock, J. Bonfield, D. Boselli, A. Bridge, C. Buat, V. Burgarella, D. Carlberg, R. Cava, A. Chanial, P. Charlot, S. Christopher, N. Coles, P. Cortese, L. Dariush, A. da Cunha, E. Dalton, G. Danese, L. Dannerbauer, H. Driver, S. Dunlop, J. Fan, L. Farrah, D. Frayer, D. Frenk, C. Geach, J. Gardner, J. Gomez, H. Gonzalez-Nuevo, J. Gonzalez-Solares, E. Griffin, M. Hardcastle, M. Hatziminaoglou, E. Herranz, D. Hughes, D. Ibar, E. Jeong, Woong-Seob Lacey, C. Lapi, A. Lawrence, A. Lee, M. Leeuw, L. Liske, J. Lopez-Caniego, M. Mueller, T. Nandra, K. Panuzzo, P. Papageorgiou, A. Patanchon, G. Peacock, J. Pearson, C. Phillipps, S. Pohlen, M. Popescu, C. Rawlings, S. Rigby, E. Rigopoulou, M. Robotham, A. Rodighiero, G. Sansom, A. Schulz, B. Scott, D. Smith, D. J. B. Sibthorpe, B. Smail, I. Stevens, J. Sutherland, W. Takeuchi, T. Tedds, J. Temi, P. Tuffs, R. Trichas, M. Vaccari, M. Valtchanov, I. van der Werf, P. Verma, A. Vieria, J. Vlahakis, C. White, Glenn J. TI The Herschel ATLAS SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; UNIVERSE GALAXY SURVEY; STAR-FORMATION HISTORY; DEGREE EXTRAGALACTIC SURVEY; 1200-MU-M MAMBO SURVEY; BRIGHT QUASAR SURVEY; GOODS-N FIELD; HIGH-REDSHIFT; NUMBER COUNTS; STELLAR MASS AB The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg(2) of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands. C1 [Eales, S.; Dye, S.; Coles, P.; Cortese, L.; Dariush, A.; Gomez, H.; Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dunne, L.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Clements, D.; Bendo, G. J.; Chanial, P.; Nandra, K.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Cooray, A.; Amblard, A.] Univ Calif Irvine, Ctr Cosmol, Irvine, CA 92697 USA. [De Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [De Zotti, G.] SISSA, I-34014 Trieste, Italy. [Ivison, R.; Ibar, E.; Sibthorpe, B.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.; Thompson, M. A.; Bonfield, D.; Hardcastle, M.; Stevens, J.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Lagache, G.; Beelen, A.] Univ Paris 11, Inst Astrophys Spatiale, F-910405 Orsay, France. [Lagache, G.; Beelen, A.] CNRS, UMR 8617, F-910405 Orsay, France. [Negrello, M.; Serjeant, S.; White, Glenn J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Van Kampen, E.; Andreani, P.; Benford, D.; Hatziminaoglou, E.; Liske, J.] European So Observ, D-85748 Garching, Germany. [Baes, M.; Bertoldi, F.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Benford, D.; Gardner, J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Bertoldi, F.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J.] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Carlberg, R.] Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Charlot, S.] UPMC, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Christopher, N.; Rawlings, S.; Verma, A.] Univ Oxford, Oxford OX1 3RH, England. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Dalton, G.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Dalton, G.; Driver, S.; Rigopoulou, M.] Univ Oxford, Oxford OX1 3RH, England. [Dannerbauer, H.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Robotham, A.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Dunlop, J.; Lawrence, A.; Peacock, J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Farrah, D.] Univ Sussex, Ctr Astron, Brighton, MA USA. [Frayer, D.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Frenk, C.; Geach, J.; Lacey, C.; Smail, I.] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Gonzalez-Solares, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Herranz, D.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Hughes, D.] INAOE, Puebla, Mexico. [Jeong, Woong-Seob] Korea Astron & Space Sci Inst, Div Space Sci, Taejon 305348, South Korea. [Lapi, A.; Leeuw, L.] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy. [Lee, M.] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 151742, South Korea. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Mueller, T.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Panuzzo, P.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Patanchon, G.] Univ Paris 07, Lab Astroparticules & Cosmol, F-75205 Paris 13, France. [Pearson, C.; White, Glenn J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Phillipps, S.] Univ Bristol, Dept Phys, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Popescu, C.; Sansom, A.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Rodighiero, G.; Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Sutherland, W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Takeuchi, T.] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Tedds, J.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Tuffs, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Valtchanov, I.] ESA, Herschel Sci Ctr, Madrid, Spain. [van der Werf, P.; Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 AK Leiden, Netherlands. RP Eales, S (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. RI Gomez, Haley/C-2800-2009; Benford, Dominic/D-4760-2012; Hardcastle, Martin/E-2264-2012; Carlberg, Raymond/I-6947-2012; Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Smail, Ian/M-5161-2013; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Fan, Lulu/P-2168-2016; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Benford, Dominic/0000-0002-9884-4206; Hardcastle, Martin/0000-0003-4223-1117; Carlberg, Raymond/0000-0002-7667-0081; Baes, Maarten/0000-0002-3930-2757; Smail, Ian/0000-0003-3037-257X; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Fan, Lulu/0000-0003-4200-4432; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Tedds, Jonathan/0000-0003-2829-4584; Maddox, Stephen/0000-0001-5549-195X; Lopez-Caniego, Marcos/0000-0003-1016-9283; Robotham, Aaron/0000-0003-0429-3579; Dye, Simon/0000-0002-1318-8343; Rodighiero, Giulia/0000-0002-9415-2296; da Cunha, Elisabete/0000-0001-9759-4797 FU UK Science and Technology Facilities Council; Italian Space Agency (ASI) [I/016/07/0COFIS] FX We thank the UK Science and Technology Facilities Council and the Italian Space Agency (ASI contract I/016/07/0COFIS) for funding. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 83 TC 263 Z9 263 U1 0 U2 15 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2010 VL 122 IS 891 BP 499 EP 515 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 589TE UT WOS:000277175800001 ER PT J AU Stothers, RB AF Stothers, Richard B. TI Observational Evidence of Convective Cycles as the Cause of the Blazhko Effect in RR Lyrae Stars SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID FOURIER DECOMPOSITION; PHYSICAL PARAMETERS; PULSATING STARS; DISTANCE SCALE; VARIABLES; MODELS; LUMINOSITY; PHOTOMETRY; PERIOD; EDGE AB Among RR Lyrae stars displaying the Blazhko effect, a few show no period modulation in spite of striking changes in their light amplitudes. This anomalous behavior and the mean period of the affected variables are predicted correctly by the theory of slow convective cycles in the stellar envelope. C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Stothers, RB (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM rstothers@giss.nasa.gov RI liu, ze/A-2322-2010 NR 54 TC 20 Z9 21 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2010 VL 122 IS 891 BP 536 EP 540 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 589TE UT WOS:000277175800004 ER PT J AU Chu, XN Pu, ZY Cao, X Wang, J Mishin, V Angelopoulos, V Liu, J Wei, Y Glassmeier, KH McFadden, J Larson, D Mende, S Frey, H Russell, CT Mann, I Sibeck, D Zong, QG Fu, SY Xie, L Saifudinova, TI Tolochko, MV Sapronova, LA Reme, H Lucek, E AF Chu XiangNing Pu ZuYin Cao Xin Wang Jue Mishin, V. Angelopoulos, V. Liu Jiang Wei Yong Glassmeier, K. H. McFadden, J. Larson, D. Mende, S. Frey, H. Russell, C. T. Mann, I. Sibeck, D. Zong QiuGang Fu SuiYan Xie Lun Saifudinova, T. I. Tolochko, M. V. Sapronova, L. A. Reme, H. Lucek, E. TI THEMIS observations of two substorms on February 26, 2008 SO SCIENCE CHINA-TECHNOLOGICAL SCIENCES LA English DT Article DE substorm; auroral intensification/brightening; auroral expansion; dipolarization; magnetic reconnection ID CURRENT DISRUPTION; MAGNETIC-FIELD; TAIL RECONNECTION; EXPANSION ONSET; MODEL; MAGNETOPAUSE; MAGNETOTAIL; FLOWS; SHEET AB Two substorms occurred at similar to 04: 05 and similar to 04: 55 UT on February 26, 2008 are studied with the in-situ observations of THEMIS satellites and ground-based aurora and magnetic field measurements. Angelopoulos et al. have made a comprehensive study of the 04: 55 UT event. We showed detailed features of the two substorms with much attention to the first event and to the relationship between mid-tail magnetic reconnection (MR) and substorm activities. It was found that in the earlier stage of each substorm, a first auroral intensification occurred 2-3 min soon after the start of mid-tail MR, followed by a slow and very limited expansion. The auroral arcs were weak, short-lived, and localized, characterizing all features of a pseudobreakup. We regarded the first auroral brightening as the initial onset of the substorms. A few minutes later, a second stronger auroral intensification appeared, followed by quick and extensive expansions. It was interesting to note that the second brightening and related poleward expansion happened almost simultaneously (within a couple of minutes) with the onset of earthward flow and dipolarization in the near-Earth tail and other phenomenon of the substorm expansion phase. We thus regarded the second auroral brightening as the major onset of the substorms. Furthermore, it was seen that during the growth phase of the two substorms, the polar cap open flux. kept increasing, while it quickly reduced during the substorm expansion and recovery phase. These variations of. implied that the evolution of the two substorm expansion phases were closely related to MR of tail lobe open field lines. Analysis of substorm activities revealed that the two events studied were small substorms; while estimate of MR rate indicated that the MR processes in the two substorms were weak. The aforementioned observations suggested that mid-tail MR initiated the pseudobreakup first; the earthward flow generated by MR transported magnetic flux and energy to the near-Earth tail to cause the formation of SCW and CD, which induced near-Earth dipolarization and major auroral brightening, and eventually led to the onset of the substorm expansion phase. These results were clearly consistent with the picture of NENL and RCS models and supported the two step initiation scenario of substorms. C1 [Chu XiangNing; Pu ZuYin; Cao Xin; Wang Jue; Wei Yong; Zong QiuGang; Fu SuiYan; Xie Lun] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Mishin, V.; Saifudinova, T. I.; Tolochko, M. V.; Sapronova, L. A.] Russian Acad Sci, Inst Solar Terr Phys, Irkutsk 664003, Russia. [Angelopoulos, V.; Liu Jiang; Russell, C. T.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Glassmeier, K. H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestrial Phys, Braunschweig, Germany. [Glassmeier, K. H.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [McFadden, J.; Larson, D.; Mende, S.; Frey, H.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mann, I.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Sibeck, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reme, H.] Ctr Etud Spatiale Rayonnements, Toulouse, France. [Lucek, E.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. RP Chu, XN (reprint author), Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. EM chuxiangning@gmail.com RI Wei, Yong/H-5112-2011; Sibeck, David/D-4424-2012; Russell, Christopher/E-7745-2012; Fu, Suiyan/E-9178-2013; Liu, Jiang/B-3015-2014; OI Wei, Yong/0000-0001-7183-0229; Russell, Christopher/0000-0003-1639-8298; Liu, Jiang/0000-0002-7489-9384; Frey, Harald/0000-0001-8955-3282 FU National Natural Science Foundation of China [40731056]; National Basic Research Program of China [2006CB806305]; NASA of USA [NAS5-02099]; fur Luftund Raumfahrt of Germany [50QP0402] FX This work was supported by the National Natural Science Foundation of China (Grant No. 40731056), the National Basic Research Program of China ("973" Project) (Grant No. 2006CB806305), the NASA NAS5-02099 of USA and the fur Luftund Raumfahrt 50QP0402 of Germany. We acknowledge the Canadian Space Agency for support in fielding and data retrieval from the THEMIS GBO stations and for provision of data by the CARISMA network. The authors thank A. Viljanen (Image team), J. Posch (MACCS team), T. Iyemori (WDC-C2), K. Yumoto (Nagoya Univ.), O. Troshichev (AARI), D. Milling (CARISMA), E. Kharin (WDC-B), B. M. Shevtsov and A. Vinnitskiy (ICRRWP), the PIs of the projects INTERMAGNET, GIMA (Alaska Univ.), H. Gleisner (DMI, Copenhagen), S. Solovyev (ICRA SB RAS, Yakutsk), S. Khomutov (obs. Novosibirsk), and O. Kusonskiy (obs. Arti) for providing geomagnetic data. We thank X. Z. Zhou and H. Zhang for useful discussions and are grateful to A. Prentice for her help. NR 41 TC 3 Z9 4 U1 0 U2 6 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7321 J9 SCI CHINA TECHNOL SC JI Sci. China-Technol. Sci. PD MAY PY 2010 VL 53 IS 5 BP 1328 EP 1337 DI 10.1007/s11431-009-0399-3 PG 10 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 592YO UT WOS:000277418100026 ER PT J AU Lee, CO Luhmann, JG de Pater, I Mason, GM Haggerty, D Richardson, IG Cane, HV Jian, LK Russell, CT Desai, MI AF Lee, C. O. Luhmann, J. G. de Pater, I. Mason, G. M. Haggerty, D. Richardson, I. G. Cane, H. V. Jian, L. K. Russell, C. T. Desai, M. I. TI Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23 SO SOLAR PHYSICS LA English DT Article DE Energetic particles; Solar wind; Solar activity cycle; Magnetic fields: interplanetary ID COROTATING INTERACTION REGIONS; 1 AU; STREAM INTERFACES; MAGNETIC FIELDS; INTERPLANETARY; EVENTS; SPACECRAFT; STEREO; MODEL; ACCELERATION AB We investigate the organization of the low energy energetic particles (<= 1 MeV) by solar wind structures, in particular corotating interaction regions (CIRs) and shocks driven by interplanetary coronal mass ejections, during the declining-to-minimum phase of Solar Cycle 23 from Carrington rotation 1999 to 2088 (January 2003 to October 2009). Because CIR-associated particles are very prominent during the solar minimum, the unusually long solar minimum period of this current cycle provides an opportunity to examine the overall organization of CIR energetic particles for a much longer period than during any other minimum since the dawn of the Space Age. We find that the particle enhancements associated with CIRs this minimum period recurred for many solar rotations, up to 30 at times, due to several high-speed solar wind streams that persisted. However, very few significant CIR-related energetic particle enhancements were observed towards the end of our study period, reflecting the overall weak high-speed streams that occurred at this time. We also contrast the solar minimum observations with the declining phase when a number of solar energetic particle events occurred, producing a mixed particle population. In addition, we compare the observations from this minimum period with those from the previous solar cycle. One of the main differences we find is the shorter recurrence rate of the high-speed solar wind streams (similar to 10 solar rotations) and the related CIR energetic particle enhancements for the Solar Cycle 22 minimum period. Overall our study provides insight into the coexistence of different populations of energetic particles, as well as an overview of the large-scale organization of the energetic particle populations approaching the beginning of Solar Cycle 24. C1 [Lee, C. O.; Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lee, C. O.; de Pater, I.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Mason, G. M.; Haggerty, D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. [Jian, L. K.; Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Desai, M. I.] SW Res Inst, San Antonio, TX USA. [Desai, M. I.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. RP Lee, CO (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM clee@ssl.berkeley.edu RI Jian, Lan/B-4053-2010; Russell, Christopher/E-7745-2012; OI Jian, Lan/0000-0002-6849-5527; Russell, Christopher/0000-0003-1639-8298; Lee, Christina/0000-0002-1604-3326; Richardson, Ian/0000-0002-3855-3634 FU Department of Defense (DoD); National Science Foundation [ATM-0120950] FX The authors would like to thank C.N. Arge for providing the PFSS coefficients that enabled us to computing the HCS neutral line distance. The authors would also like to thank the NASA Goddard Space Flight Center Space Physics Data Facility (SPDF) and the ACE Science Center for providing access to their data sets.; Christina O. Lee thanks the editor and referee for their assistance in evaluating this paper.; This research was supported by the 2005-2006 National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded by the Department of Defense (DoD) and the CISM project, which is funded by the STC Program of the National Science Foundation under agreement number ATM-0120950. NR 42 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD MAY PY 2010 VL 263 IS 1-2 BP 239 EP 261 DI 10.1007/s11207-010-9556-x PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 589LD UT WOS:000277148200017 ER PT J AU Langlais, B Lesur, V Purucker, ME Connerney, JEP Mandea, M AF Langlais, Benoit Lesur, Vincent Purucker, Michael E. Connerney, Jack E. P. Mandea, Mioara TI Crustal Magnetic Fields of Terrestrial Planets SO SPACE SCIENCE REVIEWS LA English DT Review DE Magnetic Field; Telluric Planets; Crust; Measurements; Modeling Techniques; Interpretation ID REMANENT MAGNETIZATION; THERMOELECTRIC DYNAMO; GEOMAGNETIC-FIELD; ANOMALY DATA; MARS; MERCURY; MODEL; IMPACT; SATELLITE; SHELL AB Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon. C1 [Langlais, Benoit] Univ Nantes, Lab Planetol & Geodynam, CNRS, UMR 6112, F-44000 Nantes, France. [Lesur, Vincent; Mandea, Mioara] German Res Ctr Geosci, Helmholtz Ctr Potsdam, Potsdam, Germany. [Purucker, Michael E.] NASA, Goddard Space Flight Ctr, Raytheon Planetary Geodynam Lab, Code 698, Greenbelt, MD 20771 USA. [Connerney, Jack E. P.] NASA, Goddard Space Flight Ctr, Planetary Magnetospheres Lab, Code 695, Greenbelt, MD 20771 USA. RP Langlais, B (reprint author), Univ Nantes, Lab Planetol & Geodynam, CNRS, UMR 6112, 2 Rue Houssiniere, F-44000 Nantes, France. EM benoit.langlais@univ-nantes.fr RI MANDEA, Mioara/E-4892-2012; Langlais, Benoit/K-5366-2012; connerney, john/I-5127-2013; Lesur, Vincent/H-1031-2012; OI Langlais, Benoit/0000-0001-5207-304X; Lesur, Vincent/0000-0003-2568-320X; connerney, jack/0000-0001-7478-6462 FU Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum, Germany; Institut National des Sciences de la Terre/CNRS, France FX All geographical figures were produced with GMT (Wessel and Smith 1991). Support was provided by Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum, Germany; Institut National des Sciences de la Terre/CNRS, France. We would like to thank E. Thebault for discussions on Spherical Cap Harmonic Analysis, R. Hart for providing figure on Vredefort crater, R. Balogh and the staff at ISSI for organizing a fruitful workshop. This work is dedicated to the memory of Mario H. Acuca, who inspired so many of us. NR 151 TC 24 Z9 25 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2010 VL 152 IS 1-4 BP 223 EP 249 DI 10.1007/s11214-009-9557-y PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 620GH UT WOS:000279486600007 ER PT J AU Anderson, BJ Acuna, MH Korth, H Slavin, JA Uno, H Johnson, CL Purucker, ME Solomon, SC Raines, JM Zurbuchen, TH Gloeckler, G McNutt, RL AF Anderson, Brian J. Acuna, Mario H. Korth, Haje Slavin, James A. Uno, Hideharu Johnson, Catherine L. Purucker, Michael E. Solomon, Sean C. Raines, Jim M. Zurbuchen, Thomas H. Gloeckler, George McNutt, Ralph L., Jr. TI The Magnetic Field of Mercury SO SPACE SCIENCE REVIEWS LA English DT Review DE Mercury; Magnetic field; Magnetosphere; MESSENGER; BepiColombo ID MESSENGERS 1ST FLYBY; THERMOELECTRIC DYNAMO; CRUSTAL REMANENCE; ALIGNED CURRENTS; SPHERICAL-SHELL; PLANET MERCURY; MAGNETOSPHERE; MISSION; MAGNETOPAUSE; MODELS AB The magnetic field strength of Mercury at the planet's surface is approximately 1% that of Earth's surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe's first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet's spin axis to be less than 5A degrees. Considered as a dipole field, the moment is in the range 240 to 270 nT-R (M) (3) , where R (M) is Mercury's radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R (M) (3) , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R (M) altitude on the nightside. A near-tail current with a density of 0.1 mu A/m(2) could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation. C1 [Anderson, Brian J.; Korth, Haje; McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Acuna, Mario H.; Purucker, Michael E.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Slavin, James A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Uno, Hideharu; Johnson, Catherine L.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V6T IZ4, Canada. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Raines, Jim M.; Zurbuchen, Thomas H.; Gloeckler, George] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Anderson, BJ (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. EM Brian.Anderson@jhuapl.edu RI Anderson, Brian/I-8615-2012; Slavin, James/H-3170-2012; McNutt, Ralph/E-8006-2010 OI Slavin, James/0000-0002-9206-724X; McNutt, Ralph/0000-0002-4722-9166 FU NASA [NASW-00002, NAS5-97271]; NSERC [NNX07AR73G] FX We deeply mourn the loss of our colleague and MESSENGER Co-Investigator Mario Acuna during the preparation of this manuscript; his many contributions to the MESSENGER mission and the space science community live on. Assistance in visualizing magnetic field models from Alexander Ukhorskiy is gratefully acknowledged. The MESSENGER project is supported by the NASA Discovery Program under contracts NASW-00002 to the Carnegie Institution of Washington and NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory. Support is also acknowledged from the NSERC Discovery Grant Program and the MESSENGER Participating Scientist Program (NNX07AR73G). NR 76 TC 45 Z9 45 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2010 VL 152 IS 1-4 BP 307 EP 339 DI 10.1007/s11214-009-9544-3 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 620GH UT WOS:000279486600010 ER PT J AU Wipfli, MS Hudson, JP Caouette, JP Mitchell, NL Lessard, JL Heintz, RA Chaloner, DT AF Wipfli, Mark S. Hudson, John P. Caouette, John P. Mitchell, Nicole L. Lessard, Joanna L. Heintz, Ron A. Chaloner, Dominic T. TI Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test on Multiple Trophic Levels in Streamside Experimental Channels SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID JUVENILE COHO SALMON; SOUTHEAST ALASKAN STREAMS; MARINE-DERIVED NUTRIENTS; FRESH-WATER ECOSYSTEMS; PACIFIC SALMON; RESIDENT SALMONIDS; ONCORHYNCHUS-KISUTCH; SPAWNING SALMON; FOOD WEBS; TERRESTRIAL ECOSYSTEMS AB Inorganic nutrient amendments to streams are viewed as possible restoration strategies for reestablishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-a levels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment x time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring stream productivity, including fish production, and should be chosen over artificial nutrient additions when feasible and practical. C1 [Wipfli, Mark S.] Univ Alaska, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Inst Arctic Biol, Fairbanks, AK 99775 USA. [Hudson, John P.] Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Caouette, John P.] Nature Conservancy, Juneau, AK 99801 USA. [Mitchell, Nicole L.; Chaloner, Dominic T.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Lessard, Joanna L.] Michigan State Univ, Dept Entomol, E Lansing, MI 48824 USA. RP Wipfli, MS (reprint author), Univ Alaska, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Inst Arctic Biol, Fairbanks, AK 99775 USA. EM mwipfli@alaska.edu NR 77 TC 16 Z9 16 U1 5 U2 28 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD MAY PY 2010 VL 139 IS 3 BP 824 EP 839 DI 10.1577/T09-114.1 PG 16 WC Fisheries SC Fisheries GA 595UQ UT WOS:000277639200017 ER PT J AU Heintz, RA Wipfli, MS Hudson, JP AF Heintz, Ron A. Wipfli, Mark S. Hudson, John P. TI Identification of Marine-Derived Lipids in Juvenile Coho Salmon and Aquatic Insects through Fatty Acid Analysis SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID STREAM-RESIDENT SALMONIDS; COPPER RIVER DELTA; FRESH-WATER; ONCORHYNCHUS-KISUTCH; SOUTHEASTERN ALASKA; PACIFIC SALMON; FOOD WEBS; TROPHIC ECOLOGY; SPAWNING SALMON; SOCKEYE-SALMON AB The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams. C1 [Heintz, Ron A.; Hudson, John P.] Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Wipfli, Mark S.] Univ Alaska, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Inst Arctic Biol, Fairbanks, AK 99775 USA. RP Heintz, RA (reprint author), Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. EM ron.heintz@noaa.gov NR 45 TC 13 Z9 13 U1 7 U2 29 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD MAY PY 2010 VL 139 IS 3 BP 840 EP 854 DI 10.1577/T09-115.1 PG 15 WC Fisheries SC Fisheries GA 595UQ UT WOS:000277639200018 ER PT J AU Yuan, TE Martins, JV Li, ZQ Remer, LA AF Yuan, Tianle Martins, J. Vanderlei Li, Zhanqing Remer, Lorraine A. TI Estimating glaciation temperature of deep convective clouds with remote sensing data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPICAL TROPOPAUSE; ICE; PRECIPITATION; CIRRUS; MICROPHYSICS; REFLECTION; RETRIEVAL; EVOLUTION; AEROSOLS; CLIMATE AB Major uncertainties exist for observing and modeling ice content inside deep convective clouds (DCC). One of the difficulties has been the lack of characterization of vertical profiles of cloud hydrometeor phase. Here we propose a technique to estimate the DCC glaciation temperature using passive remote sensing data. It is based on a conceptual model of vertical hydrometeor size profiles inside DCCs. Estimates from the technique agree well with our general understanding of the problem. Furthermore, the link between vertical profiles of cloud particle size and hydrometeor thermodynamic phase is confirmed by a 3-D cloud retrieval technique. The technique is applied to aircraft measurements of cloud side reflectance and the result was compared favorably with an independent retrieval of thermodynamic phase based on different refractive indices at 2.13 mu m and 2.25 mu m. Possible applications of the technique are discussed. Citation: Yuan, T., J. V. Martins, Z. Li, and L. A. Remer (2010), Estimating glaciation temperature of deep convective clouds with remote sensing data, Geophys. Res. Lett., 37, L08808, doi: 10.1029/2010GL042753. C1 [Yuan, Tianle; Martins, J. Vanderlei] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Yuan, Tianle; Martins, J. Vanderlei; Remer, Lorraine A.] NASA, Goddard Space Flight Ctr, Lab Atmosphere, Greenbelt, MD 20770 USA. [Martins, J. Vanderlei] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA. RP Yuan, TE (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. EM tianle.yuan@nasa.gov RI Li, Zhanqing/F-4424-2010; Yuan, Tianle/D-3323-2011 OI Li, Zhanqing/0000-0001-6737-382X; NR 36 TC 13 Z9 14 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 30 PY 2010 VL 37 AR L08808 DI 10.1029/2010GL042753 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 590UF UT WOS:000277253000003 ER PT J AU McPherson, CJ Reagan, JA Schafer, J Giles, D Ferrare, R Hair, J Hostetler, C AF McPherson, Christopher J. Reagan, John A. Schafer, Joel Giles, David Ferrare, Rich Hair, John Hostetler, Chris TI AERONET, airborne HSRL, and CALIPSO aerosol retrievals compared and combined: A case study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; OPTICAL-PROPERTIES AB On 4 August 2007 a unique opportunity for the intercomparison of aerosol retrievals occurred as part of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Twilight Zone (CATZ) campaign in the Washington, D. C., urban complex. During the course of the experiment, several Aerosol Robotic Network (AERONET) Cimel Sun photometers were deployed along the CALIPSO track, together with NASA Langley Research Center's airborne High Spectral Resolution Lidar (HSRL) instrument flying overhead. A series of daytime coincident measurements was made by the various instruments, permitting a number of important opportunities for the intercomparison of the various instrumental measurements of aerosols as well as evaluation of the Constrained Ratio Aerosol Model-fit (CRAM) technique for aerosol retrievals from elastic backscatter lidar. The results from the intercomparison are discussed as an illustrative case study in sensor combination and aerosol retrieval methodology. C1 [McPherson, Christopher J.; Reagan, John A.] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. [Schafer, Joel; Giles, David] NASA, Goddard Space Flight Ctr, SSAI, Greenbelt, MD 20771 USA. [Ferrare, Rich; Hair, John; Hostetler, Chris] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP McPherson, CJ (reprint author), Univ Arizona, Dept Elect & Comp Engn, 1230 E Speedway Blvd, Tucson, AZ 85721 USA. EM cjm3@email.arizona.edu; joel.schafer@nasa.gov; richard.a.ferrare@nasa.gov FU NASA [NNX07AM11H, NASA1-99102] FX The authors wish to acknowledge the AERONET team for providing instrument calibration, field measurements, and data processing. This work was supported under the NASA Graduate Student Researchers Program Fellowship through contract NNX07AM11H, as well as under NASA contract NASA1-99102. NR 17 TC 10 Z9 10 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 30 PY 2010 VL 115 AR D00H21 DI 10.1029/2009JD012389 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 590VD UT WOS:000277255500001 ER PT J AU Yang, Q Cunnold, DM Choi, Y Wang, YH Nam, J Wang, HJ Froidevaux, L Thompson, AM Bhartia, PK AF Yang, Qing Cunnold, Derek M. Choi, Yunsoo Wang, Yuhang Nam, Junsang Wang, Hsiang-Jui Froidevaux, Lucien Thompson, Anne M. Bhartia, P. K. TI A study of tropospheric ozone column enhancements over North America using satellite data and a global chemical transport model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SUBTROPICAL TROPOPAUSE; WAVE BREAKING; POLLUTION; CHEMISTRY; AIRCRAFT; O-3 AB Tropospheric ozone columns (TCOs) have been calculated from the differences between the Aura Ozone Monitoring Instrument (OMI) Total Ozone Mapping System (TOMS) total ozone (level 2 version 3) and the Aura Microwave Limb Sounding (MLS) measurements of stratospheric ozone (version 2.2). These OMI-MLS TCOs were compared against ozonesonde measurements from the Intercontinental Chemical Transport Experiment (INTEX) Ozonesonde Network Study (IONS) campaign over North America in spring and summer, 2006. The OMI-MLS potential vorticity mapped TCOs are smaller than IONS TCOs by 5.9 DU (9.9 ppb when expressed as volume mixing ratio) with a standard deviation of the differences of 8.4 DU (14.4 ppb) and a standard error of the mean differences of approximately 0.5 DU (0.7 ppb). Compared to previously published versions, these OMI-MLS TCOs are an additional 2 DU smaller relative to ozonesonde measurements. The extra 2 DU arises from changes in OMI (similar to-3 to -6 DU) and MLS (-1 to 3 DU), giving a net change of -2 DU. OMI-MLS TCOs derived using OMI Differential Optical Absorption Spectroscopy (DOAS) show similar differences in summer, but these TCOs are smaller than the sondes by only 2 DU (5 ppb) in spring. OMI-MLS TCOs derived from TOMS total ozone retrievals lead to better results when validated against IONS data, with less noise and a better seasonal consistency. Tropospheric ozone columns were also compared to those from GEOS-Chem model simulations in main distribution features. In the spring and summer of 2005 and 2006, the most dominant enhancement features are a tongue of enhancement stretching from around Yellow Sea northeastward into the Pacific and an enhancement band over the North America centered over the eastern United States and the adjacent ocean. The OMI-MLS TCO enhancements over the western Pacific and over the eastern United States increased from March to June and then decreased. In the GEOS-Chem model simulations, the monthly variation tendency is similar to that of satellite data over the west Pacific but the decrease tendency from June into August over eastern United States is less dramatic. A springtime TCO enhancement event of a few days duration over coastal California was investigated to demonstrate the ability of OMI-MLS mapped TCO columns in capturing ozone enhancements associated with stratospheric intrusions and trans-Pacific transport. Tagged ozone model simulations support the stratospheric contributions to the high TCOs over coastal California and over the Baja peninsula, and meteorological fields indicate that the stratospheric intrusions are associated with Rossby wave breaking events. Furthermore, back trajectory studies and comparisons of GEOS-Chem standard simulations and sensitivity runs with Asia anthropogenic emissions turned off provide evidence that the high tropospheric ozone columns over coastal California near Santa Barbara, California, has been influenced by cross-Pacific transport. Two-day-average maps of tropospheric ozone columns from Aura OMI-MLS TCOs also indicate cross-Pacific propagating features. C1 [Yang, Qing; Cunnold, Derek M.; Wang, Yuhang; Nam, Junsang; Wang, Hsiang-Jui] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Thompson, Anne M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Choi, Yunsoo; Froidevaux, Lucien] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yang, Q (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM qyang@eas.gatech.edu RI Yang, Qing/H-3275-2011; Wang, Yuhang/B-5578-2014; Chem, GEOS/C-5595-2014; Thompson, Anne /C-3649-2014 OI Yang, Qing/0000-0003-2067-5999; Thompson, Anne /0000-0002-7829-0920 FU NASA Atmospheric Chemistry and Analysis Program (ACMAP) FX We would like to dedicate this paper to Derek Cunnold, who passed away on April 2009. He was a Principal Research Scientist, Acting Chair of School, and Professor at Georgia Institute of Technology's School of Earth and Atmospheric Sciences for 27 years. Derek was an internationally recognized and respected expert regarding the science of the Earth's protective ozone layer, the use of satellite measurements and computer models to study this complex layer, and the interpretation of global atmospheric measurements to determine the sources and sinks of ozone-depleting and greenhouse gases. He was an outstanding mentor for students and young scientists at both Georgia Tech and other institutions. As commented by one of his long-term collaborators, Derek's intelligence, insight, scientific achievements, unselfish service, and quiet, wise, and effective leadership will be deeply missed, but never forgotten, by his many scientific colleagues and admirers around the world. This work has been supported by the NASA Atmospheric Chemistry and Analysis Program (ACMAP). The GEOS-Chem model is managed at Harvard University, and we thank Robert Yantosca and Daniel Jacob for making the model available. We thank KNMI for making the OMI ozone columns available and Pepijn Veefkind for help in interpreting the data. The TES program is managed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank Mark Schoeberl for supplying us with his trajectory mapped TCOs. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.html) used in this publication. NCEP Reanalysis data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. NR 34 TC 7 Z9 8 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 30 PY 2010 VL 115 AR D08302 DI 10.1029/2009JD012616 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 590VD UT WOS:000277255500002 ER PT J AU Ofman, L AF Ofman, L. TI Hybrid model of inhomogeneous solar wind plasma heating by Alfven wave spectrum: Parametric studies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTROMAGNETIC PROTON/PROTON INSTABILITIES; CORONAL LOOPS; CONSTRAINTS; IONS; ACCELERATION; ULYSSES; DISTRIBUTIONS; SPECTROMETER; SIMULATIONS; ANISOTROPY AB Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(perpendicular to)/T(parallel to) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He(++) ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H(+)-He(++) solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii. C1 [Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ofman, L (reprint author), Tel Aviv Univ, IL-69978 Tel Aviv, Israel. EM leon.ofman@nasa.gov FU NASA [NNX08AF85G, NNX08AV88G] FX The author would like to acknowledge discussions with A. F. Vi as and D. Tsiklauri and to acknowledge support by NASA grants NNX08AF85G and NNX08AV88G. NR 32 TC 12 Z9 12 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 30 PY 2010 VL 115 AR A04108 DI 10.1029/2009JA015094 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590ZB UT WOS:000277266000004 ER PT J AU Narita, Y Glassmeier, KH Sahraoui, F Goldstein, ML AF Narita, Y. Glassmeier, K. -H. Sahraoui, F. Goldstein, M. L. TI Wave-Vector Dependence of Magnetic-Turbulence Spectra in the Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID HOMOGENEOUS TURBULENCE; CLUSTER; FLUCTUATIONS; PLASMA AB Using four-point measurements of the Cluster spacecraft, the energy distribution was determined for magnetic field fluctuations in the solar wind directly in the three-dimensional wave-vector domain in the range vertical bar k vertical bar <= 1.5 X 10(-3) rad/km. The energy distribution exhibits anisotropic features characterized by a prominently extended structure perpendicular to the mean field preferring the ecliptic north direction and also by a moderately extended structure parallel to the mean field. From the three-dimensional energy distribution wave vector anisotropy is estimated with respect to directions parallel and perpendicular to the mean magnetic field, and the result suggests the dominance of quasi-two-dimensional turbulence toward smaller spatial scales. C1 [Narita, Y.; Glassmeier, K. -H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, D-38106 Braunschweig, Germany. [Sahraoui, F.; Goldstein, M. L.] NASA, Geospace Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Glassmeier, K. -H.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Narita, Y (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. EM y.narita@tu-bs.de RI Goldstein, Melvyn/B-1724-2008 FU Bundesministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt [50 OC 0901] FX This work is financially supported by Bundesministerium fur Wirtschaft und Technologie and Deutsches Zentrum fur Luft- und Raumfahrt under Contract No. 50 OC 0901. We thank H. Reme and I. Dandouras for providing ion data of Cluster. NR 27 TC 44 Z9 44 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 171101 DI 10.1103/PhysRevLett.104.171101 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600010 PM 20482101 ER PT J AU van Dijk, T Fischer, DG Visser, TD Wolf, E AF van Dijk, Thomas Fischer, David G. Visser, Taco D. Wolf, Emil TI Effects of Spatial Coherence on the Angular Distribution of Radiant Intensity Generated by Scattering on a Sphere SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIGHT AB In the analysis of light scattering on a sphere it is implicitly assumed that the incident field is spatially fully coherent. However, under usual circumstances the field is partially coherent. We generalize the partial waves expansion method to this situation and examine the influence of the degree of coherence of the incident field on the radiant intensity of the scattered field in the far zone. We show that when the coherence length of the incident field is comparable to, or is smaller than, the radius of the sphere, the angular distribution of the radiant intensity depends strongly on the degree of coherence. The results have implications, for example, for scattering in the atmosphere and colloidal suspensions. C1 [van Dijk, Thomas] Free Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands. [Fischer, David G.] NASA, Res & Technol Directorate, Glenn Res Ctr, Cleveland, OH 44135 USA. [Visser, Taco D.] Delft Univ Technol, Dept Elect Engn, Delft, Netherlands. [Wolf, Emil] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Wolf, Emil] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP van Dijk, T (reprint author), Free Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands. FU U.S. Air Force Office of Scientific Research [FA9550-08-1-0417]; Air Force Research Laboratory (ARFL) [9451-04-C-0296]; Netherlands Foundation for Fundamental Research of Matter (FOM); Netherlands Organization for Scientific Research (NWO) FX E.W's work is supported by the U.S. Air Force Office of Scientific Research under grant No. FA9550-08-1-0417 and by the Air Force Research Laboratory (ARFL) under contract number 9451-04-C-0296. T. D. V. acknowledges support from The Netherlands Foundation for Fundamental Research of Matter (FOM). T. v. D. is supported by the Netherlands Organization for Scientific Research (NWO). NR 17 TC 42 Z9 42 U1 5 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 173902 DI 10.1103/PhysRevLett.104.173902 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600019 PM 20482110 ER PT J AU Smrekar, SE Stofan, ER Mueller, N Treiman, A Elkins-Tanton, L Helbert, J Piccioni, G Drossart, P AF Smrekar, Suzanne E. Stofan, Ellen R. Mueller, Nils Treiman, Allan Elkins-Tanton, Linda Helbert, Joern Piccioni, Giuseppe Drossart, Pierre TI Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data SO SCIENCE LA English DT Article ID NEAR-INFRARED OBSERVATIONS; ROTATIONAL ELEMENTS; WORKING GROUP; ORDER MODEL; SURFACE; TOPOGRAPHY; SATELLITES; TECTONICS; NIGHTSIDE; GRAVITY AB The questions of whether Venus is geologically active and how the planet has resurfaced over the past billion years have major implications for interior dynamics and climate change. Nine "hotspots"-areas analogous to Hawaii, with volcanism, broad topographic rises, and large positive gravity anomalies suggesting mantle plumes at depth-have been identified as possibly active. This study used variations in the thermal emissivity of the surface observed by the Visible and Infrared Thermal Imaging Spectrometer on the European Space Agency's Venus Express spacecraft to identify compositional differences in lava flows at three hotspots. The anomalies are interpreted as a lack of surface weathering. We estimate the flows to be younger than 2.5 million years and probably much younger, about 250,000 years or less, indicating that Venus is actively resurfacing. C1 [Smrekar, Suzanne E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stofan, Ellen R.] Proxemy Res, Laytonville, MD 20882 USA. [Mueller, Nils] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Treiman, Allan] Lunar & Planetary Inst, Houston, TX 77058 USA. [Elkins-Tanton, Linda] MIT, Cambridge, MA 02139 USA. [Mueller, Nils; Helbert, Joern] German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany. [Piccioni, Giuseppe] Ist Nazl Astrofis Ist Astrofis Spaziale & Fis Cos, I-00133 Rome, Italy. [Drossart, Pierre] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. RP Smrekar, SE (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ssmrekar@jpl.nasa.gov RI Elkins-Tanton, Linda/C-5508-2008; OI Elkins-Tanton, Linda/0000-0003-4008-1098; Helbert, Jorn/0000-0001-5346-9505; Piccioni, Giuseppe/0000-0002-7893-6808; Mueller, Nils/0000-0001-9229-8921 FU Jet Propulsion Laboratory, California Institute of Technology; Planetary Geology and Geophysics Program; NASA; European Space Agency; Agenzia Spaziale Italiana; Centre National des Etudes Spatiales; CNRS/Institut National des Sciences de l'Univers FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the Planetary Geology and Geophysics Program and NASA. We gratefully acknowledge the work of the entire Venus Express and VIRTIS teams. We thank the European Space Agency, Agenzia Spaziale Italiana, Centre National des Etudes Spatiales, CNRS/Institut National des Sciences de l'Univers, and the other national space agencies that have supported this research. VIRTIS is led by INAF-IASF, Rome, Italy, and LESIA, Observatoire de Paris, France. NR 49 TC 85 Z9 89 U1 2 U2 21 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 30 PY 2010 VL 328 IS 5978 BP 605 EP 608 DI 10.1126/science.1186785 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 589OJ UT WOS:000277159800038 PM 20378775 ER PT J AU Kim, T Nefian, AV Broxton, MJ AF Kim, T. Nefian, A. V. Broxton, M. J. TI Photometric recovery of Apollo metric imagery with Lunar-Lambertian reflectance SO ELECTRONICS LETTERS LA English DT Article AB The scene radiance of the lunar surface, the reflectance of which depends on the topographical configuration is reconstructed from Apollo orbital imagery. The pixel value is determined by the camera response of sensor exposure which is proportional to scene radiance, lunar reflectance and exposure time. Based on the Lunar-Lambertian reflectance model, the point-wise reflectance is pre-calculated from the Apollo metadata and digital elevation models. The surface radiance, exposure time and camera response are estimated by the maximum likelihood method for sensor exposure which follows a continuous Poisson distribution with the mean of surface radiance. An alternating parameter scheme is proposed to determine the one family of parameters from the others. The photometric recovery of ortho-images derived from Apollo 15 metric camera imagery is presented to show the validity of the proposed method. C1 [Kim, T.] Korea Adv Inst Sci & Technol, Dept Elect Engn & Comp Sci, Taejon 305701, South Korea. [Nefian, A. V.; Broxton, M. J.] NASA, Ames Res Ctr, Intelligent Robot Grp, Moffett Field, CA 94035 USA. RP Kim, T (reprint author), Korea Adv Inst Sci & Technol, Dept Elect Engn & Comp Sci, 335 Gwahangno, Taejon 305701, South Korea. EM tmkim@kaist.ac.kr NR 4 TC 1 Z9 1 U1 0 U2 2 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD APR 29 PY 2010 VL 46 IS 9 BP 631 EP U49 DI 10.1049/el.2010.0032 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 614OB UT WOS:000279068300020 ER PT J AU Li, C Zhang, Q Krotkov, NA Streets, DG He, KB Tsay, SC Gleason, JF AF Li, Can Zhang, Qiang Krotkov, Nickolay A. Streets, David G. He, Kebin Tsay, Si-Chee Gleason, James F. TI Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ALGORITHM; RETRIEVAL; NO2 AB The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/NOx emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of SO2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing SO2 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources. Citation: Li, C., Q. Zhang, N. A. Krotkov, D. G. Streets, K. He, S.-C. Tsay, and J. F. Gleason (2010), Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument, Geophys. Res. Lett., 37, L08807, doi:10.1029/2010GL042594. C1 [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Krotkov, Nickolay A.; Tsay, Si-Chee; Gleason, James F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Zhang, Qiang; Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Krotkov, Nickolay A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21288 USA. [He, Kebin] Tsinghua Univ, Dept Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Zhang, Qiang/D-9034-2012; Gleason, James/E-1421-2012; Krotkov, Nickolay/E-1541-2012; Tsay, Si-Chee/J-1147-2014 OI Krotkov, Nickolay/0000-0001-6170-6750; FU NASA; Ministry of Environmental Protection of China FX The OMI project is managed by NIVR and KNMI in the Netherlands. The authors would like to thank the KNMI OMI team for producing L1B radiance data and the U.S. OMI operational team for continuing support. The authors wish to thank Bingjiang Liu for his comments. Can Li thanks partial support from the NASA Radiation Science Program managed by Hal Maring. Nickolay Krotkov acknowledges NASA funding of OMI SO2 research. David Streets and Qiang Zhang acknowledge the support of the NASA program on Decision Support through Earth Science Research Results, managed by Lawrence Friedl. Qiang Zhang also acknowledges the support of the Project of Monitoring & Management on Emission Reduction, managed by the Ministry of Environmental Protection of China. NR 20 TC 67 Z9 71 U1 1 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 29 PY 2010 VL 37 AR L08807 DI 10.1029/2010GL042594 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 590UD UT WOS:000277252800002 ER PT J AU Jones, B Zhang, F Maksyutenko, P Mebel, AM Kaiser, RI AF Jones, Brant Zhang, Fangtong Maksyutenko, Pavlo Mebel, Alexander M. Kaiser, R. I. TI Crossed Molecular Beam Study on the Formation of Phenylacetylene and Its Relevance to Titan's Atmosphere SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; SUBMILLIMETER HETERODYNE OBSERVATIONS; DIFFUSE INTERSTELLAR-MEDIUM; C2D(X (2)SIGMA(+)); PREMIXED ACETYLENE; REACTION-MECHANISM; CHEMICAL-DYNAMICS; VERTICAL PROFILE; MASS-SPECTRUM; CARBON-ATOMS AB The crossed molecular beam experiment of the deuterated ethynyl radical (C(2)D; X(2)Sigma(+)) with benzene [C(6)H(6)(X(1)A(1g))] and its fully deuterated analog [C(6)D(6)(X(1)A(1g))] was conducted at a collision energy of 58.1 kJ mal(-1). Our experimental data suggest the formation of the phenylacetylene-d(6) via indirect reactive scattering dynamics through a long-lived reaction intermediate; the reaction is initiated by a barrierless addition of the ethynyl-d(1) radical to benzene-d(6). This initial collision complex was found to decompose via a tight exit transition state located about 42 kJ mol(-1) above the separated products; here, the deuterium atom is ejected almost perpendicularly to the rotational plane of the decomposing intermediate and almost parallel to the total angular momentum vector. The overall experimental exoergicity of the reaction is shown to be 121 +/- 10 kJ mol(-1); this compares nicely with the computed reaction energy of -111 kJ mol(-1). Even though the experiment was conducted at a collisional energy higher than equivalent temperatures typically found in the atmosphere of Titan (94 K and higher), the reaction may proceed in Titan's atmosphere as it involves no entrance barrier, all transition states involved are below the energy of the separated reactants, and the reaction is exoergic. Further, the phenylacetylene was found to be the sole reaction product. C1 [Jones, Brant; Zhang, Fangtong; Maksyutenko, Pavlo; Kaiser, R. I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Jones, Brant] Univ Hawaii Manoa, NASA, Astrobiol Inst, Honolulu, HI 96822 USA. [Mebel, Alexander M.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu RI Mebel, Alexander/A-5234-2009 FU Chemistry Division of the U.S. National Science Foundation (NSF) [CHE-0627854]; NASA Astrobiology Institute FX This work was supported in part by Chemistry Division of the U.S. National Science Foundation within the Collaborative Research in Chemistry Program (NSF-CRC CHE-0627854) (F.Z., P.M., R.I.K., A.M.M.) and was supported in part by an appointment to the NASA Postdoctoral Program at the NASA Astrobiology Institute, administered by Oak Ridge Associated Universities through a contract with NASA (B.J.). NR 68 TC 11 Z9 11 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 29 PY 2010 VL 114 IS 16 BP 5256 EP 5262 DI 10.1021/jp912054p PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 586FM UT WOS:000276888800004 PM 20369875 ER PT J AU Campins, H Hargrove, K Pinilla-Alonso, N Howell, ES Kelley, MS Licandro, J Mothe-Diniz, T Fernandez, Y Ziffer, J AF Campins, Humberto Hargrove, Kelsey Pinilla-Alonso, Noemi Howell, Ellen S. Kelley, Michael S. Licandro, Javier Mothe-Diniz, T. Fernandez, Y. Ziffer, Julie TI Water ice and organics on the surface of the asteroid 24 Themis SO NATURE LA English DT Article ID BELT; SHAPE AB It has been suggested(1-3) that Earth's current supply of water was delivered by asteroids, some time after the collision that produced the Moon (which would have vaporized any of the pre-existing water). So far, no measurements of water ice on asteroids(4,5) have been made, but its presence has been inferred from the comet-like activity of several small asteroids, including two members of the Themis dynamical family(6). Here we report infrared spectra of the asteroid 24 Themis which show that ice and organic compounds are not only present on its surface but also prevalent. Infrared spectral differences between it and other asteroids make 24 Themis unique so far, and our identification of ice and organics agrees with independent results(7) that rule out other compounds as possible sources of the observed spectral structure. The widespread presence of surface ice on 24 Themis is somewhat unexpected because of the relatively short lifetime of exposed ice at this distance (similar to 3.2 AU) from the Sun. Nevertheless, there are several plausible sources, such as a subsurface reservoir that brings water to the surface through 'impact gardening' and/or sublimation. C1 [Campins, Humberto; Hargrove, Kelsey; Fernandez, Y.] Univ Cent Florida, Orlando, FL 32816 USA. [Pinilla-Alonso, Noemi] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Howell, Ellen S.] NAIC Arecibo Observ, Arecibo, PR 00612 USA. [Kelley, Michael S.] Univ Maryland, College Pk, MD 20742 USA. [Licandro, Javier] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Mothe-Diniz, T.] Univ Fed Rio de Janeiro, BR-20080090 Rio De Janeiro, RJ, Brazil. [Licandro, Javier] Univ La Laguna, Dept Astrophys, E-38205 San Cristobal la Laguna, Spain. [Ziffer, Julie] Univ So Maine, Dept Phys, Portland, ME 04104 USA. RP Campins, H (reprint author), Univ Cent Florida, POB 162385, Orlando, FL 32816 USA. EM campins@physics.ucf.edu RI Mothe-Diniz, Thais/B-8987-2011; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; OI Kelley, Michael/0000-0002-6702-7676; Fernandez, Yanga/0000-0003-1156-9721 FU NASA; US National Science Foundation; Spanish 'Ministerio de Ciencia e Innovacion'; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro FX H. C. and K. H. are visiting astronomers at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under cooperative agreement no. NCC 5-538 with NASA. All the observations used in this publication were obtained at the IRTF. H. C. acknowledges support from NASA's Planetary Astronomy programme and from the US National Science Foundation. H. C. was a visiting Fulbright Scholar at the "Instituto de Astrofisica de Canarias'' in Tenerife, Spain, and a visiting astronomer at Observatoire de la Cote d'Azur, Nice, France. J.L. acknowledges support from the Spanish 'Ministerio de Ciencia e Innovacion'. T.M.-D. was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and by the Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro. We benefited from discussions with D. Cruikshank, M. Delbo, P. Michel, A. Morbidelli and T. Roush. NR 21 TC 136 Z9 136 U1 2 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 29 PY 2010 VL 464 IS 7293 BP 1320 EP 1321 DI 10.1038/nature09029 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 589LI UT WOS:000277149000039 PM 20428164 ER PT J AU Leforestier, C Tipping, RH Ma, Q AF Leforestier, C. Tipping, R. H. Ma, Q. TI Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INFRARED-SPECTRUM; HITRAN DATABASE; MOLECULES; GASES; PAIRS; COEFFICIENTS; CONSTANT; O-2-O-2; REGION; N-2 AB We investigated the magnitude and temperature dependence (T dependence) of the dimer absorption in the region of 0-600 cm(-1) and the collision-induced absorption (CIA) in the region of 0-1150 cm(-1). Together with our previous study of the self water-vapor continuum contributions resulting from far-wing line shapes of the allowed H(2)O lines in the infrared window between 800 and 1150 cm(-1), we find that the three mechanisms have completely different T dependence behaviors. The dimer absorption has the strongest negative T dependence and the continuum absorption from far wings of the allowed lines has a moderately strong negative one. Meanwhile, the CIA exhibits a mild T dependence. In addition, their T dependence patterns are quite different. The T dependence of the far-wing theory varies significantly as the frequency of interest omega varies. For CIA, in general, its T dependence is mildly negative, but becomes slightly positive in the window region between the H(2)O bands. In contrast, the T dependence of the dimer absorption varies slightly as omega varies. In the microwave and submillimeter region, its T dependence becomes uniform. Concerning the relative importance for each of these three mechanisms, we find that in the infrared widow, the far-wing contributions are the dominant source of the self-continuum. Within the band, its contributions are definitely responsible for the measured continuum data. But, it is impossible to draw quantitatively conclusions on its relative importance unless one is able to improve the accuracy of the local line calculations significantly. On the other hand, within the pure rotational band, the dimer absorptions are a minor contributor to the self-continuum measurements, and its role becomes more important in the microwave and submillimeter regions. Finally, based on our study we conclude that contributions to the self-continuum from CIA in the frequency region of 0-1150 cm(-1) are negligible. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3384653] C1 [Leforestier, C.] Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, CC15 01, F-34095 Montpellier, France. [Tipping, R. H.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Ma, Q.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ma, Q.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. RP Leforestier, C (reprint author), Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, CC15 01, F-34095 Montpellier, France. EM qma@giss.nasa.gov FU NASA [NNG06GB23G, NNX09AB62G, FCCS-547]; U. S. Department of Energy [DE-AI02-93ER61744, DE-AC02-05CH11231] FX Two of the authors (Q.M. and R.H.T.) acknowledge financial support from NASA under Grant Nos. NNG06GB23G, NNX09AB62G, and FCCS-547. Q. M. wishes to acknowledge financial support from the Biological and Environmental Research Program (BER), U. S. Department of Energy, Interagency Agreement No. DE-AI02-93ER61744. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 18 Z9 20 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2010 VL 132 IS 16 AR 164302 DI 10.1063/1.3384653 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 590QG UT WOS:000277241500023 PM 20441270 ER PT J AU Bux, SK Rodriquez, M Yeung, MT Yang, C Makhluf, A Blair, RG Fleurial, JP Kaner, RB AF Bux, Sabah K. Rodriquez, Marc Yeung, Michael T. Yang, Crystal Makhluf, Adam Blair, Richard G. Fleurial, Jean-Pierre Kaner, Richard B. TI Rapid Solid-State Synthesis of Nanostructured Silicon SO CHEMISTRY OF MATERIALS LA English DT Article ID METATHESIS REACTIONS; NANOWIRE GROWTH; SURFACE-AREA; PERFORMANCE; DISULFIDE; CARBIDES; ROUTES; OXYGEN AB Nanostructured silicon has recently been identified as an attractive material for a wide variety of uses from energy conversion and storage to biological applications Here we present a new, rapid method of producing high-purity, nanostructured, unfunctionalized silicon via solid-state metathesis (SSM) in a matter of seconds The silicon forms in a double displacement reaction between silicon tetraiodide and an alkaline earth suicide precursor. The products are characterized using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). Depending on the suicide precursor used, two different morphologies are obtained, either nanoparticles or dendritic nanowires. The variations in the morphologies are attributed to differences in the kinetics of the reactions C1 [Bux, Sabah K.; Rodriquez, Marc; Yeung, Michael T.; Yang, Crystal; Makhluf, Adam; Kaner, Richard B.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Bux, Sabah K.; Rodriquez, Marc; Yeung, Michael T.; Yang, Crystal; Makhluf, Adam; Kaner, Richard B.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blair, Richard G.] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA. RP Kaner, RB (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr, Los Angeles, CA 90095 USA. OI Yeung, Michael/0000-0002-5677-6970 FU National Science Foundation [DMR 0805352]; IGERT [DGE-0114443, DGE-0654431]; NASA [NNX09AM26H]; JPL/Caltech [1308818] FX The authors thank Di Thierry Cal Hat, Daniel King, and Kurt Star their helpful discussions and Veronica Strong and Sergery Prikhodko for their assistance with TEM and SAED Support from the National Science Foundation DMR 0805352 (R.B.K.), an IGERT fellowship DGE-0114443 and DGE-0654431 (S K B). a NASA GSRP fellowship NNX09AM26H (S.K.B.), and a JPL/Caltech subcontract 1308818 (R B K.) are gratefully acknowledged Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration NR 36 TC 9 Z9 9 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 27 PY 2010 VL 22 IS 8 BP 2534 EP 2540 DI 10.1021/cm903410s PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 585HY UT WOS:000276817200017 ER PT J AU Perlwitz, J Miller, RL AF Perlwitz, Jan Miller, Ron L. TI Cloud cover increase with increasing aerosol absorptivity: A counterexample to the conventional semidirect aerosol effect SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE RESPONSE; MARINE STRATOCUMULUS; RADIATIVE PROPERTIES; ABSORBING AEROSOLS; OPTICAL-PROPERTIES; MINERAL AEROSOL; DUST AEROSOLS; MODEL; PARAMETERIZATION; IMPACTS AB We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect. C1 [Perlwitz, Jan; Miller, Ron L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Perlwitz, Jan; Miller, Ron L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Perlwitz, J (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM jperlwitz@giss.nasa.gov; rmiller@giss.nasa.gov RI Miller, Ron/E-1902-2012 FU Climate Dynamics Program of the National Science Foundation [ATM-0134935, ATM-06-20066]; NASA Atmospheric Composition Program FX We thank three anonymous reviewers for their constructive comments. This work was supported by grants ATM-0134935 and ATM-06-20066 of the Climate Dynamics Program of the National Science Foundation and by the NASA Atmospheric Composition Program. NR 66 TC 31 Z9 32 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2010 VL 115 AR D08203 DI 10.1029/2009JD012637 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 590UP UT WOS:000277254100001 ER PT J AU Cull, S Arvidson, RE Mellon, M Wiseman, S Clark, R Titus, T Morris, RV McGuire, P AF Cull, Selby Arvidson, Raymond E. Mellon, Michael Wiseman, Sandra Clark, Roger Titus, Timothy Morris, Richard V. McGuire, Patrick TI Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARTIAN POLAR CAPS; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; THERMAL EMISSION SPECTROMETER; ORBITER CAMERA OBSERVATIONS; WATER ICE; GROUND-ICE; TES; SURFACE; TEMPERATURES; ULTRAVIOLET AB The condensation, evolution, and sublimation of seasonal water and carbon dioxide ices were characterized at the Mars Phoenix landing site from Martian northern midsummer to midspring (L-s similar to 142 degrees - L-s similar to 60) for the year prior to the Phoenix landing on 25 May 2008. Ice relative abundances and grain sizes were estimated using data from the Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment aboard Mars Reconnaissance Orbiter and a nonlinear mixing model. Water ice first appeared at the Phoenix landing site during the afternoon in late summer (L-s similar to 167 degrees) as an optically thin layer on top of soil. CO2 ice appeared after the fall equinox. By late winter (L-s similar to 344 degrees), the site was covered by relatively pure CO2 ice (similar to 30 cm thick), with a small amount of similar to 100 mu m diameter water ice and soil. As spring progressed, CO2 ice grain sizes gradually decreased, a change interpreted to result from granulation during sublimation losses. The combined effect of CO2 sublimation and decreasing H2O ice grain sizes allowed H2O ice to dominate spectra during the spring and significantly brightened the surface. CO2 ice disappeared by early spring (L-s similar to 34 degrees) and H2O ice by midspring (L-s similar to 59 degrees). Spring defrosting was not uniform and occurred more rapidly over the centers of polygons and geomorphic units with relatively higher thermal inertia values. C1 [Cull, Selby; Arvidson, Raymond E.; Wiseman, Sandra] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. [Clark, Roger] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [McGuire, Patrick] Free Univ Berlin, Inst Geosci, D-12249 Berlin, Germany. [Mellon, Michael] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Titus, Timothy] US Geol Survey, Flagstaff, AZ 86001 USA. RP Cull, S (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. RI Mellon, Michael/C-3456-2016 FU NASA FX We acknowledge support from NASA as part of the Phoenix and CRISM Science teams. We would like to thank Mike Wolff for his work on the DISORT code, Kim Seelos for her help with geomorphic mapping of the Phoenix landing site, Mindi Searles for helpful discussions on HiRISE observations, and the CRISM and HiRISE teams for their Phoenix monitoring campaign. We also thank Wendy Calvin and Hugh Kieffer for their insightful reviews. NR 61 TC 22 Z9 22 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 27 PY 2010 VL 115 AR E00D16 DI 10.1029/2009JE003340 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 590YE UT WOS:000277263600001 ER PT J AU Gao, F Masek, JG Wolfe, RE Huang, CQ AF Gao, Feng Masek, Jeffrey G. Wolfe, Robert E. Huang, Chengquan TI Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE MODIS; Landsat; ASTER; CBERS; AWiFS; data fusion; relative atmospheric correction; surface reflectance ID RADIOMETRIC NORMALIZATION; SURFACE REFLECTANCE; MODIS; LANDSAT; ALBEDO; CLASSIFICATION; VALIDATION; ALGORITHM; BRDF AB Medium resolution (10-100m) optical sensor data such as those from the Landsat, SPOT, ASTER, CBERS and IRS-P6 satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. While Landsat remains a cornerstone of medium resolution remote sensing, the ETM+ scan-line corrector failure in 2003 has highlighted the need for methods to integrate radiometry from multiple international sensors in order to create a consistent, long-term observational record. Such an approach needs to compensate for differing acquisition plans, sensor bandwidths, spatial resolution, and orbit coverage. Different processing approaches used in the calibration and atmosphere correction across sensors make integration even harder. In this paper, we propose a generalized reference-based approach to convert medium resolution satellite digital number (DN) to MODIS-like surface reflectance using MODIS products as a reference data set. This approach does not require explicit calibration and atmospheric correction procedures for individual medium resolution sensors, therefore minimizing the potential impact of those procedures due to among-sensor differences. Therefore, data in MODIS era from different sources such as Landsat TM/ETM+, IRS-P6 AWiFS, and TERRA ASTER can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis. Our results from Landsat TM/ETM+ show that this approach can produce surface reflectance with a similar accuracy to physical approaches based on radiative transfer modeling with mean absolute differences of 0.0016 and 0.0105 for red and near infra-red bands respectively. The normalized MODIS-like surface reflectances from multiple sensors and acquisition dates are consistent and comparable both spatially and temporally with known trends in phenology. C1 [Gao, Feng] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. [Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Huang, Chengquan] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. RP Gao, F (reprint author), Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. RI Masek, Jeffrey/D-7673-2012; Wolfe, Robert/E-1485-2012; Gao, Feng/F-3944-2010 OI Wolfe, Robert/0000-0002-0915-1855; FU US Geological Survey (USGS) Landsat Data Continuity Mission (LDCM) Science Team; NASA Earth Observing System (EOS) FX This work was supported by the US Geological Survey (USGS) Landsat Data Continuity Mission (LDCM) Science Team program and the NASA Earth Observing System (EOS) program. Authors would like to thank Robert Tetrault and Bradley Doorn from USDA FAS for providing AWIFS for this paper. NR 34 TC 19 Z9 19 U1 1 U2 30 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD APR 26 PY 2010 VL 4 AR 043526 DI 10.1117/1.3430002 PG 22 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 602KG UT WOS:000278137500001 ER PT J AU Enoto, T Nakazawa, K Makishima, K Nakagawa, YE Sakamoto, T Ohno, M Takahashi, T Terada, Y Yamaoka, K Murakami, T Takahashi, H AF Enoto, Teruaki Nakazawa, Kazuhiro Makishima, Kazuo Nakagawa, Yujin E. Sakamoto, Takanori Ohno, Masanori Takahashi, Tadayuki Terada, Yukikatsu Yamaoka, Kazutaka Murakami, Toshio Takahashi, Hiromitsu TI Suzaku Discovery of a Hard X-Ray Tail in the Persistent Spectra from the Magnetar 1E 1547.0-5408 during its 2009 Activity SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE stars: magnetic fields; X-rays: individual (1E 1547.0-5408); X-rays: stars ID SOFT GAMMA-REPEATERS; SUPERNOVA REMNANT; GALACTIC RIDGE; NEUTRON-STARS; SGR 0501+4516; XMM-NEWTON; EMISSION; PULSAR; OUTBURST; ELECTRODYNAMICS AB The fastest-rotating magnetar IE 1547.0-5408 was observed in broad-band X-rays with Suzaku for 33 ks on 2009 January 28-29, 7d after the onset of its latest bursting activity. After removing burst events, the absorption-uncorrected 2-10 keV flux of the persistent emission was measured with the XIS as 5.7 x 10(-11)erg cm(-2) s(-1), which is 1-2 orders of magnitude higher than was measured in 2006 and 2007 when the source was less active. This persistent emission was also detected significantly with the HXD in > 10 keV up to at least similar to 110 keV, with an even higher flux of 1.3 x 10(-10) erg cm(-2) s(-1) in 20-100 keV. The pulsation was detected at least up to 70 keV for a period of 2.072135 +/- 0.00005 s, with a deeper modulation than was measured in a fainter state. The phase-averaged 0.7-114 keV spectrum was reproduced by an absorbed blackbody emission with a temperature of 0.65 +/- 0.02 keV, plus a hard power-law with a photon index of similar to 1.5. At a distance of 9 kpc, the bolometric luminosity of the blackbody and the 2-100 keV luminosity of the hard power-law are estimated to be (6.2 +/- 1.2) x 10(35) erg s(-1) and 1.9 x 10(36) erg s(-1), respectively, while the blackbody radius becomes similar to 5 km. Although the source has not been detected significantly in hard X-rays during the past fainter states, a comparison of the present and past spectra at energies below 10 keV suggests that the hard component is more enhanced than the soft X-ray component during the period of persistent activity. C1 [Enoto, Teruaki; Nakazawa, Kazuhiro; Makishima, Kazuo] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Makishima, Kazuo; Nakagawa, Yujin E.] Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Sakamoto, Takanori] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ohno, Masanori; Takahashi, Tadayuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Terada, Yukikatsu] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Murakami, Toshio] Kanazawa Univ, Dept Phys, Kanazawa, Ishikawa 9201192, Japan. [Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. RP Enoto, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM enoto@juno.phys.s.u-tokyo.ac.jp RI Terada, Yukikatsu/A-5879-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; FU JSPS; MEXT [18104004] FX We thank the Suzaku operation team for the successful accomplishment of the present ToO observation, and are grateful to Tadayasu Dotani for his advices on the XIS timing modes. We also thank Nanda Rea and Gianluca Israel for helpful discussions and for providing us with useful information. In section 4, we used quick-look results provided through a website by the ASM/RXTE team. T. E. is supported by the JSPS Research Fellowship for Young Scientists. The present work was supported in part by a Grant-in-Aid for Scientific Research (S), No. 18104004 from the MEXT. NR 52 TC 27 Z9 27 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD APR 25 PY 2010 VL 62 IS 2 BP 475 EP 485 DI 10.1093/pasj/62.2.475 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624QP UT WOS:000279834900024 ER PT J AU Arimoto, M Kawai, N Asano, K Hurley, K Suzuki, M Nakagawa, YE Shimokawabe, T Pazmino, NV Sato, R Matsuoka, M Yoshida, A Tamagawa, T Shirasaki, Y Sugita, S Takahashi, I Atteia, JL Pelangeon, A Vanderspek, R Graziani, C Prigozhin, G Villasenor, J Jernigan, JG Crew, GB Sakamoto, T Ricker, GR Woosley, SE Butler, N Levine, A Doty, JP Donaghy, TQ Lamb, DQ Fenimore, E Galassi, M Boer, M Dezalay, JP Olive, JF Braga, J Manchanda, R Pizzichini, G AF Arimoto, Makoto Kawai, Nobuyuki Asano, Katsuaki Hurley, Kevin Suzuki, Motoko Nakagawa, Yujin E. Shimokawabe, Takashi Pazmino, Nicolas Vasquez Sato, Rie Matsuoka, Masaru Yoshida, Atsumasa Tamagawa, Toru Shirasaki, Yuji Sugita, Satoshi Takahashi, Ichiro Atteia, Jean-Luc Pelangeon, Alexandre Vanderspek, Roland Graziani, Carlo Prigozhin, Gregory Villasenor, Joel Jernigan, J. Garrett Crew, Geoffrey B. Sakamoto, Takanori Ricker, George R. Woosley, Stanford E. Butler, Nat Levine, Alan Doty, John P. Donaghy, Timothy Q. Lamb, Donald Q. Fenimore, Edward Galassi, Mark Boer, Michel Dezalay, Jean-Pascal Olive, Jean-Francois Braga, Joao Manchanda, Ravi Pizzichini, Graziella TI Spectral-Lag Relations in GRB Pulses Detected with HETE-2 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE gamma rays: bursts; gamma rays: observations; radiation mechanisms: non-thermal ID GAMMA-RAY BURSTS; PEAK LUMINOSITY; TEMPORAL PROFILES; LONG-LAG; ENERGY; FIREBALLS; DURATION; DEPENDENCE; AFTERGLOW; REDSHIFT AB Using a pulse-tit method, we investigated the spectral lags between the traditional gamma-ray band (50-400 keV) and the X-ray band (6-25 keV) for 8 GRBs with known redshifts (GRB 010921, GRB 020124, GRB 020127, ORB 021211, GRB 030528, GRB 040924, GRB 041006, and GRB 050408), detected with the WXM and FREGATE instruments aboard the HETE-2 satellite. We found several relations for individual ORB pulses between the spectral lag and other observables, such as the luminosity, pulse duration, and peak energy, E-peak. The obtained results are consistent with those for BATSE, indicating that the BATSE correlations are still valid at lower energies (6-25 keV). Furthermore, we found that the photon energy dependence for the spectral lags can be reconciled with the simple curvature effect model. We discuss the implications of these results from various points of view. C1 [Arimoto, Makoto; Kawai, Nobuyuki; Asano, Katsuaki; Shimokawabe, Takashi; Pazmino, Nicolas Vasquez] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Hurley, Kevin; Jernigan, J. Garrett; Butler, Nat] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Suzuki, Motoko; Matsuoka, Masaru] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki 3058505, Japan. [Nakagawa, Yujin E.; Tamagawa, Toru] RIKEN, Wako, Saitama 3510198, Japan. [Sato, Rie] Inst Space & Astronaut Sci JAXA, Chuo Ku, Sagamihara, Kanagawa 2528510, Japan. [Yoshida, Atsumasa; Sugita, Satoshi; Takahashi, Ichiro] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2528558, Japan. [Shirasaki, Yuji] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Atteia, Jean-Luc; Pelangeon, Alexandre] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Vanderspek, Roland; Prigozhin, Gregory; Villasenor, Joel; Crew, Geoffrey B.; Ricker, George R.; Levine, Alan; Doty, John P.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Doty, John P.] Noqsi Aerosp Ltd, Pine, CO 80470 USA. [Graziani, Carlo; Donaghy, Timothy Q.; Lamb, Donald Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Sakamoto, Takanori] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dezalay, Jean-Pascal; Olive, Jean-Francois] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Pizzichini, Graziella] IASF Bologna, Ist Nazl Astrofis, I-40129 Bologna, Italy. [Fenimore, Edward; Galassi, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Woosley, Stanford E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Boer, Michel] Observ Haute Provence, CNRS, OAMP, F-04870 St Michel lObservatoire, France. [Braga, Joao] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, Brazil. [Manchanda, Ravi] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. RP Arimoto, M (reprint author), Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. EM arimoto@hp.phys.titech.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan through Tokyo Institute of Technology [20740102]; Italian Space Agency [1/088/06/0] FX We appreciate the referee, Prof. Jon Hakkila, for his fruitful comments, which have improved our paper. M. Arimoto acknowledges financial support from the Global Center of Excellence Program by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology. This work has been supported by a Grant-in-Aid for Young Scientists (B) 20740102 from the MEXT. G. Pizzichini acknowledges financial support from the Italian Space Agency (ASH via contract 1/088/06/0. NR 30 TC 11 Z9 11 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD APR 25 PY 2010 VL 62 IS 2 BP 487 EP 499 DI 10.1093/pasj/62.2.487 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624QP UT WOS:000279834900025 ER PT J AU Yokoyama, T Hysell, DL AF Yokoyama, Tatsuhiro Hysell, David L. TI A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPREAD F AB In order to study nighttime medium-scale traveling ionospheric disturbances (MSTIDs), we have developed a new midlatitude ionosphere electrodynamics coupling model (MIECO) which can model the coupling process between the E and F regions with dipole magnetic field lines. Using the new model, MSTID structure is reproduced from random perturbation on an E-s layer by the coupled Perkins and sporadic-E (E-s)-layer instabilities in a wide latitudinal range. A typical wavelength of similar to 150 km, larger amplitude, and smaller MSTID's tilt angles at lower latitudes are consistent with observations. It is shown that the polarization process in the E region driven by neutral winds is essentially important for the full development of MSTIDs as well as the seeding of NW-SE perturbation in the F region. Citation: Yokoyama, T., and D. L. Hysell (2010), A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances, Geophys. Res. Lett., 37, L08105, doi: 10.1029/2010GL042598. C1 [Yokoyama, Tatsuhiro; Hysell, David L.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. RP Yokoyama, T (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 674, Greenbelt, MD 20771 USA. EM ty78@cornell.edu FU Japan Society for the Promotion of Science (JSPS) FX Computation in the present study was performed with the supercomputer at Nagoya University through the joint research program of the Solar-Terrestrial Environment Laboratory, Nagoya University. T. Y. is supported by Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad. NR 18 TC 21 Z9 21 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 22 PY 2010 VL 37 AR L08105 DI 10.1029/2010GL042598 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 587YP UT WOS:000277033000002 ER PT J AU Henderson, MG Donovan, EF Foster, JC Mann, IR Immel, TJ Mende, SB Sigwarth, JB AF Henderson, M. G. Donovan, E. F. Foster, J. C. Mann, I. R. Immel, T. J. Mende, S. B. Sigwarth, J. B. TI Start-to-end global imaging of a sunward propagating, SAPS-associated giant undulation event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DIFFUSE AURORAL BOUNDARY; LARGE-AMPLITUDE UNDULATIONS; STRATIFIED SHEAR-LAYER; PARTICLE SIMULATION; DETACHED ARCS; INSTABILITY; FLOW; STABILITY; EMISSION AB We present high time resolution global imaging of a sunward propagating giant undulation event from start to finish. The event occurred on 24 November 2001 during a very disturbed storm interval. The giant undulations began to develop at around 1345 UTC and persisted for approximately 2 h. The sunward propagation speed was on the order of 0.6 km/s (relative to magnetic latitude-magnetic local time coordinate system). The undulations had a wavelength of similar to 718 km and amplitudes of similar to 890 km and produced ULF pulsations on the ground with a period of similar to 1108 s. We show (1) that the undulations were associated with subauroral polarization stream (SAPS) flows that were caused by the proton plasma sheet penetrating substantially farther earthward than the electron plasma sheet on the duskside and (2) that they may have been related to the arrival on the duskside of a substorm-associated westward traveling surge-like structure. The observations appear to be consistent with the development of a shear flow and/or ballooning type of instability at the plasmapause driven by intense SAPS-associated shear flows. C1 [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Donovan, E. F.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Foster, J. C.] MIT, Haystack Observ, Westford, MA 01886 USA. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G2, Canada. [Immel, T. J.; Mende, S. B.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Sigwarth, J. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Henderson, MG (reprint author), Los Alamos Natl Lab, ISR-1,MS-D466, Los Alamos, NM 87544 USA. EM mghenderson@lanl.gov RI Henderson, Michael/A-3948-2011; OI Henderson, Michael/0000-0003-4975-9029; Donovan, Eric/0000-0002-8557-4155 FU NSF GEM [ATM-0202303]; Science and Technology Facilities Council FX The research at Los Alamos National Laboratory was supported by NSF GEM grant ATM-0202303. The SAMNET is operated by the Department of Communications Systems at Lancaster University, United Kingdom, and is funded by the Science and Technology Facilities Council. The Sym-H index data were provided by the World Data Center for Geomagnetism at Kyoto University. The polar magnetic field data were obtained via the UCLA online data server, and we thank C. Russell for making these data available there. We would also like to acknowledge the efforts of R. Skoug in providing us with corrected ACE solar wind data. M. G. H. points out that much of the contents of this paper was first presented at the fall 2002 AGU meeting and apologizes to coauthors for taking so long to publish the results. NR 39 TC 6 Z9 6 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 22 PY 2010 VL 115 AR A04210 DI 10.1029/2009JA014106 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ZU UT WOS:000277036300001 ER PT J AU Stevenson, KB Harrington, J Nymeyer, S Madhusudhan, N Seager, S Bowman, WC Hardy, RA Deming, D Rauscher, E Lust, NB AF Stevenson, Kevin B. Harrington, Joseph Nymeyer, Sarah Madhusudhan, Nikku Seager, Sara Bowman, William C. Hardy, Ryan A. Deming, Drake Rauscher, Emily Lust, Nate B. TI Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b SO NATURE LA English DT Article ID EXTRASOLAR GIANT PLANETS; HOT NEPTUNE; M-DWARF; CHEMICAL-EQUILIBRIUM; EMISSION-SPECTRUM; SPACE-TELESCOPE; HD 189733B; SPITZER; TEMPERATURE; TRANSIT AB The nearby extrasolar planet GJ 436b-which has been labelled as a 'hot Neptune'-reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass(1,2), and the latter constrains the planet's temperature(3,4) and, with measurements at multiple wavelengths, its atmospheric composition. Previous work(5) using transmission spectroscopy failed to detect the 1.4-mu m-water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH(4)) deficiency relative to thermochemical equilibrium models(6) for the predicted hydrogen-dominated atmosphere(7,8). Moreover, we report the presence of some H(2)O and traces of CO(2). Because CH(4) is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing(9) and polymerization of methane(10) into substances such as ethylene may be required to explain the hot Neptune's small CH(4)-to-CO ratio, which is at least 10(5) times smaller than predicted(6). C1 [Stevenson, Kevin B.; Harrington, Joseph; Nymeyer, Sarah; Bowman, William C.; Hardy, Ryan A.; Lust, Nate B.] Univ Cent Florida, Dept Phys, Planetary Sci Grp, Orlando, FL 32816 USA. [Madhusudhan, Nikku; Seager, Sara] MIT, Dept Phys, Cambridge, MA 02139 USA. [Madhusudhan, Nikku; Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Rauscher, Emily] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Stevenson, KB (reprint author), Univ Cent Florida, Dept Phys, Planetary Sci Grp, Orlando, FL 32816 USA. EM kevin218@knights.ucf.edu RI Harrington, Joseph/E-6250-2011; OI Hardy, Ryan/0000-0002-3849-9551; Harrington, Joseph/0000-0002-8955-8531; Rauscher, Emily/0000-0003-3963-9672 FU US NSF; US NASA; JPL/Caltech FX We thank the Spitzer staff for rapid scheduling; M. Gillon, A. Lanotte and T. Loredo for discussions; D. Wilson for contributed code; and A. Wright for manuscript comments. We thank the following for software: the Free Software Foundation, W. Landsman and other contributors to the Interactive Data Language Astronomy Library, contributors to SciPy, Matplotlib and the Python programming language, and the open-source community. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This material is based on work supported by the US NSF and by the US NASA through an award issued by JPL/Caltech. NR 30 TC 130 Z9 130 U1 2 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 22 PY 2010 VL 464 IS 7292 BP 1161 EP 1164 DI 10.1038/nature09013 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586FR UT WOS:000276891100030 PM 20414304 ER PT J AU Ando, M Kawamura, S Seto, N Sato, S Nakamura, T Tsubono, K Takashima, T Funaki, I Numata, K Kanda, N Tanaka, T Ioka, K Agatsuma, K Aoyanagi, K Arai, K Araya, A Asada, H Aso, Y Chiba, T Ebisuzaki, T Ejiri, Y Enoki, M Eriguchi, Y Fujimoto, MK Fujita, R Fukushima, M Futamase, T Harada, T Hashimoto, T Hayama, K Hikida, W Himemoto, Y Hirabayashi, H Hiramatsu, T Hong, FL Horisawa, H Hosokawa, M Ichiki, K Ikegami, T Inoue, KT Ishidoshiro, K Ishihara, H Ishikawa, T Ishizaki, H Ito, H Itoh, Y Izumi, K Kawano, I Kawashima, N Kawazoe, F Kishimoto, N Kiuchi, K Kobayashi, S Kohri, K Koizumi, H Kojima, Y Kokeyama, K Kokuyama, W Kotake, K Kozai, Y Kunimori, H Kuninaka, H Kuroda, K Maeda, K Matsuhara, H Mino, Y Miyakawa, O Miyamoto, U Miyoki, S Morimoto, MY Morisawa, T Moriwaki, S Mukohyama, S Musha, M Nagano, S Naito, I Nakamura, K Nakamura, M Nakano, H Nakao, K Nakasuka, S Nakayama, Y Nakazawa, K Nishida, E Nishiyama, K Nishizawa, A Niwa, Y Noumi, T Obuchi, Y Ohashi, M Ohishi, N Ohkawa, M Okada, K Okada, N Oohara, K Sago, N Saijo, M Saito, R Sakagami, M Sakai, S Sakata, S Sasaki, M Sato, T Shibata, M Shinkai, H Somiya, K Sotani, H Sugiyama, N Suwa, Y Suzuki, R Tagoshi, H Takahashi, F Takahashi, K Takahashi, K Takahashi, R Takahashi, R Takahashi, T Takahashi, H Akiteru, T Takano, T Taniguchi, K Taruya, A Tashiro, H Torii, Y Toyoshima, M Tsujikawa, S Tsunesada, Y Ueda, A Ueda, K Utashima, M Wakabayashi, Y Yagi, K Yamakawa, H Yamamoto, K Yamazaki, T Yokoyama, J Yoo, CM Yoshida, S Yoshino, T Sun, KX AF Ando, Masaki Kawamura, Seiji Seto, Naoki Sato, Shuichi Nakamura, Takashi Tsubono, Kimio Takashima, Takeshi Funaki, Ikkoh Numata, Kenji Kanda, Nobuyuki Tanaka, Takahiro Ioka, Kunihito Agatsuma, Kazuhiro Aoyanagi, Koh-suke Arai, Koji Araya, Akito Asada, Hideki Aso, Yoichi Chiba, Takeshi Ebisuzaki, Toshikazu Ejiri, Yumiko Enoki, Motohiro Eriguchi, Yoshiharu Fujimoto, Masa-Katsu Fujita, Ryuichi Fukushima, Mitsuhiro Futamase, Toshifumi Harada, Tomohiro Hashimoto, Tatsuaki Hayama, Kazuhiro Hikida, Wataru Himemoto, Yoshiaki Hirabayashi, Hisashi Hiramatsu, Takashi Hong, Feng-Lei Horisawa, Hideyuki Hosokawa, Mizuhiko Ichiki, Kiyotomo Ikegami, Takeshi Inoue, Kaiki T. Ishidoshiro, Koji Ishihara, Hideki Ishikawa, Takehiko Ishizaki, Hideharu Ito, Hiroyuki Itoh, Yousuke Izumi, Kiwamu Kawano, Isao Kawashima, Nobuki Kawazoe, Fumiko Kishimoto, Naoko Kiuchi, Kenta Kobayashi, Shiho Kohri, Kazunori Koizumi, Hiroyuki Kojima, Yasufumi Kokeyama, Keiko Kokuyama, Wataru Kotake, Kei Kozai, Yoshihide Kunimori, Hiroo Kuninaka, Hitoshi Kuroda, Kazuaki Maeda, Kei-ichi Matsuhara, Hideo Mino, Yasushi Miyakawa, Osamu Miyamoto, Umpei Miyoki, Shinji Morimoto, Mutsuko Y. Morisawa, Toshiyuki Moriwaki, Shigenori Mukohyama, Shinji Musha, Mitsuru Nagano, Shigeo Naito, Isao Nakamura, Kouji Nakamura, Masahiro Nakano, Hiroyuki Nakao, Kenichi Nakasuka, Shinichi Nakayama, Yoshinori Nakazawa, Kazuhiro Nishida, Erina Nishiyama, Kazutaka Nishizawa, Atsushi Niwa, Yoshito Noumi, Taiga Obuchi, Yoshiyuki Ohashi, Masatake Ohishi, Naoko Ohkawa, Masashi Okada, Kenshi Okada, Norio Oohara, Kenichi Sago, Norichika Saijo, Motoyuki Saito, Ryo Sakagami, Masaaki Sakai, Shin-ichiro Sakata, Shihori Sasaki, Misao Sato, Takashi Shibata, Masaru Shinkai, Hisaaki Somiya, Kentaro Sotani, Hajime Sugiyama, Naoshi Suwa, Yudai Suzuki, Rieko Tagoshi, Hideyuki Takahashi, Fuminobu Takahashi, Kakeru Takahashi, Keitaro Takahashi, Ryutaro Takahashi, Ryuichi Takahashi, Tadayuki Takahashi, Hirotaka Akiteru, Takamori Takano, Tadashi Taniguchi, Keisuke Taruya, Atsushi Tashiro, Hiroyuki Torii, Yasuo Toyoshima, Morio Tsujikawa, Shinji Tsunesada, Yoshiki Ueda, Akitoshi Ueda, Ken-ichi Utashima, Masayoshi Wakabayashi, Yaka Yagi, Kent Yamakawa, Hiroshi Yamamoto, Kazuhiro Yamazaki, Toshitaka Yokoyama, Jun'ichi Yoo, Chul-Moon Yoshida, Shijun Yoshino, Taizoh Sun, Ken-Xun TI DECIGO and DECIGO pathfinder SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT 8th Edoardo Amaldi Conference on Gravitational Waves CY JUN 22-26, 2009 CL Columbia Univ, New York, NY HO Columbia Univ ID LASER-INTERFEROMETER; GRAVITATIONAL-WAVES; BLACK-HOLE; RADIATION; GALAXY; STARS; LIGO AB A space gravitational-wave antenna, DECIGO (DECI-hertz interferometer Gravitational wave Observatory), will provide fruitful insights into the universe, particularly on the formation mechanism of supermassive black holes, dark energy and the inflation of the universe. In the current pre-conceptual design, DECIGO will be comprising four interferometer units; each interferometer unit will be formed by three drag-free spacecraft with 1000 km separation. Since DECIGO will be an extremely challenging mission with high-precision formation flight with long baseline, it is important to increase the technical feasibility before its planned launch in 2027. Thus, we are planning to launch two milestone missions. DECIGO pathfinder (DPF) is the first milestone mission, and key components for DPF are being tested on ground and in orbit. In this paper, we review the conceptual design and current status of DECIGO and DPF. C1 [Ando, Masaki; Seto, Naoki; Nakamura, Takashi; Tashiro, Hiroyuki; Yagi, Kent] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Kawamura, Seiji; Fujimoto, Masa-Katsu; Hayama, Kazuhiro; Ishizaki, Hideharu; Nakamura, Kouji; Ohishi, Naoko; Takahashi, Ryutaro; Torii, Yasuo; Ueda, Akitoshi] Natl Inst Nat Sci, Natl Astron Observ Japan, TAMA Project Off, Mitaka, Tokyo 1818588, Japan. [Sato, Shuichi] Hosei Univ, Fac Engn, Tokyo 1848584, Japan. [Tsubono, Kimio; Agatsuma, Kazuhiro; Aso, Yoichi; Ishidoshiro, Koji; Kokuyama, Wataru; Nakazawa, Kazuhiro; Okada, Kenshi; Saito, Ryo; Suwa, Yudai; Takahashi, Kakeru] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Takashima, Takeshi; Funaki, Ikkoh; Hashimoto, Tatsuaki; Ishikawa, Takehiko; Koizumi, Hiroyuki; Kuninaka, Hitoshi; Matsuhara, Hideo; Morimoto, Mutsuko Y.; Nishiyama, Kazutaka; Sakai, Shin-ichiro; Takahashi, Tadayuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Numata, Kenji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kanda, Nobuyuki; Ishihara, Hideki; Nakao, Kenichi] Osaka City Univ, Dept Phys, Osaka 5588585, Japan. [Tanaka, Takahiro; Morisawa, Toshiyuki; Sago, Norichika; Sasaki, Misao; Shibata, Masaru] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Ioka, Kunihito] High Energy Accelerator Org, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Aoyanagi, Koh-suke; Kiuchi, Kenta; Maeda, Kei-ichi] Waseda Univ, Dept Phys, Shinjuku Ku, Tokyo 1698555, Japan. [Arai, Koji; Izumi, Kiwamu] CALTECH, LIGO Project, Pasadena, CA 91125 USA. [Araya, Akito; Akiteru, Takamori] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Asada, Hideki] Hirosaki Univ, Dept Earth & Environm Sci, Aomori 0368560, Japan. [Chiba, Takeshi] Nihon Univ Setagaya, Dept Phys, Tokyo 1568550, Japan. [Ebisuzaki, Toshikazu] RIKEN, Wako, Saitama 3510198, Japan. [Ejiri, Yumiko; Nishida, Erina; Suzuki, Rieko; Wakabayashi, Yaka] Ochanomizu Univ, Grad Sch Human & Sci, Bunkyo Ku, Tokyo 1128610, Japan. [Enoki, Motohiro] Tokyo Keizai Univ, Fac Business Adm, Tokyo 1858502, Japan. [Eriguchi, Yoshiharu] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, Tokyo 1538902, Japan. [Fujita, Ryuichi] Raman Res Inst, Bangalore 560080, Karnataka, India. [Futamase, Toshifumi; Yoshida, Shijun] Tohoku Univ, Astron Inst, Sendai, Miyagi 9808578, Japan. [Harada, Tomohiro; Saijo, Motoyuki] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Hikida, Wataru; Tagoshi, Hideyuki] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Himemoto, Yoshiaki] Nihon Univ, Coll Ind Technol, Chiba 2758576, Japan. [Hirabayashi, Hisashi] Shiroyamacho, Wakabadai, Kanagawa 2200112, Japan. [Hiramatsu, Takashi; Kuroda, Kazuaki; Miyakawa, Osamu; Miyoki, Shinji; Ohashi, Masatake] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Hong, Feng-Lei; Ikegami, Takeshi] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058563, Japan. [Horisawa, Hideyuki] Tokai Univ, Dept Aeronaut & Astronaut, Kanagawa 2591292, Japan. [Hosokawa, Mizuhiko; Ito, Hiroyuki; Nagano, Shigeo; Toyoshima, Morio] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan. [Ichiki, Kiyotomo; Sugiyama, Naoshi; Takahashi, Keitaro] Nagoya Univ, Dept Phys, Aichi 4648602, Japan. [Inoue, Kaiki T.] Kinki Univ, Sch Sci & Engn, Higashi Ku, Osaka 5778502, Japan. [Itoh, Yousuke; Taniguchi, Keisuke] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Kawano, Isao; Utashima, Masayoshi] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki 3058505, Japan. [Kawashima, Nobuki] Kinki Univ, Liaison Ctr, Higashi Ku, Osaka 5778502, Japan. [Kawazoe, Fumiko; Yamamoto, Kazuhiro] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Hannover, Germany. [Kishimoto, Naoko] Kyoto Univ, Dept Aeronaut & Astronaut, Kyoto 6110011, Japan. [Kobayashi, Shiho] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead L41 1LD, Merseyside, England. [Kohri, Kazunori] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Kojima, Yasufumi] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Kokeyama, Keiko] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Kotake, Kei; Nishizawa, Atsushi] Natl Inst Nat Sci, Natl Astron Observ Japan, Div Theoret Astrophys, Mitaka, Tokyo 1818588, Japan. [Kozai, Yoshihide] Gunma Astron Observ, Gunma 3770702, Japan. [Kunimori, Hiroo] Natl Inst Informat & Communicat Technol, Bunkyo Ku, Tokyo 1130001, Japan. [Miyamoto, Umpei] Rikkyo Univ, Inst Theoret Phys, Toshima Ku, Tokyo 1718501, Japan. [Moriwaki, Shigenori] Univ Tokyo, Dept Adv Mat Sci, Chiba 2778561, Japan. [Mukohyama, Shinji; Takahashi, Fuminobu] Univ Tokyo, IPMU, Chiba 2778568, Japan. [Ueda, Ken-ichi] Univ Elect Communicat, Inst Laser Sci, Tokyo 1828585, Japan. [Naito, Isao] Numakage, Saitama 3360027, Japan. [Nakano, Hiroyuki] Rochester Inst Technol, Rochester, NY 14623 USA. [Nakasuka, Shinichi; Noumi, Taiga] Univ Tokyo, Dept Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Nakayama, Yoshinori] Natl Def Acad, Dept Aerosp Engn, Kanagawa 2398686, Japan. [Niwa, Yoshito] Natl Inst Nat Sci, Natl Astron Observ Japan, JASMINE Project Off, Mitaka, Tokyo 1818588, Japan. [Ohkawa, Masashi] Niigata Univ, Dept Biocybernet, Niigata 9502181, Japan. [Oohara, Kenichi] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Sakagami, Masaaki] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan. [Sakata, Shihori] Observ Cote Azur, F-06003 Nice 4, France. [Sato, Takashi] Niigata Univ, Dept Elect & Elect Engn, Niigata 9502181, Japan. [Shinkai, Hisaaki] Osaka Inst Technol, Dept Informat Syst, Osaka 5730196, Japan. [Sotani, Hajime] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Takahashi, Ryuichi] Hirosaki Univ, Fac Sci & Technol, Aomori 0368561, Japan. [Takahashi, Hirotaka] Univ Technol, Dept Management & Informat Syst Sci, Niigata 9402188, Japan. [Takano, Tadashi] Nihon Univ, Dept Elect & Comp Sci, Chiba 2748501, Japan. [Taruya, Atsushi; Yokoyama, Jun'ichi] Univ Tokyo, Res Ctr Early Univ, Bunkyo Ku, Tokyo 1130033, Japan. [Tsujikawa, Shinji] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan. [Tsunesada, Yoshiki] Tokyo Inst Technol, Grad Sch Sci & Engn Phys, Meguro Ku, Tokyo 1528550, Japan. [Yamakawa, Hiroshi] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 6110011, Japan. [Yamazaki, Toshitaka] Natl Inst Nat Sci, Natl Astron Observ Japan, ALMA Project Off, Mitaka, Tokyo 1818588, Japan. [Yoo, Chul-Moon] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Yoshino, Taizoh] Nakamura Minami, Tokyo 1760025, Japan. [Sun, Ken-Xun] Stanford Univ, Stanford, CA 94305 USA. RP Ando, M (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. EM ando@scphys.kyoto-u.ac.jp RI Ebisuzaki, Toshikazu/N-6998-2014; M, Manjunath/N-4000-2014; Takahashi, Keitaro/L-5930-2015; Kawazoe, Fumiko/F-7700-2011; Chiba, Takeshi/G-3510-2011; Mukohyama, Shinji/A-4401-2011; Taniguchi, Keisuke/G-2694-2011; Takahashi, Ryuichi/F-3362-2013; Nakamura, Kouji/H-6364-2013; Suwa, Yudai/G-9711-2012; ANDO, MASAKI/G-4989-2014; Hong, Feng-Lei/N-3098-2014; OI Ebisuzaki, Toshikazu/0000-0002-3918-1166; M, Manjunath/0000-0001-8710-0730; Chiba, Takeshi/0000-0002-9737-2569; Nakamura, Kouji/0000-0001-6148-4289; ANDO, MASAKI/0000-0002-8865-9998; Hong, Feng-Lei/0000-0003-1318-2635; Nishizawa, Atsushi/0000-0003-3562-0990; Sasaki, Misao/0000-0001-5924-0664; Miyamoto, Umpei/0000-0002-0901-624X; Nakano, Hiroyuki/0000-0001-7665-0796 NR 33 TC 20 Z9 20 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 21 PY 2010 VL 27 IS 8 AR 084010 DI 10.1088/0264-9381/27/8/084010 PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654FQ UT WOS:000282154300011 ER PT J AU Babak, S Baker, JG Benacquista, MJ Cornish, NJ Larson, SL Mandel, I McWilliams, ST Petiteau, A Porter, EK Robinson, EL Vallisneri, M Vecchio, A Adams, M Arnaud, KA Blaut, A Bridges, M Cohen, M Cutler, C Feroz, F Gair, JR Graff, P Hobson, M Key, JS Krolak, A Lasenby, A Prix, R Shang, Y Trias, M Veitch, J Whelan, JT AF Babak, Stanislav Baker, John G. Benacquista, Matthew J. Cornish, Neil J. Larson, Shane L. Mandel, Ilya McWilliams, Sean T. Petiteau, Antoine Porter, Edward K. Robinson, Emma L. Vallisneri, Michele Vecchio, Alberto Adams, Matt Arnaud, Keith A. Blaut, Arkadiusz Bridges, Michael Cohen, Michael Cutler, Curt Feroz, Farhan Gair, Jonathan R. Graff, Philip Hobson, Mike Key, Joey Shapiro Krolak, Andrzej Lasenby, Anthony Prix, Reinhard Shang, Yu Trias, Miquel Veitch, John Whelan, John T. CA Mock LISA Data Challenge Task For Challenge 3 TI The Mock LISA Data Challenges: from challenge 3 to challenge 4 SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT 8th Edoardo Amaldi Conference on Gravitational Waves CY JUN 22-26, 2009 CL Columbia Univ, New York, NY HO Columbia Univ ID BLACK-HOLE BINARIES; SEARCH AB The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in April 2008, which demonstrated the positive recovery of signals from chirping galactic binaries, from spinning supermassive-black-hole binaries (with optimal SNRs between similar to 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega(gw)(f) similar to 10(-11), slightly below the LISA instrument noise. C1 [Babak, Stanislav; Petiteau, Antoine; Robinson, Emma L.; Shang, Yu] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany. [Baker, John G.; McWilliams, Sean T.; Arnaud, Keith A.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Benacquista, Matthew J.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Cornish, Neil J.; Adams, Matt; Key, Joey Shapiro] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Larson, Shane L.] Utah State Univ, Dept Phys, Logan, UT 84322 USA. [Mandel, Ilya] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Porter, Edward K.] Univ Paris 07, UMR 7164, APC, F-75025 Paris 13, France. [Vallisneri, Michele; Cutler, Curt] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vallisneri, Michele; Cutler, Curt] CALTECH, Pasadena, CA 91125 USA. [Vecchio, Alberto; Veitch, John] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, W Midlands, England. [Blaut, Arkadiusz] Univ Wroclaw, Inst Theoret Phys, Wroclaw, Poland. [Bridges, Michael; Feroz, Farhan; Graff, Philip; Hobson, Mike; Lasenby, Anthony] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Gair, Jonathan R.] Univ Cambridge, Inst Astron, Cambridge CB30HA, England. [Krolak, Andrzej] Polish Acad Sci, Inst Math, Warsaw, Poland. [Lasenby, Anthony] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB30HA, England. [Prix, Reinhard] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany. [Trias, Miquel] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Spain. [Whelan, John T.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA. [Whelan, John T.] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA. RP Babak, S (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Golm, Germany. EM Michele.Vallisneri@jpl.nasa.gov RI Feroz, Farhan/E-7127-2011; Larson, Shane/E-8576-2010; Vecchio, Alberto/F-8310-2015; OI Vecchio, Alberto/0000-0002-6254-1617; Whelan, John/0000-0001-5710-6576; Mandel, Ilya/0000-0002-6134-8946; Veitch, John/0000-0002-6508-0713 NR 32 TC 25 Z9 27 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 21 PY 2010 VL 27 IS 8 AR 084009 DI 10.1088/0264-9381/27/8/084009 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654FQ UT WOS:000282154300010 ER PT J AU Hobbs, G Archibald, A Arzoumanian, Z Backer, D Bailes, M Bhat, NDR Burgay, M Burke-Spolaor, S Champion, D Cognard, I Coles, W Cordes, J Demorest, P Desvignes, G Ferdman, RD Finn, L Freire, P Gonzalez, M Hessels, J Hotan, A Janssen, G Jenet, F Jessner, A Jordan, C Kaspi, V Kramer, M Kondratiev, V Lazio, J Lazaridis, K Lee, KJ Levin, Y Lommen, A Lorimer, D Lynch, R Lyne, A Manchester, R McLaughlin, M Nice, D Oslowski, S Pilia, M Possenti, A Purver, M Ransom, S Reynolds, J Sanidas, S Sarkissian, J Sesana, A Shannon, R Siemens, X Stairs, I Stappers, B Stinebring, D Theureau, G van Haasteren, R van Straten, W WVerbiest, JP Yardley, DRB You, XP AF Hobbs, G. Archibald, A. Arzoumanian, Z. Backer, D. Bailes, M. Bhat, N. D. R. Burgay, M. Burke-Spolaor, S. Champion, D. Cognard, I. Coles, W. Cordes, J. Demorest, P. Desvignes, G. Ferdman, R. D. Finn, L. Freire, P. Gonzalez, M. Hessels, J. Hotan, A. Janssen, G. Jenet, F. Jessner, A. Jordan, C. Kaspi, V. Kramer, M. Kondratiev, V. Lazio, J. Lazaridis, K. Lee, K. J. Levin, Y. Lommen, A. Lorimer, D. Lynch, R. Lyne, A. Manchester, R. McLaughlin, M. Nice, D. Oslowski, S. Pilia, M. Possenti, A. Purver, M. Ransom, S. Reynolds, J. Sanidas, S. Sarkissian, J. Sesana, A. Shannon, R. Siemens, X. Stairs, I. Stappers, B. Stinebring, D. Theureau, G. van Haasteren, R. van Straten, W. WVerbiest, J. P. Yardley, D. R. B. You, X. P. TI The International Pulsar Timing Array project: using pulsars as a gravitational wave detector SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT 8th Edoardo Amaldi Conference on Gravitational Waves CY JUN 22-26, 2009 CL Columbia Univ, New York, NY HO Columbia Univ ID BLACK-HOLE BINARY; 3C 66B; SYSTEMS; PACKAGE; TEMPO2; LIMITS; TESTS AB The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project. C1 [Hobbs, G.; Burke-Spolaor, S.; Champion, D.; Manchester, R.; Oslowski, S.; Reynolds, J.; Sarkissian, J.] Australia Telescope Natl Facil, CSIRO, Epping, NSW 1710, Australia. [Archibald, A.; Kaspi, V.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arzoumanian, Z.] NASA Goddard Space Flight Ctr, CRESST USRA, Greenbelt, MD 20771 USA. [Backer, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Backer, D.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Oslowski, S.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Burgay, M.; Pilia, M.; Possenti, A.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. [Champion, D.; Freire, P.; Jessner, A.; Kramer, M.; Lazaridis, K.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Cognard, I.; Desvignes, G.; Ferdman, R. D.; Theureau, G.] Observ Paris, Stn Radioastron Nanay, F-18330 Nancy, France. [Coles, W.] Univ Calif San Diego, San Diego, CA 92103 USA. [Cordes, J.; Shannon, R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Demorest, P.; Ransom, S.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Finn, L.; Sesana, A.] Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA. [Gonzalez, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hessels, J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Hotan, A.] Curtin Univ, Dept Imaging & Appl Phys, Bentley, WA, Australia. [Janssen, G.; Jordan, C.; Kramer, M.; Lyne, A.; Purver, M.; Sanidas, S.; Stappers, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Jenet, F.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Kondratiev, V.; Lorimer, D.; McLaughlin, M.; WVerbiest, J. P.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Lazio, J.] Naval Res Lab, Washington, DC 20375 USA. [Lee, K. J.] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Levin, Y.; van Haasteren, R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Lommen, A.] Franklin & Marshall Coll, Lancaster, PA 17604 USA. [Lynch, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Nice, D.] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA. [Siemens, X.] Univ Wisconsin, Dept Phys, Ctr Gravitat & Cosmol, Milwaukee, WI 53201 USA. [Stinebring, D.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Yardley, D. R. B.] Univ Sydney, Dept Phys & Astron, Sydney, NSW 2006, Australia. [You, X. P.] SW Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China. RP Hobbs, G (reprint author), Australia Telescope Natl Facil, CSIRO, POB 76, Epping, NSW 1710, Australia. EM george.hobbs@csiro.au RI Bhat, Ramesh/B-7396-2013; Finn, Lee Samuel/A-3452-2009; Kondratiev, Vladislav/N-1105-2015; Sesana, Alberto/Q-9826-2016; OI Ransom, Scott/0000-0001-5799-9714; van Straten, Willem/0000-0003-2519-7375; Oslowski, Stefan/0000-0003-0289-0732; Nice, David/0000-0002-6709-2566; Archibald, Anne/0000-0003-0638-3340; Finn, Lee Samuel/0000-0002-3937-0688; Kondratiev, Vladislav/0000-0001-8864-7471; Sesana, Alberto/0000-0003-4961-1606; Champion, David/0000-0003-1361-7723; Shannon, Ryan/0000-0002-7285-6348; Burgay, Marta/0000-0002-8265-4344 NR 33 TC 201 Z9 205 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 21 PY 2010 VL 27 IS 8 AR 084013 DI 10.1088/0264-9381/27/8/084013 PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654FQ UT WOS:000282154300014 ER PT J AU Thorpe, JI AF Thorpe, James Ira TI LISA long-arm interferometry SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT 8th Edoardo Amaldi Conference on Gravitational Waves CY JUN 22-26, 2009 CL Columbia Univ, New York, NY HO Columbia Univ ID LASER FREQUENCY STABILIZATION; PHASE-LOCKING AB The Laser Interferometer Space Antenna (LISA) will observe gravitational radiation in the millihertz band by measuring picometer-level fluctuations in the distance between drag-free proof masses over baselines of approximately 5x10(9) m. The measurement over each baseline will be divided into three parts: two 'short-arm' measurements between the proof masses and a fiducial point on their respective spacecraft, and a 'long-arm' measurement between fiducial points on separate spacecraft. This work focuses on the technical challenges associated with these long-arm measurements and the techniques that have been developed to overcome them. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thorpe, JI (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM james.i.thorpe@nasa.gov RI Thorpe, James/D-3150-2012 NR 32 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 21 PY 2010 VL 27 IS 8 AR 084008 DI 10.1088/0264-9381/27/8/084008 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 654FQ UT WOS:000282154300009 ER PT J AU Nesvorny, D Jenniskens, P Levison, HF Bottke, WF Vokrouhlicky, D Gounelle, M AF Nesvorny, David Jenniskens, Peter Levison, Harold F. Bottke, William F. Vokrouhlicky, David Gounelle, Matthieu TI COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; minor planets, asteroids: general; zodiacal dust ID SOLAR-SYSTEM DUST; LATE HEAVY BOMBARDMENT; JUPITER-FAMILY COMETS; LONG-PERIOD COMETS; SUN-LIKE STARS; INTERPLANETARY DUST; ASTEROID BELT; KUIPER-BELT; MIDINFRARED SPECTRUM; VELOCITY DISTRIBUTION AB The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiter-family comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%-95% of the observed mid-infrared emission is produced by particles from JFCs and < 10% by dust from long-period comets. The JFC particles that contribute to the observed cross section area of the zodiacal cloud are typically D approximate to 100 mu m in diameter. Asteroidal dust is found to be present at < 10%. We suggest that spontaneous disruptions of JFCs, rather than the usual cometary activity driven by sublimating volatiles, is the main mechanism that liberates cometary particles into the zodiacal cloud. The ejected mm to cm-sized particles, which may constitute the basic grain size in comets, are disrupted on less than or similar to 10,000 yr to produce the 10-1000 mu m grains that dominate the thermal emission and mass influx. Breakup products with D > 100 mu m undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting-Robertson (PR) drag. Upon reaching D < 100 mu m, the particles typically drift down to < 1 AU without suffering further disruptions. The resulting Earth-impact speed and direction of JFC particles is a strong function of particle size. While 300 mu m to 1 mm sporadic meteoroids are still on eccentric JFC-like orbits and impact from antihelion/helion directions, which is consistent with the aperture radar observations, the 10-300 mu m particles have their orbits circularized by PR drag, impact at low speeds, and are not detected by radar. Our results imply that JFC particles represent similar to 85% of the total mass influx at Earth. Since their atmospheric entry speeds are typically low (approximate to 14.5 km s(-1) mean for D = 100-200 mu m with approximate to 12 km s-1 being the most common case), many JFC grains should survive frictional heating and land on Earth's surface. This explains why most MMs collected in antarctic ice have primitive carbonaceous composition. The present mass of the inner zodiacal cloud at < 5 AU is estimated to be 1-2 x 10(19) g, mainly in D = 100-200 mu m particles. The inner zodiacal cloud should have been > 104 times brighter during the Late Heavy Bombardment (LHB) epoch approximate to 3.8 Gyr ago, when the outer planets scattered numerous comets into the inner solar system. The bright debris disks with a large 24 mu m excess observed around mature stars may be an indicatin of massive cometary populations existing in those systems. We estimate that at least similar to 10(22), similar to 2 x 10(21), and similar to 2 x 10(20) g of primitive dark dust material could have been accreted during LHB by the Earth, Mars, and Moon, respectively. C1 [Nesvorny, David; Levison, Harold F.; Bottke, William F.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Nesvorny, David; Levison, Harold F.; Bottke, William F.] NASA, Ctr Lunar Origin & Evolut, Lunar Sci Inst, Boulder, CO 80302 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Vokrouhlicky, David] Charles Univ Prague, Inst Astron, CR-18000 Prague 8, Czech Republic. [Gounelle, Matthieu] Museum Natl Hist Nat, Lab Mineral & Cosmochim Museum, F-75005 Paris, France. RP Nesvorny, D (reprint author), SW Res Inst, Dept Space Studies, 1050 Walnut St,Suite 400, Boulder, CO 80302 USA. FU NASA; Czech Grant Agency [205/08/0064]; Czech Ministry of Education [MSM0021620860] FX This work was supported by the NASA Planetary Geology and Geophysics and Planetary Astronomy programs. The work of D. V. was partially supported by the Czech Grant Agency (grant 205/08/0064) and the Research Program MSM0021620860 of the Czech Ministry of Education. We thank C. M. Lisse, A. Morbidelli, L. Dones, W. T. Reach, and two anonymous referees for their insightful comments on the manuscript. NR 145 TC 163 Z9 163 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 816 EP 836 DI 10.1088/0004-637X/713/2/816 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400009 ER PT J AU Bennett, DP Rhie, SH Nikolaev, S Gaudi, BS Udalski, A Gould, A Christie, GW Maoz, D Dong, S McCormick, J Szymanski, MK Tristram, PJ Macintosh, B Cook, KH Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L DePoy, DL Han, C Kaspi, S Lee, CU Mallia, F Natusch, T Park, BG Pogge, RW Polishook, D Abe, F Bond, IA Botzler, CS Fukui, A Hearnshaw, JB Itow, Y Kamiya, K Korpela, AV Kilmartin, PM Lin, W Ling, J Masuda, K Matsubara, Y Motomura, M Muraki, Y Nakamura, S Okumura, T Ohnishi, K Perrott, YC Rattenbury, NJ Sako, T Saito, T Sato, S Skuljan, L Sullivan, DJ Sumi, T Sweatman, WL Yock, PCM Albrow, M Allan, A Beaulieu, JP Bramich, DM Burgdorf, MJ Coutures, C Dominik, M Dieters, S Fouque, P Greenhill, J Horne, K Snodgrass, C Steele, I Tsapras, Y Chaboyer, B Crocker, A Frank, S AF Bennett, D. P. Rhie, S. H. Nikolaev, S. Gaudi, B. S. Udalski, A. Gould, A. Christie, G. W. Maoz, D. Dong, S. McCormick, J. Szymanski, M. K. Tristram, P. J. Macintosh, B. Cook, K. H. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. DePoy, D. L. Han, C. Kaspi, S. Lee, C-U. Mallia, F. Natusch, T. Park, B-G. Pogge, R. W. Polishook, D. Abe, F. Bond, I. A. Botzler, C. S. Fukui, A. Hearnshaw, J. B. Itow, Y. Kamiya, K. Korpela, A. V. Kilmartin, P. M. Lin, W. Ling, J. Masuda, K. Matsubara, Y. Motomura, M. Muraki, Y. Nakamura, S. Okumura, T. Ohnishi, K. Perrott, Y. C. Rattenbury, N. J. Sako, T. Saito, To. Sato, S. Skuljan, L. Sullivan, D. J. Sumi, T. Sweatman, W. L. Yock, P. C. M. Albrow, M. Allan, A. Beaulieu, J-P. Bramich, D. M. Burgdorf, M. J. Coutures, C. Dominik, M. Dieters, S. Fouque, P. Greenhill, J. Horne, K. Snodgrass, C. Steele, I. Tsapras, Y. Chaboyer, B. Crocker, A. Frank, S. CA OGLE Collaboration FUN Collaboration MOA Collaboration PLANET Collaboration RoboNet Collaboration TI MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; SURFACE BRIGHTNESS RELATIONS; LIMB-DARKENING COEFFICIENTS; M-CIRCLE-DOT; GALACTIC BULGE; GIANT PLANETS; LIGHT CURVES; DWARF STARS; SNOW LINE; EVENT MOA-2007-BLG-192 AB We present a new analysis of the Jupiter+Saturn analog system, OGLE-2006-BLG-109Lb,c, which was the first double planet system discovered with the gravitational microlensing method. This is the only multi-planet system discovered by any method with measured masses for the star and both planets. In addition to the signatures of two planets, this event also exhibits a microlensing parallax signature and finite source effects that provide a direct measure of the masses of the star and planets, and the expected brightness of the host star is confirmed by Keck AO imaging, yielding masses of M-* = 0.51(-0.04)(+0.05) M-circle dot, M-b = 231 +/- 19 M-circle plus, and M-c = 86 +/- 7 M-circle plus. The Saturn-analog planet in this system had a planetary light-curve deviation that lasted for 11 days, and as a result, the effects of the orbital motion are visible in the microlensing light curve. We find that four of the six orbital parameters are tightly constrained and that a fifth parameter, the orbital acceleration, is weakly constrained. No orbital information is available for the Jupiter-analog planet, but its presence helps to constrain the orbital motion of the Saturn-analog planet. Assuming co-planar orbits, we find an orbital eccentricity of epsilon = 0.15(-0.10) (+0.17) and an orbital inclination of i = 64 degrees(+ 4 degrees)(-7 degrees) The 95% confidence level lower limit on the inclination of i > 49 degrees implies that this planetary system can be detected and studied via radial velocity measurements using a telescope of greater than or similar to 30 m aperture. C1 [Bennett, D. P.; Rhie, S. H.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Nikolaev, S.; Macintosh, B.; Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Gaudi, B. S.; Gould, A.; Dong, S.; Pogge, R. W.; Frank, S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [Maoz, D.; Kaspi, S.; Polishook, D.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [McCormick, J.] Farm Cove Observ, Auckland 1706, New Zealand. [Tristram, P. J.; Kilmartin, P. M.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Han, C.] Chungbuk Natl Univ, Dept Phys, Chonju 371763, South Korea. [Lee, C-U.; Park, B-G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.] Campo Catino Astron Observ, I-03016 Frosinone, Italy. [Natusch, T.] AUT Univ, Sch Comp & Math Sci, Auckland, New Zealand. [Abe, F.; Fukui, A.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Motomura, M.; Nakamura, S.; Okumura, T.; Sako, T.; Sumi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bond, I. A.; Lin, W.; Ling, J.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland 1330, New Zealand. [Botzler, C. S.; Perrott, Y. C.; Rattenbury, N. J.; Skuljan, L.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand. [Hearnshaw, J. B.; Albrow, M.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Korpela, A. V.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501+, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sato, S.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Beaulieu, J-P.; Coutures, C.; Dieters, S.] CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Dominik, M.; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Fouque, P.] Univ Toulouse, LATT, CNRS, F-31400 Toulouse, France. [Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Snodgrass, C.] European So Observ, Santiago 19, Chile. [Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Tsapras, Y.] Las Cumbres Observ, Goleta, CA 93117 USA. [Chaboyer, B.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Crocker, A.] Univ Massachusetts, Dept Astron, Amherst, MA 01002 USA. RP Bennett, DP (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM bennett@nd.edu RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Greenhill, John/C-8367-2013; OI Dominik, Martin/0000-0002-3202-0343; Chaboyer, Brian/0000-0003-3096-4161; Snodgrass, Colin/0000-0001-9328-2905 FU NSF [AST-0708890, AST-0757888]; NASA [NNX07AL71G, NNG04GL51G]; Polish MNiSW [N20303032/4275]; U.S. Department of Energy [DE-AC52-07NA27344]; JSPS [JSPS18749004]; National Research Fund of Korea [2009-0081561]; Korea Astronomy and Space Science Institute FX We thank Ian Thompson and Andy McWilliam for the reduction of the Magellan/MIKE spectrum of the lens star and its bright neighbor. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. S.N.'s, B.M.'s and K.H.C.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. T. S. was supported by grant JSPS18749004. C. H. was supported by the National Research Fund of Korea 2009-0081561. B-GP and C-UL were supported by Korea Astronomy and Space Science Institute. Work by A. G. and S. D. was supported in part by grant AST-0757888 from the NSF. Work by B. S. G., A. G., and R. W. P. was supported in part by grant NNG04GL51G from NASA. NR 99 TC 58 Z9 58 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 837 EP 855 DI 10.1088/0004-637X/713/2/837 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400010 ER PT J AU Weisskopf, MC Guainazzi, M Jahoda, K Shaposhnikov, N O'Dell, SL Zavlin, VE Wilson-Hodge, C Elsner, RF AF Weisskopf, M. C. Guainazzi, M. Jahoda, K. Shaposhnikov, N. O'Dell, S. L. Zavlin, V. E. Wilson-Hodge, C. Elsner, R. F. TI ON CALIBRATIONS USING THE CRAB NEBULA AND MODELS OF THE NEBULAR X-RAY EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: miscellaneous; ISM: supernova remnants; methods: data analysis; pulsars: individual (Crab Pulsar); X-rays: individual (Crab Nebula) ID SPECTROSCOPY; PULSAR AB Motivated by a paper of Kirsch et al. on possible use of the Crab Nebula as a standard candle for calibrating X-ray response functions, we examine consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limit our analyses to three more modern X-ray instruments-the ROSAT/PSPC, the RXTE/Proportional Counter Array, and the XMM-Newton/EPIC-pn (burst mode). The results indicate a need to refine two of the three response functions studied. We are also able to distinguish between two current theoretical models for the system spectrum. C1 [Weisskopf, M. C.; O'Dell, S. L.; Wilson-Hodge, C.; Elsner, R. F.] NASA, MSFC, Space Sci Off, Huntsville, AL 35812 USA. [Guainazzi, M.] ESAC, Madrid, Spain. [Jahoda, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Shaposhnikov, N.] Univ Maryland, CRESST, GSFC, Dept Astron, College Pk, MD 20742 USA. [Zavlin, V. E.] Space Sci Off, MSFC, USRA, Huntsville, AL 35812 USA. RP Weisskopf, MC (reprint author), NASA, MSFC, Space Sci Off, Huntsville, AL 35812 USA. RI Jahoda, Keith/D-5616-2012; OI O'Dell, Stephen/0000-0002-1868-8056 NR 14 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 912 EP 919 DI 10.1088/0004-637X/713/2/912 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400017 ER PT J AU Veneziani, M Ade, PAR Bock, JJ Boscaleri, A Crill, BP de Bernardis, P De Gasperis, G de Oliveira-Costa, A De Troia, G Di Stefano, G Ganga, KM Jones, WC Kisner, TS Lange, AE MacTavish, CJ Masi, S Mauskopf, PD Montroy, TE Natoli, P Netterfield, CB Pascale, E Piacentini, F Pietrobon, D Polenta, G Ricciardi, S Romeo, G Ruhl, JE AF Veneziani, M. Ade, P. A. R. Bock, J. J. Boscaleri, A. Crill, B. P. de Bernardis, P. De Gasperis, G. de Oliveira-Costa, A. De Troia, G. Di Stefano, G. Ganga, K. M. Jones, W. C. Kisner, T. S. Lange, A. E. MacTavish, C. J. Masi, S. Mauskopf, P. D. Montroy, T. E. Natoli, P. Netterfield, C. B. Pascale, E. Piacentini, F. Pietrobon, D. Polenta, G. Ricciardi, S. Romeo, G. Ruhl, J. E. TI PROPERTIES OF GALACTIC CIRRUS CLOUDS OBSERVED BY BOOMERANG SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; ISM: clouds; radio continuum: ISM; submillimeter: ISM ID SENSITIVITY HI SURVEY; FINAL DATA RELEASE; 2003 FLIGHT; DUST EMISSION; POWER SPECTRUM; ANISOTROPY; MAPS; COBE; SKY; RADIATION AB The physical properties of galactic cirrus emission are not well characterized. BOOMERANG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERANG 245 and 345 GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b similar to -40 degrees) where BOOMERANG performed its deepest integration, combining the BOOMERANG data with other available data sets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows us to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERANG and Wilkinson Microwave Anisotropy Probe in the frequency range 23-3000 GHz (13 mm-100 mu m wavelength). We fit the measured spectral energy distributions with a combination of a gray body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7-20 K range and its emissivity spectral index is in the 1-5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data. C1 [Veneziani, M.; de Bernardis, P.; Masi, S.; Polenta, G.; Ricciardi, S.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Veneziani, M.; Ganga, K. M.] Univ Paris Diderot, APC, F-75013 Paris, France. [Ade, P. A. R.; Mauskopf, P. D.] Cardiff Univ, Dept Phys & Astron, Cardiff, S Glam, Wales. [Bock, J. J.; Crill, B. P.; Lange, A. E.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Boscaleri, A.] CNR, IFAC, I-50127 Florence, Italy. [De Gasperis, G.; De Troia, G.; Natoli, P.; Pietrobon, D.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [de Oliveira-Costa, A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Di Stefano, G.; Romeo, G.] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kisner, T. S.; Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [MacTavish, C. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London, England. [Netterfield, C. B.; Pascale, E.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Pietrobon, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2UP, Hants, England. [Polenta, G.] ESRIN, ASI Sci Data Ctr, I-00044 Frascati, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Ricciardi, S.] LBNL, Computat Res Div, Berkeley, CA 94720 USA. RP Veneziani, M (reprint author), Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. EM marcella.veneziani@roma1.infn.it RI de Gasperis, Giancarlo/C-8534-2012; Piacentini, Francesco/E-7234-2010; OI de Gasperis, Giancarlo/0000-0003-2899-2171; Piacentini, Francesco/0000-0002-5444-9327; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; ROMEO, Giovanni/0000-0002-5535-7803; Ricciardi, Sara/0000-0002-3807-4043 FU Faculty of the European Space Astronomy Center (ESAC-ESA); Italian Space Agency [I/038/08/0] FX The authors acknowledge Jean-Philippe Bernard, Robert Crittenden, Alessandro Melchiorri and Max Tegmark for useful discussions. M. V. acknowledges support from the Faculty of the European Space Astronomy Center (ESAC-ESA). This activity has been supported by Italian Space Agency contracts COFIS, BOOMERANG and HiGal (I/038/08/0). We are grateful to the referee for helpful comments. NR 39 TC 50 Z9 50 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 959 EP 969 DI 10.1088/0004-637X/713/2/959 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400021 ER PT J AU Assef, RJ Kochanek, CS Brodwin, M Cool, R Forman, W Gonzalez, AH Hickox, RC Jones, C Le Floc'h, E Moustakas, J Murray, SS Stern, D AF Assef, R. J. Kochanek, C. S. Brodwin, M. Cool, R. Forman, W. Gonzalez, A. H. Hickox, R. C. Jones, C. Le Floc'h, E. Moustakas, J. Murray, S. S. Stern, D. TI LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 mu m SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: distances and redshifts; galaxies: photometry; quasars: general ID WIDE-FIELD SURVEY; STELLAR POPULATION SYNTHESIS; IRAC SHALLOW SURVEY; X-RAY SOURCES; ENERGY-DISTRIBUTIONS; SKY-SURVEY; BOOTES-FIELD; PHOTOMETRIC REDSHIFTS; SURVEY TELESCOPE; DEEP AB We present a set of low-resolution empirical spectral energy distribution (SED) templates for active galactic nuclei (AGNs) and galaxies in the wavelength range from 0.03 mu m to 30 mu m based on the multi-wavelength photometric observations of the NOAO Deep-Wide Field Survey Bootes field and the spectroscopic observations of the AGN and Galaxy Evolution Survey. Our training sample is comprised of 14,448 galaxies in the redshift range 0 less than or similar to z less than or similar to 1 and 5347 likely AGNs in the range 0 less than or similar to z less than or similar to 5.58. The galaxy templates correspond to the SED templates presented in 2008 by Assef et al. extended into the UV and mid-IR by the addition of FUV and NUV GALEX and MIPS 24 mu m data for the field. We use our templates to determine photometric redshifts for galaxies and AGNs. While they are relatively accurate for galaxies (sigma(z)/(1 + z) = 0.04, with 5% outlier rejection), their accuracies for AGNs are a strong function of the luminosity ratio between the AGN and galaxy components. Somewhat surprisingly, the relative luminosities of the AGN and its host are well determined even when the photometric redshift is significantly in error. We also use our templates to study the mid-IR AGN selection criteria developed by Stern et al. in 2005 and Lacy et al. in 2004. We find that the Stern et al. criterion suffers from significant incompleteness when there is a strong host galaxy component and at z similar or equal to 4.5, when the broad H alpha emission line is redshifted into the [3.6] band, but that it is little contaminated by low-and intermediate-redshift galaxies. The Lacy et al. criterion is not affected by incompleteness at z similar or equal to 4.5 and is somewhat less affected by strong galaxy host components, but is heavily contaminated by low-redshift star-forming galaxies. Finally, we use our templates to predict the color-color distribution of sources in the upcoming Wide-Field Infrared Survey Explorer (WISE) mission and define a color criterion to select AGNs analogous to those developed for IRAC photometry. We estimate that in between 640,000 and 1,700,000 AGNs will be identified by these criteria, but without additional information, WISE-selected quasars will have serious completeness problems for z similar or equal to 3.4. C1 [Assef, R. J.; Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Cool, R.] Princeton Univ, Princeton, NJ 08540 USA. [Gonzalez, A. H.] Univ Florida, Bryant Space Sci Ctr, Dept Astron, Gainesville, FL 32611 USA. [Brodwin, M.; Forman, W.; Hickox, R. C.; Jones, C.; Murray, S. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Le Floc'h, E.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Moustakas, J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Assef, RJ (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM rjassef@astronomy.ohio-state.edu FU W. M. Keck Foundation; NASA; National Optical Astronomy Observatory (NOAO) FX We thank all the people in the NDWFS, FLAMEX, and SDWFS collaborations who did not directly participate in this work. We also thank Edward L. Wright for providing us with the filer functions of the WISE mission passbands. We thank the anonymous referee for providing useful comments and suggestions that improved this paper. Support for M. B. was provided by the W. M. Keck Foundation. The work of D. S. was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The AGES observations were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. This work made use of images and/or data products provided by the NOAO Deep Wide-Field Survey (Jannuzi & Dey 1999; B. T. Jannuzi et al. 2010, in preparation; A. Dey et al. 2010, in preparation), which is supported by the National Optical Astronomy Observatory (NOAO). This research draws upon data provided by Dr. Buell Jannuzi and Dr. Arjun Dey as distributed by the NOAO Science Archive. NOAO is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. NR 64 TC 131 Z9 131 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 970 EP 985 DI 10.1088/0004-637X/713/2/970 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400022 ER PT J AU Day, FM Pihlstrom, YM Claussen, MJ Sahai, R AF Day, F. M. Pihlstroem, Y. M. Claussen, M. J. Sahai, R. TI PROPER MOTIONS OF H2O MASERS IN THE WATER FOUNTAIN SOURCE IRAS 19190+1102 SO ASTROPHYSICAL JOURNAL LA English DT Article DE masers; stars: mass-loss ID PLANETARY-NEBULAE; AGB; HEMISPHERE; CONTINUUM; STARS; OH AB We report on the results of two epochs of Very Long Baseline Array observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by similar to 280 mas in position and are expanding outward at an angular rate of 2.35 mas yr(-1). We detect maser emission at velocities between -53.3 km s(-1) and +78.0 km s(-1), and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km s(-1) and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 25 km s(-1) between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain" pre-planetary nebulae displaying bipolar structure. C1 [Day, F. M.; Pihlstroem, Y. M.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Claussen, M. J.] Natl Radio Astron Observ, Array Operat Ctr, Socorro, NM 87801 USA. [Sahai, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Day, FM (reprint author), Univ New Mexico, Dept Phys & Astron, 800 Yale Blvd NE, Albuquerque, NM 87131 USA. EM fonda@unm.edu FU NASA [NMO710651/399-20-40-06), NMO710651/399-20-00-08, GO-09801.01.A] FX The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. R. S. thanks NASA for partially funding this work via LTSA award (#NMO710651/399-20-40-06), ADP award (#NMO710651/399-20-00-08), and HST/GO award (#GO-09801.01.A). NR 18 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 986 EP 991 DI 10.1088/0004-637X/713/2/986 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400023 ER PT J AU Schmidt, JM Ofman, L AF Schmidt, J. M. Ofman, L. TI GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); shock waves; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: helioseismology; Sun: surface magnetism ID CORONAL LOOP OSCILLATIONS; DOPPLER-SHIFT OSCILLATIONS; BRAGG CRYSTAL SPECTROMETER; MODE KINK OSCILLATIONS; NUMERICAL SIMULATIONS; SOLAR CORONA; TRANSVERSE OSCILLATIONS; ALFVEN WAVES; VERTICAL OSCILLATIONS; STANDING WAVES AB We use the observation of an Extreme Ultraviolet Imaging Telescope (EIT) wave in the lower solar corona, seen with the two Solar Terrestrial Relations Observatory (STEREO) spacecraft in extreme ultraviolet light on 2007 May 19, to model the same event with a three-dimensional (3D) time-depending magnetohydrodynamic (MHD) code that includes solar coronal magnetic fields derived with Wilcox Solar Observatory magnetogram data, and a solar wind outflow accelerated with empirical heating functions. The model includes a coronal mass ejection (CME) of Gibson and Low flux rope type above the reconstructed active region with parameters adapted from observations to excite the EIT wave. We trace the EIT wave running as circular velocity enhancement around the launching site of the CME in the direction tangential to the sphere produced by the wave front, and compute the phase velocities of the wave front. We find that the phase velocities are in good agreement with theoretical values for a fast magnetosonic wave, derived with the physical parameters of the model, and with observed phase speeds of an incident EIT wave reflected by a coronal hole and running at about the same location. We also produce in our 3D MHD model the observed reflection of the EIT wave at the coronal hole boundary, triggered by the magnetic pressure difference between the wave front hitting the hole and the boundary magnetic fields of the coronal hole, and the response of the coronal hole, which leads to the generation of secondary reflected EIT waves radiating away in different directions than the incident EIT wave. This is the first 3D MHD model of an EIT wave triggered by a CME that includes realistic solarmagnetic field, with results comparing favorably to STEREO Extreme Ultraviolet Imager observations. C1 [Schmidt, J. M.] Catholic Univ Amer, Greenbelt, MD 20771 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schmidt, JM (reprint author), Catholic Univ Amer, Code 671,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Joachim.M.Schmidt@nasa.gov OI Schmidt, Joachim/0000-0002-7927-0665 FU NASA ESS; NASA ESTOCT; NSF KDI; DoD MURI; NASA [NNG06GI55G, NNX09AG10G, NNX08AD60A] FX CME simulation results were obtained using the Space Weather Modeling Framework, developed by the Center for Space Environment Modeling, at the University of Michigan with funding support from NASA ESS, NASA ESTOCT, NSF KDI, and DoD MURI. The authors acknowledge support by NASA grants NNG06GI55G, NNX09AG10G, and NNX08AD60A. NR 84 TC 40 Z9 42 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1008 EP 1015 DI 10.1088/0004-637X/713/2/1008 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400025 ER PT J AU Wang, KS Kuan, YJ Liu, SY Charnley, SB AF Wang, Kuo-Song Kuan, Yi-Jehng Liu, Sheng-Yuan Charnley, Steven B. TI KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (Orion KL); ISM: kinematics and dynamics; ISM: molecules; radio lines: ISM ID STAR-FORMING REGIONS; SPECTRAL-LINE SURVEY; METHYL CYANIDE; HOT CORE; CHEMICAL DIFFERENTIATION; SUBMILLIMETER ARRAY; ORGANIC-MOLECULES; GRAIN CHEMISTRY; COMPACT RIDGE; GHZ AB High angular-resolution images of the J = 18(K)-17(K) emission of CH(3)CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH(3)CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within similar to 15 '' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the " population diagram" method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH(3)CN fractional abundances of 10(-8) to 10(-7) are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry. C1 [Wang, Kuo-Song; Kuan, Yi-Jehng; Liu, Sheng-Yuan] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Kuan, Yi-Jehng] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei 116, Taiwan. [Charnley, Steven B.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab, Greenbelt, MD 20771 USA. [Charnley, Steven B.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Ctr Astrobiol, Greenbelt, MD 20771 USA. RP Wang, KS (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM kswang@asiaa.sinica.edu.tw RI Charnley, Steven/C-9538-2012 FU NSC [96-2112-M-003012-MY3, 95-2112-M-001-038-MY2]; NASA's Exobiology Program; Goddard Center for Astrobiology FX The authors thank the anonymous referee for the comments and suggestions to make points more clearly. The authors also appreciate the SMA team for the operation and observations. This work was supported by NSC 96-2112-M-003012-MY3 grant (Y.-J. K.), by NSC 95-2112-M-001-038-MY2 grant (S.-Y. L.), and by NASA's Exobiology Program and the Goddard Center for Astrobiology (S.B.C.). K.-S. W. thanks ASIAA for the assistantship from 2007 to 2009. The authors are grateful to the JPL Molecular Spectroscopy Web service at http://spec.jpl.nasa.gov for making molecular laboratory data available. NR 50 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1192 EP 1206 DI 10.1088/0004-637X/713/2/1192 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400041 ER PT J AU Shu, XW Yaqoob, T Murphy, KD Braito, V Wang, JX Zheng, W AF Shu, X. W. Yaqoob, T. Murphy, K. D. Braito, V. Wang, J. X. Zheng, W. TI NGC 2992 IN AN X-RAY HIGH STATE OBSERVED BY XMM- NEWTON: RESPONSE OF THE RELATIVISTIC Fe K alpha LINE TO THE CONTINUUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: Seyfert; line: profiles; X-rays: galaxies; X-rays: individual (NGC 2992) ID ACTIVE GALACTIC NUCLEI; SEYFERT-1.9 GALAXY NGC-2992; BLACK-HOLES; TIMING-EXPLORER; ACCRETION DISK; STRONG GRAVITY; COMPTON-THICK; IRON LINES; REFLECTION; VARIABILITY AB We present the analysis of an XMM-Newton observation of the Seyfert galaxy NGC2992. The sourcewas found in its highest level of X-ray activity yet detected, a factor similar to 23.5 higher in the 2-10 keV flux than the historical minimum. NGC 2992 is known to exhibit X-ray flaring activity on timescales of days to weeks, and the XMM-Newton data provide at least a factor of similar to 3 better spectral resolution in the Fe K band than any previously measured flaring X-ray state. We find that there is a broad feature in the similar to 5-7 keV band that could be interpreted as a relativistic Fe Ka emission line. Its flux appears to have increased in tandem with the 2-10 keV continuum when compared to a previous Suzaku observationwhen the continuumwas a factor of similar to 8 lower than that during the XMM-Newton observation. The XMM-Newton data are consistent with the general picture that increased X-ray activity and corresponding changes in the Fe Ka line emission occur in the innermost regions of the putative accretion disk. This behavior contrasts with the behavior of other active galactic nuclei in which the Fe Ka line does not respond to variability in the X-ray. C1 [Shu, X. W.; Wang, J. X.] Univ Sci & Technol China, Ctr Astrophys, Hefei 230026, Anhui, Peoples R China. [Shu, X. W.; Yaqoob, T.; Murphy, K. D.; Zheng, W.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Yaqoob, T.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Murphy, K. D.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Braito, V.] Univ Leicester, Dept Phys & Astron, Xray Astron Grp, Leicester LE1 7RH, Leics, England. [Wang, J. X.] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. RP Shu, XW (reprint author), Univ Sci & Technol China, Ctr Astrophys, Hefei 230026, Anhui, Peoples R China. RI XRAY, SUZAKU/A-1808-2009; Shu, Xinwen/D-7294-2017 OI Shu, Xinwen/0000-0002-7020-4290 FU NSF [10773010/10825312]; CAS [KJCX2-YWT05] FX The authors thank the XMM-Newton instrument teams and operations staff for making the observations of NGC 2992. This research made use of the HEASARC online data archive services, supported by NASA/GSFC. The work was supported by Chinese NSF through grant 10773010/10825312 and the Knowledge Innovation Program of CAS (grant KJCX2-YWT05). NR 48 TC 8 Z9 8 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1256 EP 1265 DI 10.1088/0004-637X/713/2/1256 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400046 ER PT J AU Milligan, RO McAteer, RTJ Dennis, BR Young, CA AF Milligan, Ryan O. McAteer, R. T. James Dennis, Brian R. Young, C. Alex TI EVIDENCE OF A PLASMOID-LOOPTOP INTERACTION AND MAGNETIC INFLOWS DURING A SOLAR FLARE/CORONAL MASS EJECTION ERUPTIVE EVENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: coronal mass ejections (CMEs); Sun: flares; Sun: UV radiation; Sun: X-rays, gamma rays ID CURRENT SHEET; PARTICLE-ACCELERATION; LOW CORONA; RECONNECTION; FLARE; RHESSI; SIGNATURE; MECHANISM; MISSION; SECCHI AB Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km s(-1). Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km s(-1). This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation. C1 [Milligan, Ryan O.; Dennis, Brian R.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab, Greenbelt, MD 20771 USA. [McAteer, R. T. James] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Young, C. Alex] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. RP Milligan, RO (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. RI McAteer, R. T. James/D-3736-2011; Dennis, Brian/C-9511-2012 FU Marie Curie Intra European; NASA Heliophysics [NNG08EL33C] FX R.O.M. thanks Gordon Holman and Jack Ireland for their very helpful and insightful discussions, and Kim Tolbert for modifications made to the RHESSI software. We also thank the anonymous referees for their constructive comments which improved the quality of this paper. R.T.J.M.A. is funded by a Marie Curie Intra European Fellowship. C.A.Y. acknowledges support from NASA Heliophysics Guest Investigator grant NNG08EL33C. NR 39 TC 29 Z9 30 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1292 EP 1300 DI 10.1088/0004-637X/713/2/1292 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400049 ER PT J AU Basri, G Walkowicz, LM Batalha, N Gilliland, RL Jenkins, J Borucki, WJ Koch, D Caldwell, D Dupree, AK Latham, DW Meibom, S Howell, S Brown, T AF Basri, Gibor Walkowicz, Lucianne M. Batalha, Natalie Gilliland, Ronald L. Jenkins, Jon Borucki, William J. Koch, David Caldwell, Doug Dupree, Andrea K. Latham, David W. Meibom, Soren Howell, Steve Brown, Tim TI PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS-A FIRST LOOK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: activity; starspots; stars: statistics ID ROTATION AB The Kepler mission provides an exciting opportunity to study the light curves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from very similar to rather different stellar properties, at a wide variety of ages. Although Kepler data are in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main-sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid-K spectral types. C1 [Basri, Gibor; Walkowicz, Lucianne M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Dupree, Andrea K.; Latham, David W.; Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Howell, Steve] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Brown, Tim] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. RP Basri, G (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU Kepler Fellowship; NASA's Science Mission Directorate FX The authors thank the entire Kepler Mission team, including the engineers and managers who were so pivotal in the ultimate success of the mission. L. W. is grateful for the support of the Kepler Fellowship for the Study of Planet- Bearing Stars. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 11 TC 73 Z9 73 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L155 EP L159 DI 10.1088/2041-8205/713/2/L155 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900015 ER PT J AU Batalha, NM Rowe, JF Gilliland, RL Jenkins, JJ Caldwell, D Borucki, WJ Koch, DG Lissauer, JJ Dunham, EW Gautier, TN Howell, SB Latham, DW Marcy, GW Prsa, A AF Batalha, Natalie M. Rowe, Jason F. Gilliland, Ronald L. Jenkins, Jon J. Caldwell, Douglas Borucki, William J. Koch, David G. Lissauer, Jack J. Dunham, Edward W. Gautier, Thomas N. Howell, Steve B. Latham, David W. Marcy, Geoff W. Prsa, Andrej TI PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; planetary systems; techniques: photometric AB Ten days of commissioning data (Quarter 0) and 33 days of science data (Quarter 1) yield instrumental flux time series of similar to 150,000 stars that were combed for transit events, termed threshold crossing events(TCE), each having a total detection statistic above 7.1 sigma. TCE light curves are modeled as star+planet systems. Those returning a companion radius smaller than 2R(J) are assigned a Kepler Object of Interest (KOI) number. The raw flux, pixel flux, and flux-weighted centroids of every KOI are scrutinized to assess the likelihood of being an astrophysical false positive versus the likelihood of being a planetary companion. This vetting using Kepler data is referred to as data validation (DV). Herein, we describe the DV metrics and graphics used to identify viable planet candidates amongst the KOIs. Light curve modeling tests for (1) the difference in depth of the odd-versus even-numbered transits, (2) evidence of ellipsoidal variations, and (3) evidence of a secondary eclipse event at phase = 0.5. Flux weighted centroids are used to test for signals correlated with transit events with a magnitude and direction indicative of a background eclipsing binary. Centroid time series are complimented by analysis of images taken in-transit versus out-of-transit, the difference often revealing the pixel contributing the most to the flux change during transit. Examples are shown to illustrate each test. Candidates passing DV are submitted to ground-based observers for further false-positive elimination or confirmation/characterization. C1 [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gilliland, Ronald L.] STScI, Baltimore, MD 21218 USA. [Jenkins, Jon J.; Caldwell, Douglas] SETI Inst, Mountain View, CA 94043 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Latham, David W.] Harvard Smithsonian CfA, Cambridge, MA 02138 USA. [Marcy, Geoff W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Prsa, Andrej] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. RP Batalha, NM (reprint author), San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. EM Natalie.Batalha@sjsu.edu RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX The authors acknowledge the Kepler Science Operations Center, especially Hema Chandrasekharan for her work on the transiting planet search software. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 16 TC 66 Z9 66 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L103 EP L108 DI 10.1088/2041-8205/713/2/L103 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900005 ER PT J AU Batalha, NM Borucki, WJ Koch, DG Bryson, ST Haas, MR Brown, TM Caldwell, DA Hall, JR Gilliland, RL Latham, DW Meibom, S Monet, DG AF Batalha, Natalie M. Borucki, William J. Koch, David G. Bryson, Stephen T. Haas, Michael. R. Brown, Timothy M. Caldwell, Douglas A. Hall, Jennifer R. Gilliland, Ronald L. Latham, David W. Meibom, Soren Monet, David G. TI SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: statistics ID CATALOG; FIELD; AGES; VIEW AB The Kepler Mission began its 3.5 year photometric monitoring campaign in 2009 May on a select group of approximately 150,000 stars. The stars were chosen from the similar to half million in the field of view that are brighter than 16th magnitude. The selection criteria are quantitative metrics designed to optimize the scientific yield of the mission with regard to the detection of Earth-size planets in the habitable zone. This yields more than 90,000 G-type stars on or close to the main sequence, >20,000 of which are brighter than 14th magnitude. At the temperature extremes, the sample includes approximately 3000 M-type dwarfs and a small sample of O- and B-type MS stars (< 200). The small numbers of giants are included in the sample: similar to 5000 stars with surface gravities log(g) < 3.5. We present a brief summary of the selection process and the stellar populations it yields in terms of surface gravity, effective temperature, and apparent magnitude. In addition to the primary, statistically derived target set, several ancillary target lists were manually generated to enhance the science of the mission, examples being: known eclipsing binaries, open cluster members, and high proper motion stars. C1 [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Hall, Jennifer R.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Brown, Timothy M.] Telescope Network, Global Observ, Cumbres Observ, Goleta, CA 93117 USA. [Caldwell, Douglas A.] SETI Inst, Mountain View, CA 94043 USA. [Gilliland, Ronald L.] STScI, Baltimore, MD 21218 USA. [Latham, David W.; Meibom, Soren] Harvard Smithsonian CfA, Cambridge, MA 02138 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. RP Batalha, NM (reprint author), San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. EM Natalie.Batalha@sjsu.edu RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 20 TC 157 Z9 157 U1 9 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L109 EP L114 DI 10.1088/2041-8205/713/2/L109 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900006 ER PT J AU Bedding, TR Huber, D Stello, D Elsworth, YP Hekker, S Kallinger, T Mathur, S Mosser, B Preston, HL Ballot, J Barban, C Broomhall, AM Buzasi, DL Chaplin, WJ Garcia, RA Gruberbauer, M Hale, SJ De Ridder, J Frandsen, S Borucki, WJ Brown, T Christensen-Dalsgaard, J Gilliland, RL Jenkins, JM Kjeldsen, H Koch, D Belkacem, K Bildsten, L Bruntt, H Campante, TL Deheuvels, S Derekas, A Dupret, MA Goupil, MJ Hatzes, A Houdek, G Ireland, MJ Jiang, C Karoff, C Kiss, LL Lebreton, Y Miglio, A Montalban, J Noels, A Roxburgh, IW Sangaralingam, V Stevens, IR Suran, MD Tarrant, NJ Weiss, A AF Bedding, T. R. Huber, D. Stello, D. Elsworth, Y. P. Hekker, S. Kallinger, T. Mathur, S. Mosser, B. Preston, H. L. Ballot, J. Barban, C. Broomhall, A. M. Buzasi, D. L. Chaplin, W. J. Garcia, R. A. Gruberbauer, M. Hale, S. J. De Ridder, J. Frandsen, S. Borucki, W. J. Brown, T. Christensen-Dalsgaard, J. Gilliland, R. L. Jenkins, J. M. Kjeldsen, H. Koch, D. Belkacem, K. Bildsten, L. Bruntt, H. Campante, T. L. Deheuvels, S. Derekas, A. Dupret, M. -A. Goupil, M. -J. Hatzes, A. Houdek, G. Ireland, M. J. Jiang, C. Karoff, C. Kiss, L. L. Lebreton, Y. Miglio, A. Montalban, J. Noels, A. Roxburgh, I. W. Sangaralingam, V. Stevens, I. R. Suran, M. D. Tarrant, N. J. Weiss, A. TI SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: oscillations ID EPSILON-OPHIUCHI; K-GIANTS; MODE LIFETIMES; GALACTIC DISK; XI-HYDRAE; STARS; ASTEROSEISMOLOGY; PHOTOMETRY; ARCTURUS; CLUSTER AB We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu(max)). We focus on a sample of 50 low-luminosity stars (nu(max) > 100 mu Hz, L less than or similar to 30 L(circle dot)) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of delta nu(02) versus Delta nu. The small separation delta nu(01) of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants. C1 [Bedding, T. R.; Huber, D.; Stello, D.; Derekas, A.; Ireland, M. J.; Kiss, L. L.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Elsworth, Y. P.; Hekker, S.; Broomhall, A. M.; Chaplin, W. J.; Hale, S. J.; Karoff, C.; Sangaralingam, V.; Stevens, I. R.; Tarrant, N. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Kallinger, T.; Houdek, G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Mathur, S.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Mosser, B.; Barban, C.; Bruntt, H.; Deheuvels, S.; Goupil, M. -J.; Lebreton, Y.] Univ Denis, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Preston, H. L.; Buzasi, D. L.] Eureka Sci, Oakland, CA 94602 USA. [Preston, H. L.] Univ S Africa, Dept Math Sci, ZA-0003 Pretoria, South Africa. [Ballot, J.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Garcia, R. A.] Univ Paris 07, CNRS, CEA, DSM,IRFU,SAp,Lab AIM,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [Frandsen, S.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Bruntt, H.; Campante, T. L.] Aarhus Univ, Dept Phys & Astron, Danish AsteroSeismol Ctr, DK-8000 Aarhus C, Denmark. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Brown, T.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Belkacem, K.; Dupret, M. -A.; Miglio, A.; Montalban, J.; Noels, A.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Bildsten, L.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Derekas, A.; Kiss, L. L.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Hatzes, A.] Thueringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Jiang, C.] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Roxburgh, I. W.] Queen Mary Univ London, London E1 4NS, England. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. [Weiss, A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. RP Bedding, TR (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM bedding@physics.usyd.edu.au RI Ballot, Jerome/G-1019-2010; Weiss, Achim/C-4870-2013; Karoff, Christoffer/L-1007-2013; Lebreton, Yveline/N-2268-2014; Hale, Steven/E-3472-2015; Derekas, Aliz/G-2091-2016; OI Weiss, Achim/0000-0002-3843-1653; Karoff, Christoffer/0000-0003-2009-7965; Hale, Steven/0000-0002-6402-8382; Derekas, Aliz/0000-0002-6526-9444; Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; European Research Council [ERC/FP7/2007-2013 227224]; K.U. Leuven [GOA/2008/04] FX We gratefully acknowledge the entire Kepler team, whose outstanding efforts have made these results possible. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. Grants were received from the European Research Council (ERC/FP7/2007-2013 n degrees 227224, PROSPERITY), and K.U. Leuven (GOA/2008/04). NR 50 TC 153 Z9 153 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L176 EP L181 DI 10.1088/2041-8205/713/2/L176 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900019 ER PT J AU Blomme, J Debosscher, J De Ridder, J Aerts, C Gilliland, RL Christensen-Dalsgaard, J Kjeldsen, H Brown, TM Borucki, WJ Koch, D Jenkins, JM Kurtz, DW Stello, D Stevens, IR Suran, MD Derekas, A AF Blomme, J. Debosscher, J. De Ridder, J. Aerts, C. Gilliland, R. L. Christensen-Dalsgaard, J. Kjeldsen, H. Brown, T. M. Borucki, W. J. Koch, D. Jenkins, J. M. Kurtz, D. W. Stello, D. Stevens, I. R. Suran, M. D. Derekas, A. TI AUTOMATED CLASSIFICATION OF VARIABLE STARS IN THE ASTEROSEISMOLOGY PROGRAM OF THE KEPLER SPACE MISSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; methods: data analysis; methods: statistical; stars: variables: general; techniques: photometric ID SOLAR-LIKE OSCILLATIONS; INITIAL CHARACTERISTICS; CADENCE DATA; PHOTOMETRY AB We present the first results of the application of supervised classification methods to the Kepler Q1 long-cadence light curves of a subsample of 2288 stars measured in the asteroseismology program of the mission. The methods, originally developed in the framework of the CoRoT and Gaia space missions, are capable of identifying the most common types of stellar variability in a reliable way. Many new variables have been discovered, among which a large fraction are eclipsing/ellipsoidal binaries unknown prior to launch. A comparison is made between our classification from the Kepler data and the pre-launch class based on data from the ground, showing that the latter needs significant improvement. The noise properties of the Kepler data are compared to those of the exoplanet program of the CoRoT satellite. We find that Kepler improves on CoRoT by a factor of 2-2.3 in point-to-point scatter. C1 [Blomme, J.; Debosscher, J.; De Ridder, J.; Aerts, C.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Aerts, C.] Radbout Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Stello, D.; Derekas, A.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Stevens, I. R.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Suran, M. D.] Romanian Acad, Astron Inst, RO-40557 Bucharest, RO, Romania. [Derekas, A.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. RP Blomme, J (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. RI Derekas, Aliz/G-2091-2016 OI Derekas, Aliz/0000-0002-6526-9444 FU NASA's Science Mission Directorate; European Community/ERC [FP7/2007-2013, 227224]; Research Council of K.U. Leuven [GOA/2008/04]; Belgian Federal Science Office; UK Science and Technology Facilities Council FX We thank the entire Kepler team, whose excellent efforts have made these results possible. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04 and from the Belgian Federal Science Office. D. W. K. acknowledges support from the UK Science and Technology Facilities Council. NR 15 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L204 EP L207 DI 10.1088/2041-8205/713/2/L204 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900024 ER PT J AU Borucki, WJ Koch, DG Brown, TM Basri, G Batalha, NM Caldwell, DA Cochran, WD Dunham, EW Gautier, TN Geary, JC Gilliland, RL Howell, SB Jenkins, JM Latham, DW Lissauer, JJ Marcy, GW Monet, D Rowe, JF Sasselov, D AF Borucki, William J. Koch, David G. Brown, Timothy M. Basri, Gibor Batalha, Natalie M. Caldwell, Douglas A. Cochran, William D. Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Howell, Steve B. Jenkins, Jon M. Latham, David W. Lissauer, Jack J. Marcy, Geoffrey W. Monet, David Rowe, Jason F. Sasselov, Dimitar TI KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: fundamental parameters; stars: individual (Kepler-4, KIC 11853905, 2MASS 19022767+5008087) ID TRANSIT LIGHT-CURVE; SUPER-EARTH; STELLAR; PARAMETERS; RADII; EXOPLANETS; EVOLUTION; PROJECT; TRES-1; MODELS AB Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19(h)02(m)27.(s)68, delta = +50 degrees 08'08 '' 7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10(-3) and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3(-1.9)(+1.1) m s(-1), consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223(-0.091)(+0.053) M(circle dot) and 1.487(-0.084)(+0.071) R(circle dot).We estimate the planet mass and radius to be {M(P), R(P)} = {24.5 +/- 3.8 M(circle plus), 3.99 +/- 0.21 R(circle plus)}. The planet's density is near 1.9 g cm(-3); it is thus slightly denser and more massive than Neptune, but about the same size. C1 [Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Jenkins, Jon M.; Lissauer, Jack J.; Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Basri, Gibor; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Cochran, William D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Geary, John C.; Latham, David W.; Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Jenkins, Jon M.] SETI Inst, Mountain View, CA 94043 USA. [Monet, David] USN Observ, Flagstaff, AZ 86002 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU W. M. Keck Foundation; NASA's Science Mission Directorate FX Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We are grateful first to the entire Kepler team, past and present. Their tireless efforts were all essential to the success of the mission. For special advice and assistance, we thank Lars Buchhave, David Ciardi, Megan Crane, Willie Torres, Mike Haas, and Riley Duran. NR 32 TC 66 Z9 66 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L126 EP L130 DI 10.1088/2041-8205/713/2/L126 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900009 ER PT J AU Bryson, ST Tenenbaum, P Jenkins, JM Chandrasekaran, H Klaus, T Caldwell, DA Gilliland, RL Haas, MR Dotson, JL Koch, DG Borucki, WJ AF Bryson, Stephen T. Tenenbaum, Peter Jenkins, Jon M. Chandrasekaran, Hema Klaus, Todd Caldwell, Douglas A. Gilliland, Ronald L. Haas, Michael R. Dotson, Jessie L. Koch, David G. Borucki, William J. TI THE KEPLER PIXEL RESPONSE FUNCTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; techniques: photometric AB Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point-spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal-to-noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler. C1 [Bryson, Stephen T.; Haas, Michael R.; Dotson, Jessie L.; Koch, David G.; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Tenenbaum, Peter; Jenkins, Jon M.; Chandrasekaran, Hema; Caldwell, Douglas A.] SETI Inst, Mountain View, CA 94043 USA. [Klaus, Todd] Orbital Sci Inc, Moffett Field, CA 94035 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Bryson, ST (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA, Science Mission Directorate FX We thank the larger Kepler team for their support and hard work. Funding for the Kepler mission is provided by NASA, Science Mission Directorate. NR 11 TC 76 Z9 76 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L97 EP L102 DI 10.1088/2041-8205/713/2/L97 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900004 ER PT J AU Caldwell, DA Kolodziejczak, JJ Van Cleve, JE Jenkins, JM Gazis, PR Argabright, VS Bachtell, EE Dunham, EW Geary, JC Gilliland, RL Chandrasekaran, H Li, J Tenenbaum, P Wu, H Borucki, WJ Bryson, ST Dotson, JL Haas, MR Koch, DG AF Caldwell, Douglas A. Kolodziejczak, Jeffery J. Van Cleve, Jeffrey E. Jenkins, Jon M. Gazis, Paul R. Argabright, Vic S. Bachtell, Eric E. Dunham, Edward W. Geary, John C. Gilliland, Ronald L. Chandrasekaran, Hema Li, Jie Tenenbaum, Peter Wu, Hayley Borucki, William J. Bryson, Stephen T. Dotson, Jessie L. Haas, Michael R. Koch, David G. TI INSTRUMENT PERFORMANCE IN KEPLER's FIRST MONTHS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE instrumentation: photometers; planetary systems; space vehicles: instruments; techniques: photometric AB The Kepler Mission relies on precise differential photometry to detect the 80 parts per million (ppm) signal from an Earth-Sun equivalent transit. Such precision requires superb instrument stability on timescales up to similar to 2 days and systematic error removal to better than 20 ppm. To this end, the spacecraft and photometer underwent 67 days of commissioning, which included several data sets taken to characterize the photometer performance. Because Kepler has no shutter, we took a series of dark images prior to the dust cover ejection, from which we measured the bias levels, dark current, and read noise. These basic detector properties are essentially unchanged from ground-based tests, indicating that the photometer is working as expected. Several image artifacts have proven more complex than when observed during ground testing, as a result of their interactions with starlight and the greater thermal stability in flight, which causes the temperature-dependent artifact variations to be on the timescales of transits. Because of Kepler's unprecedented sensitivity and stability, we have also seen several unexpected systematics that affect photometric precision. We are using the first 43 days of science data to characterize these effects and to develop detection and mitigation methods that will be implemented in the calibration pipeline. Based on early testing, we expect to attain Kepler's planned photometric precision over 80%-90% of the field of view. C1 [Caldwell, Douglas A.; Van Cleve, Jeffrey E.; Jenkins, Jon M.; Gazis, Paul R.; Chandrasekaran, Hema; Li, Jie; Tenenbaum, Peter; Wu, Hayley] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kolodziejczak, Jeffery J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Argabright, Vic S.; Bachtell, Eric E.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Geary, John C.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Caldwell, DA (reprint author), NASA, Ames Res Ctr, SETI Inst, MS 244-30, Moffett Field, CA 94035 USA. EM douglas.caldwell@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX We gratefully acknowledge the years of work by the many hundred members of the Kepler Team who conceived, designed, built, and now operate this wonderful mission. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 8 TC 88 Z9 88 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L92 EP L96 DI 10.1088/2041-8205/713/2/L92 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900003 ER PT J AU Chaplin, WJ Appourchaux, T Elsworth, Y Garcia, RA Houdek, G Karoff, C Metcalfe, TS Molenda-Zakowicz, J Monteiro, MJPFG Thompson, MJ Brown, TM Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Borucki, WJ Koch, D Jenkins, JM Ballot, J Basu, S Bazot, M Bedding, TR Benomar, O Bonanno, A Brandao, IM Bruntt, H Campante, TL Creevey, OL Di Mauro, MP Dogan, G Dreizler, S Eggenberger, P Esch, L Fletcher, ST Frandsen, S Gai, N Gaulme, P Handberg, R Hekker, S Howe, R Huber, D Korzennik, SG Lebrun, JC Leccia, S Martic, M Mathur, S Mosser, B New, R Quirion, PO Regulo, C Roxburgh, IW Salabert, D Schou, J Sousa, SG Stello, D Verner, GA Arentoft, T Barban, C Belkacem, K Benatti, S Biazzo, K Boumier, P Bradley, PA Broomhall, AM Buzasi, DL Claudi, RU Cunha, MS D'Antona, F Deheuvels, S Derekas, A Hernandez, AG Giampapa, MS Goupil, MJ Gruberbauer, M Guzik, JA Hale, SJ Ireland, MJ Kiss, LL Kitiashvili, IN Kolenberg, K Korhonen, H Kosovichev, AG Kupka, F Lebreton, Y Leroy, B Ludwig, HG Mathis, S Michel, E Miglio, A Montalban, J Moya, A Noels, A Noyes, RW Palle, PL Piau, L Preston, HL Cortes, TR Roth, M Sato, KH Schmitt, J Serenelli, AM Aguirre, VS Stevens, IR Suarez, JC Suran, MD Trampedach, R Turck-Chieze, S Uytterhoeven, K Ventura, R Wilson, PA AF Chaplin, W. J. Appourchaux, T. Elsworth, Y. Garcia, R. A. Houdek, G. Karoff, C. Metcalfe, T. S. Molenda-Zakowicz, J. Monteiro, M. J. P. F. G. Thompson, M. J. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Borucki, W. J. Koch, D. Jenkins, J. M. Ballot, J. Basu, S. Bazot, M. Bedding, T. R. Benomar, O. Bonanno, A. Brandao, I. M. Bruntt, H. Campante, T. L. Creevey, O. L. Di Mauro, M. P. Dogan, G. Dreizler, S. Eggenberger, P. Esch, L. Fletcher, S. T. Frandsen, S. Gai, N. Gaulme, P. Handberg, R. Hekker, S. Howe, R. Huber, D. Korzennik, S. G. Lebrun, J. C. Leccia, S. Martic, M. Mathur, S. Mosser, B. New, R. Quirion, P. -O. Regulo, C. Roxburgh, I. W. Salabert, D. Schou, J. Sousa, S. G. Stello, D. Verner, G. A. Arentoft, T. Barban, C. Belkacem, K. Benatti, S. Biazzo, K. Boumier, P. Bradley, P. A. Broomhall, A. -M. Buzasi, D. L. Claudi, R. U. Cunha, M. S. D'Antona, F. Deheuvels, S. Derekas, A. Garcia Hernandez, A. Giampapa, M. S. Goupil, M. J. Gruberbauer, M. Guzik, J. A. Hale, S. J. Ireland, M. J. Kiss, L. L. Kitiashvili, I. N. Kolenberg, K. Korhonen, H. Kosovichev, A. G. Kupka, F. Lebreton, Y. Leroy, B. Ludwig, H. -G. Mathis, S. Michel, E. Miglio, A. Montalban, J. Moya, A. Noels, A. Noyes, R. W. Palle, P. L. Piau, L. Preston, H. L. Roca Cortes, T. Roth, M. Sato, K. H. Schmitt, J. Serenelli, A. M. Aguirre, V. Silva Stevens, I. R. Suarez, J. C. Suran, M. D. Trampedach, R. Turck-Chieze, S. Uytterhoeven, K. Ventura, R. Wilson, P. A. TI THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: interiors; stars: late-type; stars: oscillations ID TURBULENT CONVECTION; STELLAR OSCILLATIONS; PULSATIONAL STABILITY; ABUNDANCE ANALYSIS; HR DIAGRAM; EXCITATION; MODES; INTERFEROMETRY; AMPLITUDES; PARAMETERS AB We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: about 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses, and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe. C1 [Chaplin, W. J.; Elsworth, Y.; Karoff, C.; Hekker, S.; Broomhall, A. -M.; Hale, S. J.; Stevens, I. R.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Appourchaux, T.; Benomar, O.; Gaulme, P.; Boumier, P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Garcia, R. A.; Mathis, S.; Piau, L.; Sato, K. H.; Turck-Chieze, S.; Uytterhoeven, K.] Univ Paris Diderot, IRFU, CNRS, CEA,DSM,Lab AIM,SAp, F-91191 Gif Sur Yvette, France. [Houdek, G.; Kolenberg, K.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Metcalfe, T. S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, T. S.] Natl Ctr Atmospher Res, Div Comp Sci, Boulder, CO 80307 USA. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Monteiro, M. J. P. F. G.; Bazot, M.; Brandao, I. M.; Campante, T. L.; Sousa, S. G.; Cunha, M. S.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Thompson, M. J.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.; Campante, T. L.; Dogan, G.; Frandsen, S.; Handberg, R.; Quirion, P. -O.; Arentoft, T.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Ballot, J.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Basu, S.; Esch, L.; Gai, N.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bedding, T. R.; Huber, D.; Stello, D.; Derekas, A.; Ireland, M. J.; Kiss, L. L.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Bonanno, A.; Ventura, R.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Bruntt, H.; Goupil, M. J.] Observ Paris, F-92190 Meudon, France. [Creevey, O. L.; Regulo, C.; Salabert, D.; Roca Cortes, T.] Univ La Laguna, Dept Astrofis, E-28207 Tenerife, Spain. [Creevey, O. L.; Regulo, C.; Salabert, D.; Palle, P. L.; Roca Cortes, T.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Di Mauro, M. P.] Ist Astrofis Spaziale & Fis Cosm, INAF IASF Roma, I-00133 Rome, Italy. [Dreizler, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Fletcher, S. T.; New, R.] Sheffield Hallam Univ, Fac Arts Comp Engn & Sci, Mat Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Gai, N.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Howe, R.; Giampapa, M. S.] Natl Opt Astron Observ, Natl Solar Observ, Tucson, AZ 85726 USA. [Korzennik, S. G.; Noyes, R. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lebrun, J. C.; Martic, M.] Univ Versailles St Quentin, CNRS, LATMOS, F-91371 Verrieres Le Buisson, France. [Leccia, S.] INAF OAC, I-80131 Naples, Italy. [Mathur, S.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Mosser, B.; Barban, C.; Deheuvels, S.; Leroy, B.; Michel, E.] Univ Paris 06, CNRS, LESIA, Observ Paris, F-92195 Meudon, France. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Roxburgh, I. W.; Verner, G. A.] Univ London, Astron Unit, London E1 4NS, England. [Schou, J.; Kosovichev, A. G.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Belkacem, K.; Miglio, A.; Montalban, J.; Noels, A.] Univ Liege, Dept Astrophys Geophys & Oceanog, B-4000 Liege 1, Belgium. [Benatti, S.] Univ Padua, CISAS, I-35131 Padua, Italy. [Biazzo, K.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Bradley, P. A.; Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Buzasi, D. L.; Preston, H. L.] Eureka Sci, Oakland, CA 94602 USA. [Claudi, R. U.] INAF Astron Observ Padova, I-35122 Padua, Italy. [D'Antona, F.] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Derekas, A.; Kiss, L. L.] Hungarian Acad Sci, Konkoly Observ Budapest, Budapest, Hungary. [Garcia Hernandez, A.; Suarez, J. C.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Kitiashvili, I. N.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Korhonen, H.] European So Observ, D-85748 Garching, Germany. [Kupka, F.] Univ Vienna, Fac Math, A-1090 Vienna, Austria. [Lebreton, Y.; Ludwig, H. -G.] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-92195 Meudon, France. [Moya, A.] CSIC, INTA, LAEX, CAB, Madrid 28691, Spain. [Preston, H. L.] Univ S Africa, Dept Math Sci, ZA-0003 Pretoria, South Africa. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Schmitt, J.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Serenelli, A. M.; Aguirre, V. Silva] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Suran, M. D.] Romanian Acad, Astron Inst, RO-40557 Bucharest, Romania. [Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Wilson, P. A.] Nord Opt Telescope, E-38700 Santa Cruz De La Palma, Santa Cruz Tene, Spain. [Wilson, P. A.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. RP Chaplin, WJ (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RI Ballot, Jerome/G-1019-2010; Sousa, Sergio/I-7466-2013; Brandao, Isa/M-5172-2013; Monteiro, Mario J.P.F.G./B-4715-2008; Karoff, Christoffer/L-1007-2013; Lebreton, Yveline/N-2268-2014; Hale, Steven/E-3472-2015; Palle, Pere/H-4720-2015; Suarez, Juan Carlos/C-1015-2009; Ventura, Rita/B-7524-2016; Korhonen, Heidi/E-3065-2016; Derekas, Aliz/G-2091-2016 OI Biazzo, Katia/0000-0002-1892-2180; Bazot, Michael/0000-0003-0166-1540; Bonanno, Alfio/0000-0003-3175-9776; Bradley, Paul/0000-0001-6229-6677; Bedding, Timothy/0000-0001-5943-1460; Cunha, Margarida/0000-0001-8237-7343; Garcia Hernandez, Antonio/0000-0002-6906-4526; Metcalfe, Travis/0000-0003-4034-0416; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Serenelli, Aldo/0000-0001-6359-2769; Di Mauro, Maria Pia/0000-0001-7801-7484; Handberg, Rasmus/0000-0001-8725-4502; Leccia, Silvio/0000-0001-5685-6930; Sousa, Sergio/0000-0001-9047-2965; Brandao, Isa/0000-0002-1153-0942; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Karoff, Christoffer/0000-0003-2009-7965; Hale, Steven/0000-0002-6402-8382; Suarez, Juan Carlos/0000-0003-3649-8384; Ventura, Rita/0000-0002-5152-0482; Korhonen, Heidi/0000-0003-0529-1161; Derekas, Aliz/0000-0002-6526-9444 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1, and the International Space Science Institute (ISSI). The analyses reported in this Letter also used observations made with FIES at the Nordic Optical Telescope, and with SOPHIE at Observatoire de Haute-Provence. NR 50 TC 93 Z9 93 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L169 EP L175 DI 10.1088/2041-8205/713/2/L169 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900018 ER PT J AU Christensen-Dalsgaard, J Kjeldsen, H Brown, TM Gilliland, RL Arentoft, T Frandsen, S Quirion, PO Borucki, WJ Koch, D Jenkins, JM AF Christensen-Dalsgaard, J. Kjeldsen, H. Brown, T. M. Gilliland, R. L. Arentoft, T. Frandsen, S. Quirion, P. -O. Borucki, W. J. Koch, D. Jenkins, J. M. TI ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: fundamental parameters; stars: oscillations ID STELLAR; OSCILLATIONS; TRES-2 AB In addition to its great potential for characterizing extra-solar planetary systems, the Kepler Mission is providing unique data on stellar oscillations. Akey aspect of Kepler asteroseismology is the application to solar-like oscillations of main-sequence stars. As an example, we here consider an initial analysis of data for three stars in the Kepler field for which planetary transits were known from ground-based observations. For one of these, HAT-P-7, we obtain a detailed frequency spectrum and hence strong constraints on the stellar properties. The remaining two stars show definite evidence for solar-like oscillations, yielding a preliminary estimate of their mean densities. C1 [Christensen-Dalsgaard, J.; Kjeldsen, H.; Arentoft, T.; Frandsen, S.; Quirion, P. -O.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Christensen-Dalsgaard, J.; Kjeldsen, H.; Arentoft, T.; Frandsen, S.; Quirion, P. -O.] Aarhus Univ, Danish AsteroSeismol Ctr, DK-8000 Aarhus C, Denmark. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Borucki, W. J.; Koch, D.; Jenkins, J. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jenkins, J. M.] SETI Inst, Moffett Field, CA 94035 USA. RP Christensen-Dalsgaard, J (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM jcd@phys.au.dk FU NASA's Science Mission Directorate; Danish Natural Science Research Council FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We are very grateful to the entire Kepler team, whose efforts have led to this exceptional mission. The present work was supported by the Danish Natural Science Research Council. NR 36 TC 73 Z9 73 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L164 EP L168 DI 10.1088/2041-8205/713/2/L164 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900017 ER PT J AU Dunham, EW Borucki, WJ Koch, DG Batalha, NM Buchhave, LA Brown, TM Caldwell, DA Cochran, WD Endl, M Fischer, D Furesz, G Gautier, TN Geary, JC Gilliland, RL Gould, A Howell, SB Jenkins, JM Kjeldsen, H Latham, DW Lissauer, JJ Marcy, GW Meibom, S Monet, DG Rowe, JF Sasselov, DD AF Dunham, Edward W. Borucki, William J. Koch, David G. Batalha, Natalie M. Buchhave, Lars A. Brown, Timothy M. Caldwell, Douglas A. Cochran, William D. Endl, Michael Fischer, Debra Furesz, Gabor Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Gould, Alan Howell, Steve B. Jenkins, Jon M. Kjeldsen, Hans Latham, David W. Lissauer, Jack J. Marcy, Geoffrey W. Meibom, Soren Monet, David G. Rowe, Jason F. Sasselov, Dimitar D. TI KEPLER-6b: A TRANSITING HOT JUPITER ORBITING A METAL-RICH STAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (Kepler-6, KIC 10874614, 2MASS 19472094+4814238); techniques: spectroscopic ID PLANET AB We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, M(P) = 0.67 M(J), and the radius is 30% larger than that of Jupiter, R(P) = 1.32 R(J), resulting in a density of rho(P) = 0.35 g cm(-3), a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, M(star) = 1.21 M(circle dot), and larger than the Sun, R(star) = 1.39 R(circle dot). C1 [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Borucki, William J.; Koch, David G.; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA. [Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Latham, David W.; Meibom, Soren; Sasselov, Dimitar D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas A.; Jenkins, Jon M.; Rowe, Jason F.] SETI Inst, Mountain View, CA 94043 USA. [Cochran, William D.; Endl, Michael] Univ Texas Austin, Austin, TX 78712 USA. [Fischer, Debra] Yale Univ, New Haven, CT 06510 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Kjeldsen, Hans] Univ Aarhus, Aarhus, Denmark. [Marcy, Geoffrey W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. RP Dunham, EW (reprint author), Lowell Observ, 1400 W Mars Hill Rd, Flagstaff, AZ 86001 USA. RI Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 21 TC 46 Z9 46 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L136 EP L139 DI 10.1088/2041-8205/713/2/L136 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900011 ER PT J AU Gilliland, RL Jenkins, J Borucki, WJ Bryson, ST Caldwell, DA Clarke, BD Dotson, JL Haas, MR Hall, J Klaus, T Koch, D McCauliff, S Quintana, EV Twicken, JD van Cleve, JE AF Gilliland, Ronald L. Jenkins, Jonm. Borucki, William J. Bryson, Stephen T. Caldwell, Douglas A. Clarke, Bruce D. Dotson, Jessie L. Haas, Michael R. Hall, Jennifer Klaus, Todd Koch, David McCauliff, Sean Quintana, Elisa V. Twicken, Joseph D. van Cleve, Jeffrey E. TI INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: oscillations; techniques: photometric ID PLANET; FIELD; STAR AB The Kepler Mission offers two options for observations-either long cadence (LC) used for the bulk of core mission science, or short cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1 minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5 day long Quarter 1 observations with Kepler which completed on 2009 June 15. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near seventh magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2. C1 [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Jenkins, Jonm.; Borucki, William J.; Bryson, Stephen T.; Caldwell, Douglas A.; Clarke, Bruce D.; Dotson, Jessie L.; Haas, Michael R.; Hall, Jennifer; Klaus, Todd; Koch, David; McCauliff, Sean; Quintana, Elisa V.; Twicken, Joseph D.; van Cleve, Jeffrey E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jenkins, Jonm.; Caldwell, Douglas A.; Clarke, Bruce D.; Quintana, Elisa V.; Twicken, Joseph D.; van Cleve, Jeffrey E.] SETI Inst, Moffett Field, CA 94035 USA. [Hall, Jennifer; Klaus, Todd; McCauliff, Sean] Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Gilliland, RL (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM gillil@stsci.edu RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We gratefully acknowledge the many individuals through whose dedication and excellence the remarkable capabilities of Kepler have been made possible. NR 14 TC 185 Z9 185 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L160 EP L163 DI 10.1088/2041-8205/713/2/L160 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900016 ER PT J AU Grigahcene, A Antoci, V Balona, L Catanzaro, G Daszynska-Daszkiewicz, J Guzik, JA Handler, G Houdek, G Kurtz, DW Marconi, M Monteiro, MJPFG Moya, A Ripepi, V Suarez, JC Uytterhoeven, K Borucki, WJ Brown, TM Christensen-Dalsgaard, J Gilliland, RL Jenkins, JM Kjeldsen, H Koch, D Bernabei, S Bradley, P Breger, M Di Criscienzo, M Dupret, MA Garcia, RA Hernandez, AG Jackiewicz, J Kaiser, A Lehmann, H Martin-Ruiz, S Mathias, P Molenda-Zakowicz, J Nemec, JM Nuspl, J Paparo, M Roth, M Szabo, R Suran, MD Ventura, R AF Grigahcene, A. Antoci, V. Balona, L. Catanzaro, G. Daszynska-Daszkiewicz, J. Guzik, J. A. Handler, G. Houdek, G. Kurtz, D. W. Marconi, M. Monteiro, M. J. P. F. G. Moya, A. Ripepi, V. Suarez, J. -C. Uytterhoeven, K. Borucki, W. J. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Jenkins, J. M. Kjeldsen, H. Koch, D. Bernabei, S. Bradley, P. Breger, M. Di Criscienzo, M. Dupret, M. -A. Garcia, R. A. Garcia Hernandez, A. Jackiewicz, J. Kaiser, A. Lehmann, H. Martin-Ruiz, S. Mathias, P. Molenda-Zakowicz, J. Nemec, J. M. Nuspl, J. Paparo, M. Roth, M. Szabo, R. Suran, M. D. Ventura, R. TI HYBRID gamma DORADUS-delta SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE space vehicles: instruments; stars: variables: delta Scuti ID FREQUENCY RATIO METHOD; MULTICOLOR PHOTOMETRY; AM STAR; P-MODE; CONVECTION; PULSATIONS; EXCITATION; DISCOVERY; VARIABLES; ROTATION AB Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence gamma Doradus (Dor) and delta Scuti (Sct) stars with masses 1.2-2.5 M(circle dot) are particularly useful for these studies. The gamma Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The d Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the kappa mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where "hybrid" stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known gamma Dor and delta Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure delta Sct or gamma Dor pulsators, i.e., essentially all of the stars show frequencies in both the delta Sct and the gamma Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as delta Sct, gamma Dor, delta Sct/gamma Dor or gamma Dor/delta Sct hybrids. C1 [Grigahcene, A.; Monteiro, M. J. P. F. G.] Univ Porto, Fac Ciencias, Ctr Astrofis, P-4150762 Oporto, Portugal. [Antoci, V.; Handler, G.; Houdek, G.; Breger, M.; Kaiser, A.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Balona, L.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Catanzaro, G.; Ventura, R.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Daszynska-Daszkiewicz, J.; Molenda-Zakowicz, J.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Marconi, M.; Ripepi, V.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Moya, A.] CSIC, INTA, LAEX, CAB, Madrid 28691, Spain. [Suarez, J. -C.; Garcia Hernandez, A.; Martin-Ruiz, S.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Uytterhoeven, K.; Garcia, R. A.] Univ Paris Diderot, IRFU SAp, Ctr Saclay, CEA DSM CNRS,Lab AIM, F-91191 Gif Sur Yvette, France. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bernabei, S.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Bradley, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Di Criscienzo, M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Dupret, M. -A.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. [Lehmann, H.] Thueringer Landessternwarte, D-07778 Tautenburg, Germany. [Mathias, P.] CNRS, Observ Cote Azur, Dept Fizeau, UMR 6525, F-06304 Nice 4, France. [Nuspl, J.; Paparo, M.; Szabo, R.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. RP Grigahcene, A (reprint author), Univ Porto, Fac Ciencias, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal. RI Martin-Ruiz, Susana/B-6768-2013; Suarez, Juan Carlos/C-1015-2009; Ventura, Rita/B-7524-2016; Monteiro, Mario J.P.F.G./B-4715-2008 OI Suarez, Juan Carlos/0000-0003-3649-8384; Ventura, Rita/0000-0002-5152-0482; Catanzaro, Giovanni/0000-0003-4337-8612; Bradley, Paul/0000-0001-6229-6677; Monteiro, Mario J.P.F.G./0000-0003-0513-8116 NR 48 TC 88 Z9 88 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L192 EP L197 DI 10.1088/2041-8205/713/2/L192 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900022 ER PT J AU Haas, MR Batalha, NM Bryson, ST Caldwell, DA Dotson, JL Hall, J Jenkins, JM Klaus, TC Koch, DG Kolodziejczak, J Middour, C Smith, M Sobeck, CK Stober, J Thompson, RS Van Cleve, JE AF Haas, Michael R. Batalha, Natalie M. Bryson, Steve T. Caldwell, Douglas A. Dotson, Jessie L. Hall, Jennifer Jenkins, Jon M. Klaus, Todd C. Koch, David G. Kolodziejczak, Jeffrey Middour, Chris Smith, Marcie Sobeck, Charles K. Stober, Jeremy Thompson, Richard S. Van Cleve, Jeffrey E. TI KEPLER SCIENCE OPERATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE space vehicles: instruments; telescopes AB Kepler's mission design includes a comprehensive plan for commissioning and science operations. The commissioning phase completed all critical tasks and accomplished all mission objectives within a week of the pre-launch plan. Since the start of science data collection, the nominal timeline has been interrupted by two safe-mode events, several losses of fine point, and some small pointing adjustments. The most important anomalies are understood and mitigated, so Kepler's technical performance has improved significantly over this period, and the prognosis for mission success is excellent. The Kepler data archive is established and hosting data for the science team, guest observers, and the public. The first data to become publicly available include the monthly full-frame images and the light curves for targets that are dropped from the exoplanet program or released after publication. Data are placed in the archive on a quarterly basis; the Kepler Results Catalog will be released annually starting in 2011. C1 [Haas, Michael R.; Batalha, Natalie M.; Bryson, Steve T.; Caldwell, Douglas A.; Dotson, Jessie L.; Hall, Jennifer; Jenkins, Jon M.; Klaus, Todd C.; Koch, David G.; Smith, Marcie; Sobeck, Charles K.; Thompson, Richard S.; Van Cleve, Jeffrey E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Batalha, Natalie M.] San Jose State Univ, Moffett Field, CA 94035 USA. [Caldwell, Douglas A.; Jenkins, Jon M.; Van Cleve, Jeffrey E.] SETI Inst, Moffett Field, CA 94035 USA. [Hall, Jennifer; Klaus, Todd C.; Middour, Chris; Thompson, Richard S.] Orbital Sci Corp, Moffett Field, CA 94035 USA. [Kolodziejczak, Jeffrey] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35805 USA. [Stober, Jeremy] Ball Aerosp & Technol Co, Boulder, CO 80301 USA. RP Haas, MR (reprint author), NASA, Ames Res Ctr, MS 244-30, Moffett Field, CA 94035 USA. EM Michael.R.Haas@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Kepler has successfully completed its commissioning phase, entered science operations, and collected eight months of science data. Some data are already available through the public archive. Given Kepler's excellent on-orbit performance and ten-year supply of expendables, an extension beyond the nominal 3.5 year mission is worthy of serious consideration. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. NR 11 TC 66 Z9 66 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L115 EP L119 DI 10.1088/2041-8205/713/2/L115 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900007 ER PT J AU Hekker, S Debosscher, J Huber, D Hidas, MG De Ridder, J Aerts, C Stello, D Bedding, TR Gilliland, RL Christensen-Dalsgaard, J Brown, TM Kjeldsen, H Borucki, WJ Koch, D Jenkins, JM Van Winckel, H Beck, PG Blomme, J Southworth, J Pigulski, A Chaplin, WJ Elsworth, YP Stevens, IR Dreizler, S Kurtz, DW Maceroni, C Cardini, D Derekas, A Suran, MD AF Hekker, S. Debosscher, J. Huber, D. Hidas, M. G. De Ridder, J. Aerts, C. Stello, D. Bedding, T. R. Gilliland, R. L. Christensen-Dalsgaard, J. Brown, T. M. Kjeldsen, H. Borucki, W. J. Koch, D. Jenkins, J. M. Van Winckel, H. Beck, P. G. Blomme, J. Southworth, J. Pigulski, A. Chaplin, W. J. Elsworth, Y. P. Stevens, I. R. Dreizler, S. Kurtz, D. W. Maceroni, C. Cardini, D. Derekas, A. Suran, M. D. TI DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; stars: individual (KIC8410637); stars: oscillations ID STARS; ASTEROSEISMOLOGY; PARAMETERS; PLANETS AB Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longer than 75 days. C1 [Hekker, S.; Chaplin, W. J.; Elsworth, Y. P.; Stevens, I. R.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Debosscher, J.; De Ridder, J.; Aerts, C.; Van Winckel, H.; Beck, P. G.; Blomme, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Huber, D.; Hidas, M. G.; Stello, D.; Bedding, T. R.; Derekas, A.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Hidas, M. G.; Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Hidas, M. G.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Aerts, C.] Radbout Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Southworth, J.] Keele Univ Newcastle Under Lyme, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Pigulski, A.] Uniwersytetu Wroclawskiego, Inst Astron, PL-51622 Wroclaw, Poland. [Dreizler, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Maceroni, C.] INAF Osservatorio Astron Roma, I-00040 Monteporzio C, RM, Italy. [Cardini, D.] INAF, IASF Roma, I-00133 Rome, Italy. [Derekas, A.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. RP Hekker, S (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM saskia@bison.ph.bham.ac.uk RI Van Winckel, Hans/I-7863-2013; Derekas, Aliz/G-2091-2016; OI Van Winckel, Hans/0000-0001-5158-9327; Derekas, Aliz/0000-0002-6526-9444; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661 FU NASA's Science Mission Directorate; UK Science and Technology Facilities Council; European Community/ERC [FP7/2007-2013, 227224]; Research Council of K.U. Leuven; Fund for Scientific Research of Flanders (FWO); Belgian Federal Science Office; Australian Research Council FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We acknowledge the entire Kepler team for their efforts over many years. Without these efforts it would not have been possible to obtain the results presented here. S. H., W.J.C., Y.P.E., I. R. S., and D. W. K. acknowledge support by the UK Science and Technology Facilities Council. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n degrees 227224 (PROSPERITY), from the Research Council of K.U. Leuven, from the Fund for Scientific Research of Flanders (FWO), and from the Belgian Federal Science Office. D. S. acknowledges support from the Australian Research Council. NR 26 TC 42 Z9 42 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L187 EP L191 DI 10.1088/2041-8205/713/2/L187 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900021 ER PT J AU Jenkins, JM Caldwell, DA Chandrasekaran, H Twicken, JD Bryson, ST Quintana, EV Clarke, BD Li, J Allen, C Tenenbaum, P Wu, H Klaus, TC Van Cleve, J Dotson, JA Haas, MR Gilliland, RL Koch, DG Borucki, WJ AF Jenkins, Jon M. Caldwell, Douglas A. Chandrasekaran, Hema Twicken, Joseph D. Bryson, Stephen T. Quintana, Elisa V. Clarke, Bruce D. Li, Jie Allen, Christopher Tenenbaum, Peter Wu, Hayley Klaus, Todd C. Van Cleve, Jeffrey Dotson, Jessie A. Haas, Michael R. Gilliland, Ronald L. Koch, David G. Borucki, William J. TI INITIAL CHARACTERISTICS OF KEPLER LONG CADENCE DATA FOR DETECTING TRANSITING PLANETS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE methods: data analysis; techniques: photometric AB The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its similar to 115 deg(2) field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of similar to 156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5 day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Kepler's large dynamic range and the variety of light curves obtained from the Q1 observations. C1 [Jenkins, Jon M.; Caldwell, Douglas A.; Chandrasekaran, Hema; Twicken, Joseph D.; Bryson, Stephen T.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Allen, Christopher; Tenenbaum, Peter; Wu, Hayley; Klaus, Todd C.; Van Cleve, Jeffrey; Dotson, Jessie A.; Haas, Michael R.; Koch, David G.; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Jenkins, Jon M.; Caldwell, Douglas A.; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Tenenbaum, Peter; Wu, Hayley; Klaus, Todd C.; Van Cleve, Jeffrey] SETI Inst, Moffett Field, CA 94035 USA. [Allen, Christopher] Orbital Sci Corp, Moffett Field, CA 94035 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Jenkins, JM (reprint author), NASA, Ames Res Ctr, M-S 244-30, Moffett Field, CA 94035 USA. EM Jon.Jenkins@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We thank the thousands of people whose efforts made Kepler possible. NR 11 TC 211 Z9 211 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L120 EP L125 DI 10.1088/2041-8205/713/2/L120 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900008 ER PT J AU Jenkins, JM Caldwell, DA Chandrasekaran, H Twicken, JD Bryson, ST Quintana, EV Clarke, BD Li, J Allen, C Tenenbaum, P Wu, H Klaus, TC Middour, CK Cote, MT McCauliff, S Girouard, FR Gunter, JP Wohler, B Sommers, J Hall, JR Uddin, AKMK Wu, MS Bhavsar, PA Van Cleve, J Pletcher, DL Dotson, JA Haas, MR Gilliland, RL Koch, DG Borucki, WJ AF Jenkins, Jon M. Caldwell, Douglas A. Chandrasekaran, Hema Twicken, Joseph D. Bryson, Stephen T. Quintana, Elisa V. Clarke, Bruce D. Li, Jie Allen, Christopher Tenenbaum, Peter Wu, Hayley Klaus, Todd C. Middour, Christopher K. Cote, Miles T. McCauliff, Sean Girouard, Forrest R. Gunter, Jay P. Wohler, Bill Sommers, Jeneen Hall, Jennifer R. Uddin, A. K. M. K. Wu, Michael S. Bhavsar, Paresh A. Van Cleve, Jeffrey Pletcher, David L. Dotson, Jessie A. Haas, Michael R. Gilliland, Ronald L. Koch, David G. Borucki, William J. TI OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE methods: data analysis; techniques: photometric ID PLANETS AB The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the similar to 156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from similar to 4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives. C1 [Jenkins, Jon M.; Caldwell, Douglas A.; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Tenenbaum, Peter; Wu, Hayley; Van Cleve, Jeffrey] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Allen, Christopher; Klaus, Todd C.; Middour, Christopher K.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Gunter, Jay P.; Wohler, Bill; Sommers, Jeneen; Hall, Jennifer R.; Uddin, A. K. M. K.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Jenkins, JM (reprint author), NASA, Ames Res Ctr, SETI Inst, M-S 244-30, Moffett Field, CA 94035 USA. EM Jon.Jenkins@nasa.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We thank thousands of people whose efforts made Kepler's grand voyage of discovery possible. NR 12 TC 278 Z9 278 U1 7 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L87 EP L91 DI 10.1088/2041-8205/713/2/L87 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900002 ER PT J AU Koch, DG Borucki, WJ Rowe, JF Batalha, NM Brown, TM Caldwell, DA Caldwell, J Cochran, WD DeVore, E Dunham, EW Dupree, AK Gautier, TN Geary, JC Gilliland, RL Howell, SB Jenkins, JM Latham, DW Lissauer, JJ Marcy, GW Morrison, D Tarter, J AF Koch, David G. Borucki, William J. Rowe, Jason F. Batalha, Natalie M. Brown, Timothy M. Caldwell, Douglas A. Caldwell, John Cochran, William D. DeVore, Edna Dunham, Edward W. Dupree, Andrea K. Gautier, Thomas N., III Geary, John C. Gilliland, Ron L. Howell, Steve B. Jenkins, Jon M. Latham, David W. Lissauer, Jack J. Marcy, Geoff W. Morrison, David Tarter, Jill TI DISCOVERY OF THE TRANSITING PLANET KEPLER-5b SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (Kepler-5, KIC 8191672, 2MASS 19573768+4402061); techniques: spectroscopic ID PARAMETERS; STELLAR; FIELD; STAR AB We present 44 days of high duty cycle, ultra precise photometry of the 13th magnitude star Kepler-5 (KIC 8191672, T(eff) = 6300 K, log g = 4.1), which exhibits periodic transits with a depth of 0.7%. Detailed modeling of the transit is consistent with a planetary companion with an orbital period of 3.548460 +/- 0.000032 days and a radius of 1.431(-0.052)(+0.041) R(J). Follow-up radial velocity measurements with the Keck HIRES spectrograph on nine separate nights demonstrate that the planet is more than twice as massive as Jupiter with a mass of 2.114(-0.059)(+0.056) M(J) and a mean density of 0.894 +/- 0.079 g cm(-3). C1 [Koch, David G.; Borucki, William J.; Rowe, Jason F.; Lissauer, Jack J.; Morrison, David] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Tarter, Jill] SETI Inst, Mountain View, CA 94043 USA. [Caldwell, John] York Univ, Toronto, ON M3J 2R7, Canada. [Cochran, William D.] Univ Texas Austin, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Dupree, Andrea K.; Geary, John C.; Latham, David W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ron L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Marcy, Geoff W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Koch, DG (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We thank D. Fischer, A. Prsa, and everyone that has contributed to the Kepler Mission. NR 19 TC 61 Z9 61 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L131 EP L135 DI 10.1088/2041-8205/713/2/L131 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900010 ER PT J AU Koch, DG Borucki, WJ Basri, G Batalha, NM Brown, TM Caldwell, D Christensen-Dalsgaard, J Cochran, WD DeVore, E Dunham, EW Gautier, TN Geary, JC Gilliland, RL Gould, A Jenkins, J Kondo, Y Latham, DW Lissauer, JJ Marcy, G Monet, D Sasselov, D Boss, A Brownlee, D Caldwell, J Dupree, AK Howell, SB Kjeldsen, H Meibom, S Morrison, D Owen, T Reitsema, H Tarter, J Bryson, ST Dotson, JL Gazis, P Haas, MR Kolodziejczak, J Rowe, JF Van Cleve, JE Allen, C Chandrasekaran, H Clarke, BD Li, J Quintana, EV Tenenbaum, P Twicken, JD Wu, H AF Koch, David G. Borucki, William J. Basri, Gibor Batalha, Natalie M. Brown, Timothy M. Caldwell, Douglas Christensen-Dalsgaard, Jorgen Cochran, William D. DeVore, Edna Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Gould, Alan Jenkins, Jon Kondo, Yoji Latham, David W. Lissauer, Jack J. Marcy, Geoffrey Monet, David Sasselov, Dimitar Boss, Alan Brownlee, Donald Caldwell, John Dupree, Andrea K. Howell, Steve B. Kjeldsen, Hans Meibom, Soren Morrison, David Owen, Tobias Reitsema, Harold Tarter, Jill Bryson, Stephen T. Dotson, Jessie L. Gazis, Paul Haas, Michael R. Kolodziejczak, Jeffrey Rowe, Jason F. Van Cleve, Jeffrey E. Allen, Christopher Chandrasekaran, Hema Clarke, Bruce D. Li, Jie Quintana, Elisa V. Tenenbaum, Peter Twicken, Joseph D. Wu, Hayley TI KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE instrumentation: photometers; planetary systems; space vehicles: instruments; stars: statistics; stars: variables: general; techniques: photometric ID SOLAR-LIKE OSCILLATIONS; INITIAL CHARACTERISTICS; TRANSITING PLANET; TARGET STARS; CADENCE DATA; RED GIANT; 1ST; DISCOVERY; ASTEROSEISMOLOGY; VARIABILITY AB The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants. C1 [Koch, David G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basri, Gibor; Marcy, Geoffrey] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Brown, Timothy M.] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas; DeVore, Edna; Jenkins, Jon; Tarter, Jill; Gazis, Paul; Van Cleve, Jeffrey E.; Chandrasekaran, Hema; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Tenenbaum, Peter; Twicken, Joseph D.; Wu, Hayley] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, DK-8000 Aarhus C, Denmark. [Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Geary, John C.; Latham, David W.; Sasselov, Dimitar; Dupree, Andrea K.; Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kondo, Yoji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Monet, David] USN Observ, Flagstaff, AZ 86002 USA. [Boss, Alan] Carnegie Inst Washington, Washington, DC 20015 USA. [Brownlee, Donald] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Caldwell, John] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Owen, Tobias] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Reitsema, Harold] Ball Aerosp & Technol Corp, Boulder, CO 80306 USA. [Kolodziejczak, Jeffrey] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Allen, Christopher] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Koch, DG (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM D.Koch@NASA.gov RI Caldwell, Douglas/L-7911-2014 OI Caldwell, Douglas/0000-0003-1963-9616 NR 47 TC 497 Z9 499 U1 13 U2 65 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L79 EP L86 DI 10.1088/2041-8205/713/2/L79 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900001 ER PT J AU Kolenberg, K Szabo, R Kurtz, DW Gilliland, RL Christensen-Dalsgaard, J Kjeldsen, H Brown, TM Benko, JM Chadid, M Derekas, A Di Criscienzo, M Guggenberger, E Kinemuchi, K Kunder, A Kollath, Z Kopacki, G Moskalik, P Nemec, JM Nuspl, J Silvotti, R Suran, MD Borucki, WJ Koch, D Jenkins, JM AF Kolenberg, K. Szabo, R. Kurtz, D. W. Gilliland, R. L. Christensen-Dalsgaard, J. Kjeldsen, H. Brown, T. M. Benko, J. M. Chadid, M. Derekas, A. Di Criscienzo, M. Guggenberger, E. Kinemuchi, K. Kunder, A. Kollath, Z. Kopacki, G. Moskalik, P. Nemec, J. M. Nuspl, J. Silvotti, R. Suran, M. D. Borucki, W. J. Koch, D. Jenkins, J. M. TI FIRST KEPLER RESULTS ON RR LYRAE STARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: individual: (KIC5559631 (V783 Cyg), KIC3733346; (NR Lyr) and KIC7198959 (RR Lyr)); stars: oscillations; stars: variables: RR Lyrae ID VARIABLE-STARS; MAGNETIC-FIELD; CATALOG; MODELS; PULSATIONS; PHOTOMETRY; CEPHEIDS AB We present the first results of our analyses of selected RR Lyrae stars for which data have been obtained by the Kepler Mission. As expected, we find a significant fraction of the RRab stars to show the Blazhko effect, a still unexplained phenomenon that manifests itself as periodic amplitude and phase modulations of the light curve, on timescales of typically tens to hundreds of days. The long time span of the Kepler Mission of 3.5 yr and the unprecedentedly high precision of its data provide a unique opportunity for the study of RR Lyrae stars. Using data of a modulated star observed in the first roll as a showcase, we discuss the data, our analyses, findings, and their implications for our understanding of RR Lyrae stars and the Blazhko effect. With at least 40% of the RR Lyrae stars in our sample showing modulation, we confirm the high incidence rate that was only found in recent high-precision studies. Moreover, we report the occurrence of additional frequencies, beyond the main pulsation mode and its modulation components. Their half-integer ratio to the main frequency is reminiscent of a period doubling effect caused by resonances, observed for the first time in RR Lyrae stars. C1 [Kolenberg, K.; Guggenberger, E.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Szabo, R.; Benko, J. M.; Derekas, A.; Kollath, Z.; Nuspl, J.] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Chadid, M.] Univ Nice Sophia Antipolis, Observ Cote Azur, UMR 6525, F-06108 Nice 02, France. [Derekas, A.] Univ Sydney, Sch Phys A28, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Di Criscienzo, M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Kinemuchi, K.] Univ Florida, Bryant Space Sci Ctr 211, Dept Astron, Gainesville, FL 32611 USA. [Kinemuchi, K.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Kunder, A.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Kopacki, G.] Uniwersytetu Wroclawskiego, Inst Astron, PL-51622 Wroclaw, Poland. [Moskalik, P.] Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Nemec, J. M.] Camosun Coll, Dept Phys & Astron, Victoria, BC, Canada. [Silvotti, R.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Kolenberg, K (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. RI Derekas, Aliz/G-2091-2016; OI Derekas, Aliz/0000-0002-6526-9444; Silvotti, Roberto/0000-0002-1295-8174; Kunder, Andrea/0000-0002-2808-1370; Szabo, Robert/0000-0002-3258-1909; Benko, Jozsef/0000-0003-3851-6603 FU NASA's Science Mission Directorate; Austrian Research Fund (FWF) [T359, P19962]; KvVM-MUI [K-36-08-00031K]; UK Science and Technology Facilities Council FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors thank the entire Kepler team without whom these results would not be possible. K. K. and E. G. are supported by the Austrian Research Fund (FWF) project T359 and P19962. R. Sz., J. B., Z. K., and J. N. acknowledge the financial support of KvVM-MUI grant No. K-36-08-00031K. D. W. K. acknowledges support by the UK Science and Technology Facilities Council. NR 46 TC 53 Z9 54 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L198 EP L203 DI 10.1088/2041-8205/713/2/L198 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900023 ER PT J AU Latham, DW Borucki, WJ Koch, DG Brown, TM Buchhave, LA Basri, G Batalha, NM Caldwell, DA Cochran, WD Dunham, EW Furesz, G Gautier, TN Geary, JC Gilliland, RL Howell, SB Jenkins, JM Lissauer, JJ Marcy, GW Monet, DG Rowe, JF Sasselov, DD AF Latham, David W. Borucki, William J. Koch, David G. Brown, Timothy M. Buchhave, Lars A. Basri, Gibor Batalha, Natalie M. Caldwell, Douglas A. Cochran, William D. Dunham, Edward W. Furesz, Gabor Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Howell, Steve B. Jenkins, Jon M. Lissauer, Jack J. Marcy, Geoffrey W. Monet, David G. Rowe, Jason F. Sasselov, Dimitar D. TI KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (Kepler-7, KIC 5780885, 2MASS 19141956+4105233); techniques: spectroscopic ID STELLAR AB We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M(P) = 0.43 M(J), but the radius is 50% larger, R(P) = 1.48 R(J). The resulting density, rho(P) = 0.17 g cm(-3), is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T(eff) = 6000 K. However, it is more massive and considerably larger than the Sun, M(star) = 1.35 M(circle dot) and R(star) = 1.84R(circle dot), and must be near the end of its life on the main sequence. C1 [Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Sasselov, Dimitar D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Buchhave, Lars A.; Marcy, Geoffrey W.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Basri, Gibor] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA. [Caldwell, Douglas A.; Jenkins, Jon M.] SETI Inst, Mountain View, CA 94043 USA. [Cochran, William D.] Univ Texas Austin, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. RP Latham, DW (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666 NR 10 TC 77 Z9 77 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L140 EP L144 DI 10.1088/2041-8205/713/2/L140 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900012 ER PT J AU Rowe, JF Borucki, WJ Koch, D Howell, SB Basri, G Batalha, N Brown, TM Caldwell, D Cochran, WD Dunham, E Dupree, AK Fortney, JJ Gautier, TN Gilliland, RL Jenkins, J Latham, DW Lissauer, JJ Marcy, G Monet, DG Sasselov, D Welsh, WF AF Rowe, Jason F. Borucki, William J. Koch, David Howell, Steve B. Basri, Gibor Batalha, Natalie Brown, Timothy M. Caldwell, Douglas Cochran, William D. Dunham, Edward Dupree, Andrea K. Fortney, Jonathan J. Gautier, Thomas N., III Gilliland, Ronald L. Jenkins, Jon Latham, David W. Lissauer, Jack J. Marcy, Geoff Monet, David G. Sasselov, Dimitar Welsh, William F. TI KEPLER OBSERVATIONS OF TRANSITING HOT COMPACT OBJECTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: individual (KOI-74, KIC 6889235, KOI-81, KIC 8823868) ID WHITE-DWARF COMPANION; MASS-RADIUS RELATION; OSCILLATIONS; HELIUM; STARS AB Kepler photometry has revealed two unusual transiting companions: one orbiting an early A-star and the other orbiting a late B-star. In both cases, the occultation of the companion is deeper than the transit. The occultation and transit with follow-up optical spectroscopy reveal a 9400 K early A-star, KOI-74 (KIC 6889235), with a companion in a 5.2 day orbit with a radius of 0.08R(circle dot) and a 10,000 K late B-star KOI-81 (KIC 8823868) that has a companion in a 24 day orbit with a radius of 0.2R(circle dot). We infer a temperature of 12,250 K for KOI-74b and 13,500 K for KOI-81b. We present 43 days of high duty cycle, 30 minute cadence photometry, with models demonstrating the intriguing properties of these objects, and speculate on their nature. C1 [Rowe, Jason F.; Borucki, William J.; Koch, David; Lissauer, Jack J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Basri, Gibor; Marcy, Geoff] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Batalha, Natalie] San Jose State Univ, San Jose, CA 95192 USA. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas; Jenkins, Jon] SETI Inst, Mountain View, CA 94043 USA. [Cochran, William D.] Univ Texas Austin, Austin, TX 78712 USA. [Dunham, Edward] Lowell Observ, Flagstaff, AZ 86001 USA. [Dupree, Andrea K.; Latham, David W.; Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. [Welsh, William F.] San Diego State Univ, San Diego, CA 92182 USA. RP Rowe, JF (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Fortney, Jonathan/0000-0002-9843-4354 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We are indebted to the entire Kepler team for all the hard work and dedication that made such discoveries possible. NR 21 TC 39 Z9 39 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L150 EP L154 DI 10.1088/2041-8205/713/2/L150 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900014 ER PT J AU Stello, D Basu, S Bruntt, H Mosser, B Stevens, IR Brown, TM Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Arentoft, T Ballot, J Barban, C Bedding, TR Chaplin, WJ Elsworth, YP Garcia, RA Goupil, MJ Hekker, S Huber, D Mathur, S Meibom, S Sangaralingam, V Baldner, CS Belkacem, K Biazzo, K Brogaard, K Suarez, JC D'Antona, F Demarque, P Esch, L Gai, N Grundahl, F Lebreton, Y Jiang, BW Jevtic, N Karoff, C Miglio, A Molenda-Zakowicz, J Montalban, J Noels, A Cortes, TR Roxburgh, IW Serenelli, AM Aguirre, VS Sterken, C Stine, P Szabo, R Weiss, A Borucki, WJ Koch, D Jenkins, JM AF Stello, Dennis Basu, Sarbani Bruntt, Hans Mosser, Benoitt Stevens, Ian R. Brown, Timothy M. Christensen-Dalsgaard, Jorgen Gilliland, Ronald L. Kjeldsen, Hans Arentoft, Torben Ballot, Jerome Barban, Caroline Bedding, Timothy R. Chaplin, William J. Elsworth, Yvonne P. Garcia, Rafael A. Goupil, Marie-Jo Hekker, Saskia Huber, Daniel Mathur, Savita Meibom, Soren Sangaralingam, Vinothini Baldner, Charles S. Belkacem, Kevin Biazzo, Katia Brogaard, Karsten Carlos Suarez, Juan D'Antona, Francesca Demarque, Pierre Esch, Lisa Gai, Ning Grundahl, Frank Lebreton, Yveline Jiang, Biwei Jevtic, Nada Karoff, Christoffer Miglio, Andrea Molenda-Zakowicz, Joanna Montalban, Josefina Noels, Arlette Roca Cortes, Teodoro Roxburgh, Ian W. Serenelli, Aldo M. Aguirre, Victor Silva Sterken, Christiaan Stine, Peter Szabo, Robert Weiss, Achim Borucki, William J. Koch, David Jenkins, Jon M. TI DETECTION OF SOLAR-LIKE OSCILLATIONS FROM KEPLER PHOTOMETRY OF THE OPEN CLUSTER NGC 6819 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE open clusters and associations: individual (NGC 6819); stars: fundamental parameters; stars: interiors; stars: oscillations; techniques: photometric ID VARIABLE-STARS; GLOBULAR-CLUSTER; STELLAR CLUSTERS; GIANT STARS; K-GIANTS; SEARCH; ASTEROSEISMOLOGY; ISOCHRONES; NGC-6791; PLANETS AB Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance, and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819-one of the four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation, Delta nu, and the frequency of maximum oscillation power, nu(max). We find that the asteroseismic parameters allow us to test cluster membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about 2 orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler. C1 [Stello, Dennis; Bedding, Timothy R.; Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Basu, Sarbani; Baldner, Charles S.; Demarque, Pierre; Esch, Lisa; Gai, Ning] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bruntt, Hans; Mosser, Benoitt; Barban, Caroline; Goupil, Marie-Jo] Univ Paris 07, Univ Paris 06, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Stevens, Ian R.; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia; Sangaralingam, Vinothini; Karoff, Christoffer] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Brown, Timothy M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ballot, Jerome] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Garcia, Rafael A.] Univ Paris 07, IRFU SAp, CEA DSM, CNRS,Lab AIM,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Mathur, Savita] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Belkacem, Kevin; Miglio, Andrea; Montalban, Josefina; Noels, Arlette] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Biazzo, Katia] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Carlos Suarez, Juan] CSIC, Inst Astrofis Andalucia, Granada, Spain. [D'Antona, Francesca] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Gai, Ning; Jiang, Biwei] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Lebreton, Yveline] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-92195 Meudon, France. [Jevtic, Nada; Stine, Peter] Bloomsburg Univ Penn, Dept Phys & Engn Technol, Bloomsburg, PA 17815 USA. [Molenda-Zakowicz, Joanna] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Roca Cortes, Teodoro] Univ La Laguna, Dept Astrofis, Tenerife 38207, Spain. [Roca Cortes, Teodoro] Inst Astrofis Canarias, Tenerife 38205, Spain. [Roxburgh, Ian W.] Queen Mary Univ London, London E1 4NS, England. [Serenelli, Aldo M.; Aguirre, Victor Silva; Weiss, Achim] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Sterken, Christiaan] Vrije Univ Brussels, B-1050 Brussels, Belgium. [Szabo, Robert] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Jenkins, Jon M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Stello, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. RI Weiss, Achim/C-4870-2013; Karoff, Christoffer/L-1007-2013; Lebreton, Yveline/N-2268-2014; Suarez, Juan Carlos/C-1015-2009; Ballot, Jerome/G-1019-2010; OI Serenelli, Aldo/0000-0001-6359-2769; Weiss, Achim/0000-0002-3843-1653; Karoff, Christoffer/0000-0003-2009-7965; Suarez, Juan Carlos/0000-0003-3649-8384; Biazzo, Katia/0000-0002-1892-2180; Szabo, Robert/0000-0002-3258-1909; Brogaard, Karsten/0000-0003-2001-0276; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors thank the entire Kepler team without whom this investigation would not have been possible. The authors also thank all funding councils and agencies that have supported the activities of Working Group 2 of the Kepler Asteroseismic Science Consortium (KASC). NR 36 TC 60 Z9 60 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L182 EP L186 DI 10.1088/2041-8205/713/2/L182 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900020 ER PT J AU Welsh, WF Orosz, JA Seager, S Fortney, JJ Jenkins, J Rowe, JF Koch, D Borucki, WJ AF Welsh, William F. Orosz, Jerome A. Seager, Sara Fortney, Jonathan J. Jenkins, Jon Rowe, Jason F. Koch, David Borucki, William J. TI THE DISCOVERY OF ELLIPSOIDAL VARIATIONS IN THE KEPLER LIGHT CURVE OF HAT-P-7 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; planetary systems; stars: individual (BD+47, 2846, GSC0354014027) ID PLANETARY TRANSITS; EXOPLANET HAT-P-7B; SECONDARY ECLIPSE; HOT JUPITERS; HD 209458B; EXTRASOLAR; ATMOSPHERES; COMPANIONS; PHOTOMETRY; MISSION AB We present an analysis of the early Kepler observations of the previously discovered transiting planet HAT-P-7b. The light curve shows the transit of the star, the occultation of the planet, and the orbit phase-dependent light from the planet. In addition, phase-dependent light from the star is present, known as "ellipsoidal variations." The very nearby planet (only four stellar radii away) gravitationally distorts the star and results in a flux modulation twice per orbit. The ellipsoidal variations can confuse interpretation of the planetary phase curve if not self-consistently included in the modeling. We fit the light curve using the Roche potential approximation and derive improved planet and orbit parameters. C1 [Welsh, William F.; Orosz, Jerome A.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Seager, Sara] MIT, Cambridge, MA 02139 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Jenkins, Jon] SETI Inst, Mountain View, CA 94043 USA. [Jenkins, Jon; Rowe, Jason F.; Koch, David; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Welsh, WF (reprint author), San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. EM wfw@sciences.sdsu.edu OI Fortney, Jonathan/0000-0002-9843-4354 FU Research Corporation for Science Advancement; NASA [NNX08AR14G]; NASA's Science Mission Directorate FX We thank the anonymous referee for highly valuable comments. We thank Ron Gilliland for kindly providing assistance with the Q1 time series. W. F. W. gratefully acknowledges support from Research Corporation for Science Advancement. The authors acknowledge support from the Kepler Participating Scientists Program via NASA grant NNX08AR14G. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA's Science Mission Directorate. NR 27 TC 73 Z9 73 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L145 EP L149 DI 10.1088/2041-8205/713/2/L145 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900013 ER PT J AU Swartz, DA Wolk, SJ Fruscione, A AF Swartz, Douglas A. Wolk, Scott J. Fruscione, Antonella TI Chandra's first decade of discovery SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material DE review; X-rays ID X-RAY; SUPERNOVA REMNANT; EMISSION; JET; SPECTROSCOPY; CASSIOPEIA; ACCRETION; OBJECT; STATES C1 [Swartz, Douglas A.] NASA, Univ Space Res Assoc, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Wolk, Scott J.; Fruscione, Antonella] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Swartz, DA (reprint author), NASA, Univ Space Res Assoc, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. EM doug.swartz@nasa.gov OI Wolk, Scott/0000-0002-0826-9261 NR 87 TC 2 Z9 2 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 20 PY 2010 VL 107 IS 16 BP 7127 EP 7134 DI 10.1073/pnas.0914464107 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586FU UT WOS:000276892300007 PM 20406906 ER EF