FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abdo, AA Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Chen, AW Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Conrad, J Cutini, S Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Guillemot, L Guiriec, S Hadasch, D Harding, AK Hayashida, M Horan, D Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Knodlseder, J Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nestoras, I Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reyes, LC Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sambruna, R Sander, A Sato, R Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stecker, FW Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Villata, M Vitale, V von Kienlin, A Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M Tavecchio, F Sikora, M Schady, P Roming, P Chester, MM Maraschi, L AF Abdo, A. A. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Chekhtman, A. Chen, A. W. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Conrad, J. Cutini, S. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Horan, D. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reyes, L. C. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sambruna, R. Sander, A. Sato, R. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stecker, F. W. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. Tavecchio, F. Sikora, M. Schady, P. Roming, P. Chester, M. M. Maraschi, L. TI SUZAKU OBSERVATIONS OF LUMINOUS QUASARS: REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; radiation mechanisms: non-thermal; X-rays: galaxies ID XMM-NEWTON OBSERVATIONS; MAGNETOSONIC SHOCK-WAVES; LARGE-AREA TELESCOPE; RADIO-LOUD QUASARS; X-RAY TELESCOPE; MULTIWAVELENGTH OBSERVATIONS; GALACTIC NUCLEI; 3C 454.3; AMBIENT RADIATION; NONTHERMAL FLARES AB We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.] Univ Paris Diderot, Lab AIM, CNRS, CEA IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cavazzuti, E.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; McEnery, J. E.; Sambruna, R.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.; Roming, P.; Chester, M. M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guillemot, L.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] Inst Phys & Chem Res RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Sato, R.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reyes, L. C.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sadrozinski, H. F. -W.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.; Tavecchio, F.] Consorzio Interuniv Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Schady, P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Maraschi, L.] Osservatorio Astron Brena, I-20121 Milan, Italy. [Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM rsato@astro.isas.jaxa.jp RI Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Johnson, Neil/G-3309-2014; XRAY, SUZAKU/A-1808-2009; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Reimer, Olaf/0000-0001-6953-1385; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Villata, Massimo/0000-0003-1743-6946; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; Frailis, Marco/0000-0002-7400-2135; Grandi, Paola/0000-0003-1848-6013; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; L. S. was partially supported by the Polish Ministry of Science and Higher Education through the project N N203 380336. NR 56 TC 15 Z9 15 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 835 EP 849 DI 10.1088/0004-637X/716/1/835 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000064 ER PT J AU Lichtenberg, KA Arvidson, RE Morris, RV Murchie, SL Bishop, JL Remolar, DF Glotch, TD Dobrea, EN Mustard, JF Andrews-Hanna, J Roach, LH AF Lichtenberg, Kimberly A. Arvidson, Raymond E. Morris, Richard V. Murchie, Scott L. Bishop, Janice L. Fernandez Remolar, David Glotch, Timothy D. Dobrea, Eldar Noe Mustard, John F. Andrews-Hanna, Jeffrey Roach, Leah H. TI Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MERIDIANI-PLANUM; OMEGA/MARS EXPRESS AB Sedimentary deposits within the 280 km wide crater containing Aram Chaos (similar to 3 degrees N, 339 degrees E) have been differentially eroded by wind to expose a stratigraphic column 900-1000 m thick that unconformably overlies the chaos bedrock. A detailed stratigraphic and mineralogical description of the deposits is presented based on data from the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars, Context Imager, and High Resolution Imaging Science Experiment. Two sedimentary units overlie the basement chaos material representing the original plains fill in Aram Crater: the first and oldest is composed of (1) a 50-75 m thick dark-toned basal unit containing ferric hydroxysulfate intercalated with monohydrated-sulfate-bearing materials, (2) a 75-100 m thick light-toned unit with monohydrated sulfates, and (3) a 175-350 m thick light-toned resistant capping unit with nanophase ferric oxides and monohydrated sulfates. After a period of wind erosion, these deposits were partially and unconformably covered by the second sedimentary unit, a 75-100 m thick, discontinuous dark-toned unit containing crystalline hematite and polyhydrated sulfate material. These sedimentary deposits were formed by evaporite deposition during at least two distinct rising groundwater episodes fed by regional-scale recharge. Later groundwater event(s) formed the polyhydrated materials, indicating that environmental conditions changed to a higher water-to-rock ratio. Wind has continued to shape the landscape after the last wetting event to produce the features and exposures observed. C1 [Lichtenberg, Kimberly A.; Arvidson, Raymond E.] Washington Univ, McDonnell Ctr Space Sci, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Andrews-Hanna, Jeffrey] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Fernandez Remolar, David] INTA CSIC, Ctr Astrobiol, E-28850 Madrid, Spain. [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mustard, John F.; Roach, Leah H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Dobrea, Eldar Noe] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Lichtenberg, KA (reprint author), Washington Univ, McDonnell Ctr Space Sci, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM lichtenberg@wunder.wustl.edu RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU NASA; Micinn Project [ESP2006-09487] FX K. A. Lichtenberg, R. E. Arvidson, and R. V. Morris acknowledge support from NASA for participation as CRISM Science Team Members. We thank J. Gruener (NASA-JSC) for the XRD powder patterns of the synthetic sulfate-bearing phases. David Fernandez-Remolar acknowledges support by the Micinn Project ESP2006-09487. We would also like to thank our two reviewers for the thoughtful and thorough comments which made this a better paper. NR 40 TC 46 Z9 48 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 10 PY 2010 VL 115 AR E00D17 DI 10.1029/2009JE003353 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 610MC UT WOS:000278735900001 ER PT J AU Boykin, PO Mor, T Roychowdhury, V Vatan, F AF Boykin, P. Oscar Mor, Tal Roychowdhury, Vwani Vatan, Farrokh TI Algorithms on ensemble quantum computers SO NATURAL COMPUTING LA English DT Article; Proceedings Paper CT 6th International Conference on Unconventional Computation CY AUG, 2007 CL Kingston, CANADA SP EATCS, Cent Discrete Math & Theoret Comp Sci, Queens Univ, Sch Comp DE Quantum algorithms; Ensemble (bulk) quantum computers; NMR; Fault tolerance computing ID NUCLEAR-MAGNETIC-RESONANCE; ERROR-CORRECTION; COMPUTATION; TELEPORTATION; SPINS AB In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e. g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and sigma(1/4)(z) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement. C1 [Mor, Tal] Technion, Dept Comp Sci, IL-32000 Haifa, Israel. [Boykin, P. Oscar] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Roychowdhury, Vwani] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Vatan, Farrokh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mor, T (reprint author), Technion, Dept Comp Sci, IL-32000 Haifa, Israel. EM talmo@cs.technion.ac.il NR 27 TC 4 Z9 4 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1567-7818 EI 1572-9796 J9 NAT COMPUT JI Nat. Comput. PD JUN 10 PY 2010 VL 9 IS 2 BP 329 EP 345 DI 10.1007/s11047-009-9133-0 PG 17 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 604GK UT WOS:000278267300004 ER PT J AU Zaitchik, BF Rodell, M Olivera, F AF Zaitchik, Benjamin F. Rodell, Matthew Olivera, Francisco TI Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme SO WATER RESOURCES RESEARCH LA English DT Article ID GENERAL-CIRCULATION MODELS; SURFACE MODEL; CONTINENTAL-SCALE; PRECIPITATION PRODUCTS; TEMPORAL ANALYSIS; BASIN EXPERIMENT; CLIMATE MODELS; SNOW COVER; PARAMETERIZATION; RUNOFF AB Advanced land surface models (LSMs) offer detailed estimates of distributed hydrological fluxes and storages. These estimates are extremely valuable for studies of climate and water resources, but they are difficult to verify as field measurements of soil moisture, evapotranspiration, and surface and subsurface runoff are sparse in most regions. In contrast, river discharge is a hydrologic flux that is recorded regularly and with good accuracy for many of the world's major rivers. These measurements of discharge spatially integrate all upstream hydrological processes. As such, they can be used to evaluate distributed LSMs, but only if the simulated runoff is properly routed through the river basins. In this study, a rapid, computationally efficient source-to-sink (STS) routing scheme is presented that generates estimates of river discharge at gauge locations based on gridded runoff output. We applied the scheme as a postprocessor to archived output of the Global Land Data Assimilation System (GLDAS). GLDAS integrates satellite and ground-based data within multiple offline LSMs to produce fields of land surface states and fluxes. The application of the STS routing scheme allows for evaluation of GLDAS products in regions that lack distributed in situ hydrological measurements. We found that the four LSMs included in GLDAS yield very different estimates of river discharge and that there are distinct geographic patterns in the accuracy of each model as evaluated against gauged discharge. The choice of atmospheric forcing data set also had a significant influence on the accuracy of simulated discharge. C1 [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Olivera, Francisco] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. RP Zaitchik, BF (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, 301 Olin Hall,3400 N Charles St, Baltimore, MD 21218 USA. EM zaitchik@jhu.edu RI Rodell, Matthew/E-4946-2012; Zaitchik, Benjamin/B-9461-2013 OI Rodell, Matthew/0000-0003-0106-7437; FU NASA FX The authors thank Hiroko Kato for performing the GLDAS simulations used in this study and for providing insight on their results. The authors also thank multiple members of the NASA Hydrological Sciences Branch for contributing their ideas and technical expertise. The Global Runoff Data Center (GRDC) is gratefully acknowledged for providing all river gauge data used in this study. This work was funded by NASA's Energy and Water Cycle Study (NEWS) program. NR 79 TC 48 Z9 49 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 10 PY 2010 VL 46 AR W06507 DI 10.1029/2009WR007811 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 610OG UT WOS:000278742000001 ER PT J AU Gong, J Geller, MA AF Gong, Jie Geller, Marvin A. TI Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL LOWER STRATOSPHERE; MIDDLE ATMOSPHERE; MACQUARIE ISLAND; INTERANNUAL VARIABILITY; LATITUDINAL VARIATIONS; GENERAL-CIRCULATION; MOMENTUM FLUX; MODEL; PARAMETERIZATION; SPECTRUM AB Convectively generated internal gravity waves at extratropical latitudes are difficult to identify by climatological analysis of the temperature and horizontal wind fields from radiosonde profiles using traditional analysis methods. Here, we show that, by analyzing ascent rate profiles (we define a new variable, "vertical fluctuation energy (VE)"), we can identify convection sources in climatological analyses. Analysis of a 9-year time series (1998-2006) of United States high vertical resolution radiosonde data shows that VE maximizes in summer in midlatitudes within the troposphere (2-8.9 km), and peaks at local afternoon-early evening during the summer over most of the contiguous United States. Furthermore, the apparent dominant vertical wavelength based on Fourier analysis of the low-pass filtered ascent rate fluctuations also increase and decrease with VE, both on diurnal and seasonal timescales. VE in the lower stratosphere, however, does not show this same relationship to convection, but analysis of the vertical wavelength does show some of the features seen in tropospheric VE. Unlike midlatitude stations, VE within both the troposphere and the lower stratosphere over tropical western Pacific island stations is highly correlated with convective precipitation and inversely correlated with outgoing longwave radiation. We interpret this difference by using the 4-D Gravity Wave Regional or Global Ray Tracer ray-tracing model with a source spectrum representative of a convection source. C1 [Gong, Jie; Geller, Marvin A.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA. RP Gong, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jie.Gong@jpl.nasa.gov RI Gong, Jie/H-2436-2011 FU NSF [ATM - 0413747] FX This research is sponsored by NSF grant ATM - 0413747. The authors are grateful to Joan Alexander, Brian Colle, Stephen Eckermann, and Kaoru Sato for helpful discussions and suggestions. Three anonymous reviewers' comments and suggestions are also greatly appreciated. NR 54 TC 19 Z9 20 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 9 PY 2010 VL 115 AR D11110 DI 10.1029/2009JD012265 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 610KZ UT WOS:000278732900001 ER PT J AU Sultana, J Kazanas, D AF Sultana, Joseph Kazanas, Demosthenes TI Bending of light in conformal Weyl gravity SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; DEFLECTION; CLUSTERS; ENERGY; MATTER; LIMIT AB We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term gamma r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces. C1 [Sultana, Joseph; Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Sultana, Joseph] Univ Malta, Dept Math, Msida, Malta. RP Sultana, J (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM joseph.sultana@um.edu.mt; demos.kazanas@nasa.gov FU NASA-GSFC FX J. S. gratefully acknowledges the financial support of the Fulbright Program, during his stay at NASA-GSFC. NR 29 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 9 PY 2010 VL 81 IS 12 AR 127502 DI 10.1103/PhysRevD.81.127502 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608BH UT WOS:000278555900010 ER PT J AU Lu, GP Blakeslee, RJ Li, JB Smith, DM Shao, XM McCaul, EW Buechler, DE Christian, HJ Hall, JM Cummer, SA AF Lu, Gaopeng Blakeslee, Richard J. Li, Jingbo Smith, David M. Shao, Xuan -Min McCaul, Eugene W. Buechler, Dennis E. Christian, Hugh J. Hall, John M. Cummer, Steven A. TI Lightning mapping observation of a terrestrial gamma-ray flash SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THUNDERSTORM; PROPAGATION; RADIATION; ARRAY AB We report the observation with the North Alabama Lightning Mapping Array (LMA) related to a terrestrial gamma-ray flash (TGF) detected by RHESSI on 26 July 2008. The LMA data explicitly show the TGF was produced during the initial development of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above sea level (-22 degrees C temperature level) a higher positive region centered at 13 km, both confined to the convective core of an isolated storm in close proximity to the RHESSI footprint. After the occurrence of an LMA source with a high peak power (26 kW), the initial lightning evolution caused an unusually large IC current moment that became detectable 2 ms after the first LMA source and increased for another 2 ms, during which the burst of gamma-rays was produced. This slowly building current moment was most likely associated with the upward leader progression, which produced an uncommonly large IC charge moment change (+90 C.km) in 3 ms while being punctuated by a sequence of fast discharge. These observations suggest that the leader development may be involved in the TGF production. Citation: Lu, G., R. J. Blakeslee, J. Li, D. M. Smith, X. -M. Shao, E. W. McCaul, D. E. Buechler, H. J. Christian, J. M. Hall, and S. A. Cummer (2010), Lightning mapping observation of a terrestrial gamma-ray flash, Geophys. Res. Lett., 37, L11806, doi: 10.1029/2010GL043494. C1 [Lu, Gaopeng; Li, Jingbo; Cummer, Steven A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Blakeslee, Richard J.] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Smith, David M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Shao, Xuan -Min] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [McCaul, Eugene W.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Buechler, Dennis E.; Christian, Hugh J.; Hall, John M.] Univ Alabama, Global Hydrol & Climate Ctr, Huntsville, AL 35806 USA. RP Lu, GP (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90921, Durham, NC 27708 USA. EM gl46@duke.edu; cummer@ee.duke.edu RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008 OI Cummer, Steven/0000-0002-0002-0613 FU NSF [ATM-0221968] FX This work was supported by NSF Physical Meteorology Program grant ATM-0221968. The authors would like to thank Bill Winn, Ken Eack, Ron Thomas, Bill Rison, and David Raymond for valuable discussions. NR 27 TC 59 Z9 59 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 8 PY 2010 VL 37 AR L11806 DI 10.1029/2010GL043494 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 610KQ UT WOS:000278732000005 ER PT J AU Xie, F Wu, DL Ao, CO Kursinski, ER Mannucci, AJ Syndergaard, S AF Xie, F. Wu, D. L. Ao, C. O. Kursinski, E. R. Mannucci, A. J. Syndergaard, S. TI Super-refraction effects on GPS radio occultation refractivity in marine boundary layers SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LOWER TROPOSPHERE; SUPERREFRACTION; STRATOCUMULUS; ATMOSPHERE; FEEDBACKS; SIGNALS AB With the combination of global coverage, high vertical resolution, and all-weather capability, GPS radio occultation (RO) is an emerging satellite remote sensing technique that can probe the atmospheric boundary layer (ABL) on a global basis. However, a systematic negative bias (commonly referred to as N-bias) remains in derived refractivity profiles in the ABL. In this paper we present the N-biases in COSMIC RO soundings with respect to ECMWF analyses, which show a seasonally varying pattern clustered over the oceans where super-refraction (SR) often occurs. A case study of coincident COSMIC RO and radiosonde sounding confirms that the N-bias is primarily caused by SR. We also show that the high-rate RO bending angle measurements can resolve the ABL top at a vertical resolution better than 100 m. A reconstruction method is applied to one case where SR occurs and significantly reduces the negative refractivity error in the ABL. Citation: Xie, F., D. L. Wu, C. O. Ao, E. R. Kursinski, A. J. Mannucci, and S. Syndergaard (2010), Super-refraction effects on GPS radio occultation refractivity in marine boundary layers, Geophys. Res. Lett., 37, L11805, doi: 10.1029/2010GL043299. C1 [Xie, F.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA. [Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kursinski, E. R.] Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA. [Syndergaard, S.] Danish Meteorol Inst, DK-2100 Copenhagen, Denmark. RP Xie, F (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA. EM feiqin.xie@jpl.nasa.gov RI XIE, FEIQIN/J-4569-2013; Wu, Dong/D-5375-2012; Syndergaard, Stig/C-1103-2017 OI Syndergaard, Stig/0000-0003-3119-2618 FU JIFRESSE at UCLA; NOAA JCSDA; National Aeronautics and Space Administration (NASA) FX This work was supported by an appointment to JIFRESSE at UCLA. Dr. F. Xie and Dr. E. R. Kursinski are partly supported by NOAA JCSDA. Drs. D. L. Wu, C. O. Ao and A. J. Mannucci are supported by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). ECMWF analyses were provided by ECMWF through NCAR's CISL (Computational and Information Systems Laboratory) Research Data Archive (RDA). The authors would like to thank Byron Iijima, Marc Pestana, Tom Meehan, and Larry Young at JPL for assistance with the COSMIC retrievals and helpful discussions. We also thank Dr. Rick Anthe at UCAR and another anonymous reviewer for their help to improve the manuscript. NR 26 TC 14 Z9 14 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 8 PY 2010 VL 37 AR L11805 DI 10.1029/2010GL043299 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 610KQ UT WOS:000278732000004 ER PT J AU Klimas, A Uritsky, V Donovan, E AF Klimas, Alex Uritsky, Vadim Donovan, Eric TI Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth's midtail plasma sheet SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SELF-ORGANIZED CRITICALITY; SPORADIC LOCALIZED RECONNECTIONS; MAGNETIC-FIELD TOPOLOGY; FLOW BURSTS; INTERMITTENT TURBULENCE; COHERENT STRUCTURES; SPACE PLASMAS; MT-INDEX; DYNAMIC MAGNETOSPHERE; PARTICLE INJECTIONS AB We provide indirect evidence for turbulent reconnection in Earth's midtail plasma sheet by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. (2002, 2003, 2006). The events are divided into two groups: (1) those that map to vertical bar X-GSM vertical bar < 12 R-E in the magnetotail and do not show scale-free statistics and (2) those that map to vertical bar X-GSM vertical bar > 12 R-E and do show scale-free statistics. The vertical bar X-GSM vertical bar dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail plasma sheet. C1 [Klimas, Alex] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Uritsky, Vadim; Donovan, Eric] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RP Klimas, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alex.klimas@nasa.gov OI Donovan, Eric/0000-0002-8557-4155 FU NASA [NNX08AG73G]; MMS IDS [NCC5-494] FX We would like to acknowledge the essential contributions to many aspects of our results by D. Fairfield, A. Richmond, S. Boardsen, and N. Tsyganenko. For this research, one of us (A.J.K.) was supported by NASA grant NNX08AG73G and by the MMS IDS grant NCC5-494. NR 76 TC 12 Z9 12 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 8 PY 2010 VL 115 AR A06202 DI 10.1029/2009JA014995 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610MV UT WOS:000278738000004 ER PT J AU Corvino, G Rezzolla, L Bernuzzi, S De Pietri, R Giacomazzo, B AF Corvino, Giovanni Rezzolla, Luciano Bernuzzi, Sebastiano De Pietri, Roberto Giacomazzo, Bruno TI On the shear instability in relativistic neutron stars SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID DIFFERENTIALLY ROTATING STARS; BAR-MODE INSTABILITY; GRAVITATIONAL-RADIATION; DYNAMICAL INSTABILITIES; GENERAL-RELATIVITY; ANGULAR-MOMENTUM; GROUND-STATE; DENSE MATTER; SIMULATIONS; STABILITY AB We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription (Douchin and Haensel 2001 Astron. Astrophys. 380 151-67). We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, beta(c) T/vertical bar W vertical bar similar or equal to 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of beta. This class of instability, which has so far been found only for small values of beta and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts et al (2005 Astrophys. J. 618 L37) on the nature of the low-T/vertical bar W vertical bar instability as the manifestation of a shear instability in a region where the latter is possible only for small values of beta. Furthermore, our results provide additional insight on shear instabilities and on the necessary conditions for their development. C1 [Corvino, Giovanni; Rezzolla, Luciano; Giacomazzo, Bruno] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Golm, Germany. [Bernuzzi, Sebastiano] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [De Pietri, Roberto] Univ Parma, Dept Phys, I-43100 Parma, Italy. [De Pietri, Roberto] Ist Nazl Fis Nucl, Parma, Italy. [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Corvino, G (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst, Golm, Germany. EM Giovanni.Corvino@roma1.infn.it RI Corvino, Giovanni/D-5918-2011; Giacomazzo, Bruno/I-8088-2012; De Pietri, Roberto/E-5336-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023; De Pietri, Roberto/0000-0003-1556-8304 NR 52 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114104 DI 10.1088/0264-9381/27/11/114104 PG 20 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000015 ER PT J AU Kelly, BJ Tichy, W Zlochower, Y Campanelli, M Whiting, B AF Kelly, B. J. Tichy, W. Zlochower, Y. Campanelli, M. Whiting, B. TI Post-Newtonian initial data with waves: progress in evolution SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID 3-DIMENSIONAL CARTESIAN GRIDS; APPARENT-HORIZON FINDER; MANY-BODY SYSTEM; NUMERICAL RELATIVITY; CANONICAL FORMALISM; BLACK-HOLES; ADM AB In Kelly et al (2007 Phys. Rev. D 76 024008), we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. These data satisfy the constraint equations to 2.5 post-Newtonian order, and contain a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving these data with a modern moving puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted. C1 [Kelly, B. J.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kelly, B. J.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, B. J.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Tichy, W.] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. [Zlochower, Y.; Campanelli, M.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Sch Math Sci, Rochester, NY 14623 USA. [Whiting, B.] Univ Florida, Dept Phys, Inst Fundamental Theory, Gainesville, FL 32611 USA. RP Kelly, BJ (reprint author), NASA, Goddard Space Flight Ctr, CRESST, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM bernard.j.kelly@nasa.gov RI Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454; Whiting, Bernard F/0000-0002-8501-8669 NR 34 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114005 DI 10.1088/0264-9381/27/11/114005 PG 11 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000007 ER PT J AU Rezzolla, L Baiotti, L Giacomazzo, B Link, D Font, JA AF Rezzolla, Luciano Baiotti, Luca Giacomazzo, Bruno Link, David Font, Jose A. TI Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article; Proceedings Paper CT Numerical Relativity Data Analysis Meeting CY JUL 06-09, 2009 CL Albert Einstein Inst, Potsdam, GERMANY HO Albert Einstein Inst ID GAMMA-RAY BURSTS; QUASI-PERIODIC OSCILLATIONS; SCHWARZSCHILD BLACK-HOLE; RUNAWAY INSTABILITY; RELATIVISTIC TORI; ANGULAR-MOMENTUM; THICK DISCS; NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; ACCRETION DISKS AB We present new results from accurate and fully general-relativistic simulations of the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution of the stars is followed through the inspiral phase, the merger, and the prompt collapse to a black hole, up until the appearance of a thick accretion disc, which is studied as it enters and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation of state with Gamma = 2 is used, this work presents a systematic study within a fully general-relativistic framework of the properties of the resulting black-hole-torus system produced by the merger of unequal-mass binaries. More specifically, we show that (1) the mass of the torus increases considerably with the mass asymmetry, and equal-mass binaries do not produce significant tori if they have a total baryonic mass M(tot) greater than or similar to 3.7 M(circle dot); (2) tori with masses M(tor) similar to 0.2 M(circle dot) are measured for binaries with M(tot) similar to 3.4 M(circle dot) and mass ratios q similar to 0.75-0.85; (3) the mass of the torus can be estimated by the simple expression (M) over tilde (tor) (q, M(tot)) = [c(1)(1 - q) + c(2)] (M(max) - M(tot)), involving the maximum mass for the binaries and coefficients constrained from the simulations, and suggesting that the tori can have masses as large as (M) over tilde (tor) similar to 0.35 M(circle dot) for M(tot) similar to 2.8 M(circle dot) and q similar to 0.75-0.85; (4) using a novel technique to analyze the evolution of the tori, we find no evidence for the onset of non-axisymmetric instabilities and that very little, if any, of their mass is unbound; (5) finally, for all the binaries considered, we compute the complete gravitational waveforms and the recoils imparted to the black holes, discussing the prospects of the detection of these sources for a number of present and future detectors. C1 [Rezzolla, Luciano; Giacomazzo, Bruno; Link, David] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. [Baiotti, Luca] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 606, Japan. [Giacomazzo, Bruno] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Link, David] Humboldt Univ, Inst Phys, Berlin, Germany. [Font, Jose A.] Univ Valencia, Dept Astron & Astrofis, Valencia, Spain. RP Rezzolla, L (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany. EM rezzolla@aei.mpg.de RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 NR 76 TC 95 Z9 96 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 7 PY 2010 VL 27 IS 11 AR 114105 DI 10.1088/0264-9381/27/11/114105 PG 36 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 593KR UT WOS:000277454000016 ER PT J AU Fonti, S Montanaro, S Politi, R Blanco, A Marra, AC Marzo, GA Orofino, V AF Fonti, S. Montanaro, S. Politi, R. Blanco, A. Marra, A. C. Marzo, G. A. Orofino, V. TI Infrared reflectance spectra of particulate mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID EMISSION-SPECTROSCOPY; COHERENT BACKSCATTER; MINERAL MIXTURES; PARTICLES; SCATTERING; REGOLITHS; QUARTZ AB In this work we report the main results of a laboratory test program aimed to check the spectral behavior of several mixtures of particulate samples. The chosen spectral interval is from 2.5 to 25.0 mu m since it is the range where many minerals have their characteristic features and it is important for the interpretation of remote sensing spectra of planetary surfaces. The present study uses directional hemispherical reflectance spectra of three particulate minerals (dolomite, olivine, and quartz), with different grain sizes (ranging from 1 to 300 mu m), and of their mixtures. It was found that, in the spectral range between 2.5 mu m and the Christiansen feature, the reflectance of the mixtures is a nonlinear combination of the reflectance of the single pure materials, in agreement with the results found at shorter wavelength and reported in the literature. Our experimental results also confirm that, for longer wavelength, the reflectance of the mixtures is a linear combination of the reflectance of the single pure minerals. In this work, after checking some important simplifying hypotheses, we show that the mixture spectra cannot be always accurately reproduced using the volume percentage of each component, but it has a complicate behavior requiring a careful evaluation of all the parameters involved in the process. In particular we have determined experimentally the penetration depth of the radiation at different wavelengths in some of the mixtures. In this way we have been able to address the important issue of the influence of surface composition on the observed spectra. C1 [Fonti, S.; Montanaro, S.; Blanco, A.; Orofino, V.] Univ Salento, Dept Phys, I-73100 Lecce, Italy. [Politi, R.] INAF, IASF, I-00133 Rome, Italy. [Marra, A. C.] CNR, ISAC, I-73100 Lecce, Italy. [Marzo, G. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Fonti, S (reprint author), Univ Salento, Dept Phys, Via Arnesano,CP 193, I-73100 Lecce, Italy. EM sergio.fonti@le.infn.it RI Marzo, Giuseppe/A-9765-2015; OI Politi, Romolo/0000-0002-9793-9780 FU Ministry of University and Research; Italian Space Agency; National Institute of Astrophysics FX This research has been partially supported by the Ministry of University and Research, the Italian Space Agency, and the National Institute of Astrophysics. The authors warmly thank Ljuba Moroz for her constructive discussion and valuable suggestions, as well as Bruce Hapke and Bethany Ehlmann for their very useful reviews that allowed us to considerably improve the quality of the manuscript. NR 28 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 5 PY 2010 VL 115 AR E06003 DI 10.1029/2009JE003461 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 606UW UT WOS:000278454800002 ER PT J AU Zhao, MH Gu, XH Lowther, SE Park, C Jean, YC Nguyen, T AF Zhao, Minhua Gu, Xiaohong Lowther, Sharon E. Park, Cheol Jean, Y. C. Nguyen, Tinh TI Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy SO NANOTECHNOLOGY LA English DT Article ID SCANNING PROBE MICROSCOPY; CONDUCTANCE MICROSCOPY; FIELD-EMISSION; NETWORKS AB Subsurface characterization of carbon nanotubes (CNTs) dispersed in free-standing polymer composite films was achieved via quantitative electric force microscopy (EFM). The effects of relative humidity, EFM probe geometry, tip-sample distance and bias voltage on the EFM contrast were studied. Non-parabolic voltage dependence of the EFM signal of subsurface CNTs in polymer composites was observed and a new mechanism was proposed taking consideration of capacitive coupling as well as coulombic coupling. We anticipate that this quantitative EFM technique will be a useful tool for non-destructive subsurface characterization of high dielectric constant nanostructures in low dielectric constant matrices. C1 [Zhao, Minhua; Gu, Xiaohong; Nguyen, Tinh] NIST, Mat & Construct Res Div, Gaithersburg, MD 20899 USA. [Lowther, Sharon E.] NASA, Adv Mat & Proc Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Park, Cheol] Natl Inst Aerosp, Hampton, VA 23681 USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Jean, Y. C.] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. RP Zhao, MH (reprint author), NIST, Mat & Construct Res Div, Gaithersburg, MD 20899 USA. EM minhua.zhao@nist.gov; tinh.nguyen@nist.gov RI Zhao, Minhua/A-6678-2009 OI Zhao, Minhua/0000-0003-4880-1010 FU NIST/NIH(NIBIB) FX The first author (MZ) acknowledges the support of a National Research Council Fellowship sponsored by NIST/NIH(NIBIB). NR 46 TC 34 Z9 34 U1 0 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 4 PY 2010 VL 21 IS 22 AR 225702 DI 10.1088/0957-4484/21/22/225702 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 592UL UT WOS:000277405900012 PM 20453284 ER PT J AU Naud, CM Del Genio, AD Haeffelin, M Morille, Y Noel, V Dupont, JC Turner, DD Lo, C Comstock, J AF Naud, C. M. Del Genio, A. D. Haeffelin, M. Morille, Y. Noel, V. Dupont, J. -C. Turner, D. D. Lo, C. Comstock, J. TI Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ACTIVE REMOTE SENSORS; ICE WATER-CONTENT; LIDAR DEPOLARIZATION; AIRCRAFT OBSERVATIONS; PRECIPITATION SCHEME; MULTIPLE-SCATTERING; RAMAN LIDAR; RADAR; CLIMATE; VAPOR AB The relationship between cloud thermodynamic phase and temperature in some aircraft measurements conducted in midlatitude frontal clouds suggests that significant liquid does not exist at temperatures colder than 258 K. This data set is often used to verify parameterizations of cloud phase in general circulation models. However, other aircraft campaigns and different instruments suggest a different relationship. Here we examine the temperature-phase relationship for midlatitude optically thin winter clouds. Cloud phase and temperature profiles derived from 5 years of ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the U. S. Atmospheric Radiation Measurement Program Southern Great Plains site and the Site Instrumental de Recherche par Teledetection Atmospherique in France. Because lidars are attenuated in optically thick clouds, the data set only includes clouds with optical thickness of < 3. Cloud phase is obtained by using the classical method based on a depolarization ratio threshold of 11% for differentiating liquid from ice. The frequency of occurrence of clouds either completely liquid or completely glaciated in the temperature range from 233 to 273 K is similar to previous observations in the midlatitudes but somewhat greater than in the Arctic. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites, liquid is more prevalent at colder temperatures than has been found previously in some thicker frontal clouds, suggesting different processes for glaciation in nonfrontal optically thin clouds. C1 [Naud, C. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Naud, C. M.; Del Genio, A. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Meteorol Dynam Lab, F-91128 Palaiseau, France. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Inst Pierre Simon Laplace, F-91128 Palaiseau, France. [Turner, D. D.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Lo, C.; Comstock, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Naud, CM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM cnaud@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012; Noel, Vincent/C-3702-2013 OI Del Genio, Anthony/0000-0001-7450-1359; Noel, Vincent/0000-0001-9494-0340 FU U. S. Department of Energy [DE-FG02-06ER64167] FX This work was supported by an Interagency Agreement with the Atmospheric Radiation Measurement program of the U. S. Department of Energy. Support for D. Turner was provided by grant DE-FG02-06ER64167 from DOE BER as part of the ARM program. NR 58 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 3 PY 2010 VL 115 AR D11202 DI 10.1029/2009JD012889 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 606UI UT WOS:000278453400004 ER PT J AU Hillan, DS Cairns, IH Robinson, PA Mohamed, A AF Hillan, D. S. Cairns, Iver H. Robinson, P. A. Mohamed, A. TI Prediction of background levels for the Wind WAVES instrument and implications for the galactic background radiation SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID THERMAL NOISE; RADIO-EMISSION; PLASMA; FREQUENCY; SPACECRAFT; ANTENNAS; SHOCKS AB We investigate and predict the observed background levels for the TNR, RAD1, and RAD2 receivers when connected to the X, Y, and Z antennas of the WAVES instrument on the spacecraft Wind. The receivers are connected to either a single antenna, in "SEP" mode, or a combination of antennas, in "SUM" mode. With the TNR receiver in SEP (X) mode, the predicted backgrounds agree to within 20% when modeled using a two component model for the quasi-thermal plasma noise (QTN). Calibrating the RAD1 in SEP (X) mode observations against TNR allows us to calculate the relative receiver gain G(R1) = 1.43 +/- 0.18. Using the RAD1 data in SUM (X + Z) mode, the ratio of antenna gains is found to be R = 6.5, in agreement with preflight measurements. Observed differences between the SEP (X) and SUM (X + Z) modes are explained for the first time, and the predicted levels of QTN and galactic background are found to agree to within 20%. RAD2 is also calibrated against RAD1 and TNR, yielding a total gain G(R2)G(y) = 2.5 +/- 0.3. Differences between the predicted and observed galactic background spectra are used to estimate the effective antenna lengths for the X and Y antennas, which are found to be between the physical monopole antenna length L and the Hansen (1981) prediction of root(2/3)L. The analyses are consistent with the Novaco and Brown (1978) galactic background model, which decreases much faster than that of Cane (1979). Our model background spectrum is useful for theory-data comparisons of type II and III bursts. C1 [Hillan, D. S.; Cairns, Iver H.; Robinson, P. A.; Mohamed, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Mohamed, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hillan, DS (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. EM hillan@physics.usyd.edu.au OI Cairns, Iver/0000-0001-6978-9765 FU Australian Research Council FX We thank S. Hoang, P. J. Kellogg, M. L. Kaiser, M. Maksimovic, K. Issautier, and J. Eastwood for helpful discussions. The Australian Research Council supported this research. NR 21 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 2 PY 2010 VL 115 AR A06102 DI 10.1029/2009JA014714 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606VB UT WOS:000278455300001 ER PT J AU Shakya, KM Ziemba, LD Griffin, RJ AF Shakya, Kabindra M. Ziemba, Luke D. Griffin, Robert J. TI Characteristics and Sources of Carbonaceous, Ionic, and Isotopic Species of Wintertime Atmospheric Aerosols in Kathmandu Valley, Nepal SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Carbonaceous aerosols; Kathmandu; Ionic aerosols; Isotope ratios ID ELEMENTAL CARBON; SOURCE APPORTIONMENT; ORGANIC AEROSOL; CHEMICAL-COMPOSITION; AIR-POLLUTION; CHINA; PARTICLES; PM2.5; PARTICULATE; COMPONENTS AB To investigate the air pollution from aerosols in Kathmandu during winter, bulk aerosol samples were collected during winter 2007-2008 to characterize carbonaceous and ionic species and carbon and nitrogen isotopes. This study illustrates the applications of carbon and nitrogen isotope data for characterizing aerosols and their implications for identifying sources that were inconsistent with the results for the carbonaceous and ionic aerosols. Mean concentrations of organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) in Kathmandu during the period were 20.02 +/- 6.59 (1 sigma), 4.48 +/- 1.17, and 10.09 +/- 3.64 mu gC/m(3), respectively. Elemental carbon and OC were correlated (R(2) = 0.56), likely indicating common sources for both species, as well as for the precursors that led to the formation of secondary organic carbon (SOC). The mean estimated SOC contribution to OC was 31%, suggesting that local emission is more important than transport and processing during winter in Kathmandu. On average, 50% of the OC was water soluble, and the correlation of SOC with WSOC (R(2) = 0.66) suggests that the majority of SOC and some primary organic carbon (POC) were water soluble in Kathmandu. The mean delta(13)C of -25.74 +/- 0.19 parts per thousand observed in aerosols of Kathmandu confirms consistent anthropogenic sources such as fossil fuel combustion. Heavier carbon also was observed to be associated with the water-soluble fraction of OC in aerosols. The mean delta(15)N of 9.45 +/- 0.87 parts per thousand suggests the limited influence of biomass burning and its strong correlation with crustal cations Ca(2+) (R(2) = 0.74, p < 0.05) and Mg(2+) (R(2) = 0.71, p < 0.05) indicates distant sources. Principal component analysis revealed four major sources/pathways for particles: local and vehicular emissions, secondary gas-to-particle conversion, aqueous processing, and dust transport, each explaining similar to 39, 23, 11, and 9% of the variance. C1 [Shakya, Kabindra M.; Griffin, Robert J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. [Shakya, Kabindra M.; Ziemba, Luke D.; Griffin, Robert J.] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA. [Ziemba, Luke D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Griffin, RJ (reprint author), Rice Univ, Dept Civil & Environm Engn, 6100 Main St, Houston, TX 77005 USA. EM rob.griffin@rice.edu RI Wang, Linden/M-6617-2014 FU University of New Hampshire FX The partial support of the University of New Hampshire Ph.D. program in Natural Resources and Earth System Sciences, Andrew Quimette and Philip Place for help in isotope analyses, and Neeraj Tamrakar for providing the sampling site and logistical support are gratefully acknowledged. NR 46 TC 22 Z9 22 U1 1 U2 25 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD JUN PY 2010 VL 10 IS 3 BP 219 EP U13 DI 10.4209/aaqr.2009.10.0068 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA 580NK UT WOS:000276455900003 ER PT J AU Sietzen, F Aldrin, B AF Sietzen, Frank Aldrin, Buzz TI Conversations with Buzz Aldrin SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Aldrin, Buzz] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUN PY 2010 VL 48 IS 6 BP 12 EP 14 PG 3 WC Engineering, Aerospace SC Engineering GA V24JR UT WOS:000208407200004 ER PT J AU Kirk, BS Carey, GF AF Kirk, Benjamin S. Carey, Graham F. TI Validation of Fully Implicit, Parallel Finite Element Simulations of Laminar Hypersonic Flows SO AIAA JOURNAL LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; NAVIER-STOKES EQUATIONS; ADVECTIVE-DIFFUSIVE SYSTEMS; COMPRESSIBLE EULER; FORMULATION; ALGORITHM; OPERATOR; SCIENCE; SCHEME AB This paper concerns comparative studies of predictive simulations and experimental results from the literature for high-Mach-number two-dimensional/axisymmetric flow past a hollow-cylinder flare and a double cone. The underlying physical model for the mathematical formulation assumes calorically-perfect-gas laminar flow, and we seek to approximate the corresponding compressible Navier-Stokes equations expressed in conservation-variable form. Predictive simulations of this mathematical model are based on a fully implicit, parallel streamline-upwind Petrov-Galerkin finite element formulation that uses a grouped-variable expansion for the inviscid flux terms. The spatial discretization, second-order-accurate time discretization, numerical method, and parallel fully implicit implementation are concisely described. Representative iterative and mesh convergence results are presented for the case of a hollow-cylinder flare. Local predicted values of surface pressure and heat transfer are compared with available experimentally measured values for both geometries. These results are interpreted in the context of validation. Predicted results for complex flowfield/shock interactions and the viscous slip surface are illustrated through a computed schlieren image for the double cone. The present work presents the first known comparison of predictions from the finite element method to this set of data, and the validation study provides the comparative details to motivate future computational investigations and experimental studies. C1 [Kirk, Benjamin S.] NASA, Lyndon B Johnson Space Ctr, Appl Aerosci & Computat Fluid Dynam Branch, Houston, TX 77058 USA. [Carey, Graham F.] Univ Texas Austin, Inst Computat Engn Sci, Austin, TX 78712 USA. RP Kirk, BS (reprint author), NASA, Lyndon B Johnson Space Ctr, Appl Aerosci & Computat Fluid Dynam Branch, 2101 NASA Pkwy,Mail Code EG3, Houston, TX 77058 USA. NR 48 TC 0 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1025 EP 1036 DI 10.2514/1.40860 PG 12 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900001 ER PT J AU Nielsen, EJ Diskin, B Yamaleev, NK AF Nielsen, Eric J. Diskin, Boris Yamaleev, Nail K. TI Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids SO AIAA JOURNAL LA English DT Article ID NAVIER-STOKES EQUATIONS; SENSITIVITY-ANALYSIS; COMPLEX-VARIABLES; MESHES; ALGORITHM; IMPLICIT; SYSTEMS AB An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet. C1 [Nielsen, Eric J.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. [Diskin, Boris] Natl Inst Aerosp, Hampton, VA 23666 USA. [Yamaleev, Nail K.] N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA. RP Nielsen, EJ (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. FU NASA [NNL07AA23C] FX The authors wish to thank Robert Biedron of NASA Langley Research Center for many useful discussions pertaining to the current work. Geometric parameterizations provided by Bill Jones of NASA Langley Research Center are also appreciated. Jan-Renee Carlson of NASA Langley Research Center is acknowledged for her assistance with plenum geometry modifications and boundary conditions for the fighter jet example. The second and third authors acknowledge the support from NASA under grant NNL07AA23C. NR 43 TC 22 Z9 25 U1 1 U2 9 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1195 EP 1206 DI 10.2514/1.J050035 PG 12 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900016 ER PT J AU Ho, JC Hodges, DH Yu, WB AF Ho, Jimmy C. Hodges, Dewey H. Yu, Wenbin TI Energy Transformation to Generalized Timoshenko Form for Nonuniform Beams SO AIAA JOURNAL LA English DT Article ID SECTION C1 [Hodges, Dewey H.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Yu, Wenbin] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. RP Ho, JC (reprint author), USA, ELORET Corp, Aeroflightdynam Directorate, Ames Res Ctr, Mail Stop 215-1, Moffett Field, CA 94035 USA. EM jimmy.c.ho@us.army.mil; dhodges@gatech.edu; wenbin@engineering.usu.edu RI Yu, Wenbin/B-1916-2009 FU U.S. Army Vertical Lift Research Center of Excellence at Georgia Institute of Technology FX This research is supported by the U.S. Army Vertical Lift Research Center of Excellence at Georgia Institute of Technology and its affiliate program through subcontract at Utah State University. The Technical Monitor is Michael J. Rutkowski. NR 13 TC 2 Z9 2 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2010 VL 48 IS 6 BP 1268 EP 1272 DI 10.2514/1.J050160 PG 5 WC Engineering, Aerospace SC Engineering GA 605MY UT WOS:000278352900025 ER PT J AU Barker, CM Johnson, WO Eldridge, BF Park, BK Melton, F Reisen, WK AF Barker, Christopher M. Johnson, Wesley O. Eldridge, Bruce F. Park, Bborie K. Melton, Forrest Reisen, William K. TI Temporal Connections between Culex tarsalis Abundance and Transmission of Western Equine Encephalomyelitis Virus in California SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID ST-LOUIS ENCEPHALITIS; VECTOR COMPETENCE; TEMPERATURE; CULICIDAE; DIPTERA; MOSQUITOS; VALLEY; ARBOVIRUSES; COACHELLA; INFECTION AB Definition of targets for vector control requires an understanding of the relationship between vector abundance and the intensity of arbovirus transmission. Using an extensive surveillance dataset with observations from sentinel chicken flocks and mosquito traps paired in time and space, hierarchical autoregressive logistic regression models were developed to predict the probability of seroconversion in chickens for western equine encephalomyelitis virus (WEEV) based on the relative abundance of the principal vector, Culex tarsalis. After adjustments for confounders, the abundance of Cx. tarsalis 29-42 d before the date of chicken sampling was credibly associated with the risk of WEEV transmission in both the Central and Coachella Valleys, and a doubling of relative Cx. tarsalis abundance was associated with a 58% increase in the odds of seroconversion. The critical time windows identified in our study highlight the need for surveillance of vector populations and forecasting models to guide proactive vector control measures before the detection of transmission to sentinel chickens. C1 [Barker, Christopher M.; Eldridge, Bruce F.; Park, Bborie K.; Reisen, William K.] Univ Calif Davis, Ctr Vectorborne Dis, Davis, CA 95616 USA. [Johnson, Wesley O.] Univ Calif Irvine, Dept Stat, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA. Calif State Univ, Seaside, CA USA. [Melton, Forrest] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA. RP Barker, CM (reprint author), Univ Calif Davis, Ctr Vectorborne Dis, Old Davis Rd, Davis, CA 95616 USA. EM cmbarker@ucdavis.edu FU NASA [RM08-6044, NNA06CN02A]; NOAA Office of Global Programs, Climate Variability and Human Health [00-543] FX This work was funded by NASA Earth-Sun Science Applied Sciences Program Research Opportunities in Space and Earth Science, Decision Support through Earth-Sun Science Research Results grant RM08-6044 for NNA06CN02A and NOAA Office of Global Programs, Climate Variability and Human Health grant 00-543. NR 53 TC 2 Z9 2 U1 0 U2 4 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD JUN PY 2010 VL 82 IS 6 BP 1185 EP 1193 DI 10.4269/ajtmh.2010.09-0324 PG 9 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 606XP UT WOS:000278462600036 PM 20519621 ER PT J AU Mckay, CP AF McKay, Christopher P. TI Liquid water formation around rocks and meteorites on Antarctic Polar Plateau ice SO ANTARCTIC SCIENCE LA English DT Article ID CRYPTOENDOLITHIC MICROBIAL ENVIRONMENT; ALLAN HILLS 84001; AMINO-ACIDS; ALH84001; CHONDRITES; DESERT; SEARCH C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Mckay, CP (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM chris.mckay@nasa.gov NR 14 TC 3 Z9 3 U1 0 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2010 VL 22 IS 3 BP 287 EP 288 DI 10.1017/S0954102010000118 PG 2 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 627CH UT WOS:000280015800011 ER PT J AU Arkoosh, MR Boylen, D Dietrich, J Anulacion, BF Ylitalo, G Bravo, CF Johnson, LL Loge, FJ Collier, TK AF Arkoosh, Mary R. Boylen, Deborah Dietrich, Joseph Anulacion, Bernadita F. Ylitalo, Gina Bravo, Claudia F. Johnson, Lyndal L. Loge, Frank J. Collier, Tracy K. TI Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs) SO AQUATIC TOXICOLOGY LA English DT Article DE PBDEs; Salmon; Disease susceptibility; Willamette River; Immune system; Columbia River Basin; Listonella anguillarum ID JUVENILE CHINOOK SALMON; POLYCHLORINATED-BIPHENYLS PCBS; BROMINATED FLAME RETARDANTS; THYROID-HORMONES; COLUMBIA RIVER; IMMUNE-SYSTEM; VITAMIN-A; ESTUARY; FISH; ENVIRONMENT AB The health effects of the flame retardant polybrominated diphenyl ethers (PBDEs) in fish are not well understood. To determine the potential effects of this ubiquitous contaminant class on fish health, juvenile subyearling Chinook salmon (Oncorhynchus tshawytscha) were fed a diet that reflected the PBDE congeners found in the stomach contents of subyearling Chinook salmon collected from the highly urbanized and industrialized lower Willamette River in the Columbia River Basin of North America. The diet, consisting of five PBDE congeners (BDE-47, BDE-99, BDE-100, BDE-153 and BDE-154), was fed to the salmon at 2% of their body weight in food per day for 40 days. Two concentrations of the diet (1 x and 10x PBDE) were fed to the salmon. The 1x PBDE diet reflected the concentration of PBDEs (190 ng PBDEs/g food) found in the stomach contents of juvenile subyearling Chinook salmon; the 10x diet was prepared at 10 times that concentration. The fish were then exposed to the marine bacterial pathogen Listonella anguillarum to assess susceptibility to infectious disease. juvenile Chinook salmon fed the 1x PBDE diet were more susceptible to L. anguillarum than salmon fed the control diet. This suggests that juvenile salmonids in the lower Willamette River exposed to PBDEs may be at greater risk for disease than nonexposed juvenile salmonids. In contrast, salmon that consumed the 10x PBDE diet were not more susceptible to the pathogen than salmon fed the control diet. The mechanisms for the dichotomous results observed in disease susceptibility between salmon fed the 1x and 10x PBDE diets are currently not known but have also been observed in other species exposed to PBDEs with respect to immune function. Published by Elsevier B.V. C1 [Arkoosh, Mary R.; Boylen, Deborah; Dietrich, Joseph] Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Newport, OR 97365 USA. [Anulacion, Bernadita F.; Ylitalo, Gina; Johnson, Lyndal L.; Collier, Tracy K.] Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, Seattle, WA 98112 USA. [Bravo, Claudia F.; Loge, Frank J.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Arkoosh, MR (reprint author), Natl Marine Fisheries Serv, Environm Conservat Div, NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm, 2032 SE OSU Dr, Newport, OR 97365 USA. EM mary.arkoosh@noaa.gov NR 49 TC 24 Z9 28 U1 5 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X J9 AQUAT TOXICOL JI Aquat. Toxicol. PD JUN 1 PY 2010 VL 98 IS 1 BP 51 EP 59 DI 10.1016/j.aquatox.2010.01.013 PG 9 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA 607LZ UT WOS:000278506900007 PM 20207027 ER PT J AU Hintze, PE Nicholson, WL AF Hintze, Paul E. Nicholson, Wayne L. TI Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium SO ARCHIVES OF MICROBIOLOGY LA English DT Article DE Bacillus subtilis; Spore; Dipicolinic acid; DPA ID GERMINATION MUTANTS; BACTERIAL-SPORES; SPORULATION; ENDOSPORES; RESISTANCE; RADIATION; SEQUENCE; OPERON; SPOVA AB Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca-DPA). Spores excrete Ca-DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported. C1 [Nicholson, Wayne L.] Kennedy Space Ctr, Space Life Sci Lab, Gainesville, FL 32899 USA. [Hintze, Paul E.] NASA, Corros Technol Lab, Gainesville, FL 32899 USA. [Nicholson, Wayne L.] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32899 USA. RP Nicholson, WL (reprint author), Kennedy Space Ctr, Space Life Sci Lab, Bldg M6-1025 SLSL,Room 201-B, Gainesville, FL 32899 USA. EM WLN@ufl.edu OI Hintze, Paul/0000-0002-9962-2955 FU USDA [FLA-MCS-04602] FX The authors wish to thank Pete Setlow for generous donation of the strains used. This work was supported by USDA grant FLA-MCS-04602 to W.L.N. NR 25 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0302-8933 J9 ARCH MICROBIOL JI Arch. Microbiol. PD JUN PY 2010 VL 192 IS 6 BP 493 EP 497 DI 10.1007/s00203-010-0569-5 PG 5 WC Microbiology SC Microbiology GA 597TT UT WOS:000277785300009 PM 20396869 ER PT J AU Benford, J Benford, G Benford, D AF Benford, James Benford, Gregory Benford, Dominic TI Messaging with Cost-Optimized Interstellar Beacons SO ASTROBIOLOGY LA English DT Article DE SETI; METI; High-power microwaves; HPM; Microwave antennas ID SEARCH AB On Earth, how would we build galactic-scale beacons to attract the attention of extraterrestrials, as some have suggested we should do? From the point of view of expense to a builder on Earth, experience shows an optimum trade-off. This emerges by minimizing the cost of producing a desired power density at long range, which determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For nonlinear power-law dependence, a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule of thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations by using current cost parameters ($/W, $/m(2)) as a basis. We show the scaling and give examples of such beacons. Galactic-scale beacons can be built for a few billion dollars with our present technology. Such beacons have narrow "searchlight" beams and short "dwell times" when the beacon would be seen by an alien observer in their sky. More-powerful beacons are more efficient and have economies of scale: cost scales only linearly with range R, not as R(2), so number of stars radiated to increases as the square of cost. On a cost basis, they will likely transmit at higher microwave frequencies, similar to 10 GHz. The natural corridor to broadcast is along the galactic radius or along the local spiral galactic arm we are in. A companion paper asks "If someone like us were to produce a beacon, how should we look for it?" C1 [Benford, James] Microwave Sci Inc, Lafayette, CA 94549 USA. [Benford, Gregory] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Benford, Dominic] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Benford, J (reprint author), Microwave Sci Inc, Lafayette, CA 94549 USA. EM jbenford@earthlink.net RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 25 TC 12 Z9 12 U1 0 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 475 EP 490 DI 10.1089/ast.2009.0393 PG 16 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100002 PM 20624056 ER PT J AU Benford, G Benford, J Benford, D AF Benford, Gregory Benford, James Benford, Dominic TI Searching for Cost-Optimized Interstellar Beacons SO ASTROBIOLOGY LA English DT Article DE SETI; METI; Microwave; Power beaming; Beacons; Radio astronomy; Array antennas; High-power microwaves ID EXTRATERRESTRIAL INTELLIGENCE; FOSSIL DIVERSITY; RADIO; SIGNALS; CYCLES; SETI; WOW AB What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses. C1 [Benford, James] Microwave Sci Inc, Lafayette, CA 94549 USA. [Benford, Gregory] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Benford, Dominic] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Benford, J (reprint author), Microwave Sci Inc, Lafayette, CA 94549 USA. EM jbenford@earthlink.net RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 34 TC 12 Z9 12 U1 0 U2 6 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 491 EP 498 DI 10.1089/ast.2009.0394 PG 8 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100003 PM 20624057 ER PT J AU Vaishampayan, P Osman, S Andersen, G Venkateswaran, K AF Vaishampayan, Parag Osman, Shariff Andersen, Gary Venkateswaran, Kasthuri TI High-Density 16S Microarray and Clone Library-Based Microbial Community Composition of the Phoenix Spacecraft Assembly Clean Room SO ASTROBIOLOGY LA English DT Article DE Microbial ecology; Spacecraft assembly facility ID MICROBIOLOGICAL PROFILES; DIVERSITY; ENVIRONMENTS; POPULATIONS; UNIFRAC; DNA AB The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants. C1 [Vaishampayan, Parag; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA USA. [Osman, Shariff; Andersen, Gary] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Vaishampayan, P (reprint author), 4800 Oak Grove Dr,M-S 89, Pasadena, CA 91109 USA. EM vaishamp@jpl.nasa.gov RI Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory (LBL) [DE-AC02-05CH11231]; NASA FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Additional work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory (LBL), under contract DE-AC02-05CH11231. This research was funded by NASA Research Announcement (NRA) ROSS 2006 awarded to Kasthuri Venkateswaran. We are grateful to members of the Biotechnology and Planetary Protection group (JPL) and the Center for Environmental Biotechnology (LBL) for technical assistance. We also appreciate the help rendered by R. Sumner, B. Petsos, Y. Salinas, and D. Vaughn during sampling, and T. DeSantis, E. Brodie, and Y. Piceno during PhyloChip analysis. We are thankful to J. Spry, K. Buxbaum, C. Conley, and J. Rummel for valuable advice and encouragement. NR 42 TC 20 Z9 20 U1 0 U2 7 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2010 VL 10 IS 5 BP 499 EP 508 DI 10.1089/ast.2009.0443 PG 10 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 623WS UT WOS:000279778100004 PM 20624058 ER PT J AU Lacy, CHS Torres, G Claret, A Charbonneau, D O'Donovan, FT Mandushev, G AF Lacy, Claud H. Sandberg Torres, Guillermo Claret, Antonio Charbonneau, David O'Donovan, Francis T. Mandushev, Georgi TI ABSOLUTE PROPERTIES OF THE ECLIPSING TRIPLE STAR CO ANDROMEDAE: CONSTRAINTS ON CONVECTIVE CORE OVERSHOOTING SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; binaries: spectroscopic; stars: fundamental parameters; stars: individual (CO And); stars: rotation; stars: solar-type ID LIMB-DARKENING COEFFICIENTS; SPECTROSCOPIC BINARIES; LIGHT CURVES; MODEL ATMOSPHERES; TIDAL-EVOLUTION; Y-2 ISOCHRONES; STELLAR MODELS; MAIN-SEQUENCE; TRANSFORMATIONS; TEMPERATURES AB Accurate absolute properties have been determined for the eclipsing triple star CO And (F8+F8) based on extensive differential photometry obtained by three robotic observatories and CfA spectroscopy. The eclipsing binary star orbit is circular with a period of 3.655 days. The triple nature of this system is revealed by more than a century of timings of minimum light, and by the presence of third light in the photometric orbits. The masses of the eclipsing pair are 1.289 +/- 0.007 and 1.264 +/- 0.007 solar masses, and the corresponding radii are 1.727 +/- 0.021 and 1.694 +/- 0.017 solar radii. These stars are synchronously rotating and are near the end of their main-sequence phase, at an age of about 3.6 Gyr. The much fainter widely separated third body appears to have a mass of about 0.8 solar masses. The distance to the system is 377 +/- 25 pc. C1 [Lacy, Claud H. Sandberg] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Torres, Guillermo; Charbonneau, David] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Claret, Antonio] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [O'Donovan, Francis T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mandushev, Georgi] Lowell Observ, Flagstaff, AZ 86001 USA. RP Lacy, CHS (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM clacy@uark.edu; gtorres@cfa.harvard.edu; claret@iaa.es; dcharbonneau@cfa.harvard.edu; ftod@caltech.edu; gmand@lowell.edu RI O'Donovan, Francis/I-2423-2014; OI O'Donovan, Francis/0000-0002-4858-6106; Charbonneau, David/0000-0002-9003-484X NR 79 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2010 VL 139 IS 6 BP 2347 EP 2359 DI 10.1088/0004-6256/139/6/2347 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595WG UT WOS:000277643700021 ER PT J AU Eisenhardt, PRM Griffith, RL Stern, D Wright, EL Ashby, MLN Brodwin, M Brown, MJI Bussmann, RS Dey, A Ghez, AM Glikman, E Gonzalez, AH Kirkpatrick, JD Konopacky, Q Mainzer, A Vollbach, D Wright, SA AF Eisenhardt, Peter R. M. Griffith, Roger L. Stern, Daniel Wright, Edward L. Ashby, Matthew L. N. Brodwin, Mark Brown, Michael J. I. Bussmann, R. S. Dey, Arjun Ghez, A. M. Glikman, Eilat Gonzalez, Anthony H. Kirkpatrick, J. Davy Konopacky, Quinn Mainzer, Amy Vollbach, David Wright, Shelley A. TI ULTRACOOL FIELD BROWN DWARF CANDIDATES SELECTED AT 4.5 mu m SO ASTRONOMICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: galaxies; infrared: stars; stars: individual (SDWFS J142831.46+354923.1; SDWFS J143524.44+335334.6; SDWFS J143356.62+351849.2); stars: low-mass ID ARRAY CAMERA IRAC; ADAPTIVE OPTICS SYSTEM; DUST-OBSCURED GALAXIES; LONG-PERIOD VARIABLES; DIGITAL SKY SURVEY; T-DWARFS; MIDINFRARED SELECTION; LOW-MASS; SPITZER; STARS AB We have identified a sample of cool field brown dwarf candidates using IRAC data from the Spitzer Deep, Wide-Field Survey (SDWFS). The candidates were selected from 400,000 SDWFS sources with [4.5] <= 18.5 mag and were required to have [3.6] - [4.5] >= 1.5 and [4.5] - [8.0] <= 2.0 on the Vega system. The first color requirement selects objects redder than all but a handful of presently known brown dwarfs with spectral classes later than T7, while the second eliminates 14 probable reddened active galactic nuclei (AGNs). Optical detection of four of the remaining 18 sources implies they are likely also AGNs, leaving 14 brown dwarf candidates. For two of the brightest candidates (SDWFS J143524.44+335334.6 and SDWFS J143222.82+323746.5), the spectral energy distributions including near-infrared detections suggest a spectral class of similar to T8. The proper motion is <0 ''.25 yr(-1), consistent with expectations for a luminosity-inferred distance of >70 pc. The reddest brown dwarf candidate (SDWFS J143356.62+351849.2) has [3.6] - [4.5] = 2.24 and H - [4.5] > 5.7, redder than any published brown dwarf in these colors, and may be the first example of the elusive Y-dwarf spectral class. Models from Burrows et al. predict that larger numbers of cool brown dwarfs should be found for a Chabrier mass function. Suppressing the model [4.5] flux by a factor of 2, as indicated by previous work, brings the Burrows models and observations into reasonable agreement. The recently launched Wide-field Infrared Survey Explorer will probe a volume similar to 40x larger and should find hundreds of brown dwarfs cooler than T7. C1 [Eisenhardt, Peter R. M.; Griffith, Roger L.; Stern, Daniel; Mainzer, Amy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wright, Edward L.; Ghez, A. M.; Konopacky, Quinn] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ashby, Matthew L. N.; Brodwin, Mark] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Bussmann, R. S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Glikman, Eilat] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Gonzalez, Anthony H.; Vollbach, David] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wright, Shelley A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94709 USA. RP Eisenhardt, PRM (reprint author), CALTECH, Jet Prop Lab, MS 169-327,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Peter.Eisenhardt@jpl.nasa.gov RI Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Wright, Shelley/0000-0003-1034-8054 FU National Optical Astronomy Observatory (NOAO); W. M. Keck Foundation; NASA; National Science Foundation (NSF) [0708490]; NSF Science & Technology Center; UCSC [AST-9876783]; Levine-Leichtman Family Foundation FX The authors thank Emanuele Daddi, Mark Dickinson, Jason Melbourne, and Tom Soifer for assistance obtaining observations; Nick Seymour for assistance with SDWFS and WIRC reductions; and Vandana Desai for the Mrk 231 spectrum and information about DOG SED's. Tom Soifer, Marcia Rieke, Dan Weedman, and Jim Houck are thanked for allowing access to the GTO MIPS survey of the NDWFS, and we acknowledge Buell Jannuzi's central role in the NDWFS and related surveys of the field. Discussions with Roc Cutri helped us understand the mid-IR characteristics of AGB stars, and Szymon Kozlowski clarified questions about SDWFS variability measurements. We thank the anonymous referee for a detailed and careful review which improved the accuracy of the presentation. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. This work made use of images and data products provided by the NOAO Deep Wide-Field Survey (NDWFS), which is supported by the National Optical Astronomy Observatory (NOAO), and follow-up NOAO surveys. NOAO is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation, which also provided support for M.B. Some data were obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between Caltech, NASA/JPL, and Cornell University. Support for this work was provided by NASA through an award issued by JPL/Caltech. A.H.G. acknowledges support for this work by the National Science Foundation (NSF) under grant 0708490. Support for A.M.G. and Q.K.'s contribution to this work was provided by the NSF Science & Technology Center for AO, managed by UCSC (AST-9876783), and the Levine-Leichtman Family Foundation. NR 58 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2010 VL 139 IS 6 BP 2455 EP 2464 DI 10.1088/0004-6256/139/6/2455 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595WG UT WOS:000277643700029 ER PT J AU Decin, L De Beck, E Brunken, S Muller, HSP Menten, KM Kim, H Willacy, K de Koter, A Wyrowski, F AF Decin, L. De Beck, E. Bruenken, S. Mueller, H. S. P. Menten, K. M. Kim, H. Willacy, K. de Koter, A. Wyrowski, F. TI Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri II. In-depth non-LTE chemical abundance analysis SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; molecular processes; radiative transfer; submillimeter: stars; stars: AGB and post-AGB; stars: mass-loss ID MASS-LOSS RATES; SILICON ISOTOPIC ABUNDANCES; ROTATIONAL LINE-PROFILES; GIANT BRANCH STARS; VY-CANIS MAJORIS; EVOLVED STARS; WATER-VAPOR; EXPLOSIVE NUCLEOSYNTHESIS; COLLISIONAL EXCITATION; RADIATIVE-TRANSFER AB Context. The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflow from these stars creates a circumstellar envelope in which a rich gas-phase chemistry takes place. Complex shock-induced non-equilibrium chemistry takes place in the inner wind envelope, dust-gas reactions and ion-molecule reactions alter the abundances in the intermediate wind zone, and the penetration of cosmic rays and ultraviolet photons dissociates the molecules in the outer wind region. Aims. Little observational information exists on the circumstellar molecular abundance stratifications of many molecules. Furthermore, our knowledge of oxygen-rich envelopes is not as profound as for the carbon-rich counterparts. The aim of this paper is therefore to study the circumstellar chemical abundance pattern of 11 molecules and isotopologs ((12)CO, (13)CO, SiS, (28)SiO, (29)SiO, (30)SiO, HCN, CN, CS, SO, SO(2)) in the oxygen-rich evolved star IK Tau. Methods. We have performed an in-depth analysis of a large number of molecular emission lines excited in the circumstellar envelope around IK Tau. The analysis is done based on a non-local thermodynamic equilibrium (non-LTE) radiative transfer analysis, which calculates the temperature and velocity structure in a self-consistent way. The chemical abundance pattern is coupled to theoretical outer wind model predictions including photodestruction and cosmic ray ionization. Not only the integrated line intensities, but also the line shapes are used as diagnostic tool to study the envelope structure. Results. The deduced wind acceleration is much slower than predicted from classical theories. SiO and SiS are depleted in the envelope, possibly due to the adsorption onto dust grains. For HCN and CS a clear difference with respect to inner wind non-equilibrium predictions is found, either indicating uncertainties in the inner wind theoretical modeling or the possibility that HCN and CS (or the radical CN) participate in the dust formation. The low signal-to-noise profiles of SO and CN prohibit an accurate abundance determination; the modeling of high-excitation SO2 lines is cumbersome, possibly related to line misidentifications or problems with the collisional rates. The SiO isotopic ratios ((29)SiO/(28)SiO and (30)SiO/ (28)SiO) point toward an enhancement in (28)SiO compared to results of classical stellar evolution codes. Predictions for H(2)O emission lines in the spectral range of the Herschel/HIFI mission are performed. C1 [Decin, L.; De Beck, E.] Katholieke Univ Leuven, Inst Astron, Dept Phys & Astron, B-3001 Heverlee, Belgium. [Decin, L.; de Koter, A.] Univ Amsterdam, Sterrenkundig Inst Anton Pannekock, NL-1090 CE Amsterdam, Netherlands. [Bruenken, S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bruenken, S.; Mueller, H. S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Mueller, H. S. P.; Menten, K. M.; Kim, H.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kim, H.] MPI Gravitat Phy, D-30167 Hannover, Germany. [Willacy, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Koter, A.] Univ Utrecht, Astron Inst, NL-3584 CC Utrecht, Netherlands. RP Decin, L (reprint author), Katholieke Univ Leuven, Inst Astron, Dept Phys & Astron, Celestijnenlaan 200D, B-3001 Heverlee, Belgium. EM Leen.Decin@ster.kuleuven.ac.be RI Brunken, Sandra/B-1880-2010; OI Brunken, Sandra/0000-0001-7175-4828; Mueller, Holger/0000-0002-0183-8927 FU Fund for Scientific Research - Flanders (FWO) [G.0470.07]; Bundesministerium for Bildung und Forschung (BMBF) FX We thank I. Cherchneff for useful discussion on the circumstellar non-TE chemistry, and F. Schoier for providing us with an updated HCN linelist in the LAMDA database. L.D. acknowledges financial support from the Fund for Scientific Research - Flanders (FWO). E.D.B. acknowledges support from the FWO under grant number G.0470.07. H.S.P.M. is very grateful to the Bundesministerium for Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum fur Luft-und Raumfahrt (DLR). The computations for this research have been done on the VIC HPC Cluster of the KULeuven. We are grateful to the LUDIT HPC team for their support. NR 92 TC 44 Z9 44 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR A69 DI 10.1051/0004-6361/201014136 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400084 ER PT J AU Galametz, A Stern, D Stanford, SA De Breuck, C Vernet, J Griffith, RL Harrison, FA AF Galametz, A. Stern, D. Stanford, S. A. De Breuck, C. Vernet, J. Griffith, R. L. Harrison, F. A. TI Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z=1.416 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; galaxies: clusters: general; Galaxy: evolution; galaxies: individual: 7C 1756+6520; galaxies: clusters: individual: 7C1756+6520 ID ACTIVE GALACTIC NUCLEI; IRAC SHALLOW SURVEY; YALE-CHILE MUSYC; RADIO GALAXIES; X-RAY; MULTIWAVELENGTH SURVEY; MIDINFRARED SELECTION; RED-SEQUENCE; PROTOCLUSTERS; TELESCOPE AB We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 +/- 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets < 2 Mpc relative to the radio galaxy position and have velocity offsets < 1000 km s(-1) relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z similar to 1.437, forming a sub-group offset by Delta v similar to 3000 km s(-1) and approximately 1.'5 east of the radio galaxy. C1 [Galametz, A.; De Breuck, C.; Vernet, J.] European So Observ, D-85748 Garching, Germany. [Galametz, A.] Observ Astron, F-67000 Strasbourg, France. [Stern, D.; Griffith, R. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Harrison, F. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Galametz, A (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM agalamet@eso.org OI Vernet, Joel/0000-0002-8639-8560; De Breuck, Carlos/0000-0002-6637-3315 FU NASA; US Department of Energy, National Nuclear Security Administration [W-7405-Eng-48] FX This work is based on a spectroscopic campaign at the W. M. Keck Observatory, a scientific partnership between the University of California and the California Institute of Technology, made possible by a generous gift of the W. M. Keck Foundation. We are very grateful to Tadayuki Kodama for having provided the models of red sequence presented in this paper. We thank the anonymous referee for his/her careful reading of the manuscript and constructive comments. The work of DS and RLG was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. S.A.S.'s work was performed under the auspices of the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. NR 37 TC 21 Z9 21 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR A101 DI 10.1051/0004-6361/201014356 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400116 ER PT J AU Snodgrass, C Meech, K Hainaut, O AF Snodgrass, C. Meech, K. Hainaut, O. TI The nucleus of 103P/Hartley 2, target of the EPOXI mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 103P/Hartley 2 ID SPACE-TELESCOPE OBSERVATIONS; JUPITER-FAMILY COMETS; CCD PHOTOMETRY; ENSEMBLE PROPERTIES; DISTANT COMETS AB Context. 103P/Hartley 2 was selected as the target comet for the Deep Impact extended mission, EPOXI, in October 2007. There have been no direct optical observations of the nucleus of this comet, as it has always been highly active when previously observed. Aims. We aimed to recover the comet near to aphelion, to: a) confirm that it had not broken up and was in the predicted position; b) to provide astrometry and brightness information for mission planning; and c) to continue the characterisation of the nucleus. Methods. We observed the comet at heliocentric distances between 5.7 and 5.5 AU, using FORS2 at the VLT, at 4 epochs between May and July 2008. We performed VRI photometry on deep stacked images to look for activity and measure the absolute magnitude and therefore estimate the size of the nucleus. Results. We recovered the comet near the expected position, with a magnitude of m(R) = 23.74 +/- 0.06 at the first epoch. The comet had no visible coma, although comparison of the profile with a stellar one showed that there was faint activity, or possibly a contribution to the flux from the dust trail from previous activity. This activity appears to fade at further epochs, implying that this is a continuation of activity past aphelion from the previous apparition rather than an early start to activity before the next perihelion. Our data imply a nucleus radius of <= 1 km for an assumed 4% albedo; we estimate a similar to 6% albedo. We measure a colour of (V - R) = 0.26 +/- 0.09. C1 [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Snodgrass, C.] European So Observ, Casilla D, Chile. [Meech, K.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Meech, K.] NASA, Astrobiol Inst, Washington, DC USA. [Hainaut, O.] European So Observ, D-85748 Garching, Germany. RP Snodgrass, C (reprint author), Max Planck Inst Solar Syst Res, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. EM snodgrass@mps.mpg.de OI Snodgrass, Colin/0000-0001-9328-2905 FU EPOXI mission through University of Maryland [Z631506] FX We thank ESO for awarding Director's Discretionary Time to this project, the Paranal astronomers and telescope operators who performed the observations for us and the referee, Dr. S. C. Lowry, for helpful comments that improved this paper. This work is based in part on support from the EPOXI mission through a subcontract from the University of Maryland Z631506. NR 16 TC 8 Z9 8 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN-JUL PY 2010 VL 516 AR L9 DI 10.1051/0004-6361/201014790 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 630LT UT WOS:000280275400009 ER PT J AU de Martino, D Falanga, M Bonnet-Bidaud, JM Belloni, T Mouchet, M Masetti, N Andruchow, I Cellone, SA Mukai, K Matt, G AF de Martino, D. Falanga, M. Bonnet-Bidaud, J.-M. Belloni, T. Mouchet, M. Masetti, N. Andruchow, I. Cellone, S. A. Mukai, K. Matt, G. TI The intriguing nature of the high-energy gamma ray source XSS J12270-4859 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; stars: individual: XSS J12270-4859; stars: individual: 1FGL J1227.9-4852; X-rays: binaries ID XMM-NEWTON; CATACLYSMIC VARIABLES; LOW-MASS; VARIABILITY; BINARIES; TELESCOPE; ACCRETION; CAMERA; IMAGER; STARS AB Context. The nature of the hard X-ray source XSS J12270-4859 is still unclear. It was claimed to be a possible magnetic cataclysmic variable of the Intermediate Polar type from its optical spectrum and a possible 860 s X-ray periodicity in RXTE data. However, recent observations do not support the latter variability, leaving this X-ray source still unclassified. Aims. To investigate its nature we present a broad-band X-ray and gamma ray study of this source based on a recent XMM-Newton observation and archival INTEGRAL and RXTE data. Using the Fermi/LAT 1-year point source catalogue, we tentatively associate XSS J12270-4859 with 1FGLJ1227.9-4852, a source of high-energy gamma rays with emission up to 10GeV. We further complement the study with UV photometry from XMM-Newton and ground-based optical and near-IR photometry. Methods. We have analysed both timing and spectral properties in the gamma rays, X-rays, UV and optical/near-IR bands of XSS J12270-4859. Results. The X-ray emission is highly variable, showing flares and intensity dips. The flares consist of flare-dip pairs. Flares are detected in both X-rays and the UV range, while the subsequent dips are present only in the X-ray band. Further aperiodic dipping behaviour is observed during X-ray quiescence, but not in the UV. The broad-band 0.2-100 keV X-ray/soft gamma ray spectrum is featureless and well described by a power law model with Gamma = 1.7. The high-energy spectrum from 100 MeV to 10 GeV is represented by a power law index of 2.45. The luminosity ratio between 0.1-100 GeV and 0.2-100 keV is similar to 0.8, indicating that the GeV emission is a significant component of the total energy output. Furthermore, the X-ray spectrum does not greatly change during flares, quiescence and the dips seen in quiescence. The X-ray spectrum however hardens during the post-flare dips, where a partial covering absorber is also required to fit the spectrum. Optical photometry acquired at different epochs reveals a period of 4.32 hr that could be ascribed to the binary orbital period. Near-IR, possibly ellipsoidal, variations are detected. Large amplitude variability on shorter (tens mins) timescales is found to be non-periodic. Conclusions. The observed variability at all wavelengths together with the spectral characteristics strongly favour a low-mass atypical low-luminosity X-ray binary and are against a magnetic cataclysmic variable nature. The association with a Fermi/LAT high-energy gamma ray source further strengths this interpretation. C1 [de Martino, D.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Falanga, M.] ISSI, CH-3012 Bern, Switzerland. [Bonnet-Bidaud, J.-M.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Belloni, T.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Mouchet, M.] Univ Paris 07, Lab APC, F-75005 Paris, France. [Mouchet, M.] Observ Paris, LUTH, Sect Meudon, F-92195 Meudon, France. [Masetti, N.] INAF Ist Astrofis Spaziale, I-40129 Bologna, Italy. [Andruchow, I.; Cellone, S. A.] UNLP, Fac Ciencias Astron & Geofis, La Plata, Buenos Aires, Argentina. [Andruchow, I.; Cellone, S. A.] CONICET UNLP, Inst Astrofis La Plata, La Plata, Buenos Aires, Argentina. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Matt, G.] Univ Roma III, Dipartimento Fis, I-00146 Rome, Italy. RP de Martino, D (reprint author), INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy. EM demartino@oacn.inaf.it; mfalanga@issibern.ch; bonnetbidaud@cea.fr; tomaso.belloni@brera.inaf.it; martine.mouchet@obspm.fr; nicola.masetti@iasfbo.inaf.it; andru@fcaglp.fcaglp.unlp.edu.ar; koji.mukai@nasa.gov; matt@fis.uniroma3.it OI de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU ASI [ASI/INAF I/023/05/06, ASI/INAF I/088/06/0]; INAF [PRIN-INAF 2007 N.17] FX D.d.M., T. B. and N.M. acknowledge financial support from ASI under contract ASI/INAF I/023/05/06 and ASI/INAF I/088/06/0 and also from INAF under contract PRIN-INAF 2007 N.17. We gratefully acknowledge the help of E. Bonning in the extraction of the counts map from the Fermi LAT archive. NR 36 TC 28 Z9 28 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A25 DI 10.1051/0004-6361/200913802 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606CN UT WOS:000278399000025 ER PT J AU Doroshenko, V Suchy, S Santangelo, A Staubert, R Kreykenbohm, I Rothschild, R Pottschmidt, K Wilms, J AF Doroshenko, V. Suchy, S. Santangelo, A. Staubert, R. Kreykenbohm, I. Rothschild, R. Pottschmidt, K. Wilms, J. TI RXTE observations of the 1A 1118-61 in an outburst, and the discovery of a cyclotron line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: neutron; pulsars: individual: 1A 1118-61; binaries: general ID X-RAY SOURCE AB We present the analysis of RXTE monitoring data obtained during the 2009 January outburst of the hard X-ray transient 1A 1118-61. Using these observations the broadband (3.5-120 keV) spectrum of the source was measured for the first time ever. We have found that the broadband continuum spectrum of the source is similar to other accreting pulsars and is well described by several conventionally used phenomenological models. We have discovered that regardless of the applied continuum model, a prominent broad absorption feature at similar to 55 keV is observed. We interpret this feature as a cyclotron resonance scattering feature (CRSF). The observed CRSF energy is one of the highest known and corresponds to a magnetic field of B similar to 4.8 x 10(12) G in the scattering region. Our data also indicate the presence of an iron emission line presence that has not been previously reported for 1A 1118-61. Timing properties of the source, including a strong spin-up, were found to be similar to those observed by CGRO/BATSE during the previous outburst, but the broadband capabilities of RXTE reveal a more complicated energy dependency of the pulse-profile. C1 [Doroshenko, V.; Santangelo, A.; Staubert, R.] Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Suchy, S.; Rothschild, R.] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA. [Kreykenbohm, I.; Wilms, J.] Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Kreykenbohm, I.; Wilms, J.] Erlangen Ctr Astroparticle Phys ECAP, D-91058 Erlangen, Germany. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, CSST, Baltimore, MD 21250 USA. RP Doroshenko, V (reprint author), Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM doroshv@astro.uni-tuebingen.de RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Doroshenko, Victor/0000-0001-8162-1105 FU DLR [50OR0702] FX V.D. thanks DLR for financial support (grant 50OR0702). NR 21 TC 14 Z9 14 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR L1 DI 10.1051/0004-6361/201014858 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000003 ER PT J AU Dzyurkevich, N Flock, M Turner, NJ Klahr, H Henning, T AF Dzyurkevich, N. Flock, M. Turner, N. J. Klahr, H. Henning, Th. TI Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: formation; magnetohydrodynamics; methods: numerical; instabilities; accretion, accretion disks; turbulence ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; TURBULENT PROTOPLANETARY DISKS; ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; ACCRETION DISKS; SOLAR NEBULA; MAGNETIC-FIELDS; SHEARING BOX; PLANETESIMAL FORMATION; FRACTIONAL IONIZATION AB Context. The poorly-ionized interior of the protoplanetary disk or "dead zone" is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims. Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods. We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results. The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the "butterfly pattern" seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual a between 10(-4) and 10(-3). The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions. The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible. C1 [Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Turner, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dzyurkevich, N (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM natalia@mpia.de FU Deutsches Zentrum fur Luft- und Raumfahrt (DLR); Deutsche Forschungsgemeinschaft (DFG) through Forschergruppe [759]; The Formation of Planets: The Critical First Growth Phase; NASA [07-SSO07-0044]; Alexander von Humboldt Foundation FX N. Dzyurkevich acknowledges the support of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). N. Dzyurkevich, M. Flock and H. Klahr were supported in part by the Deutsche Forschungsgemeinschaft (DFG) through Forschergruppe 759, "The Formation of Planets: The Critical First Growth Phase". The participation of N. J. Turner was made possible by the NASA Solar Systems Origins program under grant 07-SSO07-0044, and by the Alexander von Humboldt Foundation through a Fellowship for Experienced Researchers. The parallel computations were performed on the PIA cluster of the Max Planck Institute for Astronomy Heidelberg, located at the computing center of the Max Planck Society in Garching. NR 62 TC 64 Z9 64 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A70 DI 10.1051/0004-6361/200912834 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000039 ER PT J AU Gielen, C Van Wincke, H Min, M Waters, LBFM Evans, TL Matsuura, M Deroo, P Dominik, C Reyniers, M Zijlstra, A Gordon, KD Kemper, F Indebetouw, R Marengo, M Meixner, M Sloan, GC Tielens, AGGM Woods, PM AF Gielen, C. Van Wincke, H. Min, M. Waters, L. B. F. M. Evans, T. Lloyd Matsuura, M. Deroo, P. Dominik, C. Reyniers, M. Zijlstra, A. Gordon, K. D. Kemper, F. Indebetouw, R. Marengo, M. Meixner, M. Sloan, G. C. Tielens, A. G. G. M. Woods, P. M. TI SPITZER-IRS spectral fitting of discs around binary post-AGB stars Corrigendum SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: abundances; stars: AGB and post-AGB; circumstellar matter; binaries: general; Magellanic Clouds; errata, addenda C1 [Gielen, C.; Van Wincke, H.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Waters, L. B. F. M.; Dominik, C.] Univ Amsterdam, Sterrenkundig Inst Anton Pannckock, NL-1098 Amsterdam, Netherlands. [Evans, T. Lloyd] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Matsuura, M.] UCL, Dept Phys & Astron, UCL Inst Origins, London WC1E 6BT, England. [Matsuura, M.] Univ Coll London, Mullard Space Sci Lab, UCL Inst Origins, Dorking RH5 6NT, Surrey, England. [Deroo, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Reyniers, M.] Royal Meteorol Inst Belgium, Dept Observat, B-1180 Brussels, Belgium. [Zijlstra, A.; Kemper, F.; Woods, P. M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Gordon, K. D.; Meixner, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Indebetouw, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Marengo, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Tielens, A. G. G. M.] Leiden Observ, NL-2333 CA Leiden, Netherlands. [Indebetouw, R.] Natl Radio Astron Observ, Charlottesville, VA 22906 USA. [Min, M.] Univ Utrecht, Astron Inst Utrecht, NL-3584 CC Utrecht, Netherlands. RP Gielen, C (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM clio.gielen@ster.kuleuven.be FU Fund for Scientific Research of Flanders (FWO) [G.0178.02, G.0470.07]; NASA FX C.G. and H.V.W. acknowledge support of the Fund for Scientific Research of Flanders (FWO) under the grant G.0178.02. and G.0470.07. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 3 TC 1 Z9 1 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR C2 DI 10.1051/0004-6361/200912982e PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000002 ER PT J AU Monin, JL Guieu, S Pinte, C Rebull, L Goldsmith, P Fukagawa, M Menard, F Padgett, D Stappelfeld, K McCabe, C Carey, S Noriega-Crespo, A Brooke, T Huard, T Terebey, S Hillenbrand, L Guedel, M AF Monin, J. -L. Guieu, S. Pinte, C. Rebull, L. Goldsmith, P. Fukagawa, M. Menard, F. Padgett, D. Stappelfeld, K. McCabe, C. Carey, S. Noriega-Crespo, A. Brooke, T. Huard, T. Terebey, S. Hillenbrand, L. Guedel, M. TI The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; brown dwarfs; circumstellar matter; surveys; catalogs ID INITIAL MASS FUNCTION; INFRARED ARRAY CAMERA; SPACE-TELESCOPE; CHAMELEON-I; EVOLUTIONARY MODELS; CIRCUMSTELLAR DISK; STAR CLUSTER; STELLAR; ATMOSPHERES; MEMBERS AB Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas. Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 +/- 12%, a value statistically consistent with the one among TTS (58 +/- 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we study one isolated example of a transitional disk with an inner radius of approximate to 0.1 AU (CFHT BD Tau 12, found via its relatively small mid-IR excess compared to most members of Taurus that have disks. We find that BDs are statistically found in regions of similar molecular gas surface density to those associated with stars. Furthermore, we find that the gas column density distribution is almost identical for stellar and substellar objects with and without disks. C1 [Monin, J. -L.; Menard, F.] Univ Grenoble 1, Lab Astrophys Grenoble, CNRS, F-38041 Grenoble, France. [Guieu, S.; Rebull, L.; Padgett, D.; McCabe, C.; Carey, S.; Noriega-Crespo, A.; Brooke, T.] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Pinte, C.] Univ Exeter, Exeter EX4 4QL, Devon, England. [Goldsmith, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fukagawa, M.] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Stappelfeld, K.; Hillenbrand, L.] CALTECH, Pasadena, CA 91125 USA. [Brooke, T.] Univ Maryland, Baltimore, MD 21250 USA. [Terebey, S.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Guedel, M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. RP Monin, JL (reprint author), Univ Grenoble 1, Lab Astrophys Grenoble, CNRS, BP 53, F-38041 Grenoble, France. EM Jean-Louis.Monin@obs.ujf-grenoble.fr RI Guedel, Manuel/C-8486-2015; OI Guedel, Manuel/0000-0001-9818-0588; Rebull, Luisa/0000-0001-6381-515X FU CNRS/INSU, France FX We thank an anonymous referee for a very detailed and precise report that helped uncover several errors in the first version of this paper. This research has made use of the CDS database. We thank the Programme National de Physique Stellaire (PNPS, CNRS/INSU, France) for financial support. The authors also wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the CFH Telescope observations presented therein would not have been possible. NR 40 TC 10 Z9 10 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A91 DI 10.1051/0004-6361/200912338 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000060 ER PT J AU Schmitz, F Fleck, B AF Schmitz, F. Fleck, B. TI Adiabatic high degree modes of a rotating star I. General features and real pressure modes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE hydrodynamics; waves; stars: oscillations; Sun: oscillations; stars: atmospheres ID DIFFERENTIAL ROTATION; OSCILLATIONS; CHROMOSPHERE; STABILITY; FORM; SUN AB Aims. The influence of the rotation of the Sun on non-radial p-modes with high wave numbers l is studied. To investigate and understand the basic properties of these modes, it is sufficient to consider only the outer layers of the Sun, which can be approximated by a plane layer with constant gravity. Methods. We use a model with a smooth transition between a polytropic convection zone and an isothermal atmosphere. The rotation is simulated by a constant horizontal wind. For this model, using the column mass instead of the geometrical height, the adiabatic wave equation of the pressure perturbation can be reduced to Whittaker's differential equation. From boundary conditions we obtain the dispersion relation. The geometrical height is a simple elementary function of the column mass. Results. The dispersion relation F(omega, k) = 0 is a higher order algebraic equation in both frequency and horizontal wave number, which must be solved numerically. We analyze the behavior of the dispersion curves of modes with an adiabatic exponent gamma = 5/3 for layers with polytropic indices n = 3 and n = 3/2. The f-mode is considered separately. For the understanding of the results we also consider modes of a homogeneous gas. We compare the k - omega diagram of our idealized model with the k - omega diagram of a real solar model. C1 [Schmitz, F.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Fleck, B.] NASA, Goddard Space Flight Ctr, ESA Sci Operat Dept, Greenbelt, MD 20771 USA. RP Schmitz, F (reprint author), Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. EM schmitz@astro.uni-wuerzburg.de; bfleck@esa.nascom.nasa.gov RI Fleck, Bernhard/C-9520-2012 NR 22 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A103 DI 10.1051/0004-6361/200912635 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000072 ER PT J AU Shore, SN Wahlgren, GM AF Shore, S. N. Wahlgren, G. M. TI The O I] 1641 angstrom line as a probe of symbiotic star winds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: symbiotic; atomic processes; galaxies: active; circumstellar matter ID ATOMIC OXYGEN; RS-OPHIUCHI; PARTIAL REDISTRIBUTION; RR-TELESCOPII; AG DRACONIS; EMISSION; OUTBURST; SPECTRUM; TRANSITION; BINARY AB The neutral oxygen resonance gimel 1302 angstrom line can, if the optical depth is sufficiently high, de-excite by an intercombination transition at gimel 1641 angstrom to a metastable state. This has been noted in a number of previous studies but never systematically investigated as a diagnostic of the neutral red giant wind in symbiotic stars and symbiotic-like recurrent novae. Methods. We used archival IUE high resolution, and HST GHRS and STIS medium and high resolution, spectra to study a sample of symbiotic stars. The integrated fluxes were measured, where possible, for the O I gimel 1302 angstrom and O I] lambda 1641 angstrom lines. Results. The intercombination lambda 1641 angstrom line is detected in a substantial number of symbiotic stars with optical depths that give column densities comparable with direct eclipse measures (EG And) and the evolution of the recurrent nova RS Oph 1985 in outburst. In four systems (EG And, Z And, V1016 Cyg, and RR Tel), we find that the O I] variations are strongly correlated with the optical light curve and outburst activity. This transition can also be important for the study of a wide variety of sources in which an ionization-bounded H II region is imbedded in an extensive neutral medium, including active galactic nuclei, and not only for evaluations of extinction. C1 [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Wahlgren, G. M.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Wahlgren, G. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shore, SN (reprint author), Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy. EM shore@df.unipi.it FU NASA [NNG06GJ29G] FX We thank J. P. Aufdenberg, K. Genovali, J. Mikolajewska, C. Rossi, and R. Viotti, and the (anonymous) referee for valuable discussions and suggestions. The IUE and the HST GHRS and STIS spectra were obtained from the MAST archive of STScI and archival visual photometric data were provided by the AAVSO. G.M.W. acknowledges support from NASA Grant NNG06GJ29G. NR 39 TC 6 Z9 6 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A108 DI 10.1051/0004-6361/201014271 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000077 ER PT J AU Thompson, WT AF Thompson, W. T. TI Precision effects for solar image coordinates within the FITS world coordinate system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE standards; Sun: general; techniques: image processing; astronomical data bases: miscellaneous; methods: data analysis ID RADIO-EMISSION; REPRESENTATIONS; SCATTERING AB The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image. Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work. C1 NASA, Adnet Syst Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thompson, WT (reprint author), NASA, Adnet Syst Inc, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RI Thompson, William/D-7376-2012 FU NASA [NNG06EB68C] FX The author would like to thank Dean Pesnell for many helpful suggestions, and Gordon Holman and Jeffrey Brosius for useful references on the theory of radio transport through a plasma. The author would also like to thank the referee for many helpful comments and careful criticisms. This work was carried out under NASA grant NNG06EB68C. NR 20 TC 1 Z9 1 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2010 VL 515 AR A59 DI 10.1051/0004-6361/200810357 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 633LS UT WOS:000280505000028 ER PT J AU Bernat, D Bouchez, AH Ireland, M Tuthill, P Martinache, F Angione, J Burruss, RS Cromer, JL Dekany, RG Guiwits, SR Henning, JR Hickey, J Kibblewhite, E McKenna, DL Moore, AM Petrie, HL Roberts, J Shelton, JC Thicksten, RP Trinh, T Tripathi, R Troy, M Truong, T Velur, V Lloyd, JP AF Bernat, David Bouchez, Antonin H. Ireland, Michael Tuthill, Peter Martinache, Frantz Angione, John Burruss, Rick S. Cromer, John L. Dekany, Richard G. Guiwits, Stephen R. Henning, John R. Hickey, Jeff Kibblewhite, Edward McKenna, Daniel L. Moore, Anna M. Petrie, Harold L. Roberts, Jennifer Shelton, J. Chris Thicksten, Robert P. Trinh, Thang Tripathi, Renu Troy, Mitchell Truong, Tuan Velur, Viswa Lloyd, James P. TI A CLOSE COMPANION SEARCH AROUND L DWARFS USING APERTURE MASKING INTERFEROMETRY AND PALOMAR LASER GUIDE STAR ADAPTIVE OPTICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; stars: low-mass; techniques: high angular resolution ID LOW-MASS STARS; BROWN DWARF; DYNAMICAL MASS; ULTRACOOL DWARFS; BINARY-SYSTEMS; GJ 802B; MULTIPLICITY AB We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of Delta K similar to 2.3 for separations between 1.2 lambda/D-4 lambda/D and Delta K similar to 1.4 at 23 lambda/D. We present four candidate binaries detected with moderate-to- high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored. C1 [Bernat, David; Lloyd, James P.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Petrie, Harold L.; Thicksten, Robert P.; Tripathi, Renu] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Bouchez, Antonin H.; Angione, John; Burruss, Rick S.; Cromer, John L.; Dekany, Richard G.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; Kibblewhite, Edward; McKenna, Daniel L.; Moore, Anna M.; Petrie, Harold L.; Roberts, Jennifer; Shelton, J. Chris; Thicksten, Robert P.; Trinh, Thang; Tripathi, Renu; Troy, Mitchell; Truong, Tuan; Velur, Viswa] CALTECH, Palomar Observ, Palomar Laser Guide Star Adapt Opt Team, Palomar Mt, CA 92060 USA. [Ireland, Michael; Tuthill, Peter] Univ Sydney, Sch Phys, Sydney Inst Astrophys, Sydney, NSW 2006, Australia. [Martinache, Frantz] Natl Inst Nat Sci, Natl Astron Observ Japan, Hilo, HI 96720 USA. [Angione, John; Burruss, Rick S.; Guiwits, Stephen R.; Roberts, Jennifer; Shelton, J. Chris; Trinh, Thang; Troy, Mitchell; Truong, Tuan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kibblewhite, Edward] Univ Chicago, Chicago, IL 60637 USA. RP Bernat, D (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RI Lloyd, James/B-3769-2011; OI Ireland, Michael/0000-0002-6194-043X FU National Science Foundation [AST-0905932, AST-0705085]; National Aeronautics and Space Administration FX We thank the staff and telescope operators of the Palomar Observatory for their support. David Bernat thanks Jason Wright for many helpful discussions about the analytical techniques developed within this paper. We thank the Palomar staff for many nights of assistance at the Palomar Hale telescope. This work was supported in part by the National Science Foundation under award numbers AST-0905932 and AST-0705085. The Hale telescope at Palomar Observatory is operated as part of a collaborative agreement between Caltech, JPL, and Cornell University. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, and is funded by the National Aeronautics and Space Administration, and the National Science Foundation. NR 30 TC 20 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 724 EP 735 DI 10.1088/0004-637X/715/2/724 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100001 ER PT J AU Sandell, G Wright, M AF Sandell, Goeran Wright, Melvyn TI A DETAILED STUDY OF THE ACCRETION DISK SURROUNDING THE HIGH-MASS PROTOSTAR NGC 7538 S SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; ISM: clouds; stars: formation; stars: pre-main sequence; submillimeter: stars ID YOUNG STELLAR OBJECTS; (PROTO)STAR IRAS 20126+4104; HYPERCOMPACT HII-REGIONS; VELOCITY MOLECULAR GAS; T-TAURI STARS; METHANOL MASERS; NGC-7538 REGION; ROTATING TOROIDS; HYDROXYL MASERS; HIGH-RESOLUTION AB We present deep high-angular resolution observations of the high-mass protostar NGC 7538 S, which is in the center of a cold dense cloud core with a radius of 0.5 pc and a mass of similar to 2000 M(circle dot). These observations show that NGC 7538 S is embedded in a compact elliptical core with a mass of 85-115 M(circle dot). The star is surrounded by a rotating accretion disk, which powers a very young, hot molecular outflow approximately perpendicular to the rotating accretion disk. The accretion rate is very high, similar to(1.4-2.8) x 10(-3) M(circle dot) yr(-1). Evidence for rotation of the disk surrounding the star is seen in all largely optically thin molecular tracers, H(13)CN J = 1 -> 0, HN(13)C J = 1 -> 0, H(13)CO(+) J = 1 -> 0, and DCN J = 3 -> 2. Many molecules appear to be affected by the hot molecular outflow, including DCN and H(13)CO(+). The emission from CH(3)CN, which has often been used to trace disk rotation in young high-mass stars, is dominated by the outflow, especially at higher K levels. Our new high angular resolution observations show that the rotationally supported part of the disk is smaller than we previously estimated. The enclosed mass of the inner, rotationally supported part of the disk (D similar to 5 '', i.e., 14,000 AU) is similar to 14-24M(circle dot). C1 [Sandell, Goeran] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Wright, Melvyn] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. RP Sandell, G (reprint author), NASA, Ames Res Ctr, SOFIA USRA, MS N211-3, Moffett Field, CA 94035 USA. EM Goran.H.Sandell@nasa.gov FU National Science Foundation FX The BIMA array was operated by the Universities of California (Berkeley), Illinois, and Maryland with support from the National Science Foundation. We want to thank Dr. W.M. Goss for helpful comments and support throughout this project. Special thanks goes to Dr. Mark Heyer, who did the FCRAO observations for us, and to the JCMT telescope system specialists, who did all the JCMT observing in service mode. We thank the anonymous referee for an extremely careful reading of our paper, which considerably improved it. NR 79 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 919 EP 938 DI 10.1088/0004-637X/715/2/919 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100017 ER PT J AU Torrejon, JM Schulz, NS Nowak, MA Kallman, TR AF Torrejon, J. M. Schulz, N. S. Nowak, M. A. Kallman, T. R. TI A CHANDRA SURVEY OF FLUORESCENCE Fe LINES IN X-RAY BINARIES AT HIGH RESOLUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (X1908+075); surveys; X-rays: binaries ID IRON LINE; EMISSION-LINES; STELLAR WIND; INTERSTELLAR-MEDIUM; COMPTON SHOULDER; ACCRETION DISKS; BLACK-HOLE; CYGNUS X-1; VELA X-1; K-LINES AB Fe K line fluorescence is commonly observed in the X-ray spectra of many X-ray binaries (XRBs) and represents a fundamental tool to investigate the material surrounding the X-ray source. In this paper, we present a comprehensive survey of 41 XRBs (10 HMXBs and 31 LMXBs) with Chandra with specific emphasis on the Fe K region and the narrow Fe K alpha line, at the highest resolution possible. We find that (1) the Fe K alpha line is always centered at lambda = 1.9387 +/- 0.0016 angstrom, compatible with Fe I up to Fe x; we detect no shifts to higher ionization states nor any difference between high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs). (2) The line is very narrow, with FWHM < 5 m angstrom, normally not resolved by Chandra which means that the reprocessing material is not rotating at high speeds. (3) Fe K alpha fluorescence is present in all the HMXBs in the survey. In contrast, such emissions are astonishingly rare (similar to 10%) among LMXBs where only a few out of a large number showed Fe K fluorescence. However, the line and edge properties of these few are very similar to their high mass cousins. (4) The lack of Fe line emission is always accompanied by the lack of any detectable K edge. (5) We obtain the empirical curve of growth of the equivalent width of the Fe K alpha line versus the density column of the reprocessing material, i.e., EW(K alpha) versus N(H), and show that it is consistent with a reprocessing region spherically distributed around the compact object. (6) We show that fluorescence in XRBs follows the X-ray Baldwin effect as previously only found in the X-ray spectra of active galactic nuclei. We interpret this finding as evidence of decreasing neutral Fe abundance with increasing X-ray illumination and use it to explain some spectral states of Cyg X-1 as a possible cause of the lack of narrow Fe line emission in LMXBs. (7) Finally, we study anomalous morphologies such as Compton shoulders and asymmetric line profiles associated with the line fluorescence. Specifically, we present the first evidence of a Compton shoulder in the HMXB X1908+075. Also, the Fe K alpha lines of 4U1700-37 and LMC X-4 present asymmetric wings, suggesting the presence of highly structured stellar winds in these systems. C1 [Torrejon, J. M.] Univ Alicante, Inst Fis Aplicada Ciencias & Tecnol, E-03080 Alicante, Spain. [Torrejon, J. M.; Schulz, N. S.; Nowak, M. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Torrejon, JM (reprint author), Univ Alicante, Inst Fis Aplicada Ciencias & Tecnol, E-03080 Alicante, Spain. EM jmt@ua.es RI Torrejon, Jose /K-6395-2014 OI Torrejon, Jose /0000-0002-5967-5163 FU Spanish Ministerio de Educacion y Ciencia (MEC) [PR2007-0176]; MICINN [AYA2008-06166-C03-03, CSD-2006-00070] FX We thank Julia Lee for making the LMC X-4 data available to us previous to publication. J.M.T. acknowledges the support of the Spanish Ministerio de Educacion y Ciencia (MEC) through the grant PR2007-0176, and the MICINN through grants AYA2008-06166-C03-03 and Consolider-GTC CSD-2006-00070. NR 40 TC 41 Z9 41 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 947 EP 958 DI 10.1088/0004-637X/715/2/947 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100019 ER PT J AU Ostorero, L Moderski, R Stawarz, L Diaferio, A Kowalska, I Cheung, CC Kataoka, J Begelman, MC Wagner, SJ AF Ostorero, L. Moderski, R. Stawarz, L. Diaferio, A. Kowalska, I. Cheung, C. C. Kataoka, J. Begelman, M. C. Wagner, S. J. TI X-RAY-EMITTING GHz-PEAKED-SPECTRUM GALAXIES: TESTING A DYNAMICAL-RADIATIVE MODEL WITH BROADBAND SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (IERS B0026+346, IERS B0108+388, IERS B0500+019, IERS B0710+439, PKS B0941-080, IERS B1031+567, IERS B1345+125, IVS B1358+624, IERS B1404+286, IERS B2128+048, IERS B2352+495); galaxies: jets; radiation mechanisms: non-thermal; X-rays: galaxies ID COMPACT STEEP-SPECTRUM; ACTIVE GALACTIC NUCLEI; POWERFUL RADIO GALAXIES; ULTRALUMINOUS INFRARED GALAXIES; SPITZER-SPACE-TELESCOPE; PEARSON-READHEAD SURVEY; HIGH-FREQUENCY PEAKERS; FREE-FREE ABSORPTION; NARROW-LINE REGION; MULTIBAND IMAGING PHOTOMETER AB In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-peaked-spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellarmedium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission, from the X-ray to the gamma-ray frequency domain. Here, we test this model with the broadband SEDs of a sample of 11 X-ray-emitting GPS galaxies with compact-symmetric-object morphology, and show that (1) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism and (2) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk-dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (NH) and radio (NHi) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes. C1 [Ostorero, L.; Diaferio, A.] Univ Turin, Dipartimento Fis Gen Amedeo Avogadro, I-10125 Turin, Italy. [Ostorero, L.; Diaferio, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Moderski, R.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Moderski, R.; Stawarz, L.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Kowalska, I.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Cheung, C. C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Begelman, M. C.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Wagner, S. J.] Landessternwarte Heidelberg Konigstuhl, D-69117 Heidelberg, Germany. RP Ostorero, L (reprint author), Univ Turin, Dipartimento Fis Gen Amedeo Avogadro, Via P Giuria 1, I-10125 Turin, Italy. OI Ostorero, Luisa/0000-0003-3983-5980 NR 212 TC 19 Z9 19 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1071 EP 1093 DI 10.1088/0004-637X/715/2/1071 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100029 ER PT J AU Burrows, RH Zank, GP Webb, GM Burlaga, LF Ness, NF AF Burrows, R. H. Zank, G. P. Webb, G. M. Burlaga, L. F. Ness, N. F. TI PICKUP ION DYNAMICS AT THE HELIOSPHERIC TERMINATION SHOCK OBSERVED BY VOYAGER 2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: heliosphere ID SOLAR-WIND; PERPENDICULAR SHOCKS; ACCELERATION; MICROSTRUCTURE AB The recent Voyager 2 (V2) observations of the termination shock (TS) indicate that it is a plasma shock unlike any other in the heliosphere with the dynamics and structure heavily influenced by the presence of an energized population of pickup ions (PUIs). The "unexpected" finding of cold plasma downstream of the TS in the heliosheath, corresponding to very little heating of the thermal solar wind (SW), suggests that the energy dissipated by the shock is dominated by the energization of PUIs at the TS. We examine the "shock surfing" mechanism at the test particle level, where multiply reflected ions (MRIs) gain energy from the motional electric field as a consequence of reflection from the cross-shock potential (CSP), for a model of the TS3 (the third TS crossing measured by V2). The energization of PUI filled-shell distributions at a stationary, perpendicular model of the TS3 indicates that shock surfing can provide both substantial PUI acceleration and a dissipation mechanism at the TS. For a sufficiently strong CSP and sufficiently narrow shock ramp MRI acceleration can account for the "missing" energy of the downstream SW plasma. C1 [Burrows, R. H.; Zank, G. P.; Webb, G. M.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Washington, DC 20064 USA. RP Burrows, RH (reprint author), Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. FU NASA [NNX09AB40G, NNX07AH18G, NNG05EC85C, NNX09 AG63G, NNX08AJ21G, NNX09AB24G, NNX09AG29G, NNX09AG62G] FX We acknowledge the partial support of NASA grants NNX09AB40G, NNX07AH18G, NNG05EC85C, NNX09 AG63G, NNX08AJ21G, NNX09AB24G, NNX09AG29G, and NNX09AG62G. NR 20 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1109 EP 1116 DI 10.1088/0004-637X/715/2/1109 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100031 ER PT J AU Paganini, L Villanueva, GL Lara, LM Lin, ZY Kuppers, M Hartogh, P Faure, A AF Paganini, L. Villanueva, G. L. Lara, L. M. Lin, Z. Y. Kueppers, M. Hartogh, P. Faure, A. TI HCN SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3. A STUDY OF GAS EVOLUTION AND ITS LINK TO CN SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; comets: general; comets: individual (73P/Schwassmann-Wachmann 3); molecular processes; radiative transfer ID BOPP 1995 O1; HALE-BOPP; EXCITATION CONDITIONS; VOLATILE COMPOSITION; RADIATIVE-TRANSFER; HYDROGEN-CYANIDE; FRAGMENT-B; INNER COMA; C/1996 B2; WATER AB In 2006 May, comet 73P/Schwassmann-Wachmann 3 experienced large outburst activity allowing us to study the gas production rate of fresh material released from the nucleus. We observed the comet in a coordinated campaign using millimeter and optical facilities at heliocentric distances between 0.966 and 1.033 AU. During this time, we had the opportunity to follow the post-outburst evolution of fragment B, which evidenced larger production rates in comparison to fragment C, the latter showing a rather stable gas production rate (Q(HCN) similar to 2 x 10(25) molecules s(-1)). In addition to the investigation of the gas evolution, we studied the possible role of HCN and dust as progenitors for the CN radical. From our joint observations on May 12, we observed a high correlation of CN with HCN and low correlation with the continuum emission (grains). Herewith, our study supports the view of HCN as a major source of CN, although the presence of other sources for cyanide cannot be fully ruled out. C1 [Paganini, L.; Villanueva, G. L.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Paganini, L.; Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lara, L. M.; Lin, Z. Y.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Kueppers, M.] ESAC, Madrid 28691, Spain. [Faure, A.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble LAOG, F-38041 Grenoble 09, France. RP Paganini, L (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Mailstop 693-0, Greenbelt, MD 20771 USA. EM lucas.paganini@nasa.gov FU Max-Planck-Gesellschaft; Spanish Ministerio de Educacion y Ciencia; Ministerio de Ciencia e Innovacion [ESP2006-02934, AyA 2009-08011] FX This work is based on joint observations from the Heinrich Hertz Submillimeter Telescope and Lulin Observatory. We are grateful to the staff of HHSMT and LO for their great assistance and generous allocation of telescope time throughout our observational campaign. L. P. acknowledges D. Bockelee-Morvan, N. Biver, K. Jockers, M. Drahus, M. Lippi, and M.J. Mumma for useful discussions, the anonymous referee for valuable comments on the manuscript, and the support of this research by the Max-Planck-Gesellschaft. L. M. L. and Z.-Y.L. thank the support given by the Spanish Ministerio de Educacion y Ciencia and Ministerio de Ciencia e Innovacion under projects ESP2006-02934 and AyA 2009-08011. The SMT is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona. NR 57 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1258 EP 1269 DI 10.1088/0004-637X/715/2/1258 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100042 ER PT J AU Goldsmith, PF Velusamy, T Li, D Langer, WD AF Goldsmith, Paul F. Velusamy, Thangasamy Li, Di Langer, William D. TI MOLECULAR HYDROGEN EMISSION FROM THE BOUNDARIES OF THE TAURUS MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; ISM: individual objects (Taurus molecular cloud); ISM: molecules; photon-dominated region (PDR) ID POLYCYCLIC AROMATIC-HYDROCARBON; WARM NEUTRAL HALOS; H-I; H-2 EMISSION; DARK CLOUDS; GAS; CO; PHOTODISSOCIATION; CHEMISTRY; REGIONS AB We report Spitzer Space Telescope observations of the four lowest rotational transitions of H(2) in three portions of the boundary of the Taurus molecular cloud. Emission in the two lowest transitions, S(0) and S(1), was detected in almost all pointing directions, while the S(2) and S(3) lines were marginally detected only after further averaging of data. The widespread detection of lines coming from levels 510 K and 1016 K above the molecular ground state is indicative of gas at a temperature of at least 200 K containing column densities (1-5) x 10(18) cm(-2) of H(2). For the region with the simplest geometry, we have used the Meudon PDR code to model the chemistry, radiative transfer, and excitation of molecular hydrogen. We conclude that models with acceptable values of the UV interstellar radiation field can reproduce the amount of H(2) in the lowest excited state, but cannot account for the degree of excitation of the H(2). The unexpectedly high degree of excitation of the H(2) in the boundary layer of a molecular cloud, which cannot be explained by the presence of stellar sources, points to an enhanced heating rate which may be the result of, e. g., dissipation of turbulence. We have in one boundary region been able to obtain the ortho-to-para ratio (OPR) for H(2), which by modeling and possible detection of the S(2) and S(3) lines has a range 1.0 >= OPR >= 0.15, although this result must be treated with caution. The fact that the ortho-to-para ratio is lower than that expected for equilibrium at the gas kinetic temperature may be indicative of circulation of material from cold, purely molecular regions into the boundary layer, possibly due to turbulent diffusion. The explanation of these data may thus be suggestive of processes that are having a significant effect on the structure and evolution of molecular clouds and the star formation that takes place within them. C1 [Goldsmith, Paul F.; Velusamy, Thangasamy; Li, Di; Langer, William D.] Jet Prop Lab, Pasadena, CA 91103 USA. RP Goldsmith, PF (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91103 USA. EM Paul.F.Goldsmith@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Jet Propulsion Laboratory, California Institute of Technology FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the Spitzer Science Center for hosting an enjoyable stay during which P. F. G. was able to make substantial progress on this research. We are very grateful to Franck Le Petit for his support in using the Meudon PDR code and answering numerous questions about details of its operation. We thank David Neufeld for discussions about the H2 molecule and David Hollenbach for valuable comments about UV pumping of H2, as well as numerous other suggestions that materially improved this paper. We are grateful to Luisa Rebull, Debbie Padgett, and Helen Kirk for providing critical information about the B stars associated with Taurus. We thank Bill Reach for sharing information about the stellar population and radiation field limits in Taurus, and Darek Lis for discussions about observations of PDR regions. We appreciate substantial work by Jorge Pineda to compare results of various PDR codes and the very helpful comments of an anonymous referee. This research has made use of NASA's Astrophysics Data System and of the SIMBAD database, operated at CDS, Strasbourg, France. NR 37 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1370 EP 1382 DI 10.1088/0004-637X/715/2/1370 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100052 ER PT J AU Ahn, HS Allison, PS Bagliesi, MG Barbier, L Beatty, JJ Bigongiari, G Brandt, TJ Childers, JT Conklin, NB Coutu, S DuVernois, MA Ganel, O Han, JH Jeon, JA Kim, KC Lee, J Lee, MH Maestro, P Malinin, A Marrocchesi, PS Minnick, S Mognet, SI Na, GW Nam, J Nam, S Nutter, S Park, IH Park, NH Seo, ES Sina, R Walpole, P Wu, J Yang, J Yoon, YS Zei, R Zinn, SY AF Ahn, H. S. Allison, P. S. Bagliesi, M. G. Barbier, L. Beatty, J. J. Bigongiari, G. Brandt, T. J. Childers, J. T. Conklin, N. B. Coutu, S. DuVernois, M. A. Ganel, O. Han, J. H. Jeon, J. A. Kim, K. C. Lee, J. Lee, M. H. Maestro, P. Malinin, A. Marrocchesi, P. S. Minnick, S. Mognet, S. I. Na, G. W. Nam, J. Nam, S. Nutter, S. Park, I. H. Park, N. H. Seo, E. S. Sina, R. Walpole, P. Wu, J. Yang, J. Yoon, Y. S. Zei, R. Zinn, S. Y. TI MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; balloons; diffusion; Galaxy: abundances ID SILICON CHARGE DETECTOR; CREAM EXPERIMENT; CROSS-SECTIONS; 1ST FLIGHT; SPECTRA; ELEMENTS; PROPAGATION; SECONDARY; TRANSPORT; HYDROGEN AB We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 +/- 0.123(stat) +/- 0.030(syst), 0.076 +/- 0.019(stat) +/- 0.013(syst), 0.115 +/- 0.031(stat) +/- 0.004(syst), 0.153 +/- 0.039(stat) +/- 0.005(syst), 0.180 +/- 0.045(stat) +/- 0.006(syst), and 0.139 +/- 0.043(stat) +/- 0.005(syst), respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 +/- 0.013(stat) +/- 0.009(-0.017)(syst+0.010esc). The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the similar to TeV per nucleon region. C1 [Jeon, J. A.; Na, G. W.; Nam, J.; Nam, S.; Park, I. H.; Park, N. H.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinin, A.; Seo, E. S.; Sina, R.; Walpole, P.; Wu, J.; Yoon, Y. S.; Zinn, S. Y.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Allison, P. S.; Beatty, J. J.; Brandt, T. J.; Yoon, Y. S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Univ Siena, Dept Phys, I-53100 Siena, Italy. [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Ist Nazl Fis Nucl, I-53100 Siena, Italy. [Barbier, L.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Childers, J. T.; DuVernois, M. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Conklin, N. B.; Coutu, S.; Mognet, S. I.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Minnick, S.] Kent State Univ, Dept Phys, New Philadelphia, OH 44663 USA. [Nutter, S.] Univ Kentucky, Dept Phys & Geol, Highland Hts, KY 41099 USA. [Seo, E. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Park, IH (reprint author), Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. EM ipark@ewha.ac.kr RI maestro, paolo/E-3280-2010; Beatty, James/D-9310-2011; Marrocchesi, Pier Simone/N-9068-2015; Yoon, Young Soo/O-8580-2014; OI maestro, paolo/0000-0002-4193-1288; Beatty, James/0000-0003-0481-4952; Marrocchesi, Pier Simone/0000-0003-1966-140X; Yoon, Young Soo/0000-0001-7023-699X; Bigongiari, Gabriele/0000-0003-3691-0826 FU NASA [NNX08AC11G, NNX08AC15G, NNX08AC16G]; Creative Research Initiatives (RCMST) of MEST/NRF; INFN FX The work reported in this paper was supported in the U.S. by NASA grants NNX08AC11G, NNX08AC15G, NNX08AC16G and their predecessor grants, in Korea by the Creative Research Initiatives (RCMST) of MEST/NRF and in Italy by INFN. The authors acknowledge NASA/WFF for provision and operation of flight support systems; Art Ruitberg, Suong Le, and Curtis Dunsmore of NASA/GSFC, and Carlos Urdiales of Southwest Research Institute for assistance with HV design and potting; CERN for provision of excellent accelerator beams; the Fermi National Accelerator Lab Thin Films Group for high-quality polishing and aluminization of optical elements; and Columbia Scientific Ballooning Facility, National Science Foundation's Office of Polar Programs, and Raytheon Polar Services Company for outstanding support of launch, flight and recovery operations in Antarctica. NR 30 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1400 EP 1407 DI 10.1088/0004-637X/715/2/1400 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100054 ER PT J AU Abbott, BP Abbott, R Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Alshourbagy, M Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Armandula, H Armor, P Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, C Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, M Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Boccara, C Bodiya, TP Bogue, L Bondu, F Bonelli, L Bork, R Boschi, V Bose, S Bosi, L Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Bridges, DO Brillet, A Brinkmann, M Brisson, V Brooks, AF Brown, DA Brummit, A Brunet, G Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Carbognani, F Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Cokelaer, T Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Corda, C Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Danilishin, SL D'Antonio, S Danzmann, K Dari, A Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Edwards, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Franzen, A Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Gholami, I Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Goezetler, S Gossler, S Gouaty, R Granata, M Granata, V Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Greverie, C Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Guidi, G Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Huet, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Jaranowski, P Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krishnan, B Krolak, A Kumar, R Kwee, P La Penna, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majorana, E Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Menzinger, F Mercer, RA Meshkov, S Messenger, C Meyer, MS Michel, C Milano, L Miller, J Minelli, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Muhammad, D Mukherjee, S Mukhopadhyay, H Mullavey, A Uller-Ebhardt, HM Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Numata, K Ochsner, E O'Dell, J Ogin, GH O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameshwaraiah, V Pardi, S Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Penn, S Perreca, A Persichetti, G Pichot, M Piergiovanni, F Pierro, V Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Russell, P Ryan, K Sakata, S Salemi, F de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Terenzi, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, C Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, P Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Was, M Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Yvert, M Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME zur Muhlen, H Zweizig, J AF Abbott, B. P. Abbott, R. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Alshourbagy, M. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Armandula, H. Armor, P. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, C. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Boccara, C. Bodiya, T. P. Bogue, L. Bondu, F. Bonelli, L. Bork, R. Boschi, V. Bose, S. Bosi, L. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Carbognani, F. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cokelaer, T. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Corda, C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dari, A. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Franzen, A. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Goezetler, S. Gossler, S. Gouaty, R. Granata, M. Granata, V. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Guidi, G. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Huet, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Jaranowski, P. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krishnan, B. Krolak, A. Kumar, R. Kwee, P. La Penna, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mackowski, J. -M. Mageswaran, M. Mailand, K. Majorana, E. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Menzinger, F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Michel, C. Milano, L. Miller, J. Minelli, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Muhammad, D. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Uller-Ebhardt, H. M. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Numata, K. Ochsner, E. O'Dell, J. Ogin, G. H. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameshwaraiah, V. Pardi, S. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Pichot, M. Piergiovanni, F. Pierro, V. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Russell, P. Ryan, K. Sakata, S. Salemi, F. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Terenzi, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Was, M. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Yvert, M. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. zur Muehlen, H. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gravitational waves ID 25 APRIL 1998; SHORT-DURATION GRBS; REDSHIFT DISTRIBUTIONS; LUMINOSITY FUNCTION; RELATIVISTIC JETS; UNUSUAL SUPERNOVA; INVERSE PROBLEM; LOCAL UNIVERSE; ACCRETION DISK; CORE-COLLAPSE AB We present the results of a search for gravitational-wave bursts (GWBs) associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for GWB signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with a median limit of D similar to 12 Mpc(E-GW(iso)/0.01 M(circle dot)c(2))(1/2) for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mossavi, K.; Uller-Ebhardt, H. M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; La Penna, P.; Marque, J.; Menzinger, F.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; zur Muehlen, H.] EGO, I-56021 Cascina, Pi, Italy. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] Univ Paris 07, Observ Paris, CNRS, APC,UMR7164,IN2P3,CEA,DSM IRFU, F-75221 Paris 05, France. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Beker, M.; Bulten, H. J.; Goezetler, S.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mors, K.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astro Obs, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAM, PL-00716 Warsaw, Poland. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Buskulic, D.; Dietz, A.; Granata, V.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Guidi, G.; Numata, K.; Piergiovanni, F.; Stroeer, A.; Vetrano, F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Martelli, F.; Sturani, R.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Edwards, M.; Fafone, V.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pagliaroli, G.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Rocchi, A.; Terenzi, R.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Morgia, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colacino, C. N.; Corsi, A.; Frei, Z.; Raffai, P.; Rapagnani, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Colla, A.; Colombini, M.; Frasca, S.; Gammaitoni, L.; Ricci, F.; Travasso, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dari, A.; Neri, I.] Univ Perugia, I-6123 Perugia, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.; Pagliaroli, G.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Doomes, E. E.; McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. [Flaminio, R.; Franc, J.; Mackowski, J. -M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.; Re, V.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Prodi, G. A.; Re, V.; Salemi, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Prodi, G. A.; Salemi, F.] Univ Trent, I-38050 Trento, Italy. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Terenzi, R.] INAF, IFSI, I-00133 Rome, Italy. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Drago, M.] Univ Padua, I-35131 Padua, Italy. RP Abbott, BP (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Ju, Li/C-2623-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Finn, Lee Samuel/A-3452-2009; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Bigotta, Stefano/F-8652-2011; Neri, Igor/F-1482-2010; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; OI Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; O'Shaughnessy, Richard/0000-0001-5832-8517; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Coccia, Eugenio/0000-0002-6669-5787; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Pitkin, Matthew/0000-0003-4548-526X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Neri, Igor/0000-0002-9047-9822; Galdi, Vincenzo/0000-0002-4796-3600; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lueck, Harald/0000-0001-9350-4846; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We are indebted to the observers of the electromagnetic events and the GCN for providing us with valuable data. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge research support by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P0900023-v16. NR 97 TC 52 Z9 52 U1 3 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1438 EP 1452 DI 10.1088/0004-637X/715/2/1438 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100057 ER PT J AU Abadie, J Abbott, BP Abbott, R Accadia, T Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, CD Carbognani, F Cardenas, L Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Driggers, J Dueck, J Duke, I Dumas, JC Edgar, M Edwards, M Effler, A Ehrens, P Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goetz, E Goggin, LM Gonzalez, G Gossler, S Gouaty, R Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E Kim, H King, PJ Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, TGF Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Ochsner, E O'Dell, J Ogin, GH Oldenburg, R O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Radkins, H Raffai, P Raics, Z Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, AJ Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thorne, KA Thorne, KS Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Accadia, T. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Cardenas, L. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Driggers, J. Dueck, J. Duke, I. Dumas, J. -C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goetz, E. Goggin, L. M. Gonzalez, G. Gossler, S. Gouaty, R. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. Kim, H. King, P. J. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, T. G. F. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. J. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thorne, K. A. Thorne, K. S. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration VIRGO Collaboration TI SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gamma-ray burst: general; gravitational waves ID NEUTRON-STAR MERGERS; COMPACT BINARIES; MISSION; SUPERNOVA; INTERFEROMETER; SGR-1806-20; GRB-060614; GRB-070201; ORIGIN; FLARE AB Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [-5, +1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Driggers, J.; Ehrens, P.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO CALTECH, Pasadena, CA 91125 USA. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Romano, R.] Complesso Univ Monte St Angelo, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Allen, B.; Aulbert, C.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Grote, H.; Hayama, K.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rehbein, H.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R.; Papa, M. A.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, Pi, Italy. [Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO MIT, Cambridge, MA 02139 USA. [Barsuglia, M.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Denis Diderot Paris 7, CNRS, IN2P3, Observ Paris,DSM,IRFU,CEA,UMR7164, Paris, France. [Bartos, I.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Nikhef, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Beker, M. G.; Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Maksimovic, I.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Bondu, F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, LMA, IN2P3, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Bridges, D. O.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Brown, D. A.; Capano, C. D.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Smith, J. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astro Obs, PL-00478 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Cain, J.; Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Lam, P. K.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Minenkov, Y.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Morgia, A.; Pagliaroli, G.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Pagliaroli, G.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Doomes, E. E.; McGuire, S. C.] INAF, IFSI, I-00133 Rome, Italy. [Drago, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eutvus Univ, ELTE, H-1053 Budapest, Hungary. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Prodi, G. A.; Re, V.] Grp Collegato Trento, INFN, I-38050 Trento, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Trento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. RP Abadie, J (reprint author), LIGO CALTECH, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Finn, Lee Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Howell, Eric/H-5072-2014; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Nawrodt, Ronny/J-5155-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; Freise, Andreas/F-8892-2011; OI Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Khan, Rubab/0000-0001-5100-5168; Finn, Lee Samuel/0000-0002-3937-0688; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Howell, Eric/0000-0001-7891-2817; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lueck, Harald/0000-0001-9350-4846; Neri, Igor/0000-0002-9047-9822; Gammaitoni, Luca/0000-0002-4972-7062; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We are indebted to the observers of the electromagnetic events and the GCN for providing us with valuable data. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge research support by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 59 TC 74 Z9 74 U1 3 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1453 EP 1461 DI 10.1088/0004-637X/715/2/1453 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100058 ER PT J AU Crepp, J Serabyn, E Carson, J Ge, J Kravchenko, I AF Crepp, J. Serabyn, E. Carson, J. Ge, J. Kravchenko, I. TI ON-SKY DEMONSTRATION OF A LINEAR BAND-LIMITED MASK WITH APPLICATION TO VISUAL BINARY STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; instrumentation: high angular resolution; planetary systems ID EPSILON-ERIDANI; PLANET FORMATION; GIANT PLANETS; CIRCUMBINARY PLANETS; EXTRASOLAR PLANETS; ORBITAL ELEMENTS; MULTIPLE SYSTEMS; IMAGE MASKS; DQ TAU; CORONAGRAPH AB We have designed and built the first band-limited coronagraphic mask used for ground-based high-contrast imaging observations. The mask resides in the focal plane of the near-infrared camera PHARO at the Palomar Hale telescope and receives a well-corrected beam from an extreme adaptive optics system. Its performance on-sky with single stars is comparable to current state-of-the-art instruments: contrast levels of similar to 10(-5) or better at 0 ''.8 in K-s after post-processing, depending on how well non-common-path errors are calibrated. However, given the mask's linear geometry, we are able to conduct additional unique science observations. Since the mask does not suffer from pointing errors down its long axis, it can suppress the light from two different stars simultaneously, such as the individual components of a spatially resolved binary star system, and search for faint tertiary companions. In this paper, we present the design of the mask, the science motivation for targeting binary stars, and our preliminary results, including the detection of a candidate M-dwarf tertiary companion orbiting the visual binary star HIP 48337, which we are continuing to monitor with astrometry to determine its association. C1 [Crepp, J.; Ge, J.; Kravchenko, I.] Univ Florida, Gainesville, FL 32611 USA. [Crepp, J.] CALTECH, Pasadena, CA 91125 USA. [Serabyn, E.; Carson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Carson, J.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Charleston, SC 29424 USA. [Kravchenko, I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Crepp, J (reprint author), Univ Florida, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA. EM jcrepp@astro.caltech.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU NASA [NNG06GC49G]; UCF-UF-SRI program FX We thank Karl Stapelfeldt for support at the JPL microdevices lab to cut and clean the BLM prior to installation, and Dimitri Mawet for helpful conversations at the observatory. J.C. acknowledges support from the NASA postdoctoral program. This work was funded by the UCF-UF-SRI program and NASA grant NNG06GC49G. Part of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 71 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1533 EP 1538 DI 10.1088/0004-637X/715/2/1533 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100064 ER PT J AU Rachmeler, LA Pariat, E DeForest, CE Antiochos, S Torok, T AF Rachmeler, L. A. Pariat, E. DeForest, C. E. Antiochos, S. Toeroek, T. TI SYMMETRIC CORONAL JETS: A RECONNECTION-CONTROLLED STUDY SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; Sun: activity; Sun: corona ID X-RAY JETS; COLLISIONLESS MAGNETIC RECONNECTION; TWISTED FLUX TUBES; KINK INSTABILITY; NUMERICAL SIMULATIONS; SOLAR ATMOSPHERE; FIELD PROPERTIES; MASS EJECTIONS; CURRENT SHEETS; ACTIVE-REGION AB Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field. C1 [Rachmeler, L. A.] Univ Colorado, Boulder, CO 80304 USA. [Pariat, E.; Toeroek, T.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. [DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA. [Antiochos, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rachmeler, LA (reprint author), Univ Colorado, Boulder, CO 80304 USA. EM laurel.rachmeler@colorado.edu RI Antiochos, Spiro/D-4668-2012 OI Antiochos, Spiro/0000-0003-0176-4312 FU NASA; European Commission [MTRM-CT-2006-035484, 218816] FX The authors thank P. Demoulin for insightful comments and discussions. This work was supported in part by the NASA HTP, LWS-TR&T, and SHP-SR&T programs. Financial support by the European Commission through the SOLAIRE network (MTRM-CT-2006-035484) is gratefully acknowledged. The research leading to these results has received funding from the European Commission's Seventh Framework Program (FP7/2007-2013) under the grant agreement 218816 (SOTERIA project, www.soteria-space.eu). The ARMS numerical simulations were performed on DoD High Performance Computing Modernization Program resources at NRL-DC. FLUX is open source software available from http://flux.boulder.swri.edu. Thanks is also given to the PDL development team http://pdl.perl.org. NR 67 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1556 EP 1565 DI 10.1088/0004-637X/715/2/1556 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100066 ER PT J AU Sajina, A Yan, L Armus, L Choi, P Fadda, D Helou, G Spoon, H AF Sajina, Anna Yan, Lin Armus, Lee Choi, Philip Fadda, Dario Helou, George Spoon, Henrik TI SPITZER MID-INFRARED SPECTROSCOPY OF INFRARED LUMINOUS GALAXIES AT z similar to 2. II. DIAGNOSTICS (vol 664, pg 713, 2007) SO ASTROPHYSICAL JOURNAL LA English DT Correction ID ACTIVE GALACTIC NUCLEI C1 [Sajina, Anna; Yan, Lin; Armus, Lee; Helou, George] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Choi, Philip] Pomona Coll, Claremont, CA 91711 USA. [Fadda, Dario] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Spoon, Henrik] Cornell Univ, Ithaca, NY 14853 USA. RP Sajina, A (reprint author), Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2010 VL 715 IS 2 BP 1592 EP 1592 DI 10.1088/0004-637X/715/2/1592 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 595VR UT WOS:000277642100070 ER PT J AU Hammel, HB Wong, MH Clarke, JT de Pater, I Fletcher, LN Hueso, R Noll, K Orton, GS Perez-Hoyos, S Sanchez-Lavega, A Simon-Miller, AA Yanamandra-Fisher, PA AF Hammel, H. B. Wong, M. H. Clarke, J. T. de Pater, I. Fletcher, L. N. Hueso, R. Noll, K. Orton, G. S. Perez-Hoyos, S. Sanchez-Lavega, A. Simon-Miller, A. A. Yanamandra-Fisher, P. A. TI JUPITER AFTER THE 2009 IMPACT: HUBBLE SPACE TELESCOPE IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID COMET SHOEMAKER-LEVY-9; ZONAL WINDS; STRATOSPHERE; STABILITY; SPECTRUM; AEROSOL AB We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July. The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions. C1 [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Wong, M. H.; Noll, K.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wong, M. H.; de Pater, I.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Clarke, J. T.] Boston Univ, Boston, MA 02215 USA. [Fletcher, L. N.; Orton, G. S.; Yanamandra-Fisher, P. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.] Univ Basque Country, Bilbao 48013, Spain. [Simon-Miller, A. A.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hammel, HB (reprint author), Space Sci Inst, 4750 Walnut Ave,Suite 205, Boulder, CO 80301 USA. EM hbh@alum.mit.edu RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Perez-Hoyos, Santiago/L-7543-2014; Clarke, John/C-8644-2013 OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X; FU NASA [NAS 5-26555]; STScI [GO-12003, GO-12045] FX This Letter is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy Inc. under NASA contract NAS 5-26555. Analyses of these data from programs GO-12003 and GO-12045 were supported by STScI under the associated research grants. We commend and thank the STSCI staff and management for their fortitude during these unusually challenging observations. L.N.F. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory (California Institute of Technology, Pasadena, CA). NR 25 TC 26 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2010 VL 715 IS 2 BP L150 EP L154 DI 10.1088/2041-8205/715/2/L150 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 608NU UT WOS:000278591800019 ER PT J AU Sanchez-Lavega, A Wesley, A Orton, G Hueso, R Perez-Hoyos, S Fletcher, LN Yanamandra-Fisher, P Legarreta, J de Pater, I Hammel, H Simon-Miller, A Gomez-Forrellad, JM Ortiz, JL Garcia-Melendo, E Puetter, RC Chodas, P AF Sanchez-Lavega, A. Wesley, A. Orton, G. Hueso, R. Perez-Hoyos, S. Fletcher, L. N. Yanamandra-Fisher, P. Legarreta, J. de Pater, I. Hammel, H. Simon-Miller, A. Gomez-Forrellad, J. M. Ortiz, J. L. Garcia-Melendo, E. Puetter, R. C. Chodas, P. TI THE IMPACT OF A LARGE OBJECT ON JUPITER IN 2009 JULY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual (Jupiter) ID SHOEMAKER-LEVY 9; SHORT-PERIOD COMETS; RECONSTRUCTION; EVOLUTION; RATES AB On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55 degrees S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory in the opposite direction and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4800 km east-west and 2500 km north-south, with those produced by the SL9 fragments and dynamical calculations of pre-impact orbit indicates that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890 nm and K (2.03-2.36 mu m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary clouds. C1 [Sanchez-Lavega, A.; Hueso, R.; Perez-Hoyos, S.] Univ Basque Country, Dpto Fis Aplicada 1, Escuela Super Ingenieros, Bilbao 48013, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW 2582, Australia. [Orton, G.; Yanamandra-Fisher, P.; Chodas, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fletcher, L. N.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Legarreta, J.] Escuela Univ Ingn Tecn Ind, Bilbao 48012, Spain. [de Pater, I.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hammel, H.] Space Sci Inst, Boulder, CO 80301 USA. [Simon-Miller, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gomez-Forrellad, J. M.; Garcia-Melendo, E.] Fundacio Observ Esteve Duran, Barcelona 08553, Spain. [Ortiz, J. L.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Puetter, R. C.] Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Sanchez-Lavega, A (reprint author), Univ Basque Country, Dpto Fis Aplicada 1, Escuela Super Ingenieros, Alameda Urquijo S-N, Bilbao 48013, Spain. EM agustin.sanchez@ehu.es RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Perez-Hoyos, Santiago/L-7543-2014; OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Perez-Hoyos, Santiago/0000-0002-2587-4682; LEGARRETA ETXAGIBEL, JON JOSU/0000-0001-6501-2705; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Hueso, Ricardo/0000-0003-0169-123X FU Spanish MEC [AYA2006-07735]; MICIIN [AYA2009-10701]; Grupos Gobierno Vasco [IT-464-07]; NASA FX This work was supported by the Spanish MEC AYA2006-07735 and MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. G.O. and P.Y.F. acknowledge support from NASA grants to JPL. L.N.F. was supported by NASA Postdoctoral Program at the Jet Propulsion Laboratory (Caltech, USA). J.L.O. acknowledges AYA2008-06202-C03-01. NR 26 TC 25 Z9 25 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2010 VL 715 IS 2 BP L155 EP L159 DI 10.1088/2041-8205/715/2/L155 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 608NU UT WOS:000278591800020 ER PT J AU Wu, JW Evans, NJ Shirley, YL Knez, C AF Wu, Jingwen Evans, Neal J., II Shirley, Yancy L. Knez, Claudia TI THE PROPERTIES OF MASSIVE, DENSE CLUMPS: MAPPING SURVEYS OF HCN AND CS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: formation; ISM: clouds; ISM: molecules; stars: formation; submillimeter: ISM ID STAR-FORMATION RATE; LUMINOUS INFRARED GALAXIES; MOLECULAR CLOUD CORES; COMPACT HII-REGIONS; H-II REGIONS; PROTOSTELLAR CANDIDATES; PHYSICAL CONDITIONS; CONTINUUM OBSERVATIONS; DUST CONTINUUM; OUTER GALAXY AB We have mapped over 50 massive, dense clumps with four dense gas tracers: HCN J = 1-0 and 3-2; and CS J = 2-1 and 7-6 transitions. Spectral lines of optically thin H(13)CN 3-2 and C(34)S 5-4 were also obtained toward the map centers. These maps usually demonstrate single well-peaked distributions at our resolution, even with higher J transitions. The size, virial mass, surface density, and mean volume density within a well-defined angular size ( FWHM) were calculated from the contour maps for each transition. We found that transitions with higher effective density usually trace the more compact, inner part of the clumps but have larger linewidths, leading to an inverse linewidth-size relation using different tracers. The mean surface densities are 0.29, 0.33, 0.78, 1.09 g cm(-2) within FWHM contours of CS 2-1, HCN 1-0, HCN 3-2, and CS 7-6, respectively. We find no correlation of L(IR) with surface density and a possible inverse correlation with mean volume density, contrary to some theoretical expectations. Molecular line luminosities L'(mol) were derived for each transition. We see no evidence in the data for the relation between L'(mol) and mean density posited by modelers. The correlation between L'(mol) and the virial mass is roughly linear for each dense gas tracer. No obvious correlation was found between the line luminosity ratio and infrared luminosity, bolometric temperature, or the L(IR)/M(Vir) ratio. A nearly linear correlation was found between the infrared luminosity and the line luminosity of all dense gas tracers for these massive, dense clumps, with a lower cutoff in luminosity at L(IR) = 10(4.5) L(circle dot). The L(IR)-L'(HCN1-0) correlation agrees well with the one found in galaxies. These correlations indicate a constant star formation rate per unit mass from the scale of dense clumps to that of distant galaxies when the mass is measured for dense gas. These results support the suggestion that starburst galaxies may be understood as having a large fraction of gas in dense clumps. C1 [Wu, Jingwen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evans, Neal J., II] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Knez, Claudia] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Wu, JW (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS78, Cambridge, MA 02138 USA. EM jwu@cfa.harvard.edu; nje@astro.as.utexas.edu; yshirley@as.arizona.edu FU Submillimeter Array of the Smithsonian Observatory; NSF [AST-0607793]; McDonald Observatory FX We thank D. Narayanan and M. Krumholz for lively discussions that illuminated their models. J.W. thanks the postdoctoral fellowship support from the Submillimeter Array of the Smithsonian Observatory while completing this work. This work was supported in part by NSF Grant AST-0607793 and by McDonald Observatory. NR 99 TC 91 Z9 91 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 313 EP 357 DI 10.1088/0067-0049/188/2/313 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400001 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Antolini, E Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Belli, F Berenji, B Bisello, D Blandford, RD Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Busetto, G Buson, S Caliandro, GA Cameron, RA Campana, R Canadas, B Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Ceccanti, M Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbet, R Davis, DS DeKlotz, M den Hartog, PR Dermer, CD de Angelis, A de Luca, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Fabiani, D Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Gustafsson, M Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Healey, SE Hill, AB Horan, D Hughes, RE Iafrate, G Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocevski, D Kuss, M Lande, J Landriu, D Latronico, L Lee, SH Lemoine-Goumard, M Lionetto, AM Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marangelli, B Marelli, M Massaro, E Mazziotta, MN McConville, W McEnery, JE Michelson, PF Minuti, M Mitthumsiri, W Mizuno, T Moiseev, AA Mongelli, M Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paccagnella, A Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pinchera, M Piron, F Porter, TA Poupard, L Raino, S Rando, R Ray, PS Razzano, M Razzaque, S Rea, N Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Sadrozinski, HFW Salvetti, D Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Scolieri, G Sgro, C Shaw, MS Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Stephens, TE Striani, E Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Tinebra, F Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Watters, K Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Antolini, E. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Belli, F. Berenji, B. Bisello, D. Blandford, R. D. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Campana, R. Canadas, B. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Ceccanti, M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbet, R. Davis, D. S. DeKlotz, M. den Hartog, P. R. Dermer, C. D. de Angelis, A. de Luca, A. de Palma, F. Digel, S. W. Dormody, M. do Couto E Silva, E. Drell, P. S. Dubois, R. Dumora, D. Fabiani, D. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Gustafsson, M. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Healey, S. E. Hill, A. B. Horan, D. Hughes, R. E. Iafrate, G. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Landriu, D. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Lionetto, A. M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marangelli, B. Marelli, M. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Minuti, M. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Mongelli, M. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paccagnella, A. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pinchera, M. Piron, F. Porter, T. A. Poupard, L. Raino, S. Rando, R. Ray, P. S. Razzano, M. Razzaque, S. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Salvetti, D. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Scolieri, G. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stephens, T. E. Striani, E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Tinebra, F. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Watters, K. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma rays: general ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; SPECTRUM RADIO-SOURCES; ALL-SKY SURVEY; SPACE-TELESCOPE; MILKY-WAY; LIKELIHOOD RATIO; EGRET SOURCES; SUPERNOVA-REMNANTS; GLOBULAR-CLUSTER AB We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Ray, P. S.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.] Lund Observ, SE-22100 Lund, Sweden. [Axelsson, M.; Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ceccanti, M.; Fabiani, D.; Kuss, M.; Latronico, L.; Minuti, M.; Pesce-Rollins, M.; Pinchera, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Landriu, D.; Naumann-Godo, M.; Poupard, L.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, CNRS,CEA IRFU,Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Iafrate, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Bisello, D.; Busetto, G.; Buson, S.; Gustafsson, M.; Paccagnella, A.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Bisello, D.; Busetto, G.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Belli, F.; Canadas, B.; Lionetto, A. M.; Morselli, A.; Striani, E.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Belli, F.; Canadas, B.; Lionetto, A. M.; Striani, E.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Bonnell, J.; Celik, Oe.; Cillis, A. N.; Corbet, R.; Davis, D. S.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonnell, J.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M. N.; Mongelli, M.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Campana, R.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Caraveo, P. A.; Marelli, M.; Salvetti, D.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Corbet, R.; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cillis, A. N.] Parbellon IAFE, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [de Angelis, A.; Frailis, M.; Guillemot, L.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.; Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.; Nakajima, H.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Massaro, E.; Tinebra, F.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paccagnella, A.] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.; Stephens, T. E.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Scolieri, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stephens, T. E.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM jean.ballet@cea.fr; digel@stanford.edu; knodlseder@cesr.fr RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Campana, Riccardo/F-5272-2015; Rea, Nanda/I-2853-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Ozaki, Masanobu/K-1165-2013; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; OI Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; De Luca, Andrea/0000-0001-6739-687X; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Stephens, Thomas/0000-0003-3065-6871; Iafrate, Giulia/0000-0002-6185-8292; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Funk, Stefan/0000-0002-2012-0080; Campana, Riccardo/0000-0002-4794-5453; Rea, Nanda/0000-0003-2177-6388; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338 FU K. A. Wallenberg Foundation; European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; CEA; CNES; Universite Paris Diderot FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. WallenbergFoundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The catalog work used a cluster of computing nodes at Saclay funded by CEA, CNES, and Universite Paris Diderot. NR 101 TC 577 Z9 578 U1 3 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 405 EP 436 DI 10.1088/0067-0049/188/2/405 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400004 ER PT J AU Cotton, WD Ragland, S Pluzhnik, EA Danchi, WC Traub, WA Willson, LA Lacasse, MG AF Cotton, W. D. Ragland, S. Pluzhnik, E. A. Danchi, W. C. Traub, W. A. Willson, L. A. Lacasse, M. G. TI SiO MASERS IN ASYMMETRIC MIRAS. IV. chi CYGNI, R AQUILAE, R LEO MINORIS, RU HERCULIS, U HERCULIS, AND U ORIONIS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE radio lines: stars; stars: AGB and post-AGB; stars: atmospheres ID LATE-TYPE STARS; GIANT BRANCH STARS; VARIABLE-STARS; WATER MASERS; RADIO PHOTOSPHERES; ANGULAR DIAMETERS; VLBA OBSERVATIONS; EVOLVED STARS; STELLAR IMAGE; IK TAURI AB This is the fourth paper in a series of multi-epoch observations at 7 mm wavelength of the SiO masers in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by IOTA and with VLBA measurements of the SiO masers. In this paper, we present the observations of chi Cygni (chi Cyg), R Aquilae (R Aql), R Leo Minoris (R LMi), RU Herculis (RU Her), U Herculis (U Her), and U Orionis (U Ori). Several radial features with velocity gradients were observed, all with velocities close to systemic furthest from the star and redshifted closer to the stellar surface. Systemic velocities are estimated for several of the stars. No compelling evidence of asymmetry is seen in the maser distributions. All maser rings are approximately twice the near-IR uniform disk diameter and are comparable in size to the extended molecular envelope when such measurements are available. C1 [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ragland, S.] WM Keck Observ, Kamuela, HI 96743 USA. [Pluzhnik, E. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Traub, W. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Willson, L. A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50014 USA. [Lacasse, M. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu FU NSF [AST-0456047] FX We acknowledge support from NSF of the IOTA observations through grant AST-0456047. The authors thank the anonymous referee for comments leading to an improved paper. NR 50 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2010 VL 188 IS 2 BP 506 EP 525 DI 10.1088/0067-0049/188/2/506 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613HG UT WOS:000278969400010 ER PT J AU Duncan, BN Yoshida, Y Olson, JR Sillman, S Martin, RV Lamsal, L Hu, YT Pickering, KE Retscher, C Allen, DJ Crawford, JH AF Duncan, Bryan N. Yoshida, Yasuko Olson, Jennifer R. Sillman, Sanford Martin, Randall V. Lamsal, Lok Hu, Yongtao Pickering, Kenneth E. Retscher, Christian Allen, Dale J. Crawford, James H. TI Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Surface ozone; Air quality indicator; OMI; HCHO; NO2 ID EASTERN UNITED-STATES; ISOPRENE EMISSIONS; NITROGEN-OXIDES; AIR-QUALITY; PRECURSOR RELATIONSHIPS; NEW-YORK; URBAN; PHOTOCHEMISTRY; SENSITIVITY; REDUCTIONS AB We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration. Published by Elsevier Ltd. C1 [Duncan, Bryan N.; Yoshida, Yasuko; Pickering, Kenneth E.; Retscher, Christian] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Yoshida, Yasuko; Retscher, Christian] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Olson, Jennifer R.; Crawford, James H.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA. [Sillman, Sanford] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Martin, Randall V.; Lamsal, Lok] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hu, Yongtao] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Allen, Dale J.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Duncan, BN (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. EM Bryan.N.Duncan@nasa.gov RI Duncan, Bryan/A-5962-2011; Pickering, Kenneth/E-6274-2012; Lamsal, Lok/G-4781-2012; Pfister, Gabriele/A-9349-2008; Crawford, James/L-6632-2013; Martin, Randall/C-1205-2014; Hu, Yongtao/H-7543-2016; Allen, Dale/F-7168-2010; OI Crawford, James/0000-0002-6982-0934; Martin, Randall/0000-0003-2632-8402; Hu, Yongtao/0000-0002-5161-0592; Allen, Dale/0000-0003-3305-9669; Sillman, Sanford/0000-0001-6250-1191 FU NASA FX This work was supported by the NASA's Earth Science Research Program. NR 55 TC 47 Z9 51 U1 10 U2 88 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2010 VL 44 IS 18 BP 2213 EP 2223 DI 10.1016/j.atmosenv.2010.03.010 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 613ON UT WOS:000278988700006 ER PT J AU Fishman, J Creilson, JK Parker, PA Ainsworth, EA Vining, GG Szarka, J Booker, FL Xu, XJ AF Fishman, Jack Creilson, John K. Parker, Peter A. Ainsworth, Elizabeth A. Vining, G. Geoffrey Szarka, John Booker, Fitzgerald L. Xu, Xiaojing TI An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air pollution; Crop damage; Ozone; Remote sensing; Soybean; Yield ID AIR-QUALITY FORECASTS; TROPOSPHERIC OZONE; UNITED-STATES; SURFACE OZONE; YIELD; METAANALYSIS; POLLUTION; EXPOSURE; GROWTH; RESIDUALS AB Elevated concentrations of ground-level ozone (O(3)) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O(3) can significantly decrease crop productivity, independent verifications of yield losses at current ambient O(3) concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O(3) measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O(3) measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O(3) levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually. Published by Elsevier Ltd. C1 [Fishman, Jack; Creilson, John K.; Xu, Xiaojing] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Creilson, John K.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. [Parker, Peter A.] NASA, Langley Res Ctr, Syst Engn Directorate, Hampton, VA 23681 USA. [Ainsworth, Elizabeth A.] Univ Illinois, USDA, ARS, Photosynth Res Unit, Urbana, IL 61801 USA. [Ainsworth, Elizabeth A.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Vining, G. Geoffrey; Szarka, John] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA. [Booker, Fitzgerald L.] N Carolina State Univ, USDA, ARS, Plant Sci Res Unit, Raleigh, NC 27695 USA. [Booker, Fitzgerald L.] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA. RP Fishman, J (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401A, Hampton, VA 23681 USA. EM jack.fishman@nasa.gov NR 41 TC 45 Z9 45 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2010 VL 44 IS 18 BP 2248 EP 2256 DI 10.1016/j.atmosenv.2010.01.015 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 613ON UT WOS:000278988700010 ER PT J AU Gauthier, ML Petersen, WA Carey, LD AF Gauthier, Michael L. Petersen, Walter A. Carey, Lawrence D. TI Cell mergers and their impact on cloud-to-ground lightning over the Houston area SO ATMOSPHERIC RESEARCH LA English DT Article DE Lightning; Radar; Cell merger ID MAJOR URBAN AREAS; SUMMER SEASON; RADAR; PRECIPITATION; CONVECTION; SATELLITE; CUMULUS; ISLAND; TRMM AB A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic "forcing" of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban-merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity. CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of Eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (046%) in ground flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston. Published by Elsevier B.V. C1 [Gauthier, Michael L.] USAF Acad, Dept Phys, Colorado Springs, CO 80840 USA. [Petersen, Walter A.] NASA Marshall Space Flight Ctr, NSSTC Earth Sci Off VP61, Huntsville, AL 35804 USA. [Carey, Lawrence D.] Univ Alabama, Natl Space Sci & Technol Ctr, Ctr Earth Syst Sci, Huntsville, AL 35805 USA. RP Gauthier, ML (reprint author), USAF Acad, Dept Phys, 2354 Fairchild Hall,Suite 2A29, Colorado Springs, CO 80840 USA. EM Michael.Gauthier@USAFA.edu FU U.S. Air Force Academy through the Air Force Institute of Technology; NASA; NSF [ATM-0442011] FX This research was supported by funding from the U.S. Air Force Academy through the Air Force Institute of Technology (MLG), NASA's Earth Sciences Program (WAP), and NSF grant ATM-0442011 (LDC). The views expressed in this paper are those of the authors and do not reflect the official policy or position of the U.S. Air Force, Department of Defense, or the U.S. Government. NR 28 TC 7 Z9 9 U1 1 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD JUN PY 2010 VL 96 IS 4 BP 626 EP 632 DI 10.1016/j.atmosres.2010.02.010 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 607BV UT WOS:000278474200013 ER PT J AU Johnston, SL Campbell, MR Scheuring, R Feiveson, AH AF Johnston, Smith L. Campbell, Mark R. Scheuring, Rick Feiveson, Alan H. TI Risk of Herniated Nucleus Pulposus Among US Astronauts SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE spaceflight; back pain; back injury; cervical injury; lumbar injury; disc disease; microgravity; weightlessness ID FIGHTER PILOTS; INTERVERTEBRAL-DISK; BACK-PAIN; GZ FORCES; BED REST; MICROGRAVITY; INJURY; SPINE; MRI; DEGENERATION AB JOHNSTON SL, CAMPBELL MR, SCHEURING R, FEIVESON AH. Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med 2010; 81:566-74. Introduction: Astronauts have complained of back pain occurring during spaceflight, presumably due to the elongation of the spine from the lack of gravity. Herniated nucleus pulposus (HNP) is known to occur in aviators exposed to high G, and has been diagnosed in several astronauts in the immediate post-spaceflight period. It is unknown whether astronauts exposed to microgravity are at added risk for developing HNP in the post-spaceflight period due to possible in-flight intervertebral disc changes. Methods: For a preset study period, incidence rates of HNP were compared between the U.S. astronaut population and a matched control population not involved in spaceflight using the Longitudinal Study of Astronaut Health database. Using a Weibull survival model, time trends of the risk of HNP prior to and after spaceflight were compared within the astronaut group. HNP incidences in other populations that have previously been reported in the literature were also compared with results in this study. Results: The incidence of HNP was 4.3 times higher in the U.S. astronaut population (N = 321) compared to matched controls (N = 983) not involved in spaceflight. For astronauts, there was relatively more HNP in the cervical region of the spine (18 of 44) than for controls (3 of 35); however, there was no clear increase of HNP incidence in those astronauts who were high performance jet aircraft pilots. There was evidence suggesting that the risk is increased immediately after spaceflight. Conclusions: Astronauts are at higher risk of incurring HNP especially immediately following spaceflight. C1 [Johnston, Smith L.; Scheuring, Rick; Feiveson, Alan H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Campbell, MR (reprint author), 420 DeShong,300, Paris, TX 75460 USA. EM mcamp@1starnet.com NR 38 TC 34 Z9 37 U1 0 U2 3 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2010 VL 81 IS 6 BP 566 EP 574 DI 10.3357/ASEM.2427.2010 PG 9 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 604VA UT WOS:000278305400006 PM 20540448 ER PT J AU Lee, TF Nelson, CS Dills, P Riishojgaard, LP Jones, A Li, L Miller, S Flynn, LE Jedlovec, G McCarty, W Hoffman, C McWilliams, G AF Lee, Thomas F. Nelson, Craig S. Dills, Patrick Riishojgaard, Lars Peter Jones, Andy Li, Li Miller, Steven Flynn, Lawrence E. Jedlovec, Gary McCarty, William Hoffman, Carl McWilliams, Gary TI NPOESS Next-Generation Operational Global Earth Observations SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID IRRADIANCE MONITOR; INSTRUMENT DESIGN; OBSERVING SYSTEM; MODIS; AIRS; CAPABILITIES; IMAGERY; SENSOR AB The United States is merging its two polar-orbiting operational environmental satellite programs operated by the Department of Commerce and the Department of Defense into a single system, which is called the National Polar-orbiting Operational Environmental Satellite System (NPOESS). During the next decade, NPOESS will provide global operational data to meet many of the needs of weather forecasters, climate researchers, and global decision makers for remotely sensed Earth science data and global environmental monitoring. The NPOESS Preparatory Project (NPP) will be launched in 2011 as a precursor to NPOESS to reduce final development risks for NPOESS and to provide continuity of global imaging and atmospheric sounding data from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) missions. Beginning in 2014, NPOESS spacecraft will be launched into an afternoon orbit and in 2016 into an early-morning orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operation (MetOp) spacecraft will complement NPOESS in a midmorning orbit. The joint constellation will provide global coverage with a data refresh rate of approximately four hours. NPOESS will observe more phenomena simultaneously from space and deliver a data volume significantly greater than its operational predecessors with substantially improved data delivery to users. Higher-resolution (spatial and spectral) and more accurate imaging and atmospheric sounding data will enable improvements in short-to medium-range weather forecasts. Multispectral and hyperspectral instruments on NPOESS will provide global imagery and sounding products useful to the forecaster that are complementary to those available from geostationary satellites. NPOESS will support the operational needs of meteorological, oceanographic, environmental, climatic, and space environmental remote sensing programs and provide continuity of data for climate researchers. This article that describes NPOESS was completed and accepted for publication prior to the White House decision in February 2010 ordering a major restructuring of the NPOESS program. The Department of Commerce will now assume primary responsibility for the afternoon polar-orbiting operational environmental satellite orbit and the Department of Defense will take primary responsibility for the early morning orbit. However, NPP, as described in this article, is still scheduled to be launched in 2011. Several of the instruments and program elements described in this article are also likely to be carried forward into future U. S. polar-orbiting operational environmental satellite missions. C1 [Lee, Thomas F.; Li, Li] USN, Res Lab, Monterey, CA 93943 USA. [Nelson, Craig S.] Riverside Technol Inc, Silver Spring, MD USA. [Dills, Patrick] Cooperat Program Operat Meteorol Educ & Training, Boulder, CO USA. [Riishojgaard, Lars Peter] NOAA, Joint Ctr Satellite Data Assimilat, Ctr Sci, Camp Springs, MD USA. [Jones, Andy; Miller, Steven] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Flynn, Lawrence E.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. [Jedlovec, Gary] NASA, Global Hydrol & Climate Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Jedlovec, Gary] NASA, Short Term Predict Res & Transit Ctr, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McCarty, William] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarty, William] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Hoffman, Carl; McWilliams, Gary] NPOESS Integrated Program Off, Silver Spring, MD USA. RP Lee, TF (reprint author), USN, Res Lab, 7 Grace Hopper Ave,Stop 2, Monterey, CA 93943 USA. EM thomas.lee@nrlmry.navy.mil RI Flynn, Lawrence/B-6321-2009; Jones, Andrew/D-3291-2012; McCarty, Will/E-9359-2012 OI Flynn, Lawrence/0000-0001-6856-2614; Jones, Andrew/0000-0002-0995-4957; FU National Polar-orbiting Operational Environmental Satellite System Integrated Program Office, Silver Spring, Maryland; Office of Naval Research [PE-0602435N]; Navy at Space and Naval Warfare Systems Command [PEO C4I, PMW-120, PE-0603207N] FX The support of the research sponsors 1) the National Polar-orbiting Operational Environmental Satellite System Integrated Program Office located in Silver Spring, Maryland; 2) the Office of Naval Research under Program Element PE-0602435N; and 3) the Oceanographer of the Navy through the program office at the Space and Naval Warfare Systems Command, PEO C4I and PMW-120 under Program Element PE-0603207N, is gratefully acknowledged. We thank Jeffrey Hawkins from NRL and John Furgerson from the IPO for several insightful suggestions. NR 30 TC 19 Z9 19 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2010 VL 91 IS 6 BP 727 EP + DI 10.1175/2009BAMS2953.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 628HT UT WOS:000280107300002 ER PT J AU Mclain, JS AF Mclain, Jeffrey S. TI MANAGING THE TUOLUMNE RIVER FOR SALMONIDS: ASSESSMENT OF THE 1995 SETTLEMENT AGREEMENT SO CALIFORNIA FISH AND GAME LA English DT Article DE California; Chinook salmon; Oncorhynchus mykiss; Oncorhynchus tshawytscha; San Joaquin River; steelhead; Tuolumne River; Yosemite AB The Tuolumne River originates at elevations over 3,900 meters in Yosemite Valley, California along the Western Sierra and is the largest tributary to the San Joaquin River of the Central Valley, draining an area of approximately 2,500 km(2). The Tuolumne River was once home to a healthy population of spring and fall-run Chinook salmon, Oncorhynchus tshawytscha, the spring-run likely ascending upstream as high as the boundary of Yosemite National Park, at an elevation of nearly 760 meters. Although historical records of the presence of Central Valley steelhead, Oncorhynchus mykiss are poor, they were believed to be well distributed in the Tuolumne River and its smaller tributaries. A series of dams for water supply, hydroelectric generation, and flood control were constructed starting in the 1890s. These dams cut off access by native anadromous fish to as much as 90 h. of their spawning habitat. In 1996 the Federal Energy Regulatory Commission issued an order amending a 1964 license, which included a 1995 Settlement Agreement. The 1995 Settlement Agreement designated a Technical Advisory Committee to oversee implementation of the agreement and its requirements. A review of the hydrographs of the Tuolumne River during the first 8 years under the Settlement Agreement revealed they were significantly different in timing and magnitude than recommended by resource agencies. This paper discusses management implications of the Settlement Agreement, and also offers recommendations for improvement. C1 [Mclain, Jeffrey S.] US Fish & Wildlife Serv, Sacramento, CA 95825 USA. RP Mclain, JS (reprint author), Natl Marine Fisheries Serv, 650 Capitol Mall, Sacramento, CA 95814 USA. EM Jeff.McLain@noaa.gov NR 14 TC 0 Z9 0 U1 4 U2 10 PU CALIFORNIA FISH AND GAME EDITOR PI SACRAMENTO PA 1416 NINTH ST, SACRAMENTO, CA 95814 USA SN 0008-1078 J9 CALIF FISH GAME JI Calif. Fish Game PD SUM PY 2010 VL 96 IS 3 BP 173 EP 187 PG 15 WC Fisheries; Zoology SC Fisheries; Zoology GA 703OE UT WOS:000285987300001 ER PT J AU Kamikawa, DJ Stevenson, DE AF Kamikawa, Daniel J. Stevenson, Duane E. TI NEW RECORDS OF ALDROVANDIA OLEOSA (NOTACANTHIFORMES: HALOSAURIDAE) FROM THE EASTERN NORTH PACIFIC OCEAN SO CALIFORNIA FISH AND GAME LA English DT Editorial Material C1 [Kamikawa, Daniel J.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Stevenson, Duane E.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Resource Assessment & Conservat Engn Div, Seattle, WA 98115 USA. RP Kamikawa, DJ (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, 2032 SE Oregon State Univ Dr, Newport, OR 97365 USA. EM Dan.Kamikawa@noaa.gov NR 7 TC 1 Z9 1 U1 0 U2 1 PU CALIFORNIA FISH AND GAME EDITOR PI SACRAMENTO PA 1416 NINTH ST, SACRAMENTO, CA 95814 USA SN 0008-1078 J9 CALIF FISH GAME JI Calif. Fish Game PD SUM PY 2010 VL 96 IS 3 BP 216 EP 220 PG 5 WC Fisheries; Zoology SC Fisheries; Zoology GA 703OE UT WOS:000285987300005 ER PT J AU Zhang, P Imhoff, ML Wolfe, RE Bounoua, L AF Zhang, Ping Imhoff, Marc L. Wolfe, Robert E. Bounoua, Lahouari TI Characterizing urban heat islands of global settlements using MODIS and nighttime lights products SO CANADIAN JOURNAL OF REMOTE SENSING LA English DT Article ID LAND-SURFACE TEMPERATURE; MULTISENSOR DATA; CLIMATE MODEL; TROPICAL CITY; PARAMETERS; VEGETATION; CITIES; INTENSITY; FEATURES; INDEXES AB Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 degrees C UHI is found in cities built in biomes dominated by forests; 1.9 degrees C UHI in cities embedded in grass-shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 degrees C in summer and 1.4 degrees C in winter. Globally, the average summer daytime UHI is 4.7 degrees C for settlements larger than 500 km(2) compared with 2.5 degrees C for settlements smaller than 50 km(2) and larger than 10 km(2). The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined. C1 [Zhang, Ping] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, Ping] Earth Resource Technol Inc, Annapolis Jct, MD 20701 USA. [Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, P (reprint author), NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Ping.zhang-1@nasa.gov RI Zhang, Ping/D-7257-2012; Wolfe, Robert/E-1485-2012 OI Wolfe, Robert/0000-0002-0915-1855 NR 43 TC 26 Z9 28 U1 1 U2 15 PU CANADIAN AERONAUTICS & SPACE INST PI KANATA PA 350 TERRY FOX DR, STE 104, KANATA, ON K2K 2W5, CANADA SN 0703-8992 EI 1712-7971 J9 CAN J REMOTE SENS JI Can. J. Remote Sens. PD JUN PY 2010 VL 36 IS 3 SI SI BP 185 EP 196 PG 12 WC Remote Sensing SC Remote Sensing GA 681VZ UT WOS:000284352700004 ER PT J AU Hwang, JS Kim, HR Suh, M Taylor, PT Kutina, J Hu, WJ AF Hwang, Jong Sun Kim, Hyung Rae Suh, Mancheol Taylor, Patrick T. Kutina, Jan Hu Wei-Jian TI Long-wavelength geopotential fields study of East Asia from satellite data SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION LA Chinese DT Article DE Satellite observations; Gravity; magnetic; GRACE; CHAMP; East Asia ID SPHERICAL-EARTH GRAVITY; ANOMALY CORRELATIONS AB Kutina et al. proposed the existence of a large fracture zone extending from northern China across the Yellow sea, Korean peninsula, East Sea (a. k. a., Sea of Japan) and on to Honshu Island, Japan, which they called the 'Forty-North Fracture Zone'. We investigated this proposed large tectonic feature from making large-scale regional gravity and magnetic anomaly maps by using GRACE and CHAMP satellite potential field data. The regional study area extended from 24 degrees to 56 degrees north latitude and 90 degrees E to 150 degrees E and the detailed area from 32 degrees N to 42 degrees N and 122 degrees E to 132 degrees E. Recently, Taylor et al. constructed the magnetic anomaly maps directly from CHAMP track data collected between June and December, 2005 after removing the core-generated and external fields from the measurements and then reduced these data to the pole to seek any tectonic features. They also produced a mathematical model using available geologic and geophysical information for their interpretation. In this study, we augmented a gravity anomaly field map from the GRACE data measured during a month of October, 2003. The measured potential differences data were converted to vertical gravity anomaly values using Gauss-Legendre quadrature method, and long wavelengths over 1100 km of the anomalies were removed by subtracting the latest EGM96 field to compare with the magnetic data. A curious latitudinal structure was found in both gravity and magnetic anomaly fields that showed an inverse correlation. A forward modeling was performed from using a spherical prism model and the wavenumber correlation analysis between these two anomaly fields was made to delineate the common features over the study area, and these results were discussed in relation to the existence of the 'Forty-North Fracture Zone' in the East Asian region. C1 [Hwang, Jong Sun; Taylor, Patrick T.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA. [Hwang, Jong Sun] Korea Inst Geosci & Mineral Resources, Petr & Marine Resources Res Div, Taejon 305350, South Korea. [Kim, Hyung Rae; Suh, Mancheol] Kongju Nat Univ, Dept Geoenvironm Sci, Kong Ju 314701, Chungnam, South Korea. [Kutina, Jan] American Univ, Dept Chem, Lab Global Tecton & Metallogeny, Washington, DC 20016 USA. [Hu Wei-Jian] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China. RP Hwang, JS (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA. EM hwang1975@gmail.com; kimhr@kongju.ac.kr RI Taylor, Patrick/D-4707-2012; Hu, Weijian/A-2594-2015 OI Taylor, Patrick/0000-0002-1212-9384; NR 19 TC 0 Z9 0 U1 0 U2 6 PU SCIENCE CHINA PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0001-5733 J9 CHINESE J GEOPHYS-CH JI Chinese J. Geophys.-Chinese Ed. PD JUN PY 2010 VL 53 IS 6 BP 1327 EP 1335 DI 10.3969/j.issn.0001-5733.2010.06.011 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 619QT UT WOS:000279445500011 ER PT J AU Gerson, AL Bruck, HA Hopkins, AR Segal, KN AF Gerson, Alan L. Bruck, Hugh A. Hopkins, Alan R. Segal, Kenneth N. TI Curing effects of single-wall carbon nanotube reinforcement on mechanical properties of filled epoxy adhesives SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Nano-structures; Mechanical properties; Thermosetting resin; Cure ID POLYMER NANOCOMPOSITES; COMPOSITES; MODEL AB Enhancing epoxy adhesives using nanoscale fillers requires understanding processing-structure-property relationships as a function of nanoscale filler loading. In particular, the effects of adding nanoscale reinforcement to filled epoxies, such as those qualified for space applications, have yet to be characterized. In this effort, the addition of single-walled carbon nanotubes (SWNTs) to Hysol 9309.2 epoxy was investigated using a multi-scale mechanical characterization approach. Effects of SWNTs on the kinetics of epoxy curing were characterized and modeled using macromechanical dynamic mechanical analysis (DMA). Adhesion between SWNTs and microfiber reinforcement was identified with scanning electron microscope (SEM), and effects of SWNTs on mechanical properties of the filled epoxy were quantified using micromechanical tensile testing. Effects of SWNT reinforcement on mechanical behavior of the epoxy matrix were also characterized using nanomechanical characterization. This multi-scale mechanical characterization enabled the effects of SWNTs to be isolated from the epoxy and filler phases inherent in the adhesive. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bruck, Hugh A.] Aerosp Corp, Space Mat Lab, Dept Mat Sci, Los Angeles, CA 90009 USA. [Gerson, Alan L.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Hopkins, Alan R.; Segal, Kenneth N.] NASA, Goddard Space Flight Ctr, Code Mech Engn Branch 543, Greenbelt, MD 20770 USA. RP Bruck, HA (reprint author), Aerosp Corp, Space Mat Lab, Dept Mat Sci, POB 92957,M2-242, Los Angeles, CA 90009 USA. EM bruck@umd.edu FU Innovative Partnerships Program (IPP) Office at Goddard Space Flight Center [N000140910640]; Aerospace Corporation's Independent Research and Development Program (IRD) FX The authors would like to acknowledge financial support from The Innovative Partnerships Program (IPP) Office at Goddard Space Flight Center, ONR award N000140910640, and The Aerospace Corporation's Independent Research and Development Program (IR&D). NR 18 TC 22 Z9 22 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD JUN PY 2010 VL 41 IS 6 BP 729 EP 736 DI 10.1016/j.compositesa.2010.02.002 PG 8 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 593XK UT WOS:000277496100004 ER PT J AU Fletcher, A Gupta, MC Dudley, KL Vedeler, E AF Fletcher, Alan Gupta, Mool C. Dudley, Kenneth L. Vedeler, Erik TI Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Carbon nanotubes; Polymers; Nano composites; Electrical properties ID POLYMER COMPOSITES; CARBON NANOTUBE; NANOFIBER AB A novel elastomer foamed nanocomposite has been developed with high electromagnetic dissipation and shielding properties. This light weight foamed fluorocarbon incorporates multi-walled carbon nanotubes at low loading concentrations to achieve levels of conductivity and energy shielding that surpass the requirements for electromagnetic static discharge (ESD) and electromagnetic interference (EMI) shielding. Foaming the elastomer reduces that weight by 30% with minimal impact on ESD or EMI characteristics. The percolation threshold is at about 2% carbon nanotubes and the saturation conductivity occurs at 8% carbon nanotubes by weight. Combining the good electrical properties with the flexibility and fluid resistance of fluorocarbon yields a very versatile yet light weight material for a variety of ESD and EMI applications. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fletcher, Alan] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Dudley, Kenneth L.; Vedeler, Erik] NASA, Langley Res Ctr, Electromagnet Res Branch, Hampton, VA 23681 USA. RP Gupta, MC (reprint author), 351 McCormick Rd,POB 400743, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu FU NASA Langley FX Starting material and technical consulting was obtained from Hyperion Catalysis International. Fluorocarbon compounding advise was kindly provided by Eric Thomas formerly of DuPont Performance Elastomers and Allen Sohlo of Dyneon Corp. EMI shielding and nanocomposite information was provided by Max Alexander of the Air Force Research Laboratory. We also thank NASA Langley for their Langley Professor program support. NR 11 TC 65 Z9 67 U1 6 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD JUN PY 2010 VL 70 IS 6 BP 953 EP 958 DI 10.1016/j.compscitech.2010.02.011 PG 6 WC Materials Science, Composites SC Materials Science GA 595TE UT WOS:000277635200010 ER PT J AU Beghin, C Sotin, C Hamelin, M AF Beghin, Christian Sotin, Christophe Hamelin, Michel TI Titan's native ocean revealed beneath some 45 km of ice by a Schumann-like resonance SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Titan; Atmospheres; Ionospheres; Magnetospheres; Planet interiors ID HUYGENS PROBE; ELECTRICAL-CONDUCTIVITY; DIELECTRIC-PROPERTIES; AMMONIUM-SULFATE; ATMOSPHERE; DESCENT; SURFACE; MODEL; SATELLITES; CALLISTO AB After five years of thorough analysis of data from the Huygens Probe that descended into Titan's atmosphere in January 2005, we report major findings inferred from measurements of low frequency waves and atmospheric conductivity. The data account for the observation of a Schumann-like resonance trapped within Titan's atmospheric cavity. On Earth, this phenomenon is triggered by lightning and was anticipated to be observed on Titan, as it provides a tool to reveal the presence of a ground conductive boundary to sustain the resonance of the cavity. The Huygens observations show that the major electric field component of the signal is horizontal, which is inconsistent with lightning sources. We interpret, however, the observed signal as a second spherical harmonic of Titan's cavity, triggered and sustained by strong electric currents induced in the ionosphere by Saturn's magnetospheric plasma flow. The present study describes the characteristics of such trapped modes that allow us to constrain the parameters of the cavity and to infer the presence of a conductive layer at 45 km (+/- 15 km) below the surface. By comparison with the presence of subsurface conductive ocean in the Galilean icy satellites, we conclude that Titan should have pursued similar processes of internal dynamics. To date, this result represents the only evidence for a buried ocean in Titan. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Beghin, Christian] Univ Orleans, CNRS, Lab Phys & Chim Espace & Environm, F-45071 Orleans, France. [Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hamelin, Michel] Univ Versailles St Quentin, IPSL, LATMOS, F-94107 St Maur, France. RP Beghin, C (reprint author), Univ Orleans, CNRS, Lab Phys & Chim Espace & Environm, 3A Ave Rech Sci, F-45071 Orleans, France. EM cbeghin@cnrs-orleans.fr NR 47 TC 21 Z9 21 U1 0 U2 4 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD JUN PY 2010 VL 342 IS 6 BP 425 EP 433 DI 10.1016/j.crte.2010.03.003 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 626RD UT WOS:000279983700001 ER PT J AU Bare, AY Grimshaw, KL Rooney, JJ Sabater, MG Fenner, D Carroll, B AF Bare, A. Y. Grimshaw, K. L. Rooney, J. J. Sabater, M. G. Fenner, D. Carroll, B. TI Mesophotic communities of the insular shelf at Tutuila, American Samoa SO CORAL REEFS LA English DT Article DE Mesophotic coral ecosystem; Insular shelf; Submerged banks; Coral reefs; Tutuila; American Samoa ID SCLERACTINIAN CORALS; REEF; DEEP; ZONATION AB An investigation into the insular shelf and submerged banks surrounding Tutuila, American Samoa, was conducted using a towed camera system. Surveys confirmed the presence of zooxanthellate scleractinian coral communities at mesophotic depths (30-110 m). Quantification of video data, separated into 10-m-depth intervals, yielded a vertical, landward-to-seaward and horizontal distribution of benthic assemblages. Hard substrata composed a majority of bottom cover in shallow water, whereas unconsolidated sediments dominated the deep insular shelf and outer reef slopes. Scleractinian coral cover was highest atop mid-shelf patch reefs and on the submerged bank tops in depths of 30-50 m. Macroalgal cover was highest near shore and on reef slopes approaching the bank tops at 50-60 m. Percent cover of scleractinian coral colony morphology revealed a number of trends. Encrusting corals belonging to the genus Montipora were most abundant at shallow depths with cover gradually decreasing as depth increased. Massive corals, such as Porites spp., displayed a similar trend. Percent cover values of plate-like corals formed a normal distribution, with the highest cover observed in the 60-70 m depth range. Shallow plate-like corals belonged mostly to the genus Acropora and appeared to be significantly prevalent on the northeastern and eastern banks. Deeper plate-like corals on the reef slopes were dominated by Leptoseris, Pachyseris, or Montipora genera. Branching coral cover was high in the 80-110 m depth range. Columnar and free-living corals were also occasionally observed from 40-70 m. C1 [Bare, A. Y.; Grimshaw, K. L.; Rooney, J. J.] Univ Hawaii, Joint Inst Marine & Atmospher Res, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv,Kewalo Res Facil, Honolulu, HI 96814 USA. [Sabater, M. G.; Fenner, D.; Carroll, B.] Amer Samoa Dept Marine & Wildlife Resources, Pago Pago, AS 96799 USA. RP Bare, AY (reprint author), Univ Hawaii, Joint Inst Marine & Atmospher Res, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv,Kewalo Res Facil, 1125-B Ala Moana Blvd, Honolulu, HI 96814 USA. EM abare@hawaii.edu; John.Rooney@noaa.gov FU NOAA FX Funding to the NOAA Pacific Islands Fisheries Science Center's Coral Reef Ecosystem Division for scientific expeditions to American Samoa was provided by the NOAA Coral Reef Conservation Program. We greatly appreciate the field assistance of Emily Hirsch, Frances Lichowski, and Gillian Clague. We also express our gratitude to Kurt Hagedorn and Andy Wearing of the M/V Bonavista II. NR 21 TC 20 Z9 20 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4028 J9 CORAL REEFS JI Coral Reefs PD JUN PY 2010 VL 29 IS 2 BP 369 EP 377 DI 10.1007/s00338-010-0600-y PG 9 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 592WJ UT WOS:000277412000010 ER PT J AU Samanta, A Anderson, BT Ganguly, S Knyazikhin, Y Nemani, RR Myneni, RB AF Samanta, Arindam Anderson, Bruce T. Ganguly, Sangram Knyazikhin, Yuri Nemani, Ramakrishna R. Myneni, Ranga B. TI EARTH Interactions SO EARTH INTERACTIONS LA English DT Article DE Forcing; Feedback; Climate ID STRATOSPHERIC WATER-VAPOR; BREWER-DOBSON CIRCULATION; CLIMATE-CHANGE; GREENHOUSE GASES; ALBEDO FEEDBACK; OVERSHOOT; SENSITIVITY; FORCINGS; SYSTEM; WELL AB Recent research indicates that the warming of the climate system resulting from increased greenhouse gas (GHG) emissions over the next century will persist for many centuries after the cessation of these emissions, principally because of the persistence of elevated atmospheric carbon dioxide (CO(2)) concentrations and their attendant radiative forcing. However, it is unknownwhether the responses of other components of the climate system-including those related to Greenland and Antarctic ice cover, the Atlantic thermohaline circulation, the West African monsoon, and ecosystem and human welfare would be reversed even if atmospheric CO(2) concentrations were to recover to 1990 levels. Here, using a simple set of experiments employing a current-generation numerical climate model, the authors examine the response of the physical climate system to decreasing CO(2) concentrations following an initial increase. Results indicate that many characteristics of the climate system, including global temperatures, precipitation, soil moisture, and sea ice, recover as CO(2) concentrations decrease. However, other components of the Earth system may still exhibit nonlinear hysteresis. In these experiments, for instance, increases in stratospheric water vapor, which initially result from increased CO(2) concentrations, remain present even as CO(2) concentrations recover. These results suggest that identification of additional threshold behaviors in response to human-induced global climate change should focus on subcomponents of the full Earth system, including cryosphere, biosphere, and chemistry. C1 [Samanta, Arindam] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. RP Samanta, A (reprint author), Boston Univ, Dept Geog & Environm, 675 Commonwealth Ave, Boston, MA 02215 USA. EM arindam.sam@gmail.com RI Samanta, Arindam/B-9550-2009; ganguly, sangram/B-5108-2010; Myneni, Ranga/F-5129-2012 FU NASA AMES Research Center; Boston University; National Center for Atmospheric Research FX We acknowledge support from A. Michaelis (NASA AMES Research Center), M. Dugan (Boston University), and R. Neale (National Center for Atmospheric Research). NR 37 TC 1 Z9 1 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD JUN PY 2010 VL 14 AR 7 DI 10.1175/2010EI325.1 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 614QQ UT WOS:000279075200001 ER PT J AU Narock, T Cragin, M AF Narock, Tom Cragin, Melissa TI Earth and space science informatics infrastructure SO EARTH SCIENCE INFORMATICS LA English DT Editorial Material ID DESIGN C1 [Narock, Tom] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. [Cragin, Melissa] Univ Illinois, Grad Sch Lib & Informat Sci, Urbana, IL USA. RP Narock, T (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD USA. EM Thomas.W.Narock@nasa.gov OI Narock, Tom/0000-0002-9785-4496 NR 12 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 1 EP 3 DI 10.1007/s12145-009-0041-8 PG 3 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100001 ER PT J AU Worrilow, K King, T Walker, R Rose, ME Moore, W Joy, S AF Worrilow, Kica King, Todd Walker, Raymond Rose, Mark E. Moore, William Joy, Steven TI Designing science web sites SO EARTH SCIENCE INFORMATICS LA English DT Article; Proceedings Paper CT ESSI Workshop CY AUG 03-05, 2009 CL Baltimore, MD SP ESSI DE Website; Design; Science; Process AB From a scientist's viewpoint a web site is one tool used to conduct research. From an artist's viewpoint web sites are a form of visual composition. From a developer's point of view a web site is a type of application. While web sites are a relatively new medium with a particular set of constraints, they do adhere to the same basic design principles that apply to other art forms. These design principles are the basic assumptions that affect the arrangement of elements within a composition. A successful design uses the principles and elements to achieve a visual goal in the composition. A web site designed for scientists has unique properties which are not shared by many other types of web sites. These properties influence the overall visual design of the web sites. Recently at the Institute of Geophysics and Planetary Physics at UCLA undertook a re-design of a number of its websites. In the effort, the use of visual design principles combined with the properties of a science web site were put to the test. In all, six different web sites were designed each with a difference science focus. We describe the process used to design the web sites which involve forming teams of designers, scientists and developers. We present example pages from each design and conclude with a discussion of what was learned during the process. C1 [King, Todd; Walker, Raymond; Moore, William; Joy, Steven] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Worrilow, Kica] Kica Design, Marina Del Rey, CA 90292 USA. [Rose, Mark E.] NASA, Ames Res Ctr, Perot Syst Govt Serv Inc PSGS, Moffett Field, CA 94035 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM tking@igpp.ucla.edu NR 6 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 51 EP 57 DI 10.1007/s12145-010-0058-z PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100006 ER PT J AU Tilmes, C Yesha, Y Halem, M AF Tilmes, Curt Yesha, Yelena Halem, Milton TI Tracking provenance of earth science data SO EARTH SCIENCE INFORMATICS LA English DT Article DE Data processing; Provenance AB Tremendous volumes of data have been captured, archived and analyzed. Sensors, algorithms and processing systems for transforming and analyzing the data are evolving over time. Web Portals and Services can create transient data sets on-demand. Data are transferred from organization to organization with additional transformations at every stage. Provenance in this context refers to the source of data and a record of the process that led to its current state. It encompasses the documentation of a variety of artifacts related to particular data. Provenance is important for understanding and using scientific datasets, and critical for independent confirmation of scientific results. Managing provenance throughout scientific data processing has gained interest lately and there are a variety of approaches. Large scale scientific datasets consisting of thousands to millions of individual data files and processes offer particular challenges. This paper uses the analogy of art history provenance to explore some of the concerns of applying provenance tracking to earth science data. It also illustrates some of the provenance issues with examples drawn from the Ozone Monitoring Instrument (OMI) Data Processing System (OMIDAPS) (Tilmes et al. 2004) run at NASA's Goddard Space Flight Center by the first author. C1 [Tilmes, Curt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yesha, Yelena; Halem, Milton] Univ Maryland, Baltimore, MD 21250 USA. RP Tilmes, C (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Curt.Tilmes@nasa.gov; yeyesha@umbc.edu; halem@umbc.edu RI Tilmes, Curt/D-5637-2012; OI Tilmes, Curt/0000-0002-6512-0287 NR 11 TC 10 Z9 11 U1 1 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 59 EP 65 DI 10.1007/s12145-010-0046-3 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100007 ER PT J AU King, T Thieman, J Roberts, DA AF King, Todd Thieman, James Roberts, D. Aaron TI SPASE 2.0: a standard data model for space physics SO EARTH SCIENCE INFORMATICS LA English DT Article DE SPASE; Data model; Ontology; Vocabulary; Heliophysics; Space physics; Standard AB SPASE-for Space Physics Archive Search and Extract-is a group with a charter to promote collaboration and sharing of data for the Space Plasma Physics community. A major activity is the definition of the SPASE Data Model which defines the metadata necessary to describe resources in the broader heliophysics data environment. The SPASE Data Model is primarily a controlled vocabulary with hierarchical relationships and with the ability to form associations between described resources. It is the result of many years of effort by an international collaboration (see http://www.spase-group.org) to unify and improve on existing Space and Solar Physics data models. The genesis of the SPASE group can be traced to 1998 when a small group of individuals saw a need for a data model. Today SPASE has a large international participation from many of the major space research organizations. The design of the data model is based on a set of principles derived from evaluation of the existing heliophysics data environment. The development guidelines for the data model are consistent with ISO-2788 (expanded in ANSI/NISO Z39.19) and the administration for the data model is comparable to that described in the ISO standards ISO-11179 and ISO-20943. Since the release of version 1.0 of the data model in 2005, the model has undergone a series of evolutions. SPASE released version 2.0 of its data model in April 2009. This version presents a significant change from the previous release. It includes the capability to describe a wider range of data products and to describe expert annotations which can be associated with a resource. Additional improvements include an enhanced capability to describe resource associations and a more unified approach to describing data products. Version 2.0 of the SPASE Data Model provides a solid foundation for continued integration of worldwide research activities and the open sharing of data. C1 [King, Todd] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Thieman, James; Roberts, D. Aaron] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. EM tking@igpp.ucla.edu; james.r.thieman@nasa.gov; aaron.roberts@nasa.gov FU National Aeronautics and Space Administration [NNX09AF15G] FX This work was supported in part by the National Aeronautics and Space Administration under Grant No. NNX09AF15G. NR 12 TC 4 Z9 5 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 67 EP 73 DI 10.1007/s12145-010-0053-4 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100008 ER PT J AU Marshall, JJ Downs, RR Samadi, S AF Marshall, James J. Downs, Robert R. Samadi, Shahin TI Relevance of software reuse in building advanced scientific data processing systems SO EARTH SCIENCE INFORMATICS LA English DT Article DE Reuse; Data systems; Earth science; Software development; Software adoption AB Reuse of software and related components can contribute to the development of systems for processing scientific data. The reuse of components, which can be from any stage of the development life cycle, provides opportunities to realize benefits such as reduced costs and learning curves. However, the reuse of existing components also comes with risks that must be recognized in order to be mitigated. The National Aeronautics and Space Administration established the Earth Science Data Systems Software Reuse Working Group to support software reuse among members of the community of Earth science data systems developers. This is done through a variety of activities, including research, education, and public out-reach, which are conducted to help encourage and enable reuse within the community. Considerations for realizing the benefits of software reuse and minimizing risks are presented along with recent working group activities to improve reuse capabilities for the community of Earth science data systems developers. C1 [Marshall, James J.] NASA, Goddard Space Flight Ctr, INNOVIM NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Downs, Robert R.] Columbia Univ, CIESIN, Palisades, NY 10964 USA. [Samadi, Shahin] INNOVIM, INNOVIM NASA Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Marshall, JJ (reprint author), NASA, Goddard Space Flight Ctr, INNOVIM NASA Goddard Space Flight Ctr, Mailstop 614-9, Greenbelt, MD 20771 USA. EM James.J.Marshall@nasa.gov; rdowns@ciesin.columbia.edu; Shahin.Samadi@nasa.gov RI Marshall, James/A-9611-2009; Downs, Robert/B-4153-2013 OI Marshall, James/0000-0002-6867-5616; Downs, Robert/0000-0002-8595-5134 FU National Aeronautics and Space Administration [NNG08HZ11C] FX The authors are grateful to the members of the National Aeronautics and Space Administration (NASA) Earth Science Data Systems Software Reuse Working Group who have contributed to the efforts described in this paper, to the anonymous reviewers of earlier drafts who kindly offered suggestions for improving the paper, and to Chris A. Mattmann and Neal Most who offered valuable suggestions for improving earlier drafts of the paper. The authors also appreciate the support for this work that has been received from the National Aeronautics and Space Administration, especially support received for Robert Downs under contract NNG08HZ11C. NR 24 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 95 EP 100 DI 10.1007/s12145-010-0054-3 PG 6 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100011 ER PT J AU Boller, RA Braun, SA Miles, J Laidlaw, DH AF Boller, Ryan A. Braun, Scott A. Miles, Jadrian Laidlaw, David H. TI Application of uncertainty visualization methods to meteorological trajectories SO EARTH SCIENCE INFORMATICS LA English DT Article DE Uncertainty visualization; Multi-field visualization; Flow visualization; Time-varying data; Meteorological visualization techniques ID VECTOR-FIELDS; MODEL; RESOLUTION; ACCURACY; ERRORS AB We present an application of uncertainty visualization to air parcel trajectories generated from a global meteorological model. We derive an approximation of advection uncertainty due to interpolation and incorporate this uncertainty into our visualization of trajectories. Our work enables efficient visual pruning of unlikely results, especially in regions of atmospheric shear, potentially reducing erroneous interpretations. Finally, we apply these methods to a real-world meteorological problem to demonstrate its use. C1 [Boller, Ryan A.; Braun, Scott A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Miles, Jadrian; Laidlaw, David H.] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA. RP Boller, RA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM Ryan.A.Boller@nasa.gov FU Software Engineering Division at NASA/Goddard Space Flight Center FX The authors wish to thank E.J. Kalafarski/Brown University for implementation of the Runge-Kutta integration algorithm along with Jim Byrnes and the Software Engineering Division at NASA/Goddard Space Flight Center for their support of this research. NR 21 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 119 EP 126 DI 10.1007/s12145-010-0052-5 PG 8 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100014 ER PT J AU King, T Merka, J Narock, T Walker, R Bargatze, L AF King, Todd Merka, Jan Narock, Thomas Walker, Raymond Bargatze, Lee TI A registry framework and Rosetta attributes for distributed science SO EARTH SCIENCE INFORMATICS LA English DT Article; Proceedings Paper CT ESSI Workshop CY AUG 03-05, 2009 CL Baltimore, MD SP ESSI DE Data model; Framework; Registry; SPASE; Task oriented registry; Virtual observatory AB Information is shared within organizations and between organizations at an ever increasing rate. One system design that enables sharing in a distributed environment is a Virtual Observatory. A Virtual Observatory is built with clearly specified and standardized components. One essential component is a data model for the exchange of metadata. Well designed data models are compatible with the tenets of the ISO-11179 and ISO-20943 standards for metadata registries. Another essential component is the specification for persistent universal identifiers which are used to reference resources provided through the system. Identifiers are used both to link harvested information back to the original resource description and by services to retrieve a resource. Harvested information is maintained in a registry. To harvest information from a set of metadata it is necessary to understand the schema of the metadata. We propose an approach to the formation of universal identifiers which enables one to clearly discern the schema of the source metadata. A primary registry containing a broad set of base information exists in every Virtual Observatory. Specialized Task Oriented Registries (TOR) are typically derived from the primary registry. The schema in a TOR is often flat and items in the TOR can be managed in a similar manner to that prescribed in ISO-11179. The need for interoperability within a data environment and between data environments leads to the identification of broad-based, common attributes we call "Rosetta Attributes" which will enable general cross domain searches. Access to metadata is the final component of a Virtual Observatory. Access is provided by a registry service. A specification for a minimal registry service is presented. C1 [King, Todd; Walker, Raymond; Bargatze, Lee] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Walker, Raymond] Univ Calif Los Angeles, Earth & Space Sci Dept, Los Angeles, CA 90095 USA. [Merka, Jan; Narock, Thomas] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. [Merka, Jan; Narock, Thomas] Univ Maryland, Baltimore, MD 21250 USA. RP King, T (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM tking@igpp.ucla.edu OI Narock, Tom/0000-0002-9785-4496 NR 15 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2010 VL 3 IS 1-2 BP 127 EP 133 DI 10.1007/s12145-010-0047-2 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XH UT WOS:000286014100015 ER PT J AU Bignell, J LaFave, J AF Bignell, John LaFave, James TI Analytical fragility analysis of southern Illinois wall pier supported highway bridges SO EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS LA English DT Article DE fragility analysis; wall pier; bridge; earthquake; liquefaction; New Madrid Seismic Zone ID LIQUEFACTION RESISTANCE; INTENSITY AB An analytical fragility analysis was conducted in order to characterize the seismic vulnerability of existing southern Illinois wall pier supported highway bridges to potential earthquakes. To perform this fragility analysis, a detailed inventory survey was first taken of the wall pier bridges identified in an earlier random sampling of southern Illinois priority emergency route bridges. From the survey three types of wall pier bridges were identified. Of those identified, hammerhead and regular wall pier supported bridges represented nearly 90% of the population. Incorporating structural variations determined from the random sample survey, nearly 100 three-dimensional nonlinear finite element models were constructed. Each model was subjected to a randomly assigned synthetic earthquake representative of those that could potentially occur within the region. From these analyses, a series of wall pier supported bridge fragility curves were produced. In addition, a liquefaction fragility analysis was conducted in order to characterize the seismic vulnerability of southern Illinois wall pier supported highway bridge sites to liquefaction in potential earthquakes. To perform this second fragility analysis, wall pier bridges within the southern Illinois random sample that may be susceptible to liquefaction were identified. A soil profile from each of these susceptible bridge sites was then subjected to randomly assigned bedrock motions, and an Arias intensity liquefaction analysis was carried out. From these analyses, a fragility curve for the potentially liquefiable wall pier supported bridge sites was produced. Overall results of this study indicate that southern Illinois wall pier supported bridges are moderately vulnerable to structural damage in a 2% probability of exceedance in 50 year earthquake, and in some cases they could also be highly vulnerable to on-site liquefaction events. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Bignell, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [LaFave, James] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. RP Bignell, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 303-410, Pasadena, CA 91109 USA. EM jlbignell@gmail.com FU Illinois Department of Transportation (IDOT) [IHR-R36]; National Computational Science Alliance (NCSA) [BCS400001N] FX Contract/grant sponsor: Illinois Department of Transportation (IDOT); contract/grant number: IHR-R36; Contract/grant sponsor: National Computational Science Alliance (NCSA); contract/grant number: BCS400001N NR 40 TC 5 Z9 5 U1 0 U2 7 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0098-8847 J9 EARTHQ ENG STRUCT D JI Earthq. Eng. Struct. Dyn. PD JUN PY 2010 VL 39 IS 7 BP 709 EP 729 DI 10.1002/eqe.966 PG 21 WC Engineering, Civil; Engineering, Geological SC Engineering GA 591VC UT WOS:000277332100001 ER PT J AU van Donkelaar, A Martin, RV Brauer, M Kahn, R Levy, R Verduzco, C Villeneuve, PJ AF van Donkelaar, Aaron Martin, Randall V. Brauer, Michael Kahn, Ralph Levy, Robert Verduzco, Carolyn Villeneuve, Paul J. TI Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE aerosol; aerosol optical depth; AOD; particulate matter; PM2.5 ID GROUND-LEVEL PM2.5; AIR-POLLUTION; UNITED-STATES; QUALITY; MORTALITY; THICKNESS; MODIS; CITIES; COHORT AB BACKGROUND: Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 mu m (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. OBJECTIVE: In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. METHODS: We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. RESULTS: We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km x 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 mu g/m(3). The World Health Organization Air Quality PM2.5 Interim Target-1 (35 mu g/m(3) annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 mu g/m(3) over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0133; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 mu g/m(3). CONCLUSIONS: Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. C1 [van Donkelaar, Aaron; Martin, Randall V.; Verduzco, Carolyn] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brauer, Michael] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V5Z 1M9, Canada. [Kahn, Ralph; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villeneuve, Paul J.] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada. [Villeneuve, Paul J.] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0L2, Canada. RP van Donkelaar, A (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, 6300 Coburg Rd, Halifax, NS B3H 3J5, Canada. EM Aaron.van.Donkelaar@dal.ca RI Levy, Robert/M-7764-2013; Martin, Randall/C-1205-2014; Kahn, Ralph/D-5371-2012; Chem, GEOS/C-5595-2014; OI Levy, Robert/0000-0002-8933-5303; Martin, Randall/0000-0003-2632-8402; Kahn, Ralph/0000-0002-5234-6359; Brauer, Michael/0000-0002-9103-9343 FU Health Canada [4500171909, 4500220294]; Natural Sciences and Engineering Research of Canada; Killam Trust FX This study was funded by contracts from Health Canada (4500171909 and 4500220294). A.v.D. was supported by graduate fellowships from the Natural Sciences and Engineering Research of Canada and the Killam Trust. NR 45 TC 398 Z9 402 U1 43 U2 301 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUN PY 2010 VL 118 IS 6 BP 847 EP 855 DI 10.1289/ehp.0901623 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 608NP UT WOS:000278591300031 PM 20519161 ER PT J AU Kharecha, PA Kutscher, CF Hansen, JE Mazria, E AF Kharecha, Pushker A. Kutscher, Charles F. Hansen, James E. Mazria, Edward TI Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Review ID LIFE-CYCLE; ELECTRICITY-GENERATION; ENERGY EFFICIENCY; POWER-GENERATION; CARBON CAPTURE; NUCLEAR-POWER; BIOMASS; SYSTEMS; STORAGE; DESIGN AB The global climate problem becomes tractable if CO2 emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by similar to 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO2 in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential, A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future. C1 [Kharecha, Pushker A.; Hansen, James E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kharecha, Pushker A.; Hansen, James E.] Columbia Univ, Earth Inst, New York, NY 10025 USA. [Kutscher, Charles F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mazria, Edward] 2030 Inc Architecture 2030, Santa Fe, NM 87505 USA. RP Kharecha, PA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM pushker@giss.nasa.gov FU Lenfest Foundation FX This paper was motivated by, and is based in part on, a workshop on energy use and climate change mitigation held on Nov. 3, 2008 in Washington, DC. The workshop was funded by the Lenfest Foundation, and the presentations as well as participant biographies are archived at www.mediafire.com/nov3workshop. The views in this paper are solely those of the authors and do not necessarily represent the views of their institutions or the other workshop participants. We are grateful to all of the workshop participants and to Maggie Betancourt and Evelyn DeJesus-Quiles for helping to coordinate the logistics. Colleagues at NREL and Architecture 2030 were very helpful in providing figure data, references, and comments. We also thank Revis James, Anelia Milbrandt, Kathy O'Dell, Jeff Tester, Colin Williams, and Elsevier Publishing for granting permission to reproduce figures, and three anonymous reviewers for providing constructive comments on the draft manuscript. NR 92 TC 13 Z9 13 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 1 PY 2010 VL 44 IS 11 BP 4050 EP 4062 DI 10.1021/es903884a PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 600RA UT WOS:000278003500007 PM 20429611 ER PT J AU Mijajlovic, M Biggs, MJ Djurdjevic, DP AF Mijajlovic, Milan Biggs, Mark J. Djurdjevic, Dusan P. TI On Potential Energy Models for EA-based Ab Initio Protein Structure Prediction SO EVOLUTIONARY COMPUTATION LA English DT Article DE Biochemistry; biomaterials; biomedical engineering; bionanotechnology; EA adaptivity; nanotechnology; surface binding proteins ID DETERMINISTIC GLOBAL OPTIMIZATION; HYDROGEN-BOND INTERACTIONS; OCCURRING AMINO-ACIDS; ATOM FORCE-FIELD; GENETIC ALGORITHM; MET-ENKEPHALIN; NONBONDED INTERACTIONS; MOLECULAR-MECHANICS; EVOLUTIONARY ALGORITHMS; GEOMETRICAL PARAMETERS AB Ab initio protein structure prediction involves determination of the three-dimensional (3D) conformation of proteins on the basis of their amino acid sequence, a potential energy (PE) model that captures the physics of the interatomic interactions, and a method to search for and identify the global minimum in the PE (or free energy) surface such as an evolutionary algorithm (EA). Many PE models have been proposed over the past three decades and more. There is currently no understanding of how the behavior of an EA is affected by the PE model used. The study reported here shows that the EA behavior can be profoundly affected: the EA performance obtained when using the ECEPP PE model is significantly worse than that obtained when using the Amber, OPLS, and CVFF PE models, and the optimal EA control parameter values for the ECEPP model also differ significantly from those associated with the other models. C1 [Mijajlovic, Milan] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Biggs, Mark J.] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia. [Djurdjevic, Dusan P.] P&G Tech Ctr Ltd, Newcastle Upon Tyne, Tyne & Wear, England. RP Mijajlovic, M (reprint author), NASA, Ames Res Ctr, Exobiol Branch, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM mark.biggs@adelaide.edu.au OI Biggs, Mark/0000-0002-2131-3677 FU University of Edinburgh; Overseas Research Support (ORS) Scheme; Royal Academy of Engineering; Leverhulme Trust; eDIKT initiative FX MM thanks the University of Edinburgh and Overseas Research Support (ORS) Scheme for financial support. MJB thanks the Royal Academy of Engineering and the Leverhulme Trust for the award of a RAEng/Leverhulme Senior Research Fellowship. This work has made use of resources provided by the Edinburgh Compute and Data Facility (www.ecdf.ed.ac.uk), which is partially supported by the eDIKT initiative (www.edikt.org.uk). NR 80 TC 3 Z9 3 U1 1 U2 5 PU M I T PRESS PI CAMBRIDGE PA 238 MAIN STREET, STE 500, CAMBRIDGE, MA 02142-1046 USA SN 1063-6560 J9 EVOL COMPUT JI Evol. Comput. PD SUM PY 2010 VL 18 IS 2 BP 255 EP 275 DI 10.1162/evco.2010.18.2.18204 PG 21 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA 588VF UT WOS:000277101800004 PM 20210597 ER PT J AU Ray, AE Connon, SA Sheridan, PP Gilbreath, J Shields, M Newby, DT Fujita, Y Magnuson, TS AF Ray, Allison E. Connon, Stephanie A. Sheridan, Peter P. Gilbreath, Jeremy Shields, Malcolm Newby, Deborah T. Fujita, Yoshiko Magnuson, Timothy S. TI Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6 SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE 16S rRNA genes; gene inserts; intragenomic heterogeneity; intervening sequence (IVS); helix 6 ID NOV-SP NOV.; HALOARCULA-MARISMORTUI; INTERVENING SEQUENCES; COPY NUMBER; BACTERIAL; OPERONS; SUBSURFACE; DIVERSITY; ENUMERATION; DIVERGENCE AB Two different versions of the 16S rRNA gene, one of which contained an unusual 100-bp insertion in helix 6, were detected in isolate UFO1 acquired from the Oak Ridge Integrated Field-Research Challenge (ORIFRC) site in Tennessee. rRNA was extracted from UFO1 and analyzed by reverse transcriptase-quantitative PCR with insert- and non-insert-specific primers; only the noninsert 16S rRNA gene sequence was detected. Similarly, PCR-based screening of a cDNA library (190 clones) constructed from reverse-transcribed rRNA from UFO1 did not detect any clones containing the 100-bp insert. Examination of cDNA with primers specific to the insert-bearing 16S rRNA gene, but downstream of the insert, suggests that the insert was excised from rRNA. Inspection of other 16S rRNA genes in the GenBank database revealed that a homologous insert sequence, also found in helix 6, has been reported in other environmental clones, including those acquired from ORIFRC enrichments. These findings demonstrate the existence of widely divergent copies of the 16S rRNA gene within the same organism, which may confound 16S rRNA gene-based methods of estimating microbial diversity in environmental samples. C1 [Ray, Allison E.; Newby, Deborah T.; Fujita, Yoshiko] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Ray, Allison E.; Connon, Stephanie A.; Sheridan, Peter P.; Gilbreath, Jeremy; Shields, Malcolm; Magnuson, Timothy S.] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA. [Connon, Stephanie A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Ray, AE (reprint author), Idaho Natl Lab, Biol Syst Dept, POB 1625, Idaho Falls, ID 83415 USA. EM alikona.ray@gmail.com RI Connon, Stephanie/K-1959-2012; Fujita, Yoshiko/S-2007-2016 OI Fujita, Yoshiko/0000-0002-4472-4102 FU Idaho National Laboratory; Inland Northwest Research Alliance [ISU-004]; US Department of Energy [DE-FG02-04ER63626] FX We would like to thank Hope Lee, Aren Eddingsaas, James Henriksen, Amber Miller, Joni Barnes, Lynn Wendt, and Cindy Breckenridge for helpful advice and technical assistance. We thank Erin O'Leary-Jepson and Michelle Andrews of the Idaho State University Molecular Research Core Facility for 16S rRNA gene sequencing. We also extend our thanks to David Reed and Frank Roberto, of the INL for reviewing this manuscript and providing helpful comments. This work was supported by the Idaho National Laboratory, the Inland Northwest Research Alliance (Grant Number ISU-004 to T. S. M., and Graduate Fellowship to A. E. R.), and the US Department of Energy (Grant Number DE-FG02-04ER63626 to T. S. M.). NR 51 TC 7 Z9 7 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD JUN PY 2010 VL 72 IS 3 BP 343 EP 353 DI 10.1111/j.1574-6941.2010.00868.x PG 11 WC Microbiology SC Microbiology GA 591RR UT WOS:000277321300003 PM 20557571 ER PT J AU Geng, T Zheng, F Kuznetsov, AV Roberts, WL Paxson, DE AF Geng, Tao Zheng, Fei Kuznetsov, Andrey V. Roberts, William L. Paxson, Daniel E. TI Comparison Between Numerically Simulated and Experimentally Measured Flowfield Quantities Behind a Pulsejet SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Pulsejet; Valve model; Exhaust flow field; Vortex location; Turbulence ID VORTEX RING FORMATION; VALVELESS PULSEJET; TUBE; CIRCULATION; SCALE; JET AB Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion and ground based power generation systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamics (CFD) simulations focused primarily on pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data. C1 [Geng, Tao; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Paxson, Daniel E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kuznetsov, AV (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Campus Box 7910, Raleigh, NC 27695 USA. EM avkuznet@eos.ncsu.edu NR 27 TC 3 Z9 3 U1 4 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 EI 1573-1987 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD JUN PY 2010 VL 84 IS 4 BP 653 EP 667 DI 10.1007/s10494-010-9247-6 PG 15 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 606DT UT WOS:000278402700006 ER PT J AU Xiong, XX Cao, CY Chander, G AF Xiong, Xiaoxiong (Jack) Cao, Changyong Chander, Gyanesh TI An overview of sensor calibration inter-comparison and applications SO FRONTIERS OF EARTH SCIENCE LA English DT Review DE radiometer; MODIS; AVHRR; ETM; calibration; inter-comparison AB Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies. C1 [Xiong, Xiaoxiong (Jack)] NASA, GSFC, Sci Explorat Directorate, Greenbelt, MD 20771 USA. [Cao, Changyong] NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD 20746 USA. [Chander, Gyanesh] US Geol Survey, SGT Inc, EROS Ctr, Sioux Falls, SD 57198 USA. RP Xiong, XX (reprint author), NASA, GSFC, Sci Explorat Directorate, Greenbelt, MD 20771 USA. EM Xiaoxiong.Xiong-1@nasa.gov RI Cao, Changyong/F-5578-2010 NR 55 TC 7 Z9 7 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2095-0195 J9 FRONT EARTH SCI-PRC JI Front. Earth Sci. PD JUN PY 2010 VL 4 IS 2 BP 237 EP 252 DI 10.1007/s11707-010-0002-z PG 16 WC Geosciences, Multidisciplinary SC Geology GA V29CD UT WOS:000208725600011 ER PT J AU Tangalos, GE Beard, BL Johnson, CM Alpers, CN Shelobolina, ES Xu, H Konishi, H Roden, EE AF Tangalos, G. E. Beard, B. L. Johnson, C. M. Alpers, C. N. Shelobolina, E. S. Xu, H. Konishi, H. Roden, E. E. TI Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks SO GEOBIOLOGY LA English DT Article ID FE(III) OXIDE REDUCTION; ACID-MINE WATERS; FE ISOTOPE; DISSIMILATORY FE(III); WESTERN-AUSTRALIA; SULFATE REDUCTION; TRANSVAAL SUPERGROUP; AQUATIC SEDIMENTS; MN(IV) REDUCTION; MARINE-SEDIMENTS AB The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)(am)] that allow dissimilatory iron reduction (DIR) to predominate over Fe-S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. delta 56Fe values for bulk HCl- and HF-extractable Fe were approximate to 0. These near-zero bulk delta 56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero delta 56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (delta 56Fe approximate to -1.5 to -0.5 parts per thousand) aqueous Fe(II) coupled to partial reduction of Fe(III)(am) by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)(am) are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)(am) of approximately -2 parts per thousand. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-delta 56Fe minerals during BIF genesis. C1 [Tangalos, G. E.; Beard, B. L.; Johnson, C. M.; Shelobolina, E. S.; Xu, H.; Konishi, H.; Roden, E. E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Tangalos, G. E.; Beard, B. L.; Johnson, C. M.; Shelobolina, E. S.; Xu, H.; Konishi, H.; Roden, E. E.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI USA. [Alpers, C. N.] US Geol Survey, Calif Water Sci Ctr, Sacramento, CA USA. RP Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM eroden@geology.wisc.edu OI Alpers, Charles/0000-0001-6945-7365 FU NASA Astrobiology Institute; National Science Foundation [0525417]; US Geological Survey FX This research was funded by the NASA Astrobiology Institute (University of California-Berkeley and University of Wisconsin-Madison nodes) and the National Science Foundation (Biogeosciences Program Award 0525417). Logistical support for field sampling was provided by the US Geological Survey in cooperation with the US Environmental Protection Agency. We thank Kurt Konhauser and three anonymous reviewers whose thoughtful criticism substantially improved the manuscript. NR 96 TC 23 Z9 26 U1 2 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD JUN PY 2010 VL 8 IS 3 BP 197 EP 208 DI 10.1111/j.1472-4669.2010.00237.x PG 12 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 596NW UT WOS:000277692900004 PM 20374296 ER PT J AU Berger, EL Lauretta, DS Zega, TJ Keller, LP AF Berger, E. L. Lauretta, D. S. Zega, T. J. Keller, L. P. TI Stardust and CI-chondrite sulfides SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Berger, E. L.; Lauretta, D. S.] Univ Arizona, Lunar & Planetary Lab, Dept Planetary Sci, Tucson, AZ 85721 USA. [Zega, T. J.] USN, Res Lab, Washington, DC 20375 USA. [Keller, L. P.] Johnson Space Ctr, Robert M Walker Lab Space Sci, ARES, Houston, TX 77573 USA. EM elberger@lpl.arizona.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A81 EP A81 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401344 ER PT J AU Bodnarik, J Evans, L Floyd, S Lim, L Mcclanahan, T Namkung, M Parsons, A Schweitzer, J Starr, R Trombka, J AF Bodnarik, J. Evans, L. Floyd, S. Lim, L. Mcclanahan, T. Namkung, M. Parsons, A. Schweitzer, J. Starr, R. Trombka, J. TI In situ instrumentation for subsurface planetary geochemistry SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; Mcclanahan, T.; Namkung, M.; Parsons, A.; Starr, R.; Trombka, J.] NASA GSFC, Greenbelt, MD 20771 USA. [Schweitzer, J.] Univ Connecticut, Storrs, CT 06269 USA. EM julia.g.bodnarik@nasa.gov RI Lim, Lucy/C-9557-2012; Namkung, Min/E-1533-2012; Parsons, Ann/I-6604-2012 OI Lim, Lucy/0000-0002-9696-9654; NR 2 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A100 EP A100 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401381 ER PT J AU Chabot, NL McDonough, WF Saslow, SA Ash, RD Draper, DS Jones, JH Agee, CB AF Chabot, Nancy L. McDonough, William F. Saslow, Sarah A. Ash, Richard D. Draper, David S. Jones, John H. Agee, Carl B. TI Partitioning behavior at pressure in the Fe-S System SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Chabot, Nancy L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McDonough, William F.; Saslow, Sarah A.; Ash, Richard D.] Univ Maryland, College Pk, MD 20742 USA. [Draper, David S.; Jones, John H.] NASA Johnson Space Ctr, Houston, TX 77058 USA. [Agee, Carl B.] Univ New Mexico, Albuquerque, NM 87131 USA. EM Nancy.Chabot@JHUAPL.edu RI Chabot, Nancy/F-5384-2015 OI Chabot, Nancy/0000-0001-8628-3176 NR 7 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A155 EP A155 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400559 ER PT J AU Czaja, AD Johnson, CM Beard, BL Van Kranendonk, MJ AF Czaja, Andrew D. Johnson, Clark M. Beard, Brian L. Van Kranendonk, Martin J. TI Iron isotopes reveal an abiological origin for a 2.75 Ga BIF from the Yilgarn Craton, Western Australia SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Van Kranendonk, Martin J.] Dept Mines & Petr, Perth, WA 6009, Australia. [Van Kranendonk, Martin J.] Univ Western Australia, Sch Earth & Environm, Crawley, WA 6009, Australia. EM czaja@wisc.edu RI Van Kranendonk, Martin/J-8755-2012 NR 0 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A201 EP A201 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400652 ER PT J AU Flynn, GJ Wirick, S Keller, LP Jacobsen, C Sandford, SA AF Flynn, G. J. Wirick, S. Keller, L. P. Jacobsen, C. Sandford, S. A. TI Constraints on the formation mechanism of early Solar System organic matter in primitive IDPs SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Flynn, G. J.] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Wirick, S.; Jacobsen, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Keller, L. P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Sandford, S. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM george.Flynn@plattsburgh.edu RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A298 EP A298 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400845 ER PT J AU Foustoukos, DI Stern, JC AF Foustoukos, D. I. Stern, J. C. TI Oxidation of organics under hydrothermal conditions: Implications for the evolution of methane on Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Foustoukos, D. I.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Stern, J. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM dfoustoukos@ciw.edu; Jennifer.C.Stern@nasa.gov RI Stern, Jennifer/E-3135-2012 OI Stern, Jennifer/0000-0002-0162-8807 NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A302 EP A302 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400853 ER PT J AU Gleeson, D Williamson, C Wright, K Spear, J Pappalardo, R Grasby, S Templeton, A AF Gleeson, Damnhait Williamson, Chase Wright, Katherine Spear, John Pappalardo, Robert Grasby, Steve Templeton, Alexis TI Low temperature S biomineralization at a supraglacial spring system in the Canadian High Arctic SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Gleeson, Damnhait; Wright, Katherine; Templeton, Alexis] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Williamson, Chase; Spear, John] Colorado Sch Mines, Golden, CO 80401 USA. [Gleeson, Damnhait; Pappalardo, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Grasby, Steve] Geol Survey Canada, Calgary, AB T2L 2A7, Canada. EM alexis.templeton@colorado.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A338 EP A338 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401051 ER PT J AU Goldblatt, C Zanhle, K AF Goldblatt, Colin Zanhle, Kevin TI The subduction origin of mantle nitrogen SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Goldblatt, Colin; Zanhle, Kevin] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM colin.goldblatt@nasa.gov; kevin.j.zahnle@nasa.gov NR 1 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A342 EP A342 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401059 ER PT J AU Hecht, MH Kounaves, SP AF Hecht, M. H. Kounaves, S. P. TI Aqueous chemistry on Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Kounaves, S. P.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Hecht, M. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM michael.h.hecht@jpl.nasa.gov; samuel.kounaves@tufts.edu NR 3 TC 0 Z9 0 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A393 EP A393 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401162 ER PT J AU Huberty, JM Konishi, H Fournelle, JH Heck, PR Valley, JW Xu, H AF Huberty, J. M. Konishi, H. Fournelle, J. H. Heck, P. R. Valley, J. W. Xu, H. TI Silician magnetite from the Dales Gorge Banded Iron Formation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Huberty, J. M.; Konishi, H.; Fournelle, J. H.; Heck, P. R.; Valley, J. W.; Xu, H.] Univ Wisconsin, NASA, Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. [Heck, P. R.] Field Museum, Dept Geol, Chicago, IL 60605 USA. EM jason@geology.wisc.edu RI Valley, John/B-3466-2011; Heck, Philipp/C-6092-2012 OI Valley, John/0000-0003-3530-2722; NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A434 EP A434 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401243 ER PT J AU Hurowitz, JA Fischer, WW Tosca, NJ Milliken, RE AF Hurowitz, J. A. Fischer, W. W. Tosca, N. J. Milliken, R. E. TI Fe-redox, aridification, and acidic surface waters on early Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Hurowitz, J. A.; Milliken, R. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fischer, W. W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tosca, N. J.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. NR 4 TC 0 Z9 0 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A439 EP A439 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401254 ER PT J AU Johnson, JR Ashley, J Bell, JF Farrand, W Fleischer, I Jolliff, B Herkenhoff, K Yen, A AF Johnson, J. R. Ashley, J. Bell, J. F., III Farrand, W. Fleischer, I. Jolliff, B. Herkenhoff, K. Yen, A. TI Surface alteration of Fe-Ni meteorites analyzed by the Opportunity Mars Exploration Rover SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Johnson, J. R.; Herkenhoff, K.] Astrogeol Sci Ctr, USGS, Flagstaff, AZ 86001 USA. [Ashley, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Bell, J. F., III] Cornell Univ, Dept Astron, Astron, Ithaca, NY 14853 USA. [Farrand, W.] Space Sci Inst, Boulder, CO 80301 USA. [Fleischer, I.] Inst Anorgan & Analyt Chem, D-55128 Mainz, Germany. [Jolliff, B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Yen, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. EM jrjohnson@usgs.gov; James.Ashley@asu.edu; jfb8@cornell.edu; farrand@SpaceScience.org; irisflei@students.uni-mainz.de; blj@levee.wustl.edu; kherkenhoff@usgs.gov; albert.s.yen@jpl.nasa.gov RI Johnson, Jeffrey/F-3972-2015 NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A473 EP A473 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401515 ER PT J AU Jolliff, BL Shearer, CK Papanastassiou, DA AF Jolliff, B. L. Shearer, C. K. Papanastassiou, D. A. TI Analysis of samples from regolith in the Moon's South Pole-Aitken Basin SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Jolliff, B. L.] Washington Univ, St Louis, MO 63130 USA. [Shearer, C. K.] Univ New Mexico, Albuquerque, NM 87131 USA. [Papanastassiou, D. A.] Jet Prop Lab, Pasadena, CA 91109 USA. EM blj@wustl.edu; cshearer@unm.edu; dimitri.a.papanastassiou@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A476 EP A476 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401522 ER PT J AU Jones, JH AF Jones, J. H. TI Olivine/liquid partitioning, heats of fusion, and the illusion of linearity SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Jones, J. H.] NASA, Lyndon B Johnson Space Ctr, KR, Houston, TX 77058 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A480 EP A480 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401529 ER PT J AU Kuhlman, KR Garrison, DH Hiroi, T Pieters, C AF Kuhlman, K. R. Garrison, D. H. Hiroi, T. Pieters, C. TI Lunar space weathering via exposure to ultraviolet radiation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Garrison, D. H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hiroi, T.; Pieters, C.] Brown Univ, Dept Geo Sci, Providence, RI 02912 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A543 EP A543 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401656 ER PT J AU Li, WQ Beard, BL Johnson, CM AF Li, Weiqiang Beard, Brian L. Johnson, Clark M. TI Mg isotope exchange rate and fractionation factor between epsomite and aqueous solution constrained by three isotope method SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Madison, WI 53706 USA. [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] NASA, Astrobiol Inst, Washington, DC USA. EM wli@geology.wisc.edu NR 2 TC 0 Z9 0 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A594 EP A594 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941401757 ER PT J AU Marais, DJD AF Marais, D. J. Des CA Athena Sci Team TI Potentially habitable ancient environments in Gusev crater, Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Marais, D. J. Des; Athena Sci Team] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. EM david.j.desmarais@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A227 EP A227 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400704 ER PT J AU McClain, CR Bontempi, P Maring, H AF McClain, Charles R. Bontempi, Paula Maring, Hal TI The NASA decadal survey aerosol, cloud, ecosystems mission SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [McClain, Charles R.] NASA, Goddard Space Flight Ctr, Ocean Biol Proc Grp, Greenbelt, MD 20771 USA. [Bontempi, Paula; Maring, Hal] NASA Headquarters, Sci Mission Directorate, Washington, DC 20546 USA. EM charles.r.mcclain@nasa.gov; paula.bontempi@nasa.gov; hal.maring@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A685 EP A685 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402073 ER PT J AU McCollom, TM Bach, W Hoehler, T AF McCollom, T. M. Bach, W. Hoehler, T. TI Hydrogen generation for microbial activity in ultramafic-hosted hydrothermal systems SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [McCollom, T. M.] Univ Colorado, Lab Atmospher & Space Phys, CB392, Boulder, CO 80309 USA. [Bach, W.] Univ Bremen, Dept Geosci, D-28334 Bremen, Germany. [Hoehler, T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM mccollom@lasp.colorado.edu NR 10 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A686 EP A686 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402076 ER PT J AU Mills, B Boyle, R Goldblatt, C Lenton, T Watson, A AF Mills, Benjamin Boyle, Richard Goldblatt, Colin Lenton, Timothy Watson, Andrew TI What happened in the Neoproterozoic? Investigations using a simplified Earth system model SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Mills, Benjamin; Boyle, Richard; Lenton, Timothy; Watson, Andrew] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England. [Goldblatt, Colin] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM b.mills@uea.ac.uk NR 8 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A711 EP A711 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402125 ER PT J AU Mittlefehldt, DW AF Mittlefehldt, David W. TI Asteroidal differentiation - the record in meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromaterials Res Off, Houston, TX 77059 USA. EM david.w.mittlefehldt@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A715 EP A715 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402133 ER PT J AU Nakamura, N Nyquist, L Reese, Y Shih, CY AF Nakamura, N. Nyquist, L. Reese, Y. Shih, C. -Y. TI Stable chlorine isotope study of standard rocks and Allende meteorite by TIMS SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Nakamura, N.; Nyquist, L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Reese, Y.] ESCG Muniz Engn, Houston, TX 77058 USA. [Shih, C. -Y.] ESCG Jacobs Sverdrup, Houston, TX 77058 USA. EM noboru.nakamura@nasa.gov NR 5 TC 0 Z9 0 U1 3 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A745 EP A745 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402194 ER PT J AU Oehler, DZ Robert, F Walter, MR Sugitani, K Meibom, A Mostefaoui, S Gibson, E AF Oehler, D. Z. Robert, F. Walter, M. R. Sugitani, K. Meibom, A. Mostefaoui, S. Gibson, E. TI Biological diversity in the Archean: New results from NanoSIMS SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Oehler, D. Z.; Gibson, E.] NASA Johnson Space Ctr, Houston, TX USA. [Robert, F.; Meibom, A.; Mostefaoui, S.] Museum Natl Hist Nat, Lab Mineral & Cosmochim, F-75231 Paris, France. [Walter, M. R.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia. [Sugitani, K.] Nagoya Univ, Dept Environ Engn & Architecture, Nagoya, Aichi 4648601, Japan. EM dorothy.z.oehler@nasa.gov; robert@mnhn.fr; malcolm.walter@unsw.edu.au; sugi@info.human.nagoya-u.ac.jp NR 3 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A771 EP A771 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402246 ER PT J AU Ohmoto, H Bevacqua, DC Johnson, I Watanabe, Y AF Ohmoto, Hiroshi Bevacqua, David C. Johnson, Ian Watanabe, Yumiko TI Geochemical cycles of Fe, Mo, U, Cu, Cr, REEs, and S during the period 3.5-3.2 Ga ago SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 Penn State Univ, NASA, Astrobiol Inst, University Pk, PA 16803 USA. Penn State Univ, Dept Geosci, University Pk, PA 16803 USA. EM hqo@psu.edu NR 0 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A774 EP A774 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402251 ER PT J AU Peslier, AH Woodland, AB Lazarov, M AF Peslier, A. H. Woodland, A. B. Lazarov, M. TI Controls of H incorporation in pyroxenes and garnets from FTIR data on Kaapvaal craton xenoliths SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Peslier, A. H.] ESCG, Jacobs Technol, Houston, TX 77058 USA. [Peslier, A. H.] NASA JSC, ARES, Houston, TX 77058 USA. [Woodland, A. B.; Lazarov, M.] U Frankfurt, D-60438 Frankfurt, Germany. EM anne.h.peslier@nasa.gov RI Peslier, Anne/F-3956-2010 NR 8 TC 1 Z9 1 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A808 EP A808 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402320 ER PT J AU Quinn, RC Grunthaner, FJ Mielke, RE Chun, WW White, VE AF Quinn, R. C. Grunthaner, F. J. Mielke, R. E. Chun, W. W. White, V. E. TI In situ fabrication of chemical sensing arrays in extreme environments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Quinn, R. C.] NASA Ames, SETI Inst, Moffett Field, CA 94035 USA. [Grunthaner, F. J.; Mielke, R. E.; Chun, W. W.; White, V. E.] NASA Jet Prop Lab, Pasadena, CA 91109 USA. EM Richard.C.Quinn@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A842 EP A842 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402387 ER PT J AU Schrader, CM Cohen, BA AF Schrader, C. M. Cohen, B. A. TI Petrology of the crystalline rocks hosting the Santa Fe impact structure SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Schrader, C. M.] Oak Ridge Associated Univ, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Cohen, B. A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM Christian.M.Schrader@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A927 EP A927 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402557 ER PT J AU Singer, SW Woebken, D Burow, LC Prufert-Bebout, L Bebout, BM Pett-Ridge, J Spormann, AM Weber, PK AF Singer, Steven W. Woebken, Dagmar Burow, Luke C. Prufert-Bebout, Lee Bebout, Brad M. Pett-Ridge, Jennifer Spormann, Alfred M. Weber, Peter K. TI NanoSIP: Combining stable isotope probing and high resolution secondary ion mass spectrometry to identify diazotrophs in stratified marine microbial communities SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Singer, Steven W.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woebken, Dagmar; Burow, Luke C.; Spormann, Alfred M.] Stanford Univ, Stanford, CA 94305 USA. [Prufert-Bebout, Lee; Bebout, Brad M.] NASA, Ames Res Ctr, Washington, DC 20546 USA. [Pett-Ridge, Jennifer; Spormann, Alfred M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM SWSinger@lbl.gov; dwoebken@stanford.edu; lburow@stanford.edu; Leslie.E.Bebout@mail.nasa.gov; brad.m.bebout@nasa.gov; pettridge2@llnl.gov; spormann@stanford.edu; weber21@llnl.gov RI Abu Laban , Dr. Nidal /E-5809-2011 NR 0 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A966 EP A966 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402636 ER PT J AU Stern, JC Mcadam, AC Franz, HB Mahaffy, PR AF Stern, Jennifer C. Mcadam, Amy C. Franz, Heather B. Mahaffy, Paul R. TI Evolved Gas Analysis coupled with Cavity Ringdown Spectrometry for in situ delta C-13 measurements of Mars analog materials SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN ID CARBONATE C1 [Stern, Jennifer C.; Mcadam, Amy C.; Franz, Heather B.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Franz, Heather B.] Univ Maryland, College Pk, MD 20742 USA. EM Jennifer.C.Stern@nasa.gov RI McAdam, Amy/E-1556-2012; Stern, Jennifer/E-3135-2012; Franz, Heather/F-3508-2012 OI Stern, Jennifer/0000-0002-0162-8807; NR 4 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A993 EP A993 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941402689 ER PT J AU Ullman, DJ Carlson, AE Legrande, AN Anslow, FS Caffee, MW Licciardi, JM Syverson, KM AF Ullman, David J. Carlson, Anders E. Legrande, Allegra N. Anslow, Faron S. Caffee, Marc W. Licciardi, Joseph M. Syverson, Kent M. TI Testing forcing mechanisms of deglaciation: Cosmogenic dating of Laurentide Ice Sheet retreat in Wisconsin and surface mass balance modeling SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Ullman, David J.; Carlson, Anders E.] Univ WI Madison, Dept Geosci, Madison, WI USA. [Legrande, Allegra N.] Columbia Univ, CCSR, New York, NY USA. [Legrande, Allegra N.] Columbia Univ, NASA,GISS, New York, NY USA. [Anslow, Faron S.] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Caffee, Marc W.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Licciardi, Joseph M.] Univ NH, Dept Earth Sci, Durham, NH USA. [Syverson, Kent M.] Univ WI Eau Claire, Dept Geol, Eau Claire, WI USA. EM ullman@wisc.edu RI LeGrande, Allegra/D-8920-2012 OI LeGrande, Allegra/0000-0002-5295-0062 NR 5 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1063 EP A1063 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400167 ER PT J AU van Acken, D Brandon, AD AF van Acken, D. Brandon, A. D. TI Osmium isotopes in aubrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [van Acken, D.] NASA Johnson Space Ctr, Houston, TX 77058 USA. [van Acken, D.; Brandon, A. D.] Univ Houston, Houston, TX 77204 USA. EM dvanacken@uh.edu; abrandon@uh.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1070 EP A1070 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400181 ER PT J AU Vance, S Christensen, LE Webster, CR AF Vance, Steve Christensen, Lance E. Webster, Christopher R. TI In situ measurement of CH3SH on Earth and Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Vance, Steve; Christensen, Lance E.; Webster, Christopher R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM svance@jpl.nasa.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1071 EP A1071 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400183 ER PT J AU Wang, YF Xu, HF Merino, E AF Wang, Yifeng Xu, Huifang Merino, Enrique TI Nonlinear dynamics of Banded Iron Formation precipitation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Xu, Huifang] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Xu, Huifang] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. [Merino, Enrique] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1110 EP A1110 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400261 ER PT J AU Willis, PA Fisher, AM Greer, HF Mora, MF Mair, D Jiao, H AF Willis, P. A. Fisher, A. M. Greer, H. F. Mora, M. F. Mair, D. Jiao, H. TI Micro total analysis system development for in situ chemical exploration of Titan and Mars SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Willis, P. A.; Fisher, A. M.; Greer, H. F.; Mora, M. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mair, D.] Fluigence LLC, Santa Clara, CA 95054 USA. [Jiao, H.] Los Gatos Res Inc, Mountain View, CA 94941 USA. EM Peter.A.Willis@jpl.nasa.gov RI Willis, Peter/I-6621-2012 NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1134 EP A1134 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400309 ER PT J AU Xu, HF AF Xu, Huifang TI Dolomite, dolomitization, and dolomite problem: A new song with old tune SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Xu, Huifang] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu NR 0 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1160 EP A1160 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400360 ER PT J AU Yan, BZ Han, YM Peteet, D AF Yan, Beizhan Han, Yongming Peteet, Dorothy TI Reconstruction of biomass combustion history using black carbon and polycyclic aromatic hydrocarbons SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Yan, Beizhan] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Han, Yongming] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710075, Peoples R China. [Peteet, Dorothy] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RI Han, Yongming/I-8824-2014 NR 0 TC 0 Z9 0 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1170 EP A1170 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400381 ER PT J AU Zahnle, K Claire, M Wing, B AF Zahnle, K. Claire, M. Wing, B. TI Biogenic sulfur gases, MIF-S, and the rise of free oxygen SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Meeting Abstract CT Conference on Goldschmidt 2010 - Earth, Energy, and the Environment CY JUN 13-18, 2010 CL Knoxville, TN C1 [Zahnle, K.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Claire, M.] Univ Washington, Dept Astron, Astrobiol Program, Seattle, WA 98195 USA. [Wing, B.] McGill Univ, Montreal, PQ H3A 2A7, Canada. EM Kevin.J.Zahnle@NASA.gov; mclaire@astro.washington.edu NR 0 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN PY 2010 VL 74 IS 12 SU 1 BP A1195 EP A1195 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676TL UT WOS:000283941400431 ER PT J AU Liu, Z Owen, S Dong, DA Lundgren, P Webb, F Hetland, E Simons, M AF Liu, Zhen Owen, Susan Dong, Danan Lundgren, Paul Webb, Frank Hetland, Eric Simons, Mark TI Integration of transient strain events with models of plate coupling and areas of great earthquakes in southwest Japan SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Transient deformation; Subduction zone processes ID SLOW SLIP EVENTS; HIKURANGI SUBDUCTION ZONE; LOW-FREQUENCY EARTHQUAKES; TIME-DEPENDENT INVERSION; ASEISMIC FAULT SLIP; NANKAI TROUGH; SILENT SLIP; CRUSTAL DEFORMATION; EPISODIC TREMOR; TOKAI REGION AB P>We model the crustal deformation caused by two long-term subduction slip transients in southwest Japan, which we refer to as the 2000-2004 Tokai and the 2002-2004 Bungo Channel slow slip events (SSEs). We use re-analysed GEONET position time-series, and a Kalman filter based network inversion method to image the spatiotemporal slip variation of the two events on the plate interface during the period of 1998-2004.67 and 2000-2005. Both events are found to have complex slip histories with multiple subevents. In addition to a newly identified slip subevent in 2002-2003, we find that the major event in the Bungo Channel SSE initiated in early 2003 beneath the northeastern corner of the region and expanded southwestward, in contrast to the slip characteristics suggested by other studies. The re-analysed GPS data in the Tokai region shows a renewed slip activity for the Tokai SSE in early 2003-2004 at a similar location as in the period of 2001-2002. The equivalent M(w) for both the Tokai and Bungo Channel SSEs are about 7.0. Our results show that the Tokai SSE appears to start before the Miyaki-Kozu seismovolcanic event. Integrating plate coupling and SSEs shows that the transient slip zones are located in a region between the locked zones and the epicentres of the low frequency earthquakes (LFEs). At least part of the interseismic slip deficit is released by episodic SSEs beneath the Bungo Channel region. We find excellent temporal correspondence between transient slip and adjacent LFEs for both SSE, suggesting that they are closely related and possibly reflect that long-term slow slip may modulate the occurrence of LFEs. C1 [Liu, Zhen; Owen, Susan; Dong, Danan; Lundgren, Paul; Webb, Frank] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simons, Mark] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hetland, Eric] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Liu, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM zliu@jpl.nasa.gov RI Hetland, Eric/D-4297-2012; Simons, Mark/N-4397-2015; Liu, Zhen/D-8334-2017 OI Simons, Mark/0000-0003-1412-6395; FU National Aeronautics and Space Administration FX We thank Kelin Wang for sending us his composite plate geometry model in his paper. We also thank Akio Katsumata at Meteorological Research Institute, Japan for sending us LFE catalogue. David Shelly at USGS sent us his relocated LFE catalogue in western Shikoku. Reviews by Y. Hsu, L. Wallace, and editor J. Beavan improved this manuscript. The commercial software Gocad from Paradigm Geophysical (http://www.pdgm.com) was used in fault surface modelling. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program. NR 86 TC 11 Z9 11 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2010 VL 181 IS 3 BP 1292 EP 1312 DI 10.1111/j.1365-246X.2010.04599.x PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596WO UT WOS:000277716400007 ER PT J AU Liu, Z Owen, S Dong, DA Lundgren, P Webb, F Hetland, E Simons, M AF Liu, Zhen Owen, Susan Dong, Danan Lundgren, Paul Webb, Frank Hetland, Eric Simons, Mark TI Estimation of interplate coupling in the Nankai trough, Japan using GPS data from 1996 to 2006 SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Satellite geodesy; Seismicity and tectonics; Subduction zone processes ID LOW-FREQUENCY EARTHQUAKES; PHILIPPINE SEA PLATE; ARC-ARC COLLISION; SOUTHWEST JAPAN; PERMANENT GPS; CRUSTAL DEFORMATION; VELOCITY-FIELD; SUBDUCTION; SLIP; MODEL AB P>We used three-component surface velocities in southwest Japan to estimate plate coupling on the subducting plate interface at the Nankai trough. We analyzed continuous GPS data from the Japanese GEONET network from 1996 to 2006 using a consistent analysis strategy that generates bias-fixed solutions for the entire network. We applied systematic time-series analysis methods to estimate common mode error, which improved position solutions for the entire network. To allow for differences in regional deformation sources, we modelled the plate coupling on the plate interface beneath Shikoku island to Kii Peninsula and the Tokai-Suruga trough separately. The results show strong coupling at a depth of similar to 10-30 km off Shikoku and Kii Peninsula. The spatial variation in plate coupling coincides well with the coseismic rupture zones of the past large earthquakes. Maximum slip deficit rates of similar to 2-3 cm yr-1 at the depth of similar to 5-25 km are found beneath the Tokai area, consistent with results from other studies. The downdip limits of the highly coupled areas and transition zones beneath Shikoku and the Kii Peninsula correspond approximately to estimates of the 450 degrees C isotherms. Good correlation is observed between the lateral variations of the slip deficit distribution, low frequency earthquakes, and coseismic slip. This correlation suggests that temperature, and possibly fluid variations, contribute to such correlation in space. The interplate slip deficit derived from the GPS velocities over the 10 yr of observations is generally compatible with the results over shorter time spans, suggesting that plate coupling in SW Japan does not change significantly over the period of these GPS measurements. C1 [Liu, Zhen; Owen, Susan; Dong, Danan; Lundgren, Paul; Webb, Frank] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simons, Mark] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hetland, Eric] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Liu, Z (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM zliu@jpl.nasa.gov RI Hetland, Eric/D-4297-2012; Simons, Mark/N-4397-2015; Liu, Zhen/D-8334-2017 OI Simons, Mark/0000-0003-1412-6395; FU National Aeronautics and Space Administration; Gordon and Betty Moore Foundation FX We thank K. Wang and Junichi Nakajima for sending us their composite plate geometry model for the Philippine Sea slab. We thank Akio Katsumata at Meteorological Research Institute, Japan for providing us low frequency earthquake catalogue. We also thank GSI for providing us the raw data of GEONET. Reviews by J. Freymueller, L. Wallace, and editor J. Beavan improved this manuscript. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development Program. This research was supported in part by the Gordon and Betty Moore Foundation. This is Caltech Tectonic Observatory Contribution 109. NR 64 TC 18 Z9 18 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD JUN PY 2010 VL 181 IS 3 BP 1313 EP 1328 DI 10.1111/j.1365-246X.2010.04600.x PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596WO UT WOS:000277716400008 ER PT J AU Morishima, R Stadel, J Moore, B AF Morishima, Ryuji Stadel, Joachim Moore, Ben TI From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets SO ICARUS LA English DT Article DE Accretion; Origin, Solar System; Planetary formation; Terrestrial planets ID TURBULENT PROTOPLANETARY DISKS; ISOTHERMAL GASEOUS DISK; DYNAMICAL SHAKE-UP; INNER SOLAR-SYSTEM; ORBITAL EVOLUTION; SECULAR RESONANCE; I MIGRATION; 3-DIMENSIONAL INTERACTION; TIDAL INTERACTION; CLOSE ENCOUNTERS AB We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today's eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular. (C) 2009 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morishima, Ryuji] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA. [Stadel, Joachim; Moore, Ben] Univ Zurich, Inst Theoret Phys, CH-8006 Zurich, Switzerland. RP Morishima, R (reprint author), CALTECH, Jet Prop Lab, M-S 230-205,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ryuji.morishima@jpl.nasa.gov NR 82 TC 41 Z9 41 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 517 EP 535 DI 10.1016/j.icarus.2009.11.038 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900003 ER PT J AU Kahre, MA Haberle, RM AF Kahre, Melinda A. Haberle, Robert M. TI Mars CO2 cycle: Effects of airborne dust and polar cap ice emissivity SO ICARUS LA English DT Article DE Mars, Atmosphere; Mars, Surface; Mars, Polar caps ID SEASONAL CO-2 CYCLE; MARTIAN ATMOSPHERE; GENERAL-CIRCULATION; INTERANNUAL VARIABILITY; PHYSICAL-PROPERTIES; VIKING OBSERVATIONS; SURFACE PRESSURE; SIMULATIONS; STORMS; HYDROGEN AB Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is "neutral" - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the "neutral" emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kahre, Melinda A.; Haberle, Robert M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kahre, Melinda A.] Bay Area Environm Res Ctr, Moffett Field, CA 94035 USA. RP Kahre, MA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM melinda.a.kahre@nasa.gov FU NASA FX This project was supported by NASA's Postdoctoral Program (NPP) and NASA's Planetary Atmospheres Program. NR 36 TC 12 Z9 12 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 648 EP 653 DI 10.1016/j.icarus.2009.12.016 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900016 ER PT J AU Roach, LH Mustard, JF Lane, MD Bishop, JL Murchie, SL AF Roach, Leah H. Mustard, John F. Lane, Melissa D. Bishop, Janice L. Murchie, Scott L. TI Diagenetic haematite and sulfate assemblages in Valles Marineris SO ICARUS LA English DT Article DE Mars, Surface; Spectroscopy; Mineralogy ID THERMAL EMISSION SPECTROMETER; MERIDIANI-PLANUM; LAYERED DEPOSITS; CRYSTALLINE HEMATITE; WEATHERING PRODUCTS; MARS PATHFINDER; BURNS FORMATION; SURFACE; MINERALOGY; STRATIGRAPHY AB Previous orbital mapping of crystalline gray haematite, ferric oxides, and sulfates has shown an association of this mineralogy with light-toned, layered deposits on the floor of Valles Marineris, in chaos terrains in the canyon's outflow channels, and in Meridiani Planum. The exact nature of the relationship between ferric oxides and sulfates within Valles Marineris is uncertain. The Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) spectrometer initially identified sulfate and ferric oxides in the layered deposits of Valles Marineris. The Thermal Emission Spectrometer (TES) has also mapped coarse (gray) haematite in or at the base of these deposits. We use Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra and Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) imagery from the Mars Reconnaissance Orbiter (MRO) to explore the mineralogy and morphology of the large layered deposit in central Capri Chasma, part of the Valles Marineris canyon system that has large, clear exposures of sulfate and haematite. We find kieserite (MgSO4 center dot H2O) and ferric oxide (often crystalline red haematite) in the lower bedrock exposures and a polyhydrated sulfate without ferric oxides in the upper bedrock. This stratigraphy is duplicated in many other basinal chasmata, suggesting a common genesis. We propose the haematite and monohydrated sulfate formed by diagenetic alteration of a sulfate-rich sedimentary deposit, where the upper polyhydrated sulfate-rich, haematite-poor layers either were not buried sufficiently to convert to a monohydrated sulfate or were part of a later depositional phase. Based on the similarities between the Valles Marineris assemblages and the sulfate and haematite-rich deposits of Meridiani Planum, we hypothesize a common evaporite and diagenetic formation process for the Meridiani Planum sediments and the sulfate-bearing basinal Interior Layered Deposits. (C) 2009 Elsevier Inc. All rights reserved. C1 [Roach, Leah H.; Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Lane, Melissa D.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Roach, LH (reprint author), Brown Univ, Dept Geol Sci, 324 Brook St, Providence, RI 02912 USA. EM leah_roach@brown.edu RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 NR 93 TC 34 Z9 34 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 659 EP 674 DI 10.1016/j.icarus.2009.11.029 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900018 ER PT J AU Marion, GM Catling, DC Zahnle, KJ Claire, MW AF Marion, G. M. Catling, D. C. Zahnle, K. J. Claire, M. W. TI Modeling aqueous perchlorate chemistries with applications to Mars SO ICARUS LA English DT Article DE Cosmochemistry; Geological processes; Mars, Surface; Mineralogy ID PHOENIX LANDING SITE; MERIDIANI-PLANUM; LOW-TEMPERATURES; MINERAL SOLUBILITIES; IRON CHEMISTRY; SYSTEM; EQUILIBRIA; 25-DEGREES-C; CARBONATE; JAROSITE AB NASA's Phoenix lander identified perchlorate and carbonate salts on Mars. Perchlorates are rare on Earth, and carbonates have largely been ignored on Mars following the discovery by NASA's Mars Exploration Rovers of acidic precipitated minerals such as jarosite. In light of the Phoenix results, we updated the aqueous thermodynamic model FREZCHEM to include perchlorate chemistry. FREZCHEM models the Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O-2-CH4-Si-H2O system, with 95 solid phases. We added six perchlorate salts: NaClO4 center dot H2O, NaClO4 center dot 2H(2)O, KClO4, Mg(ClO4)(2)center dot 6H(2)O, Mg(ClO4)(2)center dot 8H(2)O, and Ca(ClO4)(2)center dot 6H(2)O. Modeled eutectic temperatures for Na, Mg, and Ca perchlorates ranged from 199 K (-74 degrees C) to 239 K (-34 degrees C) in agreement with experimental data. We applied FREZCHEM to the average solution chemistry measured by the Wet Chemistry Laboratory (WCL) experiment at the Phoenix site when soil was added to water. FREZCHEM was used to estimate SO42- and alkalinity concentrations that were missing from the WCL data. The amount of SO42- is low compared to estimates from elemental abundance made by other studies on Mars. In the charge-balanced solution, the dominant cations were Mg2+ and Na+ and the dominant anions were ClO4-, SO42-, and alkalinity. The abundance of calcite measured at the Phoenix site has been used to infer that the soil may have been subject to liquid water in the past, albeit not necessarily locally; so we used FREZCHEM to evaporate (at 280.65 K) and freeze (from 280.65 to 213.15 K) the WCL-measured solution to provide insight into salts that may have been in the soil. Salts that precipitated under both evaporation and freezing were calcite, hydromagnesite, gypsum, KClO4, and Mg(ClO4)(2)center dot 8H(2)O. Epsomite (MgSO4 center dot 7H(2)O) and NaClO4 center dot H2O were favored by evaporation at temperatures >0 degrees C, while meridianite (MgSO4 center dot 11H(2)O), MgCl2 center dot 12H(2)O, and NaClO4 center dot 2H(2)O were favored at subzero temperatures. Incongruent melting of such highly hydrated salts could be responsible for vug formation elsewhere on Mars. All K+ precipitated as insoluble KClO4 during both evaporation and freezing simulations, accounting for 15.8% of the total perchlorates. During evaporation, 35.8% of perchlorates precipitated with Na+ and 48.4% with Mg2+. During freezing, 58.4% precipitated with Na+ and 24.8% with Mg2+. Given its low eutectic temperature, the existence of Mg(ClO4)(2) in either case allows for the possibility of liquid brines on Mars today. FREZCHEM also showed that Ca(ClO4)(2) would likely not have precipitated at the Phoenix landing site due to the strong competing sinks for Ca as calcite and gypsum. Overall, these results help constrain the salt mineralogy of the soil. Differences between evaporites and cryogenites suggest ways to discriminate between evaporation and freezing during salt formation. Future efforts, such as sample return or in situ X-ray diffraction, may make such a determination possible. (C) 2009 Elsevier Inc. All rights reserved. C1 [Marion, G. M.] Desert Res Inst, Reno, NV 89512 USA. [Catling, D. C.; Claire, M. W.] Univ Washington, Seattle, WA 98195 USA. [Zahnle, K. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Marion, GM (reprint author), Desert Res Inst, 2215 Raggio Pkwy, Reno, NV 89512 USA. EM giles.marion@dri.edu RI Catling, David/D-2082-2009; OI Catling, David/0000-0001-5646-120X FU NASA FX Funding was provided by a NASA DDF project, "Volcanic SO2, Atmospheric Photochemistry, and Climate on Early Mars." We thank Vincent Chevrier for assistance in tracking down perchlorate data sources. We thank Lisa Wable for assistance in preparing the manuscript. NR 57 TC 43 Z9 43 U1 1 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 675 EP 685 DI 10.1016/j.icarus.2009.12.003 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900019 ER PT J AU Masiero, J AF Masiero, Joseph TI Albedo heterogeneity on the surface of (1943) Anteros SO ICARUS LA English DT Article DE Asteroids, Surfaces; Polarimetry ID POLARIMETRIC OBSERVATIONS; 4 VESTA; POLARIZATION; TELESCOPE; ASTEROIDS; LIGHTCURVE AB We have investigated the effect of rotation on the polarization of scattered light for the near-Earth asteroid (1943) Anteros using the Dual Beam Imaging Polarimeter on the University of Hawaii's 2.2 m telescope. Anteros is an L-type asteroid that has not been previously observed polarimetrically. We find weak but significant variations in the polarization of Anteros as a function of rotation, indicating albedo changes across the surface. Specifically, we find that Anteros has a background albedo of p(v) = 0.18 +/- 0.02 with a dark spot of p(v) < 0.09 covering <2% of the surface. (C) 2010 Elsevier Inc. All rights reserved. C1 [Masiero, Joseph] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Masiero, Joseph] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Masiero, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 264-767, Pasadena, CA 91106 USA. EM Joseph.Masiero@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU NASA PAST [NNG06G146G] FX J.M. was supported under NASA PAST Grant NNG06G146G. The author would like to thank Rob Jedicke and Alan Tokunaga for providing comments on the manuscript, as well as V. Rosenbush and an anonymous referee for helpful reviews that improved the paper. The author wishes to recognize and acknowledge the very significant cultural role and reverence that the summit on Mauna Kea has always had within the indigenous Hawaiian community. I am most fortunate to have the opportunity to conduct observations from this sacred mountain. NR 28 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 795 EP 799 DI 10.1016/j.icarus.2009.12.033 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900027 ER PT J AU Vernazza, P Carry, B Emery, J Hora, JL Cruikshank, D Binzel, RP Jackson, J Helbert, J Maturilli, A AF Vernazza, P. Carry, B. Emery, J. Hora, J. L. Cruikshank, D. Binzel, R. P. Jackson, J. Helbert, J. Maturilli, A. TI Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions SO ICARUS LA English DT Article DE Asteroids, Surfaces; Spectroscopy; Mineralogy; Meteorites ID THERMAL EMISSION-SPECTROSCOPY; SPITZER-SPACE-TELESCOPE; MAIN BELT ASTEROIDS; IRRADIANCE CALIBRATION; PARTICULATE SURFACES; MU-M; INFRARED OBSERVATIONS; REFLECTANCE SPECTRA; ANALOG MATERIALS; 13-MU-M SPECTRA AB We report an unexpected variability among mid-infrared spectra (IRTF and Spitzer data) of eight S-type asteroids for which all other remote sensing interpretations (e.g. VNIR spectroscopy, albedo) yield similar compositions. Compositional fitting making use of their mid-IR spectra only yields surprising alternative conclusions: (1) these objects are not "compositionally similar" as the inferred abundances of their main surface minerals (olivine and pyroxene) differ from one another by 35% and (2) carbonaceous chondrite and ordinary chondrite meteorites provide an equally good match to each asteroid spectrum. Following the laboratory work of Ramsey and Christensen (Ramsey, M.S., Christensen, P.R. [1998]. J. Geophys. Res, 103, 577-596), we interpret this variability to be physically caused by differences in surface particle size and/or the effect of space weathering processes. Our results suggest that the observed asteroids must be covered with very fine (<5 mu m) dust that masks some major and most minor spectral features. We speculate that the compositional analysis may be improved with a spectral library containing a wide variety of well characterized spectra (e.g., olivine, orthopyroxene, feldspar, iron, etc.) obtained from very fine powders. In addition to the grain size effect, space weathering processes may contribute as well to the reduction of the spectral contrast. This can be directly tested via new laboratory irradiation experiments. (C) 2010 Elsevier Inc. All rights reserved. C1 [Vernazza, P.] European Space Agcy, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Carry, B.] Observ Paris, Lab Etud Spatiales & Instrumentat Astrophys, F-92195 Meudon, France. [Carry, B.] European So Observ, Santiago 19, Chile. [Emery, J.] Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Hora, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cruikshank, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Binzel, R. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Jackson, J.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Helbert, J.; Maturilli, A.] DLR, Inst Planetary Res, D-12489 Berlin, Germany. RP Vernazza, P (reprint author), ESA ESTEC RSSD SCI, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM pierre.vernazza@esa.int OI Helbert, Jorn/0000-0001-5346-9505; Hora, Joseph/0000-0002-5599-4650 NR 84 TC 22 Z9 22 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 800 EP 809 DI 10.1016/j.icarus.2010.01.011 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900028 ER PT J AU Moore, C Miki, K Goldstein, DB Stapelfeldt, K Varghese, PL Trafton, LM Evans, RW AF Moore, C. Miki, K. Goldstein, D. B. Stapelfeldt, K. Varghese, P. L. Trafton, L. M. Evans, R. W. TI Monte Carlo modeling of Io's [OI] 6300 angstrom and [SII] 6716 angstrom auroral emission in eclipse SO ICARUS LA English DT Article DE Io; Aurorae; Jupiter, Satellites; Satellites, Atmospheres; Collisional physics ID SULFUR-DIOXIDE; PLASMA TORUS; SO2 ATMOSPHERE; ENERGETIC ELECTRONS; DRIVEN ATMOSPHERE; VOLCANIC PLUMES; CROSS-SECTIONS; UV EMISSIONS; PELE PLUME; SUBLIMATION AB We present a Monte Carlo (MC) model of [OI] 6300 angstrom and [SII] 6716 angstrom emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO(2), O, SO, S, and O(2) in to's atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 angstrom emission. The [OI] radiation lifetime of similar to 134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 x 10(9) cm(-3)) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io's perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation's viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake's observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of similar to 3, most likely because our model does not include direct dissociation-excitation of SO(2) and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io's changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 angstrom emission is much weaker than that of [OI] even if the [SII] excitation cross section is 10(3) times larger than excitation to [OI]. This is because the density of S(+) is much less than that of O and because the Einstein-A coefficient of the [SII] emission is a factor of similar to 10 smaller than that of [OI]. (C) 2010 Elsevier Inc. All rights reserved. C1 [Moore, C.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Stapelfeldt, K.; Evans, R. W.] CALTECH, JPL, Pasadena, CA 91125 USA. RP Moore, C (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 1 Univ Stn,C0600, Austin, TX 78712 USA. EM moorech@ices.utexas.edu RI Stapelfeldt, Karl/D-2721-2012 FU NASA [NAS5-26555, NAG5-11991, NNX08AQ49G]; STScl [HST-AR-10322.01-A] FX Based on observations with the NASA/ESA Hubble Space Telescope. Archival research support for Program 9535 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Associated Universities for Research in Astronomy, Incorporated, under NASA Contract NAS5-26555. This work was supported by STScl Grant HST-AR-10322.01-A and NASA Grants NAG5-11991 and NNX08AQ49G. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. NR 77 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 810 EP 833 DI 10.1016/j.icarus.2010.01.004 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900029 ER PT J AU Patterson, GW Collins, GC Head, JW Pappalardo, RT Prockter, LM Lucchitta, BK Kay, JP AF Patterson, G. Wesley Collins, Geoffrey C. Head, James W. Pappalardo, Robert T. Prockter, Louise M. Lucchitta, Baerbel K. Kay, Jonathan P. TI Global geological mapping of Ganymede SO ICARUS LA English DT Article DE Ganymede; Satellites, Surfaces; Jupiter, Satellites ID GALILEO NOMINAL MISSION; GROOVED TERRAIN; DARK TERRAIN; HIGH-RESOLUTION; EXTENSIONAL INSTABILITY; CRATERING RATES; IMPACT FEATURES; WATER-ICE; SATELLITES; JUPITER AB We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite's surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units. (C) 2009 Elsevier Inc. All rights reserved. C1 [Patterson, G. Wesley] Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, Laurel, MD 20723 USA. [Collins, Geoffrey C.; Kay, Jonathan P.] Wheaton Coll, Dept Phys & Astron, Norton, MA 02766 USA. [Patterson, G. Wesley; Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lucchitta, Baerbel K.] US Geol Survey, Flagstaff, AZ 86001 USA. [Kay, Jonathan P.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. RP Patterson, GW (reprint author), Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, MP3-E106,11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM wes.patterson@jhuapl.edu FU NASA [NNG05GJ787G] FX We thank Ken Tanaka and Jeff Moore for their careful review of this manuscript and the useful comments they provided. This work was supported under a grant awarded through NASA's Planetary Geology and Geophysics program (NNG05GJ787G). NR 71 TC 12 Z9 12 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 845 EP 867 DI 10.1016/j.icarus.2009.11.035 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900031 ER PT J AU Hasenkopf, CA Beaver, MR Trainer, MG Dewitt, HL Freedman, MA Toon, OB McKay, CP Tolbert, MA AF Hasenkopf, Christa A. Beaver, Melinda R. Trainer, Melissa G. Dewitt, H. Langley Freedman, Miriam A. Toon, Owen B. McKay, Christopher P. Tolbert, Margaret A. TI Optical properties of Titan and early Earth haze laboratory analogs in the mid-visible SO ICARUS LA English DT Article DE Titan; Spectroscopy; Experimental techniques; Photochemistry ID COMPLEX REFRACTIVE-INDEX; CAVITY RING; EARLY ATMOSPHERE; ORGANIC HAZE; AEROSOL SPECTROMETER; MODEL; SPECTROSCOPY; GREENHOUSE; PHOTOCHEMISTRY; METHANE AB Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at lambda = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 +/- 0.01 and an imaginary refractive index k = 0.023 +/- 0.007, and for the early Earth analog particles we find n = 1.81 +/- 0.02 and k = 0.055 +/- 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, TA., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog. (C) 2010 Elsevier Inc. All rights reserved. C1 [Hasenkopf, Christa A.; Beaver, Melinda R.; Dewitt, H. Langley; Freedman, Miriam A.; Tolbert, Margaret A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hasenkopf, Christa A.; Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Beaver, Melinda R.; Dewitt, H. Langley; Tolbert, Margaret A.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Trainer, Melissa G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toon, Owen B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [McKay, Christopher P.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94503 USA. RP Hasenkopf, CA (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM Christa.Hasenkopf@colorado.edu RI Trainer, Melissa/E-1477-2012; Freedman, Miriam/A-4571-2013 OI Freedman, Miriam/0000-0003-4374-6518 FU NASA [NNX07AV55G, NNX07AF190, NNX08AG93G, NNX09AE12G]; National Science Foundation; EPA; NOAA FX This material is based on work supported by NASA Grants NNX07AV55G, NNX07AF190, NNX08AG93G, and NNX09AE12G. CAH was supported with a National Science Foundation Graduate Research Fellowship. MRB was supported by an EPA-STAR fellowship. MGT was supported by an appointment to the NASA Postdoctoral Program at the University of Colorado Center for Astrobiology administered by Oak Ridge Associated Universities. HLD is supported through a NASA-GSRP fellowship. MAF acknowledges support from the NOAA Climate and Global Change Postdoctoral Fellowship Program administered by the University of Corporation for Atmospheric Research. NR 47 TC 28 Z9 28 U1 0 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 903 EP 913 DI 10.1016/j.icarus.2009.12.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900034 ER PT J AU Anderson, CM Samuelson, RE Bjoraker, GL Achterberg, RK AF Anderson, C. M. Samuelson, R. E. Bjoraker, G. L. Achterberg, R. K. TI Particle size and abundance of HC3N ice in Titan's lower stratosphere at high northern latitudes SO ICARUS LA English DT Article DE Titan; Radiative transfer ID COMPOSITE INFRARED SPECTROMETER; SPECTROSCOPIC DATABASE; POLAR STRATOSPHERE; ABSORPTION-SPECTRA; CLOUDS; TEMPERATURES; ATMOSPHERE; PAIRS; TROPOSPHERE; SURFACE AB Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan's thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the v(6) HC3N ice feature at 506 cm(-1) at latitudes 62 degrees N and 70 degrees N, from which we derive particle sizes and column abundances in Titan's lower stratosphere. We find mean particle radii of 3.0 mu m and 2.3 mu m for condensed HC3N at 62 degrees N and 70 degrees N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 x 10(16) mol cm(-2). Only upper limits for cloud abundances can be established at latitudes of 85 degrees N, 55 degrees N, 30 degrees N, 10 degrees N, and 15 degrees S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70 degrees N and 62 degrees N, respectively. Published by Elsevier Inc. C1 [Anderson, C. M.; Bjoraker, G. L.] NASA, GSFC, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Samuelson, R. E.; Achterberg, R. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Anderson, CM (reprint author), NASA, GSFC, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM carrie.m.anderson@nasa.gov RI Anderson, Carrie/C-8097-2012; Bjoraker, Gordon/D-5032-2012 FU Cassini project; Goddard Space Flight Center FX We would like to extend our thanks to F.M. Flasar for his useful comments concerning an initial draft of this paper. This research was supported in part by the Cassini project and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Perceptive remarks by two anonymous referres led to considerable improvement in the analysis. NR 30 TC 21 Z9 22 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 914 EP 922 DI 10.1016/j.icarus.2009.12.024 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900035 ER PT J AU Le Gall, A Janssen, MA Paillou, P Lorenz, RD Wall, SD AF Le Gall, A. Janssen, M. A. Paillou, P. Lorenz, R. D. Wall, S. D. CA Cassini Radar Team TI Radar-bright channels on Titan SO ICARUS LA English DT Article DE Titan; Radar observations; Radio observations; Satellites, Surfaces; Geological processes ID HUYGENS LANDING SITE; CASSINI RADAR; LIGHT-SCATTERING; REFRACTION SCATTERING; SPHEROIDAL PARTICLES; COHERENT BACKSCATTER; BACK-SCATTERING; SATURNS RINGS; SURFACE; SATELLITES AB During Cassini's T44 flyby of Titan (May 28, 2008), the Cassini SAR (synthetic aperture radar) revealed sinuous channels in the Southwest of Xanadu. These channels feature very large radar cross-sections, up to 5 dB, whereas the angle of incidence was relatively high, similar to 20 degrees. This backscatter is larger than allowed by the coherent backscatter model considered to explain the unusual reflective and polarization properties of the icy satellites and only a few radar scattering mechanisms can be responsible for such high radar returns. The presence of rounded (icy) pebbles with size larger than the radar wavelength (2.18 cm) is proposed to explain the large radar cross-sections measured in these units. The radar-bright channels are thus interpreted as riverbeds, where debris, likely shaped and transported by fluvial activity, have been deposited. Similar debris were observed in the landing site of the Huygens probe. This work may point the way to an explanation for the enhanced brightness of other fluvial regions of Titan. (C) 2009 Elsevier Inc. All rights reserved. C1 [Le Gall, A.; Janssen, M. A.; Wall, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Paillou, P.] Univ Bordeaux 1, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Planetary Explorat Grp, Dept Space, Laurel, MD 20723 USA. RP Le Gall, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alice.Le.Gall@jpl.nasa.gov RI Lorenz, Ralph/B-8759-2016 OI Lorenz, Ralph/0000-0001-8528-4644 FU NASA FX We gratefully acknowledge those who designed, developed and operate the Cassini/Huygens mission, which is a joint endeavor of NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) and is managed by JPL/Caltech under a contract with NASA. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to thank H.U. Keller and M. Kuppers for sharing their size statistic analysis of the pebbles of the Huygens landing site. Fig. 7 is extracted from Keller et al. (2008). They are also grateful to Alain Reineix and Christophe Guiffaut from XLIM, Limoges, France who designed the TEMSI-FD code and whish to thank two anonymous reviewers for their insightful and thorough reviews. A. Le Gall is supported by the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities. NR 77 TC 24 Z9 24 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 948 EP 958 DI 10.1016/j.icarus.2009.12.027 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900039 ER PT J AU Robuchon, G Choblet, G Tobie, G Cadek, O Sotin, C Grasset, O AF Robuchon, G. Choblet, G. Tobie, G. Cadek, O. Sotin, C. Grasset, O. TI Coupling of thermal evolution and despinning of early Iapetus SO ICARUS LA English DT Article DE Ices; Iapetus; Interiors; Thermal histories; Rotational dynamics ID TEMPERATURE-DEPENDENT VISCOSITY; EARLY SOLAR-SYSTEM; ICY SATELLITES; GALILEAN SATELLITES; POLYCRYSTALLINE ICE; INTERNAL STRUCTURE; EQUATORIAL RIDGE; CONVECTION; ORIGIN; MANTLE AB The Cassini mission revealed two spectacular characteristics of Iapetus: (1) a geologically old and high equatorial ridge, which is unique in the Solar System and (2) a large flattening of 35 km consistent with the equilibrium figure for a hydrostatic body rotating with a period of 1611, whereas the current spin period is 79.33 days. This study describes three-dimensional simulations of solid-state convection within an undifferentiated Iapetus. It investigates the implications for the evolution of the interior thermal structure and its spin rate and global shape using radially layered viscoelastic models. The role of the concentration in the short-lived radiogenic element [(26)Al], just after accretion is completed, is specifically addressed. The first result is to show that whatever the [(26)Al] value, convection occurs. As suggested by Castillo-Rogez et al. [Castillo-Rogez, J., Matson, D., Sotin, C., Johnson, T., Lunine, J., Thomas, P. [2007] Icarus, 190, 179-202], convection reduces the warming of the interior compared to the conductive evolution and therefore limits the conditions for despinning. In our calculations, two conceptual linear viscoelastic models are used. When considering a Maxwell rheology, the interior temperature (viscosity) never reaches a value high (low) enough to induce despinning. In order to promote dissipation at low temperature, a Burgers rheology, which includes an additional dissipation peak, is introduced. For favorable parameter values, this latter rheology leads to despinning. However, only models associated with large amounts of short-lived radiogenic elements ([(26)Al] >= 25 ppb) lead to the observed flattening. This suggests that the accretion process needs to be completed shortly after the formation of CAIs (Calcium-Aluminum-rich Inclusions) (<= 4 Myr). For[(26)Al] varying between 72 and 46 ppb, the observed flattening is obtained only for a limited range of initial spin period, between 9.5 and 10.2 h. For [(26)Al] ranging between 30 and 15 ppb, initial spin rates smaller than 8.5 h are required. For smaller values of [(26)Al], the body is too cold and viscous to acquire a significant flattening even if a rotation period close to the body disruption limit is considered. Even with a thin lithosphere during the early stage, our simulations show that Iapetus never reaches the equilibrium figure for a hydrostatic body due to the non-zero rigidity of the lithosphere. The 35 km value of the flattening is the result of the partial relaxation of an ancient larger flattening ranging between 45 and 80 km, depending on the evolution of the lithosphere thickness mainly controlled by the radiogenic content. A thin lithosphere is consistent with an early building of the equatorial ridge. The lithosphere thickening due to interior cooling can explain the preservation of the ridge throughout the remaining evolution of Iapetus. (C) 2009 Elsevier Inc. All rights reserved. C1 [Robuchon, G.; Choblet, G.; Tobie, G.; Grasset, O.] Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. [Choblet, G.; Tobie, G.; Grasset, O.] Univ Nantes, CNRS, UMR 6112, F-44322 Nantes, France. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cadek, O.] Charles Univ Prague, Fac Math & Phys, Dept Geophys, Prague, Czech Republic. RP Robuchon, G (reprint author), Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. EM guillaume.robuchon@univ-nantes.fr RI Cadek, Ondrej/P-6527-2016 OI Cadek, Ondrej/0000-0001-8331-3093 FU Ministry of Education in the Czech Republic [MSM 0021620860]; NASA; Charles University [GAUK 280/2006/BGEO/MFF] FX We thank Julie Castillo-Rogez for her comments during the course of this study. G. Choblet, O. Grasset, G. Robuchon and G. Tobie benefited from ANR ETHER and PNP-INSU in France. O. Cadek benefited from Charles University Grant GAUK 280/2006/BGEO/MFF as well as the research project MSM 0021620860 of the Ministry of Education in the Czech Republic. Part of the work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. NR 69 TC 20 Z9 20 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 959 EP 971 DI 10.1016/j.icarus.2009.12.002 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900040 ER PT J AU Anderson, RC Beegle, LW Peters, GH Fleming, GM Jandura, L Kriechbaum, K Manatt, K Okon, A Pounders, E Sollitt, L Sunshine, D AF Anderson, Robert C. Beegle, Luther W. Peters, Gregory H. Fleming, Gerald M., II Jandura, Louise Kriechbaum, Kristo Manatt, Kenneth Okon, Avi Pounders, Erik Sollitt, Luke Sunshine, Dan TI Particle transport and distribution on the Mars Science Laboratory Mission: Effects of triboelectric charging (vol 204, pg 545, 2009) SO ICARUS LA English DT Correction C1 [Anderson, Robert C.; Beegle, Luther W.; Peters, Gregory H.; Fleming, Gerald M., II; Jandura, Louise; Kriechbaum, Kristo; Manatt, Kenneth; Okon, Avi; Pounders, Erik; Sunshine, Dan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sollitt, Luke] Northrop Grumman Aeronaut Syst, Sensors & Instruments Dept, Redondo Beach, CA 90278 USA. RP Beegle, LW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Luther.Beegle@jpl.nasa.gov NR 3 TC 0 Z9 0 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2010 VL 207 IS 2 BP 1013 EP 1013 DI 10.1016/j.icarus.2010.03.018 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 597VS UT WOS:000277790900044 ER PT J AU Darr, S Ricks, W Lemos, KA AF Darr, Stephen Ricks, Wendell Lemos, Katherine A. TI Safer Systems: A NextGen Aviation Safety Strategic Goal SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article ID AUTOMATION AB The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen) [1]. The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goals of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies, and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces; 2) provide safety enhancements for airborne systems; and 3) provide safety enhancements for ground-based systems. Our goal is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies. C1 [Darr, Stephen] Dynam Aerosp Inc, Sharon, MA USA. [Ricks, Wendell; Lemos, Katherine A.] NASA, Hampton, VA USA. RP Darr, S (reprint author), Dynam Aerosp Inc, Sharon, MA USA. NR 11 TC 3 Z9 3 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUN PY 2010 VL 25 IS 6 BP 9 EP 14 PG 6 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 663PE UT WOS:000282899000002 ER PT J AU Del Castillo, L Moussessian, A McPherson, R Zhang, T Hou, ZW Dean, R Johnson, RW AF Del Castillo, Linda Moussessian, Alina McPherson, Ryan Zhang, Tan Hou, Zhenwei Dean, Robert Johnson, R. Wayne TI Flexible Electronic Assemblies for Space Applications SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB This describes the development and evaluation of advanced technologies for the integration of electronic devices within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible (liquid crystal polymer (LCP) and polyimide (PI) circuits, using gold thermo-compression flip chip bonding, and embedding them within the material. The influence of temperature and flexure on the electrical behavior of active embedded assemblies was evaluated. In addition, the long-term thermal cycle resistance of the passive daisy chain assemblies was determined within the Mil-Std (-55 degrees to +125 degrees C), extreme low #1 (-125 degrees to +85 degrees C), and extreme low #2 (-125 degrees to +125 degrees C) temperature ranges. The results of these evaluations will be discussed, along with the application of this technology for future NASA missions. C1 [Del Castillo, Linda; Moussessian, Alina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McPherson, Ryan; Zhang, Tan; Hou, Zhenwei; Dean, Robert; Johnson, R. Wayne] Auburn Univ, Auburn, AL 36849 USA. RP Del Castillo, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD JUN PY 2010 VL 25 IS 6 BP 25 EP 29 PG 5 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 663PE UT WOS:000282899000005 ER PT J AU Campbell, JR Reid, JS Westphal, DL Zhang, JL Hyer, EJ Welton, EJ AF Campbell, James R. Reid, Jeffrey S. Westphal, Douglas L. Zhang, Jianglong Hyer, Edward J. Welton, Ellsworth J. TI CALIOP Aerosol Subset Processing for Global Aerosol Transport Model Data Assimilation SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Aerosols; laser radar; modeling; satellite applications AB A system for processing Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite-based 0.532 and 1.064 mu m elastic and polarization lidar datasets for global aerosol transport model assimilation is described. A method for constructing one-degree along-track and cloud-free signal composite averages, consistent with Navy Aerosol Analysis and Prediction System (NAAPS) model gridding, using CALIOP Level 1B attenuated backscatter and Level 2 cloud boundary-height products is outlined. Optimal vertical resolutions and relative signal uncertainties for the composite signal averages are described for both day and nighttime measurement scenarios. Depolarization profiles are described for the 0.532 mu m channel as well as attenuated color ratio profiles using 0.532 and 1.064 mu m attenuated backscatter measurements. Constrained by NAAPS model aerosol optical depths, processed attenuated backscatter profiles are inverted to solve for extinction and backscatter coefficients, their ratio, and extinction coefficient profiles which serve as the basis for data assimilation. C1 [Campbell, James R.; Hyer, Edward J.] USN, Res Lab, Univ Corp, Atmospher Res Visiting Scientist Programs, Monterey, CA 93943 USA. [Zhang, Jianglong] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Welton, Ellsworth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Campbell, JR (reprint author), USN, Res Lab, Univ Corp, Atmospher Res Visiting Scientist Programs, Monterey, CA 93943 USA. EM jamesc@ucar.edu; jeffrey.reid@nrlmry.navy.mil; dou-glas.westphal@nrlmry.navy.mil; jzhang@aero.und.edu; ehyer@ucar.edu; Ellsworth.J.Welton@nasa.gov RI Hyer, Edward/E-7734-2011; Welton, Ellsworth/A-8362-2012; Campbell, James/C-4884-2012; Reid, Jeffrey/B-7633-2014 OI Hyer, Edward/0000-0001-8636-2026; Campbell, James/0000-0003-0251-4550; Reid, Jeffrey/0000-0002-5147-7955 FU National Aeronautics and Space Administration [NNH07AG441]; Office of Naval Research [32, 35] FX Manuscript received April 06, 2009; revised September 09, 2009; accepted December 15, 2009. Current version published May 19, 2010. This work was supported by the National Aeronautics and Space Administration under Grant NNH07AG441 and by the Office of Naval Research Codes 32 and 35. NR 0 TC 12 Z9 12 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2010 VL 3 IS 2 BP 203 EP 214 DI 10.1109/JSTARS.2010.2044868 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 599DJ UT WOS:000277890100005 ER PT J AU Llombart, N Cooper, KB Dengler, RJ Bryllert, T Siegel, PH AF Llombart, Nuria Cooper, Ken B. Dengler, Robert J. Bryllert, Tomas Siegel, Peter H. TI Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Reflector antennas; scanning antennas; submillimeter-wavelength imaging; terahertz radar; THz ID GREGORIAN ANTENNAS; ARRAY AB We present the design of a reflector system that can rapidly scan and refocus a terahertz beam for high-resolution standoff imaging applications. The proposed optical system utilizes a confocal Gregorian geometry with a small mechanical rotating mirror and an axial displacement of the feed. For operation at submillimeter wavelengths and standoff ranges of many meters, the imaging targets are electrically very close to the antenna aperture. Therefore the main reflector surface must be an ellipse, instead of a parabola, in order to achieve the best imaging performance. Here we demonstrate how a simple design equivalence can be used to generalize the design of a Gregorian reflector system based on a paraboloidal main reflector to one with an ellipsoidal main reflector. The system parameters are determined by minimizing the optical path length error, and the results are validated with numerical simulations from the commercial antenna software package GRASP. The system is able to scan the beam over 0.5 m in cross-range at a 25 m standoff range with less than 1% increase of the half-power beam-width. C1 [Llombart, Nuria; Cooper, Ken B.; Dengler, Robert J.; Bryllert, Tomas; Siegel, Peter H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bryllert, Tomas] Wasa Millimeter Wave AB, S-42341 Torslanda, Sweden. [Siegel, Peter H.] CALTECH, Dept Biol, Pasadena, CA 91125 USA. RP Llombart, N (reprint author), Univ Complutense Madrid, Opt Dept, E-28040 Madrid, Spain. EM nuria.llombart@opt.ucm.es; phs@caltech.edu FU National Aeronautics and Space Administration; Naval Explosive Ordnance Disposal Technology Division; DoD Physical Security Equipment Action Group (PSEAG) FX Manuscript received July 01, 2009; revised November 16, 2009; accepted December 25, 2009. Date of publication March 29, 2010; date of current version June 03, 2010. This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported under a contract to the California Institute of Technology, Division of Biology, by the Naval Explosive Ordnance Disposal Technology Division, with funding provided by the DoD Physical Security Equipment Action Group (PSEAG). NR 26 TC 29 Z9 30 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2010 VL 58 IS 6 BP 1834 EP 1841 DI 10.1109/TAP.2010.2046860 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 607UF UT WOS:000278531600001 ER PT J AU Pogorzelski, RJ AF Pogorzelski, Ronald J. TI Experimental Demonstration of the Extended Probe Instrument Calibration (EPIC) Technique SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Anechoic chambers (electromagnetic); antenna measurements; near-field far-field transformation AB A chamber calibration technique for spherical near-field antenna measurements proposed by Pogorzelski is experimentally demonstrated. The chamber was purposely degraded by introducing a metal plate situated so as to produce a strong specular reflection from the antenna under test to the chamber probe. The effects of this artifact were easily observed in the raw data. The chamber with the artifact was calibrated using an open ended waveguide calibration antenna and the resulting calibration coefficients were used to correct the raw measurement producing a result very similar to the measurement carried out in the undegraded chamber over about 30 to 35 dB of dynamic range. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pogorzelski, RJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM pogo@ieee.org NR 2 TC 4 Z9 4 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2010 VL 58 IS 6 BP 2093 EP 2097 DI 10.1109/TAP.2010.2048868 PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 607UF UT WOS:000278531600030 ER PT J AU Kashyap, AS Mantooth, HA Vo, TA Mojarradi, M AF Kashyap, Avinash S. Mantooth, H. Alan Vo, Tuan A. Mojarradi, Mohammad TI Compact Modeling of LDMOS Transistors for Extreme Environment Analog Circuit Design SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Cryogenic; extreme environment; high-voltage (HV) MOSFET; impurity freeze-out; laterally diffused MOS (LDMOS); MOS Model 20 (MM20) ID QUASI-SATURATION; MOSFETS; TEMPERATURES; IONIZATION AB The cryogenic characterization (93 K/-180 degrees C to 300 K/27 degrees C) and compact modeling of a high-voltage (HV) laterally diffused MOS (LDMOS) transistor that exhibits carrier freeze-out are presented in this paper. Unlike low-voltage MOS devices, it was observed that HVMOS structures experience freeze-out effects at much higher temperatures, resulting in an output current roll-off beyond a transition temperature. Standard compact models generally do not guarantee performance below 218 K (-55 degrees C), and freeze-out effects are certainly not incorporated in them. This causes the models to fail to track at lower temperatures, and designers relying on these models would be misled. In this paper, the temperature-scaling equations of the MOS Model 20 LDMOS model are modified to reflect the device operation down to 93 K, which is sufficient for designing sensor interface circuitry for lunar applications. The model is then validated against an LDMOS device designed by engineers at the Jet Propulsion Laboratory, using the IBM SiGe 5AM process. A modified parameter extraction procedure has also been developed. This generalized approach is compact model friendly and can also be implemented for other standard models. Analog circuits designed with this new model are currently being tested at the International Space Station. C1 [Kashyap, Avinash S.; Mantooth, H. Alan] Univ Arkansas, Fayetteville, AR 72701 USA. [Vo, Tuan A.; Mojarradi, Mohammad] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kashyap, AS (reprint author), Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA. EM avi.kash@gmail.com; mantooth@uark.edu; tuan.a.vo@jpl.nasa.gov; mohammad.m.mojarradi@jpl.nasa.gov FU National Aeronautics and Space Administration [NNL05AA37C]; Jet Propulsion Laboratory; IBM SiGe FX Manuscript received October 15, 2009; revised March 1, 2010; accepted March 5, 2010. Date of publication April 15, 2010; date of current version May 19, 2010. This work was supported by the National Aeronautics and Space Administration under Grant NNL05AA37C. The review of this paper was arranged by Editor M. A. Shibib.; The authors would like to thank C. Moore, A. Keyes, M. Watson, M. Beatty, L. Nadeau of the National Aeronautics and Space Administration, E. Kolawa of the Jet Propulsion Laboratory, and the IBM SiGe development group for their support and the SiGe ETDP team for the many contributions, including B. Blalock, W. Johnson, R. Garbos, R. Berger, F. Dai, G. Niu, L. Peltz, P. McCluskey, M. Alles, R. Reed, A. Joseph, C. Eckert, J. Holmes, and J. D. Cressler. The authors would also like to thank NXP Semiconductors for providing the Verilog-A code of the MM20 model and Lynguent for providing ModLyng. NR 18 TC 7 Z9 7 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD JUN PY 2010 VL 57 IS 6 BP 1431 EP 1439 DI 10.1109/TED.2010.2046073 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 599BD UT WOS:000277884100031 ER PT J AU Huang, SW Tsang, L Njoku, EG Chan, KS AF Huang, Shaowu Tsang, Leung Njoku, Eni G. Chan, Kuan Shan TI Backscattering Coefficients, Coherent Reflectivities, and Emissivities of Randomly Rough Soil Surfaces at L-Band for SMAP Applications Based on Numerical Solutions of Maxwell Equations in Three-Dimensional Simulations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave remote sensing; soil moisture; random rough surface; NMM3D ID MONTE-CARLO SIMULATIONS; BOUNDARY-CONDITION METHOD; SCATTERING; ENHANCEMENT; MOISTURE; WAVES AB We used Numerical Maxwell Model in 3-D Simulations (NMM3D) to study the backscattering coefficients, coherent reflectivities, and emissivities of soil surfaces using Gaussian random rough surfaces with exponential correlation functions. The surface area used is 8 by 8 square wavelengths. A total of close to 200 cases are computed by varying rms height, correlation length, and soil permittivity. We consider a 40 degrees incidence angle. For each case, 15 realizations of rough surface profiles are generated, and 30 solutions of Maxwell equations are computed because of two polarizations. The method for solving the Maxwell equations is based on the Method of Moments (MoM) with Rao-Wilton-Glisson (RWG) basis functions. The solutions are accelerated by the sparse matrix canonical grid method implemented on parallel computing. The rms height varies up to 0.126 wavelength. The results are compared with the Dubois formulation, Small Perturbation Method (SPM), Kirchhoff Approximation (KA), and Advanced Integral Equation Model (AIEM). The NMM3D results are also compared with VV and HH backscatter data of soil surfaces where ground truth rms heights and correlation lengths were both measured. Good agreement is found between the NMM3D results and experimental measurement data. Based on the computed cases, interpolation tables are derived that can be directly applied to L-band active and passive microwave remote sensing of soil moisture, such as for the upcoming Soil Moisture Active and Passive (SMAP) mission. C1 [Huang, Shaowu; Tsang, Leung] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chan, Kuan Shan] Natl Cent Univ, Ctr Space & Remote Sensing Res, Chungli 32054, Taiwan. RP Huang, SW (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM tsang@ee.washington.edu FU National Aeronautics and Space Administration's Soil Moisture Active and Passive mission FX Manuscript received October 18, 2009; revised December 22, 2009. Date of publication March 18, 2010; date of current version May 19, 2010. This work was supported by the National Aeronautics and Space Administration's Soil Moisture Active and Passive mission. NR 24 TC 46 Z9 47 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2010 VL 48 IS 6 BP 2557 EP 2568 DI 10.1109/TGRS.2010.2040748 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 597PY UT WOS:000277772200010 ER PT J AU Larsen, KW Jurgens, RF Haldemann, AFC Slade, MA Rumsey, HC AF Larsen, Kristopher W. Jurgens, Raymond F. Haldemann, Albert F. C. Slade, Martin A. Rumsey, Howard C., Jr. TI Terrestrial Quadstatic Interferometric Radar Observations of Mars SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Planets; radar data processing; radio interferometry; remote sensing ID MARTIAN TOPOGRAPHY; SURFACE-PROPERTIES; LUNAR TOPOGRAPHY; VENUS; EXPLORATION; LOCALIZATION; BRIGHTNESS; SCATTERING; IMAGES; TITAN AB A new technique for resolving the ambiguity inherent in delay-Doppler radar observations of Mars has been developed and implemented using a suite of data collected during 2001, 2003, and 2005 oppositions. New recording systems, processing techniques, and, most importantly, the addition of a fourth receiving telescope allow for the high-resolution mapping of Mars' radar properties. In this paper, we develop a maximum likelihood method to probabilistically estimate the contributions to the received radar signal from the ambiguous resolution cells. Our delay-Doppler interferometric radar observations are designed to map the radar properties of Mars surface while disregarding the historically typical goal of measuring topography, instead using Mars' topography as a priori knowledge. Example data from the September 27, 2003 observation over Mars' southern highlands, including Ma'adim Vallis and Gusev Crater, and the June 7, 2001 observation crossing Terra Meridiani are presented to demonstrate the effectiveness of the technique. Analysis of these observations predicted a root-mean-square ( rms) roughness, or slopes, for the Mars Exploration Rover ( MER) Spirit landing site of 1.80 degrees +/- 0.75 degrees. Similarly, analysis of the Gusev Crater landing site of MER Opportunity predicted rms slopes of 1.1 degrees +/- 0.1 degrees. Both predictions were validated by analysis of in situ rover images. C1 [Larsen, Kristopher W.; Jurgens, Raymond F.; Haldemann, Albert F. C.; Slade, Martin A.; Rumsey, Howard C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Larsen, KW (reprint author), Amer Phys Soc, Washington, DC 20004 USA. EM Larsen.Kristopher@gmail.com NR 47 TC 1 Z9 1 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2010 VL 48 IS 6 BP 2670 EP 2684 DI 10.1109/TGRS.2010.2040084 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 597PY UT WOS:000277772200020 ER PT J AU Skuza, JR Clavero, C Yang, K Wincheski, B Lukaszew, RA AF Skuza, J. R. Clavero, C. Yang, K. Wincheski, B. Lukaszew, R. A. TI Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films With Perpendicular Magnetic Anisotropy SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Magnetic domains; perpendicular magnetic anisotropy (PMA); perpendicular magnetic recording; thin films ID CHEMICAL ORDER; STRAIN RELAXATION; LAYER THICKNESS; GROWTH AB L1(0) order was optimized in FePd epitaxial thin films prepared using dc magnetron sputter deposition on MgO(001) substrates by investigating various growth temperatures. A series of films was grown at the optimal temperature with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured magnetic domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy. C1 [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Clavero, C.; Yang, K.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Wincheski, B.] NASA, Nondestruct Evaluat Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Skuza, JR (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM jrskuza@wm.edu RI Skuza, Jonathan/E-9048-2010; Clavero, Cesar/C-4391-2008; Yang, Kaida/K-7916-2012 OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141; Yang, Kaida/0000-0003-2018-2625 FU Virginia Space Grant Consortium; National Science Foundation [DMR-0355171]; Research Corporation; American Chemical Society [PRF-41319-AC10] FX The authors would like to thank K. Seo, J. Lu, and S. A. Wolf for technical collaboration. This work was supported by the Virginia Space Grant Consortium, National Science Foundation (DMR-0355171), Research Corporation (Cottrell Scholar Award), and the American Chemical Society (PRF-41319-AC10). NR 24 TC 15 Z9 15 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 J9 IEEE T MAGN JI IEEE Trans. Magn. PD JUN PY 2010 VL 46 IS 6 BP 1886 EP 1889 DI 10.1109/TMAG.2009.2039923 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 601DH UT WOS:000278037800159 ER PT J AU Fox, BP Simmons-Potter, K Thomes, WJ Kliner, DAV AF Fox, Brian P. Simmons-Potter, Kelly Thomes, William J., Jr. Kliner, Dahv A. V. TI Gamma-Radiation-Induced Photodarkening in Unpumped Optical Fibers Doped With Rare-Earth Constituents SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Co-60; dose rate effects; passive irradiation; photodarkening; radiation-induced absorption; rare-earth doped fibers; unpumped amplifier ID SILICA FIBERS; AMPLIFIERS; POWER; ENVIRONMENT; GLASSES; GAIN AB Fibers doped with rare-earth constituents such as Er(3+) and Yb(3+) are exceedingly important to designers of fiber-optical systems due to their ability to amplify signals in the near infra-red, low-absorption regions of conventional silicate fibers. Extending the range of operating conditions for these systems to include adverse radiation environments requires a detailed study of the behavior of the fiber when subjected to relevant radiation fluxes of various cumulative doses and dose rates. Of particular interest in many applications is the effect of gamma radiation, which is known to degrade optical signal transmittance by creating absorption centers in the material. A study of radiation-induced photodarkening effect in unpumped Er(3), Yb(3+), and Er(3+)/Yb(3+) co-doped fibers under Co(60) gamma-irradiation is the focus of this paper. Specifically, the temporal evolution of the fiber transmittance in the near infra-red region from similar to 1.0 mu m-1.6 mu m was investigated, subjected to a multitude of exposure conditions spanning different dose-rates and total accumulated doses. The Er(3+)/Yb(3+) co-doped fiber was found to be the most radiation resistant, while the Er(3+) doped fiber was found to be the most radiation sensitive in this wavelength region. Dose rate and compositional dependencies were also observed in all fibers. C1 [Fox, Brian P.; Simmons-Potter, Kelly] Univ Arizona, Tucson, AZ USA. [Thomes, William J., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kliner, Dahv A. V.] JDS Uniphase Corp, Milpitas, CA 95035 USA. RP Fox, BP (reprint author), Univ Arizona, Tucson, AZ USA. EM kspotter@ece.arizona.edu FU University of Arizona and the State of Arizona TRIF funds; Laboratory Directed Research and Development, Sandia National Laboratories [DE-AC04-94AL85000] FX Manuscript received August 17, 2009; revised November 13, 2009; accepted January 13, 2010. Date of current version June 16, 2010. This work was supported jointly by the University of Arizona and the State of Arizona TRIF funds and by Laboratory Directed Research and Development, Sandia National Laboratories, under Contract DE-AC04-94AL85000. NR 36 TC 21 Z9 22 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2010 VL 57 IS 3 BP 1618 EP 1625 DI 10.1109/TNS.2010.2043854 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 611JV UT WOS:000278812300014 ER PT J AU De Geronimo, G Rehak, P Ackley, K Carini, G Chen, W Fried, J Keister, J Li, SR Li, Z Pinelli, DA Siddons, DP Vernon, E Gaskin, JA Ramsey, BD Tyson, TA AF De Geronimo, Gianluigi Rehak, Pavel Ackley, Kim Carini, Gabriella Chen, Wei Fried, Jack Keister, Jeffrey Li, Shaorui Li, Zheng Pinelli, Donald A. Siddons, D. Peter Vernon, Emerson Gaskin, Jessica A. Ramsey, Brian D. Tyson, Trevor A. TI ASIC for SDD-Based X-Ray Spectrometers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; charge sharing; high rate; LVDS; PUR; SDD ID SILICON DRIFT DETECTORS; CHARGE-SENSITIVE PREAMPLIFIER; CMOS PEAK DETECT; CONTINUOUS RESET; READOUT CIRCUIT; HOLD CIRCUITS; PULSE; JFET; CONFIGURATION; SPECTROSCOPY AB We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm(2) and dissipates with the sensor biased about 15 m W/cm(2). As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 degrees C show a FWHM of 145 eV at the 5.9 keV peak of a (55)Fe source, and less than 80 eV on a test-pulse line at 200 eV. C1 [De Geronimo, Gianluigi; Rehak, Pavel; Ackley, Kim; Carini, Gabriella; Chen, Wei; Fried, Jack; Keister, Jeffrey; Li, Shaorui; Li, Zheng; Pinelli, Donald A.; Siddons, D. Peter; Vernon, Emerson] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gaskin, Jessica A.; Ramsey, Brian D.] George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Tyson, Trevor A.] New Jersey Inst Technol, Newark, NJ 07102 USA. RP De Geronimo, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM degeronimo@bnl.gov; rehak@bnl.gov; ackley@bnl.gov; carini@bnl.gov; weichen@bnl.gov; jfried@bnl.gov; jkeister@bnl.gov; shaoruili@bnl.gov; zhengl@bnl.gov; pinelli@bnl.gov; siddons@bnl.gov; evernon@bnl.gov; jessica.gaskin@nasa.gov; brian.ramsey@nasa.gov; Tyson@adm.njit.edu NR 43 TC 10 Z9 10 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2010 VL 57 IS 3 BP 1654 EP 1663 DI 10.1109/TNS.2010.2044809 PN 3 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 611JV UT WOS:000278812300019 ER PT J AU Simon, D Simon, DL AF Simon, Dan Simon, Donald L. TI Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared-Residuals Approach SO IEEE TRANSACTIONS ON RELIABILITY LA English DT Article DE Aircraft turbofan engine; chi-squared distribution; confusion matrix; diagnosis probability matrix; fault detection and isolation ID DIAGNOSIS; SUPERVISION; OBSERVERS; ACTUATOR; SYSTEMS AB Given a system which can fail in 1 of n different ways, a fault detection and isolation (FDI) algorithm uses sensor data to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, also called a diagnosis probability matrix, which indicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper, we perform FDI using sum-of-squared residuals (SSRs). We assume that the sensor residuals are s-independent and Gaussian, which gives the SSRs chi-squared distributions. We then generate analytic lower, and upper bounds on the confusion matrix elements. This approach allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bounds are verified with simulated aircraft engine data. C1 [Simon, Dan] Cleveland State Univ, Dept Elect & Comp Engn, Cleveland, OH 44115 USA. [Simon, Donald L.] NASA Glenn Res Ctr, Cleveland, OH USA. RP Simon, D (reprint author), Cleveland State Univ, Dept Elect & Comp Engn, Cleveland, OH 44115 USA. EM d.j.simon@csuohio.edu; donald.l.simon@grc.nasa.gov FU NASA FX Manuscript received April 05, 2009; revised July 08, 2009, September 04, 2009, and October 16, 2009; accepted October 26, 2009. Date of publication-April 19, 2010; date of current version June 03, 2010. This work was supported by the NASA Faculty Fellowship Program. Associate Editor: H. Li. NR 28 TC 5 Z9 5 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9529 J9 IEEE T RELIAB JI IEEE Trans. Reliab. PD JUN PY 2010 VL 59 IS 2 BP 287 EP 296 DI 10.1109/TR.2010.2046772 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 607VO UT WOS:000278535600003 ER PT J AU Blackmore, L Ono, M Bektassov, A Williams, BC AF Blackmore, Lars Ono, Masahiro Bektassov, Askar Williams, Brian C. TI A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control SO IEEE TRANSACTIONS ON ROBOTICS LA English DT Article DE Chance constraints; hybrid discrete-continuous systems; nonholonomic motion planning; planning under stochastic uncertainty ID MARKOV LINEAR-SYSTEMS; ROBUST-CONTROL AB Robotic systems need to be able to plan control actions that are robust to the inherent uncertainty in the real world. This uncertainty arises due to uncertain state estimation, disturbances, and modeling errors, as well as stochastic mode transitions such as component failures. Chance-constrained control takes into account uncertainty to ensure that the probability of failure, due to collision with obstacles, for example, is below a given threshold. In this paper, we present a novel method for chance-constrained predictive stochastic control of dynamic systems. The method approximates the distribution of the system state using a finite number of particles. By expressing these particles in terms of the control variables, we are able to approximate the original stochastic control problem as a deterministic one; furthermore, the approximation becomes exact as the number of particles tends to infinity. This method applies to arbitrary noise distributions, and for systems with linear or jump Markov linear dynamics, we show that the approximate problem can be solved using efficient mixed-integer linear-programming techniques. We also introduce an important weighting extension that enables the method to deal with low-probability mode transitions such as failures. We demonstrate in simulation that the new method is able to control an aircraft in turbulence and can control a ground vehicle while being robust to brake failures. C1 [Blackmore, Lars] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ono, Masahiro; Williams, Brian C.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Bektassov, Askar] Eni E&P, I-00144 Rome, Italy. RP Blackmore, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lars@jpl.nasa.gov; hiro_ono@mit.edu; askar.bektassov@gmail.com; williams@mit.edu FU National Aeronautics and Space Administration (NASA) [NNA04CK91A] FX This work was supported by the National Aeronautics and Space Administration (NASA) under the NASA Award NNA04CK91A. NR 57 TC 84 Z9 87 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1552-3098 J9 IEEE T ROBOT JI IEEE Trans. Robot. PD JUN PY 2010 VL 26 IS 3 BP 502 EP 517 DI 10.1109/TRO.2010.2044948 PG 16 WC Robotics SC Robotics GA 607XW UT WOS:000278541600008 ER PT J AU Giannakopoulou, D Pasareanu, CS AF Giannakopoulou, Dimitra Pasareanu, Corina S. TI Automated Compositional Verification SO IET SOFTWARE LA English DT Editorial Material C1 [Giannakopoulou, Dimitra; Pasareanu, Corina S.] NASA, Ames Res Ctr, Robust Software Engn Grp, Washington, DC 20546 USA. [Pasareanu, Corina S.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Giannakopoulou, D (reprint author), NASA, Ames Res Ctr, Robust Software Engn Grp, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8806 J9 IET SOFTW JI IET Softw. PD JUN PY 2010 VL 4 IS 3 BP 179 EP 180 DI 10.1049/iet-sen.2010.9053 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 617CO UT WOS:000279258600001 ER PT J AU Nishikawa, KI Nimiec, J Medvedev, M Zhang, B Hardee, P Mizuno, Y Nordlund, A Frederiksen, J Sol, H Pohl, M Hartmann, DH Oka, M Fishman, JF AF Nishikawa, K. -I. Nimiec, J. Medvedev, M. Zhang, B. Hardee, P. Mizuno, Y. Nordlund, A. Frederiksen, J. Sol, H. Pohl, M. Hartmann, D. H. Oka, M. Fishman, J. F. TI RADIATION FROM RELATIVISTIC SHOCKS WITH TURBULENT MAGNETIC FIELDS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT International Meeting on High-Energy Phenomena in Relativistic Outflows II CY OCT 26-30, 2009 CL Burnod Aires, ARGENTINA DE Weibel instability; particle acceleration; radiation ID RAY BURST SOURCES; PARTICLE-ACCELERATION; COLLISIONLESS SHOCKS; WEIBEL INSTABILITY; PROMPT EMISSION; PLASMA; GENERATION; EVOLUTION AB Using our new 3D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. We have also performed simulations with electron-ion jets. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability for electron-positron jets and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks for pair plasma case. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value for pair plasmas. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time-dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on simulations with a small system with two different cases for Lorentz factors (15 and 100). We obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. C1 [Nishikawa, K. -I.; Mizuno, Y.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Nimiec, J.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Medvedev, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Zhang, B.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Hardee, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Nordlund, A.; Frederiksen, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Sol, H.] Observ Paris, LUTH, F-92195 Meudon, France. [Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Hartmann, D. H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Oka, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fishman, J. F.] NASA, MSFC, Huntsville, AL 35805 USA. RP Nishikawa, KI (reprint author), Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. RI Nordlund, Aake/M-4528-2014; Frederiksen, Jacob Trier/P-6757-2015; Mizuno, Yosuke/D-5656-2017 OI Nordlund, Aake/0000-0002-2219-0541; Frederiksen, Jacob Trier/0000-0002-3560-0044; Mizuno, Yosuke/0000-0002-8131-6730 NR 26 TC 7 Z9 7 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUN PY 2010 VL 19 IS 6 BP 715 EP 721 DI 10.1142/S0218271810016865 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 615MU UT WOS:000279140200012 ER PT J AU Gehrels, N Cannizzo, JK AF Gehrels, N. Cannizzo, J. K. TI GAMMA-RAY BURSTS - OBSERVATIONS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT International Meeting on High-Energy Phenomena in Relativistic Outflows II CY OCT 26-30, 2009 CL Burnod Aires, ARGENTINA ID 28 FEBRUARY 1997; HOST GALAXY; AFTERGLOW; GRB-050709; EMISSION; REDSHIFT; SUPERNOVAE; TELESCOPE; DISCOVERY; ORIGIN AB We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high-energy emission. C1 [Gehrels, N.; Cannizzo, J. K.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, CRESST,UMBC, Greenbelt, MD 20771 USA. RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, CRESST,UMBC, Greenbelt, MD 20771 USA. EM neil.gehrels@nasa.gov; john.k.cannizzo@nasa.gov RI Gehrels, Neil/D-2971-2012 NR 33 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUN PY 2010 VL 19 IS 6 BP 977 EP 984 DI 10.1142/S021827181001710X PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 615MU UT WOS:000279140200047 ER PT J AU Ponomarev, AL Huff, J Cucinotta, FA AF Ponomarev, Artem L. Huff, Janice Cucinotta, Francis A. TI The analysis of the densely populated patterns of radiation-induced foci by a stochastic, Monte Carlo model of DNA double-strand breaks induction by heavy ions SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE radiation of human cells; DNA damage foci; DSB; NASA Radiation Track Image model; image segmentation; Monte Carlo method ID HISTONE H2AX PHOSPHORYLATION; GAMMA-H2AX FOCI; IONIZING-RADIATION; PARTICLE RADIATION; EXPOSURE; REPAIR; CELLS; RAYS; DISTRIBUTIONS; VOLUMES AB Purpose: To resolve the difficulty in counting merged DNA damage foci in high-LET (linear energy transfer) ion-induced patterns. Materials and methods: The analysis of patterns of RIF (radiation-induced foci) produced by high-LET Fe and Ti ions were conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Results: The model predicts the spatial and genomic distributions of DNA DSB (double-strand breaks) in a cell nucleus for a particular dose of radiation. We used the model to do analyses for three irradiation scenarios: (i) The ions were oriented perpendicular to the flattened nuclei in a cell culture monolayer; (ii) the ions were parallel to that plane; and (iii) round nucleus. In the parallel scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to determine the DSB yield. Using the model analysis, a researcher can refine the DSB yield per nucleus per particle. We showed that purely geometric artifacts, present in the experimental images, can be analytically resolved with the model, and that the quantisation of track hits and DSB yields can be provided to the experimentalists who use enumeration of radiation-induced foci in immunofluorescence experiment using proteins that detect DNA damage. C1 [Ponomarev, Artem L.; Huff, Janice; Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ponomarev, Artem L.; Huff, Janice] Univ Space Res Assoc, Houston, TX USA. RP Ponomarev, AL (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code SK,2101 NASA Pkwy,Bldg 37,119, Houston, TX 77058 USA. EM artem.l.ponomarev@nasa.gov FU NASA [DE-AIO2-09ER64843] FX The simulations were done on the NASA JSC Beowulf cluster machine. Funding was through the NASA Risk Assessment Project, #DE-AIO2-09ER64843 NR 19 TC 10 Z9 10 U1 2 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JUN PY 2010 VL 86 IS 6 BP 507 EP 515 DI 10.3109/09553001003717175 PG 9 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 620EO UT WOS:000279482000009 PM 20470200 ER PT J AU de los Rios, A Valea, S Ascaso, C Davila, A Kastovsky, J Mckay, CP Gomez-Silva, B Wierzchos, J AF de los Rios, Asuncion Valea, Sergio Ascaso, Carmen Davila, Alfonso Kastovsky, Jan Mckay, Christopher P. Gomez-Silva, Benito Wierzchos, Jacek TI Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert SO INTERNATIONAL MICROBIOLOGY LA English DT Article DE Archaea; Bacteria; Cyanobacteria; prokaryotic diversity; halite evaporites; Atacama Desert ID PROKARYOTIC GENETIC DIVERSITY; MULTIPOND SOLAR SALTERN; NORTHERN CHILE; HALOCOCCUS-SALIFODINAE; BACTERIAL DIVERSITY; SALINITY GRADIENT; ARCHAEAL ISOLATE; SP-NOV.; CYANOBACTERIA; LIFE AB Molecular biology and microscopy techniques were used to characterize the microbial communities inside halite evaporites from different parts of the Atacama Desert. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the evaporite rocks harbor communities predominantly made up of cyanobacteria, along with heterotrophic bacteria and archaea. Different DGGE profiles were obtained for the different sites, with the exception of the cyanobacterial profile, in which only one phylotype was detected across the three sites examined. Chroococcidiopsis-like cells were the only cyanobacterial components of the rock samples, although the phylogenetic study revealed their closer genetic affinity to Halothece genera. Gene sequences of the heterotrophic bacteria and archaea indicated their proximity to microorganisms found in other hypersaline environments. Microorganisms colonizing these halites formed microbial aggregates in the pore spaces between halite crystals, where microbial interactions occur. In this exceptional, salty, porous halite rock habitat, microbial consortia with a community structure probably conditioned by the environmental conditions occupy special microhabitats with physical and chemical properties that promote their survival. [Int Microbiol 2010; 13(2):79-89] C1 [de los Rios, Asuncion; Valea, Sergio; Ascaso, Carmen; Wierzchos, Jacek] CSIC, CCMA, Inst Recursos Natur, Madrid 28006, Spain. [Davila, Alfonso] SETI Inst, Mountain View, CA USA. [Kastovsky, Jan] Univ S Bohemia, Fac Sci, Ceske Budejovice, Czech Republic. [Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gomez-Silva, Benito] Univ Antofagasta, Biochem Unit, Antofagasta, Chile. RP de los Rios, A (reprint author), CSIC, CCMA, Inst Recursos Natur, 115 Bis, Madrid 28006, Spain. EM arios@ccma.csic.es RI Wierzchos, Jacek/F-7036-2011; Ascaso, Carmen/F-5369-2011; Davila, Alfonso/A-2198-2013; de los Rios, Asuncion/L-3694-2014 OI Wierzchos, Jacek/0000-0003-3084-3837; Ascaso, Carmen/0000-0001-9665-193X; Davila, Alfonso/0000-0002-0977-9909; de los Rios, Asuncion/0000-0002-0266-3516 FU Spanish Ministry of Science and Innovation [CGL2007-62875/BOS, CGL2006-04658, CTM2009-12838-CO4-O3]; CSIC, Spain [PIE-631A, PIE-200630/184] FX The authors thank Fernando Pinto and Maria J. Malo for their technical assistance, Sergio Perez-Ortega for useful comments concerning the phylogenetic analysis, and Ana Burton for revising the English. This work was supported by grant CGL2007-62875/BOS, CGL2006-04658 and CTM2009-12838-CO4-O3 from the Spanish Ministry of Science and Innovation and grants PIE-631A and PIE-200630/184 from the CSIC, Spain. NR 50 TC 40 Z9 40 U1 2 U2 39 PU VIGUERA EDITORES, S L PI BARCELONA PA PLAZA TETUAN, 7, BARCELONA, E-08010, SPAIN SN 1139-6709 J9 INT MICROBIOL JI Int. Microbiol. PD JUN PY 2010 VL 13 IS 2 BP 79 EP 89 DI 10.2436/20.1501.01.113 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 648PI UT WOS:000281706000004 PM 20890842 ER PT J AU Han, M Braun, SA Olson, WS Persson, POG Bao, JW AF Han, Mei Braun, Scott A. Olson, William S. Persson, P. Ola G. Bao, Jian-Wen TI Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 for a Winter Storm SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID REMOTE-SENSING APPLICATIONS; MELTING-LAYER MODEL; PART II; PRECIPITATION; SIMULATIONS; PARAMETERIZATION; SENSITIVITY; CONVECTION; MESOSCALE; EVOLUTION AB This paper uses observations from Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI) to evaluate the cloud microphysical schemes in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5; version 3.7.4) for a wintertime frontal precipitation system over the eastern Pacific Ocean. By incorporating a forward radiative transfer model, the radar reflectivity and brightness temperatures are simulated and compared with the observations at PR and TMI frequencies. The main purpose of this study is to identify key differences among the five schemes [including Simple ice, Reisner1, Reisner2, Schultz, and Goddard Space Flight Center (GSFC) microphysics scheme] in the MM5 that may lead to significant departures of simulated precipitation properties from both active (PR) and passive (TMI) microwave observations. Radiative properties, including radar reflectivity, attenuation, and scattering in precipitation liquid and ice layers are investigated. In the rain layer, most schemes are capable of reproducing the observed radiative properties to a reasonable degree; the Reisner2 simulation, however, produces weaker reflectivity and stronger attenuation than the observations, which is possibly attributable to the larger intercept parameter (N(0r)) applied in this run. In the precipitation ice layer, strong evidence regarding the differences in the microphysical and radiative properties between a narrow cold-frontal rainband (NCFR) and a wide cold-frontal rainband (WCFR) within this frontal precipitation system is found. The performances of these schemes vary significantly on simulating the microphysical and radiative properties of the frontal rainband. The GSFC scheme shows the least bias, while the Reisner1 scheme has the largest bias in the reflectivity comparison. It appears more challenging for the model to replicate the scattering signatures obtained by the passive sensor (TMI). Despite the common problem of excessive scattering in the WCFR (stratiform precipitation) region in every simulation, the magnitude of the scattering maximum seems better represented in the Reisner2 scheme. The different types of precipitation ice, snow, and graupel are found to behave differently in the relationship of scattering versus reflectivity. The determinative role of the precipitation ice particle size distribution (intercept parameters) is extensively discussed through sensitivity tests and a single-layer radiative transfer model. C1 [Han, Mei] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Han, Mei; Braun, Scott A.; Olson, William S.] NASA, Mesoscale Atmospher Proc Branch, Atmospheres Lab, GSFC, Greenbelt, MD 20771 USA. [Olson, William S.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Persson, P. Ola G.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Persson, P. Ola G.; Bao, Jian-Wen] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Han, M (reprint author), NASA, Mesoscale Atmospher Proc Branch, Atmospheres Lab, GSFC, Code 613-1, Greenbelt, MD 20771 USA. EM mei.han@nasa.gov RI Han, Mei/H-2344-2012 FU NASA FX The authors thank Dr. Paul Schultz at the NOAA/ESRL for his great help on understanding the Schultz scheme in the MM5. The author is very grateful for many beneficial discussions related to cloud modeling and radar with Drs. Xiaowen Li, Lin Tian, Mircea Grecu, Steve Lang, and Lihua Li at NASA/GSFC. Suggestions from Dr. Grant W. Petty at University of Wisconsin-Madison in the early stage of this study are greatly appreciated. The authors also gratefully acknowledge two anonymous reviewers and Dr. Benjamin Johnson at NASA/GSFC for their very valuable comments. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA Precipitation Measurement Mission science program. NR 33 TC 7 Z9 7 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUN PY 2010 VL 49 IS 6 BP 1129 EP 1148 DI 10.1175/2010JAMC2327.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634SC UT WOS:000280604200005 ER PT J AU Komatsu, H Hashimoto, H Kume, T Tanaka, N Yoshifuji, N Otsuki, K Suzuki, M Kumagai, T AF Komatsu, Hikaru Hashimoto, Hirofumi Kume, Tomonori Tanaka, Nobuaki Yoshifuji, Natsuko Otsuki, Kyoichi Suzuki, Masakazu Kumagai, Tomo'omi TI Modeling Seasonal Changes in the Temperature Lapse Rate in a Northern Thailand Mountainous Area SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID INDO-CHINA PENINSULA; CRYPTOMERIA-JAPONICA PLANTATION; NOCTURNAL DRAINAGE FLOW; DRY VALLEY SLOPES; SURFACE CONDUCTANCE; CANOPY CONDUCTANCE; SLOPING FOREST; GROWING-SEASON; WATER-BALANCE; MONSOON AB Temperature data in the mountain forest regions are often extrapolated from temperature data recorded at base stations at lower elevation. Such extrapolation is often based on elevation differences between target regions and base stations at low elevation assuming a constant temperature lapse rate throughout the year. However, this assumption might be problematic where slope circulation is active and decoupled from the regional circulation. To model the seasonal change in the lapse rate, the authors compared daily maximum (T-max) and minimum temperatures (T-min) observed at a mountain forest site (Kog-Ma; 1300-m altitude) with those observed at the bottom of the basin (Chiang-Mai; 314-m altitude) in northern Thailand, where slope circulation is active and decoupled from the regional circulation. The difference in T-max between Kog-Ma and Chiang-Mai (Delta T-max; Kog-Ma minus Chiang-Mai) was relatively unchanged throughout the year. However, the difference in T-min between Kog-Ma and Chiang-Mai (Delta T-min) changed seasonally. Thus, assuming a constant lapse rate throughout the year could cause large errors in extrapolating T-min data in mountainous areas in northern Thailand. The difference Delta T-min was related to nighttime net radiation (Rn), suggesting that nocturnal drainage flow affects the determination of Delta T-min. This relationship would be useful in formulating seasonal changes in the lapse rate for T-min. As Rn data are generally unavailable for meteorological stations, an index that relates to the lapse rate for T-min and is calculated from T-max and T-min data is proposed. This index might be useful for accurately estimating T-min values in mountainous regions in northern Thailand. C1 [Komatsu, Hikaru; Yoshifuji, Natsuko; Otsuki, Kyoichi; Kumagai, Tomo'omi] Kyushu Univ, Kasuya Res Forest, Fukuoka 8112415, Japan. [Hashimoto, Hirofumi] Calif State Univ Monterey Bay, Div Sci & Environm Policy, Seaside, CA USA. [Hashimoto, Hirofumi] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kume, Tomonori] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 10764, Taiwan. [Tanaka, Nobuaki] Univ Tokyo, Grad Sch Agr & Life Sci, Univ Forests Aichi, Tokyo, Japan. RP Komatsu, H (reprint author), Kyushu Univ, Kasuya Res Forest, 394 Tsubakuro, Fukuoka 8112415, Japan. EM komatsu@forest.kyushu-u.ac.jp RI Kumagai, Tomo'omi/A-4791-2011 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [20780119, 20248014]; Core Research for Evolution Science and Technology of the Japan Science and Technology Agency FX This research was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology through a Grant-in-Aid for Scientific Research (20780119 and 20248014) and by Core Research for Evolution Science and Technology of the Japan Science and Technology Agency. We express our great appreciation to the Thai Meteorological Department and Prof. Jun Matsumoto (TokyoMetropolitan University, Japan) for allowing us to use rainfall data recorded at Chiang-Mai. We also thank Dr. Daisuke Komori (The University of Tokyo, Japan) and Dr. Takehiko Satomura (Kyoto University, Japan) for describing the instrumentation used at the Chiang-Mai station. We are grateful to Dr. Yoshiyuki Miyazawa (Kyushu University, Japan) for fruitful discussion on the photosynthesis of evergreen trees. We acknowledge three anonymous reviewers for providing critical comments. NR 66 TC 6 Z9 6 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUN PY 2010 VL 49 IS 6 BP 1233 EP 1246 DI 10.1175/2010JAMC2297.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634SC UT WOS:000280604200011 ER PT J AU Priestley, KJ Thomas, S Smith, GL AF Priestley, Kory J. Thomas, Susan Smith, G. Louis TI Validation of Point Spread Functions of CERES Radiometers by the Use of Lunar Observations SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID ENERGY SYSTEM CERES; CLOUDS AB The Clouds and the Earth's Radiant Energy System (CERES) scanning radiometers have been operating to make raster scans of the moon on a quarterly basis to validate the point response function for the three channels of flight models 1-4 aboard the Terra and Aqua spacecraft. Instrument pointing accuracy was verified by this method to 0.28 for the total channel of FM-3. The point response functions were computed from the lunar observations and were found to be nominal with the exception of the FM-2 window channel, which was found to have a region of high sensitivity. This anomaly is attributed to a delamination of the detector flake from the heat sink in that region. The influence of this anomaly is accounted for by the in-flight calibration and has no adverse effect on the application of the data. C1 [Priestley, Kory J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thomas, Susan] Sci Syst Applicat Inc, Hampton, VA USA. [Smith, G. Louis] Natl Inst Aerosp, Hampton, VA USA. RP Priestley, KJ (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM g.louis.smith@nasa.gov FU Earth Science Office of NASA; Sciences Directorate of the Langley Research Center; National Institute for Aerospace FX The authors gratefully acknowledge the support of the CERES Program by the Earth Science Office of NASA and the Sciences Directorate of the Langley Research Center for contract support of Science Systems Applications, Inc. and National Institute for Aerospace. NR 10 TC 10 Z9 10 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JUN PY 2010 VL 27 IS 6 BP 1005 EP 1011 DI 10.1175/2010JTECHA1322.1 PG 7 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 615AR UT WOS:000279103600005 ER PT J AU Kuttippurath, J Kleinbohl, A Bremer, H Kullmann, H Notholt, J Sinnhuber, BM Feng, WH Chipperfield, M AF Kuttippurath, Jayanarayanan Kleinboehl, Armin Bremer, Holger Kuellmann, Harry Notholt, Justus Sinnhuber, Bjoern-Martin Feng, Wuhu Chipperfield, Martyn TI Aircraft measurements and model simulations of stratospheric ozone and N2O: implications for chemistry and transport processes in the models SO JOURNAL OF ATMOSPHERIC CHEMISTRY LA English DT Article DE Airborne measurements; Stratospheric ozone; Chemical transport model; ASUR; CTMB; SLIMCAT; UCI; Parameterised chemistry ID GENERAL-CIRCULATION MODEL; MIDLATITUDE STRATOSPHERE; TROPICAL STRATOSPHERE; 3-DIMENSIONAL MODEL; MIDDLE ATMOSPHERE; SATELLITE DATA; CLIMATOLOGY; VALIDATION; SPECTROMETER; TEMPERATURE AB Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February-March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O-3 and N2O, among others, spanning a latitude from 5A degrees S to 80A degrees N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February-March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O-3 and N2O values, where the differences are within 1 ppmv for O-3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O-3 (1-1.5 ppmv) and the tropical lower stratospheric N2O (15-30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes. C1 [Kuttippurath, Jayanarayanan] UPMC, LATMOS, CNRS, Paris, France. [Kuttippurath, Jayanarayanan; Kleinboehl, Armin; Bremer, Holger; Kuellmann, Harry; Notholt, Justus; Sinnhuber, Bjoern-Martin] Univ Bremen, Inst Environm Phys, Bremen, Germany. [Kleinboehl, Armin] NASA, JPL, CALTECH, Pasadena, CA USA. [Bremer, Holger] Phys Tech Bundesanstalt, D-3300 Braunschweig, Germany. [Sinnhuber, Bjoern-Martin] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany. [Feng, Wuhu; Chipperfield, Martyn] Univ Leeds, Sch Environm, Leeds, W Yorkshire, England. RP Kuttippurath, J (reprint author), UPMC, LATMOS, CNRS, 4 Pl Jussieu, Paris, France. EM jayan@aero.jussieu.fr RI Sinnhuber, Bjorn-Martin/A-7007-2013; Chipperfield, Martyn/H-6359-2013; FENG, WUHU/B-8327-2008; Notholt, Justus/P-4520-2016 OI Sinnhuber, Bjorn-Martin/0000-0001-9608-7320; Chipperfield, Martyn/0000-0002-6803-4149; FENG, WUHU/0000-0002-9907-9120; Notholt, Justus/0000-0002-3324-885X FU German contribution [FKZ 50EE 0022]; ESA [349] FX The authors thank Dr. C. McLinden and Dr. S. Olsen for their discussion about the parameterised chemistry schemes with them and for the UCI and UCI-GISS model data. The HALOE v18 climatology was provided by Dr. William Randel and is greatly appreciated. They also thank M. Milz, G. Stiller and T. von Clarmann for the MIPAS IMK v3 data. JK thank Dr. Gang Hong for Dr. Hong's help during the study period. The in-house Bremen ozone climatology was acquired through http://www.iup.physik.uni-bremen.de/gome/o3climatology. The authors thank M. Weber and L.N. Lamsal for making available the climatology for this study. The HALOE v19 data were downloaded from http://haloe.gats-inc.com/home/index.php, the SHADOZ data from http://croc.gsfc.nasa.gov/shadoz/, and the POAM-3 data from http://wvms.nrl.navy.mil/POAM/poam.html. The authors thank the HALOE, SHADOZ, and POAM scientific teams for their data. The project was funded by the German contribution to the ENVISAT validation under the contract FKZ 50EE 0022 and is a part of the ESA proposal A.O.ID 349. NR 61 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-7764 EI 1573-0662 J9 J ATMOS CHEM JI J. Atmos. Chem. PD JUN PY 2010 VL 66 IS 1-2 BP 41 EP 64 DI 10.1007/s10874-011-9191-4 PG 24 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 806ES UT WOS:000293789700004 ER PT J AU Yu, JY Kao, HY Lee, T AF Yu, Jin-Yi Kao, Hsun-Ying Lee, Tong TI Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific SO JOURNAL OF CLIMATE LA English DT Article ID TROPOSPHERIC BIENNIAL OSCILLATION; EL-NINO; SOUTHERN-OSCILLATION; MONSOON RAINFALL; OCEAN; ENSO; NONLINEARITY; CIRCULATIONS; ANOMALIES; MODEL AB Interannual sea surface temperature (SST) variability in the central equatorial Pacific consists of a component related to eastern Pacific SST variations (called Type-1 SST variability) and a component not related to them (called Type-2 SST variability). Lead-lagged regression and ocean surface-layer temperature balance analyses were performed to contrast their control mechanisms. Type-1 variability is part of the canonical, which is characterized by SST anomalies extending from the South American coast to the central Pacific, is coupled with the Southern Oscillation, and is associated with basinwide subsurface ocean variations. This type of variability is dominated by a major 4-5-yr periodicity and a minor biennial (2-2.5 yr) periodicity. In contrast, Type-2 variability is dominated by a biennial periodicity, is associated with local air-sea interactions, and lacks a basinwide anomaly structure. In addition, Type-2 SST variability exhibits a strong connection to the subtropics of both hemispheres, particularly the Northern Hemisphere. Type-2 SST anomalies appear first in the northeastern subtropical Pacific and later spread toward the central equatorial Pacific, being generated in both regions by anomalous surface heat flux forcing associated with wind anomalies. The SST anomalies undergo rapid intensification in the central equatorial Pacific through ocean advection processes, and eventually decay as a result of surface heat flux damping and zonal advection. The southward spreading of trade wind anomalies within the northeastern subtropics-to-central tropics pathway of Type-2 variability is associated with intensity variations of the subtropical high. Type-2 variability is found to become stronger after 1990, associated with a concurrent increase in the subtropical variability. It is concluded that Type-2 interannual variability represents a subtropical-excited phenomenon that is different from the conventional ENSO Type-1 variability. C1 [Yu, Jin-Yi; Kao, Hsun-Ying] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kao, HY (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jyyu@uci.edu RI Yu, Jin-Yi/G-3413-2011 OI Yu, Jin-Yi/0000-0001-6156-7623 FU NSF [ATM-0925396]; NASA [NNX06AF49H]; JPL [1290687] FX We thank two anonymous reviewers and Dr. Shang-Ping Xie for their constructive and helpful comments. This research was support by NSF Grant ATM-0925396, NASA Grant NNX06AF49H, and JPL Subcontract 1290687. The GECCO data was downloaded from http://www.ecco-group.org. Data analyses were performed at University of California, Irvine's Earth System Modeling Facility. NR 36 TC 86 Z9 92 U1 5 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN PY 2010 VL 23 IS 11 BP 2869 EP 2884 DI 10.1175/2010JCLI3171.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 611AR UT WOS:000278783300004 ER PT J AU Twigg, ME Picard, YN Caldwell, JD Eddy, CR Mastro, MA Holm, RT Neudeck, PG Trunek, AJ Powell, JA AF Twigg, M. E. Picard, Y. N. Caldwell, J. D. Eddy, C. R., Jr. Mastro, M. A. Holm, R. T. Neudeck, P. G. Trunek, A. J. Powell, J. A. TI Diffraction Contrast of Threading Dislocations in GaN and 4H-SiC Epitaxial Layers Using Electron Channeling Contrast Imaging SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Defects - Recognition, Imaging and Physics in Semiconductors (DRIP XIII) CY SEP 13-17, 2009 CL Oglebay, WV SP Minerals, Met & Mat Soc, FEI, Semilab, Quantum Focus, Off Naval Res, Air Force Off Sci Res, Army Res Off DE Dislocations; gallium nitride; silicon carbide; scanning electron microscopy; electron channeling; electron diffraction ID SURFACE AB Forescattered electron channeling contrast imaging (ECCI) offers the potential for imaging and analyzing extended defects in a scanning electron microscope (SEM). Indeed, it is shown that ECCI is able to determine the Burgers vector of threading dislocations with the aid of carefully determined experimental parameters and accompanying image simulations. Simulations are compared with ECC images from samples with features that are relatively easily studied and modeled: those based on specially engineered 4H-SiC mesa substrates. These mesas serve as substrates for both homoepitaxial 4H-SiC layers and heteroepitaxial GaN layers in which images of threading dislocations (TDs) have been recorded using ECCI and found to strongly resemble diffraction contrast simulations of TD intensity profiles. C1 [Twigg, M. E.; Picard, Y. N.; Caldwell, J. D.; Eddy, C. R., Jr.; Mastro, M. A.; Holm, R. T.] USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA. [Picard, Y. N.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Neudeck, P. G.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Trunek, A. J.] OAI, Cleveland, OH 44135 USA. [Powell, J. A.] Sest Inc, Cleveland, OH 44135 USA. RP Twigg, ME (reprint author), USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA. EM twigg@estd.nrl.navy.mil RI Caldwell, Joshua/B-3253-2008; OI Caldwell, Joshua/0000-0003-0374-2168; Picard, Yoosuf/0000-0002-2853-5213 NR 19 TC 6 Z9 6 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2010 VL 39 IS 6 BP 743 EP 746 DI 10.1007/s11664-010-1143-2 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 596UW UT WOS:000277712000025 ER PT J AU Holdeman, JD Clisset, JR Moder, JP AF Holdeman, J. D. Clisset, J. R. Moder, J. P. TI Spreadsheet Calculations for Jets in Crossflow From Single and Opposed Rows With Alternating Hole Sizes SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE flow; jets ID MULTIPLE JETS AB The primary purpose of this study was to show the expected results for cases of single and opposed rows of jets from alternating large and small round holes. Previous publications demonstrated that the NASA empirical model gave results that were an excellent representation of mean experimental scalar results and that the model could confidently be used to investigate configurations for which results have not been published in the open literature. Calculations for cases of opposed rows of jets that would overpenetrate slightly in an inline configuration showed that better mixing was attained when one row was shifted to make a staggered configuration so that a small hole was opposite from a larger one. However, the result was no better than for an optimum inline configuration with all the holes of the same size. Staggering the rows does not make much difference in an optimum inline configuration. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance, but, at a given downstream location, the variation between cases was small. C1 [Moder, J. P.] NASA, Glenn Res Ctr, Prop Syst Div, Combust Branch, Cleveland, OH 44135 USA. [Clisset, J. R.] Univ Florida, Gainesville, FL 32611 USA. EM jjdholdeman@aol.com FU NASA Glenn Research Center; United Technologies Research Center; Michigan State University; University of California-Irvine; Gas Turbine Combustion FX The authors would particularly like to thank Mr. Richard E. Walker (Aerojet Liquid Rocket Co., retired) and Dr. Ram Srinivasan (then of Garrett Turbine Engine Co.) for their contributions to the NASA JIC empirical model, and to Professor William E. Lear of the University of Florida for suggesting that the original computer code, written in Applesoft (R) BASIC on a 64K Apple //e (R), could be rendered in an Excel (R) spreadsheet and for directing the development of the spreadsheet at UF. The authors also wish to acknowledge the contributions to the spreadsheet made by Mr. Gilbert F. Canton (then at UF) and Mr. Joel P. Scheuer (then a LERCIP participant at NASA Glenn) and appreciate the support and encouragement from Mr. Timothy D. Smith, Dr. Clarence T. Chang, and Dr. C. John Marek (retired) at the NASA Glenn Research Center, Mr. David S. Liscinsky of the United Technologies Research Center, Professor John F. Foss of Michigan State University, Professor G. Scott Samuelsen of the University of California-Irvine, and the late Professor Arthur H. Lefebvre, author of Gas Turbine Combustion. NR 12 TC 2 Z9 3 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUN PY 2010 VL 132 IS 6 AR 064502 DI 10.1115/1.4000129 PG 7 WC Engineering, Mechanical SC Engineering GA 576WS UT WOS:000276181300020 ER PT J AU Mazarico, E Neumann, GA Rowlands, DD Smith, DE AF Mazarico, Erwan Neumann, G. A. Rowlands, D. D. Smith, D. E. TI Geodetic constraints from multi-beam laser altimeter crossovers SO JOURNAL OF GEODESY LA English DT Article DE Laser altimeter; Crossover; Orbit determination; Moon; Multi-beam ID MARS GLOBAL SURVEYOR; NEAR-SHOEMAKER; GRAVITY-FIELD; MOON AB The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric "crossovers", to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those "swath crossovers". They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO. C1 [Mazarico, Erwan; Neumann, G. A.; Rowlands, D. D.; Smith, D. E.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Mazarico, Erwan] Oak Ridge Associated Univ, NASA Postdoctral Program, NASA GSFC, Oak Ridge, TN 37831 USA. [Smith, D. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Mazarico, E (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM erwan.m.mazarico@nasa.gov RI Rowlands, David/D-2751-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU NASA; Lunar Reconnaissance Orbiter project FX EM was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We thank the Lunar Reconnaissance Orbiter project for their support of this work. We thank three anonymous reviewers for comments which improved the manuscript. NR 19 TC 10 Z9 12 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD JUN PY 2010 VL 84 IS 6 BP 343 EP 354 DI 10.1007/s00190-010-0379-1 PG 12 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 594PU UT WOS:000277550500001 ER PT J AU Ferguson, IM Dracup, JA Duffy, PB Pegion, P Schubert, S AF Ferguson, Ian M. Dracup, John A. Duffy, Philip B. Pegion, Philip Schubert, Siegfried TI Influence of SST Forcing on Stochastic Characteristics of Simulated Precipitation and Drought SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SEA-SURFACE TEMPERATURE; MOISTURE-RAINFALL FEEDBACK; NINO-SOUTHERN OSCILLATION; WESTERN UNITED-STATES; LONG-TERM DROUGHT; US GREAT-PLAINS; SOIL-MOISTURE; SEASONAL PREDICTION; GCM SIMULATIONS; NORTH-AMERICA AB Recent studies demonstrate that ocean-atmosphere forcing by persistent sea surface temperature (SST) anomalies is a primary driver of seasonal-to-interannual hydroclimatic variability, including drought events. Other studies, however, conclude that although SST anomalies influence the timing of drought events, their duration and magnitude over continental regions is largely governed by land-atmosphere feedbacks. Here the authors evaluate the direct influence of SST anomalies on the stochastic characteristics of precipitation and drought in two ensembles of AGCM simulations forced with observed (interannually varying) monthly SST and their climatological annual cycle, respectively. Results demonstrate that ocean-atmosphere forcing contributes to the magnitude and persistence of simulated seasonal precipitation anomalies throughout the tropics but over few mid- and high-latitude regions. Significant autocorrelation of simulated seasonal anomalies over oceans is directly forced by persistent SST anomalies; over land, SST anomalies are shown to enhance autocorrelation associated with land-atmosphere feedbacks. SST anomalies are shown to have no significant influence on simulated drought frequency, duration, or magnitude over most midlatitude land regions. Results suggest that severe and sustained drought events may occur in the absence of persistent SST forcing and support recent conclusions that ocean-atmosphere forcing primarily influences the timing of drought events, while duration and magnitude are governed by other mechanisms such as land-atmosphere feedbacks. Further analysis is needed to assess the potential model dependence of results and to quantify the relative contribution of land-atmosphere feedbacks to the long-term stochastic characteristics of precipitation and drought. C1 [Ferguson, Ian M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Dracup, John A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Duffy, Philip B.] Climate Cent Inc, Palo Alto, CA USA. [Duffy, Philip B.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pegion, Philip; Schubert, Siegfried] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Ferguson, IM (reprint author), Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. EM imfergus@mines.edu RI Pegion, Philip/E-5247-2012 NR 70 TC 6 Z9 6 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2010 VL 11 IS 3 BP 754 EP 769 DI 10.1175/2009JHM1132.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PI UT WOS:000279367700011 ER PT J AU Entekhabi, D Reichle, RH Koster, RD Crow, WT AF Entekhabi, Dara Reichle, Rolf H. Koster, Randal D. Crow, Wade T. TI Performance Metrics for Soil Moisture Retrievals and Application Requirements SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LAND-SURFACE MODELS; REMOTE-SENSING FOOTPRINTS; FORECAST VERIFICATION; TEMPORAL STABILITY; VARIABILITY; VEGETATION; DYNAMICS; CLIMATE; SGP97 AB Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals (satellite measurements) with respect to true fields. These metrics are related; nevertheless, each has advantages and disadvantages. In this study the authors explore the relation between the RMSE and correlation metrics in the presence of biases in the mean as well as in the amplitude of fluctuations (standard deviation) between estimated and true fields. Such biases are common, for example, in satellite retrievals of soil moisture and impose constraints on achievable and meaningful RMSE targets. Last, an approach is introduced for converting a requirement in an application's product into a corresponding requirement for soil moisture accuracy. The approach can help with the formulation of soil moisture measurement requirements. It can also help determine the utility of a given retrieval product for applications. C1 [Entekhabi, Dara] MIT, Ralph M Parsons Lab Environm Sci & Engn, Cambridge, MA 02139 USA. [Reichle, Rolf H.; Koster, Randal D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Crow, Wade T.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA. RP Entekhabi, D (reprint author), MIT, Ralph M Parsons Lab Environm Sci & Engn, 48-216G, Cambridge, MA 02139 USA. EM darae@mit.edu RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NASA FX This study by members of the SMAP Science Definition Team was supported by NASA funding for the SMAP project. NR 27 TC 101 Z9 101 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2010 VL 11 IS 3 BP 832 EP 840 DI 10.1175/2010JHM1223.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PI UT WOS:000279367700017 ER PT J AU Barringer, H Rydeheard, D Havelund, K AF Barringer, Howard Rydeheard, David Havelund, Klaus TI Rule Systems for Run-time Monitoring: from EAGLE to RULER SO JOURNAL OF LOGIC AND COMPUTATION LA English DT Article DE Run-time verification; rule systems; temporal logic; grammars ID RUNTIME VERIFICATION; NORMAL-FORM; GRAMMARS; RETURNS; THEOREM; CALLS AB In Barringer et al. (2004. Vol. 2937, LNCS), EAGLE was introduced as a general purpose rule-based temporal logic for specifying run-time monitors. A novel interpretative trace-checking scheme via stepwise transformation of an EAGLE monitoring formula was defined and implemented. However, even though EAGLE presents an elegant formalism for the expression of complex trace properties, EAGLE'S interpretation scheme is complex and appears difficult to implement efficiently. In this article, we introduce RULER, a primitive conditional rule-based system, which has a simple and easily implemented algorithm for effective run-time checking, and into which one can compile a wide range of temporal logics and other specification formalisms used for run-time verification. As a formal demonstration, we provide a translation scheme for linear-time propositional temporal logic with a proof of translation correctness. We then introduce a parameterized version of RULER, in which rule names may have rule-expression or data parameters, which then coincides with the same expressivity as EAGLE with data arguments. RULER with just rule-expression parameters extend the expressiveness of RULER strictly beyond the class of context-free languages. For the language classes expressible in propositional RULER, the addition of rule-expression and data parameters enables more compact translations. Finally, we outline a few simple syntactic extensions of 'core' RULER that can lead to further conciseness of specification but still enabling easy and efficient implementation. C1 [Barringer, Howard; Rydeheard, David] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Havelund, Klaus] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Barringer, H (reprint author), Univ Manchester, Sch Comp Sci, Oxford Rd, Manchester M13 9PL, Lancs, England. EM howard.barringer@manchester.ac.uk; david.rydeheard@manchester.ac.uk; klaus.havelund@jpl.nasa.gov FU National Aeronautics and Space Administration FX The work of this author was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 17 TC 36 Z9 36 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0955-792X J9 J LOGIC COMPUT JI J. Logic Comput. PD JUN PY 2010 VL 20 IS 3 SI SI BP 675 EP 706 DI 10.1093/logcom/exn076 PG 32 WC Computer Science, Theory & Methods; Logic SC Computer Science; Science & Technology - Other Topics GA 613TN UT WOS:000279004000003 ER PT J AU Hodges, DH Rajagopal, A Ho, JC Yu, WB AF Hodges, Dewey H. Rajagopal, Anurag Ho, Jimmy C. Yu, Wenbin TI STRESS AND STRAIN RECOVERY FOR THE IN-PLANE DEFORMATION OF AN ISOTROPIC TAPERED STRIP-BEAM SO JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES LA English DT Article DE beam theory; elasticity; asymptotic methods ID SECTION AB The variational-asymptotic method was recently applied to create a beam theory for a thin strip-beam with a width that varies linearly with respect to the axial coordinate. For any arbitrary section, ratios of the cross-sectional stiffness coefficients to their customary values for a uniform beam depend on the rate of taper. This is because for a tapered beam the outward-directed normal to a lateral surface is not perpendicular to the longitudinal axis. This changes the lateral-surface boundary conditions for the cross-sectional analysis, in turn producing different formulae for the cross-sectional elastic constants as well as for recovery of stress, strain and displacement over a cross-section. The beam theory is specialized for the linear case and solutions are compared with those from plane-stress elasticity for stress, strain and displacement. The comparison demonstrates that for beam theory to yield such excellent agreement with elasticity theory, one must not only use cross-sectional elastic constants that are corrected for taper but also the corrected recovery formulae, which are in turn based on cross-sectional in-and out-of-plane warping corrected for taper. C1 [Hodges, Dewey H.; Rajagopal, Anurag] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Ho, Jimmy C.] NASA, Ames Res Ctr, Sci & Technol Corp, Moffett Field, CA 94035 USA. [Yu, Wenbin] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA. RP Hodges, DH (reprint author), Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, 270 Ferst Dr, Atlanta, GA 30332 USA. EM dhodges@gatech.edu; r_anurag87@gatech.edu; jimmy.c.ho@us.army.mil; wenbin@engineering.usu.edu RI Yu, Wenbin/B-1916-2009 NR 8 TC 7 Z9 7 U1 0 U2 3 PU MATHEMATICAL SCIENCE PUBL PI BERKELEY PA UNIV CALIFORNIA, DEPT MATHEMATICS, BERKELEY, CA 94720-3840 USA SN 1559-3959 J9 J MECH MATER STRUCT JI J. Mech. Mater. Struct. PD JUN PY 2010 VL 5 IS 6 BP 963 EP 975 DI 10.2140/jomms.2010.5.963 PG 13 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 703XB UT WOS:000286013500006 ER PT J AU Lyulin, OM Kassi, S Sung, K Brown, LR Campargue, A AF Lyulin, O. M. Kassi, S. Sung, K. Brown, L. R. Campargue, A. TI Determination of the low energy values of (CH4)-C-13 transitions in the 2 nu(3) region near 1.66 mu m from absorption spectra at 296 and 81 K SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Methane; CH4; (CH4)-C-13; Absorption spectroscopy; HITRAN; GOSAT; Empirical lower states ID MOLECULAR LINE PARAMETERS; SPECTROSCOPIC DATABASE; METHANE TRANSITIONS; LASER SPECTROSCOPY; INFRARED-SPECTRUM; GLOBAL ANALYSIS; CM(-1); STRENGTHS; BAND; (CO)-C-12-O-16 AB The high resolution absorption spectra of (CH4)-C-13 were recorded at 81 K by differential absorption spectroscopy using a cryogenic cell and a series of distributed feed back (DFB) diode lasers and at room temperature by Fourier transform spectroscopy. The investigated spectral region corresponds to the high energy part of the (CH4)-C-13 tetradecad dominated by the 2 nu(3) overtone near 5988 cm(-1). Empirical line lists were constructed containing, respectively, 1629 (CH4)-C-13 transitions detected at 81 K (5852-6124 cm(-1)) and 3481 features (including 85 lines of (CH4)-C-12) measured at room temperature (5850-6150 cm(-1)); the smallest measured intensities are about 3 x 10(-26) and 4 x 10(-25) cm/molecule at 81 and 296 K, respectively. The lower state energy values were derived for 1196 (CH4)-C-13 transitions from the variation of the line intensities between 81 and 296 K. These transitions represent 99.2% and 84.6% of the total absorbance in the region, at 81 and 296 K. respectively. Over 400 additional weak features were measured at 81 K and could not be matched to lines observed at room temperature. The quality of the resulting empirical low energy values is demonstrated by the excellent agreement with the already-assigned transitions and the clear propensity of the empirical low values to be close to integers. The two line lists at 81 and at 296 K provided as Supplementary material will enable future theoretical analyses of the upper (CH4)-C-13 tetradecad. (C) 2010 Elsevier Inc. All rights reserved. C1 [Lyulin, O. M.; Kassi, S.; Campargue, A.] Univ Grenoble 1, Spectrometrie Phys Lab, CNRS, UMR 5588, F-38402 St Martin Dheres, France. [Sung, K.; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lyulin, O. M.] Russian Acad Sci, Lab Theoret Spect, Inst Atmospher Opt, Siberian Branch, Tomsk 634055, Russia. RP Campargue, A (reprint author), Univ Grenoble 1, Spectrometrie Phys Lab, CNRS, UMR 5588, BP 87, F-38402 St Martin Dheres, France. EM Alain.Campargue@ujf-grenoble.fr RI Sung, Keeyoon/I-6533-2015 FU ANR [BLAN08-2_321467]; RFBR [RFBR 09-05-92508-NKa]; CRDF [RUG1-2954-TO-09]; Groupement de Recherche International SAMIA (France); RFBR (Russia) [N 09-05-93105]; CAS (China) FX O.M.L. (IAO, Tomsk) is grateful to the French Embassy in Moscow for a two months visiting support at Grenoble University. This work is part of the ANR project "CH4@Titan" (Ref: BLAN08-2_321467). The supports by RFBR (Grant RFBR 09-05-92508-NKa), CRDF (Grant RUG1-2954-TO-09) and by the Groupement de Recherche International SAMIA between CNRS (France), RFBR (N 09-05-93105, Russia) and CAS (China) is acknowledged. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 37 TC 20 Z9 23 U1 2 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUN PY 2010 VL 261 IS 2 BP 91 EP 100 DI 10.1016/j.jms.2010.03.008 PG 10 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 610DM UT WOS:000278710900004 ER PT J AU Nikolaev, P Holmes, W Sosa, E Boul, P Arepalli, S Yowell, L AF Nikolaev, Pavel Holmes, William Sosa, Edward Boul, Peter Arepalli, Sivaram Yowell, Leonard TI Effect of Vaporization Temperature on the Diameter and Chiral Angle Distributions of Single-Walled Carbon Nanotubes SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Carbon; Nanotubes; Laser Ablation; Synthesis; Chiral Angle; Diameter Mechanism ID LASER-ABLATION PROCESS; CATALYTIC GROWTH; SEPARATION; DYNAMICS AB Pulsed laser vaporization synthesis of single-wall carbon nanotubes on Co/Ni and Rh/Pd catalysts was explored with respect to variations in the production temperature. The nanotube type populations were determined via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that lowered production temperature leads to smaller nanotube diameters and exceptionally narrow (n, m) type distributions, with marked preference towards large chiral angles for both catalysts. Interestingly, larger nanotube diameters tend to be associated with larger chiral angles. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n, m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven. SWCNT synthesized at lower temperatures appear quite attractive as a starting material for nanotube type separation experiments. C1 [Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77258 USA. RP Nikolaev, P (reprint author), Sungkyunkwan Univ, Dept Energy Sci, 300 Cheoncheon Dong, Suwon 440746, South Korea. FU NASA [NNJ05HI05C]; State of Texas [SAA-AT-07-021, RAN 0798, UTA07-099] FX Authors would like to acknowledge financial support from NASA under contract #NNJ05HI05C and from State of Texas, Space Act Agreement #SAA-AT-07-021 (RAN 0798) (UTA07-099). Authors thank R. Bruce Weisman of Rice University for access to the Nanospectralyzer for photoluminescence measurements. NR 47 TC 9 Z9 9 U1 2 U2 15 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUN PY 2010 VL 10 IS 6 SI SI BP 3780 EP 3789 DI 10.1166/jnn.2010.2008 PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 569UC UT WOS:000275626500006 PM 20355368 ER PT J AU Oye, MM Yim, S Fu, A Schwanfelder, K Meyyappan, M Nguyen, CV AF Oye, Michael M. Yim, Setha Fu, Alan Schwanfelder, Kevin Meyyappan, M. Nguyen, Cattien V. TI Surface Smoothness Effect for the Direct Growth of Carbon Nanotubes on Bulk FeCrAl Metal Substrates SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Carbon Nanotube; FeCrAl; Bulk Metal Catalyst Substrate; Growth Morpholog ID CHEMICAL-VAPOR-DEPOSITION; MECHANISMS; FILM AB We investigate effects of surface smoothness and surface chemistry on the nature of multi-walled CNTs (MWCNTs) grown directly on FeCrAl substrates. A single sample was grown that contained a gradation in surface morphologies ranging from 2.9 nm to 30.2 nm RMS. The MWCNTs were grown using ethylene and H(2) gases. Characterization was done using atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger elemental surface analysis. In smooth regions, MWCNTs demonstrated high-density vertical aligned growths; however, patches of similar to 10-20 mu m where poor MWCNT growth occurred. In contrast, rough regions of the surface exhibited a continuous blanket layer of MWCNTs, albeit growth was spaghetti-like throughout this layer. The variation in nature of MWCNT growths was directly dependent on the surface roughness, which can affect surface growth chemistry of MWCNTs. Auger elemental analysis determined carbon was observed everywhere on the surface, but carbon was strongest over the smooth regions of high density growth; while relatively less carbon was detected over the patches with poor MWCNT growth, as well as over the blanket layer of the rough region. Oxygen was also measured, which was detected both within the patches of poor MWCNT growth in the smooth regions and over the blanket layer of the rough region. However, measurements of Cr and Al were exhibiting mixed trends: Cr was detected more strongly than Al over the rough region; whereas the opposite was observed in the patches of poor MWCNT growth in the smooth region. The surface smoothness affects the surface chemistry involving the nature of MWCNT growth and may also affect the surface chemistry involving the metal substrate itself; therefore, comparisons on the nature of MWCNT growths must also take careful consideration of the surface smoothness. C1 [Oye, Michael M.; Yim, Setha; Fu, Alan; Schwanfelder, Kevin; Meyyappan, M.; Nguyen, Cattien V.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nguyen, CV (reprint author), ELORET Corp, Sunnyvale, CA USA. FU NASA FX Work by Michael M. Oye, Setha Yim, Alan Fu, Kevin Schwanfelder, and Cattien V. Nguyen was supported by a NASA contract to FLORET Corporation. Michael M. Oye, Setha Yim, Kevin Schwanfelder, and Cattien V. Nguyen are employed by FLORET Corporation (465 S. Mathilda Ave.; Sunnyvale, CA 94086 USA). Alan Fu is a high school student intern from Palo Alto High School (50 Embarcaderc, Rd.; Palo Alto, CA 94301 USA). NR 18 TC 7 Z9 7 U1 1 U2 8 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUN PY 2010 VL 10 IS 6 SI SI BP 4082 EP 4088 DI 10.1166/jnn.2010.1991 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 569UC UT WOS:000275626500057 PM 20355419 ER PT J AU Smith, MAH Benner, DC Predoi-Cross, A Devi, VM AF Smith, M. A. H. Benner, D. Chris Predoi-Cross, A. Devi, V. Malathy TI Multispectrum analysis of (CH4)-C-12 in the nu(4) spectral region: II. Self-broadened half widths, pressure-induced shifts, temperature dependences and line mixing SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Methane; Line broadening; Widths; Pressure-induced shifts; Off-diagonal relaxation matrix elements; Line mixing; Temperature dependence ID MOLECULAR SPECTROSCOPIC DATABASE; DIODE-LASER SPECTROSCOPY; BAND Q-BRANCH; METHANE LINES; COEFFICIENTS WIDTHS; 4635 CM(-1); V(2) BAND; ABSORPTION; CH4; (HCN)-C-12-N-14 AB Accurate values for line positions, absolute line intensities, self-broadened half width and self-pressure-induced shift coefficients have been measured for over 400 allowed and forbidden transitions in the nu 4 band of methane ((CH4)-C-12). Temperature dependences of half width and pressure-induced shift coefficients were also determined for many of these transitions. The spectra used in this study were recorded at temperatures between 210 and 314K using the National Solar Observatory's 1 m Fourier transform spectrometer at the McMath-Pierce solar telescope. The complete data set included 60 high-resolution (0.006-0.01 cm(-1)) absorption spectra of pure methane and methane mixed with dry air. The analysis was performed using a multispectrum nonlinear least squares curve fitting technique where a number of spectra (20 or more) were fit simultaneously in spectral intervals 5-15 cm(-1) wide. In addition to the line broadening and shift parameters, line mixing coefficients (using the off-diagonal relaxation matrix element formalism) were determined for more than 50 A-, E-, and F-species transition pairs in J manifolds of the P- and R-branches. The measured self-broadened half width and self-shift coefficients, their temperature dependences and the line mixing parameters are compared to self-broadening results available in the literature and to air-broadened parameters determined for these transitions from the same set of spectra. Published by Elsevier Ltd. C1 [Smith, M. A. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Benner, D. Chris; Devi, V. Malathy] Coll William & Mary, Williamsburg, VA 23187 USA. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. RP Smith, MAH (reprint author), NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. EM Mary.Ann.H.Smith@NASA.gov FU National Aeronautics and Space Administration; National Sciences and Engineering Research Council of Canada (NSERC) FX The authors thank Claude Plymate and Mike Dulick of the National Solar Observatory for their assistance with the FTS laboratory measurements at Kitt Peak. Research at the College of William and Mary is supported under contracts and cooperative agreements with the National Aeronautics and Space Administration. A. Predoi-Cross acknowledges the support received from the National Sciences and Engineering Research Council of Canada (NSERC). The authors thank NASA's Upper Atmospheres Research Program for its support of the McMath-Pierce FTS laboratory facility. We also thank Larry Rothman for his wise counsel and friendship over the years of this study and many more. NR 32 TC 16 Z9 16 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1152 EP 1166 DI 10.1016/j.jqsrt.2010.01.017 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800010 ER PT J AU Drouin, BJ Yu, SS Miller, CE Muller, HSP Lewen, F Bruenken, S Habara, H AF Drouin, Brian J. Yu, Shanshan Miller, Charles E. Mueller, Holger S. P. Lewen, Frank Bruenken, Sandra Habara, Hideta TI Terahertz spectroscopy of oxygen, O-2, in its (3)Z(g)(-) and (1)Delta electronic states THZ Spectroscopy of O-2 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Oxygen; Rotational spectroscopy; Terahertz spectroscopy; Atmospheric species; O-16/O-18 ratio ID SUBMILLIMETER-WAVE SPECTRUM; MICROWAVE-ABSORPTION LINES; BROAD-BAND SPECTROSCOPY; GROUND-STATE; ATMOSPHERIC OXYGEN; ROTATIONAL TRANSITIONS; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; FINE-STRUCTURE; FREQUENCIES AB High precision rotational spectra of isotopic oxygen O-2 (with O-16 or O-18) in its (3)Sigma(-)(g) electronic ground state have been measured in selected frequency regions between 0.4 and 2.0THz. The main isotopic species, O-16(2), was also investigated in its first excited electronic state (1)Delta. The new data, analyzed together with previous measurements, yielded improved spectroscopic parameters. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Drouin, Brian J.; Yu, Shanshan; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mueller, Holger S. P.; Lewen, Frank; Bruenken, Sandra; Habara, Hideta] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Brian.J.Drouin@jpl.nasa.gov; hspm@ph1.uni-koeln.de RI Brunken, Sandra/B-1880-2010; Yu, Shanshan/D-8733-2016 OI Brunken, Sandra/0000-0001-7175-4828; FU Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungs Gemeinschaft (DFG) [SFB 494]; Land Nordrhein-Westfalen (NRW) FX H.S.P.M. is grateful for recent support by the Bundesministerium fur Bildung und Forschung (BMBF) administered by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). This paper presents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. A large portion of the work in Cologne was supported by the Deutsche Forschungs Gemeinschaft (DFG) in the framework of the collaborative research grant SFB 494. Additional support by the Land Nordrhein-Westfalen (NRW) is also acknowledged. NR 40 TC 18 Z9 18 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1167 EP 1173 DI 10.1016/j.jqsrt.2009.12.006 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800011 ER PT J AU Gordon, IE Kassi, S Campargue, A Toon, GC AF Gordon, Iouli E. Kassi, Samir Campargue, Alain Toon, Geoffrey C. TI First identification of the a(1) Delta(g)-X-3 Sigma(-)(g) electric quadrupole transitions of oxygen in solar and laboratory spectra SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Electric quadrupole; Singlet delta; Oxygen; Solar spectrum; Cavity ring down spectroscopy ID CAVITY RINGDOWN SPECTROSCOPY; LINE PARAMETERS COMPILATION; 1.5 MU-M; ATMOSPHERIC OXYGEN; MOLECULAR-OXYGEN; BAND; INTENSITIES; EINSTEIN; COEFFICIENTS; ISOTOPOMERS AB Electric quadrupole transitions in the a(1)Delta(g)-X-3 Sigma(-)(g) band of O-16(2) near 1.27 mu m are reported for the first time. They were first detected in atmospheric solar spectra acquired with a ground-based Fourier transform spectrometer (FTS) in Park Falls, WI. Subsequently high-sensitivity ON cavity ring down spectroscopy (CW-CRDS) experiments were carried out at Grenoble University in the 7717-7917 cm(-1) region in order to provide quantitative intensity information for the electric quadrupole transitions. Measured intensities were used as input data for the calculation of the complete list of electric quadrupole transitions with Delta J= +/- 2, +/- 1 and 0. The calculation was carried out for the intermediate coupling case and assuming that these transitions are possible only through mixing of the Omega=0 component of the ground electronic state and b(1)Sigma(+)(g) state induced by spin-orbit coupling. The calculated line list agrees well with experimental measurements and was used to improve the residuals of the fitted solar atmospheric spectrum. Emission probability for the electric quadrupole band was determined to be (1.02 +/- 0.10) x 10(-6)s(-1). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Atom & Mol Phys Div, Cambridge, MA 02138 USA. [Kassi, Samir; Campargue, Alain] Univ Grenoble 1, CNRS, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France. [Toon, Geoffrey C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gordon, IE (reprint author), Harvard Smithsonian Ctr Astrophys, Atom & Mol Phys Div, Cambridge, MA 02138 USA. EM igordon@cfa.harvard.edu OI Gordon, Iouli/0000-0003-4763-2841 FU NASA; ANR; NASA EOS HITRAN FX The authors are grateful to Rebecca Washenfelder and Jean-Francois Blavier who set up the TCCON FTS at Park Falls, WI, and recorded the atmospheric solar absorption spectra used here. We acknowledge Paul Wennberg for the use of these data and the NASA Carbon Cycle program which funds TCCON. We also thank Andrew Orr-Ewing for providing such a good O2 magnetic dipole line list, that the missing quadrupole lines became so prominent. We also thank Robert Field and Charles Miller for fruitful discussions and Laurence Rothman and Robert Gamache for providing input parameters and the program for calculation of HITRAN line positions calculation. The HITRAN database managed for over 35 years by Dr. Rothman is an essential tool in many fields. The authors have all benefited from using it many times and are honored to contribute to it or validate its data. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and at Grenoble University under the ANR project "IDEO". IEG is supported through NASA EOS HITRAN Grant. NR 35 TC 22 Z9 22 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1174 EP 1183 DI 10.1016/j.jqsrt.2010.01.008 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800012 ER PT J AU Toth, RA Sung, K Brown, LR Crawford, TJ AF Toth, Robert A. Sung, Keeyoon Brown, Linda R. Crawford, Timothy J. TI Line positions and strengths of 41 bands including 10 OCS isotopologues in the 3850-4200 cm(-1) region SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Carbonyl sulfide; OCS; Frequencies; Intensities; Strengths; Venus; Near IR ID FOURIER-TRANSFORM SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS; LASER PHOTOACOUSTIC-SPECTROSCOPY; CARBONYL SULFIDE; MU-M; INTENSITIES; (OCS)-O-16-C-12-S-32; CO; SPECTRUM; DATABASE AB The present analysis substantially improves the spectroscopic characterization of near infrared OCS in a window region (3850-4200 cm(-1)) important for atmospheric studies of Venus. Previous studies in this spectral region cataloged numerous OCS line positions, but accurate line intensities were measured for only three strong bands. In this paper, the corresponding line intensities are obtained for 41 OCS bands, including weak isotopic bands reported for the first time. The 2 nu(3) (0002-0000) band is analyzed for 10 OCS isotopologues (adding (OCS)-O-16-C-13-S-34, (OCS)-O-17-C-12-S-32, (OCS)-O-16-C-12-S-36, (OCS)-O-18-C-12-S-34, and (OCS)-O-16-C-13-S-33). In addition, observations of 0332-0330 of the main isotope, (OCS)-O-16-C-12-S-32, provides accurate vibration-rotation parameters for the upper state (and the lower state, 0330 of (OCS)-O-16-C-12-S-32). Finally, one unidentified band is seen at 3969.3 cm(-1); its lower state is clearly the ground state of (OCS)-O-16-C-12-S-32. S. The line strengths of these seven previously unanalyzed bands plus 34 other bands of the OCS isotopologues, (OCS)-O-16-C-12-S-32, (OCS)-O-16-C-12-S-34, (OCS)-O-16-C-13-S-32, (OCS)-O-16-C-12-S-33, and (OCS)-O-18-C-12-S-32, were least-squares fitted to determine strength parameters, S-v and Herman-Wallis coefficients. Finally, the intensities of 17 additional very weak bands were estimated to provide an extensive new database of OCS line parameters to support remote sensing of Venus. The integrated intensity in cm(-1)/(molecule cm(-2)) at 296 K is 8.1 x 10(-19) for the 3800-4200 cm(-1) region. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Toth, RA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MailStop 183-301, Pasadena, CA 91109 USA. EM ratoth@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015 NR 32 TC 6 Z9 6 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1193 EP 1208 DI 10.1016/j.jqsrt.2009.10.014 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800014 ER PT J AU Devi, VM Rinsland, CP Benner, DC Sams, RL Blake, TA AF Devi, V. Malathy Rinsland, C. P. Benner, D. Chris Sams, R. L. Blake, T. A. TI Multispectrum analysis of the nu(9) band of (C2H6)-C-12: Positions, intensities, self- and N-2-broadened half-width coefficients SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE 33.20.Ea ID MOLECULAR SPECTROSCOPIC DATABASE; RESOLUTION INFRARED-SPECTRUM; DIODE-LASER SPECTRA; NU-9 BAND; TEMPERATURE-DEPENDENCE; UPPER TROPOSPHERE; ETHANE C2H6; MU-M; ATMOSPHERE; LINES AB Line positions, intensities, Lorentz self- and N-2-broadened half-width coefficients have been measured for (P)Q(3), (P)Q(2), (P)Q(1), (R)Q(0), (R)Q(1), (R)Q(2), and (R)Q(3) sub-band transitions in the nu(9) fundamental band of (C2H6)-C-12. A multispectrum nonlinear least-squares fitting technique was used to fit up to 17 high-resolution (similar to 0.00156 cm(-1)), room temperature absorption spectra of pure (99.99% chemical purity) natural sample of ethane and lean mixtures of the high-purity ethane diluted with N-2. A Bruker IFS 120HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington was used to record the data. A standard Voigt line shape was assumed to fit all the data since no line mixing or other non Voigt line shapes were required to fit any of the spectra used in the analysis. Short spectral intervals (similar to 2-2.5 cm(-1)) of all 17 spectra covering a specific (P)Q or (R)Q sub-band were fit simultaneously. For the first time in an ethane band, pressure-broadened half-width coefficients were determined for the torsional-split components. However, for better reliability of the retrieved coefficients for the weaker components (transitions with large intensity ratios of 4:1 or 3:1 for most K levels between the strong and weak components), constraints were used such that the half-width coefficients of both torsional-split components for a given J were identical for a specific broadening gas. No pressure-induced shift coefficients were necessary to fit the spectra to their noise level. The present study revealed for the first time the dependence of self- and N-2-broadened half-width coefficients upon the J, K quantum numbers of the transitions in ethane. A number of transitions belonging to the nu(9)+nu(4)-nu(4) and the nu(9)+2 nu(4)-2 nu(4) hot bands were also observed in the fitted regions and measurements were made when possible. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Rinsland, C. P.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Sams, R. L.; Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@larc.nasa.gov FU Department of Energy's Office of Biological and Environmental research located at Pacific Northwest National Laboratory (PNNL); United States Department of Energy [DE-AC05-76RLO1830]; NASA; College of William and Mary FX The authors thank Dr. Jon T. Hougen from the National Institute of Standards and Technology, Gaithersburg, MD for many useful discussions on ethane molecule and selection rules, and also for reading the manuscript and providing critical suggestions. The experimental data for the present study were recorded at the W. R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under Contract DE-AC05-76RLO1830. NASA's planetary atmospheres program supported the work performed at NASA Langley Research Center and the College of William and Mary. NR 38 TC 14 Z9 12 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1234 EP 1251 DI 10.1016/j.jqsrt.2009.10.017 PG 18 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800017 ER PT J AU Kuai, L Natraj, V Shia, RL Miller, C Yung, YL AF Kuai, Le Natraj, Vijay Shia, Run-Lie Miller, Charles Yung, Yuk L. TI Channel selection using information content analysis: A case study of CO2 retrieval from near infrared measurements SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Retrieval; Channel selection; Information analysis; Carbon dioxide ID SPECTROSCOPIC DATABASE; SOUNDERS; SPACE; MODEL; GOSAT AB A major challenge in retrieving CO2 concentrations from thermal infrared remote sensing comes from the fact that measurements in the 4.3 and 15 mu m absorption bands (AIRS or TES) are sensitive to both temperature and CO2 variations. This complicates the selection of absorption channels with maximum CO2 concentration information content. In contrast, retrievals using near infrared (NIR) CO2 absorption bands are relatively insensitive to temperature and are most sensitive to changes of CO2 near the surface, where the sources and sinks are located. The Orbiting Carbon Observatory (OCO) was built to measure reflected sunlight in three NIR spectral regions (the 0.76 mu m O-2 A-band and two CO2 bands at 1.61 and 2.06 mu m). In an effort to significantly increase the speed of accurate CO2 retrieval algorithms for OCO, we performed an information content analysis to identify the 20 best channels from each CO2 spectral region to use in OCO retrievals. Retrievals using these 40 channels provide as much as 75% of the total CO2 information content compared to retrievals using all 1016 channels in each spectral region. The CO2 retrievals using our selected channels have a precision better than 0.1 ppm. This technique can be applied to the retrieval of other geophysical variables (e.g., temperature or CH4), or modified for other instruments, such as AIRS or TES. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kuai, Le; Shia, Run-Lie; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Natraj, Vijay; Miller, Charles] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kuai, L (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM kl@gps.caltech.edu FU Orbiting Carbon Observatory (OCO); NASA Earth System Science Pathfinder (ESSP) mission FX This research is supported by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission. The authors would like to thank Denis O'Brien, Igor Polonsky and Chris O'Dell from Colorado State University for providing us the orbit simulator code and for helping with its development and maintenance, and James McDuffie from the Jet Propulsion Laboratory (JPL) for providing covariance information. NR 33 TC 6 Z9 7 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2010 VL 111 IS 9 SI SI BP 1296 EP 1304 DI 10.1016/j.jqsrt.2010.02.011 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 593OY UT WOS:000277469800023 ER PT J AU Hou, TH Boston, KG Baughman, JM Walker, S Johnston, WM AF Hou, T. H. Boston, K. G. Baughman, J. M. Walker, S. Johnston, W. M. TI Composite-to-composite Bonding using Scotch-Weld (TM) AF-555M Structural Adhesive SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES LA English DT Article DE AF-555M adhesive; T800H/3900-2 composite; composite-to-composite adhesive bonding; single-lap shear strength AB Processing and properties of composite-to-composite bonding using Scotch-Weld (TM) AF-555M structural adhesive were investigated. Bonding surfaces of T800H/3900-2 composite were prepared by co-curing the dry and wet peel-plies. Surface topologies of the peel-plies and the co-cured composite surfaces were examined by microscopy, contour mapping using a coordinate measuring machine equipped with a ruby sphere probe, and contact angle goniometry. Curing of the adhesive was conducted in an autoclave or vacuum press at 177 degrees C (350 degrees F) for 2 h under 310 KPa (45 psi). Common bagging practices for composite fabrication in an autoclave were followed. It was found that a prolonged vacuum application (i.e., overnight) prior to the application of temperature and pressure was a critical element to produce porosity-free, high-quality bonds with this adhesive system. Following this procedure, a strong bond line was consistently produced, which routinely provided a single-lap shear strength more than 10% higher than the nominal value of the adhesive (i.e., 35.9 MPa or 5200 psi) when tested at room temperature. An adhesive failure mode at the interface was noted on the fractured surfaces of specimens with strong bonds whereas a premature cohesive failure mode was more evident for the specimens with weaker bonds, probably due to porosities in the bond lines. Photomicrographs showed that the weak single-lap shear strengths occurred on specimens with significant porosity in the bond line, apparently caused by entrapped air from insufficient vacuum application prior to curing. The results of this study are discussed herein. C1 [Hou, T. H.; Boston, K. G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Baughman, J. M.; Walker, S.; Johnston, W. M.] Lockheed Martin Engn & Serv Co, Hampton, VA 23666 USA. RP Hou, TH (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM tan-hung.hou-1@nasa.gov NR 12 TC 1 Z9 1 U1 0 U2 4 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0731-6844 J9 J REINF PLAST COMP JI J. Reinf. Plast. Compos. PD JUN PY 2010 VL 29 IS 11 BP 1702 EP 1711 DI 10.1177/0731684409341679 PG 10 WC Materials Science, Composites; Polymer Science SC Materials Science; Polymer Science GA 602DB UT WOS:000278117600010 ER PT J AU Sehirlioglu, A Sayir, A Dynys, F AF Sehirlioglu, Alp Sayir, Ali Dynys, Fred TI Doping of BiScO3-PbTiO3 Ceramics for Enhanced Properties SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE; ELECTRICAL-PROPERTIES; PIEZOELECTRIC SYSTEM; DIELECTRIC ANOMALIES; (1-X)BISCO3-XPBTIO(3); MICROSTRUCTURE; PIEZOCERAMICS AB Compositional modification of ferroelectric BiScO3-PbTiO3 (BS-PT) ceramics was investigated by Zr-Sc center dot doping as a function of temperature and electric field. Zr doping decreased the Curie temperature; yet depoling temperature was higher as determined from the weak field measurements. Weight change measurements explain the difference in sintering behavior, emphasizing the effects of sacrificial powder on the defect structure. Possible mechanisms are discussed in collaboration with the crystal structure analysis. Pb'(Bi) replacement was shown as a possible charge balance mechanism. Pb'(Bi) is supported by the weight loss data, crystal structure analysis and the weak-field electrical and electromechanical measurements. However, high field measurements contradicted the postulated Pb'(Bi) mechanism. Unipolar and bipolar high field polarization, strain and dielectric constant measurements indicated that the donor doping creates A-site vacancies; a similar observation to Pb(Zr,Ti)O-3 (PZT)-based ceramics. At higher temperatures, the property dependence on the composition decreased suggesting that thermally assisted domain motion eliminated the dependence of the domain wall mobility on the extrinsic contributions (i.e., defect structure induced by doping). Effect of Zr-Sc center dot doping on electrical and electromechanical properties are reported and discussed as a function of temperature. C1 [Sehirlioglu, Alp] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Sayir, Ali; Dynys, Fred] NASA, John Glenn Res Ctr, Cleveland, OH 44135 USA. RP Sehirlioglu, A (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. EM alp.sehirlioglu@case.edu FU Air Force Office of Scientific Research [FA 9550-06-1-0260] FX This work was supported by Air Force Office of Scientific Research Grant FA 9550-06-1-0260. NR 33 TC 27 Z9 28 U1 1 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2010 VL 93 IS 6 BP 1718 EP 1724 DI 10.1111/j.1551-2916.2010.03648.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 604WL UT WOS:000278309100042 ER PT J AU Sippel, JA Zhang, FQ AF Sippel, Jason A. Zhang, Fuqing TI Factors Affecting the Predictability of Hurricane Humberto (2007) SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ENSEMBLE KALMAN FILTER; TROPICAL CYCLONE INTENSITY; DOPPLER RADAR OBSERVATIONS; SEA INTERACTION THEORY; MESOSCALE PREDICTABILITY; MOIST CONVECTION; CYCLOGENESIS; DYNAMICS; PRECIPITATION; ASSIMILATION AB This study uses ensemble Kalman filter analyses and short-range ensemble forecasts to study factors affecting the predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Humberto is known for both its rapid intensification and extreme forecast uncertainty, which makes it an ideal case in which to examine the origins of tropical cyclone strength forecast error. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. During the analysis period, it is found that variations in midlevel moisture, low-level convective instability, and strength of a front to the north of the cyclone likely lead to differences in net precipitation, which ultimately leads to storm strength spread. Stronger storms are favored when the atmosphere is more moist and unstable and when the front is weaker, possibly because some storms in the ensemble begin entraining cooler and drier postfrontal air during this period. Later during the free forecast, variable entrainment of postfrontal air becomes a leading cause of strength spread. Surface moisture differences are the primary contributor to intensity forecast differences, and convective instability differences play a secondary role. Eventually mature tropical cyclone dynamics and differences in landfall time result in very rapid growth of ensemble spread. These results are very similar to a previous study that investigated a 2004 Gulf of Mexico low with a different model and analysis technique, which gives confidence that they are relevant to tropical cyclone formation and intensification in general. Finally, the rapid increase in forecast uncertainty despite relatively modest differences in initial conditions highlights the need for ensembles and advanced data assimilation techniques. C1 [Sippel, Jason A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zhang, Fuqing] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Sippel, JA (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD USA. EM jason.sippel@nasa.gov RI Zhang, Fuqing/E-6522-2010 OI Zhang, Fuqing/0000-0003-4860-9985 FU U.S. Office of Naval Research [N000140410471, N000140910526]; NSF [ATM-084065]; Oak Ridge Associated Universities through a contract with NASA FX This research started as part of the first author's doctoral dissertation at Texas A&M University and continued during the author's tenure at NASA's Goddard Space Flight Center under the NASA Postdoctoral Program. The authors have benefited from discussions with John Nielsen-Gammon, Scott Braun, and Larry Carey. Thanks are also due to Yonghui Weng for help on the ensemble simulation. Finally, the authors appreciate comments that significantly improved this study from Journal of the Atmospheric Sciences editor Shigeo Yoden, reviewer Ron McTaggart-Cowan, and two anonymous reviewers. Research completed at Texas A&M University was sponsored in by the U.S. Office of Naval Research under Grants N000140410471 and N000140910526 and by NSF Grant ATM-084065. The remaining work, completed under the NASA Postdoctoral Program, was sponsored by Oak Ridge Associated Universities through a contract with NASA. NR 34 TC 36 Z9 38 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2010 VL 67 IS 6 BP 1759 EP 1778 DI 10.1175/2010JAS3172.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PN UT WOS:000279368200005 ER PT J AU Mishchenko, MI AF Mishchenko, M. I. TI The amplitude of the coherent backscattering intensity peak for discrete random media: Effect of packing density SO KINEMATICS AND PHYSICS OF CELESTIAL BODIES LA English DT Article ID GALILEAN SATELLITES; POLARIZATION RATIOS; ENHANCEMENT FACTORS; LIGHT; PARTICLES; JUPITER; DIFFUSE; LAYER AB The amplitude of the coherent backscattering intensity peak is computed for a medium composed of densely packed, randomly positioned particles. The cyclical component of the Stokes reflection matrix at exactly the backscattering direction is expressed in terms of the ladder component, and the ladder component is rigorously computed by numerically solving the vector radiative transfer equation. The effect of packing density is accounted for by multiplying the single-scattering Mueller matrix by the static structure factor computed in the Percus-Yevick approximation. It is shown that increasing packing density can substantially reduce the amplitude of the copolarized coherent backscattering peak, especially for smaller particles, and can make it significantly lower than 2. The effect of packing density on the amplitude of the cross-polarized peak is significantly weaker. C1 [Mishchenko, M. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Mishchenko, M. I.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. RI Mishchenko, Michael/D-4426-2012 FU NASA Radiation Sciences Program FX The author is grateful to P.V. Litvinov, Yu.G. Shkuratov, V.P. Tishkovets, and E.G. Yanovitskij for many fruitful discussions. Partial funding for this research was provided by the NASA Radiation Sciences Program managed by H. Maring. NR 29 TC 0 Z9 0 U1 0 U2 2 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 0884-5913 J9 KINEMAT PHYS CELEST+ JI Kinemat. Phys. Celest. Bodies PD JUN PY 2010 VL 26 IS 3 BP 95 EP 103 DI 10.3103/S0884591310030013 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619MQ UT WOS:000279434700001 ER PT J AU Moczydlowska, M Schopf, JW Willman, S AF Moczydlowska, Malgorzata Schopf, J. William Willman, Sebastian TI Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity SO LETHAIA LA English DT Article DE Biological affinity; cell; wall; Cryogenian; microfossils; ultrastructure. ID HAEMATOCOCCUS-PLUVIALIS; NEOPROTEROZOIC ACRITARCHS; OUTER WALLS; CHLOROPHYCEAE; AUSTRALIA; EDIACARAN; VOLVOX; ALGAE; VOLVOCALES; CHLORELLA AB Recently established protocols and methods in advanced microscopy and spectrometry applied to studies of ancient unicellular organic-walled microfossils of uncertain biological affinities (acritarchs) provide new evidence of the fine ultrastructure of cell walls and their biochemistry that support the interpretation of some such microfossils as photosynthesizing microalgae. The micro-scale and nanoscale ultrastructure of the cell walls of late Cryogenian sphaeromorphic acritarchs from the Chichkan Formation (Kazakhstan) revealed by the advanced techniques and studied originally by Kempe et al. (2005) is here further analysed and compared with that of modern microalgal analogues. On the basis of such comparison, we interpret the preserved cell wall ultrastructure to reflect original layering and lamination within sub-layers of the fossil wall, rather than being a result of taphonomic and diagenetic alteration. The outer thick layer represents the primary wall and the inner layer the secondary wall of the cell, whereas the laminated amorphous sub-layers, 10-20 nm in thickness and revealed by transmission electron and atomic force microscopy, are recognized as trilaminar sheath structure. Because two-layered cell walls, trilaminar sheaths and the position of the TLS within the fossil cell wall are characteristic of the mature developmental state in cyst morphogenesis in modern microalgae, we infer that the Chichkan sphaeromorphs are probably resting cells (aplanospores) of chlorophyceaen green microalgae from the order Volvocales. square Biological affinity, cell wall, Cryogenian, microfossils, ultrastructure. C1 [Moczydlowska, Malgorzata; Willman, Sebastian] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. [Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Ctr Study Evolut & Origin Life, Inst Geophys & Planetary Phys,Mol Biol Inst, Los Angeles, CA 90095 USA. [Schopf, J. William] Univ Calif Los Angeles, NASA, Astrobiol Inst, Los Angeles, CA 90095 USA. RP Moczydlowska, M (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM malgo.vidal@pal.uu.se; schopf@ess.ucla.edu; sebastian.willman@geo.uu.se FU Swedish Research Council (Vetenskapsradet) [621-2004-5316]; CSEOL (UCLA/IGPP Center for the Study of Evolution and the Origin of Life); NASA Astrobiology Institute; Elsevier FX Research by M. Moczydlowska and S. Willman was supported through the Swedish Research Council (Vetenskapsradet) grant No. 621-2004-5316 to M. Moczydlowska. The study has been inspired during the discussions with colleagues participating in the World Summit on Ancient Microscopic Fossils, 27 July to 2 August 2008, University of California, Los Angeles, organized by J. William Schopf and supported by CSEOL (UCLA/IGPP Center for the Study of Evolution and the Origin of Life), NASA Astrobiology Institute, and Elsevier. NR 54 TC 13 Z9 15 U1 1 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0024-1164 J9 LETHAIA JI Lethaia PD JUN PY 2010 VL 43 IS 2 BP 129 EP 136 DI 10.1111/j.1502-3931.2009.00175.x PG 8 WC Paleontology SC Paleontology GA 591TX UT WOS:000277328700001 ER PT J AU Joy, KH Crawford, IA Russell, SS Kearsley, AT AF Joy, Katherine H. Crawford, Ian A. Russell, Sara S. Kearsley, Anton T. TI Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID MILLER RANGE 05035; AL GANI 400; PECORA ESCARPMENT-02007; BOMBARDMENT HISTORY; IRON CONCENTRATION; CENTRAL-HIGHLANDS; ICEFIELD 02205; MARE BASALTS; MOON; SURFACE AB Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA-ICP-MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#(< 70)), have high Sc/Sm ratios (typically > 10), and have low incompatible trace element (ITE) concentrations (i.e., typically < 3.2 ppm Sm, < 1.5 ppm Th). Feldspathic impact melt in DaG 400, PCA 02007, and MAC 88104/05 are similar in composition to that estimated composition for upper feldspathic lunar crust (Korotev et al. 2003). However, these melt types are more mafic (i.e., less Eu, less Sr, more Sc) than feldspathic impact melts returned by the Apollo 16 mission (e.g., the group 3 and 4 varieties). Mafic impact melt clasts are common in MET 01210 and less common in PCA 02007 and MAC 88104/05. We show that unlike the Apollo mafic impact melt groups (Jolliff 1998), these meteorite impact melts were not formed from melting large amounts of KREEP-rich (typically > 10 ppm Sm), High Magnesium Suite (typically > 70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios < 2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP-poor and Sc-rich, and represent mixing between feldspathic lithologies and low-Ti or very low-Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer-Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low-Ti basalt contribution. C1 [Joy, Katherine H.; Crawford, Ian A.] Joint UCL Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, London WC1E 6BT, England. [Joy, Katherine H.; Russell, Sara S.; Kearsley, Anton T.] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Joy, Katherine H.] USRA, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, Katherine H.] NASA, Lunar Sci Inst, Washington, DC USA. [Crawford, Ian A.] Birkbeck Coll, Dept Earth & Planetary Sci, London WC1E 7HX, England. RP Joy, KH (reprint author), Joint UCL Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, Gower St, London WC1E 6BT, England. EM joy@lpi.usra.edu RI Crawford, Ian/H-7510-2012; OI Crawford, Ian/0000-0001-5661-7403; Joy, Katherine/0000-0003-4992-8750 FU Leverhulme Trust; STFC; LPI/NLSI FX Many thanks to Guy Consolmango and the Vatican Observatory for loaning the DaG 400 sample to the NHM and to MWG/NASA for the loan of Antarctic samples. Many thanks also to Mr. John Spratt (NHM), Dr. Sarah James (formally of the NHM), and Dr. Andy Beard (Birkbeck/UCL) for their assistance with analytical procedures. Many thanks for thorough reviews and helpful comments of Drs. Randy Korotev, James Day, Jeff Taylor, Barbara Cohen, Christian Koeberl, and an anonymous reviewer. We would like to acknowledge the resources made available through the Lunar Meteorite List Website (Randy Korotev), the Lunar Meteorite Compendium (Kevin Righter), the Lunar Sample Compendium (Chuck Meyer), and the Virtual Moon Atlas. Thanks to the Leverhulme Trust, STFC, and LPI/NLSI for financial support. This is LPI contribution number 1600. NR 139 TC 25 Z9 25 U1 2 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 917 EP 946 DI 10.1111/j.1945-5100.2010.01067.x PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100001 ER PT J AU Hung, CC McNatt, J AF Hung, Ching-Cheh McNatt, Jeremiah TI Synthesis and stability of iron nanoparticles for lunar environment studies SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID SIMULATION AB Simulants of lunar dust are needed when researching the lunar environment. However, unlike the true lunar dust, today's simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of a lunar dust simulant. (1) The first is to sequentially treat a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 degrees C in nitrogen, at room temperature in air, and then at 1050 degrees C in nitrogen. The product includes glass beads that are gray in color, can be attracted by a magnet, and contains alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy agglutinate, which contains FeO. (2) The second is to heat a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 degrees C in nitrogen. This process simulates lunar dust reactions with the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe(3)O(4) nanoparticles, which appear to grow after the fabrication process. This growth became undetectable after 6 months of ambient air storage, but may last for several years or longer. C1 [Hung, Ching-Cheh; McNatt, Jeremiah] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Hung, CC (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 309-2, Cleveland, OH 44135 USA. EM ching-cheh.hung-1@nasa.gov FU NASA Glenn Research Center; NASA GRC FX The authors would like to acknowedge J. Gaier, A. Hepp, and K. Street for fruitful discussions regarding this work. We appreciate the efforts of D. Hull for the TEM work, as well as the efforts of R. Rogers, R. Mattingly, and the late R. Garlick for producing XRD data of iron nanoparticles over a 14 yr period. We are thankful for the financial support of the NASA Glenn Research Center's Independent Research and Development (IR&D) program and NASA GRC In Situ Resource Utilization Project (ISRU-Roxygen). NR 12 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 965 EP 972 DI 10.1111/j.1945-5100.2010.01075.x PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100003 ER PT J AU Chaban, GM Pizzarello, S AF Chaban, Galina M. Pizzarello, Sandra TI Ab initio calculations of 6-and 7-carbon meteoritic amino acids and their diastereomers SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID MURCHISON METEORITE; DEUTERIUM ENRICHMENT; CHEMISTRY AB To better explain the unusual distribution and relative abundances of several 6- and 7-carbon amino acids found in meteorites, their thermodynamic properties were studied using accurate ab initio techniques. In addition to optimized structures and relative energies, vibrational frequency and thermochemical analysis of different diastereomers were performed at temperatures relevant to conditions of synthesis of these amino acids in meteorites. The results of calculations were compared with the measured content of the amino acids in the Murchison meteorite. The distribution of several longer chain amino acids in meteorites seems to point to at least some thermodynamic control in their formation. For diastereomeric compounds, on the other hand, the comparison suggests that their synthetic conditions, or those of their precursors, were far from thermodynamic equilibrium. C1 [Chaban, Galina M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pizzarello, Sandra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Chaban, GM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM galina.m.chaban@nasa.gov FU NASA Astrobiology and Exobiology Program FX We would like to thank NASA Science Mission Directorate for computer time award on the NASA Advanced Supercomputing facility at the NASA Ames Research Center. This work was supported in part (S. P.) by the NASA Astrobiology and Exobiology Program. NR 17 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2010 VL 45 IS 6 BP 1053 EP 1060 DI 10.1111/j.1945-5100.2010.01083.x PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656XJ UT WOS:000282374100008 ER PT J AU Ghoshal, A Prosser, WH Kim, HS Chattopadhyay, A Copeland, B AF Ghoshal, Anindya Prosser, William H. Kim, Heung Soo Chattopadhyay, Aditi Copeland, Ben TI Development of embedded piezoelectric acoustic sensor array architecture SO MICROELECTRONICS RELIABILITY LA English DT Article ID COMPOSITE STRUCTURES; LAMB WAVES; PLATES; SCATTERING; DAMAGE; MODE AB This paper examines development of novel piezoelectric acoustic sensors, which are capable of sensing high frequency acoustic emissions in a composite/metallic plate. The fabrication of the piezoelectric acoustic sensors, made from piezoceramic ribbons, is described in the paper. An attempt was made to build directionality into the sensing system itself. Continuous sensors placed at right angles on a plate are discussed as a new approach to measure and locate the source of the acoustic waves. Novel signal processing algorithms based on bio-inspired neural systems for spatial filtering of large numbers of embedded sensor arrays in laminated composite media are presented. It is expected that the present work would help in the development of microelectronic sensing aiding diagnostics and prognostics techniques for highly efficient health monitoring of integrated aerospace vehicles and structures. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ghoshal, Anindya] United Technol Res Ctr, E Hartford, CT 06108 USA. [Prosser, William H.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. [Kim, Heung Soo] Dongguk Univ Seoul, Dept Mech Robot & Energy Engn, Seoul 100715, South Korea. [Chattopadhyay, Aditi] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. [Copeland, Ben] NASA, Langley Res Ctr, Mat Branch, Hampton, VA 23681 USA. RP Ghoshal, A (reprint author), United Technol Res Ctr, 411 Silver Lane,MS 129-73, E Hartford, CT 06108 USA. EM anindo_ghoshal@yahoo.com RI Kim, Heung Soo /F-6611-2011 OI Kim, Heung Soo /0000-0001-7057-5174 NR 25 TC 7 Z9 7 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0026-2714 J9 MICROELECTRON RELIAB JI Microelectron. Reliab. PD JUN PY 2010 VL 50 IS 6 BP 857 EP 863 DI 10.1016/j.microrel.2010.01.037 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 609GQ UT WOS:000278644400016 ER PT J AU Andrews, JC Almeida, E van der Meulen, MCH Alwood, JS Lee, C Liu, YJ Chen, J Meirer, F Feser, M Gelb, J Rudati, J Tkachuk, A Yun, WB Pianetta, P AF Andrews, Joy C. Almeida, Eduardo van der Meulen, Marjolein C. H. Alwood, Joshua S. Lee, Chialing Liu, Yijin Chen, Jie Meirer, Florian Feser, Michael Gelb, Jeff Rudati, Juana Tkachuk, Andrei Yun, Wenbing Pianetta, Piero TI Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE X-ray microscopy; imaging; bone ultrastructure; bone mineral density; trabeculae; lacuna; osteocyte ID ATOMIC-FORCE MICROSCOPY; LACUNAR-CANALICULAR SYSTEM; LASER-SCANNING MICROSCOPY; COMPUTED-TOMOGRAPHY; BONE-STRUCTURE; IN-SITU; MICROCOMPUTED TOMOGRAPHY; ELECTRON-MICROSCOPY; TRABECULAR BONE; CELLS AB A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Light-source operating from 5 to 15 keV X-ray energy with 14 to 30 mu m(2) field of view has been used for high-resolution (30-40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 mu m), untreated samples that preserve tissue micro-and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30-40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51-54% of pure crystal density and plate-like areas had 44-53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies. C1 [Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Almeida, Eduardo] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [van der Meulen, Marjolein C. H.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Alwood, Joshua S.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Lee, Chialing] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA. [Liu, Yijin] Inst High Energy Phys, Beijing 100039, Peoples R China. [Chen, Jie] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China. [Meirer, Florian] Vienna Univ Technol, Inst Atom & Subatom Phys, Vienna, Austria. [Feser, Michael; Gelb, Jeff; Rudati, Juana; Tkachuk, Andrei; Yun, Wenbing] Xradia Inc, Concord, CA 94520 USA. RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jandrews@slac.stanford.edu RI van der Meulen, Marjolein/D-1549-2010; Liu, Yijin/O-2640-2013; Meirer, Florian/H-7642-2016 OI van der Meulen, Marjolein/0000-0001-6637-9808; Liu, Yijin/0000-0002-8417-2488; Meirer, Florian/0000-0001-5581-5790 FU National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering [R01-EB004321]; NIH [R01-AG028664]; National Aeronautics and Space Administration [RAD2004-0000-0110]; Department of Energy, Office of Basic Energy Sciences FX This work has been supported by the National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering grant number R01-EB004321. Mouse loading experiments were supported by NIH grant number R01-AG028664 (to M. C. H. M.) and E.A. is supported by National Aeronautics and Space Administration Grant number RAD2004-0000-0110. SSRL is supported by the Department of Energy, Office of Basic Energy Sciences. NR 47 TC 53 Z9 53 U1 1 U2 39 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD JUN PY 2010 VL 16 IS 3 BP 327 EP 336 DI 10.1017/S1431927610000231 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 599HS UT WOS:000277902600011 PM 20374681 ER PT J AU Hochhalter, JD Littlewood, DJ Christ, RJ Veilleux, MG Bozek, JE Ingraffea, AR Maniatty, AM AF Hochhalter, J. D. Littlewood, D. J. Christ, R. J., Jr. Veilleux, M. G. Bozek, J. E. Ingraffea, A. R. Maniatty, A. M. TI A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID STRUCTURALLY SMALL CRACKS; CRITICAL PLANE APPROACH; ALUMINUM-ALLOY; CRYSTAL PLASTICITY; LIFE PREDICTION; CYCLE FATIGUE; GROWTH; INCLUSIONS; INITIATION; DAMAGE AB The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 (Bozek et al 2008 Modelling Simul. Mater. Sci. 16 065007). The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and finite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, influences the nucleation mechanism. Also, the baseline models, replication models and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated. C1 [Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.] Cornell Univ, Cornell Fracture Grp, Ithaca, NY 14853 USA. [Littlewood, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Christ, R. J., Jr.] Northrop Grumman Integrated Syst, Technol Dev, Bethpage, NY 11714 USA. [Maniatty, A. M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Hochhalter, JD (reprint author), NASA, Langley Res Ctr, Durabil Damage Tolerance & Reliabil Branch, MS 188E, Hampton, VA 23681 USA. EM Jacob.D.Hochhalter@nasa.gov FU Defense Advanced Research Projects Agency [HR0011-04-C-0003]; NASA [ARMD-NNX07AB69A] FX This paper is dedicated to Dr John Papazian, who passed away before seeing its publication. John assembled, and was inspirational leader of, our research team. His keen insights, always timely suggestions and warm collegiality will be missed. The authors would also like to thank Professor Anthony Rollett for his involved discussions and guidance. This work is partially sponsored by the Defense Advanced Research Projects Agency under contract HR0011-04-C-0003. Dr Leo Christodoulou is the DARPA Program Manager. This work is also partially funded by NASA under contract ARMD-NNX07AB69A. Dr Ed Glaessgen is the NASA Contract Monitor. The simulations needed to complete this study were carried out at NASA LaRC computing facilities. NR 35 TC 21 Z9 21 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUN PY 2010 VL 18 IS 4 AR 045004 DI 10.1088/0965-0393/18/4/045004 PG 33 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 588QF UT WOS:000277087400004 ER PT J AU Furlanetto, SR Stoever, SJ AF Furlanetto, Steven R. Stoever, Samuel Johnson TI Secondary ionization and heating by fast electrons SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE atomic processes; intergalactic medium; diffuse radiation ID DARK-MATTER DECAYS; 1ST BLACK-HOLES; 21 CM SIGNATURE; HIGH-REDSHIFT; INTERGALACTIC MEDIUM; ENERGETIC PARTICLES; IMPACT IONIZATION; THERMAL ELECTRONS; X-RAYS; REIONIZATION AB We examine the fate of fast electrons (with energies E > 10 eV) in a thermal gas of primordial composition. To follow their interactions with the background gas, we construct a Monte Carlo model that includes: (1) electron-electron scattering (which transforms the electron kinetic energy into heat), (2) collisional ionization of hydrogen and helium (which produces secondary electrons that themselves scatter through the medium) and (3) collisional excitation (which produces secondary photons, whose fates we also follow approximately). For the last process, we explicitly include all transitions to upper levels n < 4, together with a well-motivated extrapolation to higher levels. In all cases, we use recent calculated cross-sections at E < 1 keV and the Bethe approximation to extrapolate to higher energies. We compute the fractions of energy deposited as heat, ionization (tracking H i and the helium species separately) and excitation (tracking H i Ly alpha separately) under a broad range of conditions appropriate to the intergalactic medium. The energy deposition fractions depend on both the background ionized fraction and the electron energy but are nearly independent of the background density. We find good agreement with some, but not all, previous calculations at high energies. Electronic tables of our results are available. C1 [Furlanetto, Steven R.; Stoever, Samuel Johnson] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Furlanetto, Steven R.] NASA Ames Res Ctr, NASA Lunar Sci Inst, Moffett Field, CA 94043 USA. [Stoever, Samuel Johnson] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Furlanetto, SR (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM sfurlane@astro.ucla.edu FU NSF [AST-0829737, PHY-0552500]; David and Lucile Packard Foundation; NASA [NNA09DB30A]; UCLA FX We thank M. Valdes for helpful comments. SRF was partially supported by the NSF through grant AST-0829737, by the David and Lucile Packard Foundation and by NASA through the LUNAR programme. The LUNAR consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon. SJS was supported by a Research Experiences for Undergraduates grant at UCLA, NSF PHY-0552500. We thank Agner Fog for making a public version of the Mersenne Twister algorithm available and Igor Bray and Yuri Ralchenko for making the CCC data base available electronically. NR 45 TC 51 Z9 51 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 1 PY 2010 VL 404 IS 4 BP 1869 EP 1878 DI 10.1111/j.1365-2966.2010.16401.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600JG UT WOS:000277981400017 ER PT J AU Braun, SA AF Braun, Scott A. TI Reevaluating the Role of the Saharan Air Layer in Atlantic Tropical Cyclogenesis and Evolution SO MONTHLY WEATHER REVIEW LA English DT Article ID VERTICAL WIND SHEAR; AFRICAN EASTERLY JET; UPPER-TROPOSPHERIC TROUGHS; PREDICTION SCHEME SHIPS; WATER-VAPOR RADIANCES; HURRICANE-BONNIE 1998; NUMERICAL SIMULATIONS; WAVE DISTURBANCES; NORTH-ATLANTIC; INNER-CORE AB The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air frequently present over the tropical Atlantic Ocean, has long been appreciated. The nature of its impacts on hurricanes remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The potential negative impacts of the SAL include 1) vertical wind shear associated with the African easterly jet: 2) warm air aloft, which increases thermodynamic stability at the base of the SAL; and 3) dry air, which produces cold downdrafts. Multiple NASA satellite datasets and NCEP global analyses are used to characterize the SAL's properties and evolution ill relation to tropical cyclones and to evaluate these potential negative influences. The SAL is shown to occur in a large-scale environment that is already characteristically dry as a result of large-scale subsidence. Strong surface heating and deep dry convective mixing enhance the dryness at low levels (primarily below similar to 700 hPa), but moisten the air at midlevels. Therefore, mid-to-upper-level dryness is not generally a defining characteristic of the SAL, but is instead often a signature of subsidence. The results further show that storms generally form on the southern side of the jet, where the background cyclonic vorticity is high. Based upon its depiction in NCEP Global Forecast System meteorological analyses, the jet often helps to form the northern side of the storms and is present to equal extents for both strengthening and weakening storms, suggesting that jet-induced vertical wind shear may not be a frequent negative influence. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. Composite analyses of the early stages of tropical cyclones occurring in association with the SAL support the inferences from the individual cases noted above. Furthermore, separate composites for strongly strengthening and for weakening storms show few substantial differences in the SAL characteristics between these two groups, suggesting that the SAL is not a determinant of whether a storm will intensify or weaken in the days after formation. Key differences between these cases are found mainly at upper levels where the flow over strengthening storms allows for an expansive outflow and produces little vertical shear, while for weakening storms, the shear is stronger and the outflow is significantly constrained. C1 NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Braun, SA (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-1, Greenbelt, MD 20771 USA. EM scott.a.braun@nasa.gov FU NASA FX The authors thank Karen Mohr and Ron McTaggart-Cowan for their helpful comments on the manuscript. This work was supported by Dr. Ramesh Kakar at NASA Headquarters with funds from the NASA Hurricane Science Research Program. NR 87 TC 46 Z9 47 U1 3 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2010 VL 138 IS 6 BP 2007 EP 2037 DI 10.1175/2009MWR3135.1 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 622QE UT WOS:000279677500002 ER PT J AU Bleck, R Benjamin, S Lee, J MacDonald, AE AF Bleck, Rainer Benjamin, Stan Lee, Jin MacDonald, Alexander E. TI On the Use of an Adaptive, Hybrid-Isentropic Vertical Coordinate in Global Atmospheric Modeling SO MONTHLY WEATHER REVIEW LA English DT Article ID SHALLOW-WATER EQUATIONS; WEATHER PREDICTION; SIGMA MODEL; NUMERICAL INVESTIGATIONS; DIFFERENCE SCHEME; SIMULATION; SYSTEMS AB This article is one in a series describing the functionality of the Flow-Following, Finite-Volume Icosahedral Model (FIM) developed at NOAA's Earth System Research Laboratory. Emphasis in this article is on the design of the vertical coordinate-the "flow following" aspect of FIM. The coordinate is terrain-following near the ground and isentropic in the free atmosphere. The spatial transition between the two coordinates is adaptive and is based on the arbitrary Lagrangian-Eulerian (ALE) paradigm. The impact of vertical resolution trade-offs between the present hybrid approach and traditional terrain-following coordinates is demonstrated in a three-part case study. C1 [Bleck, Rainer] NOAA, ESRL, Global Syst Div, Boulder, CO 80303 USA. [Bleck, Rainer] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. RP Bleck, R (reprint author), NOAA, ESRL, Global Syst Div, 325 Broadway, Boulder, CO 80303 USA. EM rainer.bleck@noaa.gov RI Bleck, Rainer/C-6417-2015; Benjamin, Stan/C-5818-2015; Lee, JIN-LUEN/G-5364-2015 OI Benjamin, Stan/0000-0002-5751-8236; NR 47 TC 13 Z9 13 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2010 VL 138 IS 6 BP 2188 EP 2210 DI 10.1175/2009MWR3103.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 622QE UT WOS:000279677500011 ER PT J AU Kaul, AB Yang, EH AF Kaul, Anupama B. Yang, Eui-Hyeok TI A Special Issue on Nanoscale Materials, Structures and Devices for Sensors and Systems Applications SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Editorial Material C1 [Kaul, Anupama B.] CALTECH, Jet Prop Labs, Pasadena, CA 91125 USA. [Yang, Eui-Hyeok] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. [Kaul, Anupama B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Yang, Eui-Hyeok] Stevens Inst Technol, Multiuser Micro Device Lab MDL, Hoboken, NJ 07030 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Labs, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 63 EP 64 DI 10.1166/nnl.2010.1061 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900001 ER PT J AU Son, KA Liao, AN Lung, G Gallegos, M Hatake, T Harris, RD Scheick, LZ Smythe, WD AF Son, Kyung-ah Liao, Anna Lung, Gerald Gallegos, Manuel Hatake, Toshiro Harris, Richard D. Scheick, Leif Z. Smythe, William D. TI GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE AlGaN/GaN; MOS Transistor; Schottky-Free; High Temperature; Radiation-Hard ID FIELD-EFFECT TRANSISTORS; MOBILITY TRANSISTORS; HYDROSTATIC-PRESSURE; ALGAN/GAN HEMTS; DEPENDENCE; DC; DEVICES AB We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on AlGaN/GaN metal-oxide-semiconductor (MOS) transistors that are targeted for 500 degrees C operation and > 2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al(2)O(3) gate dielectric layer. The AlGaN/GaN MOS transistors fabricated with the wide-bandgap gate oxide layer enable Schottky-free gate electrodes, resulting in a much reduced gate leakage current and an improved sub-threshold current than the current AlGaN/GaN field effect transistors. In this study, characterization of our AlGaN/GaN MOS transistors is carried out over the temperature range of 25 degrees C to 500 degrees C. The I(ds)-V(gs) and I(ds)-V(gs) curves measured as a function of temperature show an excellent pinch-off behavior up to 450 degrees C. Off-state degradation is not observed up to 400 degrees C, but it becomes measurable at 450 degrees C. The off-state current is increased at 500 degrees C due to the gate leakage current, and the AlGaN/GaN MOS HEMT does not get pinched-off completely. Radiation hardness testing of the AlGaN/GaN MOS transistors is performed using a 50 MeV (60)Co gamma source to explore effects of TID (total ion dose). Excellent I(ds)-V(gs), and I(ds)-V(gs) characteristics are measured even after exposures to a TID of 2 Mrad. A slight decrease of saturation current (Delta I(dss) similar to 3 mA/mm) is observed due to the 2 Mrad irradiation. C1 [Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatake, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Son, KA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 21 TC 6 Z9 6 U1 1 U2 10 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 89 EP 95 DI 10.1166/nnl.2010.1063 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900006 ER PT J AU Prokopuk, N Son, KA Waltz, C AF Prokopuk, Nicholas Son, Kyung-Ah Waltz, Chad TI Free Standing Nanocrossbar Arrays with Molecular Throughput SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Electron Tunneling; Nanogap; Chemical Etch ID MONOLAYER/TI DEVICES; NANOGAP ELECTRODES; VAPOR-DEPOSITION; FABRICATION; TI; PATHWAYS; CIRCUITS; SURFACES; GLASSES; SWITCH AB We report a new approach for fabricating vacant nanocrossbar arrays using a combination of lithography and selective chemical etch. Two parallel arrays of gold wires are lithographically patterned orthogonal to each other with a chromium layer (2-5 nm thick) sandwiched between the wire arrays. A silicon oxide mesh is sputtered over the metal ensemble leaving the crossing points free of the oxide layer. The chromium layer is subsequently removed via selective chemical etch leaving a gold architecture with vertical separations that are on the order of a few nanometers. The silicon oxide mesh anchors the gold wires in place creating a robust nanoarchitecture. The nanogaps can be filled with fluids resulting in a change of the junction's resistance. The variability in the vertical separations between the wires within an array is only a few Angstroms. These results demonstrate that molecular-sized gaps can be created without the use of a molecular template. C1 [Prokopuk, Nicholas; Waltz, Chad] NAVAIR Res Dept, Chem Branch, China Lake, CA 93555 USA. [Son, Kyung-Ah] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Prokopuk, N (reprint author), NAVAIR Res Dept, Chem Branch, China Lake, CA 93555 USA. FU NAWCWD, China Lake; National Aeronautics and Space Administration FX Nicholas Prokopuk thanks the Defense Threat Reduction Agency for funding. This work was partially supported by the Independent Applied Research Program at NAWCWD, China Lake under the sponsorship of ONR. The research in this paper was carried out partly at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 30 TC 0 Z9 0 U1 0 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1941-4900 EI 1941-4919 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 96 EP 101 DI 10.1166/nnl.2010.1064 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900007 ER PT J AU Kaul, AB Khan, AR Megerian, KG Epp, L Bagge, L Jennings, AT Jang, D Greer, JR AF Kaul, A. B. Khan, A. R. Megerian, K. G. Epp, L. Bagge, L. Jennings, A. T. Jang, D. Greer, J. R. TI Nano-Electro-Mechanical Switches Derived from Carbon-Based Nanomaterials SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Nanoelectronics; NEMS; Mechanical Resonators; SWNTs; CNFs; In Situ Characterization ID NANOFIBERS AB We provide an overview of our work where carbon-based nanostructures have been applied to two-dimensional (2D) planar and three-dimensional (3D) vertically-oriented nano-electro-mechanical (NEM) switches. In the first configuration, laterally oriented single-walled nanotubes (SWNTs) synthesized using thermal chemical vapor deposition (CVD) were implemented for forming bridge-type 2D NEMS switches, where switching voltages were on the order of a few volts. In the second configuration, vertically oriented carbon nanofibers (CNFs) synthesized using plasma-enhanced (PE) CVD have been explored for their potential application in 3D NEMS. We have performed nanomechanical measurements on such vertically oriented tubes using nanoindentation to determine the mechanical robustness of the CNFs. Electrostatic switching was demonstrated in the CNFs synthesized on refractory metallic nitride substrates, where a nanoprobe was used as the actuating electrode inside a scanning-electron-microscope. The switching voltages were determined to be in the tens of volts range and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical pull-in voltage which was compared to experimental results. C1 [Kaul, A. B.; Khan, A. R.; Megerian, K. G.; Epp, L.; Bagge, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jennings, A. T.; Jang, D.; Greer, J. R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Jang, Dongchan/C-9510-2012 OI Jang, Dongchan/0000-0002-2814-9734 FU National Aeronautics and Space Administration; internal Research and Technology Development (RTD) program FX We sincerely acknowledge Robert Kowalczyk for his assistance with the PECVD growth chamber and performing chamber upgrades as necessary, in addition to Dr. Choonsup Lee, Dr. Richard L. Baron and Dr. Paul von Allmen for useful discussions. We would also like to thank Shelby Hutchens of the California Institute of Technology (Caltech) and Brian Peters of Agilent Technologies for the images taken in Figures 2(a) and (b). We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 21 TC 1 Z9 1 U1 0 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 163 EP 169 DI 10.1166/nnl.2010.1076 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900017 ER PT J AU Kaul, AB Megerian, KG Bagge, L Epp, L LeDuc, HG Coles, JB Eastwood, M Green, RO Foote, M AF Kaul, A. B. Megerian, K. G. Bagge, L. Epp, L. LeDuc, H. G. Coles, J. B. Eastwood, M. Green, R. O. Foote, M. TI Carbon Nanomaterials for Nanoelectronics and Optical Applications SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Nano-Sensors; Pressure Sensors; Resonators; NEMS; Optical Absorbers; Black Bodies ID SWITCHES AB Carbon-based nanomaterials have been actively applied to a diverse array of space-based applications in electronics and optics at the Jet Propulsion Laboratory. In the area of nano-electromechanical-systems (NEMS), we describe the implementation of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) to dc nanorelays, as well as for AC resonator applications, which are under consideration for extreme environment electronics. We have also implemented single-walled nanotubes (SWNTs) to physical sensing, specifically for forming miniaturized pressure sensors for vacuum micro-cavity applications, where the mechanism of operation in such sensors relies on the thermal conductivity principle. Finally, we have also initiated an effort to apply arrays of vertically oriented CNTs for optical applications, specifically as broad-band optical absorbers, potentially for calibration targets. In this paper, we provide an overview of the recent results in the three application areas of carbon nanomaterials. C1 [Kaul, A. B.; Megerian, K. G.; Bagge, L.; Epp, L.; LeDuc, H. G.; Coles, J. B.; Eastwood, M.; Green, R. O.; Foote, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration; internal Research and Technology Development (RTD) program FX We would like to thank Robert Kowalczyk for making system modifications to the dc PECVD growth chamber, Choonsup Lee, Richard Baron and Paul von Allmen for useful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 16 TC 2 Z9 2 U1 0 U2 8 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD JUN PY 2010 VL 2 IS 2 SI SI BP 170 EP 174 DI 10.1166/nnl.2010.1077 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 798MH UT WOS:000293210900018 ER PT J AU Johnson, SW Thedinga, JF Neff, AD Harris, PM Lindeberg, MR Maselko, JM Rice, SD AF Johnson, Scott W. Thedinga, John F. Neff, A. Darcie Harris, Patricia M. Lindeberg, Mandy R. Maselko, Jacek M. Rice, Stanley D. TI Fish Assemblages in Nearshore Habitats of Prince William Sound, Alaska SO NORTHWEST SCIENCE LA English DT Article ID VALDEZ OIL-SPILL; SHALLOW-WATER HABITATS; LIFE-HISTORY; REPRODUCTIVE SUCCESS; SOUTHEASTERN ALASKA; CLUPEA-PALLASI; NORTHERN GULF; PACIFIC; COMMUNITIES; ABUNDANCE AB We sampled fish at eight locations in western Prince William Sound (PWS), Alaska, in April, July, and September 2006, and July 2007, to identify species assemblages and habitat use. At each location, fish were sampled with a 37-m long variable mesh beach seine in three nearshore habitats: bedrock outcrops, eelgrass meadows, and cobble beaches with kelp. A total of 49,060 fish representing 45 species were captured in 95 beach seine hauls. Catch-per-unit-effort (CPUE, all species) did not differ by season but did differ by habitat type CPUE was greater in eelgrass and kelp than in bedrock. Seasonal pulses in catch were evident for some species; pink salmon were captured only in spring and summer, Pacific herring only in summer and fall, and capelin only in fall. Species richness was greater in summer (34) than in spring (23) or fall (28), and greater in eelgrass (34) than in bedrock (22) or kelp (33). Species that were good discriminators among seasonal collections were pink salmon, saffron cod, crescent gunnel, and Pacific herring, whereas species that were good discriminators among habitat collections were crescent gunnel, tubesnout, bay pipefish, saffron cod, and Arctic shanny. Of the most abundant species captured, most were juveniles based on estimated size at maturity. The summer fish assemblage in western PWS has changed over the last 20 years, especially with the appearance in large numbers of saffron cod. Sites in this study can be monitored periodically to track future changes in fish assemblages and habitat that may result from local and regional human disturbance. C1 [Johnson, Scott W.; Thedinga, John F.; Neff, A. Darcie; Harris, Patricia M.; Lindeberg, Mandy R.; Maselko, Jacek M.; Rice, Stanley D.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. RP Johnson, SW (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM scott.johnson@noaa.gov FU North Pacific Research Board [249]; NOAA FX We thank the crews of the RV Solstice and RV Pandalus for their invaluable support at sea. We would especially like to thank Matthew Eagleton of the NMFS regional office in Anchorage for providing logistical support. We also thank Dugan Greenwell. Kris Holderied, John Hudson, Sarah Lyn McConahay, John Moran, Sue Saupe, Fletcher Sewall, and Ash win Sreenivasan for help with field and laboratory work. Funding for this research was provided by the North Pacific Research Board (Publication 249) and the NOAA Fisheries Essential Fish Habitat Program. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NR 44 TC 5 Z9 5 U1 5 U2 21 PU WASHINGTON STATE UNIV PI PULLMAN PA PO BOX 645020, PULLMAN, WA 99164-5910 USA SN 0029-344X J9 NORTHWEST SCI JI Northwest Sci. PD SUM PY 2010 VL 84 IS 3 BP 266 EP 280 PG 15 WC Ecology SC Environmental Sciences & Ecology GA 652VU UT WOS:000282039700006 ER PT J AU VanZwieten, JH Driscoll, FR VanZwieten, TS Marikle, SP AF VanZwieten, J. H., Jr. Driscoll, F. R. VanZwieten, T. S. Marikle, S. P. TI Development of an adaptive disturbance rejection system for the rapidly deployable stable platform-part 1: Mathematical modeling and open loop response SO OCEAN ENGINEERING LA English DT Article DE RDSP; RDSC; Spar; Simulation; Sea base; Wave disturbances; Load disturbances; Open loop response; Seakeeping; Crane ship AB A Rapidly Deployable Stable Platform (RDSP) concept was investigated at Florida Atlantic University in response to military and civilian needs for ocean platforms with improved sea-keeping characteristics. The RDSP is designed to have enhanced sea-keeping abilities through the combination of a novel hull and thruster design coupled with active control. The RDSP is comprised of a catamaran that attaches via a hinge to a spar, enabling it to transit like a trimaran and then reconfigure so that the spar lifts the catamaran out of the water, creating a stable spar platform. The focus of this research is the mathematical modeling, simulation, and response characterization of the RDSP to provide a foundation for controller design, testing, and tuning. The mathematical model includes a detailed representation of residual drag, friction drag, added mass, hydrostatic and hydrodynamic pressure, and control actuator dynamics. Validation has been performed by comparing the simulation predicted motions of the RDSP operating in waves to the measured motions of the 1/10th scale prototype measured at sea. Resulting from this paper is an empirical assessment of the response characteristics of the RDSP that quantifies the performance under extreme conditions and provides a solid basis for controller development and testing. (C) 2010 Elsevier Ltd. All rights reserved. C1 [VanZwieten, J. H., Jr.] Florida Atlantic Univ, Ctr Ocean Energy Technol, Dania, FL 33004 USA. [Driscoll, F. R.; Marikle, S. P.] Florida Atlantic Univ, Dept Ocean & Mech Engn, Dania, FL 33004 USA. [VanZwieten, T. S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP VanZwieten, JH (reprint author), Florida Atlantic Univ, Ctr Ocean Energy Technol, 101 N Beach Rd, Dania, FL 33004 USA. EM jvanzwi@fau.edu FU Office of Naval Research [N00014-06-1-0461] FX The authors gratefully acknowledge the Office of Naval Research, code 33, program manager Kelly Cooper for funding this work under grant N00014-06-1-0461. The authors would also like to thank FAU's senior design class of 2005 for developing and assembling the original 1/10th scale prototype RDSP, which was modified to produce the RDSP prototype used to validate the simulation presented in this paper. NR 18 TC 2 Z9 3 U1 2 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD JUN PY 2010 VL 37 IS 8-9 BP 833 EP 846 DI 10.1016/j.oceaneng.2010.02.014 PG 14 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 605OA UT WOS:000278355700016 ER PT J AU Weber, AL AF Weber, Arthur L. TI Sugar-Driven Prebiotic Synthesis of Ammonia from Nitrite SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article DE Ammonia synthesis; Nitrite; Reduction; Sugar chemistry; Ferric; Prebiotic synthesis; Origin of life ID MILD AQUEOUS CONDITIONS; ACID SYNTHESIS; DISPROPORTIONATION; TRANSFORMATIONS; FORMALDEHYDE; METABOLISM; REDUCTION; ORIGIN; MODEL; LIFE AB Reaction of 3-5 carbon sugars, glycolaldehyde, and alpha-ketoaldehydes with nitrite under mild anaerobic aqueous conditions yielded ammonia, an essential substrate for the synthesis of nitrogen-containing molecules during abiogenesis. Under the same conditions, ammonia synthesis was not driven by formaldehyde, glyoxylate, 2-deoxyribose, and glucose, a result indicating that the reduction process requires an organic reductant containing either an accessible alpha-hydroxycarbonyl group or an alpha-dicarbonyl group. Small amounts of aqueous Fe(+3) catalyzed the sugar-driven synthesis of ammonia. The glyceraldehyde concentration dependence of ammonia synthesis, and control studies of ammonia's reaction with glyceraldehyde, indicated that ammonia formation is accompanied by incorporation of part of the synthesized ammonia into sugar-derived organic products. The ability of sugars to drive the synthesis of ammonia is considered important to abiogenesis because it provides a way to generate photochemically unstable ammonia at sites of sugar-based origin-of-life processes from nitrite, a plausible prebiotic nitrogen species. C1 NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Weber, AL (reprint author), NASA, SETI Inst, Ames Res Ctr, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM arthur.l.weber@nasa.gov FU Exobiology Program of the National Aeronautics and Space Administration [NNX08AP48A] FX I thank Esther Varon for technical assistance in these studies. This investigation was supported by a grant (NNX08AP48A) from the Exobiology Program of the National Aeronautics and Space Administration. NR 21 TC 2 Z9 2 U1 2 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD JUN PY 2010 VL 40 IS 3 BP 245 EP 252 DI 10.1007/s11084-010-9208-z PG 8 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 587WY UT WOS:000277028000001 PM 20213158 ER PT J AU Kruger, H Dikarev, V Anweiler, B Dermott, SF Graps, AL Grun, E Gustafson, BA Hamilton, DP Hanner, MS Horanyi, M Kissel, J Linkert, D Linkert, G Mann, I McDonnell, JAM Morfill, GE Polanskey, C Schwehm, G Srama, R AF Krueger, H. Dikarev, V. Anweiler, B. Dermott, S. F. Graps, A. L. Gruen, E. Gustafson, B. A. Hamilton, D. P. Hanner, M. S. Horanyi, M. Kissel, J. Linkert, D. Linkert, G. Mann, I. McDonnell, J. A. M. Morfill, G. E. Polanskey, C. Schwehm, G. Srama, R. TI Three years of Ulysses dust data: 2005 to 2007 SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Interstellar dust; Interplanetary dust; Dust dynamics; Interstellar medium; Dust in-situ measurements ID INTERSTELLAR NEUTRAL HELIUM; INNER SOLAR-SYSTEM; JOVIAN SYSTEM; METEOROID ENVIRONMENT; KINETIC-PARAMETERS; RADIATION PRESSURE; MASS-DISTRIBUTION; ASTEROID BELT; 1 AU; GALILEO AB The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse (i = 79 degrees, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in February 1992. Since then it has made almost three revolutions about the Sun. Here we report on the final three years of data taken by the on-board dust detector. During this time, the dust detector recorded 609 dust impacts of particles with masses 10(-16) g <= m <= 10(-7) g, bringing the mission total to 6719 dust data sets. The impact rate varied from a low value of 0.3 per day at high ecliptic latitudes to 1.5 per day in the inner solar system. The impact direction of the majority of impacts between 2005 and 2007 is compatible with particles of interstellar origin; the rest are most likely interplanetary particles. We compare the interstellar dust measurements from 2005/2006 with the data obtained during earlier periods (1993/1994) and (1999/2000) when Ulysses was traversing the same spatial region at southern ecliptic latitudes but the solar cycle was at a different phase. During these three intervals the impact rate of interstellar grains varied by more than a factor of two. Furthermore, in the two earlier periods the grain impact direction was in agreement with the flow direction of the interstellar helium while in 2005/2006 we observed a shift in the approach direction of the grains by approximately 30 away from the ecliptic plane. The reason for this shift remains unclear but may be connected with the configuration of the interplanetary magnetic field during solar maximum. We also find that the dust measurements are in agreement with the interplanetary flux model of Staubach et al. (1997) which was developed to fit a 5-year span of Ulysses data. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Krueger, H.; Kissel, J.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Krueger, H.; Anweiler, B.; Gruen, E.; Linkert, D.; Linkert, G.; Srama, R.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Dikarev, V.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Dermott, S. F.; Gustafson, B. A.] Univ Florida, SSRB 211, Gainesville, FL 32609 USA. [Graps, A. L.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Gruen, E.; Horanyi, M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hamilton, D. P.] Univ Maryland, College Pk, MD 20742 USA. [Hanner, M. S.] Univ Massachusetts, Dept Astron, LGRT 619, Amherst, MA 01003 USA. [Mann, I.] Kinki Univ, Sch Sci & Engn, Osaka 5778502, Japan. [McDonnell, J. A. M.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Polanskey, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schwehm, G.] ESAC, Villanueva De La Canada 28691, Spain. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. RP Kruger, H (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krueger@mps.mpg.de OI Horanyi, Mihaly/0000-0002-5920-9226 FU Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 ON 9107, 50 QJ 9503]; Max-Planck-Institut fur Kernphysik; Max-Planck-Institut fur Sonnensys-temforschung FX We dedicate this work to the memory of Dietmar Linkert who passed away in spring 2009. He was Principal Engineer for space instruments at MPI fur Kernphysik including the dust instruments flown on the HEOS-2, Helios, Galileo, Ulysses and Cassini missions. His friends and colleagues around the world appreciated his experience and sought his professional advice. We thank the Ulysses project at ESA and NASA/JPL for effective and successful mission operations. This work has been supported by the Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) under Grants 50 ON 9107 and 50 QJ 9503. Support by Max-Planck-Institut fur Kernphysik and Max-Planck-Institut fur Sonnensys-temforschung is also gratefully acknowledged. The authors also wish to thank two anonymous referees for their valuable comments for the manuscript. NR 73 TC 15 Z9 15 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 951 EP 964 DI 10.1016/j.pss.2009.11.002 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200001 ER PT J AU Kruger, H Bindschadler, D Dermott, SF Graps, AL Grun, E Gustafson, BA Hamilton, DP Hanner, MS Horanyi, M Kissel, J Linkert, D Linkert, G Mann, I McDonnell, JAM Moissl, R Morfill, GE Polanskey, C Roy, M Schwehm, G Srama, R AF Krueger, H. Bindschadler, D. Dermott, S. F. Graps, A. L. Gruen, E. Gustafson, B. A. Hamilton, D. P. Hanner, M. S. Horanyi, M. Kissel, J. Linkert, D. Linkert, G. Mann, I. McDonnell, J. A. M. Moissl, R. Morfill, G. E. Polanskey, C. Roy, M. Schwehm, G. Srama, R. TI Galileo dust data from the jovian system: 2000 to 2003 SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Circumplanetary dust; Planetary rings; Dust/magnetosphere interaction; Interplanetary dust; Dusty plasmas ID JUPITERS GOSSAMER RINGS; PLANETARY SATELLITES; INTERSTELLAR DUST; STREAM PARTICLES; ULYSSES; IO; MAGNETOSPHERE; INTERPLANETARY; DETECTOR; CLOUDS AB The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 R(J) (jovian radius R(J)=71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12 978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon lo. They were detected throughout the jovian system and the impact rates frequently exceeded 10 min(-1). Surprisingly large impact rates up to 100 min(-1) occurred in August/September 2000 when Galileo was far away (approximate to 280 R(J)) from Jupiter, implying dust ejection rates in excess of 100 kg s(-1). This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the lo torus. Strong variability in the lo dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from lo or the lo torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a four-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R(J) jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. Strong electronics degradation of the dust instrument due to the harsh radiation environment of Jupiter led to increased calibration uncertainties of the dust data. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Krueger, H.; Kissel, J.; Moissl, R.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Krueger, H.; Gruen, E.; Linkert, D.; Linkert, G.; Srama, R.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Bindschadler, D.; Polanskey, C.; Roy, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dermott, S. F.; Gustafson, B. A.] Univ Florida, SSRB 211, Gainesville, FL 32609 USA. [Graps, A. L.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Gruen, E.; Horanyi, M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hamilton, D. P.] Univ Maryland, College Pk, MD 20742 USA. [Hanner, M. S.] Univ Massachusetts, Astron Dept LGRT 619, Amherst, MA 01003 USA. [Mann, I.] Kinki Univ, Sch Sci & Engn, Osaka 5778502, Japan. [McDonnell, J. A. M.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Schwehm, G.] ESAC, Villanueva De La Canada 28691, Spain. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. RP Kruger, H (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krueger@mps.mpg.de OI Horanyi, Mihaly/0000-0002-5920-9226 FU German Bundesministerium fur Bildung und Forschung through Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 QJ 9503 3]; MPI fur Kernphysik; MPI fur Sonnensystemforschung FX We dedicate this work to the memory of Dietmar Linkert who passed away in spring 2009. He was Principal Engineer for space instruments at MPI fur Kernphysik including the dust instruments flown on the HEOS-2, Helios, Galileo, Ulysses and Cassini missions. His friends and colleagues around the world appreciated his experience and sought his professional advice. The authors wish to thank the Galileo project at NASA/JPL for effective and successful mission operations. This research was supported by the German Bundesministerium fur Bildung und Forschung through Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR, grant 50 QJ 9503 3). Support by MPI fur Kernphysik and MPI fur Sonnensystemforschung is also gratefully acknowledged. The authors also wish to thank two anonymous referees for their valuable comments for the manuscript. NR 68 TC 5 Z9 5 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 965 EP 993 DI 10.1016/j.pss.2010.03.003 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200002 ER PT J AU ten Kate, IL Cardiff, EH Dworkin, JP Feng, SH Holmes, V Malespin, C Stern, JG Swindle, TD Glavin, DP AF ten Kate, I. L. Cardiff, E. H. Dworkin, J. P. Feng, S. H. Holmes, V. Malespin, C. Stern, J. G. Swindle, T. D. Glavin, D. P. TI VAPoR - Volatile Analysis by Pyrolysis of Regolith - an instrument for in situ detection of water, noble gases, and organics on the Moon SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Evolved Gas Analysis; Lunar Regolith; Lunar Volatiles; Mass Spectrometer; Lunar Water Ice ID LUNAR TRANSIENT PHENOMENA; LATE HEAVY BOMBARDMENT; CARBONACEOUS CHONDRITES; MURCHISON METEORITE; MARS; APOLLO-16; NITROGEN; SUPPORT; SCIENCE; SURFACE AB We present the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument design and demonstrate the validity of an in situ pyrolysis mass spectrometer for evolved gas analyses of lunar and planetary regolith samples. In situ evolved gas analyses of the lunar regolith have not yet been carried out and no atmospheric or evolved gas measurements have been made at the lunar poles. VAPoR is designed to do both kinds of measurements, is currently under development at NASA's Goddard Space Flight Center, and will be able to heat powdered regolith samples or rock drill fines up to 1400 degrees C in vacuo. To validate the instrument concept, evolved gas species released from different planetary analogs were determined as a function of temperature using a laboratory breadboard. Evolved gas measurements of an Apollo 16 regolith sample and a fragment of the carbonaceous meteorite Murchison were made by VAPoR and our results compared with existing data. The results imply that in situ evolved gas measurements of the lunar regolith at the polar regions by VAPoR will be a very powerful tool for identifying water and other volatile signatures of lunar or exogenous origin as potential resources for future human exploration. (C) 2010 Elsevier Ltd. All rights reserved. C1 [ten Kate, I. L.; Cardiff, E. H.; Dworkin, J. P.; Feng, S. H.; Holmes, V.; Glavin, D. P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [ten Kate, I. L.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Holmes, V.] Bast Technol, Lanham, MD 20706 USA. [Malespin, C.] Auburn Univ Phys, Allison Labs 206, Auburn, AL 36849 USA. [Stern, J. G.] Georgia Inst Technol, Dept Biol, Atlanta, GA 30332 USA. [Swindle, T. D.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP ten Kate, IL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Inge.L.tenKate@NASA.gov RI Malespin, Charles/F-3445-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012; Stern, Joshua/A-2691-2010 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997; Stern, Joshua/0000-0003-0626-5467 FU NASA [06-LSSO06-0002, 07-ASTID07-0020]; Goddard Internal Research and Development FX The authors thank P. Lowman, T. McCoy, L. Welzenbach, and G. Lofgren for the samples used in this study. The authors also thank Marvin Noreiga and the late Bob Abell for their invaluable help in keeping the VAPoR instrument running, Geronimo Villanueva for his help with the 1DL code used to analyze the data, and Bart Hendriks and Douwe van Hinsbergen for their geological discussions. We also recognize the NASA Lunar Sortie Science Opportunities (grant #06-LSSO06-0002) and Astrobiology Science and Technology Instrument Development (grant #07-ASTID07-0020) programs, Goddard Internal Research and Development funding for supporting this research. NR 54 TC 14 Z9 14 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2010 VL 58 IS 7-8 BP 1007 EP 1017 DI 10.1016/j.pss.2010.03.006 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 612XN UT WOS:000278939200004 ER PT J AU Colavita, MM AF Colavita, M. M. TI Simultaneous Water Vapor and Dry Air Path Length Measurements with the Keck Interferometer Nuller SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID PALOMAR TESTBED INTERFEROMETER; OUTER SCALES; MT WILSON; TURBULENCE; SPECTRA; DELAY; VLTI; MIDI AB K-band phase and group delay measurements of atmospheric turbulence are used as part of the Keck Interferometer nuller cophasing system to provide high-bandwidth path length compensation at N band. Because of atmospheric dispersion, the path length fluctuations from dry air and water vapor must be estimated separately, and the computation of the N-band feedforward quantities from the K-band measurements is described. Simultaneous K and N-band sky data are presented that show good correspondence with the underlying atmospheric models. Simultaneous power spectra of dry air and water vapor path length turbulence measured on an 85 m baseline with the Keck Interferometer over 44 nights between 2007 June and 2009 July are also presented. From the median power spectra, the rms path length fluctuations at K band from water vapor are found to be 48 times smaller than those for dry air, and the absolute level of the water vapor path length fluctuations is found to be a factor of 2 smaller than predicted based on archival data from the CSO test radio interferometer. It is postulated that part of the difference is attributable to surface-layer water vapor turbulence, which would be smaller at the elevation of the Keck telescopes than for the test antennas, similar to surface-layer effects seen in dry air seeing at Mauna Kea. The midfrequency power spectral amplitude better characterizes the residuals for a feedforward compensation system, and this value is found to be a factor of 65 smaller at K band for water vapor than for dry air; the difference compared to the ratio of the rms values is attributable to the lower effective wind speed of the water vapor turbulence, and thus lower control bandwidths are required for compensation than a simple scaling based on rms fluctuations would indicate. The water vapor coherence time is also shown to have modest correlations with both precipitable water vapor and the dry air coherence time, although the variability of the water vapor turbulence strength is larger than that of the dry air turbulence. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Colavita, MM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Mark.Colavita@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); W. M. Keck Foundation FX Thanks to Rachel Akeson and Oliver Lay for helpful comments, and to Claude Felizardo for assistance with the data processing. Thanks also to the referee for helpful suggestions. The Keck Interferometer is funded by the National Aeronautics and Space Administration (NASA). Observations presented were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 31 TC 6 Z9 6 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2010 VL 122 IS 892 BP 712 EP 721 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600NK UT WOS:000277993400008 ER PT J AU Becker-Reshef, I Justice, C Sullivan, M Vermote, E Tucker, C Anyamba, A Small, J Pak, E Masuoka, E Schmaltz, J Hansen, M Pittman, K Birkett, C Williams, D Reynolds, C Doorn, B AF Becker-Reshef, Inbal Justice, Chris Sullivan, Mark Vermote, Eric Tucker, Compton Anyamba, Assaf Small, Jen Pak, Ed Masuoka, Ed Schmaltz, Jeff Hansen, Matthew Pittman, Kyle Birkett, Charon Williams, Derrick Reynolds, Curt Doorn, Bradley TI Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project SO REMOTE SENSING LA English DT Article DE agriculture; monitoring; MODIS; croplands; GLAM AB In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. Timely information on global crop production is indispensable for combating the growing stress on the world's crop production and for securing both short-term and long-term stable and reliable supply of food. Global agriculture monitoring systems are critical to providing this kind of intelligence and global earth observations are an essential component of an effective global agricultural monitoring system as they offer timely, objective, global information on croplands distribution, crop development and conditions as the growing season progresses. The Global Agriculture Monitoring Project (GLAM), a joint NASA, USDA, UMD and SDSU initiative, has built a global agricultural monitoring system that provides the USDA Foreign Agricultural Service (FAS) with timely, easily accessible, scientifically-validated remotely-sensed data and derived products as well as data analysis tools, for crop-condition monitoring and production assessment. This system is an integral component of the USDA's FAS Decision Support System (DSS) for agriculture. It has significantly improved the FAS crop analysts' ability to monitor crop conditions, and to quantitatively forecast crop yields through the provision of timely, high-quality global earth observations data in a format customized for FAS alongside a suite of data analysis tools. FAS crop analysts use these satellite data in a 'convergence of evidence' approach with meteorological data, field reports, crop models, attache reports and local reports. The USDA FAS is currently the only operational provider of timely, objective crop production forecasts at the global scale. These forecasts are routinely used by the other US Federal government agencies as well as by commodity trading companies, farmers, relief agencies and foreign governments. This paper discusses the operational components and new developments of the GLAM monitoring system as well as the future role of earth observations in global agricultural monitoring. C1 [Becker-Reshef, Inbal; Justice, Chris; Sullivan, Mark; Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Tucker, Compton; Anyamba, Assaf; Small, Jen; Pak, Ed; Masuoka, Ed; Schmaltz, Jeff] NASA, Goddard Space & Flight Ctr, Greenbelt, MD 20771 USA. [Hansen, Matthew; Pittman, Kyle] S Dakota State Univ, Geog Informat Sci Ctr Excellence, Brookings, SD 57007 USA. [Birkett, Charon] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Williams, Derrick; Reynolds, Curt] Foreign Agr Serv, USDA, Washington, DC 20250 USA. [Doorn, Bradley] NASA Head Quarters, Washington, DC 20546 USA. RP Becker-Reshef, I (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM ireshef@hermes.geog.edu; justice@hermes.geog.umd.edu; mbs@hermes.geog.umd.edu; eric@ltdri.org; Compton.j.tucker@nasa.gov; Asaph.anyamba-1@nasa.gov; jennifer.l.small@nasa.gov; Edwin.w.pak@nasa.gov; Edward.j.masuoka@nasa.gov; jeff.schmaltz@nasa.gov; matthew.hansen@sdstate.edu; kyle.pittman@sdstate.edu; cmb@essic.umd.edu; derrick.williams@fas.usda.gov; curt.reynolds@fas.usda.gov; bradley.doorn@nasa.gov RI Vermote, Eric/K-3733-2012 FU NASA; USDA Foreign Agricultural Service [NNS06AA03A] FX The Global Agricultural Monitoring Project is made possible through funding provided by the NASA Applied Science Program and the USDA Foreign Agricultural Service, grant code NNS06AA03A. NR 25 TC 50 Z9 53 U1 2 U2 27 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2010 VL 2 IS 6 BP 1589 EP 1609 DI 10.3390/rs2061589 PG 21 WC Remote Sensing SC Remote Sensing GA V24HN UT WOS:000208401600011 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996-aEuro parts per thousand 2009): Catalog and Summary of Properties SO SOLAR PHYSICS LA English DT Article DE Coronal mass ejections; Interplanetary coronal mass ejections; Interplanetary magnetic field; Magnetic clouds; Solar wind plasma ID RIEGER-TYPE PERIODICITIES; FLIGHT-CENTER INSTRUMENTS; WIND HELIUM ABUNDANCE; INTER-PLANETARY SHOCK; MAGNETIC CLOUDS; ENERGETIC PARTICLES; CHARGE STATES; IONIZATION STATE; SOURCE LOCATION; SUNSPOT AREAS AB In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 -aEuro parts per thousand 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a "comprehensive" catalog of these events. In this paper, we present a revised and updated catalog of the a parts per thousand 300 near-Earth ICMEs in 1996 -aEuro parts per thousand 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied "magnetic clouds", with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 FU NASA FX We are indebted to all the experimenters who have produced and generously made available the various data sets used to compile this catalog. The LASCO CME catalog is generated and maintained at the CDAWData Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. This work was funded by a NASA Heliosphysics Guest Investigator award. NR 103 TC 212 Z9 213 U1 2 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD JUN PY 2010 VL 264 IS 1 BP 189 EP 237 DI 10.1007/s11207-010-9568-6 PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610OM UT WOS:000278742600013 ER PT J AU Krupp, N Khurana, KK Iess, L Lainey, V Cassidy, TA Burger, M Sotin, C Neubauer, F AF Krupp, N. Khurana, K. K. Iess, L. Lainey, V. Cassidy, T. A. Burger, M. Sotin, C. Neubauer, F. TI Environments in the Outer Solar System SO SPACE SCIENCE REVIEWS LA English DT Review DE Planetary magnetospheres; Plasma transport; Jupiter; Saturn; Icy moons; Magnetosphere moon interaction ID LOW-ENERGY PLASMA; FLOW PAST IO; GALILEAN SATELLITES; MAGNETIC-FIELD; INTERNAL STRUCTURE; JOVIAN MAGNETOSPHERE; GRAVITY-FIELD; NEPTUNE MAGNETOSPHERE; ACCURATE EPHEMERIDES; URANIAN SATELLITES AB The outer planets of our solar system Jupiter, Saturn, Uranus, and Neptune are fascinating objects on their own. Their intrinsic magnetic fields form magnetic environments (so called magnetospheres) in which charged and neutral particles and dust are produced, lost or being transported through the system. These magnetic environments of the gas giants can be envisaged as huge plasma laboratories in space in which electromagnetic waves, current systems, particle transport mechanisms, acceleration processes and other phenomena act and interact with the large number of moons in orbit around those massive planets. In general it is necessary to describe and study the global environments (magnetospheres) of the gas giants, its global configuration with its large-scale transport processes; and, in combination, to study the local environments of the moons as well, e.g. the interaction processes between the magnetospheric plasma and the exosphere/atmosphere/magnetosphere of the moon acting on time scales of seconds to days. These local exchange processes include also the gravity, shape, rotation, astrometric observations and orbital parameters of the icy moons in those huge systems. It is the purpose of this chapter of the book to describe the variety of the magnetic environments of the outer planets in a broad overview, globally and locally, and to show that those exchange processes can dramatically influence the surfaces and exospheres/atmospheres of the moons and they can also be used as a tool to study the overall physics of systems as a whole. C1 [Krupp, N.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Khurana, K. K.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Iess, L.] Univ Roma La Sapienza, Dipartimento Ingn Aerosp & Astronaut, Rome, Italy. [Lainey, V.] IMCCE Observ Paris, Paris, France. [Cassidy, T. A.] Univ Virginia, Charlottesville, VA USA. [Burger, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Neubauer, F.] Univ Cologne, Cologne, Germany. RP Krupp, N (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM krupp@mps.mpg.de RI IESS, Luciano/F-4902-2011; Burger, Matthew/C-1310-2011 OI IESS, Luciano/0000-0002-6230-5825; FU EC [001637]; German Space Agency DLR [50OH0801, 50OH0802]; Max Planck Society; NASA FX This work was financed through the EC contract No. 001637 (RICA) EURO-PLANET. Work at the Max-Planck-Institut fur Sonnensystemforschung has been supported by the German Space Agency DLR through the contracts 50OH0801 and 50OH0802 and by the Max Planck Society. Work in the US has been supported by NASA. V.L. thanks J.-E. Arlot and A. Vienne for fruitful discussions. NR 136 TC 2 Z9 2 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 11 EP 59 DI 10.1007/s11214-010-9653-z PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200003 ER PT J AU Prockter, LM Lopes, RMC Giese, B Jaumann, R Lorenz, RD Pappalardo, RT Patterson, GW Thomas, PC Turtle, EP Wagner, RJ AF Prockter, Louise M. Lopes, Rosaly M. C. Giese, Bernd Jaumann, Ralf Lorenz, Ralph D. Pappalardo, Robert T. Patterson, Gerald W. Thomas, Peter C. Turtle, Elizabeth P. Wagner, Roland J. TI Characteristics of Icy Surfaces SO SPACE SCIENCE REVIEWS LA English DT Review DE Icy satellites; Europa; Ganymede; Titan; Enceladus; Cryovolcanism ID INFRARED MAPPING SPECTROMETER; CASSINI IMAGING SCIENCE; GALILEO NOMINAL MISSION; SMALL INNER SATELLITES; SOUTH-POLAR FRACTURES; CONAMARA CHAOS REGION; TITANS SURFACE; GROOVED TERRAIN; WATER-ICE; PLANETARY SCIENCE AB The surfaces of the Solar System's icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. C1 [Prockter, Louise M.; Lorenz, Ralph D.; Patterson, Gerald W.; Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Lopes, Rosaly M. C.; Pappalardo, Robert T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Giese, Bernd; Jaumann, Ralf; Wagner, Roland J.] Inst Planetary Res, German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Thomas, Peter C.] Cornell Univ, Ithaca, NY 14853 USA. RP Prockter, LM (reprint author), Johns Hopkins Univ, Appl Phys Lab, MP3-E169,11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Louise.Prockter@jhuapl.edu RI Turtle, Elizabeth/K-8673-2012; Patterson, Gerald/E-7699-2015; Lorenz, Ralph/B-8759-2016; Lopes, Rosaly/D-1608-2016 OI Turtle, Elizabeth/0000-0003-1423-5751; Lorenz, Ralph/0000-0001-8528-4644; Lopes, Rosaly/0000-0002-7928-3167 FU National Aeronautics and Space Administration FX We thank two anonymous reviewers for their helpful comments, and Olivier Grasset for his tireless efforts in putting together this volume. The portions of this work performed by RTP and RMCL were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 283 TC 10 Z9 10 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 63 EP 111 DI 10.1007/s11214-010-9649-8 PG 49 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200004 ER PT J AU Dalton, JB Cruikshank, DP Stephan, K McCord, TB Coustenis, A Carlson, RW Coradini, A AF Dalton, J. B. Cruikshank, D. P. Stephan, K. McCord, T. B. Coustenis, A. Carlson, R. W. Coradini, A. TI Chemical Composition of Icy Satellite Surfaces SO SPACE SCIENCE REVIEWS LA English DT Review DE Composition; Icy satellites; Infrared spectroscopy ID INFRARED MAPPING SPECTROMETER; HUBBLE-SPACE-TELESCOPE; HUYGENS LANDING SITE; EXTREME ULTRAVIOLET OBSERVATIONS; PHOTOCHEMICAL FLOW REACTOR; TITANS UPPER-ATMOSPHERE; HYDRATED SALT MINERALS; KUIPER-BELT OBJECTS; JUPITERS MOON IO; 5 MU-M AB Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood. C1 [Dalton, J. B.; Carlson, R. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cruikshank, D. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Stephan, K.] German Aerosp Ctr DLR, D-12489 Berlin, Germany. [McCord, T. B.] Bear Fight Inst, Winthrop, WA 98862 USA. [Coustenis, A.] Observ Paris, LESIA, F-92195 Meudon, France. [Coradini, A.] IFSI, I-00133 Rome, Italy. RP Dalton, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dalton@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA; European Space Agency (ESA); German Aerospace Center (DLR); Italian Istituto di Fisica della Spazio Interplanetario (IFSI) FX A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. The authors acknowledge the support of the NASA Outer Planets and Cassini Data Analysis programs, the European Space Agency (ESA), the German Aerospace Center (DLR), and the Italian Istituto di Fisica della Spazio Interplanetario (IFSI). NR 342 TC 37 Z9 37 U1 5 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 113 EP 154 DI 10.1007/s11214-010-9665-8 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200005 ER PT J AU Coustenis, A Tokano, T Burger, MH Cassidy, TA Lopes, RM Lorenz, RD Retherford, KD Schubert, G AF Coustenis, A. Tokano, T. Burger, M. H. Cassidy, T. A. Lopes, R. M. Lorenz, R. D. Retherford, K. D. Schubert, G. TI Atmospheric/Exospheric Characteristics of Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Atmospheres; Exospheres; Icy satellites; Titan; Io; Enceladus; Europa ID HUBBLE-SPACE-TELESCOPE; GALILEO ULTRAVIOLET SPECTROMETER; COMPOSITE INFRARED SPECTROMETER; VOLCANICALLY DRIVEN ATMOSPHERE; RADIO OCCULTATION MEASUREMENTS; TITANS SOUTH-POLE; IOS PELE PLUME; ADAPTIVE OPTICS; SO2 ATMOSPHERE; CASSINI RADAR AB The atmospheres/exospheres of icy satellites greatly vary from one to the next in terms of density, composition, structure or steadiness. Titan is the only icy satellite with a dense atmosphere comparable in many ways to that of the Earth's atmosphere. Titan's atmosphere prevents the surface from direct interaction with the plasma environment, but gives rise to Earth-like exchanges of energy, matter and momentum. The atmospheres of other satellites are tenuous. Enceladus' atmosphere manifests itself in a large water vapor plume emanating from surface cracks near the south pole. Io's SO2 atmosphere originates from volcanoes. Europa's tenuous O-2 atmosphere is produced by intense radiation bombardment. This chapter reviews the characteristics of the atmospheres of Titan, Enceladus, Io and Europa based on observations. C1 [Coustenis, A.] Observ Paris, LESIA, F-92195 Meudon, France. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-5000 Cologne, Germany. [Burger, M. H.] Univ Maryland, Greenbelt, MD 20771 USA. [Burger, M. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cassidy, T. A.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Lopes, R. M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Retherford, K. D.] SW Res Inst, San Antonio, TX USA. [Schubert, G.] Univ Calif Los Angeles, Los Angeles, CA USA. RP Coustenis, A (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM athena.coustenis@obspm.fr RI Burger, Matthew/C-1310-2011; Lorenz, Ralph/B-8759-2016; Lopes, Rosaly/D-1608-2016 OI Lorenz, Ralph/0000-0001-8528-4644; Lopes, Rosaly/0000-0002-7928-3167 NR 194 TC 4 Z9 4 U1 3 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 155 EP 184 DI 10.1007/s11214-009-9615-5 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200006 ER PT J AU Fortes, AD Choukroun, M AF Fortes, A. Dominic Choukroun, Mathieu TI Phase Behaviour of Ices and Hydrates SO SPACE SCIENCE REVIEWS LA English DT Review DE Water ice; Methane clathrate; Ammonia; Methanol; Sulfuric acid; Sulfates; Polymorphism; Phase relations ID NEUTRON POWDER DIFFRACTION; AMMONIA-WATER SYSTEM; HIGH-PRESSURE PHASE; OUTER SOLAR-SYSTEM; EQUATION-OF-STATE; METHANE CLATHRATE HYDRATE; SULFURIC-ACID-SOLUTIONS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; ICY SATELLITES AB The primary volatile 'rock-forming' minerals in the icy satellites of the outer solar system include water-ice and various hydrated crystals of methane and ammonia. The rich polymorphism of these substances as a function of pressure and temperature are described in this chapter. This polymorphism has a fundamental influence on the exchange of mass and energy between the core and the surface of icy satellites. We describe the current state-of-the-art in our understanding of the high pressure phase behaviour and the measurements of thermoelastic and transport properties of these substances. In addition we describe the structures and properties of hydrated phases of methanol, sulfuric acid, and various sulfate salts. C1 [Fortes, A. Dominic] UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Choukroun, Mathieu] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. RP Fortes, AD (reprint author), UCL Birkbeck, Ctr Planetary Sci, Gower St, London WC1E 6BT, England. EM andrew.fortes@ucl.ac.uk; mathieu.choukroun@jpl.nasa.gov RI Fortes, Andrew/C-1349-2011; Choukroun, Mathieu/F-3146-2017 OI Fortes, Andrew/0000-0001-5907-2285; Choukroun, Mathieu/0000-0001-7447-9139 FU UK Science and Technology Facilities Council (STFC) [PP/E006515/1]; NASA; Oak Ridge Associated Universities FX ADF is supported by an Advanced Fellowship from the UK Science and Technology Facilities Council (STFC), grant number PP/E006515/1. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2009. All rights reserved. Government sponsorship acknowledged. NR 254 TC 52 Z9 52 U1 7 U2 77 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 185 EP 218 DI 10.1007/s11214-010-9633-3 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200007 ER PT J AU Dalton, JB AF Dalton, J. B. TI Spectroscopy of Icy Moon Surface Materials SO SPACE SCIENCE REVIEWS LA English DT Review DE Ice; Infrared spectroscopy; Remote sensing; Planetary science ID GALILEO PHOTOPOLARIMETER-RADIOMETER; ULTRAVIOLET SPECTROMETER EXPERIMENT; NEAR-INFRARED SPECTROSCOPY; OUTER SOLAR-SYSTEM; POLYCYCLIC AROMATIC-HYDROCARBONS; COMPLEX REFRACTIVE-INDEXES; CM(-1) OPTICAL-CONSTANTS; SOLID CARBON MONOXIDE; 5 MU-M; WATER-ICE AB Remote sensing of icy objects in the outer solar system relies upon availability of appropriate laboratory measurements. Surface deposits of specific substances often provide our most direct route to understanding interior composition, thereby informing theories of endogenic surface modification, exogenic surface processing and processes involving exchange of material with the interiors. Visible to near-infrared reflectance spectra of properly prepared compounds are required to enable retrieval of surface abundances through linear and nonlinear mixture analysis applied to spacecraft observations of icy bodies. This chapter describes the techniques, conditions and approaches necessary to provide reference spectra of use to theoretical models of icy satellite surface compositions, and summarizes the current state of knowledge represented in the published literature. C1 CALTECH, Jet Prop Lab, Planetary Ices Grp, Pasadena, CA 91109 USA. RP Dalton, JB (reprint author), CALTECH, Jet Prop Lab, Planetary Ices Grp, MS 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dalton@jpl.nasa.gov FU NASA; Jet Propulsion Laboratory FX The author wishes to express his gratitude to Barbara Amago, Robert Powers and Marion Hernandez of the Jet Propulsion Laboratory Technical Library for their assistance with this article. Corey Jamieson, Jake Cooper and Saveelah Talib contributed to Table 3. This work was supported by the NASA Outer Planets Research Program and the Jet Propulsion Laboratory Research and Technology Development Program. NR 258 TC 14 Z9 14 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 219 EP 247 DI 10.1007/s11214-010-9658-7 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200008 ER PT J AU Cassidy, T Coll, P Raulin, F Carlson, RW Johnson, RE Loeffler, MJ Hand, KP Baragiola, RA AF Cassidy, T. Coll, P. Raulin, F. Carlson, R. W. Johnson, R. E. Loeffler, M. J. Hand, K. P. Baragiola, R. A. TI Radiolysis and Photolysis of Icy Satellite Surfaces: Experiments and Theory SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiolysis; Photolysis; Sputtering; Tholins; Ices ID SOLAR-SYSTEM SURFACES; WATER-ICE; ION IRRADIATION; SULFURIC-ACID; GALILEAN SATELLITES; OPTICAL-CONSTANTS; TITANS THOLINS; X-RAY; MU-M; EUROPA AB The transport and exchange of material between bodies in the outer solar system is often facilitated by their exposure to ionizing radiation. With this in mind we review the effects of energetic ions, electrons and UV photons on materials present in the outer solar system. We consider radiolysis, photolysis, and sputtering of low temperature solids. Radiolysis and photolysis are the chemistry that follows the bond breaking and ionization produced by incident radiation, producing, e.g., O-2 and H-2 from irradiated H2O ice. Sputtering is the ejection of molecules by incident radiation. Both processes are particularly effective on ices in the outer solar system. Materials reviewed include H2O ice, sulfur-containing compounds (such as SO2 and S-8), carbon-containing compounds (such as CH4), nitrogen-containing compounds (such as NH3 and N-2), and mixtures of those compounds. We also review the effects of ionizing radiation on a mixture of N-2 and CH4 gases, as appropriate to Titan's upper atmosphere, where radiolysis and photolysis produce complex organic compounds (tholins). C1 [Cassidy, T.; Carlson, R. W.; Hand, K. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cassidy, T.; Johnson, R. E.] Univ Virginia, Engn Phys Program, Charlottesville, VA 22904 USA. [Coll, P.] Univ Paris 07, Lab Interuniv Syst Atmospher, Creteil, France. [Raulin, F.] Univ Paris 7 & Paris 12, Lab Interuniv Syst Atmospher, UMR 7583, Creteil, France. [Johnson, R. E.] New York Univ, Dept Phys, New York, NY 10003 USA. [Loeffler, M. J.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Baragiola, R. A.] Univ Virginia, Lab Atom & Surface Phys, Charlottesville, VA 22904 USA. RP Cassidy, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tac2z@virginia.edu RI Loeffler, Mark/C-9477-2012 NR 96 TC 29 Z9 29 U1 3 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 299 EP 315 DI 10.1007/s11214-009-9625-3 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200011 ER PT J AU Hussmann, H Choblet, G Lainey, V Matson, DL Sotin, C Tobie, G Van Hoolst, T AF Hussmann, Hauke Choblet, Gael Lainey, Valery Matson, Dennis L. Sotin, Christophe Tobie, Gabriel Van Hoolst, Tim TI Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Satellites; Energy sources; Rotation; Tides; Orbital dynamics; Heat transfer ID JUPITERS GALILEAN SATELLITES; PRANDTL NUMBER FLUID; GEYSER-LIKE PLUMES; TIDAL DISSIPATION; SOLAR-SYSTEM; THERMAL-CONVECTION; DEPENDENT VISCOSITY; INTERIOR STRUCTURE; VOLCANIC ACTIVITY; SOUTH-POLE AB Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites' interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites-as opposed to single objects-important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state-usually leading to the 1:1 spin orbit coupling-and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed. C1 [Hussmann, Hauke] DLR Inst Planetary Res, D-12489 Berlin, Germany. [Choblet, Gael; Tobie, Gabriel] Univ Nantes, Lab Planetol & Geodynam, F-44322 Nantes, France. [Lainey, Valery] Observ Paris 77, IMCCE, F-75014 Paris, France. [Matson, Dennis L.; Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Hoolst, Tim] Royal Observ Belgium, B-1180 Brussels, Belgium. RP Hussmann, H (reprint author), DLR Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM hauke.hussmann@dlr.de FU NASA; Helmholtz Association FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Part of this work has been supported by the Helmholtz Association through the alliance 'Planetary Evolution and Life'. NR 117 TC 15 Z9 15 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 317 EP 348 DI 10.1007/s11214-010-9636-0 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200012 ER PT J AU Burger, MH Wagner, R Jaumann, R Cassidy, TA AF Burger, Matthew H. Wagner, Roland Jaumann, Ralf Cassidy, Timothy A. TI Effects of the External Environment on Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Planetary science; Atmospheres; Magnetospheres; Outer solar system; Satellites; Solar system evolution; Surfaces; Impact histories ID IO PLASMA TORUS; CASSINI UVIS OBSERVATIONS; JUPITER-FAMILY COMETS; ELECTRON-IMPACT IONIZATION; OUTER SOLAR-SYSTEM; CROSS-SECTIONS; IMAGING SCIENCE; GALILEAN SATELLITES; COLLISIONAL EVOLUTION; AZIMUTHAL VARIABILITY AB In order to understand the evolution of planetary satellite surfaces and atmospheres it is important to understand their external environments. In this paper we look at the interactions between plasma in planetary magnetospheres and satellite atmospheres responsible for the production and loss of atmospheric mass. We focus on the processes which take place in the tenuous atmospheres of the Galilean satellites and in the Enceladus water plume. We also review the impact histories of satellites in the outer solar system, and compare the record of impacts in the inner and outer solar system. C1 [Burger, Matthew H.] Univ Maryland, Greenbelt, MD USA. [Burger, Matthew H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wagner, Roland; Jaumann, Ralf] DLR, Berlin, Germany. [Cassidy, Timothy A.] Univ Virginia, Charlottesville, VA USA. RP Burger, MH (reprint author), Univ Maryland, Greenbelt, MD USA. EM Matthew.H.Burger@nasa.gov RI Burger, Matthew/C-1310-2011 NR 123 TC 8 Z9 8 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 349 EP 374 DI 10.1007/s11214-010-9645-z PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200013 ER PT J AU Tobie, G Giese, B Hurford, TA Lopes, RM Nimmo, F Postberg, F Retherford, KD Schmidt, J Spencer, JR Tokano, T Turtle, EP AF Tobie, G. Giese, B. Hurford, T. A. Lopes, R. M. Nimmo, F. Postberg, F. Retherford, K. D. Schmidt, J. Spencer, J. R. Tokano, T. Turtle, E. P. TI Surface, Subsurface and Atmosphere Exchanges on the Satellites of the Outer Solar System SO SPACE SCIENCE REVIEWS LA English DT Review DE Subsurface; Surface; Atmosphere; Icy moons ID INFRARED MAPPING SPECTROMETER; CASSINI RADAR OBSERVATIONS; SOUTH-POLAR FRACTURES; LARGE IMPACT FEATURES; ICE SHELL THICKNESS; TITANS SURFACE; ENCELADUS PLUME; HUYGENS PROBE; HEAT-FLUX; GALILEAN SATELLITES AB The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites' surfaces. C1 [Tobie, G.] Univ Nantes Atlantique, Lab Planetol & Geodynam Nantes, F-44322 Nantes 03, France. [Tobie, G.] CNRS, UMR 6112, F-44322 Nantes 03, France. [Giese, B.] Inst Planetary Res, German Aerosp Ctr, D-12489 Berlin, Germany. [Hurford, T. A.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Lopes, R. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nimmo, F.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Postberg, F.] Heidelberg Univ, Inst Earth Sci, D-69120 Heidelberg, Germany. [Postberg, F.] Max Planck Inst Kernphys MPI Nucl Phys, D-69117 Heidelberg, Germany. [Retherford, K. D.] SW Res Inst, San Antonio, TX 78228 USA. [Schmidt, J.] Univ Potsdam, D-14469 Potsdam, Germany. [Spencer, J. R.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. [Turtle, E. P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Tobie, G (reprint author), Univ Nantes Atlantique, Lab Planetol & Geodynam Nantes, F-44322 Nantes 03, France. EM gabriel.tobie@univ-nantes.fr RI Hurford, Terry/F-2625-2012; Turtle, Elizabeth/K-8673-2012; Lopes, Rosaly/D-1608-2016 OI Turtle, Elizabeth/0000-0003-1423-5751; Lopes, Rosaly/0000-0002-7928-3167 FU INSU; NASA FX We thank L. Soderblom for helpful suggestions and corrections. Supports from INSU's Programme National de Planetologie, NASA's Planetary Geology and Geophysics and Outer Planets Research programmes are gratefully acknowledged. NR 214 TC 6 Z9 6 U1 1 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 375 EP 410 DI 10.1007/s11214-010-9641-3 PG 36 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200014 ER PT J AU Schubert, G Hussmann, H Lainey, V Matson, DL McKinnon, WB Sohl, F Sotin, C Tobie, G Turrini, D Van Hoolst, T AF Schubert, G. Hussmann, H. Lainey, V. Matson, D. L. McKinnon, W. B. Sohl, F. Sotin, C. Tobie, G. Turrini, D. Van Hoolst, T. TI Evolution of Icy Satellites SO SPACE SCIENCE REVIEWS LA English DT Review DE Outer planet moons; Io; Europa; Enceladus; Dione; Titan; Iapetus; Rhea; Tethys; Phoebe; Pluto; Charon; Satellite evolution ID KUIPER-BELT OBJECTS; NEAR-INFRARED SPECTROSCOPY; GIANT IMPACT ORIGIN; OUTER SOLAR-SYSTEM; IOS HEAT-FLOW; THERMAL EVOLUTION; IRREGULAR SATELLITES; GALILEAN SATELLITES; TIDAL DISSIPATION; VISCOELASTIC MODELS AB Evolutionary scenarios for the major satellites of Jupiter, Saturn, Neptune, and Pluto-Charon are discussed. In the Jovian system the challenge is to understand how the present Laplace resonance of Io, Europa, and Ganymede was established and to determine whether the heat being radiated by Io is in balance with the present tidal dissipation in the moon. In the Saturnian system, Enceladus and Titan are the centers of attention. Tidal heating is the likely source of activity at the south pole of Enceladus, although the details of how the heating occurs are not understood. An evolutionary scenario based on accretion and internal differentiation is presented for Titan, whose present substantial orbital eccentricity is not associated with any dynamical resonance. The source and maintenance of methane in Titan's present atmosphere remain uncertain. Though most attention on the Saturnian moons focuses on Titan and Enceladus, the mid-size satellites Iapetus, Rhea, Tethys, and the irregular satellite Phoebe also draw our interest. An evolutionary scenario for Iapetus is presented in which spin down from an early rapidly rotating state is called upon to explain the satellite's present oblate shape. The prominent equatorial ridge on Iapetus is unexplained by the spin down scenario. A buckling instability provides another possible explanation for the oblateness and equatorial ridge of Iapetus. Rhea is the only medium-size Saturnian satellite for which there are gravity data at present. The interpretation of these data are uncertain, however, since it is not known if Rhea is in hydrostatic equilibrium. Pluto and Charon are representative of the icy dwarf planets of the Kuiper belt. Did they differentiate as they evolved, and do either of them have a subsurface liquid water ocean? New Horizons might provide some answers when it arrives at these bodies. C1 [Schubert, G.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Schubert, G.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Hussmann, H.; Sohl, F.] Inst Planetary Res, German Aerosp Ctr DLR, D-12489 Berlin, Germany. [Lainey, V.] CNRS, IMCCE Observ Paris, UMR 8028, F-75014 Paris, France. [Matson, D. L.] JPL 183 335, Pasadena, CA 91109 USA. [McKinnon, W. B.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [McKinnon, W. B.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Sotin, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tobie, G.] Univ Nantes, Nantes, France. [Turrini, D.] INAF IFSI, I-00133 Rome, Italy. [Van Hoolst, T.] Royal Observ Belgium, B-1180 Brussels, Belgium. RP Schubert, G (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. EM schubert@ucla.edu; Hauke.Hussmann@dlr.de; Valery.Lainey@imcce.fr; dennis.l.matson@jpl.nasa.gov; mckinnon@wustl.edu; Frank.Sohl@dlr.de; christophe.sotin@jpl.nasa.gov; gabriel.tobie@univ-nantes.fr; diego.turrini@ifsi-roma.inaf.it; tim.vanhoolst@oma.be OI Turrini, Diego/0000-0002-1923-7740 FU NASA [NNG06GG70G]; New Horizons project FX GS acknowledges support from the NASA Outer Planets Research and Planetary Geology and Geophysics (NASA NNG06GG70G) programs. WBM thanks the New Horizons project for support and S. A. Stern for comments. NR 158 TC 27 Z9 27 U1 4 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 447 EP 484 DI 10.1007/s11214-010-9635-1 PG 38 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200017 ER PT J AU Sohl, F Choukroun, M Kargel, J Kimura, J Pappalardo, R Vance, S Zolotov, M AF Sohl, Frank Choukroun, Mathieu Kargel, Jeffrey Kimura, Jun Pappalardo, Robert Vance, Steve Zolotov, Mikhail TI Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes SO SPACE SCIENCE REVIEWS LA English DT Review DE Outer solar system; Water oceans; Oceanic composition; Chemical evolution; Organic compounds; High-pressure ices; Clathrate hydrates; Hydrothermal activity; Porous rock; Serpentinization; Europa; Ganymede; Callisto; Titan; Enceladus ID HYDRATED SALT MINERALS; INTERNAL STRUCTURE; GALILEAN SATELLITES; HIGH-PRESSURES; NONSYNCHRONOUS ROTATION; HYDROTHERMAL SYSTEMS; CLATHRATE FORMATION; INTERIOR STRUCTURE; TECTONIC PROCESSES; TIDAL DISSIPATION AB The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock. C1 [Sohl, Frank] German Aerosp Ctr DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Choukroun, Mathieu; Pappalardo, Robert; Vance, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Kargel, Jeffrey] Univ Arizona, Dept Hydrol, Tucson, AZ 85721 USA. [Kimura, Jun] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Zolotov, Mikhail] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Sohl, F (reprint author), German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany. EM frank.sohl@dlr.de; mathieu.choukroun@jpl.nasa.gov; kargel@hwr.arizona.edu; junkim@ep.sci.hokudai.ac.jp; robert.pappalardo@jpl.nasa.gov; svance@jpl.nasa.gov; zolotov@asu.edu RI Kimura, Jun/D-6050-2013; Choukroun, Mathieu/F-3146-2017 OI Kimura, Jun/0000-0002-5825-0454; Choukroun, Mathieu/0000-0001-7447-9139 FU Helmholtz Association; National Aeronautics and Space Administration; NASA; Caltech Postdoctoral Program FX The authors are grateful to the organizers of the EuroPlanet-ISSIWorkshop Exchange Processes on Icy Satellites, held November 2008 in the inspiring environment of the International Space Science Institute, Bern, Switzerland; two anonymous reviewers for their constructive comments; and O. Grasset for the manuscript handling. We would like to thank G. Tobie for providing the clathrate hydrates densities calculations. This research has been supported by the Helmholtz Association through the research alliance Planetary Evolution and Life. A portion of this work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Doctors Choukroun, Pappalardo and Vance acknowledge support from the NASA Astrobiology Institute's Astrobiology of Icy Worlds program at the Jet Propulsion Laboratory. Doctors Choukroun and Vance acknowledge support from the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. S. Vance acknowledges support from the Caltech Postdoctoral Program. F. Sohl acknowledges discussions with H. Hussmann, V. Stamenkovic, and F. W. Wagner. NR 134 TC 32 Z9 32 U1 8 U2 55 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 485 EP 510 DI 10.1007/s11214-010-9646-y PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200018 ER PT J AU Raulin, F Hand, KP Mckay, CP Viso, M AF Raulin, Francois Hand, Kevin P. Mckay, Christopher P. Viso, Michel TI Exobiology and Planetary Protection of icy moons SO SPACE SCIENCE REVIEWS LA English DT Review DE Exobiology; Prebiotic chemistry; Extraterrestrial life; Europa's ocean; Enceladus liquid water reservoir; Habitability; Planetary protection ID NEUTRAL MASS-SPECTROMETER; ENERGY-REQUIREMENTS; HYDROTHERMAL SYSTEMS; HYPOTHESIZED OCEAN; INTERNAL STRUCTURE; HYDROGEN-PEROXIDE; TITANS ATMOSPHERE; SURFACE ORGANICS; MICROBIAL LIFE; METHANE CYCLE AB The outer solar system is an important area of investigation for exobiology, the study of life in the universe. Several moons of the outer planets involve processes and structures comparable to those thought to have played an important role in the emergence of life on Earth, such as the formation and exchange of organic materials between different reservoirs. The study of these prebiotic processes on, and in, outer solar system moons is a key goal for exobiology, together with the question of habitability and the search for evidence of past or even present life. This chapter reviews the aspects of prebiotic chemistry and potential presence of life on Europa, Enceladus and Titan, based on the most recent data obtained from space missions as well as theoretical and experimental laboratory models. The habitability of these extraterrestrial environments, which are likely to include large reservoirs of liquid water in their internal structure, is discussed as well as the particular case of Titan's hydrocarbon lakes. The question of planetary protection, especially in the case of Europa, is also presented. C1 [Raulin, Francois] Univ Paris 7 & Paris 12, Creteil, France. [Raulin, Francois] LISA CNRS, Creteil, France. [Hand, Kevin P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Viso, Michel] CNES DSP EU, Paris, France. RP Raulin, F (reprint author), Univ Paris 7 & Paris 12, Creteil, France. EM Francois.Raulin@lisa.univ-paris12.fr; khand@jpl.nasa.gov; chris.mckay@nasa.gov; michel.viso@cnes.fr NR 106 TC 8 Z9 8 U1 3 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2010 VL 153 IS 1-4 BP 511 EP 535 DI 10.1007/s11214-009-9610-x PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 657AA UT WOS:000282381200019 ER PT J AU Lazarus, SM Splitt, ME Lueken, MD Ramachandran, R Li, XA Movva, S Graves, SJ Zavodsky, BT AF Lazarus, Steven M. Splitt, Michael E. Lueken, Michael D. Ramachandran, Rahul Li, Xiang Movva, Sunil Graves, Sara J. Zavodsky, Bradley T. TI Evaluation of Data Reduction Algorithms for Real-Time Analysis SO WEATHER AND FORECASTING LA English DT Article ID MEASURING INFORMATION-CONTENT; NUMERICAL WEATHER PREDICTION; DATA ASSIMILATION; ATMOSPHERIC-TEMPERATURE; REMOTE MEASUREMENTS; OBJECTIVE ANALYSIS; RECURSIVE FILTER; ANALYSIS SYSTEM; SATELLITE; DENSITY AB Data reduction tools are developed and evaluated using a data analysis framework. Simple (nonadaptive) and intelligent (adaptive) thinning algorithms are applied to both synthetic and real data and the thinned datasets are ingested into an analysis system. The approach is motivated by the desire to better represent high-impact weather features (e. g., fronts, jets, cyclones, etc.) that are often poorly resolved in coarse-resolution forecast models and to efficiently generate a set of initial conditions that best describes the current state of the atmosphere. As a precursor to real-data applications, the algorithms are applied to one- and two-dimensional synthetic datasets. Information gleaned from the synthetic experiments is used to create a thinning algorithm that combines the best aspects of the intelligent methods (i.e., their ability to detect regions of interest) while reducing the impacts of spatial irregularities in the data. Both simple and intelligent thinning algorithms are then applied to Atmospheric Infrared Sounder (AIRS) temperature and moisture profiles. For a given retention rate, background, and observation error, the optimal 1D analyses (i.e., lowest MSE) tend to have observations that are near regions of large curvature and gradients. Observation error leads to the selection of spurious data in homogeneous regions of the intelligent algorithms. In the 2D experiments, simple thinning tends to perform better within the homogeneous data regions. Analyses produced using AIRS data demonstrate that observations selected via a combination of the simple and intelligent approaches reduce clustering, provide a more even distribution along the satellite swath edges, and, in general, have lower error and comparable computational requirements compared to standard operational thinning methodologies. C1 [Lazarus, Steven M.; Splitt, Michael E.] Florida Inst Technol, Melbourne, FL 32901 USA. [Lueken, Michael D.] NCEP Environm Modeling Ctr, Camp Springs, MD USA. [Ramachandran, Rahul; Li, Xiang; Movva, Sunil; Graves, Sara J.] Univ Alabama, Informat Technol & Syst Ctr, Huntsville, AL 35899 USA. [Zavodsky, Bradley T.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Lazarus, SM (reprint author), Florida Inst Technol, 150 W Univ Blvd, Melbourne, FL 32901 USA. EM slazarus@fit.edu OI Splitt, Michael/0000-0002-7690-5100; Lazarus, Steven/0000-0002-5918-1059 FU NASA [NNG06GG18A] FX This research was supported by funding under NASA Grant NNG06GG18A. NR 36 TC 4 Z9 4 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 J9 WEATHER FORECAST JI Weather Forecast. PD JUN PY 2010 VL 25 IS 3 BP 837 EP 851 DI 10.1175/2010WAF2222296.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PM UT WOS:000279368100002 ER PT J AU Rozante, JR Moreira, DS de Goncalves, LGG Vila, DA AF Rozante, Jose Roberto Moreira, Demerval Soares de Goncalves, Luis Gustavo G. Vila, Daniel A. TI Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America SO WEATHER AND FORECASTING LA English DT Article ID INTERPOLATION; SATELLITE AB The measure of atmospheric model performance is highly dependent on the quality of the observations used in the evaluation process. In the particular case of operational forecast centers, large-scale datasets must be made available in a timely manner for continuous assessment of model results. Numerical models and surface observations usually work at distinct spatial scales (i.e., areal average in a regular grid versus point measurements), making direct comparison difficult. Alternatively, interpolation methods are employed for mapping observational data to regular grids and vice versa. A new technique (hereafter called MERGE) to combine Tropical Rainfall Measuring Mission (TRMM) satellite precipitation estimates with surface observations over the South American continent is proposed and its performance is evaluated for the 2007 summer and winter seasons. Two different approaches for the evaluation of the performance of this product against observations were tested: a cross-validation subsampling of the entire continent and another subsampling of only areas with sparse observations. Results show that over areas with a high density of observations, the MERGE technique's performance is equivalent to that of simply averaging the stations within the grid boxes. However, over areas with sparse observations, MERGE shows superior results. C1 [Rozante, Jose Roberto; Moreira, Demerval Soares] CPTEC INPE, Ctr Weather Forecasts & Climate Studies, BR-12630000 Cachoeira Paulista, SP, Brazil. [de Goncalves, Luis Gustavo G.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [de Goncalves, Luis Gustavo G.; Vila, Daniel A.] Univ Maryland, Earth Syst Interdisciplinary Ctr, College Pk, MD 20742 USA. [Vila, Daniel A.] Univ Maryland, Cooperat Inst Climate Studies, College Pk, MD 20742 USA. RP Rozante, JR (reprint author), CPTEC INPE, Ctr Weather Forecasts & Climate Studies, Rodovia Presidente Dutra KM 40, BR-12630000 Cachoeira Paulista, SP, Brazil. EM roberto.rozante@cptec.inpe.br RI Vila, Daniel/G-8379-2012; de Goncalves, Luis Gustavo/G-2522-2012; Moreira, Demerval/J-9046-2014; OI Vila, Daniel/0000-0002-1015-5650; Moreira, Demerval/0000-0001-9147-7426; de Goncalves, Luis Gustavo/0000-0002-1571-0916 FU FAPESP [04/09469-0] FX The authors are grateful to the FAPESP-Serra do Mar project (04/09469-0) and to Megan Marie Bela for helping to revise the English in this manuscript. NR 14 TC 39 Z9 44 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 EI 1520-0434 J9 WEATHER FORECAST JI Weather Forecast. PD JUN PY 2010 VL 25 IS 3 BP 885 EP 894 DI 10.1175/2010WAF2222325.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 618PM UT WOS:000279368100005 ER PT J AU Castillo-Rogez, JC Schmidt, BE AF Castillo-Rogez, Julie C. Schmidt, B. E. TI Geophysical evolution of the Themis family parent body SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAIN BELT ASTEROIDS; WATER; SURFACE; BODIES; ICE; ORGANICS; ANTIOPE; CERES AB We model the geophysical evolution of the Themis family parent body. This study is motivated by the recent detection of water ice at the surface of 24 Themis, the first detection of free water on the surface of an asteroid. The Themis family members display a variety of spectral properties and densities, a possible indication that their parent was differentiated at the time of break-up. Differentiation of the parent body is better explained if it accreted as a mixture of ice within a few My after the production of CAIs. From these models we highlight a number of issues that provide a strong rationale for further ground-based and future space exploration of that family. Citation: Castillo-Rogez, J. C., and B. E. Schmidt (2010), Geophysical evolution of the Themis family parent body, Geophys. Res. Lett., 37, L10202, doi:10.1029/2009GL042353. C1 [Castillo-Rogez, Julie C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schmidt, B. E.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Castillo-Rogez, JC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM julie.c.castillo@jpl.nasa.gov OI Schmidt, Britney/0000-0001-7376-8510 FU National Aeronautics and Space Administration FX The authors are much thankful to Andy Rivkin for his insightful comments and valuable suggestions. Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. NR 29 TC 21 Z9 21 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 29 PY 2010 VL 37 AR L10202 DI 10.1029/2009GL042353 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 603UX UT WOS:000278234700003 ER PT J AU Cull, S Arvidson, RE Morris, RV Wolff, M Mellon, MT Lemmon, MT AF Cull, Selby Arvidson, R. E. Morris, R. V. Wolff, M. Mellon, M. T. Lemmon, M. T. TI Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; WATER-ICE; VIKING; VARIABILITY; REFLECTANCE; ULTRAVIOLET; CAP AB The combination of ground observations from the Mars Phoenix Lander and orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) provided a detailed view of the formation of late summer surface water ice at the landing site and surrounding regions. CRISM observations of the landing site during and immediately after Phoenix operations were analyzed to track the seasonal and diurnal ice cycles during the late spring to late summer, and a nonlinear mixing model was used to estimate grain sizes and relative abundances of water ice and dust. The surface around the Phoenix landing site was ice-free from late spring through midsummer, although transient patches of mobile ices were observed in an 85 m diameter crater to the northeast of the landing site. At the similar to 10 km diameter Heimdal Crater, located similar to 10 km east of the landing site, permanent patches of water ice were observed to brighten during the late spring and darken during the summer, possibly as fine-grained water ice that was cold trapped onto the ice during late spring sintered into larger grains or finally sublimated, exposing larger-grained ice. CRISM spectra first show evidence of widespread ice during the night at solar longitude (L-s) similar to 109 degrees, similar to 9 sols before Phoenix's Surface Stereo Imager detected it. CRISM spectra first show evidence of afternoon surface ice and water ice clouds after L-s similar to 155 degrees, after Phoenix operations ended. C1 [Cull, Selby; Arvidson, R. E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. [Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Mellon, M. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Morris, R. V.] NASA, ARES, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Wolff, M.] Space Sci Inst, Boulder, CO 80301 USA. RP Cull, S (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. RI Lemmon, Mark/E-9983-2010; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; FU NASA FX We acknowledge support from NASA as part of the Phoenix and CRISM Science Teams. We would like to thank the CRISM and HiRISE teams for their Phoenix monitoring campaign and Hugh Kieffer and an anonymous reviewer for their insightful reviews. NR 43 TC 14 Z9 14 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 29 PY 2010 VL 115 AR E00E19 DI 10.1029/2009JE003410 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 603ZO UT WOS:000278247200001 ER PT J AU Ferguson, FT Heist, RH Nuth, JA AF Ferguson, Frank T. Heist, Richard H. Nuth, Joseph A. TI The influence of buoyant convection on the nucleation of n-propanol in thermal diffusion cloud chambers SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE cloud chambers; convection; nucleation; thermal diffusion ID CARRIER GAS-PRESSURE; HOMOGENEOUS NUCLEATION; 2-DIMENSIONAL TRANSPORT; SUPERSATURATED VAPOR; BACKGROUND GASES; OPERATION; CONDENSATION; BINARY; RATES; MODEL AB A two-dimensional numerical model has been applied to three thermal diffusion cloud chamber (TDCC) investigations of n-propanol in helium taken by two different research groups to provide a quantitative example of how the results in these chambers can be affected by buoyant convection. In the first set of TDCC data, corrections for buoyancy resolve an apparent discontinuity in critical supersaturation data and also yield nucleation rate data that tend to agree better with higher rate, expansion-based studies at the same temperature. In the second TDCC study, the nucleation of propanol was studied over an extended pressure range. When the model was applied to these data, the possible variation in supersaturation values due to convection induced by conditions at the chamber sidewall was found to be comparable in magnitude to the experimentally observed range and may be responsible for some of this observed pressure dependence. In the third TDCC study, the combination of an error in a transport property and buoyant convection appear responsible for a perceived pressure effect in the experimental data. After correcting for this transport property and for buoyancy, the results at higher temperatures agree quite closely with the predictions of classical nucleation theory. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3429618] C1 [Ferguson, Frank T.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Heist, Richard H.] Embry Riddle Aeronaut Univ, Coll Engn, Daytona Beach, FL 32114 USA. [Nuth, Joseph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ferguson, FT (reprint author), Catholic Univ Amer, Dept Chem, 620 Michigan Ave, Washington, DC 20064 USA. EM frank.ferguson@nasa.gov RI Ferguson, Frank/C-9493-2012; Nuth, Joseph/E-7085-2012 NR 48 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 28 PY 2010 VL 132 IS 20 AR 204510 DI 10.1063/1.3429618 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 603BO UT WOS:000278183100023 PM 20515103 ER PT J AU Coddington, OM Pilewskie, P Redemann, J Platnick, S Russell, PB Schmidt, KS Gore, WJ Livingston, J Wind, G Vukicevic, T AF Coddington, O. M. Pilewskie, P. Redemann, J. Platnick, S. Russell, P. B. Schmidt, K. S. Gore, W. J. Livingston, J. Wind, G. Vukicevic, T. TI Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DISCRETE-ORDINATE-METHOD; RADIATIVE-TRANSFER; EFFECTIVE RADIUS; SHIP TRACKS; ALBEDO; STRATOCUMULUS; SENSITIVITY; SCATTERING; TRANSPORT; ATLANTIC AB Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 mu m) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 mu m, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact. C1 [Coddington, O. M.; Pilewskie, P.; Schmidt, K. S.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Redemann, J.; Russell, P. B.; Gore, W. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Livingston, J.] SRI Int, Menlo Pk, CA 94025 USA. [Platnick, S.; Wind, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vukicevic, T.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Redemann, J.] Bay Area Environm Res Inst, Sonoma, CA USA. RP Coddington, OM (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM odele.coddington@lasp.colorado.edu RI Coddington, Odele/F-6342-2012; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Vukicevic, Tomislava/B-1386-2014; Platnick, Steven/J-9982-2014 OI Coddington, Odele/0000-0002-4338-7028; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX08AI83G]; NOAA [NA06OAR4310085] FX Numerous people contributed to the ICARTT and INTEX-A field programs. In addition to the work provided by the people referenced in this manuscript, we would like to thank Dan Wolfe for leading the radiosonde effort aboard the Ronald H. Brown. We would also like to thank two anonymous reviewers for their comments and suggestions to improve the manuscript. This study was supported by NASA grant NNX08AI83G and NOAA grant NA06OAR4310085. NR 37 TC 25 Z9 25 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 28 PY 2010 VL 115 AR D10211 DI 10.1029/2009JD012829 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603VS UT WOS:000278236800001 ER PT J AU de Vine, G Ware, B McKenzie, K Spero, RE Klipstein, WM Shaddock, DA AF de Vine, Glenn Ware, Brent McKenzie, Kirk Spero, Robert E. Klipstein, William M. Shaddock, Daniel A. TI Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna SO PHYSICAL REVIEW LETTERS LA English DT Article ID LISA AB We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10(9) and clock phase noise by 6 x 10(4), recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in postprocessing marks the first experimental validation of the LISA measurement scheme. C1 [de Vine, Glenn; Ware, Brent; McKenzie, Kirk; Spero, Robert E.; Klipstein, William M.; Shaddock, Daniel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Shaddock, Daniel A.] Australian Natl Univ, Dept Phys, Canberra, ACT, Australia. RP de Vine, G (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM glenn.devine@jpl.nasa.gov RI Shaddock, Daniel/A-7534-2011 OI Shaddock, Daniel/0000-0002-6885-3494 FU National Aeronautics and Space Administration FX This research was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology (CIT), under contract with the National Aeronautics and Space Administration; in part, supported by appointments to the NASA Postdoctoral Program at JPL, administered by Oak Ridge Associated Universities via NASA contract. The authors acknowledge Peter Halverson, Akiko Hirai, Martin Regehr, and Andreas Kuhnert for contributions. NR 14 TC 24 Z9 24 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 28 PY 2010 VL 104 IS 21 AR 211103 DI 10.1103/PhysRevLett.104.211103 PG 4 WC Physics, Multidisciplinary SC Physics GA 602PA UT WOS:000278150100008 PM 20867084 ER PT J AU Dupont, JC Haeffelin, M Morille, Y Noel, V Keckhut, P Winker, D Comstock, J Chervet, P Roblin, A AF Dupont, J. -C. Haeffelin, M. Morille, Y. Noel, V. Keckhut, P. Winker, D. Comstock, J. Chervet, P. Roblin, A. TI Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE PROPERTIES; TROPICAL CIRRUS; PART III; CLIMATOLOGY; ALGORITHM; FACILITY; MODIS; DEPOLARIZATION; RETRIEVALS; VALIDATION AB Ground-based lidar and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data sets gathered over four midlatitude sites, two U. S. and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such data sets. The consistency in average cloud height (both base and top height) between the CALIOP and ground data sets ranges from -0.4 km to +0.5 km. The cloud geometrical thickness distributions vary significantly between the different data sets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9 km, i.e., by more than 50%. Cloud optical thickness distributions in subvisible, semitransparent, and moderate intervals differ by more than 50% between ground-and space-based data sets. The cirrus clouds with optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the nonopaque cirrus class. An important part of this work consists in quantifying the different possible causes of discrepancies between CALIOP and surface lidar. The differences in average cloud base altitude between ground and CALIOP data sets can be attributed to (1) irregular sampling of seasonal variations in the ground-based data, (2) day-night differences in detection capabilities by CALIOP, and (3) the restriction to situations without low-level clouds in ground-based data. Cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data but by the day-night differences in detection capabilities of CALIOP and by the restriction to situations without low-level clouds in ground-based data. C1 [Dupont, J. -C.; Haeffelin, M.; Morille, Y.; Noel, V.] Ecole Polytech, IPSL, LMD, F-91128 Palaiseau, France. [Comstock, J.] PNNL, Richland, WA 99352 USA. [Chervet, P.; Roblin, A.] Off Natl Etud & Rech Aerosp, F-91751 Palaiseau, France. [Keckhut, P.] Univ Versailles St Quentin, IPSL, SA, F-78280 Guyancourt, France. [Winker, D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Dupont, JC (reprint author), Ecole Polytech, IPSL, LMD, F-91128 Palaiseau, France. EM dupont@lmd.polytechnique.fr RI Noel, Vincent/C-3702-2013 OI Noel, Vincent/0000-0001-9494-0340 FU Centre National d'Etudes Spatiales (CNES); Centre National de la Recherche Scientifique (CNRS); Office National d'Etude et de Recherche Aerospatiale (ONERA); U.S. Department of Energy; NASA FX The authors would like to thank the Centre National d'Etudes Spatiales (CNES), the Centre National de la Recherche Scientifique (CNRS), the Office National d'Etude et de Recherche Aerospatiale (ONERA), and the Climate Change Research Division of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program for their support in this study. The data at the COVE site are funded by the NASA Earth Observing System project. We extend our acknowledgments to the technical and computer staff of each observatory for taking the observations and making the data set easily accessible and to the ICARE datacenter for providing CALIOP level-2 data. The NR 39 TC 23 Z9 23 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 27 PY 2010 VL 115 AR D00H24 DI 10.1029/2009JD011943 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 603VP UT WOS:000278236500001 ER PT J AU Holt, JW Fishbaugh, KE Byrne, S Christian, S Tanaka, K Russell, PS Herkenhoff, KE Safaeinili, A Putzig, NE Phillips, RJ AF Holt, J. W. Fishbaugh, K. E. Byrne, S. Christian, S. Tanaka, K. Russell, P. S. Herkenhoff, K. E. Safaeinili, A. Putzig, N. E. Phillips, R. J. TI The construction of Chasma Boreale on Mars SO NATURE LA English DT Article ID NORTH POLAR-REGION; LAYERED DEPOSITS; GEOLOGIC HISTORY; STRATIGRAPHY; ORIGIN AB The polar layered deposits of Mars contain the planet's largest known reservoir of water ice(1,2) and the prospect of revealing a detailed Martian palaeoclimate record(3,4), but the mechanisms responsible for the formation of the dominant features of the north polar layered deposits (NPLD) are unclear, despite decades of debate. Stratigraphic analyses of the exposed portions of Chasma Boreale-a large canyon 500 km long, up to 100 km wide, and nearly 2 km deep-have led most researchers to favour an erosional process for its formation following initial NPLD accumulation. Candidate mechanisms include the catastrophic outburst of water(5), protracted basal melting(6), erosional undercutting(7), aeolian downcutting(7-9) and a combination of these processes(10). Here we use new data from the Mars Reconnaissance Orbiter to show that Chasma Boreale is instead a long-lived, complex feature resulting primarily from non-uniform accumulation of the NPLD. The initial valley that later became Chasma Boreale was matched by a second, equally large valley that was completely filled in by subsequent deposition, leaving no evidence on the surface to indicate its former presence. We further demonstrate that topography existing before the NPLD began accumulating influenced successive episodes of deposition and erosion, resulting in most of the present-day topography. Long-term and large-scale patterns of mass balance achieved through sedimentary processes, rather than catastrophic events, ice flow or highly focused erosion, have produced the largest geomorphic anomaly in the north polar ice of Mars. C1 [Holt, J. W.; Christian, S.] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. [Fishbaugh, K. E.] Smithsonian Natl Air & Space Museum, Washington, DC 20560 USA. [Byrne, S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Christian, S.] Bryn Mawr Coll, Bryn Mawr, PA 19010 USA. [Tanaka, K.; Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Russell, P. S.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Safaeinili, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Putzig, N. E.; Phillips, R. J.] SW Res Inst, Boulder, CO 80302 USA. RP Holt, JW (reprint author), Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA. EM jack@ig.utexas.edu RI Holt, John/C-4896-2009; Byrne, Shane/B-8104-2012 FU Institute for Geophysics of the Jackson School of Geosciences; NASA [NAG5-12693]; Mars Reconnaissance Orbiter (MRO); Italian Space Agency FX We thank P. Choudhary for assistance with radar data analysis. Work at the University of Texas was supported by the Institute for Geophysics of the Jackson School of Geosciences, a NASA grant (NAG5-12693) to J.W.H. and a Mars Reconnaissance Orbiter (MRO) Participating Scientist grant to J.W.H. MRO is operated for NASA by Caltech's Jet Propulsion Laboratory. SHARAD was provided to MRO by the Italian Space Agency through a contract with Thales Alenia Space Italia, and is operated by the INFOCOM Department, University of Rome. We thank the SHARAD Operations Center in Rome for their critical support. We honour the memory of our co-author and colleague A. S. This is UTIG contribution number 2186. NR 26 TC 19 Z9 19 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD MAY 27 PY 2010 VL 465 IS 7297 BP 446 EP 449 DI 10.1038/nature09050 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 601FM UT WOS:000278043700027 PM 20505721 ER PT J AU Kumar, M Tsurutani, B AF Kumar, Mohi Tsurutani, Bruce TI Investigations From Sun to Earth: An Interview With Bruce Tsurutani SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Editorial Material C1 [Kumar, Mohi] Amer Geophys Union, Washington, DC 20009 USA. [Tsurutani, Bruce] NASA, CALTECH, Jet Prop Lab, Washington, DC 20546 USA. RP Kumar, M (reprint author), Amer Geophys Union, Washington, DC 20009 USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY 26 PY 2010 VL 8 AR S05005 DI 10.1029/2010SW000593 PG 2 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 604AH UT WOS:000278249200001 ER PT J AU Cao, L Bala, G Caldeira, K Nemani, R Ban-Weiss, G AF Cao, Long Bala, Govindasamy Caldeira, Ken Nemani, Ramakrishna Ban-Weiss, George TI Importance of carbon dioxide physiological forcing to future climate change SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE global warming; runoff; evapotranspiration; hydrological cycle; plant stomata ID STOMATAL CONDUCTANCE; CO2; PHOTOSYNTHESIS; RESPONSES; RUNOFF; PLANT; MODEL AB An increase in atmospheric carbon dioxide (CO(2)) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO(2) using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO(2), the radiative effect of CO(2) causes mean surface air temperature over land to increase by 2.86 +/- 0.02 K (+/-1 standard error), whereas the physiological effects of CO(2) on land plants alone causes air temperature over land to increase by 0.42 +/- 0.02 K. Combined, these two effects cause a land surface warming of 3.33 +/- 0.03 K. The radiative effect of doubling CO(2) increases global runoff by 5.2 +/- 0.6%, primarilyby increasing precipitation over the continents. The physiological effect increases runoff by 8.4 +/- 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 +/- 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO(2)-radiative forcing, whereas relative humidity over land decreases in response to CO(2)-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO(2) on land plants will increase global warming beyond that caused by the radiative effects of CO(2). C1 [Cao, Long; Caldeira, Ken; Ban-Weiss, George] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA. [Bala, Govindasamy] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Bala, Govindasamy] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Nemani, Ramakrishna] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. RP Cao, L (reprint author), Carnegie Inst, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA. EM longcao@stanford.edu RI Caldeira, Ken/E-7914-2011; OI Ban-Weiss, George/0000-0001-8211-2628 NR 14 TC 91 Z9 93 U1 6 U2 36 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 25 PY 2010 VL 107 IS 21 BP 9513 EP 9518 DI 10.1073/pnas.0913000107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 601JP UT WOS:000278054700009 PM 20445083 ER PT J AU Ho, CM Morabito, DD Woo, R AF Ho, Christian M. Morabito, David D. Woo, Richard TI Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction SO RADIO SCIENCE LA English DT Article ID DENSITY FLUCTUATIONS; WIND AB In this study, we develop a complete theoretical approach to derive the angle-of-arrival fluctuations (AAF) of radio signals passing through the turbulent solar plasma medium during solar superior conjunctions. Using the power spectra of phase fluctuations measured at various solar elongation angles (or impact heliocentric distances) from the Cassini spacecraft, we have defined the dependence of the AAF variance on the heliocentric distance as similar to r(-3.5) within a range very close to the Sun. This quantity decreases with increasing distance, with a slope significantly less steep than that previously expected. The AAF expression is theoretically derived by assuming a frozen turbulence and by converting a phase temporal variation into a spatial variation. To perform this calculation, the solar plasma medium is treated as an anisotropic ionized medium by applying the Booker electron irregularity spectrum model and the phase expression in term of the electron refractive index. Using the phase spectral measurements from the Cassini spacecraft during a solar superior conjunction, coefficients of the expression are calibrated, and the final AAF results are quantitatively obtained. C1 [Ho, Christian M.; Morabito, David D.; Woo, Richard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ho, CM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM cmho@mail.jpl.nasa.gov FU National Aeronautics and Space Administration FX We are indebted to Albert D. Wheelon, a CalTech trustee and pro bono consultant to JPL, for his valuable consulting in the theoretical aspects of the work. The authors thank Miles Sue of JPL for his comments and suggestions. We are grateful to the referees for their valuable review comments. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD MAY 25 PY 2010 VL 45 AR RS3005 DI 10.1029/2009RS004176 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 604AE UT WOS:000278248900001 ER PT J AU Olaya, D Dresselhaus, PD Benz, SP Herr, A Herr, QP Ioannidis, AG Miller, DL Kleinsasser, AW AF Olaya, David Dresselhaus, Paul D. Benz, Samuel P. Herr, Anna Herr, Quentin P. Ioannidis, Alexander G. Miller, Donald L. Kleinsasser, A. W. TI Digital circuits using self-shunted Nb/NbxSi1-x/Nb Josephson junctions SO APPLIED PHYSICS LETTERS LA English DT Article DE critical current density (superconductivity); digital circuits; Josephson effect; niobium compounds; shift registers ID INTEGRATED-CIRCUITS; TUNNEL-JUNCTIONS; FREQUENCY; TECHNOLOGY AB Superconducting digital circuits based on Josephson junctions with amorphous niobium-silicon (a-NbSi) barriers have been designed, fabricated, and tested. Single-flux-quantum (SFQ) shift registers operated with +/- 30% bias margins, confirming junction reproducibility and uniformity. Static digital dividers operated up to 165 GHz for a single value of bias current, which was only marginally slower than circuits fabricated with externally shunted AlOx-barrier junctions having a comparable critical current density of 4.5 kA/cm(2). In comparison, self-shunted a-NbSi junctions enabled a doubling in circuit density. This and their relatively thick 10 nm barriers could increase the yield of complex SFQ circuits. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432065] C1 [Olaya, David; Dresselhaus, Paul D.; Benz, Samuel P.] NIST, Boulder, CO 80305 USA. [Herr, Anna; Herr, Quentin P.; Ioannidis, Alexander G.; Miller, Donald L.] Northrop Grumman Corp, Linthicum, MD 21203 USA. [Kleinsasser, A. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Olaya, D (reprint author), NIST, Boulder, CO 80305 USA. EM david.olaya@nist.gov FU Defense Microelectronics Activity [H94003-04-D-0004-0091] FX The authors acknowledge useful conversations with H. Rogalla and J. Niemeyer, and the valuable help of G. L. Kerber at JPL. This work was supported in part by the Defense Microelectronics Activity under Contract No. H94003-04-D-0004-0091. U.S. government work, not subjected to U.S. copyright. NR 15 TC 7 Z9 8 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 24 PY 2010 VL 96 IS 21 AR 213510 DI 10.1063/1.3432065 PG 3 WC Physics, Applied SC Physics GA 603BP UT WOS:000278183200086 ER PT J AU Jackson, TL Farrell, WM Delory, GT Nithianandam, J AF Jackson, Telana L. Farrell, William M. Delory, Gregory T. Nithianandam, Jeyasingh TI Martian dust devil electron avalanche process and associated electrochemistry SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID OXIDANT ENHANCEMENT; STORMS; MARS; FIELD; GENERATION; SIMULATION; METHANE; CLOUDS; MODEL AB Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work, these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models. C1 [Jackson, Telana L.; Farrell, William M.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Delory, Gregory T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Nithianandam, Jeyasingh] Morgan State Univ, Dept Elect Engn, Baltimore, MD 21251 USA. RP Jackson, TL (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM telana.l.jackson@nasa.gov RI Jackson, Telana/E-9102-2012; Farrell, William/I-4865-2013 FU Mars Fundamental Research Program; NASA co-op program at the Goddard Space Flight Center FX We gratefully acknowledge support from the Mars Fundamental Research Program and the NASA co-op program at the Goddard Space Flight Center. NR 31 TC 8 Z9 8 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 22 PY 2010 VL 115 AR E05006 DI 10.1029/2009JE003396 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 600FM UT WOS:000277970000001 ER PT J AU Sim, SA Miller, L Long, KS Turner, TJ Reeves, JN AF Sim, S. A. Miller, L. Long, K. S. Turner, T. J. Reeves, J. N. TI Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - II SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; methods: numerical; galaxies: active; galaxies: individual: PG1211+143; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; RECOMBINATION RATE COEFFICIENTS; PHOTOIONIZATION CROSS-SECTIONS; CARLO TRANSITION-PROBABILITIES; K-VACANCY STATES; IONIZATION EQUILIBRIUM; ATOMIC DATABASE; EMISSION-LINES; ANALYTIC FITS; AUGER DECAY AB Highly ionized fast accretion disc winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of active galactic nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here, we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disc wind models than that was possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now able to compute spectra for outflows containing far more diverse plasma conditions. We present example calculations that illustrate the variety of spectral features predicted by parametrized outflow models and demonstrate their applicability to the interpretation of data by comparison with observations of the bright quasar PG1211+143. We find that the major features in the observed 2-10 keV spectrum of this object can be well reproduced by our spectra, confirming that it likely hosts a massive outflow. C1 [Sim, S. A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Miller, L.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Long, K. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Turner, T. J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Turner, T. J.] NASA, GSFC, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 8EH, Staffs, England. RP Sim, SA (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. EM ssim@MPA-Garching.MPG.de FU NASA [NNX09AO92G] FX SAS thanks Caroline D'Angelo for many useful discussions and helpful suggestions. TJT acknowledges NASA Grant NNX09AO92G. We thank the anonymous referee for several constructive comments. NR 52 TC 47 Z9 47 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1369 EP 1384 DI 10.1111/j.1365-2966.2010.16396.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800023 ER PT J AU Degenaar, N Jonker, PG Torres, MAP Kaur, R Rea, N Israel, GL Patruno, A Trap, G Cackett, EM D'Avanzo, P Lo Curto, G Novara, G Krimm, H Holland, ST De Luca, A Esposito, P Wijnands, R AF Degenaar, N. Jonker, P. G. Torres, M. A. P. Kaur, R. Rea, N. Israel, G. L. Patruno, A. Trap, G. Cackett, E. M. D'Avanzo, P. Lo Curto, G. Novara, G. Krimm, H. Holland, S. T. De Luca, A. Esposito, P. Wijnands, R. TI Multiwavelength observations of 1RXH J173523.7-354013: revealing an unusual bursting neutron star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; stars: neutron; X-rays: binaries; X-rays: bursts; X-rays: individual: 1RXH J173523; 7-354013; X-rays: individual: IGR J17353-3539 ID X-RAY-BURSTS; JEM-X; TELESCOPE; BINARY; EXTRACTION; SUPERBURST; EVOLUTION; SOFTWARE; MISSION; IMAGER AB On 2008 May 14, the Burst Alert Telescope onboard the Swift mission triggered on a type-I X-ray burst from the previously unclassified ROSAT object 1RXH J173523.7-354013, establishing the source as a neutron star X-ray binary. We report on X-ray, optical and near-infrared observations of this system. The X-ray burst had a duration of similar to 2 h and belongs to the class of rare, intermediately long type-I X-ray bursts. From the bolometric peak flux of similar to 3.5 x 10-8 erg cm-2 s-1, we infer a source distance of D less than or similar to 9.5 kpc. Photometry of the field reveals an optical counterpart that declined from R = 15.9 during the X-ray burst to R = 18.9 thereafter. Analysis of post-burst Swift/X-ray Telescope observations as well as archival XMM-Newton and ROSAT data suggests that the system is persistent at a 0.5-10 keV luminosity of similar to 2 x 1035 (D/9.5 kpc)2 erg s-1. Optical and infrared photometry together with the detection of a narrow H alpha emission line (full width at half maximum = 292 +/- 9 km s-1, equivalent width = -9.0 +/- 0.4 A) in the optical spectrum confirms that 1RXH J173523.7-354013 is a neutron star low-mass X-ray binary. The H alpha emission demonstrates that the donor star is hydrogen rich, which effectively rules out that this system is an ultracompact X-ray binary. C1 [Degenaar, N.; Kaur, R.; Rea, N.; Patruno, A.; Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Jonker, P. G.] SRON, Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Jonker, P. G.; Torres, M. A. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rea, N.] ICE CSIC, IEEC, Fac Ciencias, Barcelona 08193, Spain. [Israel, G. L.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Trap, G.] CEA Saclay, DSM, IRFU, SAp, F-91191 Gif Sur Yvette, France. [Trap, G.] Univ Paris 07, CNRS, CEA, Observ Paris, F-75205 Paris 13, France. [Cackett, E. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [D'Avanzo, P.; Lo Curto, G.] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Novara, G.; De Luca, A.; Esposito, P.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Novara, G.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Krimm, H.; Holland, S. T.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Krimm, H.; Holland, S. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Degenaar, N (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. EM degenaar@uva.nl RI Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Israel, GianLuca/0000-0001-5480-6438; De Luca, Andrea/0000-0001-6739-687X; Esposito, Paolo/0000-0003-4849-5092 FU Netherlands Organization for Scientific Research (NWO); Ramon y Cajal; NASA [PF8-90052] FX We are grateful to the referee, Craig Heinke, for useful comments that helped improve this manuscript. This work was based on observations made with ESO Telescopes at the Paranal and La Silla Observatories under programme IDs: 281.D-5030(A) and 60.A9700(D) and made use of the public data archive of Swift and INTEGRAL, as well as public data from the XMM-Newton slew survey. Support for this work was provided by the Netherlands Organization for Scientific Research (NWO). NR acknowledges support from a Ramon y Cajal Research position. EMC gratefully acknowledges support provided by NASA through the Chandra Fellowships Program, grant number PF8-90052. We acknowledge the use of the software package MOLLY written by Prof. Tom Marsh. NR 56 TC 19 Z9 19 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1591 EP 1602 DI 10.1111/j.1365-2966.2010.16388.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800043 ER PT J AU Keenan, FP Milligan, RO Jess, DB Aggarwal, KM Mathioudakis, M Thomas, RJ Brosius, JW Davila, JM AF Keenan, F. P. Milligan, R. O. Jess, D. B. Aggarwal, K. M. Mathioudakis, M. Thomas, R. J. Brosius, J. W. Davila, J. M. TI Emission lines of Fe xi in the 257-407 A wavelength region observed in solar spectra from EIS/Hinode and SERTS SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE atomic data; Sun: activity; Sun: corona; Sun: UV radiation ID ULTRAVIOLET RESEARCH TELESCOPE; EFFECTIVE COLLISION STRENGTHS; ELECTRON-IMPACT EXCITATION; EXTREME-ULTRAVIOLET; ACTIVE-REGION; ATOMIC DATABASE; IMAGING SPECTROMETER; BEAM-FOIL; SPECTROGRAPH; INTENSITIES AB Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N(e)) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N(e) = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N(e) = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced. C1 [Keenan, F. P.; Jess, D. B.; Aggarwal, K. M.; Mathioudakis, M.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Milligan, R. O.; Thomas, R. J.; Brosius, J. W.; Davila, J. M.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Lab Solar Phys, Greenbelt, MD 20771 USA. [Brosius, J. W.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Keenan, FP (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM F.Keenan@qub.ac.uk OI Jess, David/0000-0002-9155-8039 FU STFC; EPSRC; NASA [NAG5-13321]; Solar Physics Office of NASA's Space Physics Division; AWE Aldermaston FX DBJ and KMA acknowledge financial support from STFC and EPSRC, respectively. ROM acknowledges support from the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. Support for the post- launch operation is provided by JAXA and NAOJ, STFC, NASA, ESA and NSC (Norway). The SERTS rocket programme is supported by RTOP grants from the Solar Physics Office of NASA's Space Physics Division. JWB acknowledges additional NASA support under grant NAG5-13321. FPK is grateful to AWE Aldermaston for the award of a William Penney Fellowship. The authors thank Peter van Hoof for the use of his Atomic Line List. CHIANTI is a collaborative project involving the Naval Research Laboratory (USA), Rutherford Appleton Laboratory (UK) and the Universities of Florence (Italy) and Cambridge (UK). We are very grateful to the referee, Peter Young, for his comments on an earlier version of the paper, in particular regarding the analysis of the EIS spectra. NR 34 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 21 PY 2010 VL 404 IS 3 BP 1617 EP 1624 DI 10.1111/j.1365-2966.2010.16389.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 592MA UT WOS:000277381800045 ER PT J AU Sutton, PJ Jones, G Chatterji, S Kalmus, P Leonor, I Poprocki, S Rollins, J Searle, A Stein, L Tinto, M Was, M AF Sutton, Patrick J. Jones, Gareth Chatterji, Shourov Kalmus, Peter Leonor, Isabel Poprocki, Stephen Rollins, Jameson Searle, Antony Stein, Leo Tinto, Massimo Was, Michal TI X-Pipeline: an analysis package for autonomous gravitational-wave burst searches SO NEW JOURNAL OF PHYSICS LA English DT Article ID NETWORK ANALYSIS; INVERSE PROBLEM; LIGO; SIGNALS AB Autonomous gravitational-wave searches-fully automated analyses of data that run without human intervention or assistance-are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candidates, which in turn will allow for follow-up observations by other observatories and the maximum exploitation of their scientific potential. A fully automated analysis would also circumvent the traditional 'by hand' setup and tuning of burst searches that is both labourious and time consuming. We demonstrate a fully automated search with X-Pipeline, a software package for the coherent analysis of data from networks of interferometers for detecting bursts associated with gamma-ray bursts (GRBs) and other astrophysical triggers. We discuss the methods X-Pipeline uses for automated running, including background estimation, efficiency studies, unbiased optimal tuning of search thresholds and prediction of upper limits. These are all done automatically via Monte Carlo with multiple independent data samples and without requiring human intervention. As a demonstration of the power of this approach, we apply X-Pipeline to LIGO data to compute the sensitivity to gravitational-wave emission associated with GRB 031108. We find that X-Pipeline is sensitive to signals approximately a factor of 2 weaker in amplitude than those detectable by the cross-correlation technique used in LIGO searches to date. We conclude with comments on the status of X-Pipeline as a fully autonomous, near-realtime-triggered burst search in the current LSC-Virgo Science Run. C1 [Sutton, Patrick J.; Jones, Gareth] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Chatterji, Shourov; Stein, Leo] MIT, Cambridge, MA 02139 USA. [Kalmus, Peter; Searle, Antony] CALTECH, Pasadena, CA 91125 USA. [Leonor, Isabel] Univ Oregon, Eugene, OR 97403 USA. [Poprocki, Stephen] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Rollins, Jameson] Columbia Univ, New York, NY 10027 USA. [Tinto, Massimo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Was, Michal] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. RP Sutton, PJ (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM patrick.sutton@astro.cf.ac.uk OI Stein, Leo/0000-0001-7559-9597 FU STFC [PP/F001096/1]; National Aeronautics and Space Administration; California Institute of Technology; Ecole normale superieure Paris; NSF; National Science Foundation [PHY-0107417]; [05-BEFS05-0014] FX We thank Kipp Cannon and Ray Frey for valuable comments on an earlier draft of this paper. PJS and GJ were supported in part by STFC grant number PP/F001096/1. For MT, the research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. MT was supported under research task number 05-BEFS05-0014. MW was supported by the California Institute of Technology and the Ecole normale superieure Paris. LS and SP were supported by an NSF REU Site grant. We thank the LIGO Scientific Collaboration for permission to use data from the time of GRB 031108 for our tests. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement number PHY-0107417. This paper has been assigned LIGO document number LIGO-P0900097-v4. NR 46 TC 43 Z9 43 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 21 PY 2010 VL 12 AR 053034 DI 10.1088/1367-2630/12/5/053034 PG 32 WC Physics, Multidisciplinary SC Physics GA 609CT UT WOS:000278633400003 ER PT J AU Pugh-Thomas, D Walsh, BM Gupta, MC AF Pugh-Thomas, Devin Walsh, Brian M. Gupta, Mool C. TI Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing SO APPLIED OPTICS LA English DT Article ID FLUORESCENCE LIFETIME; CROSS-SECTIONS; ALEXANDRITE; SENSOR; EFFICIENCY; CRYSTALS; LASERS; ER3+; TM3+; HO3+ AB Characterization of absorption, emission, and temperature-dependent luminescent features is of significant interest for the development of optical temperature sensors and photonic devices. In this work, we conduct a comprehensive study to evaluate the orientation axis-dependent absorption and emission cross sections of Cr3+ ions in BeAl2O4. In addition, we present new data for the temperature-dependent Stark-level energies for alexandrite. Laser-induced temperature-dependent luminescence data from 300-520 K on the R-line transitions are presented for application to high-temperature sensing. (C) 2010 Optical Society of America C1 [Pugh-Thomas, Devin; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Walsh, Brian M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Gupta, MC (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. EM mgupta@virginia.edu FU NASA; NASA/National Institute of Aerospace (NIA) FX The authors thank William S. Luck and William C. Edwards for their support. We also acknowledge fellowship support from the NASA Graduate Student Researchers program. We thank NASA/National Institute of Aerospace (NIA) for support through the Langley Professor program. NR 20 TC 5 Z9 6 U1 3 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2010 VL 49 IS 15 BP 2891 EP 2897 DI 10.1364/AO.49.002891 PG 7 WC Optics SC Optics GA 599BA UT WOS:000277883700020 PM 20490251 ER PT J AU Diner, DJ Davis, A Hancock, B Geier, S Rheingans, B Jovanovic, V Bull, M Rider, DM Chipman, RA Mahler, AB McClain, SC AF Diner, David J. Davis, Ab Hancock, Bruce Geier, Sven Rheingans, Brian Jovanovic, Veljko Bull, Michael Rider, David M. Chipman, Russell A. Mahler, Anna-Britt McClain, Stephen C. TI First results from a dual photoelastic-modulator-based polarimetric camera SO APPLIED OPTICS LA English DT Article ID AEROSOL OPTICAL DEPTH; POLARIZATION MODULATION; CIRCULAR-DICHROISM; MULTIANGLE; BIREFRINGENCE; VALIDATION; SURFACES; MISR AB We report on the construction and calibration of a dual photoelastic-modulator (PEM)-based polarimetric camera operating at 660 nm. This camera is our first prototype for a multispectral system being developed for airborne and spaceborne remote sensing of atmospheric aerosols. The camera includes a dual-PEM assembly integrated into a three-element, low-polarization reflective telescope and provides both intensity and polarization imaging. A miniaturized focal-plane assembly consisting of spectral filters and patterned wire-grid polarizers provides wavelength and polarimetric selection. A custom push-broom detector array with specialized signal acquisition, readout, and processing electronics captures the radiometric and polarimetric information. Focal-plane polarizers at orientations of 0 degrees and -45 degrees yield the normalized Stokes parameters q Q/I and u U/I respectively, which are then coregistered to obtain degree of linear polarization (DOLP) and angle of linear polarization. Laboratory test data, calibration results, and outdoor imagery acquired with the camera are presented. The results show that, over a wide range of DOLP, our challenging objective of uncertainty within +/- 0.005 has been achieved. (C) 2010 Optical Society of America C1 [Diner, David J.; Davis, Ab; Hancock, Bruce; Geier, Sven; Rheingans, Brian; Jovanovic, Veljko; Bull, Michael; Rider, David M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chipman, Russell A.; Mahler, Anna-Britt; McClain, Stephen C.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Diner, DJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM David.J.Diner@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; University of Arizona College of Optical Sciences under subcontract with JPL FX We thank several colleagues for their efforts. At JPL, Nasrat Raouf guided the development of coatings and spectral filters; Gary Gutt designed the camera optical system; Chris Wrigley, Amy Wu, and Thomas Cunningham assisted in design and testing of the LabMSPI electronics and detectors; and Ghobad Saghri helped in the acquisition of imagery. At UofA, Greg Smith, Brigit Marshall, and Brittany Lynn assisted in building and calibrating the PSG. Brian Cairns of the Goddard Institute for Space Studies provided comments that helped clarify parts of the manuscript. Discussions with Craig Bohren of Pennsylvania State University inspired a deeper appreciation of PEM history. This research is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, and at the University of Arizona College of Optical Sciences under subcontract with JPL. NR 33 TC 38 Z9 40 U1 2 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2010 VL 49 IS 15 BP 2929 EP 2946 DI 10.1364/AO.49.002929 PG 18 WC Optics SC Optics GA 599BA UT WOS:000277883700025 PM 20490256 ER PT J AU Comerford, JM Moustakas, LA Natarajan, P AF Comerford, Julia M. Moustakas, Leonidas A. Natarajan, Priyamvada TI OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; dark matter; galaxies: clusters: individual (3C 220, A 370, Cl 0024, Cl 0939; Cl 2244, MS 0451, MS 1137, MS 2137); galaxies: evolution; galaxies: formation; gravitational lensing: strong ID HUBBLE-SPACE-TELESCOPE; RELAXED GALAXY CLUSTERS; X-RAY-CLUSTERS; UNIVERSAL DENSITY PROFILE; MASS-TEMPERATURE RELATION; MEDIUM-SENSITIVITY SURVEY; DARK-MATTER HALOS; M-T RELATION; XMM-NEWTON; DISTANT CLUSTER AB Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, sigma(8), is constrained using observed clusters of galaxies, although current estimates of sigma(8) from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 < z < 0.8, we find that the observed cluster concentration-mass relation can be used to reduce the M-T scatter by a factor of 6. Typically only relaxed clusters are used to estimate sigma(8), but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of sigma(8) measurements from clusters are twofold: the errors on sigma(8) are reduced and the cluster sample size is increased. Therefore, the statistics on sigma(8) determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories. C1 [Comerford, Julia M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Natarajan, Priyamvada] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Natarajan, Priyamvada] Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. RP Comerford, JM (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. OI Moustakas, Leonidas/0000-0003-3030-2360 FU National Science Foundation; NASA [ATFP08-0169] FX J. M. C. acknowledges support of this work by a National Science Foundation Graduate Research Fellowship. The work of L. A. M. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, with the support of NASA ATFP08-0169. P. N. thanks the Radcliffe Institute for Advanced Study and the Center for Astrophysics (CfA) for providing an intellectually stimulating atmosphere that enabled this work. NR 85 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 162 EP 171 DI 10.1088/0004-637X/715/1/162 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100014 ER PT J AU Haghighipour, N Vogt, SS Butler, RP Rivera, EJ Laughlin, G Meschiari, S Henry, GW AF Haghighipour, Nader Vogt, Steven S. Butler, R. Paul Rivera, Eugenio J. Laughlin, Greg Meschiari, Stefano Henry, Gregory W. TI THE LICK-CARNEGIE EXOPLANET SURVEY: A SATURN-MASS PLANET IN THE HABITABLE ZONE OF THE NEARBY M4V STAR HIP 57050 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; planetary systems; stars: individual (HIP 57050) ID CARBON-DIOXIDE CLOUDS; M-CIRCLE-PLUS; M-DWARF STARS; LUMINOSITY-RELATION; MAIN-SEQUENCE; SUPER-EARTHS; METALLICITY; CATALOG; SEARCH; SYSTEM AB Precision radial velocities (RV) from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of Msin i similar to 0.3 M(J), an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the RV variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of similar to 230 K. The star has a metallicity of [Fe/H] = 0.32 +/- 0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet -metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is similar to 7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with Hubble Space Telescope. At the expected planetary effective temperature, the atmosphere may contain water clouds. C1 [Haghighipour, Nader] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Vogt, Steven S.; Rivera, Eugenio J.; Laughlin, Greg; Meschiari, Stefano] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Henry, Gregory W.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. RP Haghighipour, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. RI Butler, Robert/B-1125-2009; OI Meschiari, Stefano/0000-0002-2930-0416 FU NASA Astrobiology Institute [NNA04CC08A, NNX09AN05G, NNX07AR40G]; NSF [AST-0307493, AST-0908870, AST-0449986] FX N. H. acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and the NASA EXOB grant NNX09AN05G. S. S. V. gratefully acknowledges support from the NSF grants AST-0307493 and AST-0908870, and from the NASA Keck PI program. R. P. B. gratefully acknowledges support from the NASA OSS grant NNX07AR40G, the NASA Keck PI program, and from the Carnegie Institution of Washington. G. L. acknowledges support from NSF AST-0449986. G. W. H. acknowledges support from NASA, NSF, Tennessee State University, and the state of Tennessee through its Centers of Excellence program. We also gratefully acknowledge the major contributions over the past decade of fellow members of our previous California-Carnegie Exoplanet team, Geoff Marcy, Jason Wright, Debra Fischer, and Katie Peek, in helping to obtain some of the radial velocities presented in this paper. We are also thankful to the anonymous referee for a careful review of our paper and his/her suggestions that have improved our manuscript. The work herein is based on observations obtained at theW. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and we thank the UH-Keck, UC-Keck and NASA-Keck Time Assignment Committees for their support. We also extend our special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 43 TC 26 Z9 26 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 271 EP 276 DI 10.1088/0004-637X/715/1/271 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100022 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Antolini, E Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bogart, JR Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Celotti, A Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Costamante, L Cotter, G Cutini, S D'Elia, V Dermer, CD de Angelis, A de Palma, F De Rosa, A Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Farnier, C Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hayashida, M Hays, E Healey, SE Hill, AB Horan, D Hughes, RE Iafrate, G Itoh, R Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lavalley, C Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Malaguti, G Massaro, E Mazziotta, MN McConville, W McEnery, JE McGlynn, S Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piranomonte, S Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Stawarz, L Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Taylor, GB Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Ubertini, P Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Villata, M Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Antolini, E. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bogart, J. R. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Celotti, A. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Costamante, L. Cotter, G. Cutini, S. D'Elia, V. Dermer, C. D. de Angelis, A. de Palma, F. De Rosa, A. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Farnier, C. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Healey, S. E. Hill, A. B. Horan, D. Hughes, R. E. Iafrate, G. Itoh, R. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lavalley, C. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Malaguti, G. Massaro, E. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piranomonte, S. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stawarz, L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Taylor, G. B. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Ubertini, P. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; catalogs; galaxies: active; gamma rays: galaxies ID VLBA CALIBRATOR SURVEY; GAMMA-RAY EMISSION; ALL-SKY SURVEY; BL-LACERTAE OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; CLASS BLAZAR SURVEY; RADIO-LOUD AGN; SPACE-TELESCOPE; DATA RELEASE; OPTICAL IDENTIFICATIONS AB We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 gamma-ray sources located at high Galactic latitudes (|b| > 10 degrees) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing gamma-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties-such as gamma-ray fluxes and photon power-law spectral indices, redshifts, gamma-ray luminosities, variability, and archival radio luminosities-and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the gamma-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Roth, M.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Conrad, J.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Labs, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Stawarz, L.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.; Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; D'Elia, V.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celotti, A.] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Lavalley, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cotter, G.] Univ Oxford, Oxford OX1 3RH, England. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [De Rosa, A.; Ubertini, P.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Dumora, D.; Escande, L.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] CEN Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Escande, L.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.; Iafrate, G.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.; Malaguti, G.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, LAOG, UMR 5571, F-38041 Grenoble 09, France. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, Ctr Etud Spatiale Rayonnements, UPS, F-31028 Toulouse 4, France. [Massaro, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Piranomonte, S.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Taylor, G. B.] Univ New Mexico, Albuquerque, NM 87131 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM elisabetta.cavazzuti@asdc.asi.it; gasparrini@asdc.asi.it; sehealey@astro.stanford.edu; lott@cenbg.in2p3.fr; Gino.Tosti@pg.infn.it RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Baldini, Luca/0000-0002-9785-7726; Gasparrini, Dario/0000-0002-5064-9495; Villata, Massimo/0000-0003-1743-6946; Grandi, Paola/0000-0003-1848-6013; Cutini, Sara/0000-0002-1271-2924; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; De Rosa, Alessandra/0000-0001-5668-6863; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Malaguti, Giuseppe/0000-0001-9872-3378; Sgro', Carmelo/0000-0001-5676-6214; Iafrate, Giulia/0000-0002-6185-8292; D'Elia, Valerio/0000-0002-7320-5862; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Piranomonte, Silvia/0000-0002-8875-5453; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU K. A. Wallenberg Foundation; European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; W. M. Keck Foundation; ESO telescopes at the La Silla Observatory [083.B-0460(B), 084.B-0711(B)]; Alfred P. Sloan Foundation; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; National Science Foundation; U. S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This research has made us of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC).; Some of the results presented in this paper are based on observations obtained with the Hobby-Eberly Telescope (HET), a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat-Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph (LRS) is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion. The LRS is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico.; This work is also partly based on optical spectroscopy performed at the Telescopio Nazionale Galileo (TNG), La Palma, Canary Islands (proposal AOT20/09B). These observations confirm some of the redshifts and classifications found with the HET. We thank the HET and TNG personnel for their assistance during the observing runs.; The data in this paper are based partly on observations obtained at the Hale Telescope, Palomar Observatory, as part of a collaborative agreement between the California Institute of Technology, its divisions Caltech Optical Observatories and the Jet Propulsion Laboratory (operated for NASA), and Cornell University.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; Some of the data in this paper are based on observations made with ESO telescopes at the La Silla Observatory under programs 083.B-0460(B) and 084.B-0711(B).; The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; Funding for the Sloan Digital Sky Survey (SDSS) and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, The University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 120 TC 312 Z9 315 U1 6 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 429 EP 457 DI 10.1088/0004-637X/715/1/429 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100036 ER PT J AU Kataoka, J Stawarz, L Cheung, CC Tosti, G Cavazzuti, E Celotti, A Nishino, S Fukazawa, Y Thompson, DJ McConville, WF AF Kataoka, J. Stawarz, L. Cheung, C. C. Tosti, G. Cavazzuti, E. Celotti, A. Nishino, S. Fukazawa, Y. Thompson, D. J. McConville, W. F. TI gamma-RAY SPECTRAL EVOLUTION OF NGC 1275 OBSERVED WITH FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 1275); galaxies: jets; gamma rays: general; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; PEAKED BL-LACERTAE; RADIO GALAXY; PARTICLE-ACCELERATION; PERSEUS CLUSTER; SOURCE LIST; W-COMAE; EMISSION; DISCOVERY; BLAZAR AB We report on a detailed investigation of the high-energy gamma-ray emission from NGC 1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray-emitting region is now measured to be separated by only 0.46 arcmin from the nucleus of NGC 1275, well within the 95% confidence error circle with radius similar or equal to 1.5 arcmin. Early Fermi Large Area Telescope (LAT) observations revealed a significant decade-timescale brightening of NGC 1275 at GeV photon energies, with a flux about 7 times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average > 100 MeV gamma-ray spectrum of NGC 1275 shows a possible deviation from a simple power-law shape, indicating a spectral cutoff around an observed photon energy of epsilon(gamma) = 42.2 +/- 19.6 GeV, with an average flux of F(gamma) = (2.31 +/- 0.13) x 10(-7) photons cm(-2) s(-1) and a power-law photon index, Gamma(gamma) = 2.13 +/- 0.02. The largest gamma-ray flaring event was observed in 2009 April-May and was accompanied by significant spectral variability above epsilon(gamma) greater than or similar to 1-2 GeV. The gamma-ray activity of NGC 1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the gamma-ray source was detected at the very end of the observation, with the observed energy of epsilon(gamma) = 67.4 GeV and an angular separation of about 2.4 arcmin from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed gamma-ray spectral evolution of NGC 1275 in the context of gamma-ray blazar sources in general. C1 [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Stawarz, L.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Cheung, C. C.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Cavazzuti, E.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Celotti, A.] SISSA, I-34014 Trieste, Italy. [Nishino, S.; Fukazawa, Y.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Thompson, D. J.; McConville, W. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McConville, W. F.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Kataoka, J (reprint author), Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. RI Thompson, David/D-2939-2012; Tosti, Gino/E-9976-2013 OI Thompson, David/0000-0001-5217-9135; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'EnergieAtomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Polish MNiSW [N-N203-380336] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'EnergieAtomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; We acknowledge S. Digel and J. Finke for their helpful comments to improve the manuscript. L. S. is grateful for the support from the Polish MNiSW through the grant N-N203-380336. NR 40 TC 37 Z9 37 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 554 EP 560 DI 10.1088/0004-637X/715/1/554 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100046 ER PT J AU Fukumura, K Kazanas, D Contopoulos, I Behar, E AF Fukumura, Keigo Kazanas, Demosthenes Contopoulos, Ioannis Behar, Ehud TI MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; methods: numerical; quasars: absorption lines; X-rays: galaxies ID GALAXY NGC-4151; BLACK-HOLES; OUTFLOWS; QUASARS; ULTRAVIOLET; ABSORPTION; SPECTRA; DRIVEN; LINE; SIMULATIONS AB We present the two-dimensional ionization structure of self-similarmagnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r). proportional to 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter xi (or equivalently r) and the angle theta. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic xi interval, dN(H)/dlog xi, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) proportional to 1/r, the AMD is found to be independent of xi, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, upsilon similar to 100-300 km s(-1) (at log xi similar to 2-3) for Fe XVII and upsilon similar to 1000-4000 km s(-1) (at log xi similar to 4-5) for Fe xxv, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate (m) over dot and the LOS angle theta. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing. m and increases steeply with the LOS inclination angle theta. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale " torii" invoked in AGN unification schemes. We indicate that a combination of the AMD and absorption line profile observations can uniquely determine these model parameters and their bearing on AGN population demographics. C1 [Fukumura, Keigo] Univ Maryland, Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. [Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron, Athens 11527, Greece. [Behar, Ehud] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Fukumura, K (reprint author), Univ Maryland, Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. EM Keigo.Fukumura@nasa.gov FU NASA ADP FX We are grateful to our anonymous referee for his/her constructive comments that improved the manuscript. We would like to thank Tim Kallman for his help with XSTAR incisive comments. We express our gratitude to George Chartas for his comments on the model, and to Takanori Sakamoto and Javier Garcia for their assistance with scripting and running XSTAR as well as helpful comments. This work was supported in part by NASA ADP grant. NR 59 TC 45 Z9 45 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 636 EP 650 DI 10.1088/0004-637X/715/1/636 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100053 ER PT J AU Enoto, T Rea, N Nakagawa, YE Makishima, K Sakamoto, T Esposito, P Gotz, D Hurley, K Israel, GL Kokubun, M Mereghetti, S Murakami, H Nakazawa, K Stella, L Tiengo, A Turolla, R Yamada, S Yamaoka, K Yoshida, A Zane, S AF Enoto, T. Rea, N. Nakagawa, Y. E. Makishima, K. Sakamoto, T. Esposito, P. Goetz, D. Hurley, K. Israel, G. L. Kokubun, M. Mereghetti, S. Murakami, H. Nakazawa, K. Stella, L. Tiengo, A. Turolla, R. Yamada, S. Yamaoka, K. Yoshida, A. Zane, S. TI WIDE-BAND SUZAKU ANALYSIS OF THE PERSISTENT EMISSION FROM SGR 0501+4516 DURING THE 2008 OUTBURST SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR 0501+4516); stars: neutron; X-rays: stars ID X-RAY PULSARS; HIGH-ENERGY CHARACTERISTICS; XMM-NEWTON; DISCOVERY; MAGNETARS; RXTE; TAIL AB We observed the soft gamma repeater SGR 0501+4516 with Suzaku for similar to 51 ks on 2008 August 26-27, about 4 days after its discovery. Following the first paper, which reported on the persistent soft X-ray emission and the wide-band spectrum of an intense short burst, this paper presents an analysis of the persistent broadband (1-70 keV) spectra of this source in outburst, taken with the X-ray Imaging Spectrometer (XIS) and the Hard X-ray Detector (HXD). Pulse-phase folding in the 12-35 keV HXD-PIN data on an ephemeris based on multi-satellite timing measurements at soft X-rays revealed the pulsed signals at greater than or similar to 99% confidence in the hard X-ray band. The wide-band spectrum clearly consists of a soft component and a separate hard component, crossing over at similar to 7 keV. When the soft component is modeled by a blackbody plus a Comptonized blackbody, the hard component exhibits a 20-100 keV flux of 4.8(-0.6)(+0.8) (stat.)(-0.4)(+ 0.8) (sys.) x 10(-11) erg s(-1) cm(-2) and a photon index of Gamma = 0.79(-0.18)(+ 0.01) (sys.). The hard X-ray data are compared with those obtained by INTEGRAL about 1 day later. Combining the present results with those on other magnetars, we discuss a possible correlation between the spectral hardness of magnetars and their characteristic age and magnetic field strengths. C1 [Enoto, T.; Makishima, K.; Nakazawa, K.; Yamada, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Rea, N.] Fac Ciencias, ICE CSIC, IEEC, Barcelona 08193, Spain. [Rea, N.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Nakagawa, Y. E.; Makishima, K.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Esposito, P.; Mereghetti, S.; Tiengo, A.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Esposito, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Goetz, D.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Israel, G. L.; Stella, L.] INAF Astron Observ Rome, I-00040 Monte Porzio Catone, RM, Italy. [Kokubun, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Murakami, H.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Turolla, R.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Turolla, R.; Zane, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Yamaoka, K.; Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. RP Enoto, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. RI Rea, Nanda/I-2853-2015; XRAY, SUZAKU/A-1808-2009; OI Rea, Nanda/0000-0003-2177-6388; Tiengo, Andrea/0000-0002-6038-1090; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; Esposito, Paolo/0000-0003-4849-5092 FU NWO; CNES; STFC; NASA [NNX09AI74G]; ASI/INAF [I/011/07/0] FX We thank the Suzaku operation team for successfully carrying out the ToO observation. We gratefully acknowledge the referee for providing detailed comments and suggestions, which significantly improved this paper. N.R. is supported by an NWO Veni Fellowship, D.G. thanks the CNES for financial support, and S.Z. acknowledges support from STFC. We thank Matthew Baring for a helpful discussion. K. H. is grateful for support under the INTEGRAL US Guest Investigator program, NASA grant NNX09AI74G. P. E. was supported by ASI through ASI/INAF contract I/011/07/0. NR 31 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2010 VL 715 IS 1 BP 665 EP 670 DI 10.1088/0004-637X/715/1/665 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590HM UT WOS:000277216100056 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Bottcher, M Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Cui, W Dickherber, R Duke, C Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ Lamerato, A LeBohec, S Maier, G McArthur, S McCann, A McCutcheon, M Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Roustazadeh, P Schroedter, M Sembroski, GH Senturk, GD Smith, AW Steele, D Swordy, SP Tesic, G Theiling, M Thibadeau, S Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ripken, J Rodriguez, AY Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Boettcher, M. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Cui, W. Dickherber, R. Duke, C. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. Lamerato, A. LeBohec, S. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Roustazadeh, P. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Smith, A. W. Steele, D. Swordy, S. P. Tesic, G. Theiling, M. Thibadeau, S. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ripken, J. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI THE DISCOVERY OF gamma-RAY EMISSION FROM THE BLAZAR RGB J0710+591 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects: individual (RGB J0710+591, VER J0710+591); gamma rays: galaxies ID BL-LACERTAE OBJECTS; ATMOSPHERIC CHERENKOV TELESCOPES; ACTIVE GALACTIC NUCLEI; HOST GALAXIES; BACKGROUND-RADIATION; LAC OBJECTS; SAMPLE; CONSTRAINTS; ASTRONOMY; VERITAS AB The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5 sigma) above the background, corresponding to an integral flux of (3.9 +/- 0.8) x 10(-12) cm(-2) s(-1) (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 +/- 0.26(stat) +/- 0.20(sys). These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields a good statistical fit to the data. The addition of an external-Compton component to the model does not improve the fit nor brings the system closer to equipartition. The combined Fermi and VERITAS data constrain the properties of the high-energy emission component of the source over 4 orders of magnitude and give measurements of the rising and falling sections of the SED. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Gibbs, K.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boettcher, M.; Lamerato, A.; Roustazadeh, P.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS, Laboratoire AIM, CEA IRFU,CEA Saclay,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Gehrels, N.; Hays, E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM jperkins@cfa.harvard.edu; fortin@llr.in2p3.fr RI Funk, Stefan/B-7629-2015; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Funk, Stefan/0000-0002-2012-0080; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Frailis, Marco/0000-0002-7400-2135; Ward, John E/0000-0003-1973-0794; Caraveo, Patrizia/0000-0003-2478-8018; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Cesarini, Andrea/0000-0002-8611-8610; Sgro', Carmelo/0000-0001-5676-6214; Cui, Wei/0000-0002-6324-5772; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK; National Aeronautics and Space Administration; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science, and Technology (MEXT); High Energy Accelerator Research Organization (KEK) and Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The VERITAS Collaboration acknowledges support from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 44 TC 42 Z9 42 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2010 VL 715 IS 1 BP L49 EP L55 DI 10.1088/2041-8205/715/1/L49 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590NM UT WOS:000277233200011 ER PT J AU Mascarenhas, BS Helenbrook, BT Atkins, HL AF Mascarenhas, Brendan S. Helenbrook, Brian T. Atkins, Harold L. TI Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE p-Multigrid; Geometric multigrid; Discontinuous Galerkin; Convection-diffusion equation ID NAVIER-STOKES EQUATIONS; EULER EQUATIONS; SYSTEMS; FLOWS; GRIDS AB An improved p-multigrid algorithm for discontinuous Galerkin (DG) discretizations of convection-diffusion problems is presented. The general p-multigrid algorithm for DG discretizations involves a restriction from the p = 1 to p = 0 discontinuous polynomial solution spaces This restriction is problematic and has limited the efficiency of the p-multigrid method For purely diffusive problems, Helenbrook and Atkins have demonstrated rapid convergence using a method that restricts from a discontinuous to continuous polynomial solution space at p = 1 It is shown that this method is not directly applicable to the convection-diffusion (CD) equation because it results in a central-difference discretization for the convective term To remedy this, Ideas from the streamwise upwind Petrov-Galerkin (SUPG) formulation are used to devise a transition from the discontinuous to continuous space at p = 1 that yields an upwind discretization The results show that the new method converges rapidly for all Peclet numbers. (C) 2010 Elsevier Inc All rights reserved. C1 [Mascarenhas, Brendan S.] Optiwind LLC, Torrington, CT 06790 USA. [Helenbrook, Brian T.] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. [Atkins, Harold L.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Mascarenhas, BS (reprint author), Optiwind LLC, 59 Fields St, Torrington, CT 06790 USA. NR 21 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 20 PY 2010 VL 229 IS 10 BP 3664 EP 3674 DI 10.1016/j.jcp.2010.01.020 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 584WL UT WOS:000276784300006 ER PT J AU Lyman, JM Good, SA Gouretski, VV Ishii, M Johnson, GC Palmer, MD Smith, DM Willis, JK AF Lyman, John M. Good, Simon A. Gouretski, Viktor V. Ishii, Masayoshi Johnson, Gregory C. Palmer, Matthew D. Smith, Doug M. Willis, Josh K. TI Robust warming of the global upper ocean SO NATURE LA English DT Article ID SEA-LEVEL RISE; HEAT-CONTENT; TEMPERATURE; REEVALUATION; VARIABILITY; PROFILES; QUALITY; ARGO; XBT AB A large (similar to 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago(1) and is attributed to warming associated with anthropogenic greenhouse gases(2,3). The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean(3), but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets(4-7), the global radiation imbalance(8) and climate models(5). For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise(5,9-16). Patterns of inter-annual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2). C1 [Lyman, John M.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Lyman, John M.; Johnson, Gregory C.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Good, Simon A.; Palmer, Matthew D.; Smith, Doug M.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Gouretski, Viktor V.] Univ Hamburg, D-20144 Hamburg, Germany. [Ishii, Masayoshi] Meteorol Res Inst, Climate Res Dept, Tsukuba, Ibaraki 3050052, Japan. [Ishii, Masayoshi] Japan Agcy Marine Earth Sci & Technol, Kanazawa Ku, Yokohama, Kanagawa 2360001, Japan. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lyman, JM (reprint author), Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. EM john.lyman@noaa.gov RI Johnson, Gregory/I-6559-2012 OI Johnson, Gregory/0000-0002-8023-4020 FU US National Oceanic and Atmospheric Administration (NOAA) Climate Program Office; NOAA; DECC/Defra [GA01101] FX J.M.L. and G.C.J. were funded by the US National Oceanic and Atmospheric Administration (NOAA) Climate Program Office and NOAA Research. S. A. G., M. D. P. and D. M. S. were supported by the Joint DECC and Defra Integrated Climate Programme DECC/Defra (GA01101). C. Domingues, S. Levitus, T. Boyer, M. Ferrante and D. Trossman provided comments. C. Domingues, S. Levitus, and T. Boyer also provided corrected XBT profiles. This is Pacific Marine Environment Laboratory contribution number 3476 and Joint Institute for Marine and Atmospheric Research contribution number 09-372. NR 30 TC 178 Z9 189 U1 6 U2 98 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 20 PY 2010 VL 465 IS 7296 BP 334 EP 337 DI 10.1038/nature09043 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 598IO UT WOS:000277829200037 PM 20485432 ER PT J AU Sun, AY Green, R Rodell, M Swenson, S AF Sun, Alexander Y. Green, Ronald Rodell, Matthew Swenson, Sean TI Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DATA ASSIMILATION SYSTEM; CLIMATE EXPERIMENT GRACE; GRAVITY RECOVERY; TIME AB We present a robust optimization method for estimating aquifer storage parameters (specific yield or storativity) using the Gravity Recovery and Climate Experiment (GRACE) data, in situ well level observations, and other ancillary information. Uncertainty inherent in the remotely sensed and in situ time series can adversely affect the parameter estimation process and, in the worse case, make the solution completely meaningless. Our estimation problem is formulated to directly minimize the negative impact of data uncertainty by incorporating bounds on data variations. We demonstrate our method for the interconnected Edwards- Trinity Plateau and Pecos Valley aquifers in central Texas. The study area is divided into multiple zones based on the geology and monitor well coverage. Our estimated aquifer storage parameters are consistent with previous results obtained from pumping tests and model calibration, demonstrating the potential of using GRACE data for validating regional groundwater model parameters. Citation: Sun, A. Y., R. Green, M. Rodell, and S. Swenson (2010), Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty, Geophys. Res. Lett., 37, L10401, doi: 10.1029/2010GL043231. C1 [Sun, Alexander Y.; Green, Ronald] SW Res Inst, Geosci & Engn Div, San Antonio, TX 78238 USA. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Swenson, Sean] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Swenson, Sean] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Sun, AY (reprint author), SW Res Inst, Geosci & Engn Div, San Antonio, TX 78238 USA. EM asun@cnwra.swri.edu RI Rodell, Matthew/E-4946-2012; Sun, Alexander/A-9959-2011 OI Rodell, Matthew/0000-0003-0106-7437; FU Southwest Research Institute(registered) FX This research was funded by an internal research and development fund from Southwest Research Institute (R). The authors wish to thank D. Mocko at NASA for providing the NLDAS datasets, and R. Anaya and R. Boghici at TWDB for providing the Edwards-Trinity Plateau data and for insightful discussions. NR 24 TC 13 Z9 13 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 19 PY 2010 VL 37 AR L10401 DI 10.1029/2010GL043231 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 600DA UT WOS:000277963200005 ER PT J AU Cosh, MH Tao, J Jackson, TJ McKee, L O'Neill, P AF Cosh, Michael H. Tao, Jing Jackson, Thomas J. McKee, Lynn O'Neill, Peggy TI Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006 SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Vegetation; field experimentation; thematic mapper; NDWI; agriculture ID REMOTE-SENSING DATA; SPECTRAL INDEX; IMAGERY AB Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m(2). The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. C1 [Cosh, Michael H.; Jackson, Thomas J.; McKee, Lynn] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Tao, Jing] Beijing Normal Univ, Sch Geog & Remote Sensing Sci, Beijing 100875, Peoples R China. [O'Neill, Peggy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cosh, MH (reprint author), USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. EM Michael.Cosh@ars.usda.gov; Tom.Jackson@ars.usda.gov; Lynn.McKee@ars.usda.gov; Peggy.E.ONeill@nasa.gov RI O'Neill, Peggy/D-2904-2013; Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 NR 14 TC 1 Z9 1 U1 1 U2 15 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD MAY 19 PY 2010 VL 4 AR 043532 DI 10.1117/1.3449090 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 602KM UT WOS:000278138100001 ER PT J AU Shultz, MJ Bisson, P Buch, V Groenzin, H Li, I AF Shultz, Mary Jane Bisson, Patrick Buch, Victoria Groenzin, Henning Li, Irene TI Aqueous hydrogen bonding probed with polarization and matrix isolation spectroscopy SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article; Proceedings Paper CT 18th International Conference on Horizons in Hydrogen Bond Research CY SEP 14-18, 2009 CL Lab Leon-Brillouin CEA-CNRS, Paris, FRANCE SP CEA Saclay, Univ Gottingen HO Lab Leon-Brillouin CEA-CNRS DE Ice; Water; Surface; Vibrational modes; Polarization; Sum frequency generation ID SUM-FREQUENCY GENERATION; LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS SIMULATIONS; VIBRATIONAL SPECTROSCOPY; SALT-SOLUTIONS; WATER-SURFACE; CARBON-TETRACHLORIDE; ROTATIONAL STRUCTURE; BINARY-SYSTEMS; IONS AB A major challenge in hydrogen-bond research is interpreting the vibrational spectrum of water, arguably the most fundamental hydrogen bonding system. This challenge remains despite over a half century of progress in vibrational spectroscopy, largely due to a combination of the huge oscillator strength and the enormous width of the hydrogen-bond region. Lack of assignment of the resonances in the hydrogen-bond region hinders investigation of interactions between water and solutes. This lack-of-interpretation issue is an even more significant problem for studies of the aqueous interface. Numerous solutes are known to have an effect, some very dramatic, on the shape of the surface spectrum. These effects, however, are but tantalizing teasers because lack of interpretation means that the changes cannot be used to diagnose the effect of solutes or impinging gas-phase molecules on the surface. In the reported work two techniques are used to probe the origin of vibrational resonances in the H-bonded region: the surface sensitive technique sum frequency generation (SFG) and room-temperature matrix isolation spectroscopy (RT-MIS). A polarization technique called polarization angle null (PAN) has been developed that extends SFG and enables identification of resonances. The result of applying PAN-SFG to single crystal, I(h) ice is identification of at least nine underlying resonances and assignment of two of these. One resonance is correlated with the crystal temperature and is a sensitive probe for interactions that disrupt long range order on the surface - it is a morphology reporter. The second is associated with weakly bonded, double-donor water molecules. This resonance is sensitive to interaction of hydrogen bond donors, i.e. acids, with the surface. Both modes are more correctly pictured as collective modes. These two assignments are the first definitive assignments in the hydrogen-bond region for the aqueous surface. The effect of salts on the vibrational spectrum of water is also probed with a recently developed room-temperature, matrix-isolation technique. The matrix environment demonstrates that salts containing large anions with small cations support water-water hydrogen bonds with a vibrational resonance that has similar characteristics as the SFG spectra of salt solutions. (c) 2010 Elsevier B.V. All rights reserved. C1 [Shultz, Mary Jane; Bisson, Patrick] Tufts Univ, Dept Chem, Pearson Lab, Medford, MA 02155 USA. [Buch, Victoria] Hebrew Univ Jerusalem, Fritz Haber Inst Mol Dynam, IL-91904 Jerusalem, Israel. [Groenzin, Henning] MB Technol GmbH, D-71063 Sindelfingen, Germany. [Li, Irene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shultz, MJ (reprint author), Tufts Univ, Dept Chem, Pearson Lab, Medford, MA 02155 USA. EM mary.shultz@tufts.edu OI Bisson, Patrick/0000-0002-4985-3077 NR 58 TC 4 Z9 4 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 J9 J MOL STRUCT JI J. Mol. Struct. PD MAY 19 PY 2010 VL 972 IS 1-3 SI SI BP 51 EP 58 DI 10.1016/j.molstruc.2009.12.051 PG 8 WC Chemistry, Physical SC Chemistry GA 604VS UT WOS:000278307200008 ER PT J AU Bardeen, CG Toon, OB Jensen, EJ Hervig, ME Randall, CE Benze, S Marsh, DR Merkel, A AF Bardeen, C. G. Toon, O. B. Jensen, E. J. Hervig, M. E. Randall, C. E. Benze, S. Marsh, D. R. Merkel, A. TI Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NOCTILUCENT CLOUDS; PHYSICAL PROCESSES; OPTICAL-CONSTANTS; SUMMER MESOSPHERE; METEORIC SMOKE; WATER-ICE; MODEL; TEMPERATURE; ATMOSPHERE; STRATOSPHERE AB Polar mesospheric clouds (PMC) routinely form in the cold summer mesopause region when water vapor condenses to form ice. We use a three-dimensional chemistry-climate model based on the Whole-Atmosphere Community Climate Model (WACCM) with sectional microphysics from the Community Aerosol and Radiation Model for Atmospheres (CARMA) to study the distribution and characteristics of PMCs formed by heterogeneous nucleation of water vapor onto meteoric smoke particles. We find good agreement between these simulations and cloud properties for the Northern Hemisphere in 2007 retrieved from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment from the Aeronomy of Ice in the Mesosphere (AIM) mission. The main discrepancy is that simulated ice number densities are less than those retrieved by SOFIE. This discrepancy may indicate an underprediction of nucleation rates in the model, the lack of small-scale gravity waves in the model, or a bias in the SOFIE results. The WACCM/CARMA simulations are not very sensitive to large changes in the barrier to heterogeneous nucleation, which suggests that large supersaturations in the model nucleate smaller meteoric smoke particles than are traditionally assumed. Our simulations are very sensitive to the temperature structure of the summer mesopause, which in the model is largely dependent upon vertically propagating gravity waves that reach the mesopause region, break, and deposit momentum. We find that cloud radiative heating is important, with heating rates of up to 8 K/d. C1 [Bardeen, C. G.; Toon, O. B.; Randall, C. E.; Benze, S.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Bardeen, C. G.; Toon, O. B.; Randall, C. E.; Benze, S.; Merkel, A.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Hervig, M. E.] GATS Inc, Driggs, ID 83422 USA. [Jensen, E. J.] NASA, Ames Res Ctr, Moffett Field, CA 94395 USA. [Bardeen, C. G.; Marsh, D. R.; Merkel, A.] Natl Ctr Atmospher Res, Boulder, CO 80306 USA. RP Bardeen, CG (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. EM bardeenc@ucar.edu RI Marsh, Daniel/A-8406-2008 OI Marsh, Daniel/0000-0001-6699-494X FU National Science Foundation (NSF) [ATM0435713]; NASA [NNG05GQ75J, NNX08AK45G, NNG06GE80G, NAS5-03132]; NCAR FX The authors wish to thank Scott Bailey, Jerry Lumpe, Uwe Berger, Steve Massie, and Doug Kinnison for their assistance. We are grateful to the National Center for Atmospheric Research (NCAR) and the National Aeronautics and Space Administration (NASA) for the use of computer time to help run these simulations. We would also like to thank the SABER, CIPS, and SOFIE science teams for the use of their data and the NCAR for supporting our use of the WACCM model. The NCAR is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation (NSF). Partial support for Charles Bardeen was provided by a NASA Earth System Science Fellowship grant NNG05GQ75J and an NCAR Advanced Study Program Postdoctoral Fellowship. Additional support for this project came from NASA heliophysics guest investigator grant NNX08AK45G, NASA Aura grant NNG06GE80G, NSF grant ATM0435713, and NASA AIM grant NAS5-03132. NR 55 TC 21 Z9 21 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 18 PY 2010 VL 115 AR D10204 DI 10.1029/2009JD012451 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 600DQ UT WOS:000277965100002 ER PT J AU Naud, CM Chen, YH AF Naud, Catherine M. Chen, Yong-Hua TI Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat-CALIPSO SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HIGH-LEVEL CLOUDS; SATELLITE SOUNDERS 3I; CLIMATIC-CHANGE; IMAGERS ISCCP; SAGE-II AB Cloudiness over the Tibetan Plateau is difficult to estimate because ground-based measurements are sparse. Satellite observations are thus the best tool and one of the longest climatologies available, the International Satellite Cloud Climatology Project (ISCCP), relies on passive remote sensing to characterize cloud cover and altitude. Active remote sensing from space is used to assess the accuracy of the ISCCP observations over the Tibetan Plateau. August 2006 is chosen to conduct the assessment and compared to February 2007. Cloud cover from ISCCP is underestimated by about 18%, in part because of misdetection of low-level clouds at night. ISCCP cloud top pressures are overestimated by about 150-200 mb in August and 60-130 mb in February. However, the most accurate ISCCP cloud top pressures, with a maximum bias of about 50 mb, are obtained when there are thick single-layer clouds. Within the region, there is no evidence that the differences are directly dependent on elevation. Problems identified in other regions, such as multilayer clouds and optically thin clouds, explain most of the discrepancies in our study region. These results indicate that ISCCP cloud retrievals can be used to compile a realistic climatology at the highest altitudes where single-layer clouds dominate and that the retrievals are most accurate in winter. C1 [Naud, Catherine M.; Chen, Yong-Hua] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Naud, Catherine M.; Chen, Yong-Hua] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Naud, CM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM cnaud@giss.nasa.gov NR 34 TC 5 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 18 PY 2010 VL 115 AR D10203 DI 10.1029/2009JD013053 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 600DQ UT WOS:000277965100008 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Design strategies to minimize the radiative efficiency of global warming molecules SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE quantum chemistry calculations; climate change; fluorocarbons; infrared absorption; vibrational frequency ID GAUSSIAN BASIS FUNCTIONS; FIRST-ROW ATOMS; POTENTIALS; EMISSIONS; ANIONS; GAS AB A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers approximate to sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C-O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C-F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu; Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 FU National Aeronautics and Space Administration (NASA) FX P. P. B. thanks Dr. Xinchuan Huang for many insightful discussions. P. P. B. acknowledges a fellowship award from the National Aeronautics and Space Administration (NASA) postdoctoral program administered by the Oak Ridge Associated Universities on behalf of NASA. NR 21 TC 9 Z9 9 U1 0 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 18 PY 2010 VL 107 IS 20 BP 9049 EP 9054 DI 10.1073/pnas.0913590107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 598GH UT WOS:000277822600008 PM 20439762 ER PT J AU Berrilli, F Bigazzi, A Roselli, L Sabatini, P Velli, M Alimenti, F Cavallini, F Greco, V Moretti, PF Orsini, S Romoli, M White, SM AF Berrilli, F. Bigazzi, A. Roselli, L. Sabatini, P. Velli, M. Alimenti, F. Cavallini, F. Greco, V. Moretti, P. F. Orsini, S. Romoli, M. White, S. M. CA ADAHELI Team TI The ADAHELI solar mission: Investigating the structure of Sun's lower atmosphere SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Sun: photosphere; Sun: chromosphere; Methods: space mission ID OPTICAL TELESCOPE; ELECTRIC-CURRENTS; TIME STRUCTURES; QUIET SUN; WAVES; FLARE; IBIS; CHROMOSPHERE; MAGNETOGRAPH; OSCILLATIONS AB ADAHELI (A Dvanced Astronomy for HELlophysics) is a small-class (500 kg) low-budget (50 MEuro) satellite mission for the study of the solar photosphere and the chromosphere and for monitoring solar flare emission. ADAHELI's design has completed its Phase-A feasibility study in December 2008, in the framework of ASI's (Agenzia Spaziale ltaliana) 2007 "Small Missions" Program (calling for two missions at 50 MEeuros each, plus the launch budget). ADAHELI's main purpose is to explore Sun's lower atmosphere in the near-infrared, a region so far unexplored by solar observations from space. ADAHELI will carry out observations of the solar photosphere and of the chromosphere at high-temporal rate and high spatial and spectral resolutions. ADAHELI will contribute to the understanding of Space Weather through the study of particle acceleration during flares. A radiometer operating in the millimeter radio band will continuously monitor the solar disk, throughout the spacecraft's life time. ADAHELI's baseline instruments are a 50-cm high resolution telescope operating in the visible and the near-infrared, and a lightweight full-disk radiometer operating at millimeter wavelengths (90 GHz). The core of the telescope's focal plane suite is the spectral imager based on two Fabry-Perot interferometers, flying for the first time on a solar mission. The instrument will return fast-cadence, full bi-dimensional spectral images at high-resolution, thus improving on current slit-scan, mono-dimensional architectures. Moreover, the possibility of working in polarized light will enable full 3D magnetic field reconstruction on the photosphere and the chromosphere. An optional instrumental package is also being proposed to further extend ADAHELI's scope: a full-disk telescope for helioseismology based on a double Magneto-Optical Filter, a Neutral Particle Analyzer for magnetospheric research, an Extreme Ultraviolet imaging and spectro-radiometry instrument. These options fall outside the prescribed budget. ADAHELI, flying a Sun-Synchronous orbit at 800 km, will perform continuous, long-duration (4-h), daily acquisitions, with the possibility of extending them up to 24 h. ADAHELI's operating life is two years, plus one extension year. Launch would be nominally planned for 2014. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Bigazzi, A.] Altran Italia SpA, I-00185 Rome, Italy. [Berrilli, F.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Roselli, L.; Alimenti, F.] Univ Perugia, Dipartimento Ingn Elettron & Informaz, I-06125 Perugia, Italy. [Sabatini, P.] Carlo Gavazzi Space SpA, I-20151 Milan, Italy. [Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cavallini, F.] INAF Oss Astrofis Arcetri, I-50125 Florence, Italy. [Greco, V.] INOA Ist Naz Ott Applicata, I-50125 Florence, Italy. [Moretti, P. F.] Headquarters Consiglio Nazl Ric, I-00185 Rome, Italy. [Orsini, S.] INAF IFSI Area Tor Vergata, I-00133 Rome, Italy. [Romoli, M.] Univ Florence, Dipartimento Astron & Sci Spazio, I-50125 Florence, Italy. [White, S. M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Bigazzi, A (reprint author), SERCO SpA, ESA ESRIN, Via G Galilei, I-00044 Frascati, Italy. EM berrilli@roma2.infn.it; alberto.bigazzi@roma2.infn.it; roselli@diei.unipg.it; psabatini@cgspace.it; velli@arcetri.astro.it; alimenti@diei.unipg.it; fabio@arcetri.astro.it; vincenzo.greco@inoa.it; pierfrancesco.moretti@cnr.it; stefano.orsini@ifsi-roma.inaf.it; romoli@arcetri.astro.it; white@astro.umd.edu RI Romoli, Marco/H-6859-2012; OI ermolli, ilaria/0000-0003-2596-9523; CONSOLINI, Giuseppe/0000-0002-3403-647X; ALIMENTI, Federico/0000-0002-4523-2193; DEL MORO, DARIO/0000-0003-2500-5054; Cauzzi, Gianna/0000-0002-6116-7301; Romano, Paolo/0000-0001-7066-6674; Di Mauro, Maria Pia/0000-0001-7801-7484 NR 37 TC 17 Z9 17 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 17 PY 2010 VL 45 IS 10 BP 1191 EP 1202 DI 10.1016/j.asr.2010.01.026 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 598RX UT WOS:000277857000001 ER PT J AU Esplin, TL Cable, ML Gray, HB Ponce, A AF Esplin, Taran L. Cable, Morgan L. Gray, Harry B. Ponce, Adrian TI Terbium-Macrocycle Complexes as Chemical Sensors: Detection of an Aspirin Metabolite in Urine Using a Salicylurate-Specific Receptor Site SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC ENERGY LEVELS; LANTHANIDE AQUO IONS; INTRAMOLECULAR PROTON-TRANSFER; GENTISIC ACID; CAPILLARY-ELECTROPHORESIS; 2-HYDROXYHIPPURIC ACID; LIQUID-CHROMATOGRAPHY; ACETYLSALICYLIC-ACID; SALICYLATE; STATE AB Salicylurate (SU) is the major metabolite in urine of acetylsalicylic acid (aspirin) and can be used as a metric to monitor aspirin pharmacokinetics and as an indicator of appendicitis, anemia, and liver disease. Detection in urine and plasma currently requires solvent extraction or other sample handling prior to analysis. We present a simple method to quantify SU in urine via chelation to a terbium binary complex with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-bisacetate (DO2A). Binding of SU to form the [Tb(DO2A)(SU)](-) ternary complex triggers intense luminescence under UV excitation due to an absorbance-energy transfer-emission mechanism. Here we report characterization of the [Tb(DO2A)(SU)](-) ternary complex and application of this sensitized lanthanide luminescence method to quantify SU in urine samples following a low-dose aspirin regimen, C1 [Esplin, Taran L.; Cable, Morgan L.; Ponce, Adrian] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA. [Cable, Morgan L.; Gray, Harry B.; Ponce, Adrian] CALTECH, Beckman Inst, Pasadena, CA 91125 USA. RP Ponce, A (reprint author), CALTECH, Jet Prop Lab, Planetary Sci Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ponce@caltech.edu FU Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration; NASA Astrobiology and Planetary Protection Programs (A.P.); Department of Homeland Security Chemical and Biological Research & Development Program; NIH; NSF; Arnold and Mabel Beckman Foundation FX The authors thank Mona Shahgholi for assistance with mass spectrometry. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration and was sponsored by the NASA Astrobiology and Planetary Protection Programs (A.P.), the Department of Homeland Security Chemical and Biological Research & Development Program (A.P.), the NASA Graduate Student Research Program (M.L.C.), and the NASA Undergraduate Student Research Program (T.L.E.). Work at the Beckman Institute was supported by the NIH, NSF, and the Arnold and Mabel Beckman Foundation (H.B.G.). NR 39 TC 19 Z9 19 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 17 PY 2010 VL 49 IS 10 BP 4643 EP 4647 DI 10.1021/ic1003066 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 592MS UT WOS:000277383900034 PM 20405964 ER PT J AU Lee, J Kim, J Song, CH Ryu, JH Ahn, YH Song, CK AF Lee, Jaehwa Kim, Jhoon Song, Chul H. Ryu, Joo-Hyung Ahn, Yu-Hwan Song, C. K. TI Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Algorithm; Aerosol optical depth; Fine-mode fraction; Aerosol type; Geostationary ID VALIDATION; MTSAT-1R; CHANNELS; AVHRR AB An aerosol retrieval algorithm for the first Geostationary Ocean Color Imager (GOCI) to be launched in March 2010 onboard the Communication, Ocean, and Meteorological Satellite (COMS) is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMIF), and aerosol type in 500 m x 500 m resolution. All the products are retrieved over clear water which is defined by surface reflectance ratio between 640 nm and 860 nm (SRR) less or equal to 2.5, while only AOD is retrieved over turbid water (SRR>2.5) due to high surface reflectance. To develop optimized algorithm for the target area of GOCI, optical properties of aerosol are analyzed from extensive observation of AERONET sunphotometers to generate lookup table. Surface reflectance of turbid water is determined from 30-day composite of Rayleigh- and gas corrected reflectance. By applying the present algorithm to MODIS top-of-the atmosphere reflectance, three different aerosol cases dominated by anthropogenic aerosol contains black carbon (BC), dust, and non-absorbing aerosol are analyzed to test the algorithm. The algorithm retrieves AOD, and size information together with aerosol type which are consistent with results inferred by RGB image in a qualitative way. The comparison of the retrieved AOD with those of MODIS collection 5 and AERONET sunphotometer observations shows reliable results. Especially, the application of turbid water algorithm significantly increases the accuracy in retrieving AOD at Anmyon station. The sensitivity study between MODIS and GOCI instruments in terms of relative sensitivity and scattering angle shows promising applicability of the present algorithm to future GOCI measurements. (C) 2010 Elsevier Inc. All rights reserved. C1 [Lee, Jaehwa; Kim, Jhoon] Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul 120749, South Korea. [Song, Chul H.] GIST, Dept Environm Engn, Gwangiu, South Korea. Korea Ocean Res & Dev Inst, Ocean Satellite Res Grp, Ansan, South Korea. [Lee, Jaehwa; Kim, Jhoon] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA. [Lee, Jaehwa; Kim, Jhoon] NASA, Aerosol & Cloud Grp, JPL, Pasadena, CA USA. [Song, C. K.] Natl Inst Environm Res, Inchon, South Korea. RP Kim, J (reprint author), Yonsei Univ, Dept Atmospher Sci, Brain Korea Program 21, Inst Earth Astron & Atmosphere, Seoul 120749, South Korea. EM jkim2@yonsei.ac.kr RI Kwon, Yulee/B-8433-2009; Song, Chang-Keun/S-2255-2016 OI Kwon, Yulee/0000-0002-6515-9181; Song, Chang-Keun/0000-0002-8811-2626 FU Korean Ocean Research and Development Institute (KORDI); Korea Meteorological Administration Research and Development Program [CATER 2006-3203]; Brain Korea 21 (BK21) FX We thank the Korean Ocean Research and Development Institute (KORDI) for the development and application of GOCI in this work. This work was funded by the Korea Meteorological Administration Research and Development Program under grant CATER 2006-3203. This research was partially supported by the Brain Korea 21 (BK21) program for J. Kim and J. Lee. We also thank the principal investigators and their staff for establishing and maintaining the AERONET sites. NR 25 TC 29 Z9 31 U1 6 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY 17 PY 2010 VL 114 IS 5 BP 1077 EP 1088 DI 10.1016/j.rse.2009.12.021 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 571UH UT WOS:000275780800013 ER PT J AU Heimann, A Johnson, CM Beard, BL Valley, JW Roden, EE Spicuzza, MJ Beukes, NJ AF Heimann, Adriana Johnson, Clark M. Beard, Brian L. Valley, John W. Roden, Eric E. Spicuzza, Michael J. Beukes, Nicolas J. TI Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in similar to 2.5 Ga marine environments SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Fe; isotopes; BIF; Kuruman; carbonates; Archean/Paleoproterozoic ID RARE-EARTH-ELEMENTS; PROTEROZOIC TRANSVAAL SUPERGROUP; AMORPHOUS FERRIC HYDROXIDE; WESTERN-AUSTRALIA; SOUTH-AFRICA; FE(III) REDUCTION; OXIDE REDUCTION; MICROBIAL CARBONATE; DIAGENETIC SIDERITE; FACIES TRANSITION AB Combined Fe, C, and O isotope measurements of similar to 2.5 Ga banded iron formation (BIF) carbonates from the Kuruman Iron Formation and underlying BIF and platform Ca-Mg carbonates of the Gamohaan Formation, South Africa, constrain the biologic and abiologic formation pathways in these extensive BIF deposits. Vertical intervals of up to 100 m were sampled in three cores that cover a lateral extent of similar to 250 km. BIF Fe carbonates have significant Fe isotope variability (delta(56)Fe = +1 to 1 parts per thousand) and relatively low delta(13)C (down to - 12 parts per thousand) and 6180 values (delta(18)O -+ 21 parts per thousand). In contrast, Gamohaan and stratigraphically-equivalent Campbellrand Ca-Mg carbonates have near-zero delta(13)C values and higher delta(18)O values. These findings argue against siderite precipitation from seawater as the origin of BIF Fe-rich carbonates. Instead, the C, O, and Fe isotope compositions of BIF Fe carbonates reflect authigenic pathways of formation in the sedimentary pile prior to lithification, where microbial dissimilatory iron reduction (DIR) was the major process that controlled the C, O, and Fe isotope compositions of siderite. Isotope mass-balance reactions indicate that the low-delta(13)C and low-delta(18)O values of BIF siderite, relative to those expected for precipitation from seawater, reflect inheritance of C and O isotope compositions of precursor organic carbon and ferric hydroxide that were generated in the photic zone and deposited on the seafloor. Carbon-Fe isotope relations suggest that BIF Fe carbonates formed through two end-member pathways: low-delta(13)C, low-delta(56)Fe Fe carbonates formed from remobilized, low-delta(56)Fe aqueous Fe(2+) produced by partial DIR of iron oxide, whereas low-delta(13)C, high-delta(56)Fe Fe carbonates formed by near-complete DIR of high-delta(56)Fe iron oxides that were residual from prior partial DIR. An important observation is the common occurrence of iron oxide inclusions in the high-delta(56)Fe siderite, supporting a model where such compositions reflect DIR "in place" in the soft sediment In contrast, the isotopic composition of low-Fe carbonates in limestone/dolomite may constitute a record of seawater environments, although our petrographic studies indicate that the presence of pyrite in most low-Fe carbonates may influence the Fe isotope compositions. The combined Fe, C, and O isotope data from Kuruman BIF carbonates indicate that BIF siderites that have negative, near-zero, or positive delta(56)Fe values may all record biological Fe cycling, where the range in delta(56)Fe values records differential Fe mobilization via DIR in the sediment prior to lithification. Our results demonstrate that the inventory of low-delta(56)Fe marine sedimentary rocks of Neoarchean to Paleoproterozoic age, although impressive in volume, may represent only a minimum of the total inventory of Fe that was cycled by bacteria. (C) 2010 Elsevier B.V. All rights reserved. C1 [Heimann, Adriana] E Carolina Univ, Dept Geol Sci, Greenville, NC 27858 USA. [Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Heimann, Adriana; Johnson, Clark M.; Beard, Brian L.; Valley, John W.; Roden, Eric E.; Spicuzza, Michael J.] NASA, Astrobiol Inst, Washington, DC USA. [Beukes, Nicolas J.] Univ Johannesburg, Dept Geol, Johannesburg, South Africa. RP Heimann, A (reprint author), E Carolina Univ, Dept Geol Sci, 101 Graham Bldg, Greenville, NC 27858 USA. EM heimanna@ecu.edu RI Valley, John/B-3466-2011 OI Valley, John/0000-0003-3530-2722 FU NASA Astrobiology Institute; National Science Foundation FX We thank John Fournelle for his help with electron microprobe, SEM, and EBSD determinations and Hiromi Konishi and Huifang Xu for performing preliminary TEM analysis. We thank Max Coleman for useful discussions. Journal reviews by editor Rick Carlson, Balz Kamber, and an anonymous reviewer helped to improve the manuscript. This research was funded by the NASA Astrobiology Institute and the National Science Foundation. NR 89 TC 71 Z9 75 U1 7 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 15 PY 2010 VL 294 IS 1-2 BP 8 EP 18 DI 10.1016/j.epsl.2010.02.015 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 607LS UT WOS:000278506200002 ER PT J AU Kappler, A Johnson, CM Crosby, HA Beard, BL Newman, DK AF Kappler, A. Johnson, C. M. Crosby, H. A. Beard, B. L. Newman, D. K. TI Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FE(II)-OXIDIZING PHOTOAUTOTROPHIC BACTERIA; PHOTOTROPHIC FE(II) OXIDATION; DISSIMILATORY FE(III); AQUEOUS FE(II); FERROUS IRON; CIRCUMNEUTRAL PH; FE; REDUCTION; HEMATITE; GEOCHEMISTRY AB Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Delta(56)Fe(Fe(OH)3-Fe(II)aq) fractionation factor of +3.0 parts per thousand. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Kappler, A.; Newman, D. K.] CALTECH, GPS Div, Pasadena, CA 91125 USA. [Johnson, C. M.; Crosby, H. A.; Beard, B. L.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Johnson, C. M.; Beard, B. L.] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Kappler, A (reprint author), Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. EM andreas.kappler@uni-tuebingen.de RI Kappler, Andreas/G-7221-2016; OI Crosby, Heidi/0000-0002-0360-0779 FU German Research Foundation (DFG); Packard Foundation; NASA Astrobiology Institute; National Science Foundation FX The research was supported by a post-doc fellowship and an Emmy-Noether fellowship from the German Research Foundation (DFG) to A.K. and a grant from the Packard Foundation to D.K.N. Additional funding from the NASA Astrobiology Institute supported C.M.J. and B.L.B., and funding from the National Science Foundation supported B.L.B. and H.A.C. We would like to thank Ma Chi (Caltech) for help with the XRD. Sebastian Schaedler (University of Tuebingen) and Claus Burkhardt (NMI Reutlingen) are acknowledged for providing scanning electron micrographs. D.K.N. is an Investigator of the Howard Hughes Medical Institute. We thank AE Stephan Kraemer, Thomas Bullen, and an anonymous reviewer, whose comments helped improve the manuscript. NR 53 TC 27 Z9 30 U1 6 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2010 VL 74 IS 10 BP 2826 EP 2842 DI 10.1016/j.gca.2010.02.017 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 587JZ UT WOS:000276989400002 ER PT J AU Dyudina, UA Ingersoll, AP Ewald, SP Porco, CC Fischer, G Kurth, WS West, RA AF Dyudina, U. A. Ingersoll, A. P. Ewald, S. P. Porco, C. C. Fischer, G. Kurth, W. S. West, R. A. TI Detection of visible lightning on Saturn SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CASSINI IMAGING SCIENCE; MOIST CONVECTION; ELECTROSTATIC DISCHARGES; GALILEO IMAGES; GIANT PLANETS; JUPITER; ATMOSPHERE; CLOUDS; STORMS; MODEL AB Until now, evidence for lightning on Saturn has been indirect - through radio emissions and cloud morphology. Here we report the first visible detection of lightning, on the night side on August 17, 2009 at -36.4 degrees +/- 0.1 degrees planetocentric latitude and 10.6 degrees +/- 0.9 degrees west longitude. No other locations produced lightning detectable by either imaging or radio. The lightning images are consistent with a single cloud flashing once per minute. The visible energy of a single flash is comparable to that on Earth and Jupiter, and ranges up to 1.7 x 10(9) Joules. The diameter of the lightning flashes is similar to 200 km, which suggests the lightning is 125-250 km below cloud tops. This depth is above the base of the liquid H(2)O-NH(3) cloud and may be either in the NH(4)SH cloud or in the H(2)O ice cloud. Saturn's lower internal heat transport and likely 5-10 fold enrichment of water largely explain the lower occurrence rate of moist convection on Saturn relative to Jupiter. Citation: Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi: 10.1029/2010GL043188. C1 [Fischer, G.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Porco, C. C.] Space Sci Inst, Cassini Imaging Cent Lab Operat, Boulder, CO 80301 USA. [Dyudina, U. A.; Ingersoll, A. P.; Ewald, S. P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Dyudina, UA (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM ulyana@gps.caltech.edu FU NASA; Austrian Science Fund [P21295-N16] FX This research was supported by the NASA Cassini Project. G. F. acknowledges support from the Austrian Science Fund FWF under the project P21295-N16. We thank J. Burns for commentson the manuscript. U.A.D. thanks P. Nicholson for estimates of ring brightness during the equinox needed for planning these observations. NR 31 TC 23 Z9 23 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 15 PY 2010 VL 37 AR L09205 DI 10.1029/2010GL043188 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 596SH UT WOS:000277705200007 ER PT J AU Lopez, JJ Greer, F Greer, JR AF Lopez, J. J. Greer, F. Greer, J. R. TI Enhanced resistance of single-layer graphene to ion bombardment SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AMORPHOUS-CARBON FILMS AB We report that single-layer graphene on a SiO(2)/Si substrate withstands ion bombardment up to similar to 7 times longer than expected when exposed to focused Ga(+) ion beam. The exposure is performed in a dual beam scanning electron microscope/focused ion beam system at 30 kV accelerating voltage and 41 pA current. Ga(+) ion flux is determined by sputtering a known volume of hydrogenated amorphous carbon film deposited via plasma-enhanced chemical vapor deposition. (C) 2010 American Institute of Physics. [doi:10.1063/1.3428466] C1 [Greer, J. R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Lopez, J. J.] E Los Angeles Coll, Los Angeles, CA 91754 USA. [Greer, F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Greer, JR (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM jrgreer@caltech.edu RI Lopez, Josue/E-7508-2012 OI Lopez, Josue/0000-0001-8855-1330 FU NRI INDEX Center FX We gratefully acknowledge financial support of the NRI INDEX Center. We thank M. J. Burek for useful discussions and assistance with the DualBeam system. Access to the Dual-Beam System was provided by the Kavli Nanoscience Institute (KNI) at Caltech. We also appreciate assistance from E. Miura and G. R. Rossman with Raman Spectroscopy, and we thank C. Daraio for access to the optical microscope. NR 22 TC 15 Z9 15 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2010 VL 107 IS 10 AR 104326 DI 10.1063/1.3428466 PG 4 WC Physics, Applied SC Physics GA 603BH UT WOS:000278182400166 ER PT J AU Buzulukova, N Fok, MC Pulkkinen, A Kuznetsova, M Moore, TE Glocer, A Brandt, PC Toth, G Rastatter, L AF Buzulukova, N. Fok, M. -C. Pulkkinen, A. Kuznetsova, M. Moore, T. E. Glocer, A. Brandt, P. C. Toth, G. Rastaetter, L. TI Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM-BATS-R-US coupled model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RICE CONVECTION MODEL; NUMERICAL-SIMULATION; GEOMAGNETIC STORMS; ALIGNED CURRENTS; MAGNETIC-FIELD; KINETIC-MODEL; PLASMA SHEET; SUBSTORM; PRECIPITATION; ENERGY AB We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models. C1 [Buzulukova, N.; Fok, M. -C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Rastaetter, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pulkkinen, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Brandt, P. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Toth, G.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. RP Buzulukova, N (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 673,Bldg 21-261B,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM nbuzulukova@gmail.com RI Glocer, Alex/C-9512-2012; Moore, Thomas/D-4675-2012; Rastaetter, Lutz/D-4715-2012; Kuznetsova, Maria/F-6840-2012; Fok, Mei-Ching/D-1626-2012; Toth, Gabor/B-7977-2013; feggans, john/F-5370-2012; Brandt, Pontus/N-1218-2016 OI Glocer, Alex/0000-0001-9843-9094; Moore, Thomas/0000-0002-3150-1137; Rastaetter, Lutz/0000-0002-7343-4147; Toth, Gabor/0000-0002-5654-9823; Brandt, Pontus/0000-0002-4644-0306 FU NASA FX This research was supported by NASA Science Mission Directorate, Heliophysics Division, Heliophysics Guest Investigators Program, under Work Breakdown Structure 955518. 02.01.02.57, and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The ACE SW and IMF data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The Dst, AU, AL, and SYMH indices were provided from the WDC for Geomagnetism, Kyoto. Simulation results for BATS-R-US and Ridley IE module have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request System ( http://ccmc.gsfc.nasa.gov). The CCMC is a multiagency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF, and ONR. The BATS-R-US model and Ridley IE solver were developed at Center for Space Environment Modeling, University of Michigan. We are indebted to M. Maddox for providing us with KAMELEON library. N. Buzulukova thanks A. Dorodnitsyn for proofreading of the manuscript. The computer programs to calculate ionospheric electrostatic potential in CRCM were written by S. Sazykin. The authors thank A. Ridley for providing AMIE-derived CPCP. NR 91 TC 21 Z9 21 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 15 PY 2010 VL 115 AR A05210 DI 10.1029/2009JA014621 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TO UT WOS:000277708600003 ER PT J AU Hashmi, AJ Eftekhar, AA Adibi, A Amoozegar, F AF Hashmi, Ali Javed Eftekhar, Ali Asghar Adibi, Ali Amoozegar, Farid TI Analysis of telescope array receivers for deep-space inter-planetary optical communication link between Earth and Mars SO OPTICS COMMUNICATIONS LA English DT Article DE Free space optical communication (FSO); Telescope array receiver; Monte-Carlo simulations; Mars exploration ID ATMOSPHERIC-TURBULENCE; PERFORMANCE AB Optical communication technology shows promising prospects to fulfill the large bandwidth communication requirements of future deep-space exploration missions that are launched by NASA and various other international space agencies. At Earth, a telescope with a large aperture diameter is required to capture very weak optical signals that are transmitted from distant planets and to support large bandwidth communication link. A single large telescope has the limitations of cost, single point failure in case of malfunction, difficulty in manufacturing high quality optics, maintenance, and trouble in providing communication operations when transmitting spacecraft is close to the Sun. An array of relatively smaller-sized telescopes electrically connected to form an aggregate aperture area equivalent to a single large telescope is a viable alternative to a monolithic gigantic aperture. In this paper, we present the design concept and analysis of telescope array receivers for an optical communication link between Earth and Mars. Pulse-position modulation (PPM) is used at the transmitter end and photon-counting detectors along with the direct-detection technique are employed at each telescope element in the array. We also present the optimization of various system parameters, such as detector size (i.e., receiver field of view), PPM slot width, and the PPM order M, to mitigate the atmospheric turbulence and background noise effects, and to maximize the communication system performance. The performance of different array architectures is evaluated through analytical techniques and Monte-Carlo simulations for a broad range of operational scenarios, such as, Earth-Mars conjunction, Earth-Mars opposition, and different background and turbulence conditions. It is shown that the performance of the telescope array-based receiver is equivalent to a single large telescope; and as compared to current RF technology, telescope array-based optical receivers can provide several orders of magnitude greater data rates for deep-space communication with Mars. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hashmi, Ali Javed; Eftekhar, Ali Asghar; Adibi, Ali] Georgia Inst Technol, Atlanta, GA 30332 USA. [Amoozegar, Farid] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Hashmi, AJ (reprint author), Georgia Inst Technol, 777 Atlantic Dr, Atlanta, GA 30332 USA. EM hashmi@gatech.edu; Farid.Amoozegar@jpl.na-sa.gov FU Jet Propulsion Laboratory (JPL), Pasadena, CA [NMO710820] FX This work was performed at Georgia Institute of Technology and supported by Jet Propulsion Laboratory (JPL), Pasadena, CA, under Contract Number NMO710820. NR 23 TC 10 Z9 11 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD MAY 15 PY 2010 VL 283 IS 10 BP 2032 EP 2042 DI 10.1016/j.optcom.2010.01.073 PG 11 WC Optics SC Optics GA 585NQ UT WOS:000276832900006 ER PT J AU Abadie, J Abbott, BP Abbott, R Accadia, T Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Arain, MA Araya, M Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, CD Carbognani, F Cardenas, L Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL D'Antonio, S Danzmann, K Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Driggers, J Dueck, J Duke, I Dumas, JC Edgar, M Edwards, M Effler, A Ehrens, P Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goetz, E Goggin, LM Gonzalez, G Gossler, S Gouaty, R Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E Kim, H King, PJ Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Kringel, V Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Lam, PK Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, TGF Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Ochsner, E O'Dell, J Ogin, GH Oldenburg, R O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Rabeling, DS Radkins, H Raffai, P Raics, Z Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Sperandio, L Stein, AJ Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thorne, KA Thorne, KS Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Accadia, T. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arain, M. A. Araya, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Cardenas, L. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Driggers, J. Dueck, J. Duke, I. Dumas, J. -C. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goetz, E. Goggin, L. M. Gonzalez, G. Gossler, S. Gouaty, R. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. Kim, H. King, P. J. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Kringel, V. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, T. G. F. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Sperandio, L. Stein, A. J. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thorne, K. A. Thorne, K. S. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run SO PHYSICAL REVIEW D LA English DT Article ID PERFORMANCE AB We present results from an all-sky search for unmodeled gravitational-wave bursts in the data collected by the LIGO, GEO 600 and Virgo detectors between November 2006 and October 2007. The search is performed by three different analysis algorithms over the frequency band 50-6000 Hz. Data are analyzed for times with at least two of the four LIGO-Virgo detectors in coincident operation, with a total live time of 266 days. No events produced by the search algorithms survive the selection cuts. We set a frequentist upper limit on the rate of gravitational-wave bursts impinging on our network of detectors. When combined with the previous LIGO search of the data collected between November 2005 and November 2006, the upper limit on the rate of detectable gravitational-wave bursts in the 64-2048 Hz band is 2.0 events per year at 90% confidence. We also present event rate versus strength exclusion plots for several types of plausible burst waveforms. The sensitivity of the combined search is expressed in terms of the root-sum-squared strain amplitude for a variety of simulated waveforms and lies in the range 6 x 10(-22) Hz(-1/2) to 2 x 10(-20) Hz(-1/2). This is the first untriggered burst search to use data from the LIGO and Virgo detectors together, and the most sensitive untriggered burst search performed so far. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Driggers, J.; Ehrens, P.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Allen, B.; Aulbert, C.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Grote, H.; Hayama, K.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rehbein, H.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Paris 07, CEA, Observ Paris, APC,CNRS,UMR7164,IN2P3,DSM,IRFU, F-75221 Paris 05, France. [Chua, S. S. Y.; Lam, P. K.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chen, Y.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH CaRT, Pasadena, CA 91125 USA. [Clark, J.; Davies, G.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, PI, Italy. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Boccara, C.; Loriette, V.; Maksimovic, I.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico 2, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bonelli, L.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Bridges, D. O.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Lyon, France. [Amin, R. S.; Caudill, S.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kawamura, S.; Kokeyama, K.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Natl Inst Subat Phys, Nikhef, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Prodi, G. A.; Re, V.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Prodi, G. A.; Rabeling, D. S.; Re, V.] Univ Trent, I-38050 Povo, Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Astron Inst, PL-65265 Zielona Gora, Poland. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Capano, C. D.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Smith, J. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cain, J.; Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.] Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R.; Papa, M. A.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Vocca, Helios/F-1444-2010; Acernese, Fausto/E-4989-2010; Finn, Lee Samuel/A-3452-2009; Hammond, Giles/B-7861-2009; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Rowan, Sheila/E-3032-2010; McClelland, David/E-6765-2010; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Neri, Igor/F-1482-2010; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Howell, Eric/H-5072-2014; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; OI Khan, Rubab/0000-0001-5100-5168; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Vocca, Helios/0000-0002-1200-3917; Acernese, Fausto/0000-0003-3103-3473; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; McClelland, David/0000-0001-6210-5842; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Neri, Igor/0000-0002-9047-9822; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO 600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P0900108-v6. NR 39 TC 36 Z9 36 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY 15 PY 2010 VL 81 IS 10 AR 102001 DI 10.1103/PhysRevD.81.102001 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 602NS UT WOS:000278146700004 ER PT J AU Foster, G Annan, JD Jones, PD Mann, ME Mullan, B Renwick, J Salinger, J Schmidt, GA Trenberth, KE AF Foster, G. Annan, J. D. Jones, P. D. Mann, M. E. Mullan, B. Renwick, J. Salinger, J. Schmidt, G. A. Trenberth, K. E. TI Comment on "Influence of the Southern Oscillation on tropospheric temperature" by J. D. McLean, C. R. de Freitas, and R. M. Carter SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE-TEMPERATURE; VOLCANOS; ENSO AB McLean et al. (2009) (henceforth MFC09) claim that the El Nino-Southern Oscillation (ENSO), as represented by the Southern Oscillation Index (SOI), accounts for as much as 72% of the global tropospheric temperature anomaly and an even higher 81% of this anomaly in the tropics. They conclude that the SOI is a "dominant and consistent influence on mean global temperatures," "and perhaps recent trends in global temperatures." However, their analysis is inappropriate in a number of ways and overstates the influence of ENSO on the climate system. This comment first briefly reviews what is understood about the influence of ENSO on global temperatures and then shows that the analysis of MFC09 greatly overestimates the correlation between temperature anomalies and the SOI by inflating the power in the 2-6 year time window while filtering out variability on longer and shorter time scales. The suggestion in their conclusions that ENSO may be a major contributor to recent trends in global temperature is not supported by their analysis or any physical theory presented in their paper, especially as the analysis method itself eliminates the influence of trends on the purported correlations. C1 [Foster, G.] Tempo Analyt, Westbrook, ME 04092 USA. [Annan, J. D.] JAMSTEC, Res Inst Global Change, Kanazawa Ku, Kanagawa 2360001, Japan. [Jones, P. D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Mann, M. E.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Mullan, B.; Renwick, J.] NIWA, Climate Variabil Grp, Wellington 6241, New Zealand. [Salinger, J.] Univ Auckland, Sch Environm, Auckland 1142, New Zealand. [Schmidt, G. A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Trenberth, K. E.] NCAR, Climate Anal Sect, Boulder, CO 80307 USA. [Mann, M. E.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Foster, G (reprint author), Tempo Analyt, 146C Mech St, Westbrook, ME 04092 USA. EM jdannan@jamstec.go.jp RI Jones, Philip/C-8718-2009; Trenberth, Kevin/A-5683-2012; Schmidt, Gavin/D-4427-2012; Annan, James/A-3702-2010; Mann, Michael/B-8472-2017 OI Jones, Philip/0000-0001-5032-5493; Trenberth, Kevin/0000-0002-1445-1000; Schmidt, Gavin/0000-0002-2258-0486; Mann, Michael/0000-0003-3067-296X FU Ministry of the Environment, Japan [S-5-1]; National Science Foundation; U.S. Department Of Energy [DE-FG02-98ER62601] FX This work was supported by the Global Environment Research Fund (S-5-1) of the Ministry of the Environment, Japan. NCAR is supported by the National Science Foundation. P.D.J. has been supported by the U.S. Department Of Energy (grant DE-FG02-98ER62601). We are grateful to three reviewers for useful comments. NR 10 TC 4 Z9 4 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 14 PY 2010 VL 115 AR D09110 DI 10.1029/2009JD012960 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 596SP UT WOS:000277706000004 ER PT J AU Stano, GT Fuelberg, HE Roeder, WP AF Stano, Geoffrey T. Fuelberg, Henry E. Roeder, William P. TI Developing empirical lightning cessation forecast guidance for the Cape Canaveral Air Force Station and Kennedy Space Center SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UNITED-STATES; DETECTION NETWORK; FLORIDA; ELECTRIFICATION; THUNDERSTORMS; CLIMATOLOGY; PARAMETERS; MECHANISM; UPDRAFT; RATES AB This research addresses the 45th Weather Squadron's (45WS) need for improved guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy Space Center (KSC). KSC's Lightning Detection and Ranging (LDAR) network was the primary observational tool to investigate both cloud-to-ground and intracloud lightning. Five statistical and empirical schemes were created from LDAR, sounding, and radar parameters derived from 116 storms. Four of the five schemes were unsuitable for operational use since lightning advisories would be canceled prematurely, leading to safety risks to personnel. These include a correlation and regression tree analysis, three variants of multiple linear regression, event time trending, and the time delay between the greatest height of the maximum dBZ value to the last flash. These schemes failed to adequately forecast the maximum interval, the greatest time between any two flashes in the storm. The majority of storms had a maximum interval less than 10 min, which biased the schemes toward small values. Success was achieved with the percentile method (PM) by separating the maximum interval into percentiles for the 100 dependent storms. PM provides additional confidence to the 45WS forecasters, and a modified version was incorporated into their forecast procedures starting in the summer of 2008. This inclusion has resulted in similar to 5-10 min time savings. Last, an experimental regression variant scheme using non-real-time predictors produced precise results but prematurely ended advisories. This precision suggests that obtaining these parameters in real time may provide useful added information to the PM scheme. C1 [Stano, Geoffrey T.; Fuelberg, Henry E.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. RP Fuelberg, HE (reprint author), NASA, NASA Short Term Predict Res & Transit Program, 320 Sparkman Dr, Huntsville, AL 35812 USA. EM geoffrey.stano@nasa.gov; fuelberg@met.fsu.edu; william.roeder@patrick.af.mil FU NASA [NNK06EB17G] FX Special thanks go to Todd McNamara of the 45th Weather Squadron for his help with several technical aspects of this research, along with his operational knowledge. We also thank Lee Nelson for the use of his flash creation algorithm. Additional thanks goes to the numerous individuals who provided critiques and suggestions for improving this work at the 1st International Lightning Meteorology Conference (ILMC) in Tucson, Arizona, in 2006. This research was sponsored by NASA's Innovative Partner's Program under grant NNK06EB17G. NR 74 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 14 PY 2010 VL 115 AR D09205 DI 10.1029/2009JD013034 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 596SP UT WOS:000277706000005 ER PT J AU Holstein-Rathlou, C Gunnlaugsson, HP Merrison, JP Bean, KM Cantor, BA Davis, JA Davy, R Drake, NB Ellehoj, MD Goetz, W Hviid, SF Lange, CF Larsen, SE Lemmon, MT Madsen, MB Malin, M Moores, JE Nornberg, P Smith, P Tamppari, LK Taylor, PA AF Holstein-Rathlou, C. Gunnlaugsson, H. P. Merrison, J. P. Bean, K. M. Cantor, B. A. Davis, J. A. Davy, R. Drake, N. B. Ellehoj, M. D. Goetz, W. Hviid, S. F. Lange, C. F. Larsen, S. E. Lemmon, M. T. Madsen, M. B. Malin, M. Moores, J. E. Nornberg, P. Smith, P. Tamppari, L. K. Taylor, P. A. TI Winds at the Phoenix landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS-COLOR-IMAGER; MARTIAN ATMOSPHERE; ORBITER; SURFACE; CLIMATE; LAYER AB Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data are highly turbulent behavior during midday due to daytime turbulence with more stable conditions during nighttime. From L(s)similar to 77 degrees-123 degrees winds were generally similar to 4 m s(-1) from the east, with 360 degrees rotation during midday. From L(s) similar to 123 degrees-148 degrees daytime wind speeds increased to an average of 6-10 m s(-1) and were generally from the west. The highest wind speed recorded was 16 m s(-1) seen on L(s) similar to 147 degrees. Estimates of the surface roughness height are calculated from the smearing of the Kapton part of the Telltale during image exposure due to a 3 Hz turbulence and nighttime wind variability. These estimates yield 6 +/- 3 mm and 5 +/- 3 mm, respectively. The Telltale wind data are used to suggest that Heimdal crater is a source of nighttime temperature fluctuations. Deviations between temperatures measured at various heights are explained as being due to winds passing over the Phoenix Lander. Events concerning sample delivery and frost formation are described and discussed. Two different mechanisms of dust lifting affecting the Phoenix site are proposed based on observations made with Mars Color Imager on Mars Reconnaissance Orbiter and the Telltale. The first is related to evaporation of the seasonal CO(2) ice and is observed up to L(s) similar to 95 degrees. These events are not associated with increased wind speeds. The second mechanism is observed after L(s) similar to 111 degrees and is related to the passing of weather systems characterized by condensate clouds in orbital images and higher wind speeds as measured with the Telltale. C1 [Holstein-Rathlou, C.; Gunnlaugsson, H. P.; Merrison, J. P.; Nornberg, P.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Bean, K. M.; Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Cantor, B. A.; Malin, M.] Malin Space Sci Syst Inc, San Diego, CA 92191 USA. [Davis, J. A.; Lange, C. F.] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2M7, Canada. [Davy, R.; Taylor, P. A.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Drake, N. B.] DE Shaw Res, New York, NY 10036 USA. [Ellehoj, M. D.; Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Goetz, W.; Hviid, S. F.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Larsen, S. E.] Tech Univ Denmark, Risoe Natl Lab, Wind Energy Dept, DK-4000 Roskilde, Denmark. [Moores, J. E.; Smith, P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85719 USA. [Tamppari, L. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Holstein-Rathlou, C (reprint author), Aarhus Univ, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. EM holstein@phys.au.dk RI Nornberg, Per/A-6228-2012; Lemmon, Mark/E-9983-2010; Madsen, Morten/D-2082-2011; Davy, Richard/H-8387-2016; OI Lemmon, Mark/0000-0002-4504-5136; Madsen, Morten/0000-0001-8909-5111; Davy, Richard/0000-0001-9639-5980; Ellehoj, Mads/0000-0002-6961-2537; merrison, jonathan/0000-0003-4362-6356 FU Danish Natural Science Research Council; Canadian Space Agency FX The Telltale project has been supported by the Danish Natural Science Research Council. The support of the Canadian Space Agency for the work of J. A. Davis and C. F. Lange is gratefully acknowledged. The authors acknowledge A. Leung for CFD simulations of the Telltale, and J. Boddez and G. Heacock for creation of the Open Lander model used in the CFD simulations. L. Tamppari's contribution to the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 39 TC 36 Z9 36 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 14 PY 2010 VL 115 AR E00E18 DI 10.1029/2009JE003411 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596TD UT WOS:000277707500001 ER PT J AU Tamppari, LK Bass, D Cantor, B Daubar, I Dickinson, C Fisher, D Fujii, K Gunnlauggson, HP Hudson, TL Kass, D Kleinbohl, A Komguem, L Lemmon, MT Mellon, M Moores, J Pankine, A Pathak, J Searls, M Seelos, F Smith, MD Smrekar, S Taylor, P Holstein-Rathlou, C Weng, WS Whiteway, J Wolff, M AF Tamppari, Leslie K. Bass, Deborah Cantor, Bruce Daubar, Ingrid Dickinson, Cameron Fisher, David Fujii, Ken Gunnlauggson, Haraldur P. Hudson, Troy L. Kass, David Kleinboehl, Armin Komguem, Leonce Lemmon, Mark T. Mellon, Mike Moores, John Pankine, Alexey Pathak, Jagruti Searls, Mindi Seelos, Frank Smith, Michael D. Smrekar, Sue Taylor, Peter Holstein-Rathlou, Christina Weng, Wensong Whiteway, Jim Wolff, Mike TI Phoenix and MRO coordinated atmospheric measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID HUBBLE-SPACE-TELESCOPE; WATER-ICE CLOUDS; ORBITER CAMERA OBSERVATIONS; MARTIAN DUST STORMS; NORTH POLAR-REGION; MARS-COLOR-IMAGER; MGS TES; INTERANNUAL VARIABILITY; VERTICAL DISTRIBUTION; VAPOR AB The Phoenix and Mars Reconnaissance Orbiter (MRO) missions collaborated in an unprecedented campaign to observe the northern polar region summer atmosphere throughout the Phoenix mission (25 May to 2 November 2008; L-s = 76 degrees-150 degrees) and slightly beyond (similar to L-s = 158 degrees). Five atmospherically related campaigns were defined a priori and were executed on 37 separate Martian days (sols). Phoenix and MRO observed the atmosphere nearly simultaneously. We describe the observation strategy and history, the participating experiments, and some initial results. We find that there is general agreement between measurements from different instruments and platforms and that complementary measurements provide a consistent picture of the atmosphere. Seasonal water abundance behavior matches with historical measurements. Winds aloft, as measured by cloud motions, showed the same seasonally consistent, diurnal rotation as the winds measured at the lander, during the first part of the mission (L-s = 76 degrees-118 degrees). A diurnal cycle recorded from L-s similar to 108.3 degrees-109.1 degrees, in which a dust front was approaching the Phoenix Lander, is examined in detail. Cloud heights measured on subsequent orbits showed that in areas of active lifting, dust can be lofted quite high in the atmosphere, doubling in height over 2 h. The combination of experiments also revealed that there were discrete vertical layers of water ice and dust. Water vapor column abundances compared to near-surface water vapor pressure indicate that water is not well mixed from the surface to a cloud condensation height and that the depth of the layer that exchanges diurnally with the surface is 0.5-1 km. C1 [Tamppari, Leslie K.; Bass, Deborah; Fujii, Ken; Hudson, Troy L.; Kass, David; Kleinboehl, Armin; Pankine, Alexey; Smrekar, Sue] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cantor, Bruce] Malin Space Sci Syst Inc, San Diego, CA 92121 USA. [Daubar, Ingrid; Moores, John] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dickinson, Cameron; Komguem, Leonce; Pathak, Jagruti; Taylor, Peter; Weng, Wensong; Whiteway, Jim] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada. [Fisher, David] Geol Survey Canada, Ottawa, ON K1A 0E4, Canada. [Gunnlauggson, Haraldur P.; Holstein-Rathlou, Christina] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Mellon, Mike; Searls, Mindi] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Seelos, Frank] Johns Hopkins Univ, APL, Laurel, MD 20723 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Whiteway, Jim] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada. [Wolff, Mike] Space Sci Inst, Boulder, CO 80301 USA. RP Tamppari, LK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM leslie.tamppari@jpl.nasa.gov RI Smith, Michael/C-8875-2012; Lemmon, Mark/E-9983-2010; Daubar, Ingrid/N-1408-2013; Mellon, Michael/C-3456-2016; Seelos, Frank/C-7875-2016 OI Lemmon, Mark/0000-0002-4504-5136; Seelos, Frank/0000-0001-9721-941X NR 73 TC 24 Z9 24 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 14 PY 2010 VL 115 AR E00E17 DI 10.1029/2009JE003415 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596TD UT WOS:000277707500002 ER PT J AU Burchill, JK Knudsen, DJ Clemmons, JH Oksavik, K Pfaff, RF Steigies, CT Yau, AW Yeoman, TK AF Burchill, J. K. Knudsen, D. J. Clemmons, J. H. Oksavik, K. Pfaff, R. F. Steigies, C. T. Yau, A. W. Yeoman, T. K. TI Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE F-REGION; MASS-SPECTROMETER OBSERVATIONS; POLAR WIND; MAGNETOSPHERIC PLASMA; EISCAT OBSERVATIONS; AURORAL ACTIVITY; OUTFLOW; ALTITUDE; ACCELERATION; ENERGIZATION AB We investigate the origin of low-energy (E-k < 10 eV) ion upflows in Earth's low-altitude dayside cusp region. The Cusp-2002 sounding rocket flew from Ny Alesund, Svalbard, on 14 December 2002, carrying plasma and field instrumentation to an altitude of 768 km. The Suprathermal Ion Imager, a two-dimensional energy/arrival angle spectrograph, observed large (> 500 m s(-1)) ion upflows within the cusp at altitudes between 640 km and 768 km. We report a significant correlation between ion upflow and precipitating magnetosheath electron energy flux in this altitude range. There is only very weak correlation between upflow and wave power in the VLF band. We find a small negative correlation between upflow and the magnitude of the DC electric field for fields less than about 70 mV m(-1). The apparent relation between upflow and electron energy flux suggests a mechanism whereby ions are accelerated by parallel electric fields that are established by the soft electrons. Significant ion upflows are not observed for electron energy fluxes less than about 10(10) eV cm(-2) s(-1). The lack of correspondence between |(E) over right arrow| and upflow on the one hand, and wave power and upflow on the other, does not rule out these processes but implies that, if operating, they are not local to the measurement region. We also observe narrow regions of large ion downflow that imply either a rebalancing of the ionosphere toward a low-T-e equilibrium during which gravity dominates over the pressure gradients or a convection of the upflowing ions away from the precipitation region, outside of which the ions must fall back into equilibrium at lower altitudes. C1 [Burchill, J. K.; Knudsen, D. J.; Yau, A. W.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Clemmons, J. H.] Aerosp Corp, Space Sci Applicat Lab, El Segundo, CA 90245 USA. [Oksavik, K.] Univ Ctr Svalbard, Dept Arctic Geophys, N-9171 Longyearbyen, Norway. [Pfaff, R. F.] NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Steigies, C. T.] Univ Kiel, Inst Expt & Angew Phys, D-24098 Kiel, Germany. [Yeoman, T. K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Burchill, JK (reprint author), Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM burchill@phys.ucalgary.ca RI Pfaff, Robert/F-5703-2012; Yau, Andrew/E-7007-2013; Yeoman, Timothy/L-9105-2014; OI Pfaff, Robert/0000-0002-4881-9715; Yau, Andrew/0000-0002-8210-0392; Yeoman, Timothy/0000-0002-8434-4825; Oksavik, Kjellmar/0000-0003-4312-6992 FU Canadian Space Agency; Natural Sciences and Engineering Research Council of Canada; NASA [NAG5-5264] FX This research was supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. The Cusp SII development was supported by a contract from the Canadian Space Agency. The Aerospace Corporation acknowledges NASA support through grant NAG5-5264. The authors acknowledge the contributions and expertise of the SII development team (K. Berg, G. Enno, P. King, C. Marcellus, and I. Wevers) at the Institute for Space Research of the University of Calgary. We would like to thank the PIs of the Northern Hemisphere SuperDARN radars (W. A. Bristow, R. A. Greenwald, T. Kikuchi, M. Lester, M. Pinnock, G. Sofko, and J.-P. Villain) for providing SuperDARN data for this interval. CUSTLASS is a PPARC UK National Facility operated by the University of Leicester. EISCAT is an international scientific association supported by research organizations of China (CRIRP), Finland (SA), France (CNRS, till the end of 2006), Germany (DFG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (STFC). J.K.B. appreciates helpful discussions on the ion upflow measurements with W. Peterson, J.-P. St. Maurice, L. Kagan, S. Buchert, B. Jackel, and P. Amerl. NR 58 TC 15 Z9 15 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 14 PY 2010 VL 115 AR A05206 DI 10.1029/2009JA015006 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TN UT WOS:000277708500003 ER PT J AU Samsonov, AA Sibeck, DG Yu, YQ AF Samsonov, A. A. Sibeck, D. G. Yu, Yiqun TI Transient changes in magnetospheric-ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GEOMAGNETIC SUDDEN COMMENCEMENT; 3-DIMENSIONAL MHD SIMULATION; LATITUDE BOUNDARY-LAYER; NUMERICAL-SIMULATION; BIRKELAND CURRENTS; ALIGNED CURRENTS; CURRENT SYSTEMS; IMF CONDITIONS; CONVECTION; IMPULSE AB We use results from a global MHD simulation to study the interaction of an interplanetary shock with the Earth's magnetosphere for a northward interplanetary magnetic field orientation. We connect intensifications of the transient northward Bz (NBZ) and Region 1 currents in the ionosphere with the appearance of two strong dynamo regions in the magnetosphere: the first on the high-latitude magnetopause near and behind the cusps and the second near the equatorial plane on the flanks. The ionospheric and magnetospheric transients are well synchronized and move antisunward gradually. According to the results obtained, the source of energy for the transient NBZ current is related to shock-intensified lobe reconnection, while the transient Region 1 current corresponds to the reflected fast shock predicted by Samsonov et al. (2007). We speculate that the electric circuits for the quasi-stationary field-aligned currents are similar to the transient electric circuits obtained in this paper. C1 [Samsonov, A. A.] St Petersburg State Univ, Dept Earth Phys, St Petersburg 198504, Russia. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yu, Yiqun] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Samsonov, AA (reprint author), St Petersburg State Univ, Dept Earth Phys, St Petersburg 198504, Russia. EM samsonov@geo.phys.spbu.ru RI Sibeck, David/D-4424-2012; Samsonov, Andrey/I-7057-2012; Yu, Yiqun/E-2710-2012 OI Samsonov, Andrey/0000-0001-8243-1151; Yu, Yiqun/0000-0002-1013-6505 FU NASA; Russian President [NSH-1243.2008.5]; GK [N 02.740.11.0331] FX The work was supported in part by NASA's THEMIS project and in part by grant of Russian President NSH-1243.2008.5 and GK grant N 02.740.11.0331. Simulation results have been provided by the Community Coordinated Modeling Center (CCMC) at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). In particular, we have studied the run "Andrey_Samsonov_120507_1." The BATS-R-US Model was developed by the CSEM group at the University on Michigan. The authors thank the reviewers for valuable comments. NR 39 TC 16 Z9 16 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 14 PY 2010 VL 115 AR A05207 DI 10.1029/2009JA014751 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 596TN UT WOS:000277708500002 ER PT J AU Feng, M McPhaden, MJ Lee, T AF Feng, Ming McPhaden, Michael J. Lee, Tong TI Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MERIDIONAL OVERTURNING CIRCULATION; INDONESIAN THROUGHFLOW; LEEUWIN CURRENT AB Historical sea level records reveal that a strengthening of the Pacific subtropical cells (STCs) since the early-1990's has reversed a multi-decadal weakening tendency. Stronger STCs correspond to a stronger Leeuwin Current in the southeast Indian Ocean (SEIO) and a stronger Indonesian Throughflow, due to dynamic connections of the Pacific and SEIO through equatorial and coastal waveguides. Multi-decadal trends of the STCs and their influence on the SEIO have confounded the detection of human induced global change signals in the short instrumental records of the two circulation systems. Citation: Feng, M., M. J. McPhaden, and T. Lee (2010), Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean, Geophys. Res. Lett., 37, L09606, doi:10.1029/2010GL042796. C1 [Feng, Ming] CSIRO Marine & Atmospher Res, Floreat, WA 6014, Australia. [Lee, Tong] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Feng, M (reprint author), CSIRO Marine & Atmospher Res, Underwood Ave, Floreat, WA 6014, Australia. EM ming.feng@csiro.au RI Feng, Ming/F-5411-2010; McPhaden, Michael/D-9799-2016 OI Feng, Ming/0000-0002-2855-7092; FU CSIRO; WAMSI; NOAA; NASA FX We thank Gary Meyers and Lidia Pigot for providing the IX1 XBT data. Tidal gauge sea level data are obtained from National Tidal Facility of Australia and University of Hawaii Sea Level Center. This research is sponsored by CSIRO and WAMSI, and partially supported by NOAA's Climate Program Office and NASA Physical Oceanography Program. We would thank two anonymous reviewers for constructive comments. NR 21 TC 55 Z9 56 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 13 PY 2010 VL 37 AR L09606 DI 10.1029/2010GL042796 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 596SC UT WOS:000277704600003 ER PT J AU Dong, SF Gille, ST Sprintall, J Fetzer, EJ AF Dong, Shenfu Gille, Sarah T. Sprintall, Janet Fetzer, Eric J. TI Assessing the potential of the Atmospheric Infrared Sounder (AIRS) surface temperature and specific humidity in turbulent heat flux estimates in the Southern Ocean SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID BULK PARAMETERIZATION; SEA FLUXES; WIND-SPEED; AIRS/AMSU/HSB; RETRIEVAL; CLOUDS AB Surface air temperature (T-A), sea surface temperature (T-O), and surface specific humidity (q(a)) satellite retrievals from the Atmospheric Infrared Sounder (AIRS) are compared with shipboard measurements across Drake Passage for the period from September 2002 to June 2007. The objective is to evaluate whether AIRS retrievals, in conjunction with microwave sea surface temperatures from the Advanced Microwave Scanning Radiometer (AMSRE), can provide sufficiently accurate parameters to estimate sensible and latent heat fluxes in the data-limited Southern Ocean. The collocated data show that both AIRS T-A and T-O are colder than those from shipboard measurements, with a time mean bias of -2.03 degrees C for TA and -0.22 degrees C for T-O. Results show that air-sea temperature difference (T-A-T-O), q(a), and relative humidity (RH) are the major factors contributing to the differences between satellite and shipboard temperature measurements. Differences in AIRS and shipboard T-A (Delta T-A) decrease with increasing T-A-T-O, and Delta T-A increases with increasing RH, whereas differences in AIRS and shipboard T-O (Delta T-O) increase with both increasing T-A-T-O and increasing q(a). The time mean q(a) from AIRS is lower than the shipboard qa by 0.69 g/ kg. Statistical analyses suggest that T-A-T-O, cloud, and q(a) are the major contributors to the qa difference (Delta q(a)). Delta q(a) becomes more negative with increasing T-A-T-O and increasing cloud fraction. Delta q(a) also becomes more negative as q(a) increases. Compared with T-A, T-O, and T-A -T-O, from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP), AIRS-derived and AMSRE-derived variables show more small-scale spatial structure, as is also typical of the ship observations. Although AIRS qa gives a better representation of the full range of values of shipboard qa, its deviation from shipboard qa is relatively large compared to NCEP q(a). Compared with several existing gridded flux products, turbulent fluxes estimated from AIRS and AMSRE data using bulk algorithms are better able to represent the full range of flux values estimated from shipboard parameters. C1 [Dong, Shenfu] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Gille, Sarah T.; Sprintall, Janet] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92037 USA. [Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dong, SF (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM shenfu.dong@noaa.gov RI Gille, Sarah/B-3171-2012; Dong, Shenfu/I-4435-2013; OI Dong, Shenfu/0000-0001-8247-8072; Gille, Sarah/0000-0001-9144-4368 NR 36 TC 12 Z9 12 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 13 PY 2010 VL 115 AR C05013 DI 10.1029/2009JC005542 PG 16 WC Oceanography SC Oceanography GA 596SZ UT WOS:000277707100003 ER PT J AU Lucas, LE Waliser, DE Murtugudde, R AF Lucas, Lisanne E. Waliser, Duane E. Murtugudde, Raghu TI Mechanisms governing sea surface temperature anomalies in the eastern tropical Pacific Ocean associated with the boreal winter Madden-Julian Oscillation SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID MIXED-LAYER MODEL; INTRASEASONAL VARIABILITY; EQUATORIAL PACIFIC; NORTHERN SUMMER; KELVIN WAVES; EL-NINO; SIMULATION; RADIATION; WIND; PRECIPITATION AB The study objective is to explore the relationship between the Madden-Julian Oscillation (MJO) and intraseasonal sea surface temperature (SST) variability in the eastern tropical Pacific Ocean. Previous studies have illustrated the connection between MJO and the production of zonally large (> 2000 km), persistent (similar to weeks) SST anomalies. Those studies suggested that vertical processes, such as advection and entrainment, forced remotely by winds in the western Pacific (via Kelvin waves) may be the mechanism controlling SST changes. To overcome limitations in situ observations (e. g., sparse and missing data/quantities) and to develop a more comprehensive physical understanding, this study examines the relationship using an ocean general circulation model. A simulation was conducted in which the model was forced by idealized MJO conditions constructed from observed forcing fields. Analysis of the model simulation shows an equatorial Kelvin wave initiated in the western Pacific Ocean. However, analysis of the model's mixed layer temperature heat budget shows that in the eastern Pacific meridional advection plays the major role in the sea surface temperature change, 61.8% of the warming phase and 70.7% of the cooling phase percent heat budget. Zonal advection is the second most important term to the warming phase (20.5%) with the vertical advection and mixing term being second for the cooling phase (37.6%). In addition, the results indicate that the primary component of the meridional advection is the advection of the mean meridional temperature gradient by MJO-forced meridional current anomalies. The implications and caveats of these results are discussed in relationship to results in prior studies. C1 [Lucas, Lisanne E.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA. [Waliser, Duane E.] CALTECH, Jet Prop Lab, Water & Carbon Cycles Grp, Pasadena, CA 91109 USA. [Murtugudde, Raghu] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Lucas, LE (reprint author), NOAA, Climate Program Off, 1315 East West Hwy,Room 12712, Silver Spring, MD 20910 USA. EM sandy.lucas@noaa.gov FU [NAG5-11033] FX This work was prepared in conjunction with the first author's dissertation research at State University of New York at Stony Brook. In this regard, the authors would like to thank Dong-Ping Wang, Robert Wilson, and Minghua Zhang for their comments and suggestions on this work. Support for this study was provided under grants NAG5-11033 (D. E. W., L. E. L.) and Salinity, QUICKSCAT, TRMM, and Indian Ocean Biogeochemistry grants (R. M.) as well as the National Science Foundation under grant ATM-0094416 (D. E. W.). This study's analysis and presentation benefited from the use of the NCAR Graphics Package and Seaspace Corporation's TeraScan software system. NR 47 TC 8 Z9 8 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 13 PY 2010 VL 115 AR C05012 DI 10.1029/2009JC005450 PG 21 WC Oceanography SC Oceanography GA 596SZ UT WOS:000277707100001 ER PT J AU Adimi, F Soebiyanto, RP Safi, N Kiang, R AF Adimi, Farida Soebiyanto, Radina P. Safi, Najibullah Kiang, Richard TI Towards malaria risk prediction in Afghanistan using remote sensing SO MALARIA JOURNAL LA English DT Article ID SYSTEMS AB Background: Malaria is a significant public health concern in Afghanistan. Currently, approximately 60% of the population, or nearly 14 million people, live in a malaria-endemic area. Afghanistan's diverse landscape and terrain contributes to the heterogeneous malaria prevalence across the country. Understanding the role of environmental variables on malaria transmission can further the effort for malaria control programme. Methods: Provincial malaria epidemiological data (2004-2007) collected by the health posts in 23 provinces were used in conjunction with space-borne observations from NASA satellites. Specifically, the environmental variables, including precipitation, temperature and vegetation index measured by the Tropical Rainfall Measuring Mission and the Moderate Resolution Imaging Spectoradiometer, were used. Regression techniques were employed to model malaria cases as a function of environmental predictors. The resulting model was used for predicting malaria risks in Afghanistan. The entire time series except the last 6 months is used for training, and the last 6-month data is used for prediction and validation. Results: Vegetation index, in general, is the strongest predictor, reflecting the fact that irrigation is the main factor that promotes malaria transmission in Afghanistan. Surface temperature is the second strongest predictor. Precipitation is not shown as a significant predictor, as it may not directly lead to higher larval population. Autoregressiveness of the malaria epidemiological data is apparent from the analysis. The malaria time series are modelled well, with provincial average R(2) of 0.845. Although the R2 for prediction has larger variation, the total 6-month cases prediction is only 8.9% higher than the actual cases. Conclusions: The provincial monthly malaria cases can be modelled and predicted using satellite-measured environmental parameters with reasonable accuracy. The Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan is aimed to develop a cost-effective surveillance system that includes forecasting, early warning and detection. The predictive and early warning capabilities shown in this paper support this strategy. C1 [Adimi, Farida; Soebiyanto, Radina P.; Kiang, Richard] NASA, Goddard Space Flight Ctr, Global Change Data Ctr, Greenbelt, MD 20771 USA. [Adimi, Farida] Wyle Informat Syst, Mclean, VA 22102 USA. [Soebiyanto, Radina P.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. [Safi, Najibullah] Afghan Minist Publ Hlth, Natl Malaria Leishmaniasis Control Programme, Kabul, Afghanistan. RP Kiang, R (reprint author), NASA, Goddard Space Flight Ctr, Global Change Data Ctr, Greenbelt, MD 20771 USA. EM richard.kiang@nasa.gov FU NASA Applied Sciences Public Health Application Program FX This study was supported by NASA Applied Sciences Public Health Application Program. The authors are thankful for the data processing assistance of Patricia Hrubiak. The views expressed herein are the private ones of the authors and do not purport to represent those of the NASA or the Government of Afghanistan. NR 17 TC 28 Z9 29 U1 0 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-2875 J9 MALARIA J JI Malar. J. PD MAY 13 PY 2010 VL 9 AR 125 DI 10.1186/1475-2875-9-125 PG 11 WC Infectious Diseases; Parasitology; Tropical Medicine SC Infectious Diseases; Parasitology; Tropical Medicine GA 604TP UT WOS:000278301700001 PM 20465824 ER PT J AU Kress, BT Mertens, CJ Wiltberger, M AF Kress, B. T. Mertens, C. J. Wiltberger, M. TI Solar energetic particle cutoff variations during the 29-31 October 2003 geomagnetic storm SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAGNETIC-FIELD; RADIATION ENVIRONMENT; COSMIC-RADIATION; MODEL; SIMULATIONS; RIGIDITIES; LFM AB At low latitudes to midlatitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from solar energetic particles (SEPs). During severe geomagnetic storms, distortion of the Earth's field suppresses geomagnetic shielding, allowing SEPs access to the midlatitudes. A case study of the 26-31 October 2003 solar-geomagnetic event is used to examine how a severe geomagnetic storm affects SEP access to the Earth. Geomagnetic cutoffs are numerically determined in model geomagnetic fields using code developed by the Center for Integrated Space Weather Modeling (CISM) at Dartmouth College. The CISM-Dartmouth geomagnetic cutoff model is being used in conjunction with the High Energy and Charge Transport code (HZETRN) at the NASA Langley Research Center to develop a real-time data-driven prediction of radiation exposure at commercial airline altitudes. In this work, cutoff rigidities are computed on global grids and along several high-latitude flight routes before and during the geomagnetic storm. It is found that significant variations in SEP access to the midlatitudes and high latitudes can occur on time scales of an hour or less in response to changes in the solar wind dynamic pressure and interplanetary magnetic field. The maximum suppression of the cutoff is similar to 1 GV occurring in the midlatitudes during the main phase of the storm. The cutoff is also significantly suppressed by the arrival of an interplanetary shock. The maximum suppression of the cutoff due to the shock is approximately one half of the maximum suppression during the main phase of the storm. C1 [Kress, B. T.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab HB6127, Hanover, NH 03755 USA. [Mertens, C. J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. RP Kress, BT (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab HB6127, Hanover, NH 03755 USA. EM bkress@dartmouth.edu RI Wiltberger, Michael/B-8781-2008 OI Wiltberger, Michael/0000-0002-4844-3148 FU National Aeronautics and Space Administration [NNX07AO77G]; National Science Foundation [ATM-0120950] FX This material is based upon work supported by the National Aeronautics and Space Administration issued through the Applied Sciences Program and under grant NNX07AO77G issued through the LWS TR&T program. This material is also based upon work supported by the STC Program of the National Science Foundation under agreement ATM-0120950 Thank you to Chia-Lin Huang at Boston University and Larry Kepko at the University of New Hampshire for their help preparing the solar wind input file for the TS05 and LFM MHD geomagnetic field models. The authors are very grateful to their reviewers for assistance with this manuscript. NR 36 TC 20 Z9 21 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD MAY 13 PY 2010 VL 8 AR S05001 DI 10.1029/2009SW000488 PG 13 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 596TS UT WOS:000277709000001 ER PT J AU Marmorino, GO Holt, B Molemaker, MJ DiGiacomo, PM Sletten, MA AF Marmorino, George O. Holt, Benjamin Molemaker, M. Jeroen DiGiacomo, Paul M. Sletten, Mark A. TI Airborne synthetic aperture radar observations of "spiral eddy" slick patterns in the Southern California Bight SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID OCEAN SURFACE; EDDIES; FRONTS; IMAGES; SEA; BAY AB Repeat sampling on hourly time scales using an airborne synthetic aperture radar (SAR) is used to investigate the occurrence and evolving characteristics of spiral-shaped slick patterns, commonly presumed to be indicators of submesoscale ocean eddies, in the area around Santa Catalina Island, California (similar to 33.4 degrees N, 118.4 degrees W). Simultaneous SAR imagery and boat survey data are examined over two similar to 5 h long periods spaced 3 days apart in April 2003. The SAR imagery reveals several spiral-like patterns, roughly 5 km in diameter, occurring downstream of the western end of Catalina. We believe that the most likely formation mechanism for these patterns is current-wake instability related to the flow of the Southern California Countercurrent along the north shore of Catalina. In one case, there is an observed cold-core eddy and vortex sheet attached to the tip of the island, similar to island-wake simulations done by Dong and McWilliams (2007). In another case, the SAR imagery shows a series of slick patterns that, at least initially, resemble spiral eddies, but the data show no clear evidence of actual ocean eddies being present either at depth or through a rotating surface expression. A speculation is that such features signify island-wake eddies that are relatively weak and dissipate quickly. An unexpected finding was how quickly a spiral slick pattern could deteriorate, suggesting a time scale for the surface feature of the order of only several hours. An implication of this result is that care is needed when interpreting a single satellite SAR imagery for evidence of active submesoscale eddies. Recommendations are made for future field studies. C1 [Marmorino, George O.; Sletten, Mark A.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [DiGiacomo, Paul M.] NOAA NESDIS Ctr Satellite Applicat & Res, Camp Springs, MD 20746 USA. [Holt, Benjamin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Molemaker, M. Jeroen] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Marmorino, GO (reprint author), USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. EM marmorino@nrl.navy.mil RI DiGiac