FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Lee, T Awaji, T Balmaseda, M Ferry, N Fujii, Y Fukumori, I Giese, B Heimbach, P Kohl, A Masina, S Remy, E Rosati, A Schodlok, M Stammer, D Weaver, A AF Lee, Tong Awaji, Toshiyuki Balmaseda, Magdalena Ferry, Nicolas Fujii, Yosuke Fukumori, Ichiro Giese, Benjamin Heimbach, Patrick Koehl, Armin Masina, Simona Remy, Elisabeth Rosati, Anthony Schodlok, Michael Stammer, Detlef Weaver, Anthony TI Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products SO DYNAMICS OF ATMOSPHERES AND OCEANS LA English DT Article DE Indonesian throughflow; Ocean data assimilation ID GLOBAL OCEAN; INTERANNUAL VARIABILITY; CIRCULATION MODEL; CLIMATE SYSTEM; NORTH-ATLANTIC; PACIFIC; TEMPERATURE; GCM AB Monthly averaged total volume transport of the Indonesian throughflow (ITF) estimated by 14 global ocean data assimilation (ODA) products that are decade to multi-decade long are compared among themselves and with observations from the INSTANT Program (2004-2006). The main goals of the comparisons are to examine the consistency and evaluate the skill of different ODA products in simulating ITF transport. The ensemble averaged, time-mean value of ODA estimates is 13.6 Sv (1 Sv = 10(6) m(3)/s) for the common 1993-2001 period and 13.9 Sv for the 2004-2006 INSTANT Program period. These values are close to the 15-Sv estimate derived from INSTANT observations. All hut one ODA time-mean estimate fall within the range of uncertainty of the INSTANT estimate. In terms of temporal variability, the scatter among different ODA estimates averaged over time is 1.7 Sv, which is substantially smaller than the magnitude of the temporal variability simulated by the ODA systems. Therefore, the overall "signal-to-noise" ratio for the ensemble estimates is larger than one. The best consistency among the products occurs on seasonal-to-interannual time scales, with generally stronger (weaker) ITF during boreal summer (winter) and during La Nina (El Nino) events. The scatter among different products for seasonal-to-interannual time scales is approximately 1 Sv. Despite the good consistency, systematic difference is found between most ODA products and the INSTANT observations. All but the highest-resolution (18 km) ODA product show a dominant annual cycle while the INSTANT estimate and the 18-km product exhibit a strong semi-annual signal. The coarse resolution is an important factor that limits the level of agreement between ODA and INSTANT estimates. Decadal signals with periods of 10-15 years are seen. The most conspicuous and consistent decadal change is a relatively sharp increase in ITF transport during 1993-2000 associated with the strengthening tropical Pacific trade wind. Most products do not show a weakening ITF after the mid-1970s' associated with the weakened Pacific trade wind. The scatter of ODA estimates is smaller after than before 1980, reflecting the impact of the enhanced observations after the 1980s. To assess the representativeness of using the average over a three-year period (e.g., the span of the INSTANT Program) to describe longer-term mean, we investigate the temporal variations of the three-year low-pass ODA estimates. The average variation is about 3.6 Sv, which is largely due to the increase of ITF transport from 1993 to 2000. However, the three-year average during the 2004-2006 INSTANT Program period is within 0.5 Sv of the long-term mean for the past few decades. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lee, Tong; Fukumori, Ichiro; Schodlok, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Awaji, Toshiyuki] Kyoto Univ, Kyoto, Japan. [Balmaseda, Magdalena] European Ctr Medium Range Weather Forecast, Reading, Berks, England. [Ferry, Nicolas; Remy, Elisabeth] Mercator Ocean, Toulouse, France. [Fujii, Yosuke] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Giese, Benjamin] Texas A&M Univ, College Stn, TX USA. [Heimbach, Patrick] MIT, Cambridge, MA 02139 USA. [Koehl, Armin; Stammer, Detlef] Univ Hamburg, Inst Meereskunde, Hamburg, Germany. [Masina, Simona] Ctr Euro Mediterraneo & Cambiamenti Climat, Bologna, Italy. [Masina, Simona] Ist Nazl Geofis & Vulcanol, Bologna, Italy. [Rosati, Anthony] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Weaver, Anthony] Ctr Europeen Rech & Format Avancee Calcul Sci, Toulouse, France. RP Lee, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Tong.Lee@jpl.nasa.gov RI Masina, Simona/B-4974-2012; Heimbach, Patrick/K-3530-2013; Kohl, Armin/I-9378-2014 OI Heimbach, Patrick/0000-0003-3925-6161; Kohl, Armin/0000-0002-9777-674X FU National Aeronautics and Space Administration (NASA) FX We would like to thank Dr. Janet Sprintall for providing the monthly values of total ITF transport estimate derived from INSTANT observations. The contributions of ITF transport estimates from assimilation groups listed in Table 1 are appreciated. We would also like to acknowledge Drs. Peter Hacker, Jim Potemra, and Ms. Sharon DeCarlo of the Asian-Pacific Data-Research Center, University of Hawaii for assisting the CLIVAR/GODAE Global Ocean Reanalysis Evaluation effort by providing a data repository and managing the files contributed by various ocean data assimilation groups. The research described in this paper was in part carried out at the Jet Propulsion Laboratory, California institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 55 TC 20 Z9 20 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0265 J9 DYNAM ATMOS OCEANS JI Dyn. Atmos. Oceans PD AUG PY 2010 VL 50 IS 2 SI SI BP 201 EP 223 DI 10.1016/j.dynatmoce.2009.12.004 PG 23 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography GA 628AO UT WOS:000280086600007 ER PT J AU Bhatt, US Walker, DA Raynolds, MK Comiso, JC Epstein, HE Jia, GS Gens, R Pinzon, JE Tucker, CJ Tweedie, CE Webber, PJ AF Bhatt, Uma S. Walker, Donald A. Raynolds, Martha K. Comiso, Josefino C. Epstein, Howard E. Jia, Gensuo Gens, Rudiger Pinzon, Jorge E. Tucker, Compton J. Tweedie, Craig E. Webber, Patrick J. TI Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline SO EARTH INTERACTIONS LA English DT Article DE Arctic climate; Sea ice; Tundra vegetation ID NORTHERN ALASKA; TEMPERATURE; CLIMATE; TRENDS; COVER; NDVI AB Linkages between diminishing Arctic sea ice and changes in Arctic terrestrial ecosystems have not been previously demonstrated. Here, the authors use a newly available Arctic Normalized Difference Vegetation Index (NDVI) dataset (a measure of vegetation photosynthetic capacity) to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity. The authors find that, during the period of satellite observations (1982-2008), sea ice within 50 km of the coast during the period of early summer ice breakup declined an average of 25% for the Arctic as a whole, with much larger changes in the East Siberian Sea to Chukchi Sea sectors (> 44% decline). The changes in sea ice conditions are most directly relevant and have the strongest effect on the villages and ecosystems immediately adjacent to the coast, but the terrestrial effects of sea ice changes also extend far inland. Low-elevation (, 300 m) tundra summer land temperatures, as indicated by the summer warmth index (SWI; sum of the monthly-mean temperatures above freezing, expressed as 8 degrees C month 21), have increased an average of 58 degrees C month 21 (24% increase) for the Arctic as a whole; the largest changes (1108 to 128C month 21) have been over land along the Chukchi and Bering Seas. The land warming has been more pronounced in North America (130%) than in Eurasia (16%). When expressed as percentage change, land areas in the High Arctic in the vicinity of the Greenland Sea, Baffin Bay, and Davis Strait have experienced the largest changes (> 70%). The NDVI has increased across most of the Arctic, with some exceptions over land regions along the Bering and west Chukchi Seas. The greatest change in absolute maximum NDVI occurred over tundra in northern Alaska on the Beaufort Sea coast [ 10.08 Advanced Very High Resolution Radiometer (AVHRR) NDVI units]. When expressed as percentage change, large NDVI changes (10%-15%) occurred over land in the North America High Arctic and along the Beaufort Sea. Ground observations along an 1800-km climate transect in North America support the strong correlations between satellite NDVI observations and summer land temperatures. Other new observations from near the Lewis Glacier, Baffin Island, Canada, document rapid vegetation changes along the margins of large retreating glaciers and may be partly responsible for the large NDVI changes observed in northern Canada and Greenland. The ongoing changes to plant productivity will affect many aspects of Arctic systems, including changes to active-layer depths, permafrost, biodiversity, wildlife, and human use of these regions. Ecosystems that are presently adjacent to yearround (perennial) sea ice are likely to experience the greatest changes. C1 [Bhatt, Uma S.; Gens, Rudiger] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Bhatt, Uma S.] Univ Alaska Fairbanks, Dept Atmospher Sci, Fairbanks, AK 99775 USA. [Walker, Donald A.; Raynolds, Martha K.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. [Walker, Donald A.; Raynolds, Martha K.] Univ Alaska Fairbanks, Dept Biol & Wildlife, Fairbanks, AK 99775 USA. [Comiso, Josefino C.] NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD 20771 USA. [Epstein, Howard E.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. [Jia, Gensuo] Chinese Acad Sci, Inst Atmospher Phys, RCE TEA, Beijing, Peoples R China. [Gens, Rudiger] Univ Alaska Fairbanks, Alaska Satellite Facil, Fairbanks, AK 99775 USA. [Pinzon, Jorge E.; Tucker, Compton J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Tweedie, Craig E.] Univ Texas El Paso, Dept Biol, El Paso, TX 79968 USA. [Webber, Patrick J.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Bhatt, US (reprint author), Univ Alaska Fairbanks, Inst Geophys, 930 Koyukuk Dr, Fairbanks, AK 99775 USA. EM usbhatt@alaska.edu RI Bhatt, Uma/D-3674-2009 NR 42 TC 149 Z9 155 U1 12 U2 129 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD AUG PY 2010 VL 14 AR 8 DI 10.1175/2010EI315.1 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 642EF UT WOS:000281185900001 ER PT J AU Gasso, S Grassian, VH Miller, RL AF Gasso, Santiago Grassian, Vicki H. Miller, Ron L. TI Interactions between Mineral Dust, Climate, and Ocean Ecosystems SO ELEMENTS LA English DT Article DE mineral dust; phytoplankton; climate; clouds; precipitation ID DESERT DUST; PHYTOPLANKTON; PRECIPITATION; AEROSOLS; CLOUDS; IMPACT AB New, sophisticated instrumentation and improvements in computer models have expanded enormously our understanding of how dust transport impacts climate and biological processes in the oceans. For example, the nutrients and harmful substances contained in dust can affect the development of microalgae in the ocean. The initial composition of dust and its chemical transformations during transport determine the way dust interacts with ocean ecosystems and, more generally, with clouds and the climate as a whole. These new developments open the door for future research initiatives that will require the collaboration of scientists from several disciplines to fully understand the effects of dust in the atmosphere and ocean ecosystems. C1 [Gasso, Santiago] Univ Maryland, NASA, GSFC, Greenbelt, MD 20771 USA. [Grassian, Vicki H.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. [Miller, Ron L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Gasso, S (reprint author), Univ Maryland, NASA, GSFC, Code 613-2, Greenbelt, MD 20771 USA. EM Santiago.Gasso@nasa.gov; vicki-grassian@uiowa.edu; rmiller@giss.nasa.gov RI Miller, Ron/E-1902-2012; Gasso, Santiago/H-9571-2014 OI Gasso, Santiago/0000-0002-6872-0018 FU National Aeronautics and Space Administration [NNG05GQ79A, NCC5-494]; National Science Foundation [CHE-09-52605, ATM-06-20066]; National Aeronautics and Space Administration Atmospheric Composition Program FX We thank the four anonymous reviewers and guest editor Reto Giere for their thoughtful comments, which helped to organize and clarify the article. Thomas Jauss is thanked for preparing the diagrams. SG was supported by the National Aeronautics and Space Administration (project numbers NNG05GQ79A and NCC5-494); VHG was supported by the National Science Foundation through CHE-09-52605; RLM was supported by the Climate Dynamics Program of the National Science Foundation through ATM-06-20066 and the National Aeronautics and Space Administration Atmospheric Composition Program. NR 31 TC 12 Z9 13 U1 1 U2 18 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD AUG PY 2010 VL 6 IS 4 BP 247 EP 252 DI 10.2113/gselements.6.4.247 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 652HM UT WOS:000281994400009 ER PT J AU Sridharan, D Whalen, M Almendrala, D Cucinotta, F Yannone, SM Pluth, JM AF Sridharan, D. Whalen, M. Almendrala, D. Cucinotta, F. Yannone, S. M. Pluth, J. M. TI Artemis Over-Expression Confers Radioresistance to Both High and Low LET Exposures SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 41st Annual Meeting of Environmental-Mutagen-Society CT 41st Annual Meeting of Complex Systems in Biology and Risk Assessment CY OCT 23-27, 2010 CY OCT 23-27, 2010 CL Ft Worth, TX CL Ft Worth, TX SP Environ Mutagen Soc SP Environ Mutagen Soc C1 [Sridharan, D.; Whalen, M.; Almendrala, D.; Yannone, S. M.; Pluth, J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cucinotta, F.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RI Yannone, Steven/G-1927-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD AUG PY 2010 VL 51 IS 7 BP 717 EP 717 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 639XE UT WOS:000281009600134 ER PT J AU Potter, C AF Potter, Christopher TI The carbon budget of California SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Carbon; California; Ecosystems; Fossil fuels ID NET PRIMARY PRODUCTION; SATELLITE DATA; UNITED-STATES; MODEL; VARIABILITY; PRODUCTIVITY; EXCHANGE; INCREASE; WETLANDS; FORESTS AB The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide (CO(2)) and methane (CH(4)) greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government's recent inventory, California's carbon budget is presently dominated by 115 MMTCE per year in fossil fuel emissions of CO(2) (>85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries (7%), livestock-based agriculture (5%), and waste treatment activities (2%). The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer, MODIS) was used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s (estimated by CASA at 120 MMTCE per year) was roughly equivalent to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of about 24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon estimated by CASA to be stored in forests, shrublands, and rangelands across the state, the importance of protection of the natural NPP capacity of California ecosystems cannot be overemphasized. Published by Elsevier Ltd. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Mail Stop 242-4, Moffett Field, CA 94035 USA. EM chris.potter@nasa.gov NR 46 TC 7 Z9 8 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD AUG PY 2010 VL 13 IS 5 BP 373 EP 383 DI 10.1016/j.envsci.2010.04.008 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 633XK UT WOS:000280540300004 ER PT J AU Moore, ST MacDougall, HG Paloski, WH AF Moore, Steven T. MacDougall, Hamish G. Paloski, William H. TI Effects of head-down bed rest and artificial gravity on spatial orientation SO EXPERIMENTAL BRAIN RESEARCH LA English DT Article DE Artificial gravity; Spatial orientation; Vestibular; Centrifuge; Microgravity ID LONG-DURATION CENTRIFUGATION; ORBITAL SPACE-FLIGHT; EYE COORDINATION; OTOLITH AB We studied spatial orientation before and after 21 days of 6A degrees head-down bed rest in 15 subjects. During bed rest, 8 subjects were treated daily with 1 h Gz centrifugation (artificial gravity) (2.5 g at the feet; 1.0 g at the heart), with 7 subjects serving as controls. Ocular counter-rolling and subjective visual vertical were assessed during 90A degrees whole body roll tilt to the left and right. Ocular counter-rolling was unaffected by bed rest and bed rest + artificial gravity. Performance on the subjective visual vertical task was unchanged in the control group, but exhibited a significant increase in error for 48 h after bed rest in the treatment (artificial gravity) group. Intermittent application of linear acceleration along the long body axis may have increased the weighting of the idiotropic vector, resulting in an increased bias of the subjective visual vertical toward the long body axis during 90A degrees roll tilt. C1 [Moore, Steven T.; MacDougall, Hamish G.] Mt Sinai Sch Med, Human Aerosp Lab, Dept Neurol, New York, NY 10029 USA. [MacDougall, Hamish G.] Univ Sydney, Sch Psychol, Sydney, NSW 2006, Australia. [Paloski, William H.] NASA, Lyndon B Johnson Space Ctr, Neurosci Labs, Human Adaptat & Countermeasure Div, Houston, TX 77058 USA. RP Moore, ST (reprint author), Mt Sinai Sch Med, Human Aerosp Lab, Dept Neurol, New York, NY 10029 USA. EM steven.moore@mssm.edu OI Moore, Steven/0000-0003-3995-4912 FU JSC; UTMB GCRC; Neurosciences Laboratory at JSC; NASA [NNJ04HD66G, NNJ04HF51G]; NIH, GCRC at the University of Texas Medical Branch, Galveston, TX [M01 RR 0073] FX The successful implementation of our spatial orientation test paradigm would not have been possible without the careful oversight and suggestions provided by the review committees, the subjects who persisted throughout the bed rest, and the support and assistance provided by the staff of the JSC Flight Analogs Project and UTMB GCRC, and the Neurosciences Laboratory at JSC. This project was supported by the NASA Human Research Program (WHP) and NASA grants NNJ04HD66G, and NNJ04HF51G (STM). The study was conducted at the NIH-funded (M01 RR 0073) GCRC at the University of Texas Medical Branch, Galveston, TX. NR 26 TC 12 Z9 13 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4819 J9 EXP BRAIN RES JI Exp. Brain Res. PD AUG PY 2010 VL 204 IS 4 BP 617 EP 622 DI 10.1007/s00221-010-2317-0 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 627XG UT WOS:000280076900013 PM 20535455 ER PT J AU Wu, LL Beard, BL Roden, EE Kennedy, CB Johnson, CM AF Wu, Lingling Beard, Brian L. Roden, Eric E. Kennedy, Christopher B. Johnson, Clark M. TI Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MICROBIAL IRON REDUCTION; FE(III) OXIDE REDUCTION; FERROUS IRON; MOSSBAUER-SPECTROSCOPY; ELECTRON-TRANSFER; ATOM EXCHANGE; FE(II)-FE(III) ELECTRON; IRON(III) OXIDES; MINERAL SURFACES; HEMATITE AB Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe-O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II)(aq) - oxide interaction will produce low delta(56)Fe values for Fe(II)(aq), similar to that produced by Fe(II) oxidation, only small quantities of low-delta(56)Fe Fe(II)(aq) are formed by these processes. In contrast, DIR, which continually, exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low-delta(56)Fe aqueous Fe(II) in many natural systems. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wu, Lingling; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Wu, Lingling; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Kennedy, Christopher B.] SRK Consulting, Toronto, ON M5C 3A1, Canada. RP Wu, LL (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM lwu@geology.wisc.edu RI Wu, Lingling/E-4087-2010 OI Wu, Lingling/0000-0002-8211-5754 FU NSF [0525417]; NASA Astrobiology Institute FX This research was supported by NSF Grant 0525417, as well as the NASA Astrobiology Institute. Huifang Xu is thanked for helping with calculation of octahedral layers. Comments by two anonymous reviewers and A.E. Rehkamper, helped to improve the manuscript. NR 82 TC 30 Z9 31 U1 8 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 1 PY 2010 VL 74 IS 15 BP 4249 EP 4265 DI 10.1016/j.gca.2010.04.060 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 619FF UT WOS:000279413900005 ER PT J AU Yamaguchi, A Karouji, Y Takeda, H Nyquist, L Bogard, D Ebihara, M Shih, CY Reese, Y Garrison, D Park, J Mckay, G AF Yamaguchi, A. Karouji, Y. Takeda, H. Nyquist, L. Bogard, D. Ebihara, M. Shih, C. -Y. Reese, Y. Garrison, D. Park, J. Mckay, G. TI The variety of lithologies in the Yamato-86032 lunar meteorite: Implications for formation processes of the lunar crust SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HIGHLAND REGOLITH BRECCIA; ALEXANDRA RANGE 93069; MAGNESIAN ANORTHOSITES; IRON CONCENTRATION; IMPACT HISTORY; MOON ROCKS; ORIGIN; SURFACE; PETROLOGY; PRISTINE AB We performed a petrologic, mineralogical, geochemical, and isotopic study of several lithologies in the Y-86032 feldspathic breccia. This study leads us to conclude that Y-86032 likely originated on the lunar farside. Y-86032 is composed of several types of feldspathic clasts, granulitic breccias, and minor basaltic clasts set in a elastic matrix. We identify an "An97 anorthosite" that has An contents similar to those of nearside FANs. Mg' (-= molar Mg/(Mg + Fe) x 100) values vary significantly from similar to 45 to similar to 80 covering the ranges of both nearside FANs and the Mg' gap between FANs and the Mg-suite. A light-gray feldspathic (LG) breccia making up similar to 20% of the investigated slab (5.2 x 3.6 cm(2)) mainly consists of fragments of anorthosites ("An93 anorthosite") more sodic than nearside FANs. LG also contains an augite-plagioclase clast which either could be genetically related to the An93 anorthosite or to slowly-cooled basaltic magma intruded into the precursor rock. The Na-rich nature of both An93 anorthosite and this clast indicates that the LG breccia was derived from a relatively Na-rich but incompatible-element-poor source. The Mg' variation indicates that the "An97 anorthosite" is a genomict breccia of several types of primary anorthosites. Granulitic breccias in Y-86032 have relatively high Mg' in mafic minerals. The highest Mg' values in mafic minerals for the "An97 anorthosite" and granulitic breccias are similar to those of Mg-rich lithologies recently described in Dhofar 489. Basaltic clasts in the dark-gray matrix are aluminous, and the zoning trends of pyroxene are similar to those of VLT or LT basalts. The crystallization of these basaltic clasts pre-date the lithification age of the elastic matrix at similar to 3.8 Ga. The low K contents of plagioclase in both the anorthositic and basaltic clasts and generally low incompatible element abundances in all the lithologies in Y-86032 indicate that KREEP was not involved during the formation of the precursor lithologies. This observation further suggests that urKREEP did not exist in the source regions of these igneous lithologies. All these facts support the idea that Y-86032 was derived from a region far distant from the PKT and that the lithic clasts and fragments are indigenous to that region. An An97 anorthositic clast studied here has distinct Sm-Nd isotopic systematics from those previously found for another An97 anorthositic clast and "An93 anorthosite", and suggests either that An97 anorthosites come from isotopically diverse sources, or that the Sm-Nd isotopic systematics of this clast were reset similar to 4.3 Ga ago. These lines of geochemical, isotopic, and petrologic evidence suggest that the lunar crust is geochemically more heterogeneous than previously thought. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Yamaguchi, A.] Natl Inst Polar Res, Tokyo 1908518, Japan. [Yamaguchi, A.] Grad Univ Adv Sci, Dept Polar Sci, Sch Multidisciplinary Sci, Tokyo 1908518, Japan. [Karouji, Y.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Karouji, Y.; Ebihara, M.] Tokyo Metropolitan Univ, Grad Sch Sci, Tokyo 1920397, Japan. [Takeda, H.] Univ Tokyo, Grad Sch Sci, Tokyo 1130033, Japan. [Nyquist, L.; Bogard, D.; Park, J.; Mckay, G.] NASA, ARES, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Shih, C. -Y.; Reese, Y.] ESCG, Jacobs Technol JE23, Houston, TX 77258 USA. [Garrison, D.] ESCG, Muniz Engn JE23, Houston, TX 77258 USA. [Park, J.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Park, J.] Univ Alabama, Huntsville, AL 35805 USA. [Park, J.] NASA, Space Sci Off, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Yamaguchi, A (reprint author), Natl Inst Polar Res, Tokyo 1908518, Japan. EM yamaguch@nipr.ac.jp FU Ministry of Education, Science, and Technology, Japan [19540511, 19340169]; NIPR; Ocean Research Institute, the University of Tokyo [005, 2007]; NASA FX We thank Drs. Kojima H., and Arai T. for technical assistance and discussion, and R. Korotev, P.H. Warren, G.J. Taylor, and T. Mikouchi for reviews of earlier version of the paper. This work is partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science, and Technology, Japan No. 19540511 (A.Y.) and 19340169 (ME.) and by NIPR Research Project Funds, P-8 (Evolution of the early Solar System materials). This work is further supported in part by funds from the cooperative program (No. 005, 2007) provided by Ocean Research Institute, the University of Tokyo (H.T.) and by the NASA Cosmochemistry Program (L.N., D.B., CS., YR., D.G., G.M.). NR 78 TC 12 Z9 14 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 1 PY 2010 VL 74 IS 15 BP 4507 EP 4530 DI 10.1016/j.gca.2010.04.015 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 619FF UT WOS:000279413900022 ER PT J AU Peslier, AH Hnatyshin, D Herd, CDK Walton, EL Brandon, AD Lapen, TJ Shafer, JT AF Peslier, A. H. Hnatyshin, D. Herd, C. D. K. Walton, E. L. Brandon, A. D. Lapen, T. J. Shafer, J. T. TI Crystallization, melt inclusion, and redox history of a Martian meteorite: Olivine-phyric shergottite Larkman Nunatak 06319 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID OXYGEN FUGACITY; UPPER-MANTLE; SHOCK METAMORPHISM; SNC METEORITES; MULTICOMPONENT PYROXENES; FRACTIONAL CRYSTALLIZATION; SYMPLECTIC EXSOLUTION; TERRESTRIAL PLANETS; OXIDATION-STATE; PHASE-RELATIONS AB The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo(76-55) from core to rim), pyroxene (from core to rim En(70)Fs(25)Wo(5), En(50)Fs(25)Wo(25), and En(45)Fs(45)Wo(10)), and Cr-rich spinel in a matrix of maskelynite (An(52)Ab(45)), Pyroxene (En(30-40)Fs(40-55)Wo(10-25,)), olivine (Fo(50)), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo(>72)) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence. LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ -4 to -2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Peslier, A. H.] ESCG, Jacobs Technol, Houston, TX 77058 USA. [Peslier, A. H.] NASA, Astromat Res & Explorat Sci, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hnatyshin, D.; Herd, C. D. K.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Walton, E. L.] Grant MacEwan Univ, Dept Phys Sci, Edmonton, AB T5J 2P2, Canada. [Brandon, A. D.; Lapen, T. J.; Shafer, J. T.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. RP Peslier, AH (reprint author), ESCG, Jacobs Technol, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov FU NASA; Natural Sciences and Engineering Research Council of Canada (NSERC) [261740-08]; Department of Earth and Atmospheric Sciences; Canadian Space Agency FX This work was supported by a NASA Cosmochemistry grant to A.D.B. C.D.K.H acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery Grant 261740-08), and support from the Department of Earth and Atmospheric Sciences for the undergraduate thesis study of D.H. E.L.W. was supported by the Canadian Space Agency's Space Science Fellowship. Thank you to G.A. Robinson for help surveying the spinels of the "bikini" on the JEOL 5910LV SEM. Thank you to L. Danyushevsky for spending the time to explain to A.H.P. how to use his melt inclusion software. Thank you to E. Medard for his help with the melt oxidation calculation. This manuscript was greatly improved by the reviews of J.-A. Barrat and two anonymous reviewers, and editing by S. Russell. NR 122 TC 50 Z9 50 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 1 PY 2010 VL 74 IS 15 BP 4543 EP 4576 DI 10.1016/j.gca.2010.05.002 PG 34 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 619FF UT WOS:000279413900024 ER PT J AU Cuzzi, JN Hogan, RC Bottke, WF AF Cuzzi, Jeffrey N. Hogan, Robert C. Bottke, William F. TI Towards initial mass functions for asteroids and Kuiper Belt Objects SO ICARUS LA English DT Article DE Asteroids; Origin, Solar System; Kuiper Belt; Planetesimals; Disks ID HOMOGENEOUS ISOTROPIC TURBULENCE; DIFFERENTIALLY ROTATING-DISKS; CHONDRULE-SIZED PARTICLES; EARLY SOLAR-SYSTEM; PROTOPLANETARY DISKS; PLANETESIMAL FORMATION; PROTOSTELLAR DISKS; SETTLING VELOCITY; LAYERED ACCRETION; FERROMAGNESIAN CHONDRULES AB Our goal is to understand primary accretion of the first planetesimals. Some examples are seen today in the asteroid belt, providing the parent bodies for the primitive meteorites. The primitive meteorite record suggests that sizeable planetesimals formed over a period longer than a million years, each of which being composed entirely of an unusual, but homogeneous, mixture of millimeter-size particles. We sketch a scenario that might help explain how this occurred, in which primary accretion of 10-100 km size planetesimals proceeds directly, if sporadically, from aerodynamically-sorted millimeter-size particles (generically "chondrules"). These planetesimal sizes are in general agreement with the currently observed asteroid mass peak near 100 km diameter, which has been identified as a "fossil" property of the pre-erosion, pre-depletion population. We extend our primary accretion theory to make predictions for outer Solar System planetesimals, which may also have a preferred size in the 100 km diameter range. We estimate formation rates of planetesimals and explore parameter space to assess the conditions needed to match estimates of both asteroid and Kuiper Belt Object (KBO) formation rates. For parameters that satisfy observed mass accretion rates of Myr-old protoplanetary nebulae, the scenario is roughly consistent with not only the "fossil" sizes of the asteroids, and their estimated production rates, but also with the observed spread in formation ages of chondrules in a given chondrite, and with a tolerably small radial diffusive mixing during this time between formation and accretion. As previously noted, the model naturally helps explain the peculiar size distribution of chondrules within such objects. The optimum range of parameters, however, represents a higher gas density and fractional abundance of solids, and a smaller difference between Keplerian and pressure-supported orbital velocities, than "canonical" models of the solar nebula. We discuss several potential explanations for these differences. The scenario also produces 10-100 km diameter primary KBOs, and also requires an enhanced abundance of solids to match the mass production rate estimates for KBOs (and presumably the planetesimal precursors of the ice giants themselves). We discuss the advantages and plausibility of the scenario, outstanding issues, and future directions of research. Published by Elsevier Inc. C1 [Cuzzi, Jeffrey N.] Ames Res Ctr, Ames, IA 50010 USA. [Hogan, Robert C.] Bay Area Res Inst, Sonoma, CA USA. [Bottke, William F.] SW Res Inst, Boulder, CO USA. RP Cuzzi, JN (reprint author), Ames Res Ctr, 245-3 Moffett Field, Ames, IA 50010 USA. EM jeffrey.cuzzi@nasa.gov FU NASA FX We thank Conel Alexander, Mike Brown, John Chambers, Eugene Chiang, Fred Ciesla, Kees Dullemond, Paul Estrada, Will Grundy, Carsten Guttler, Scott Kenyon, Noriko Kita, Erika Kurahashi, Hal Levison, Bill McKinnon, Alessandro Morbidelli, Chris Ormel, Alan Rubin, Stu Weidenschilling, and Andras Zsom for helpful conversations and comments on earlier manuscripts, and for providing results in advance of publication. We thank an anonymous reviewer for helpful comments that improved the presentation. This work was supported by grants from NASA's Planetary Geology and Geophysics and Origins of Solar Systems Programs. Our group has profited greatly from generous allocations of cpu time on the NASA High-End Computing (HEC) machines at Ames. In addition to raw cycles, expert consultants have provided invaluable help in visualization, parallelization, and optimization. NR 127 TC 63 Z9 64 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 518 EP 538 DI 10.1016/j.icarus.2010.03.005 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000002 ER PT J AU Goguen, JD Stone, TC Kieffer, HH Buratti, BJ AF Goguen, Jay D. Stone, Thomas C. Kieffer, Hugh H. Buratti, Bonnie J. TI A new look at photometry of the Moon SO ICARUS LA English DT Article DE Radiative transfer; Moon, Surface; Regoliths; Photometry; Spectrophotometry ID ROUGH PLANETARY SURFACES; THERMAL EMISSION; SCATTERING; REFLECTANCE; REGOLITH; GLASSES AB We use ROLO photometry (Kieffer, H.H., Stone, T.C. [2005]. Astron. J. 129, 2887-2901) to characterize the before and after full Moon radiance variation for a typical highlands site and a typical mare site. Focusing on the phase angle range 45 degrees < alpha < 50 degrees, we test two different physical models, macroscopic roughness and multiple scattering between regolith particles, for their ability to quantitatively reproduce the measured radiance difference. Our method for estimating the rms slope angle is unique and model-independent in the sense that the measured radiance factor I/F at small incidence angles (high Sun) is used as an estimate of I/F for zero roughness regolith. The roughness is determined from the change in I/F at larger incidence angles. We determine the roughness for 23 wavelengths from 350 to 939 nm. There is no significant wavelength dependence. The average rms slope angle is 22.2 degrees +/- 1.3 degrees for the mare site and 34.1 degrees +/- 2.6 degrees for the highland site. These large slopes, which are similar to previous "photometric roughness" estimates, require that sub-mm scale "micro-topography" dominates roughness measurements based on photometry, consistent with the conclusions of Helfenstein and Shepard (Helfenstein, P., Shepard, M.K. [1999]. Icarus 141, 107-131). We then tested an alternative and very different model for the before and after full Moon I/F variation: multiple scattering within a flat layer of realistic regolith particles. This model consists of a log normal size distribution of spheres that match the measured distribution of particles in a typical mature lunar soil 72141,1 (McKay, D.S., Fruland, R.M., Heiken, G.H. [1974]. Proc. Lunar Sci. Conf. 5, Geochim. Cosmochim. Acta 1 (5), 887-906). The model particles have a complex index of refraction 1.65-0.003i, where 1.65 is typical of impact-generated lunar glasses. Of the four model parameters, three were fixed at values determined from Apollo lunar soils: the mean radius and width of the log normal size distribution and the real part of the refraction index. We used FORTRAN programs from Mishchenko et al. (Mishchenko, M.I., Dlugach, J.M., Yanovitskij, E.G., Zakharova, N.T. [1999]. J. Quant. Spectrosc. Radiat. Trans. 63, 409-432; Mishchenko, M.I., Travis, L.D., Lacis, A.A. [2002]. Scattering, Absorption and Emission of Light by Small Particles. Cambridge Univ. Press, New York. http://www.giss.nasa.gov/staff/mmishchenko/books.html) to calculate the scattering matrix and solve the radiative transfer equation for I/F. The mean single scattering albedo is omega = 0.808, the asymmetry parameter is < cos Theta > = 0.77 and the phase function is very strongly peaked in both the forward and backward scattering directions. The fit to the observations for the highland site is excellent and multiply scattered photons contribute >= 80% of I/F. We conclude that either model, roughness or multiple scattering, can match the observations, but that the strongly anisotropic phase functions of realistic particles require rigorous calculation of many orders of scattering or spurious photometric roughness estimates are guaranteed. Our multiple scattering calculation is the first to combine: (1) a regolith model matched to the measured particle size distribution and index of refraction of the lunar soil, (2) a rigorous calculation of the particle phase function and solution of the radiative transfer equation, and (3) application to lunar photometry with absolute radiance calibration. (C) 2010 Elsevier Inc. All rights reserved. C1 [Goguen, Jay D.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stone, Thomas C.; Kieffer, Hugh H.] US Geol Survey, Flagstaff, AZ 86001 USA. RP Goguen, JD (reprint author), CALTECH, Jet Prop Lab, MS 183-401, Pasadena, CA 91109 USA. EM Jay.D.Goguen@jpl.nasa.gov FU NASA FX We would like to acknowledge M. Mishchenko for making his radiative transfer software publicly available and constructive reviews from Yu. Shkuratov and an anonymous referee. This research was supported in part by grants from the NASA Planetary Science Research Program. NR 28 TC 18 Z9 18 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 548 EP 557 DI 10.1016/j.icarus.2010.03.025 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000004 ER PT J AU Heavens, NG Richardson, MI Lawson, WG Lee, C McCleese, DJ Kass, DM Kleinbohl, A Schofield, JT Abdou, WA Shirley, JH AF Heavens, N. G. Richardson, M. I. Lawson, W. G. Lee, C. McCleese, D. J. Kass, D. M. Kleinboehl, A. Schofield, J. T. Abdou, W. A. Shirley, J. H. TI Convective instability in the martian middle atmosphere SO ICARUS LA English DT Article DE Mars, Atmosphere; Atmospheres, Structure; Atmospheres, Dynamics; Meteorology ID GRAVITY-WAVE; INFRARED MEASUREMENTS; SEMIDIURNAL TIDE; MARS; TEMPERATURE; CIRCULATION; MODELS; REGION; DISTURBANCES; SIMULATIONS AB Dry convective instabilities in Mars's middle atmosphere are detected and mapped using temperature retrievals from Mars Climate Sounder observations spanning 1.5 martian years. The instabilities are moderately frequent in the winter extratropics. The frequency and strength of middle atmospheric convective instability in the northern extratropics is significantly higher in MY 28 than in MY 29. This may have coupled with changes to the northern hemisphere mid-latitude and tropical middle atmospheric temperatures and contributed to the development of the 2007 global dust storm. We interpret these instabilities to be the result of gravity waves saturating within regions of low stability created by the thermal tides. Gravity wave saturation in the winter extratropics has been proposed to provide the momentum lacking in general circulation models to produce the strong dynamically-maintained temperature maximum at 1-2 Pa over the winter pole, so these observations could be a partial control on modeling experiments. (C) 2010 Elsevier Inc. All rights reserved. C1 [Heavens, N. G.; Richardson, M. I.; Lawson, W. G.; Lee, C.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Richardson, M. I.; Lee, C.] Ashima Res, Pasadena, CA 91106 USA. [McCleese, D. J.; Kass, D. M.; Kleinboehl, A.; Schofield, J. T.; Abdou, W. A.; Shirley, J. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Heavens, NG (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21, Pasadena, CA 91125 USA. EM heavens@gps.caltech.edu OI Heavens, Nicholas/0000-0001-7654-503X FU Jet Propulsion Laboratory, California Institute of Technology under National Aeronautics and Space Administration FX The authors acknowledge C. Backus, T. Pavlicek, and E. Sayfi for their contribution to the acquisition, analysis, and presentation of MCS data. We also would like to thank Jeff Barnes and an anonymous reviewer for helpful reviews that greatly improved this paper. The research described in this paper was carried out in part at and funded by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration through the Mars Reconnaissance Orbiter project. NR 50 TC 17 Z9 17 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 574 EP 589 DI 10.1016/j.icarus.2010.03.023 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000007 ER PT J AU Oehler, DZ Allen, CC AF Oehler, Dorothy Z. Allen, Carlton C. TI Evidence for pervasive mud volcanism in Acidalia Planitia, Mars SO ICARUS LA English DT Article DE Mars, Surface; Astrobiology ID THERMAL INERTIA; METHANE; BASIN; HISTORY; CHRYSE; ICE; GEOMORPHOLOGY; DISSOCIATION; AZERBAIJAN; CHRONOLOGY AB We have mapped 18,000+ circular mounds in a portion of southern Acidalia Planitia using their sizes, shapes, and responses in Nighttime IR. We estimate that 40,000+ of these features could occur in the area, with a distribution generally corresponding to the southern half of the proposed Acidalia impact basin. The mounds have average diameters of about 1 km and relief up to 180 m and most overlie units mapped as Early Amazonian. High resolution images of mound surfaces show relatively smooth veneers, apron-like extensions onto the plains, moats, and concentric circular crestal structures. Some images show lobate and flow-like features associated with the mounds. Albedo of the mounds is generally higher than that of the surrounding plains. Visible and near-infrared spectra suggest that the mounds and plains have subtle mineralogical differences, with the mounds having enhanced coatings or possibly greater quantities of crystalline ferric oxides. Multiple analogs for these structures were assessed in light of new orbital data and regional mapping. Mud volcanism is the closest terrestrial analogy, though the process in Acidalia would have had distinctly martian attributes. This interpretation is supported by the geologic setting of the Acidalia which sits at the distal end of the Chryse-Acidalia embayment into which large quantities of sediments were deposited through the Hesperian outflow channels. In its distal position, Acidalia would have been a depocenter for accumulation of mud and fluids from outflow sedimentation. Thus, the profusion of mounds in Acidalia is likely to be a consequence of this basin's unique geologic setting. Basinwide mud eruption may be attributable to overpressure (developed in response to rapid outflow deposition) perhaps aided by regional triggers for fluid expulsion related to events such as tectonic or hydrothermal pulses, destabilization of clathrates, or sublimation of a frozen body of water. Significant release of gas may have been involved, and the extensive mud volcanism could have created long-lived conduits for upwelling groundwaters, providing potential habitats for an in situ microbiota. Mud volcanism transports minimally-altered materials from depth to the surface, and mud volcanoes in Acidalia, therefore, could provide access to samples from deep zones that would otherwise be inaccessible. Since the distal setting of Acidalia also would favor concentration and preservation of potentially-present organic materials, samples brought to the surface by mud volcanism could include biosignatures of possible past or even present life. Accordingly, the mounds of Acidalia may offer a new class of exploration target. (C) 2010 Elsevier Inc. All rights reserved. C1 [Oehler, Dorothy Z.; Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. RP Oehler, DZ (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy.z.oehler@nasa.gov FU NASA; Astromaterials Research and Exploration Science Directorate at the Johnson Space Center (JSC) FX We thank NASA and the Astromaterials Research and Exploration Science Directorate at the Johnson Space Center (JSC) for facilities and support. We are especially grateful to Drs. G. Etiope (Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy) and A. Feyzullayev (Azerbaijan National Academy of Sciences, Baku) for their insights into processes of terrestrial mud volcanism, to Dr. S.M. Clifford (Lunar and Planetary Institute, Houston) for discussions of clathrates on Mars and review of portions of the manuscript dealing with potential venting of methane from hydrates, to Dr. J. Dohm (University of Arizona) for discussions regarding a potential martian ocean, and to Mr. M. Salvatore and Ms. L Roach (both of Brown University, Providence, RI) for analyses of CRISM scene HRL00003837. Mr. O. Thomas and Mr. D. Bretz (Image Science and Analysis Laboratory at JSC) provided photogrammetric estimates of relief of domes in HiRISE stereo pairs. Dr. W. Farrand (Space Science Institute, Boulder, CO) read an early version of the paper and provided excellent suggestions. Mapping of individual mounds in Acidalia was carried out by Mr. David Baker (St. Lawrence University, NY) and Ms. Elena Amador (University of California, Santa Cruz) during their summer 2008 and 2009 Lunar and Planetary Institute Internships. Ms. Amador also provided analyses of additional CRISM images that covered areas in Acidalia having mounds. We are also grateful to two anonymous reviewers for many suggestions which have significantly improved this manuscript. We thank the CRISM, HiRISE, MOC, and THEMIS teams for providing image data used in this study and Google Earth for permission to use their images. NR 98 TC 27 Z9 29 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 636 EP 657 DI 10.1016/j.icarus.2010.03.031 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000012 ER PT J AU Marzo, GA Davila, AF Tornabene, LL Dohm, JM Fairen, AG Gross, C Kneissl, T Bishop, JL Roush, TL Mckay, CP AF Marzo, Giuseppe A. Davila, Alfonso F. Tornabene, Livio L. Dohm, James M. Fairen, Alberto G. Gross, Christoph Kneissl, Thomas Bishop, Janice L. Roush, Ted L. McKay, Chris P. TI Evidence for Hesperian impact-induced hydrothermalism on Mars SO ICARUS LA English DT Article DE Mars; Mars, Surface; Geological processes; Impact processes; Spectroscopy ID MARTIAN METEORITES; FLUVIAL VALLEYS; SNC METEORITES; FLUID-FLOW; MINERALS; EVOLUTION; PHYLLOSILICATES; SURFACE; ORIGIN; CRATER AB Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 degrees E, 17.0 degrees N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era. (C) 2010 Elsevier Inc. All rights reserved. C1 [Marzo, Giuseppe A.; Davila, Alfonso F.; Fairen, Alberto G.; Roush, Ted L.; McKay, Chris P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Davila, Alfonso F.; Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Tornabene, Livio L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dohm, James M.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Gross, Christoph; Kneissl, Thomas] Free Univ Berlin, Inst Geosci Planetary Sci & Remote Sensing, D-12249 Berlin, Germany. RP Marzo, GA (reprint author), NASA, Ames Res Ctr, MS245-3, Moffett Field, CA 94035 USA. EM giuseppe.marzo@nasa.gov RI Davila, Alfonso/A-2198-2013; Dohm, James/A-3831-2014; Marzo, Giuseppe/A-9765-2015 OI Davila, Alfonso/0000-0002-0977-9909; FU NASA; German Science Foundation (DFG) [NE 212/8-3]; Helmholtz Association; German Space Agency (DLR) [50QM0301] FX This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Research by CG and TK was partly supported by the German Science Foundation (DFG) through the Priority Program "Mars and the Terrestrial Planets" (DFG-SPP 1115, Project: "Chronostratigraphy of Mars", Grant: NE 212/8-3), the Helmholtz Association through the research alliance "Planetary Evolution and Life", and the German Space Agency (DLR), Grant: 50QM0301 (HRSC on Mars Express). We are grateful to the CRISM, HiRISE, CTX, HRSC, MOLA, and THEMIS teams for making data available for this project. We are particularly grateful to Sarah Mattson for the invaluable HiRISE-derived DEM of Toro crater. The authors warmly thank John NR 116 TC 71 Z9 71 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 667 EP 683 DI 10.1016/j.icarus.2010.03.013 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000014 ER PT J AU Hintze, PE Buhler, CR Schuerger, AC Calle, LM Calle, CI AF Hintze, Paul E. Buhler, Charles R. Schuerger, Andrew C. Calle, Luz M. Calle, Carlos I. TI Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions SO ICARUS LA English DT Article DE Mars, Surface; Organic chemistry; Mars, Atmosphere; Spectroscopy ID SUPERCRITICAL-FLUID EXTRACTION; MARTIAN DUST DEVILS; GAS-PHASE REACTIONS; IN-SITU ANALYSIS; AROMATIC-HYDROCARBONS; SPACECRAFT SURFACES; OXIDANT ENHANCEMENT; UPPER-ATMOSPHERE; AMINO-ACIDS; CHROMATOGRAPHY AB The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given. Published by Elsevier Inc. C1 [Hintze, Paul E.; Calle, Luz M.] NASA, Corros Technol Lab, Kennedy Space Ctr, FL 32899 USA. [Buhler, Charles R.] NASA, ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. [Schuerger, Andrew C.] Univ Florida, Space Life Sci Lab, Dept Plant Pathol, Kennedy Space Ctr, FL 32899 USA. [Calle, Carlos I.] NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA. RP Hintze, PE (reprint author), Mail Stop NE-L2, Kennedy Space Ctr, FL 32899 USA. EM Paul.E.Hintze@nasa.gov OI Hintze, Paul/0000-0002-9962-2955 FU NASA Science Mission Directorate [MFRP04-0028-0090]; National Research Council at NASA Kennedy Space Center FX The authors would like to acknowledge NASA Science Mission Directorate for funding (Grant #MFRP04-0028-0090). The authors thank Dr. Nasri Nesnas at Florida Institute of Technology for help with the DART mass spectral technique. P.E.H. would like to thank the National Research Council for a Research Associateship Award at NASA Kennedy Space Center. NR 48 TC 10 Z9 10 U1 2 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 749 EP 757 DI 10.1016/j.icarus.2010.03.015 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000019 ER PT J AU Pompilio, L Pedrazzi, G Cloutis, EA Craig, MA Roush, TL AF Pompilio, Loredana Pedrazzi, Giuseppe Cloutis, Edward A. Craig, Michael A. Roush, Ted L. TI Exponential Gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry SO ICARUS LA English DT Article DE Spectroscopy; Thermal histories ID REFLECTANCE SPECTRA; TEMPERATURE; ASTEROIDS; SPECTROSCOPY; METEORITES; PYROXENES; MINERALS; OLIVINE; IRON AB The present investigation is complementary to a previous paper which introduced the EGO approach to spectral modelling of reflectance measurements acquired in the visible and near-IR range (Pompilio, L. Pedrazzi, G., Sgavetti, M., Cloutis, E.A., Craig, MA., Roush, T.L. [2009]. Icarus, 201 (2), 781-794). Here, we show the performances of the EGO model in attempting to account for temperature-induced variations in spectra, specifically band asymmetry. Our main goals are: (1) to recognize and model thermal-induced band asymmetry in reflectance spectra; (2) to develop a basic approach for decomposition of remotely acquired spectra from planetary surfaces, where effects due to temperature variations are most prevalent; (3) to reduce the uncertainty related to quantitative estimation of band position and depth when band asymmetry is occurring. In order to accomplish these objectives, we tested the EGO algorithm on a number of measurements acquired on powdered pyroxenes at sample temperature ranging from 80 up to 400 K. The main results arising from this study are: (1) EGO model is able to numerically account for the occurrence of band asymmetry on reflectance spectra; (2) the returned set of EGO parameters can suggest the influence of some additional effect other than the electronic transition responsible for the absorption feature; (3) the returned set of EGO parameters can help in estimating the surface temperature of a planetary body; (4) the occurrence of absorptions which are less affected by temperature variations can be mapped for minerals and thus used for compositional estimates. Further work is still required in order to analyze the behaviour of the EGO algorithm with respect to temperature-induced band asymmetry using powdered pyroxene spanning a range of compositions and grain sizes and more complex band shapes. (C) 2010 Elsevier Inc. All rights reserved. C1 [Pedrazzi, Giuseppe] Univ Parma, Dipartimento Sanit Pubbl, Sez Fis, I-43100 Parma, Italy. [Cloutis, Edward A.] Univ Winnipeg, Dept Geog, Winnipeg, MB R3B 2E9, Canada. [Craig, Michael A.] Univ Western Ontario, London, ON N6A 5B7, Canada. [Roush, Ted L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pompilio, L (reprint author), Str Inzani 29, I-43125 Parma, Italy. EM loredana.pompilio@gmail.com OI Pedrazzi, Giuseppe/0000-0002-5971-2040 FU CSA; NSERC FX We thank Dr. J.L. Hinrichs and P.G. Lucey who kindly provided us with the data for this study, and an anonymous reviewer whose useful comments allowed us with improving our manuscript. Loredana Pompilio also gratefully recognizes financial support from the SPINNER Consortium, which allowed this work to be carried out. E.A. Cloutis thanks the CSA and NSERC for their support. NR 28 TC 6 Z9 6 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 811 EP 823 DI 10.1016/j.icarus.2010.03.020 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000024 ER PT J AU Rannou, P Cours, T Le Mouelic, S Rodriguez, S Sotin, C Drossart, P Brown, R AF Rannou, P. Cours, T. Le Mouelic, S. Rodriguez, S. Sotin, C. Drossart, P. Brown, R. TI Titan haze distribution and optical properties retrieved from recent observations SO ICARUS LA English DT Article DE Titan; Photometry ID PLANETARY MEASUREMENTS; INFRARED-SPECTROSCOPY; VERTICAL-DISTRIBUTION; RADIATIVE-TRANSFER; ATMOSPHERE; MODEL; AEROSOLS; SPECTRA; CH4; ABSORPTION AB The VIMS instrument onboard Cassini observed the north polar region of Titan at 113 degrees phase angle, 28 December 2006. On this spectral image, a vast polar cloud can be seen northward to 62 degrees N, and elsewhere, the haze appears as the dominant source of scattering. Because the surface does not appear in the wavelength range between 0.3 and 4.9 mu m, this spectro-image is ideal to study airborn scatterers both in methane bands and windows. In this work, we study this image, along with another image taken at 13 degrees phase angle. This image probe both the atmosphere and the surface from pole to pole. First, we characterise the spatial distribution of the haze layer above 100 km between 80 degrees S and 70 degrees N. We find a north south asymmetry with a haze opacity increasing by a factor 3 from the south pole to the equator, then a constant value up to about 30 degrees N and a decrease of a factor 2 between 30 degrees N and about 60 degrees N. Beyond 60 degrees N, we can see the influence of the north polar cloud, even in the band, but no polar haze accumulation. The fact that the north polar region is still in the polar night is a possible explanation. No haze accumulation is observed in the southern polar region. Secondly, we partly identify the origin of spectral features in the 2.8-mu m methane window, which are found to be due to deuterated methane (CH3D). This allows the analyse of this window and to retrieve the opacity of scatterers layer below 80 km (presumably made of aerosols and condensate droplets) between 35 degrees N and 60 degrees N. Finally, we constrained the values and the spectral behaviour of the imaginary part of the aerosol refractive index in the range between 0.3 and 4 mu m. To do so, we studied the 2.8-mu m window with the image taken at 113 degrees phase angle. To complete the analysis, we studied the transmission through the haze layer in the 3.4-mu m band observed in solar occultation mode with VIMS, and we analysed the single scattering albedo retrieved with DISR instrument between 0.4 and 1.6 mu m. The imaginary part of the refractive index that we find for Titan aerosols follows Khare et al. (Khare, B.N. et al. [1984]. Icarus 60, 127-137) optical constant up to 0.8 mu m and becomes constant beyond this wavelength at least up to 1.6 mu m. It also has a prominent peak at 3.4 mu m and a secondary peak at 3 mu m, which indicates material rich in C-H bonds, with much less N-H bonds than in Khare et al. (1984) tholins. (C) 2010 Elsevier Inc. All rights reserved. C1 [Rannou, P.; Cours, T.] Univ Reims, GSMA, CNRS, UMR 6089, F-51100 Reims, France. [Rannou, P.] Univ Versailles St Quentin, LATMOS, CNRS, UMR 8190, Verrieres Le Buisson, France. [Le Mouelic, S.; Sotin, C.] Univ Nantes, LPGN, CNRS, UMR 6112, F-44035 Nantes, France. [Rodriguez, S.] Univ Paris 07, CEA Saclay, CNRS, LAIM,DSM,IRFU,SAp, F-75221 Paris 05, France. [Sotin, C.] CALTECH, JPL, Pasadena, CA 91109 USA. [Drossart, P.] Observ Paris, LESIA, Meudon, France. [Brown, R.] Univ Arizona, LPL, Tucson, AZ 85721 USA. RP Rannou, P (reprint author), Univ Reims, GSMA, CNRS, UMR 6089, F-51100 Reims, France. EM pascal.rannou@univ-reims.fr RI RANNOU, Pascal/I-9059-2012; Rodriguez, Sebastien/H-5902-2016 OI Rodriguez, Sebastien/0000-0003-1219-0641 FU JPL FX The authors thank the reviewers of this paper for their helpful comments. Part of this work has been carried out at the JPL, Caltech under contract with NASA. C.S. acknowledges support by JPL R&TD program. NR 65 TC 40 Z9 40 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 850 EP 867 DI 10.1016/j.icarus.2010.03.016 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000027 ER PT J AU Davies, AG Sotin, C Matson, DL Castillo-Rogez, J Johnson, TV Choukroun, M Baines, KH AF Davies, Ashley Gerard Sotin, Christophe Matson, Dennis L. Castillo-Rogez, Julie Johnson, Torrence V. Choukroun, Mathieu Baines, Kevin H. TI Atmospheric control of the cooling rate of impact melts and cryolavas on Titan's surface SO ICARUS LA English DT Article DE Titan; Enceladus; Volcanism; Saturn, satellites; Impact processes ID CASSINI RADAR OBSERVATIONS; ACTIVE LAVA FLOWS; RHEOLOGICAL PROPERTIES; MODEL; AMMONIA; DUNES; TEMPERATURES; CONSTRAINT; ENCELADUS; SLURRIES AB As on Earth, Titan's atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan's atmosphere, dominantly N(2) at a surface pressure of 1.5 x 10(5) Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by approximate to 50% within approximate to 1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa). Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials. (C) 2010 Elsevier Inc. All rights reserved. C1 [Davies, Ashley Gerard; Sotin, Christophe; Matson, Dennis L.; Castillo-Rogez, Julie; Johnson, Torrence V.; Choukroun, Mathieu; Baines, Kevin H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ashley.g.davies@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 FU JPL; NASA FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. The authors thank Laszlo Keszthelyi and Ellen Stofan for their reviews, which were of great help in improving this paper. A.G.D. thanks the JPL Research and Technology Development Program for seed money to carry out this study, and the NASA Outer Planets Research Program for support. C.S. and J.C.-R. also acknowledge support from the JPL Research and Technology Development Program. M.C. acknowledges support from a NASA Postdoctoral Program Fellowship, administered by Oak Ridge Associated Universities. NR 65 TC 4 Z9 4 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 887 EP 895 DI 10.1016/j.icarus.2010.02.025 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000030 ER PT J AU Nimmo, F Bills, BG AF Nimmo, F. Bills, B. G. TI Shell thickness variations and the long-wavelength topography of Titan SO ICARUS LA English DT Article DE Titan; Tides, Solid body; Geophysics ID INTERNAL STRUCTURE; TIDAL DISSIPATION; GRAVITY-FIELD; GALILEAN SATELLITES; INTERIOR STRUCTURE; ORBITAL EVOLUTION; ICY SATELLITES; TERM STABILITY; LOVE NUMBERS; WATER OCEAN AB The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The spatial variations arise because of laterally-variable tidal heating within the ice shell. Models incorporating shell thickness variations result in an improved fit to the observations and a degree-two tidal Love number h(2t) consistent with expectations, without requiring Titan to have moved away from Saturn. Our preferred models have a mean shell thickness of approximate to 100 km in agreement with the observed gravity anomalies, and a heat flux appropriate to a chondritic Titan. Shell thickness variations are eliminated by convection; we therefore conclude that Titan's ice shell is not convecting at the present day. (C) 2010 Elsevier Inc. All rights reserved. C1 [Nimmo, F.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Bills, B. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nimmo, F (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, 1156 High St, Santa Cruz, CA 95064 USA. EM fnimmo@es.ucsc.edu; bruce.bills@jpl.nasa.gov FU NASA OPR FX Thanks to Howard Zebker for his generous sharing of Cassini data and to two anonymous reviewers, Dave Stevenson and MPN for helpful comments. This work supported by NASA OPR. NR 50 TC 36 Z9 36 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 896 EP 904 DI 10.1016/j.icarus.2010.02.020 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000031 ER PT J AU Soderblom, JM Brown, RH Soderblom, LA Barnes, JW Jaumann, R Le Mouelic, S Sotin, C Stephan, K Baines, KH Buratti, BJ Clark, RN Nicholson, PD AF Soderblom, Jason M. Brown, Robert H. Soderblom, Laurence A. Barnes, Jason W. Jaumann, Ralf Le Mouelic, Stephane Sotin, Christophe Stephan, Katrin Baines, Kevin H. Buratti, Bonnie J. Clark, Roger N. Nicholson, Philip D. TI Geology of the Selk crater region on Titan from Cassini VIMS observations SO ICARUS LA English DT Article DE Titan; Saturn, Satellites; Satellites, Surfaces; Impact processes; Geological processes ID IMPACT CRATERS; EROSIONAL PROCESSES; RADAR MAPPER; LANDING SITE; GANYMEDE; CALLISTO; SURFACE; VENUS; MARS; CHANNELS AB Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located similar to 800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is 90 km; its floor diameter is similar to 60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21 degrees and 122 degrees east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidizedejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. (C) 2010 Elsevier Inc. All rights reserved. C1 [Soderblom, Jason M.; Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Soderblom, Laurence A.] US Geol Survey, Flagstaff, AZ 86001 USA. [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Jaumann, Ralf; Stephan, Katrin] Inst Planetary Res, DLR, Berlin, Germany. [Le Mouelic, Stephane; Sotin, Christophe] Univ Nantes, Lab Planetol & Geodynam, Nantes 03, France. [Sotin, Christophe; Baines, Kevin H.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, Roger N.] US Geol Survey, Denver, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Soderblom, JM (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM jasons@lpl.arizona.edu RI Barnes, Jason/B-1284-2009; OI Barnes, Jason/0000-0002-7755-3530; Soderblom, Jason/0000-0003-3715-6407 FU NASA FX We express our gratitude to the entire Cassini Project with specific thanks to the VIMS Operations Group for years of effort in returning these data. We also thank Ralph Lorenz for his helpful discussion regarding fluid flows on Titan. We are grateful to Alex Hayes and Jani Radebaugh for their thoughtful reviews of this manuscript. This work was supported by the Cassini Project, managed by the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. NR 57 TC 18 Z9 18 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2010 VL 208 IS 2 BP 905 EP 912 DI 10.1016/j.icarus.2010.03.001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 629GJ UT WOS:000280183000032 ER PT J AU Okojie, RS Evans, LJ Lukco, D Morris, JP AF Okojie, R. S. Evans, L. J. Lukco, D. Morris, J. P. TI A Novel Tungsten-Nickel Alloy Ohmic Contact to SiC at 900 degrees C SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Amphoteric; high temperature; nickel; ohmic contacts; silicon carbide; tungsten ID SEMICONDUCTORS AB A novel tungsten-nickel ohmic contact metallization on 4H-SiC and 6H-SiC capable of surviving temperatures as high as 900 degrees C is reported. Preliminary results revealed the following: 1) ohmic contact on n-type 4H-SiC having net doping levels (N(d)'s) of 1.4 and 2 x 10(19) cm(-3), with specific contact resistances (rho sNd)'s of 7.69 x 10(-4) and 5.81 x 10(-4) Omega . cm(2), respectively, after rapid thermal annealing (RTA), and 5.9 x 10(-3) and 2.51 x 10(-4) Omega . cm(2), respectively, after subsequent soak at 900 degrees C for 1 h in argon, and 2) ohmic contact on n- and p-type 6H-SiC having N(d) > 2 x 10(19) and N(a) > 1 x 10(20) cm(-3), with (rho sNd) = 5 x 10(-5) and (rho sNd) = 2 x 10(-4) Omega . cm(2), respectively, after RTA, and (rho sNd) = 2.5 x 10(-5) and (rho sNd) = 1.5 x 10(-4) Omega . cm(2) after subsequent treatment at 900 degrees C for 1 h in argon, respectively. C1 [Okojie, R. S.; Evans, L. J.; Lukco, D.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Lukco, D.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. [Morris, J. P.] Ohio Univ, Dept Elect Engn, Athens, OH 45701 USA. RP Okojie, RS (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM robert.s.okojie@nasa.gov FU NASA FX Manuscript received April 8, 2010; revised May 3, 2010; accepted May 5, 2010. Date of publication June 28, 2010; date of current version July 23, 2010. This work was supported by the NASA Fundamental Aeronautics Program under the Hypersonic and Supersonic Projects. The review of this letter was arranged by Editor S.-H. Ryu. NR 13 TC 12 Z9 13 U1 3 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD AUG PY 2010 VL 31 IS 8 BP 791 EP 793 DI 10.1109/LED.2010.2050761 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 669UX UT WOS:000283376800005 ER PT J AU Bailey, MC Amarin, RA Johnson, JW Nelson, P James, MW Simmons, DE Ruf, CS Jones, WL Gong, X AF Bailey, M. C. Amarin, Ruba A. Johnson, James W. Nelson, Paul James, Mark W. Simmons, David E. Ruf, Christopher S. Jones, W. Linwood Gong, Xun TI Multi-Frequency Synthetic Thinned Array Antenna for the Hurricane Imaging Radiometer SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Microstrip antennas; multifrequency antennas; remote sensing; stacked microstrip antennas; synthetic aperture imaging AB A C-band four-frequency resonant stacked-patch array antenna is developed for synthetic thinned aperture radiometer measurements of hurricane force wind speeds. This antenna is being integrated into an aircraft instrument referred to as the Hurricane Imaging Radiometer (HIRAD). Details of the antenna design are presented along with antenna performance tests and laboratory measurements using a full-scale prototype array with a subset model of the HIRAD instrument. C1 [Bailey, M. C.; Amarin, Ruba A.; Johnson, James W.; Nelson, Paul; Jones, W. Linwood; Gong, Xun] Univ Cent Florida, Orlando, FL 32816 USA. [Bailey, M. C.] Appl EM, Hampton, VA 23666 USA. [James, Mark W.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35806 USA. [Simmons, David E.] Univ Alabama, Huntsville, AL 35816 USA. [Ruf, Christopher S.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Bailey, MC (reprint author), Univ Cent Florida, Orlando, FL 32816 USA. EM m.c.bailey@cox.net; ramarin@mail.ucf.edu; jamesj@mail.ucf.edu; paulnelsonee@gmail.com; Mark.W.James@nasa.gov; david.simmons@uah.edu; cruf@umich.edu; ljones@ucf.edu; xungong@mail.ucf.edu RI Ruf, Christopher/I-9463-2012 FU NASA Marshall Space Flight Center; University of Alabama Huntsville [NNM05AA22A] FX This work was supported by the HIRAD Project of the NASA Marshall Space Flight Center under a grant with the University of Alabama Huntsville Award NNM05AA22A. NR 7 TC 3 Z9 3 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD AUG PY 2010 VL 58 IS 8 BP 2562 EP 2570 DI 10.1109/TAP.2010.2050453 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 670NV UT WOS:000283432500009 ER PT J AU Yueh, SH Dinardo, SJ Fore, AG Li, FK AF Yueh, Simon H. Dinardo, Steve J. Fore, Alexander G. Li, Fuk K. TI Passive and Active L-Band Microwave Observations and Modeling of Ocean Surface Winds SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Microwave remote sensing; ocean salinity; ocean wind; radar; radiometer ID FIELD EXPERIMENTS; SALINITY; RADIOMETER; MISSION; EMISSIVITY; RETRIEVAL; SPACE; SPEED; WATER AB L-band microwave backscatter and brightness temperature of sea surfaces acquired using the Passive/Active L-band Sensor during the High Ocean Wind campaign are reported in terms of their dependence on ocean surface wind speed and direction. We find that the L-band VV, HH, and HV radar backscatter data increase by 6-7 dB from 5 to 25 m/s wind speed at a 45 degrees incidence angle. The data suggest the validity of Phased Array type L-band Synthetic Aperture Radar (PALSAR) HH model function between 5 and 15 m/s wind speeds, but show that the extrapolation of PALSAR model at above 20 m/s wind speeds overpredicts A degrees and alpha(1) coefficients. There is wind direction dependence in the radar backscatter with about 4 dB differences between upwind and crosswind observations at 24 m/s wind speed for VV and HH. The passive brightness temperatures show about a 5-K change for T-V and a 7-K change for T-H for a wind speed increasing from 5 to 25 m/s. Circle flight data suggest a wind direction response of about 1-2 K in T-V and T-H at 14 and 24 m/s wind speeds. The L-band microwave data show excellent linear correlation with the surface wind speed with a correlation better than 0.95. The results support the use of L-band radar data for estimating the wind-driven excess brightness temperature of sea surfaces. The data also support the applications of L-band microwave signals for high-resolution (kilometer scale) observation of ocean surface winds under high wind conditions (10-28 m/s). C1 [Yueh, Simon H.; Dinardo, Steve J.; Fore, Alexander G.; Li, Fuk K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yueh, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simon.yueh@jpl.nasa.gov FU National Aeronautics and Space Administration FX The authors would like to thank the NASA Wallops Flight Facility for carrying out the NASA P-3 aircraft operations. The work described in this paper that was performed by the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration. NR 25 TC 41 Z9 44 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2010 VL 48 IS 8 BP 3087 EP 3100 DI 10.1109/TGRS.2010.2045002 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 656FC UT WOS:000282310600004 ER PT J AU Stiles, BW Hristova-Veleva, SM Dunbar, RS Chan, S Durden, SL Esteban-Fernandez, D Rodriguez, E Poulsen, WL Gaston, RW Callahan, PS AF Stiles, Bryan W. Hristova-Veleva, Svetla M. Dunbar, R. Scott Chan, Samuel Durden, Stephen L. Esteban-Fernandez, Daniel Rodriguez, Ernesto Poulsen, W. Lee Gaston, Robert W. Callahan, Philip S. TI Obtaining Accurate Ocean Surface Winds in Hurricane Conditions: A Dual-Frequency Scatterometry Approach SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hurricanes; ocean surface winds; radar; scatterometry ID TROPICAL CYCLONES; RETRIEVAL; SIMULATIONS; PREDICTION; IMPACT; SSM/I; MODEL AB We describe a method for retrieving winds from colocated Ku- and C-band ocean wind scatterometers. The method utilizes an artificial neural network technique to optimize the weighting of the information from the two frequencies and to use the extra degrees of freedom to account for rain contamination in the measurements. A high-fidelity scatterometer simulation is used to evaluate the efficacy of the technique for retrieving hurricane force winds in the presence of heavy precipitation. Realistic hurricane wind and precipitation fields were simulated for three Atlantic hurricanes, Katrina and Rita in 2005 and Helene in 2006, using the Weather Research and Forecasting model. These fields were then input into a radar simulation previously used to evaluate the Extreme Ocean Vector Wind Mission dual-frequency scatterometer mission concept. The simulation produced high-resolution dual-frequency normalized radar cross-section (NRCS) measurements. The simulated NRCS measurements were binned into 5 x 5 km wind cells. Wind speeds in each cell were estimated using an artificial neural network technique. The method was shown to retrieve accurate winds up to 50 m/s even in intense rain. C1 [Stiles, Bryan W.; Hristova-Veleva, Svetla M.; Dunbar, R. Scott; Chan, Samuel; Durden, Stephen L.; Esteban-Fernandez, Daniel; Rodriguez, Ernesto; Poulsen, W. Lee; Gaston, Robert W.; Callahan, Philip S.] CALTECH, Jet Prop Lab, Pasadena, CA 91214 USA. RP Stiles, BW (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91214 USA. FU NASA FX Manuscript received December 1, 2009. Date of publication May 17, 2010; date of current version July 21, 2010. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. NR 29 TC 8 Z9 8 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2010 VL 48 IS 8 BP 3101 EP 3113 DI 10.1109/TGRS.2010.2045765 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 656FC UT WOS:000282310600005 ER PT J AU Stiles, BW Dunbar, RS AF Stiles, Bryan W. Dunbar, R. Scott TI A Neural Network Technique for Improving the Accuracy of Scatterometer Winds in Rainy Conditions SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Ocean winds; radar; rain; remote sensing; scatterometry ID QUIKSCAT; RETRIEVAL; IMPACT AB We exhibit a technique for improving wind accuracy in Ku-band ocean wind scatterometers in the presence of rain. The technique is autonomous in that it only makes use of measurements made by the scatterometer itself, so that no colocation of an external data set (e.g., rain radiometers) is required to perform the correction. The only inputs to the technique are the normalized radar cross-section measurements for each wind vector cell, the cross-track distance of the cell as a proxy for measurement geometry, and the nominal retrieved wind vector for the cell without rain correction. This last input is used to avoid modifying winds not contaminated by rain. The technique was applied to QuikSCAT data for the month of January 2008, resulting in a marked improvement to rainy data. For data that were determined to be rain contaminated by the Jet Propulsion Laboratory rain flag, the rms speed error with respect to National Data Buoy Center buoy winds improved from 8.9 to 3.5 m/s for colocations within 25 km. The rms speed error in rain also improved when compared with the European Centre Medium-Range Weather Forecast winds from 7 to 3 m/s. Data that were not flagged as rain contaminated were not significantly changed, despite the fact that the technique does not make use of the rain flag. The technique was able to distinguish between rain-contaminated wind cells and rain-free wind cells and to substantially improve the wind speed accuracy of the former using QuikSCAT data alone without recourse to any external information about the extent of the rain. C1 [Stiles, Bryan W.; Dunbar, R. Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stiles, BW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX Manuscript received December 1, 2009; revised February 25, 2010. Date of publication June 1, 2010; date of current version July 21, 2010. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 21 TC 17 Z9 17 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2010 VL 48 IS 8 BP 3114 EP 3122 DI 10.1109/TGRS.2010.2049362 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 656FC UT WOS:000282310600006 ER PT J AU Buchner, S Sibley, M Eaton, P Mavis, D McMorrow, D AF Buchner, Stephen Sibley, Michael Eaton, Paul Mavis, David McMorrow, Dale TI Total Dose Effect on the Propagation of Single Event Transients in a CMOS Inverter String SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 10th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 09) CY SEP 14-18, 2009 CL Bruges, BELGIUM DE CMOS; inverter; laser; single event transient; total ionizing dose ID ERROR RATES; RADIATION; CHAINS; SOI AB Pulsed laser light has been used to reveal how total ionizing dose radiation affects the propagation of single event transients in a string of inverters. By holding the input to the string of inverters at high voltage (1.8 V) during exposure to ionizing radiation, an asymmetry in the threshold voltages of the n-channel transistors is induced, i.e., the inputs to the inverters alternate between high and low voltage, which results in every odd-numbered n-channel transistor experiencing more Total Ionizing Dose (TID) degradation than the even-numbered n-channel transistors. The asymmetry manifests itself as an additional broadening of laser-light induced transients when the input to the string of inverters is set to low voltage and a contraction of the transients when the input is set to high voltage. Exposure of the inverter string to heavy ions with a fixed input voltage resulted in a contraction of the transients, regardless of whether the input was at high or low voltage, behavior that is consistent with the results from pulsed laser testing. C1 [Buchner, Stephen] NASA, Radiat Hardened Elect Grp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sibley, Michael; Eaton, Paul; Mavis, David] MICRO RDC, Albuquerque, NM 87110 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC 20375 USA. RP Buchner, S (reprint author), Global Strategies Grp Inc, Crofton, MD 21114 USA. EM stephen.buchner.ctr@nrl.navy.mil; david.mavis@micro-rdc.com; mcmorrow@ccs.nrl.navy.mil NR 13 TC 6 Z9 6 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2010 VL 57 IS 4 BP 1805 EP 1810 DI 10.1109/TNS.2010.2046752 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 665YR UT WOS:000283074500010 ER PT J AU Schwank, JR Shaneyfelt, MR McMorrow, D Ferlet-Cavrois, V Dodd, P Heidel, DF Marshall, PW Pellish, JA LaBel, KA Rodbell, KP Hakey, M Flores, RS Swanson, SE Dalton, SM AF Schwank, James R. Shaneyfelt, Marty R. McMorrow, Dale Ferlet-Cavrois, Veronique Dodd, Paul Heidel, David F. Marshall, Paul W. Pellish, Jonathan A. LaBel, Kenneth A. Rodbell, Kenneth P. Hakey, Mark Flores, Richard S. Swanson, Scot E. Dalton, Scott M. TI Estimation of Heavy-Ion LET Thresholds in Advanced SOI IC Technologies From Two-Photon Absorption Laser Measurements SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 10th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 09) CY SEP 14-18, 2009 CL Bruges, BELGIUM DE Hardness assurance; heavy-ion testing; laser testing; single-event upset; threshold LET; two-photon absorption ID SINGLE-EVENT-UPSET; TRANSIENT-RESPONSE; PULSED-LASER; ENERGY; SRAM; TRANSISTORS; LATCHUP; IMPACT; CELLS AB The laser energy thresholds for SEU for SOI 1-Mbit SRAMs built in Sandia's 0.35-m SOI technology were measured using carrier generation by two-photon absorption. The laser measurements were correlated to heavy-ion threshold LET measurements to determine an empirical relationship between laser energy threshold and heavy-ion threshold LET. This empirical relationship was used to estimate the threshold LETs for other circuits built in Sandia's 0.35-m SOI technology and SRAMs built in IBM's 45 and 65-nm SOI technologies. For an ASIC built in Sandia's 0.35-m SOI technology the estimated threshold from laser measurements was close to the measured heavy-ion threshold LET. However, for a dual-port SRAM also built in Sandia's 0.35-m SOI technology and for the 45- and 65-nm IBM SOI SRAMs, the threshold LETs estimated from laser measurements did not correlate to the measured heavy-ion threshold LETs. For the IBM SRAMs, the likely cause of the discrepancy between the threshold LETs estimated from laser measurements and the threshold LETs measured by heavy-ion testing is due to the laser pulse simultaneously injecting charge into multiple transistors within a memory cell and/or in adjacent memory cells. This is due to the relatively large size of the laser spot size compared to the size of the SEU sensitive volume of the IBM SOI devices. The hardness assurance implications of these results are discussed. C1 [Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul; Flores, Richard S.; Swanson, Scot E.; Dalton, Scott M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC 20375 USA. [Ferlet-Cavrois, Veronique] ESA ESTEC, NL-2200 AG Noordwijk, Netherlands. [Heidel, David F.; Rodbell, Kenneth P.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Marshall, Paul W.] NASA, Brookneal, VA 24528 USA. [Pellish, Jonathan A.; LaBel, Kenneth A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hakey, Mark] IBM Syst & Technol Grp, Essex Jct, VT 05452 USA. RP Schwank, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM shaneymr@sandia.gov; mcmorrow@ccs.nrl.navy.mil; Veronique.Ferlet-Cavrois@esa.int; pedodd@sandia.gov; heidel@us.ibm.com; pwmarshall@aol.com; jonathan.a.pellish@nasa.gov; kenneth.a.label@nasa.gov; rodbell@us.ibm.com; mhakey@us.ibm.com; floresr@sandia.gov; swansose@sandia.gov; smdalto@sandia.gov NR 21 TC 17 Z9 17 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2010 VL 57 IS 4 BP 1827 EP 1834 DI 10.1109/TNS.2010.2040754 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 665YR UT WOS:000283074500013 ER PT J AU Berg, MD Buchner, SP Kim, H Friendlich, M Perez, C Phan, AM Seidleck, CM Label, KA Kruckmeyer, K AF Berg, Melanie D. Buchner, Stephen P. Kim, Hak Friendlich, Mark Perez, Christopher Phan, Anthony M. Seidleck, Christina M. Label, Kenneth A. Kruckmeyer, Kirby TI Enhancing Observability of Signal Composition and Error Signatures During Dynamic SEE Analog to Digital Device Testing SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 10th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 09) CY SEP 14-18, 2009 CL Bruges, BELGIUM DE ADC; dynamic; FPGA; SEE AB A novel approach to dynamic SEE ADC testing is presented. The benefits of this test scheme versus prior implemented techniques include the ability to observe ADC SEE errors that are in the form of phase shifts, single bit upsets, bursts of disrupted signal composition, and device clock loss. C1 [Berg, Melanie D.; Kim, Hak; Friendlich, Mark; Perez, Christopher; Phan, Anthony M.; Seidleck, Christina M.] MEI Technol Inc, NASA GSFC, Greenbelt, MD 20771 USA. [Buchner, Stephen P.] QSS Inc, NASA GSFC, Greenbelt, MD 20771 USA. [Label, Kenneth A.] NASA, GSFC, Greenbelt, MD 20771 USA. [Kruckmeyer, Kirby] Natl Semicond Corp, Hi Rel Operat, Santa Clara, CA 95052 USA. RP Berg, MD (reprint author), MEI Technol Inc, NASA GSFC, Code 561-4, Greenbelt, MD 20771 USA. EM Melanie.D.Berg@nasa.gov; Stephen.Buchner@nasa.gov; Hak.S.Kim@nasa.gov; Mark.R.Friendlich@nasa.gov; Chritopher.E.Perez@nasa.gov; Anthony.M.Phan@nasa.gov; christina.m.seidleck@nasa.gov; Kenneth.A.Label@nasa.gov; kirby.kruckmeyer@nsc.com NR 14 TC 2 Z9 2 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2010 VL 57 IS 4 BP 1958 EP 1965 DI 10.1109/TNS.2010.2052068 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 665YR UT WOS:000283074500031 ER PT J AU Johnston, AH Rax, BG AF Johnston, Allan H. Rax, B. G. TI Failure Modes and Hardness Assurance for Linear Integrated Circuits in Space Applications SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 10th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 09) CY SEP 14-18, 2009 CL Bruges, BELGIUM DE Hardness assurance; linear circuits; total dose damage ID PROTON-RADIATION; DAMAGE; DEVICES; DEGRADATION AB Failure modes are investigated for linear integrated circuits, including op-amps that are embedded within more complex circuit functions. The specific techniques used in internal circuit design have a large impact on the radiation sensitivity of various device parameters, which makes it difficult to generalize conclusions about failure mechanisms. Loading and bias conditions can be critically important for some devices, and have a large impact on hardness assurance. C1 [Johnston, Allan H.; Rax, B. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnston, AH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM allan.h.john-ston@jpl.nasa.gov; bernard.g.rax@jpl.nasa.gov NR 16 TC 1 Z9 1 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2010 VL 57 IS 4 BP 1966 EP 1972 DI 10.1109/TNS.2010.2049583 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 665YR UT WOS:000283074500032 ER PT J AU Wilcox, EP Phillips, SD Cressler, JD Marshall, PW Carts, MA Pellish, JA Richmond, L Mathes, W Randall, B Post, D Gilbert, B Daniel, E AF Wilcox, Edward P. Phillips, Stanley D. Cressler, John D. Marshall, Paul W. Carts, Martin A. Pellish, Jonathan A. Richmond, Larry Mathes, William Randall, Barbara Post, Devon Gilbert, Barry Daniel, Erik TI Non-TMR SEU-Hardening Techniques for SiGe HBT Shift Registers and Clock Buffers SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 10th European Conference on Radiation and Its Effects on Components and Systems (RADECS - 09) CY SEP 14-18, 2009 CL Bruges, BELGIUM DE Bit-error rate testing; gated feedback cell (GFC); radiation hardening by design (RHBD); silicon-germanium (SiGe); single event upset (SEU) ID CIRCUITS; LOGIC AB We report new results from both broad-beam, heavy-ion and proton experiments for circuit-level RHBD techniques in SiGe digital logic. Redundant circuit elements within the latches are used to significantly reduce single-event upset rates in shift registers and clock paths, without resorting to TMR techniques. C1 [Wilcox, Edward P.; Phillips, Stanley D.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Marshall, Paul W.] NASA, Goddard Space Flight Ctr, Brookneal, VA 24528 USA. [Carts, Martin A.; Pellish, Jonathan A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richmond, Larry; Mathes, William] Gen Dynam C4 Syst, Tempe, AZ USA. [Randall, Barbara; Post, Devon; Gilbert, Barry; Daniel, Erik] Mayo Fdn, Rochester, MN 55905 USA. RP Wilcox, EP (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, 777 Atlantic Dr,NW, Atlanta, GA 30332 USA. EM twilcox@ece.gatech.edu; stan.phillips@gatech.edu; cressler@ece.gatech.edu; pwmarshall@aol.com; martin.a.carts@nasa.gov; jonathan.a.pel-lish@nasa.gov; Larry.Richmond@gdc4s.com; Bill.Mathes@gdc4s.com; randall.barbara@mayo.edu; Post.Devon@mayo.edu NR 10 TC 2 Z9 2 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2010 VL 57 IS 4 BP 2119 EP 2123 DI 10.1109/TNS.2010.2051681 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 665YR UT WOS:000283074500053 ER PT J AU Sengstacken, AJ DeLaurentis, DA Akbarzadeh, MR AF Sengstacken, Aaron J. DeLaurentis, Daniel A. Akbarzadeh-T, Mohammad R. TI Optimization of Shared Autonomy Vehicle Control Architectures for Swarm Operations SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS LA English DT Article DE Fuzzy logic; genetic algorithm (GA); road vehicle control; shared autonomy ID FUZZY-SYSTEMS; RULES AB The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a "swarm" concept of operations. The swarm, which is a collection of vehicles traveling at high speeds and in close proximity, will require technology and management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared autonomy control approach, in which the strengths of both human drivers and machines are employed in concert for this management. Building from a fuzzy logic control implementation, optimal architectures for shared autonomy addressing differing classes of drivers (represented by the driver's response time) are developed through a genetic-algorithm-based search for preferred fuzzy rules. Additionally, a form of "phase transition" from a safe to an unsafe swarm architecture as the amount of sensor capability is varied uncovers key insights on the required technology to enable successful shared autonomy for swarm operations. C1 [Sengstacken, Aaron J.; DeLaurentis, Daniel A.] Purdue Univ, Dept Aeronaut & Astronaut, W Lafayette, IN 47906 USA. [Akbarzadeh-T, Mohammad R.] Ferdowsi Univ Mashhad, Dept Elect Engn, Mashhad 9177948974, Iran. RP Sengstacken, AJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Aaron.J.Sengstacken@jpl.nasa.gov; ddelaure@purdue.edu; akbarzadeh@ieee.org FU Honda R&D Americas, Inc. FX This work was supported in part by the Honda R&D Americas, Inc., through the Honda Initiation Grant. This paper was recommended by Associate Editor A. Tayebi. NR 40 TC 4 Z9 4 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4419 EI 1941-0492 J9 IEEE T SYST MAN CY B JI IEEE Trans. Syst. Man Cybern. Part B-Cybern. PD AUG PY 2010 VL 40 IS 4 SI SI BP 1145 EP 1157 DI 10.1109/TSMCB.2009.2035099 PG 13 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Computer Science, Cybernetics SC Automation & Control Systems; Computer Science GA 656PJ UT WOS:000282348400014 PM 19963700 ER PT J AU Ye, HC Fetzer, EJ AF Ye, Hengchun Fetzer, Eric J. TI Atmospheric moisture content associated with surface air temperatures over northern Eurasia SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE atmospheric moisture; northern Eurasia; Clausius-Clapeyron; AIRS; air temperature ID PRECIPITATION CHARACTERISTICS; HEAVY PRECIPITATION; SECULAR TRENDS; WATER-VAPOR; VARIABILITY; FREQUENCY; HUMIDITY; OCEANS; MODEL AB This study uses both historical station records and Atmospheric Infrared Sounder (AIRS) satellite instrument products to examine the relationship between atmospheric moisture content and surface air temperature over northern Eurasia, with a special emphasis on the summer season. We find that the rate of atmospheric water vapor content change with temperature varies by season and generally decreases with increasing air temperature. The average rate of water vapor pressure increase with air temperature is 7.57%/degrees C in winter, 4.78%/degrees C in spring, 3.06%/degrees C in summer, and 4.39%/degrees C in fall based on 80 weather station records over a 55-year period. The average rate of atmospheric total precipitable water increases is about 3.02%/degrees C based on AIRS data from the most recent four summers over northern Eurasia. Except for the winter season, these rates are considerably lower than the 7%/degrees C rate that the Clausius-Clapeyron relationship and constant relative humidity would suggest. During summer season, we also found decreasing water vapor partial pressure and decreasing total water vapor with increasing air temperature at southern and southwestern study regions where higher mean temperatures are found. The large regional and seasonal variations in water vapor-temperature relationship over Eurasia imply that potential amplified water vapor feedback is most likely to be found in cold regions during the cold season while it may not be as significant as expected during the warm season. Copyright (C) 2009 Royal Meteorological Society C1 [Ye, Hengchun] Calif State Univ Los Angeles, Dept Geog & Urban Anal, Los Angeles, CA 90032 USA. [Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ye, HC (reprint author), Calif State Univ Los Angeles, Dept Geog & Urban Anal, 5151 State Univ Dr, Los Angeles, CA 90032 USA. EM hye2@calstatela.edu FU JPL; CEA-CREST; NASA FX The first author would like to thank JPL's summer faculty fellowship and the CEA-CREST program at Cal-State LA for making this research possible. The second author was supported by the AIRS project at JPL, and by the NASA and Energy and Water-cycle Study (NEWS) project. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 47 TC 5 Z9 5 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 J9 INT J CLIMATOL JI Int. J. Climatol. PD AUG PY 2010 VL 30 IS 10 BP 1463 EP 1471 DI 10.1002/joc.1991 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 637ZC UT WOS:000280856900004 ER PT J AU Salem, J Ghosn, L AF Salem, Jonathan Ghosn, Louis TI Measuring Crack Length in Coarse Grain Ceramics SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Spinel; fracture toughness; strain; crack length AB Due to a coarse grain structure, crack lengths in precracked magnesium aluminate (MgAlO(4)) spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement. C1 [Salem, Jonathan; Ghosn, Louis] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Salem, J (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM jsalem@GRC.NASA.gov NR 7 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 J9 INT J FRACTURE JI Int. J. Fract. PD AUG PY 2010 VL 164 IS 2 BP 319 EP 323 DI 10.1007/s10704-010-9461-1 PG 5 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 612JL UT WOS:000278894000009 ER PT J AU Diaz, JA Pieri, D Arkin, CR Gore, E Griffin, TP Fladeland, M Bland, G Soto, C Madrigal, Y Castillo, D Rojas, E Achi, S AF Andres Diaz, Jorge Pieri, David Arkin, C. Richard Gore, Eric Griffin, Timothy P. Fladeland, Matthew Bland, Geoff Soto, Carlomagno Madrigal, Yetty Castillo, Daniel Rojas, Edgar Achi, Sergio TI Utilization of in situ airborne MS-based instrumentation for the study of gaseous emissions at active volcanoes SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE In situ mass spectrometry; Portable mass spectrometer; Volcanic monitoring; Volcano plume analysis; Remote sensing calibration/validation ID MASS-SPECTROMETER SYSTEM AB A small, 24V powered, portable mass spectrometer system, named ULISSES, for the study and visualization of gaseous volcanic emission is described. First deployments of the system have focused on both ground and airborne in situ measurement to monitor the awakening of the Turrialba Volcano in Costa Rica. Key gas measurements were acquired prior and after its eruption on 5 January 2010, confirming the presence of gas chemistry precursors typical of volcanic eruptions. Ground and airborne measurements were acquired to gain volcanological insight and as the first step towards the use of unmanned aerial vehicles (UAVs) as future airborne platforms and to confirm its unique capability to serve as a calibration/validation tool for satellite remote sensing data. Low parts per million (ppm) levels of helium and a large concentration of sulfur dioxide were measured in situ after the initial eruption. In particular, the SO(2) data correlated with satellite remote sensing data. (c) 2010 Elsevier B.V. All rights reserved. C1 [Andres Diaz, Jorge; Madrigal, Yetty; Castillo, Daniel; Rojas, Edgar; Achi, Sergio] Univ Costa Rica, Escuela Fis, Gas Sensing Lab, CICANUM, San Jose, Costa Rica. [Pieri, David] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Arkin, C. Richard] ASRC Aerosp Corp, Kennedy Space Ctr, FL USA. [Gore, Eric; Griffin, Timothy P.] NASA, Kennedy Space Ctr, FL USA. [Fladeland, Matthew] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Soto, Carlomagno] Org Trop Studies, GIS Lab, La Selva, Sarapiqui, Costa Rica. RP Diaz, JA (reprint author), Univ Costa Rica, Escuela Fis, Gas Sensing Lab, CICANUM, FM 430, San Jose, Costa Rica. EM jorge.andres.diaz@gmail.com RI Soto Castro, Carlomagno/G-6510-2014 OI Soto Castro, Carlomagno/0000-0002-1916-9549 FU Ministry of Security; Universidad de Costa Rica [915-A9-091]; CONICIT/MICIT Fondo de Incentivos [FI-003-10]; Jet Propulsion Laboratory of the California Institute of Technology in Pasadena FX We would also like to thank the "Servicio de Vigilancia Aerea" from the Ministry of Security for their support in lending the aircraft and flying the ULISES instrument and mission specialist into the Turrialba Volcano plumes. We also thank Eliecer Duarte, Erick Fernandez from OVSICORI at UNA, and Carlos Ramirez and Raul Castro from RSN for their logistics support during the Turrialba Volcano ground site visits and collecting bottle samples for lab inter-comparison and system calibration.; We would like to acknowledge the Dean of Research at the Universidad de Costa Rica for the financial support of part of this project under grant 915-A9-091 and CONICIT/MICIT Fondo de Incentivos under grant FI-003-10. This research was also carried out, in part, under contract to the Earth Surface and Interior Focus Area of NASA, at the Jet Propulsion Laboratory of the California Institute of Technology in Pasadena. NR 20 TC 18 Z9 18 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD AUG 1 PY 2010 VL 295 IS 3 SI SI BP 105 EP 112 DI 10.1016/j.ijms.2010.04.013 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 657IT UT WOS:000282407100002 ER PT J AU Getty, SA ten Kate, IL Feng, SH Brinckerhoff, WB Cardiff, EH Holmes, VE King, TT Li, MJ Mumm, E Mahaffy, PR Glavin, DP AF Getty, Stephanie A. ten Kate, Inge L. Feng, Steven H. Brinckerhoff, William B. Cardiff, Eric H. Holmes, Vincent E. King, Todd T. Li, Mary J. Mumm, Erik Mahaffy, Paul R. Glavin, Daniel P. TI Development of an evolved gas-time-of-flight mass spectrometer for the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Time-of-flight; Pyrolysis; Planetary science; Mass spectrometry; Field emission; Carbon nanotube ID FIELD-EMISSION; MARS; ANALYZER; CARBON; ION AB Low power, robust technologies are appealing for in situ planetary science throughout the Solar System. The VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument is under development toward studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon and on the surface of other airless bodies. VAPoR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Two components of the system have been characterized in parallel development: a field-tested sample heater design and a laboratory-based time-of-flight mass spectrometer that emphasizes reduced mass and power through the use of micro- and nanotechnology. The pyrolysis field unit, vacuum-coupled to a commercial residual gas analyzer, has been used in Hawaii to analyze Mauna Kea soils. Water was detected, as were key inorganic pyrolysis products, including CO(2) and SO(2), and organic volatiles, including methane, benzene, toluene, and various hydrocarbon fragments. In parallel development, a laboratory reflectron time-of-flight mass spectrometer has been designed, assembled, and tested using electron impact ionization from a carbon nanotube electron gun. Preliminary testing reveals a mass resolution of 270. Published by Elsevier B.V. C1 [Getty, Stephanie A.] NASA, Goddard Space Flight Ctr, Mat Engn Branch, Greenbelt, MD 20771 USA. [ten Kate, Inge L.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Holmes, Vincent E.] Bast Technol, Lanham, MD 20706 USA. [Mumm, Erik] Honeybee Robot, New York, NY 10001 USA. RP Getty, SA (reprint author), NASA, Goddard Space Flight Ctr, Mat Engn Branch, Mailstop 541-0, Greenbelt, MD 20771 USA. EM stephanie.a.getty@nasa.gov; inge.l.tenkate@nasa.gov; steven.h.feng@nasa.gov; william.b.brinckerhoff@nasa.gov; eric.h.cardiff@nasa.gov; vincent.holmes@nasa.gov; todd.t.king@nasa.gov; mary.j.li@nasa.gov; mumm@honeybeerobotics.com; paul.r.mahaffy@nasa.gov; daniel.p.glavin@nasa.gov RI Getty, Stephanie/D-7037-2012; Mahaffy, Paul/E-4609-2012; Brinckerhoff, William/F-3453-2012; Glavin, Daniel/D-6194-2012 OI Brinckerhoff, William/0000-0001-5121-2634; Glavin, Daniel/0000-0001-7779-7765 FU NASA [07-ASTID07-0020]; GSFC; Field Science Analog Testing Program FX The authors would like to acknowledge support from the NASA Astrobiology Science and Technology Instrument Development Program (07-ASTID07-0020), the GSFC Internal Research and Development Program, and the Field Science Analog Testing Program. NR 25 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD AUG 1 PY 2010 VL 295 IS 3 SI SI BP 124 EP 132 DI 10.1016/j.ijms.2010.06.020 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 657IT UT WOS:000282407100005 ER PT J AU Schreier, MM Kahn, BH Eldering, A Elliott, DA Fishbein, E Irion, FW Pagano, TS AF Schreier, M. M. Kahn, B. H. Eldering, A. Elliott, D. A. Fishbein, E. Irion, F. W. Pagano, T. S. TI Radiance Comparisons of MODIS and AIRS Using Spatial Response Information SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CLOUD DETECTION; PART I; PRODUCTS; RETRIEVAL; AIRS/AMSU/HSB; VALIDATION; INSTRUMENT; PARAMETERS; MISSION; SPACE AB The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) on board the Earth Observing System (EOS) Aqua. Toward the goal of an improved collocation methodology, the channel-and scan angle-dependent spatial response functions of AIRS that were obtained from prelaunch measurements and calculated impacts from scan geometry are shown within the context of radiance comparisons. The AIRS spatial response functions are used to improve the averaging of MODIS radiances to the AIRS footprint, and the variability of brightness temperature differences (Delta T-b) between MODIS and AIRS are quantified on a channel-by-channel basis. To test possible connections between Delta T-b and the derived level 2 (L2) datasets, cloud characteristics derived from MODIS are used to highlight correlations between these quantities and Delta T-b, especially for ice clouds in H2O and CO2 bands. Furthermore, correlations are quantified for temperature lapse rate (dT/dp) and the magnitude of water vapor mixing ratio (q) obtained from AIRS L2 retrievals. Larger values of dT/dp and q correlate well to larger values of Delta T-b in the H2O and CO2 bands. These correlations were largely eliminated or reduced after the MODIS spectral response functions were shifted by recommended values. While this investigation shows that the AIRS spatial response functions are necessary to reduce the variability and skewness of Delta T-b within heterogeneous scenes, improved knowledge about MODIS spectral response functions is necessary to reduce biases in Delta T-b. C1 [Schreier, M. M.; Kahn, B. H.; Eldering, A.; Elliott, D. A.; Fishbein, E.; Irion, F. W.; Pagano, T. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schreier, M. M.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Schreier, MM (reprint author), CALTECH, Jet Prop Lab, Mail Stop 169-237,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mathias.schreier@jpl.nasa.gov FU NASA [NNX08AI09G] FX Funding for this project was provided by NASA Award NNX08AI09G. The authors thank the AIRS project at the Jet Propulsion Laboratory and Hal Maring at the NASA Radiation Science program for support. MODIS data were obtained through the level 1 and Atmosphere Archive and Distribution System (LAADS; http://ladsweb.nascom.nasa.gov/). AIRS data were obtained through the Goddard Earth Sciences Data and Information Services Center (http://daac.gsfc.nasa.gov). A portion of this work was performed within the Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) of the University of California, Los Angeles (UCLA) and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The authors thank two anonymous reviewers for their comments and suggestions. NR 29 TC 15 Z9 15 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD AUG PY 2010 VL 27 IS 8 BP 1331 EP 1342 DI 10.1175/2010JTECHA1424.1 PG 12 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 641WB UT WOS:000281160600005 ER PT J AU Chambers, DP Willis, JK AF Chambers, Don P. Willis, Josh K. TI A Global Evaluation of Ocean Bottom Pressure from GRACE, OMCT, and Steric-Corrected Altimetry SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID TOPEX/POSEIDON AB Ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) and the Ocean Model for Circulation and Tides (OMCT) are compared globally with OBP computed from altimetry corrected for steric variations from Argo floats from January 2005 to December 2007. Two methods of smoothing the GRACE data are examined. The first uses a standard Gaussian smoother with a radius of 300 km. The second method projects those smoothed maps onto empirical orthogonal functions derived from OMCT in a least squares estimation in order to produce maps that better agree with the physical processes embodied by the model. These new maps agree significantly better with estimates from the steric-corrected altimetry, reducing the variance on average by 30% over 70% of the ocean. This is compared to smaller reductions over only 14% of the ocean using the 300-km Gaussian maps and 56% of the ocean using OMCT maps. The OMCT maps do not reduce variance as much in the Southern Ocean where OBP variations are largest, whereas the GRACE maps do. Based on this analysis, it is estimated that the local, or point-to-point, uncertainty of new EOF filtered maps of GRACE OBP is 1.3 (one standard deviation). C1 [Chambers, Don P.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Willis, Josh K.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA. RP Chambers, DP (reprint author), Univ S Florida, Coll Marine Sci, 140 7th Ave S,MSL119, St Petersburg, FL 33701 USA. EM dchambers@marine.usf.edu OI Chambers, Don/0000-0002-5439-0257 FU NASA; CNES; Jet Propulsion Laboratory; NASA GRACE Science Team [NNX08AF01G] FX We thank V. Zlotnicki and M. Watkins for comments on an earlier draft of this paper. The GRACE data were computed with support by the NASA Earth Science REASoN and "Making Earth System Data Records for Use in Research Environments" (MEASURES) Programs (available at http://grace.jpl.nasa.gov). The altimeter products were produced by Ssalto/Duacs and distributed by AVISO with support from CNES and are available online (http://www.aviso.oceanobs.com/en/data). The float data were collected and made freely available by the International Argo Project (a pilot program of the Global Ocean Observing System) and contributing national programs (available at http://www.argo.net). Support for the research was provided by the aforementioned REASoN and MEASURES programs through a subcontract with the Jet Propulsion Laboratory and Grant NNX08AF01G from the NASA GRACE Science Team. NR 25 TC 18 Z9 20 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD AUG PY 2010 VL 27 IS 8 BP 1395 EP 1402 DI 10.1175/2010JTECHO738.1 PG 8 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 641WB UT WOS:000281160600010 ER PT J AU Yang, SC Rienecker, M Keppenne, C AF Yang, Shu-Chih Rienecker, Michele Keppenne, Christian TI The Impact of Ocean Data Assimilation on Seasonal-to-Interannual Forecasts: A Case Study of the 2006 El Nino Event SO JOURNAL OF CLIMATE LA English DT Article ID TROPICAL PACIFIC-OCEAN; BRED VECTORS; COUPLED MODEL; ENSO; SALINITY; PREDICTABILITY; VARIABILITY; PREDICTIONS; SENSITIVITY AB This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nino event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vector (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Nino event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Nino event. C1 [Yang, Shu-Chih] Natl Cent Univ, Dept Atmospher Sci, Jhongli 32001, Taoyuan County, Taiwan. [Yang, Shu-Chih; Rienecker, Michele; Keppenne, Christian] NASA, GSFC, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Keppenne, Christian] SAIC Inc, Mclean, VA USA. RP Yang, SC (reprint author), Natl Cent Univ, Dept Atmospher Sci, 300 Jhongda Rd, Jhongli 32001, Taoyuan County, Taiwan. EM shuchih.yang@atm.ncu.edu.tw FU NASA [NNG06GB77G]; Taiwan National Science Council [97-2111-M-008-02] FX The authors are very grateful for technical support from Jelena Marshak, Robin Kovach, and Jossy Jacob of the GMAO. This research was supported by funding from NASA's Modeling, Analysis, and Prediction (MAP) program. S.-C. Yang was also supported by NASA Grant NNG06GB77G and Taiwan National Science Council Grant 97-2111-M-008-02. Computational resources were provided by the NASA Center for Computational Sciences at the Goddard Space Flight Center. The authors also gratefully acknowledge the TAO project Office of NOAA/PMEL for providing the TAO/TRITON mooring data. The Argo data were downloaded from the USGODAE Argo GDAC at U.S. Navy's Fleet Numerical Meteorology and Oceanography Center. NR 32 TC 8 Z9 8 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG 1 PY 2010 VL 23 IS 15 BP 4080 EP 4095 DI 10.1175/2010JCLI3319.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 645WX UT WOS:000281498000003 ER PT J AU Asthana, R Singh, M Sobczak, N AF Asthana, Rajiv Singh, Mrityunjay Sobczak, Natalia TI Wetting behavior and interfacial microstructure of palladium- and silver-based braze alloys with C-C and SiC-SiC composites SO JOURNAL OF MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Conference on High-Temperature Joining (EUROMAT 2009) CY SEP 07-10, 2009 CL Glasgow, SCOTLAND SP Federat Eruropean Mat Soc ID TEMPERATURE CERAMIC COMPOSITES; METALLIC-GLASS INTERLAYERS; CARBON-CARBON COMPOSITES; CLAD-MOLYBDENUM; WETTABILITY; TITANIUM; TI; SYSTEMS; JOINTS AB High-temperature sessile-drop wettability tests were conducted on unpolished C-C and SiC-SiC composite substrates using commercial braze alloys Palco (Pd-35Co), Palni (Pd-40Ni), Cusil-ABA (63Ag-35.3Cu-1.75Ti), and Ticusil (68.8Ag-26.7Cu-4.5Ti). Observations revealed non-uniform, anisotropic spreading, copious braze infiltration of the composite substrates, particularly C-C composite, and Ti enrichment at the composite/braze interface together with dissolution of Si (from SiC-SiC composite) in braze and diffusion of Co (from Palco) in the composite. The droplet/composite contact region near the droplet center revealed intimate and microstructurally sound bonding. However, inter-laminar shear cracking within the SiC-SiC composite in contact with Ticusil, Palco, and Palni, and partial substrate/droplet de-cohesion near the edge of the droplet were also observed. In Palco and Palni droplets, fiber tows in the contact region de-laminated from the main body of the composite via inter-laminar shear cracking resulting in fiber flotation, segregation, and surface degradation. The study is one of the first empirical enquiries into the complex wetting and spreading behavior of brazes on commercial C-C and SiC-SiC composites. C1 [Asthana, Rajiv] Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. [Singh, Mrityunjay] NASA, Ohio Aerosp Inst, Glenn Res Ctr, Cleveland, OH 44135 USA. [Sobczak, Natalia] Foundry Res Inst, Ctr High Temp Studies, PL-30418 Krakow, Poland. RP Asthana, R (reprint author), Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. EM asthanar@uwstout.edu NR 26 TC 13 Z9 13 U1 0 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD AUG PY 2010 VL 45 IS 16 BP 4276 EP 4290 DI 10.1007/s10853-010-4647-5 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA 610NN UT WOS:000278739900005 ER PT J AU Singh, M Asthana, R AF Singh, M. Asthana, R. TI Joining and integration of ZrB2-based ultra-high temperature ceramic composites using advanced brazing technology SO JOURNAL OF MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Conference on High-Temperature Joining (EUROMAT 2009) CY SEP 07-10, 2009 CL Glasgow, SCOTLAND SP Federat European Mat Soc ID TO-METAL JOINTS; LIQUID-METALS; INTERLAYERS AB Zirconium diboride-SiC (ZS) particulate ceramic-matrix composites containing either carbon powder (termed ZSC composite) or SCS-9a silicon carbide fibers (termed ZSS composite) were joined to titanium and Inconel 625 using Pd-base brazes, Palco and Palni (T (L) similar to 1492-1513 K). The joints exhibited intimate contact and evidence of interdiffusion of Zr, Si, Pd, and Co, with the Palni joints exhibiting most extensive chemical interaction, greater propensity toward cracking, and partial melting of the Inconel substrate. The joint region comprised of braze-plus-interaction zone exhibited comparable Knoop hardness in Palni and Palco joints. The fully dense ZS had the highest (2000-2600 HK200) and ZSC the lowest (300-750 HK200) Knoop hardness. The ZSS composites displayed a large dispersion in hardness because of incomplete densification (similar to 30% porosity) and transversal cracking from the CTE mismatch between SCS-9a fibers and the ZS matrix. Steady-state thermal calculations reveal that for joined assemblies (similar to 0.51 cm total thickness in the study), joining Ti or Inconel to ZS shall decrease the thermal resistance by nearly 33-43% relative to the metal substrate, thus enhancing the heat dissipation capability in advanced components made using such joints. C1 [Asthana, R.] Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. [Singh, M.] NASA, Glenn Res Ctr, Ohio Aerosp Inst, Cleveland, OH 44135 USA. RP Asthana, R (reprint author), Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. EM asthanar@uwstout.edu NR 21 TC 28 Z9 28 U1 1 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD AUG PY 2010 VL 45 IS 16 BP 4308 EP 4320 DI 10.1007/s10853-010-4510-8 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 610NN UT WOS:000278739900008 ER PT J AU Sung, K Mantz, AW Smith, MAH Brown, LR Crawford, TJ Devi, VM Benner, DC AF Sung, K. Mantz, A. W. Smith, M. A. H. Brown, L. R. Crawford, T. J. Devi, V. M. Benner, D. C. TI Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for (CH4)-C-13 at 7 mu m SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Fourier transform spectra; Cold cell; Methane; Line broadening; Temperature dependence; Titan atmosphere; Infrared ID BROADENED HALF-WIDTHS; INDUCED LINE SHIFTS; TEMPERATURE-DEPENDENCE; MULTISPECTRUM ANALYSIS; (CO)-C-12-O-16 RELEVANT; ATMOSPHERIC SPECTRA; NU(4) BAND; V(3) BAND; 90 K; METHANE AB New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of +/-0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 cm(-1) spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the v(4) fundamental band of (CH4)-C-13 indicated that an empirical power law used for the temperature dependence of the N-2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K: instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17, 18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres. (C) 2010 Elsevier Inc. All rights reserved. C1 [Sung, K.; Brown, L. R.; Crawford, T. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Smith, M. A. H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Devi, V. M.; Benner, D. C.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Sung, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Keeyoon.Sung@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015 FU Jet Propulsion Laboratory (JPL); California Institute of Technology; NASA Langley Research Center; College of William and Mary; Connecticut College; National Aeronautics and Space Administration FX The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, NASA Langley Research Center, the College of William and Mary, and Connecticut College was performed under contracts and grants with National Aeronautics and Space Administration. NR 51 TC 17 Z9 17 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD AUG PY 2010 VL 262 IS 2 BP 122 EP 134 DI 10.1016/j.jms.2010.05.004 PG 13 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 638XA UT WOS:000280930600009 ER PT J AU Zhai, PW Hu, YX Trepte, CR Lucker, PL Josset, DB AF Zhai, Peng-Wang Hu, Yongxiang Trepte, Charles R. Lucker, Patricia L. Josset, Damien B. TI Decoupling error for the atmospheric correction in ocean color remote sensing algorithms SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Atmospheric and ocean optics; Propagation; Transmission; Attenuation; Radiative transfer; Scattering; Polarization ID WATER-LEAVING RADIANCE; CASE-1 WATERS; SIMULTANEOUS RETRIEVAL; COUPLED ATMOSPHERE; RADIATIVE-TRANSFER; PHASE FUNCTION; ABSORPTION; SCATTERING; MODEL; ACCURATE AB This paper studies the decoupling error associated with the atmospheric correction procedures in the ocean color remote sensing algorithms. The decoupling error is caused by the lack of proper consideration of multiple scattering between the atmospheric and ocean components. In other words, the atmosphere and ocean are not coupled properly. A vector radiative transfer model for the coupled atmosphere and ocean (CAO) system based on the successive order of scattering (SOS) method is used to study the error. The inherent optical properties (IOPs) of the ocean are provided by the most updated bio-optical models. Two wavelengths are used in the study, 412 and 555 nm. For a detector located just above the ocean interface, the decoupling errors range from 0.3% to 7% at 412 nm; and from 0.3% to 3 % at 555 nm for zenith viewing angles smaller than 70 degrees. The decoupling errors are significantly larger for larger zenith viewing angles for this detector. For a detector at the top of the atmosphere (TOA), it is hard to separate the decoupling error from the error introduced by the diffuse transmittance. If we assume the upwelling radiance is uniform just below the ocean surface when estimating the diffuse transmittance, the decoupling errors are from -4% to 8% for zenith viewing angles smaller than 70 degrees; and negative decoupling errors show up at mainly large zenith viewing angles. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Zhai, Peng-Wang; Lucker, Patricia L.] SSAI, Hampton, VA 23666 USA. [Hu, Yongxiang; Trepte, Charles R.] MS 475 NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Zhai, PW (reprint author), SSAI, 1 Enterprise Pkwy Suite 200, Hampton, VA 23666 USA. EM Pengwang.zhai-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 FU NASA FX This study is supported by the NASA Radiation Science program administrated Hal Maring and the Biogeochemistry program administrated by Paula Bontempi. We would like to thank A. Bricaud for the absorption coefficient data. We also gratefully acknowledge the two anonymous reviewers for their comments about the diffuse transmittance calculation and origin of the decoupling NR 27 TC 2 Z9 2 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD AUG PY 2010 VL 111 IS 12-13 BP 1958 EP 1963 DI 10.1016/j.jqsrt.2010.03.017 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 620PO UT WOS:000279512000008 ER PT J AU Rozanov, VV Lyapustin, AI AF Rozanov, Vladimir V. Lyapustin, Alexei I. TI Similarity of radiative transfer equation: Error analysis of phase function truncation techniques SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer; Phase function truncation; Discrete-ordinates ID PLANETARY ATMOSPHERES; MULTIPLE-SCATTERING; APPROXIMATION; CLOUDY AB Accurate radiance computations with highly peaked phase functions is a challenging problem. The developed truncation methods replace the peak of phase function using different approximations in the cone of forward scattering. The main goal of this paper is to employ a new integral form of similarity conditions to the error analysis of truncation techniques. This analysis emphasizes two main error sources of these methods from (1) truncation of Legendre series, and (2) truncation of the forward cone for peaked phase functions. The first error has an oscillating pattern and is effectively suppressed by the single scattering correction. The second, often overlooked, error manifests itself as a bias which weakly depends on the number of Legendre terms used in the solution unless it becomes comparable to the total order of Legendre expansion series. This paper presents a comparative theoretical and numerical error analysis of the Delta function method [15], Delta-fit method [7], and Delta-M method [21]. The Delta-M method, combined with the single scattering correction, is shown to provide the best overall accuracy for the intensity computations. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Rozanov, Vladimir V.] Univ Bremen, Inst Remote Sensing, D-28334 Bremen, Germany. [Lyapustin, Alexei I.] Univ Maryland Baltimore Cty, GEST, Greenbelt, MD 20771 USA. [Lyapustin, Alexei I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rozanov, VV (reprint author), Univ Bremen, Inst Remote Sensing, Otto Hahn Allee 1, D-28334 Bremen, Germany. EM rozanov@iup.physik.uni-bremen.de RI Lyapustin, Alexei/H-9924-2014 OI Lyapustin, Alexei/0000-0003-1105-5739 FU German Aerospace Center DLR [50EE0727]; University of the Land Bremen; NASA; DAAD FX The work of V. Rozanov has been funded by the German Aerospace Center DLR (Grant 50EE0727), and by the University of the Land Bremen. A. Lyapustin was supported in part by the NASA Terrestrial Ecology Program and by the DAAD 2009 Grant of academic exchange program. NR 23 TC 15 Z9 15 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD AUG PY 2010 VL 111 IS 12-13 BP 1964 EP 1979 DI 10.1016/j.jqsrt.2010.03.018 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 620PO UT WOS:000279512000009 ER PT J AU Squire, TH Marschall, J AF Squire, Thomas H. Marschall, Jochen TI Material property requirements for analysis and design of UHTC components in hypersonic applications SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article; Proceedings Paper CT Workshop on Aerospace Materials for Extreme Environments CY AUG 03-05, 2009 CL St Louis, MO SP USAF Off Sci Res DE Ultra-high-temperature ceramics; Borides; Mechanical properties; Thermal properties ID HIGH-TEMPERATURE CERAMICS; DIBORIDE-BASED COMPOSITES; ZIRCONIUM DIBORIDE; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; OXIDATION BEHAVIOR; ZRB2-SIC CERAMICS; MICROSTRUCTURE; REENTRY; HAFNIUM AB Analytical modeling of thermal and mechanical response is a fundamental step in the design process for ultra-high-temperature ceramic components, such as nose tips and wing leading edges for hypersonic applications. The purpose of the analyses is to understand the response of test articles to high-enthalpy flows in ground tests and to predict component performance in particular flight environments. Performing these analyses and evaluating the results require comprehensive and accurate physical, thermal, and mechanical properties. In this paper, we explain the nature of the analyses, highlight the essential material properties that are required and why they are important, and describe the impact of property accuracy and uncertainty on the design process. (C) 2010 Elsevier Ltd All rights reserved. C1 [Marschall, Jochen] SRI Int, Menlo Pk, CA 94025 USA. [Squire, Thomas H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Marschall, J (reprint author), SRI Int, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. NR 66 TC 81 Z9 82 U1 1 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD AUG PY 2010 VL 30 IS 11 SI SI BP 2239 EP 2251 DI 10.1016/j.jeurceramsoc.2010.01.026 PG 13 WC Materials Science, Ceramics SC Materials Science GA 621IO UT WOS:000279569900012 ER PT J AU Gasch, M Johnson, S AF Gasch, Matthew Johnson, Sylvia TI Physical characterization and arcjet oxidation of hafnium-based ultra high temperature ceramics fabricated by hot pressing and field-assisted sintering SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article; Proceedings Paper CT Workshop on Aerospace Materials for Extreme Environments CY AUG 03-05, 2009 CL St Louis, MO SP USAF Off Sci Res DE Hot pressing; Sintering; Hafnium diboride; Oxidation resistance; Composites ID TRANSMISSION ELECTRON-MICROSCOPY; ZIRCONIUM DIBORIDE; ZRB2-BASED COMPOSITES; RESISTANCE; ZRB2; MICROSTRUCTURE; ADDITIONS; BEHAVIOR; FIBERS; TASI2 AB For this study, HfB(2)-based ultra high temperature ceramic (UHTC) samples were prepared by hot pressing and field-assisted sintering (FAS) with 10-20 vol.% SiC (baseline), 5 vol.% TaSi(2), and 5 vol % indium Dense billets were tested for hardness and mechanical strength When compared, the FAS method consistently yielded materials with a grain size 1 5-2 times finer than samples processed via hot pressing In general, room temperature flexural strengths of these materials were found to be lower (similar to 400 MPa) than similar fully dense HfB(2)-SiC materials, with strengths between 500 and 700 MPa. Oxidation resistance testing of flat-face models was conducted in a simulated re-entry environment, at Q(Cold Wall) similar to 250 W/cm(2) for 5 mm. Samples processed by FAS had reduced oxide thickness and SIC depletion zones compared to the baseline HfB(2)-20SiC material. In all cases oxide thickness was reduced by similar to 3x and SiC depletion zone thickness was reduced similar to 3x over the baseline. Published by Elsevier Ltd. C1 [Gasch, Matthew] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA. RP Gasch, M (reprint author), NASA, Ames Res Ctr, Thermal Protect Mat Branch, MS 234-1,Bldg 234,Room 211, Moffett Field, CA 94035 USA. NR 27 TC 19 Z9 19 U1 1 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD AUG PY 2010 VL 30 IS 11 SI SI BP 2337 EP 2344 DI 10.1016/j.jeurceramsoc.2010.04.019 PG 8 WC Materials Science, Ceramics SC Materials Science GA 621IO UT WOS:000279569900021 ER PT J AU Laurel, BJ Copeman, LA Hurst, TP Parrish, CC AF Laurel, Benjamin J. Copeman, Louise A. Hurst, Thomas P. Parrish, Christopher C. TI The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus) SO MARINE BIOLOGY LA English DT Article ID YOLK-SAC LARVAE; HALIBUT HIPPOGLOSSUS-HIPPOGLOSSUS; FREE AMINO-ACIDS; PHYSIOLOGICAL ENERGETICS; VERTICAL-DISTRIBUTION; DEVELOPING EMBRYOS; CARASSIUS-AURATUS; LIPID-COMPOSITION; TELEOST FISH; EARLY GROWTH AB The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4A degrees C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2-3-fold lipid increase (similar to 6-9 mu g individual(-1)) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation. C1 [Laurel, Benjamin J.; Copeman, Louise A.; Hurst, Thomas P.] NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. [Parrish, Christopher C.] Mem Univ Newfoundland, Ctr Ocean Sci, Logy Bay, NF A1C 5S7, Canada. RP Laurel, BJ (reprint author), NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv,Hatfield Marine Sci Ct, Newport, OR 97365 USA. EM ben.laurel@noaa.gov RI Hurst, Thomas/N-1401-2013 FU North Pacific Research Board (NPRB) [R0605] FX This project was supported in part with funding from the North Pacific Research Board (NPRB) grant #R0605. We thank Drs. Allan Stoner and Michael Davis for reviewing earlier drafts of this manuscript. Thanks also to Scott Haines, Paul Iseri and Michele Ottmar for providing assistance in the laboratory. Brian Knoth and Alisa Abookire assisted with egg collections in the field. Boat charters were kindly provided by Tim Tripp aboard the F/V Miss O. Thanks finally to J. Wells for the patient assistance and laboratory analysis of lipid classes and fatty acids. This manuscript is NPRB Publication # 245. NR 39 TC 15 Z9 15 U1 2 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0025-3162 J9 MAR BIOL JI Mar. Biol. PD AUG PY 2010 VL 157 IS 8 BP 1713 EP 1724 DI 10.1007/s00227-010-1445-1 PG 12 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 624RF UT WOS:000279836900005 ER PT J AU Iida, Y Tsuchiyama, A Kadono, T Sakamoto, K Nakamura, T Uesugi, K Nakano, T Zolensky, ME AF Iida, Yosuke Tsuchiyama, Akira Kadono, Toshihiko Sakamoto, Kanako Nakamura, Tomoki Uesugi, Kentaro Nakano, Tsukasa Zolensky, Michael E. TI Three-dimensional shapes and Fe contents of Stardust impact tracks: A track formation model and estimation of comet Wild 2 coma dust particle densities SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID HYPERVELOCITY IMPACT; INTERPLANETARY DUST; 81P/WILD-2 DUST; AEROGEL; SAMPLES; COMET-81P/WILD-2; MICROMETEORITES; MICROTOMOGRAPHY; FRAGMENTATION; TOMOGRAPHY AB We investigated three-dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X-ray microtomography at SPring-8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR-XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm-3 with an average of 1.01 (+/- 0.25) g cm-3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet-forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type-C). C1 [Iida, Yosuke; Tsuchiyama, Akira] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Sakamoto, Kanako; Nakamura, Tomoki] Kyushu Univ, Fac Sci, Dept Earth & Planetary Sci, Fukuoka 8128581, Japan. [Kadono, Toshihiko] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Uesugi, Kentaro] SPring 8, Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Nakano, Tsukasa] Geol Survey Japan, Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058567, Japan. [Zolensky, Michael E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Tsuchiyama, A (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. EM akira@ess.sci.osaka-u.ac.jp FU Japan Ministry of Education, Culture, Sports, Science and Technology [19104012]; NASA FX We thank Drs. A. Takeuchi, Y. Suzuki, and Y. Terada of SPring-8 for technical support during microtomography and XRF measurements, R. Bastien, J. Warren, T. See, and K. Nakamura-Messenger for valuable support during clean room work at NASA's Johnson Space Center, Drs. M. Uesugi and K. Murata of Osaka University for help during analyses at synchrotron facilities, and Mr. R. Niimi of Osaka University for discussing the Appendix and help for the density measurement of hornblende. One of the authors (A. T.) was supported by a Grant-in-aid of the Japan Ministry of Education, Culture, Sports, Science and Technology (19104012). M. E. Z. was supported by NASA's Stardust Data Analysis Program. NR 48 TC 11 Z9 11 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2010 VL 45 IS 8 BP 1302 EP 1319 DI 10.1111/j.1945-5100.2010.01091.x PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 682UB UT WOS:000284427400006 ER PT J AU Baluchamy, S Zhang, Y Ravichandran, P Ramesh, V Sodipe, A Hall, JC Jejelowo, O Gridley, DS Wu, HL Ramesh, GT AF Baluchamy, Sudhakar Zhang, Ye Ravichandran, Prabakaran Ramesh, Vani Sodipe, Ayodotun Hall, Joseph C. Jejelowo, Olufisayo Gridley, Daila S. Wu, Honglu Ramesh, Govindarajan T. TI Expression profile of DNA damage signaling genes in 2 Gy proton exposed mouse brain SO MOLECULAR AND CELLULAR BIOCHEMISTRY LA English DT Article DE Proton; Real-time RT PCR; Differential gene expression; Caspase activity; DNA damage ID LUNG EPITHELIAL-CELLS; TUMOR-TRANSFORMING GENE; IONIZING-RADIATION; OXIDATIVE STRESS; ALZHEIMERS-DISEASE; CARBON NANOTUBES; BASE RELEASE; CROSS-LINKS; CANCER; SECURIN AB Exposure of living systems to radiation results in a wide assortment of lesions, the most significant of is damage to genomic DNA which alter specific cell functions including cell proliferation. The radiation induced DNA damage investigation is one of the important area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes such as damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2 Gy proton exposed mouse brain tissues as compared to control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed cells undergo severe DNA damage which in turn destabilize the chromatin stability. C1 [Baluchamy, Sudhakar; Ravichandran, Prabakaran; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T.] Norfolk State Univ, Ctr Biotechnol & Biomed Sci, Mol Toxicol Lab, Dept Biol, Norfolk, VA 23504 USA. [Sodipe, Ayodotun; Jejelowo, Olufisayo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Houston, TX 77058 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Gridley, Daila S.] Loma Linda Univ, Med Ctr, Dept Radiat Med, Loma Linda, CA 92354 USA. RP Ramesh, GT (reprint author), Norfolk State Univ, Ctr Biotechnol & Biomed Sci, Mol Toxicol Lab, Dept Biol, Norfolk, VA 23504 USA. EM gtramesh@nsu.edu RI Gridley, Daila/P-7711-2015 FU NASA [NNX08BA47A, NCC-1-02038, NIH-1P20MD001822-1] FX This work was supported by NASA funding NNX08BA47A: NCC-1-02038: NIH-1P20MD001822-1. NR 41 TC 4 Z9 4 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0300-8177 J9 MOL CELL BIOCHEM JI Mol. Cell. Biochem. PD AUG PY 2010 VL 341 IS 1-2 BP 207 EP 215 DI 10.1007/s11010-010-0451-4 PG 9 WC Cell Biology SC Cell Biology GA 630KE UT WOS:000280271100021 PM 20383738 ER PT J AU Garofalo, D Evans, DA Sambruna, RM AF Garofalo, D. Evans, D. A. Sambruna, R. M. TI The evolution of radio-loud active galactic nuclei as a function of black hole spin SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE Black hole physics; galaxies: active; galaxies: evolution; galaxies: jets ID XMM-NEWTON OBSERVATIONS; RILEY TYPE-I; RELATIVISTIC JETS; ELLIPTIC GALAXIES; FR-I; COSMIC EVOLUTION; ACCRETION DISCS; LINE; FANAROFF; QUASARS AB Recent work on the engines of active galactic nuclei jets suggests that their power depends strongly and perhaps counter-intuitively on black hole spin. We explore the consequences of this on the radio-loud population of active galactic nuclei and find that the time evolution of the most powerful radio galaxies and radio-loud quasars fits into a picture in which black hole spin varies from retrograde to prograde with respect to the accreting material. Unlike the current view, according to which jet powers decrease in tandem with a global downsizing effect, we argue for a drop in jet power resulting directly from the paucity of retrograde accretion systems at lower redshift z caused by a continuous history of accretion dating back to higher z. In addition, the model provides simple interpretations for the basic spectral features differentiating radio-loud and radio-quiet objects, such as the presence or absence of disc reflection, broadened iron lines and signatures of disc winds. We also briefly describe our models' interpretation of microquasar state transitions. We highlight our result that the most radio-loud and most radio-quiet objects both harbour highly spinning black holes but in retrograde and prograde configurations, respectively. C1 [Garofalo, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evans, D. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Sambruna, R. M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Garofalo, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.a.garofalo@jpl.nasa.gov FU NASA FX DG thanks David L. Meier for discussion on the FRI/FRII division, the physics of jet launching, propagation and collimation, and for commenting on the draft as a whole, Peter Polko for stimulating ideas on the effects of BP jets on accretion disc coronae. Christopher S. Reynolds for issues concerning broad iron lines and jet energetics, and Cole Miller and Marta Volonteri for discussion on retrograde accretion. We thank and acknowledge the role of three referees and three editors. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. DC; is supported by the NASA Postdoctoral Program at NASA JPL administered by Oak Ridge Associated Universities through contract with NASA. NR 84 TC 68 Z9 68 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2010 VL 406 IS 2 BP 975 EP 986 DI 10.1111/j.1365-2966.2010.16797.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EE UT WOS:000280710300018 ER PT J AU Dorodnitsyn, AV AF Dorodnitsyn, A. V. TI Profiles of spectral lines from failed and decelerated winds from neutron stars and black holes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE line: formation; radiation mechanisms: general; radiative transfer; stars: mass-loss; stars: winds, outflows; galaxies: active ID GRAVITATIONALLY REDSHIFTED ABSORPTION; P CYGNI PROFILES; EXPANDING ATMOSPHERES; RADIATION; FEATURES; MATTER AB We calculate profiles of spectral lines from an extended outflow from the compact object (a black hole or a neutron star). We assume that the bulk velocity of the flow increases during a short phase of acceleration and then rapidly decreases forming a failed wind. We also study the wind which is only decelerating,. We show that depending on the relative strength of the gravitational redshifting line profiles from such winds may be of several types: distorted P-Cygni (emission and blueshifted absorption); W-shaped (absorption emission absorption) and inverted P-Cygni (emission-redshifted absorption). The latter case is expected from accretion flows where the velocity is directed inwards; however, we show that inverted P-Cygni profile can be produced by the failed wind, provided the line is formed within several tens of Schwarzschild radii from the compact object. C1 NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Dorodnitsyn, AV (reprint author), NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Code 662, Greenbelt, MD 20771 USA. EM dora@milkyway.gsfc.nasa.gov FU NASA [05-ATP05-18] FX This research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA and by grants from the NASA Astrophysics Theory Program 05-ATP05-18. NR 26 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2010 VL 406 IS 2 BP 1060 EP 1070 DI 10.1111/j.1365-2966.2010.16728.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EE UT WOS:000280710300025 ER PT J AU Theiss, J Pavaskar, P Echternach, PM Muller, RE Cronin, SB AF Theiss, Jesse Pavaskar, Prathamesh Echternach, Pierre M. Muller, Richard E. Cronin, Stephen B. TI Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates SO NANO LETTERS LA English DT Article DE SERS; plasmonics; nanogap; shadow mask; angle evaporation ID ENHANCED RAMAN-SCATTERING; SINGLE-MOLECULE; NANOSPHERE LITHOGRAPHY; METALLIC ELECTRODES; SPECTROSCOPY; FABRICATION; GAPS; NANOCRYSTALS; CARBON; DOMAIN AB We demonstrate a method for fabricating arrays of plasmonic nanoparticles with separations on the order of 1 nm using an angle evaporation technique. Samples fabricated on thin SiN membranes are imaged with high-resolution transmission electron microscopy (HRTEM) to resolve the small separations achieved between nanoparticles. When irradiated with laser light, these nearly touching metal nanoparticles produce extremely high electric field intensities, which result in surface-enhanced Raman spectroscopy (SERS) signals. We quantify these enhancements by depositing a p-aminothiophenol dye molecule on the nanoparticle arrays and spatially mapping their Raman intensities using confocal micro-Raman spectroscopy. Our results show significant enhancement when the incident laser is polarized parallel to the axis of the nanoparticle pairs, whereas no enhancement is observed for the perpendicular polarization. These results demonstrate proof-of-principle of this fabrication technique. Finite difference time domain simulations based on HRTEM images predict an electric field intensity enhancement of 82400 at the center of the nanoparticle pair and an electromagnetic SERS enhancement factor of 10(9)-10(10). C1 [Theiss, Jesse; Pavaskar, Prathamesh; Cronin, Stephen B.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Echternach, Pierre M.; Muller, Richard E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Cronin, SB (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. FU ONR [N00014-08-1-0132]; AFOSR [FA9550-08-1-0019]; ARO [W91INF-09-1-0240]; NSF [CBET-0854118]; NASA [1346414] FX This research was supported in part by ONR award No. N00014-08-1-0132, AFOSR award No. FA9550-08-1-0019, ARO award No W91INF-09-1-0240, NSF award No. CBET-0854118, and NASA SURP No. 1346414. Electron beam lithography was performed by Richard E. Muller. This research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology. NR 40 TC 134 Z9 134 U1 14 U2 135 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2010 VL 10 IS 8 BP 2749 EP 2754 DI 10.1021/nl904170g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 636JO UT WOS:000280728900003 PM 20698586 ER PT J AU Czaja, AD AF Czaja, Andrew D. TI EARLY EARTH Microbes and the rise of oxygen SO NATURE GEOSCIENCE LA English DT News Item ID GREAT OXIDATION; FOSSILS; MICROFOSSILS; ANTIQUITY; ISOTOPES; CHERT; LIFE C1 Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. RP Czaja, AD (reprint author), Univ Wisconsin, Dept Geosci, NASA, Astrobiol Inst, Madison, WI 53706 USA. EM aczaja@geology.wisc.edu NR 15 TC 3 Z9 3 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2010 VL 3 IS 8 BP 522 EP 523 DI 10.1038/ngeo929 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 645NK UT WOS:000281467500009 ER PT J AU Arneth, A Harrison, SP Zaehle, S Tsigaridis, K Menon, S Bartlein, PJ Feichter, J Korhola, A Kulmala, M O'Donnell, D Schurgers, G Sorvari, S Vesala, T AF Arneth, A. Harrison, S. P. Zaehle, S. Tsigaridis, K. Menon, S. Bartlein, P. J. Feichter, J. Korhola, A. Kulmala, M. O'Donnell, D. Schurgers, G. Sorvari, S. Vesala, T. TI Terrestrial biogeochemical feedbacks in the climate system SO NATURE GEOSCIENCE LA English DT Review ID LAST GLACIAL MAXIMUM; CARBON-NITROGEN INTERACTIONS; PAST 800,000 YEARS; ATMOSPHERIC CH4; EARTH-SYSTEM; ISOPRENE EMISSIONS; PARTICLE FORMATION; METHANE EMISSIONS; ORGANIC AEROSOLS; BLACK CARBON AB The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m(-2) K-1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects. C1 [Arneth, A.; Schurgers, G.] Lund Univ, Dept Earth & Ecosyst Sci, S-22362 Lund, Sweden. [Arneth, A.; Kulmala, M.; Sorvari, S.; Vesala, T.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Harrison, S. P.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Harrison, S. P.] Macquarie Univ, Sch Biol Sci, N Ryde, NSW 2109, Australia. [Zaehle, S.] Max Planck Inst Biogeochem, Dept Biogeochem Syst, D-07745 Jena, Germany. [Tsigaridis, K.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tsigaridis, K.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Menon, S.] LBNL, Berkeley, CA 94720 USA. [Bartlein, P. J.] Univ Oregon, Dept Geog, Eugene, OR 97403 USA. [Feichter, J.; O'Donnell, D.] Max Planck Inst Meteorol, Hamburg, Germany. [Korhola, A.] Univ Helsinki, Dept Environm Sci, FIN-00014 Helsinki, Finland. RP Arneth, A (reprint author), Lund Univ, Dept Earth & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden. EM Almut.arneth@nateko.lu.se RI Bartlein, Patrick/E-4643-2011; Schurgers, Guy/K-6543-2012; Tsigaridis, Kostas/K-8292-2012; Arneth, Almut/B-2702-2013; Kulmala, Markku/I-7671-2016; Vesala, Timo/C-3795-2017; Zaehle, Sonke/C-9528-2017; OI Bartlein, Patrick/0000-0001-7657-5685; Schurgers, Guy/0000-0002-2189-1995; Tsigaridis, Kostas/0000-0001-5328-819X; Kulmala, Markku/0000-0003-3464-7825; Vesala, Timo/0000-0002-4852-7464; Zaehle, Sonke/0000-0001-5602-7956; Harrison, Sandy/0000-0001-5687-1903 FU Finnish Cultural Foundation; Academy of Finland; Swedish research councils VR; Swedish research councils Formas; EC [MRTN-CT- 2004-512464]; NASA; DOE ASR program; US NSF; [DE-AC02-05CH11231] FX The authors acknowledge the Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS), core project of the International Geosphere-Biosphere Programme (IGBP), and the discussions at the Science Workshop on Past, Present and Future Climate Change in Helsinki, November 2008. The Helsinki workshop and the manuscript preparation were supported by the Finnish Cultural Foundation. A.A. acknowledges support from the Academy of Finland, and the Swedish research councils VR and Formas. S.P.H. and S.Z. acknowledge funding from the EC-supported project GREENCYCLES (MRTN-CT- 2004-512464). K.T. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. The work at Lawrence Berkeley National Laboratory was performed under Contract No. DE-AC02-05CH11231. S. M. acknowledges funding support from the NASA MAP program and the DOE ASR program. P.J.B. acknowledges support from the US NSF Paleoclimate program. Suggestions made by Chris Jones helped to improve our analysis substantially. NR 100 TC 188 Z9 193 U1 15 U2 184 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2010 VL 3 IS 8 BP 525 EP 532 DI 10.1038/ngeo905 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 645NK UT WOS:000281467500010 ER PT J AU Nealy, JE Chang, CK Norman, RB Blattnig, SR Badavi, FF Adamczyk, AM AF Nealy, John E. Chang, C. K. Norman, Ryan B. Blattnig, Steve R. Badavi, Francis F. Adamczyk, Anne M. TI A deterministic computational procedure for space environment electron transport SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Space radiation; Planetary environments; Electrons; Absorbed dose; LEO AB A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Norman, Ryan B.; Blattnig, Steve R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Nealy, John E.] Old Dominion Res Fdn, Norfolk, VA 23508 USA. [Chang, C. K.; Badavi, Francis F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Adamczyk, Anne M.] Univ Tennessee, Knoxville, TN 37996 USA. RP Norman, RB (reprint author), NASA, Langley Res Ctr, MS 188E, Hampton, VA 23681 USA. EM Ryan.B.Norman@nasa.gov RI Norman, Ryan/D-5095-2017 OI Norman, Ryan/0000-0002-9103-7225 NR 18 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG 1 PY 2010 VL 268 IS 15 BP 2415 EP 2425 DI 10.1016/j.nimb.2010.04.014 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 626XL UT WOS:000280001500009 ER PT J AU Volkov, DL Fu, LL Lee, T AF Volkov, Denis L. Fu, Lee-Lueng Lee, Tong TI Mechanisms of the meridional heat transport in the Southern Ocean SO OCEAN DYNAMICS LA English DT Article DE Southern Ocean; Meridional heat transport; Antarctic circumpolar current; Eddy-induced heat transport; Meridional overturning circulation; Horizontal gyre transport; Eddy-induced heat transport ID ANTARCTIC CIRCUMPOLAR CURRENT; GENERAL-CIRCULATION MODEL; FRESH-WATER TRANSPORTS; NUMERICAL-MODEL; DRAKE PASSAGE; DEACON CELL; EDDY HEAT; VARIABILITY; FLUX; DYNAMICS AB The Southern Ocean (SO) transports heat towards Antarctica and plays an important role in determining the heat budget of the Antarctic climate system. A global ocean data synthesis product at eddy-permitting resolution from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project is used to estimate the meridional heat transport (MHT) in the SO and to analyze its mechanisms. Despite the intense eddy activity, we demonstrate that most of the poleward MHT in the SO is due to the time-mean fields of the meridional velocity, V, and potential temperature, theta. This is because the mean circulation in the SO is not strictly zonal. The Antarctic Circumpolar Current carries warm waters from the region south of the Agulhas Retroflection to the lower latitudes of the Drake Passage and the Malvinas Current carries cold waters northward along the Argentinian shelf. Correlations between the time-varying fields of V and theta (defined as transient processes) significantly contribute to the horizontal-gyre heat transport, but not the overturning heat transport. In the highly energetic regions of the Agulhas Retroflection and the Brazil-Malvinas Confluence the contribution of the horizontal transient processes to the total MHT exceeds the contribution of the mean horizontal flow. We show that the southward total MHT is mainly maintained by the meridional excursion of the mean geostrophic horizontal shear flow (i.e., deviation from the zonal average) associated with the Antarctic Circumpolar Current that balances the equatorward MHT due to the Ekman transport and provides a net poleward MHT in the SO. The Indian sector of the SO serves as the main pathway for the poleward MHT. C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Volkov, Denis L.; Fu, Lee-Lueng; Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Volkov, DL (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, within the framework of the ECCO2 project, sponsored by the National Aeronautics and Space Administration. The efforts of all the members of the ECCO2 group, in particular, Dimitris Menemenlis and Hong Zhang, who have performed model simulations are greatly appreciated. NR 43 TC 20 Z9 20 U1 1 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD AUG PY 2010 VL 60 IS 4 BP 791 EP 801 DI 10.1007/s10236-010-0288-0 PG 11 WC Oceanography SC Oceanography GA 636JM UT WOS:000280728400002 ER PT J AU Yamaguchi, KE Oguri, K Ogawa, NO Sakai, S Hirano, S Kitazato, H Ohkouchi, N AF Yamaguchi, Kosei E. Oguri, Kazumasa Ogawa, Nanako O. Sakai, Saburo Hirano, Satoshi Kitazato, Hiroshi Ohkouchi, Naohiko TI Geochemistry of modern carbonaceous sediments overlain by a water mass showing photic zone anoxia in the saline meromictic Lake Kai-ike, southwest Japan: I. Early diagenesis of organic carbon, nitrogen, and phosphorus SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article; Proceedings Paper CT Conference on International Limnogeology Congress (ILIC) CY JUL 11-14, 2007 CL Barcelona, SPAIN SP Int Assoc Limnogeology DE Diagenesis; Anoxia; Carbon; Nitrogen; Phosphorus; Isotopes ID ISOTOPIC COMPOSITION; MARINE-SEDIMENTS; COLUMN ANOXIA; MATTER; PRESERVATION; BURIAL; RECORD; CHLOROPIGMENTS; ACCUMULATION; PRODUCTIVITY AB The early diagenetic effects of organic matter (OM) decomposition in carbonaceous sediments overlain by an anoxic water body were investigated using a sediment core (KAI4) from the saline meromictic lake Kai-ike, in southwest Japan. Lake Kai-ike, a current model for past anoxic ocean environments, is characterized by development of photic zone anoxia and a "bacterial plate," which create permanent density stratification in the water. Over the last similar to 40 years, rapid decreases in organic carbon (C-org; similar to 55%), nitrogen (similar to 60%), and reactive phosphorus (Delta P; similar to 85%) contents accompanied by similar to 1 parts per thousand increase (positive shift) in the stable isotope compositions of C-org (delta C-13(org)), which is attributed to a preferential loss of low-delta C-13(org), components during early diagenesis, are reflected with increasing depth of the sediments. The molar C-org/Delta P and N/Delta P ratios increase with depth, from initial values that are very close to those of the Redfield ratio. During the early diagenesis of OM degradation, the decomposition rate of P is much faster than that of C-org and N. In contrast, the molar C-org/N ratios are rather insensitive to various biogeochemical reactions, confirming their utility as a, proxy for source OM. Although the stable isotope compositions of nitrogen (delta N-15) in sedimentary OM are useful indicators of OM sources, correlations to the above-mentioned parameters for the KAI4 core remain unclear. We emphasize that the OM present in ancient carbonaceous sediments or sedimentary rocks was most likely subject to very rapid (<40 years) decomposition after its initial burial, and that the original C-org. N, and P contents at the time of deposition could have been substantially higher than the preserved (measured) contents. The same cautions may be applied to the delta C-13(org), and delta N-15 values of carbonaceous sediments and sedimentary rocks, which also undergo a small degree of positive shift (similar to 1 parts per thousand) during early diagenesis. To better reconstruct the paleoenvironmental conditions for redox-stratified oceans and lakes using the geochemistries of sediments or sedimentary rocks (i.e., C-org, N, and P), one must take into account how rapid OM decomposition during early diagenesis affects the related biogeochemical proxies. This study has implications for the geochemical reconstructions of past anoxic environments, such as those during the Cretaceous OAEs (oceanic anoxic events) and the early Earth. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yamaguchi, Kosei E.] Toho Univ, Geochem Lab, Dept Chem, Funabashi, Chiba 2748510, Japan. [Yamaguchi, Kosei E.] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Precambrian Ecosyst Lab, Yokosuka, Kanagawa 2370061, Japan. [Yamaguchi, Kosei E.] NASA, Astrobiol Inst, Washington, DC USA. [Oguri, Kazumasa; Ogawa, Nanako O.; Sakai, Saburo; Hirano, Satoshi; Kitazato, Hiroshi; Ohkouchi, Naohiko] JAMSTEC, Inst Biogeosci, Yokosuka, Kanagawa 2370061, Japan. RP Yamaguchi, KE (reprint author), Toho Univ, Geochem Lab, Dept Chem, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan. EM kosei@chem.sci.toho-u.ac.jp RI Ohkouchi, Naohiko/B-2071-2008 NR 79 TC 8 Z9 8 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD AUG 1 PY 2010 VL 294 IS 1-2 SI SI BP 72 EP 82 DI 10.1016/j.palaeo.2009.10.024 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 645MR UT WOS:000281464800007 ER PT J AU Davidson, RL Earle, GD Klenzing, JH Heelis, RA AF Davidson, R. L. Earle, G. D. Klenzing, J. H. Heelis, R. A. TI A numerical study of geometry dependent errors in velocity, temperature, and density measurements from single grid planar retarding potential analyzers SO PHYSICS OF PLASMAS LA English DT Article AB Planar retarding potential analyzers (RPAs) have been utilized numerous times on high profile missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellite Program to measure plasma composition, temperature, density, and the velocity component perpendicular to the plane of the instrument aperture. These instruments use biased grids to approximate ideal biased planes. These grids introduce perturbations in the electric potential distribution inside the instrument and when unaccounted for cause errors in the measured plasma parameters. Traditionally, the grids utilized in RPAs have been made of fine wires woven into a mesh. Previous studies on the errors caused by grids in RPAs have approximated woven grids with a truly flat grid. Using a commercial ion optics software package, errors in inferred parameters caused by both woven and flat grids are examined. A flat grid geometry shows the smallest temperature and density errors, while the double thick flat grid displays minimal errors for velocities over the temperature and velocity range used. Wire thickness along the dominant flow direction is found to be a critical design parameter in regard to errors in all three inferred plasma parameters. The results shown for each case provide valuable design guidelines for future RPA development. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457931] C1 [Davidson, R. L.; Earle, G. D.; Heelis, R. A.] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75080 USA. [Klenzing, J. H.] NASA, Goddard Space Flight Ctr, Space Weather Lab Code 674, Greenbelt, MD 20771 USA. RP Davidson, RL (reprint author), Univ Texas Dallas, William B Hanson Ctr Space Sci, 800 W Campbell Rd,WT15, Richardson, TX 75080 USA. RI Klenzing, Jeff/E-2406-2011 OI Klenzing, Jeff/0000-0001-8321-6074 FU NASA [NNG06GH22G] FX This work was funded by NASA Grant No. NNG06GH22G. NR 18 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2010 VL 17 IS 8 AR 082901 DI 10.1063/1.3457931 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 651EA UT WOS:000281906300046 ER PT J AU Schindler, K Hesse, M AF Schindler, Karl Hesse, Michael TI Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas SO PHYSICS OF PLASMAS LA English DT Article ID SUBSTORM GROWTH-PHASE AB This paper addresses the formation of nongyrotropic current sheets resulting from slow external driving. The medium is a collisionless plasma with one spatial dimension and a three-dimensional velocity space. The study is based on particle simulation and an analytical approach. Earlier results that apply to compression of an initial Harris sheet are generalized in several ways. In a first step a general sufficient criterion for the presence of extra ion and electron currents due to nongyrotropic plasma conditions is derived. Then cases with antisymmetric magnetic and electric fields are considered. After establishing consistency of the criterion with the earlier case, the usefulness of this concept is illustrated in detail by two further particle simulations. The results indicate that the formation of nongyrotropic current sheets is a ubiquitous phenomenon for plasmas with antisymmetric fields that have evolved slowly from initial gyrotropic states. A fourth case concerns a plasma with a unidirectional magnetic field. Consistent with the general criterion, the observed final state is fluidlike in that it is approximately gyrotropic. Momentum balance is shown to include a contribution that results from accumulation of an off-diagonal pressure tensor component during the evolution. Heat flux also plays an important role. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464198] C1 [Schindler, Karl] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schindler, K (reprint author), Ruhr Univ Bochum, D-44780 Bochum, Germany. RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU MMS mission of NASA FX This research was supported by the MMS mission of NASA. One of us (K.S.) gratefully acknowledges the kind support he received from the Goddard Space Flight Center in the fall of 2009. The authors thank Joachim Birn for valuable comments. NR 16 TC 8 Z9 8 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2010 VL 17 IS 8 AR 082103 DI 10.1063/1.3464198 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 651EA UT WOS:000281906300004 ER PT J AU Shestopalov, DI Golubeva, LF McFadden, LA Fornasier, S Taran, MN AF Shestopalov, D. I. Golubeva, L. F. McFadden, L. A. Fornasier, S. Taran, M. N. TI Titanium-bearing pyroxenes of some E asteroids: Coexisting of igneous and hydrated rocks SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Asteroids; Surface; Spectroscopy ID FAINT ABSORPTION-BANDS; REFLECTANCE SPECTRA; ROSETTA MISSION; 2867 STEINS; TARGET; SPECTROSCOPY; ALBEDO; FAMILY AB In this paper, we present arguments for the presence of optically active Ti(3+) in the structure of low iron pyroxenes to explain the strong 0.49-mu m absorption band in spectra of E[II] asteroids. Such an interpretation supports the idea that E asteroid material is formed at high temperature in a strongly reducing medium. We also discuss the possibility of high temperature and hydrated rocks coexisting on some E asteroids. Our discussion is based on the idea of collisional evolution of aubrite parent bodies that was presented by Keil (1989). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Shestopalov, D. I.; Golubeva, L. F.] Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fornasier, S.] Observ Paris, LESIA, F-92195 Meudon, France. [Taran, M. N.] Ukrainian Acad Sci, Inst Geochem Mineral & Ore Format, UA-03680 Kiev 142, Ukraine. RP Shestopalov, DI (reprint author), Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. EM shestopalov_d@mail.ru; lara_golubeva@mail.ru; mcfadden@astro.umd.edu; sonia.fornasier@obspm.fr; m_taran@hotmail.com RI McFadden, Lucy-Ann/I-4902-2013 OI McFadden, Lucy-Ann/0000-0002-0537-9975 NR 31 TC 6 Z9 6 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD AUG PY 2010 VL 58 IS 10 BP 1400 EP 1403 DI 10.1016/j.pss.2010.06.012 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636ZT UT WOS:000280784700026 ER PT J AU Kelly, BP Badajos, OH Kunnasranta, M Moran, JR Martinez-Bakker, M Wartzok, D Boveng, P AF Kelly, Brendan P. Badajos, Oriana H. Kunnasranta, Mervi Moran, John R. Martinez-Bakker, Micaela Wartzok, Douglas Boveng, Peter TI Seasonal home ranges and fidelity to breeding sites among ringed seals SO POLAR BIOLOGY LA English DT Article DE Phoca hispida; Home range; Population structure; Site fidelity; Movements ID PHOCA-HISPIDA PUPS; NORTHERN BERING-SEA; FAST-ICE; MARINE MAMMALS; HABITAT USE; BAFFIN-BAY; GENETIC DIFFERENTIATION; NORTHWEST-TERRITORIES; CONTINENTAL-SHELF; DIVING BEHAVIOR AB Population structure and patterns of habitat use among ringed seals (Phoca hispida) are poorly known, in part because seasonal movements have not been adequately documented. We monitored the movements of 98 ringed seals in the Beaufort and Chukchi seas between 1990 and 2006 using three forms of telemetry. In the winter-spring period (when the seals were occupying shorefast ice), we used radio and ultra-sonic tags to track movements above and below the ice, respectively. We used satellite-linked transmitters in summer and fall (when the seals ranged away from their winter sites) to track at-sea movements. In the shorefast ice habitat, the home ranges of 27 adult males ranged from < 1 to 13.9 km(2) (median = 0.628) while the home ranges of 28 adult females ranged from < 1 to 27.9 km(2) (median = 0.652). The 3-dimensional volumes used by 9 seals tracked acoustically under the ice averaged 0.07 (SD = 0.04) km(3) for subadults and adult males and 0.13 (SD = 0.04) km(3) for adult females. Three of the radio-tracked seals and 9 tracked by satellite ranged up to 1,800 km from their winter/spring home ranges in summer but returned to the same small (1-2 km(2)) sites during the ice-bound months in the following year. The restricted movements of ringed seals during the ice-bound season-including the breeding season-limits their foraging activities for most of the year and may minimize gene flow within the species. C1 [Kelly, Brendan P.; Badajos, Oriana H.; Kunnasranta, Mervi; Moran, John R.; Martinez-Bakker, Micaela] Univ Alaska SE, Dept Nat Sci, Juneau, AK 99801 USA. [Badajos, Oriana H.] Kachemak Bay Res Reserve, Homer, AK 99603 USA. [Kunnasranta, Mervi] Finnish Game & Fisheries Res Inst, Turku 20520, Finland. [Moran, John R.] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, Juneau, AK 99801 USA. [Wartzok, Douglas] Florida Int Univ, Miami, FL 33199 USA. [Boveng, Peter] NOAA, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. RP Kelly, BP (reprint author), Natl Marine Fisheries Serv, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, NOAA, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM brendan.kelly@noaa.gov RI Martinez-Bakker, Micaela/J-3721-2013 OI Martinez-Bakker, Micaela/0000-0002-9248-9450 FU Office of Naval Research, the Coastal Marine Institute (Minerals Management Service and the University of Alaska Fairbanks); North Pacific Research Board [241]; National Marine Mammal Laboratory (National Marine Fisheries Service); Natural Resources Fund (University of Alaska); National Science Foundation FX This project was supported by the Office of Naval Research, the Coastal Marine Institute (Minerals Management Service and the University of Alaska Fairbanks), the North Pacific Research Board (Publication number 241), the National Marine Mammal Laboratory (National Marine Fisheries Service), the Natural Resources Fund (University of Alaska), and the National Science Foundation while the first author was working in the Office of Polar Programs. The Polar Continental Shelf Project (Canada); the Hunters and Trappers Association of Resolute Bay, NorthwestTerritories, Canada; BP Alaska; ConocoPhillips; the Department of Wildlife Management, North Slope Borough, Alaska; the Nanuuq Commission; the Ice Seal Committee; the Native Village of Kotzebue; the Department of Fisheries and Oceans (Canada); Ida and Nathaniel Olemaun Jr., Ross Schaeffer Sr., and Alex Whiting provided expertise and logistic support. Seal tracking was labor intensive, and we were assisted in the field and laboratory by over 50 hard-working and cold-tolerant individuals including P. Amariluk, J. Bengtson, H. Cleator, M. Cronin, R. Ettagiak, R. Flinn, L. Harwood, S. Innes, J. Jones, C. Kelly, J. London, T. Manik, D. MacDonald, R. Memorana, J. Nielsen, L. Quakenbush, R. Schaeffer, M. Simpkins, T. Smith; S. Sell, R. Sneider, B. Taras, A. Whiting, and 12 students from the University of Alaska Southeast's Research Experiences for Undergraduates program. J. London and M. Cameron assisted with data reduction and graphics. A draft of this manuscript was improved by comments from Erin Moreland and Elizabeth Mathews. This research was conducted under the terms of Scientific Research Permits No. 350-1434 and 782-1694-00 issued by the Office of Protected Resources, National Marine Fisheries Service, United States and Scientific License numbers SLE-04/05-328 and SLE-05/06-322 issued by the Department of Fisheries and Oceans (DFO), Canada. Animal Care Use Protocols were issued by the University of Alaska Fairbanks (Assurance 08-11) and the DFO (UFWI-ACC-2004-2005-001U). NR 120 TC 40 Z9 44 U1 4 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4060 J9 POLAR BIOL JI Polar Biol. PD AUG PY 2010 VL 33 IS 8 BP 1095 EP 1109 DI 10.1007/s00300-010-0796-x PG 15 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 627WN UT WOS:000280074800010 ER PT J AU Shaito, A Fairbrother, D Sterling, J D'Souza, NA AF Shaito, Ali Fairbrother, Debora Sterling, Jerry D'Souza, Nandika Anne TI Maleated Amorphous Ethylene Propylene Compatibilized Polyethylene Nanocomposites: Room Temperature Nonlinear Creep Response SO POLYMER ENGINEERING AND SCIENCE LA English DT Article ID MONTMORILLONITE NANOCOMPOSITES; MECHANICAL-PROPERTIES; SILICATE NANOCOMPOSITES; CLAY; INTERCALATION; DISPERSION; NYLON-6; MATRIX; FILMS AB Nonlinear creep of polyethylene and its nanocomposites remains an area of significant interest. Maleated polyethylene is often used as a compatibilizer to ensure enhanced dispersion. This article investigates blown films of linear low-density polyethylene and its nanocomposites with montmorillonite-layered silicate (MLS). An amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was added to enhance the interaction between the PE and the MLS. Tensile results indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE. Nonlinear creep was analyzed by examining creep and recovery of the films with a Burger model and the Kohlrausch-Williams-Watts relation. A consistent decrease in unrecoverable plastic strain was obtained in the nanocomposite samples. A decreased retardation time associated with MLS presence was determined. POLYM. ENG. SCI., 50:1620-1632, 2010. (C) 2010 Society of Plastics Engineers C1 [Shaito, Ali; D'Souza, Nandika Anne] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Fairbrother, Debora; Sterling, Jerry] NASA, Goddard Space Flight Ctr, Balloon Program Off, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP D'Souza, NA (reprint author), Univ N Texas, Dept Mat Sci & Engn, POB 305310, Denton, TX 76203 USA. EM ndsouza@unt.edu OI DSouza, Nandika/0000-0002-8553-0347 FU NASA/Goddard Space Flight Center's Wallops Flight Facility [NAG5-5352] FX Contract grant sponsor: NASA/Goddard Space Flight Center's Wallops Flight Facility: contract grant number: NAG5-5352. NR 29 TC 4 Z9 4 U1 1 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0032-3888 J9 POLYM ENG SCI JI Polym. Eng. Sci. PD AUG PY 2010 VL 50 IS 8 BP 1620 EP 1632 DI 10.1002/pen.21589 PG 13 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 630MU UT WOS:000280278300015 ER PT J AU Shaito, A Fairbrother, D Sterling, J D'Souza, NA AF Shaito, Ali Fairbrother, Debora Sterling, Jerry D'Souza, Nandika Anne TI Ethylene Maleated Amorphous Propylene Compatibilized Polyethylene Nanocomposites: Stress and Temperature Effects on Nonlinear Creep SO POLYMER ENGINEERING AND SCIENCE LA English DT Article ID MECHANICAL-PROPERTIES; POLYMER COMPOSITES; RELAXATION; BEHAVIOR; FILMS AB The effects of stress and temperature on the nonlinear creep behavior of linear low-density polyethylene (LLDPE) nanocomposites reinforced with montmorillonite-layered silicate (MLS) nanoclay and compatibilized with an amorphous maleated ethylene copolymer (amEP) is investigated. To study the effect of stress on the creep resistance of these materials, creep tests were conducted at different stress levels (10, 25, and 50% yield stress). The effect of temperature was examined by analyzing the creep and recovery of the films at temperatures in the range of -100 to 25 degrees C. The individual creep compliance curves for each stress level and temperature were fitted to both the Burgers model and the Kohlrausch-Williams-Watts (KWW) function. The results indicate that modification of the polyethylene results in a suppression of relaxation times but the temperature trends are reversed below the beta transition temperature. Filled systems exhibited a distribution in relaxation times whose trend matched the relaxation time trends in both Burger and KWW models. POLYM. ENG. SDI., 50:1633-1645, 2010. (C) 2010 Society of Plastics Engineers C1 [Shaito, Ali; D'Souza, Nandika Anne] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Fairbrother, Debora; Sterling, Jerry] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Balloon Program Off, Wallops Isl, VA 23337 USA. RP D'Souza, NA (reprint author), Univ N Texas, Dept Mat Sci & Engn, POB 305310, Denton, TX 76203 USA. EM ndsouza@unt.edu OI DSouza, Nandika/0000-0002-8553-0347 FU NASA/Goddard Space Flight Center's Wallops Flight Facility [NAG5-5352] FX Contract grant sponsor: NASA/Goddard Space Flight Center's Wallops Flight Facility; contract grant number: NAG5-5352. NR 25 TC 3 Z9 3 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0032-3888 EI 1548-2634 J9 POLYM ENG SCI JI Polym. Eng. Sci. PD AUG PY 2010 VL 50 IS 8 BP 1633 EP 1645 DI 10.1002/pen.21591 PG 13 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 630MU UT WOS:000280278300016 ER PT J AU Shaito, A Fairbrother, D Sterling, J D'Souza, NA AF Shaito, Ali Fairbrother, Debora Sterling, Jerry D'Souza, Nandika Anne TI Separating Stress and Time Dependent Effects in the Temperature Dependent Creep of Polyethylene Nanocomposites SO POLYMER ENGINEERING AND SCIENCE LA English DT Article ID MECHANICAL-PROPERTIES; MONTMORILLONITE NANOCOMPOSITES; POLYAMIDE-66 NANOCOMPOSITES; POLYMERIC NANOCOMPOSITES; SILICATE NANOCOMPOSITES; DENSITY POLYETHYLENE; SUPERPOSITION; RESISTANCE; DISPERSION; COMPOSITE AB The nonlinear time dependent creep of linear-low density polyethylene (LLDPE) reinforced with montmorillonite layered silicate was investigated. A previous study related the time/stress dependence of creep compliance of the material at room temperature using the Burger and Kohlrausch-Williams-Watts models. Using both the creep and recovery compliance curves, we employ the Schapery formulation to study the relationship between deformation, time, stress, and temperature of LLDPE nanocomposites. Smooth master-curves are constructed using time-temperature-stress superposition principles. The stress and temperature-related creep constants and shift factors were determined for the material using the Schapery nonlinear viscoelastic equation. The prediction results confirm the enhanced creep resistance of nanofillers even at extended time scales and low temperatures. POLYM. ENG. SCI., 50:1646-1657, 2010. (C) 2010 Society of Plastics Engineers C1 [Shaito, Ali; D'Souza, Nandika Anne] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Fairbrother, Debora; Sterling, Jerry] NASA, Goddard Space Flight Ctr, Wallops Right Facil, Balloon Program Off, Wallops Isl, VA 23337 USA. RP D'Souza, NA (reprint author), Univ N Texas, Dept Mat Sci & Engn, POB 305310, Denton, TX 76203 USA. EM ndsouza@unt.edu OI DSouza, Nandika/0000-0002-8553-0347 FU NASA/Goddard Space Flight Center's Wallops Flight Facility [NAG5-5352] FX Contract grant sponsor: NASA/Goddard Space Flight Center's Wallops Flight Facility; contract grant number: NAG5-5352. NR 23 TC 2 Z9 2 U1 0 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0032-3888 J9 POLYM ENG SCI JI Polym. Eng. Sci. PD AUG PY 2010 VL 50 IS 8 BP 1646 EP 1657 DI 10.1002/pen.21590 PG 12 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 630MU UT WOS:000280278300017 ER PT J AU Stauffer, J Tanner, AM Bryden, G Ramirez, S Berriman, B Ciardi, DR Kane, SR Mizusawa, T Payne, A Plavchan, P von Braun, K Wyatt, P Kirkpatrick, JD AF Stauffer, John Tanner, Angelle M. Bryden, Geoffrey Ramirez, Solange Berriman, Bruce Ciardi, David R. Kane, Stephen R. Mizusawa, Trisha Payne, Alan Plavchan, Peter von Braun, Kaspar Wyatt, Pamela Kirkpatrick, J. Davy TI Accurate Coordinates and 2MASS Cross Identifications for (Almost) All Gliese Catalog Star SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID PROPER-MOTION CATALOG; SPECTROSCOPIC SURVEY; SOUTHERN-HEMISPHERE; NEARBY STARS; SOLAR NEIGHBORHOOD; NLTT CATALOG; WHITE-DWARFS; FAINT STARS; PARALLAXES; PROGRAM AB We provide precise J2000, epoch 2000 coordinates, and cross-identifications to sources in the 2MASS Point Source Catalog for nearly all stars in the Gliese, Gliese-Jahreiss, and Woolley catalogs of nearby stars. The only Gliese objects where we were not successful are two Gliese sources that are actually QSOs; two proposed companions to brighter stars, which we believe do not exist; four stars included in one of the catalogs but identified there as only optical companions; one probable plate flaw; and two stars that simply remain unrecovered. For the 4251 recovered stars, 2693 have coordinates based on Hipparcos positions, 1549 have coordinates based on 2MASS data, and 9 have positions from other astrometric sources. All positions have been calculated at epoch 2000 using proper motions from the literature, which are also given here. C1 [Stauffer, John] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Tanner, Angelle M.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Bryden, Geoffrey; Ramirez, Solange; Berriman, Bruce; Ciardi, David R.; Kane, Stephen R.; Mizusawa, Trisha; Plavchan, Peter; von Braun, Kaspar; Wyatt, Pamela] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Bryden, Geoffrey] Jet Prop Lab, Pasadena, CA 91109 USA. [Payne, Alan] Australian Natl Univ, Mt Stromlo Observ, Canberra, ACT, Australia. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Stauffer, J (reprint author), Spitzer Sci Ctr, Pasadena, CA 91125 USA. NR 53 TC 12 Z9 12 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2010 VL 122 IS 894 BP 885 EP 897 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 634EG UT WOS:000280561700002 ER PT J AU Dobke, BM Johnston, DE Massey, R High, FW Ferry, M Rhodes, J Vanderveld, RA AF Dobke, Benjamin M. Johnston, David E. Massey, Richard High, F. William Ferry, Matt Rhodes, Jason Vanderveld, R. Ali TI Astronomical Image Simulation for Telescope and Survey Development SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID WEAK LENSING MEASUREMENTS; ULTRA DEEP FIELD; GRAVITATIONAL SHEAR; POLAR SHAPELETS; COSMOS AB We present the simage software suite for the simulation of artificial extragalactic images, based empirically around real observations of the Hubble Ultra Deep Field. The simulations reproduce galaxies with realistic and complex morphologies via the modeling of UDF galaxies as shapelets. Images can be created in the B, V, i and z bands for both space- and ground-based telescopes and instruments. The simulated images can be produced for any required field size, exposure time, PSF, telescope mirror size, pixel resolution, field star density, and a variety of detector noise sources. It has the capability to create images with either a predetermined number of galaxies, or one calibrated to the number counts of preexisting data sets such as the HST COSMOS survey. In addition, simple options are included to add a known weak gravitational lensing signal ( both shear and flexion) to the simulated images. The software is available in IDL and can be freely downloaded for scientific, developmental, and teaching purposes. C1 [Dobke, Benjamin M.; Rhodes, Jason; Vanderveld, R. Ali] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Johnston, David E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Massey, Richard] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [High, F. William] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ferry, Matt; Rhodes, Jason; Vanderveld, R. Ali] CALTECH, Pasadena, CA 91125 USA. RP Dobke, BM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. FU NASA; European Union [MIRG-CT-208994]; STFC [PP/E006450/1] FX Thanks to Molly Peeples and Banaby Rowe. B. M. D. and J. R. acknowledge financial support through the NASA-JPL Award/Project Weak Gravitational Lensing: The Ideal Probe of Dark Matter and Dark Energy. R. J. M. acknowledges financial support through European Union grant MIRG-CT-208994 and STFC Advanced Fellowship PP/E006450/1. The work of B. M. D., J. R., and A. V. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 25 TC 8 Z9 8 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2010 VL 122 IS 894 BP 947 EP 954 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 634EG UT WOS:000280561700008 ER PT J AU Van Aalsburg, J Rundle, JB Grant, LB Rundle, PB Yakovlev, G Turcotte, DL Donnellan, A Tiampo, KF Fernandez, J AF Van Aalsburg, Jordan Rundle, John B. Grant, Lisa B. Rundle, Paul B. Yakovlev, Gleb Turcotte, Donald L. Donnellan, Andrea Tiampo, Kristy F. Fernandez, Jose TI Space- and Time-Dependent Probabilities for Earthquake Fault Systems from Numerical Simulations: Feasibility Study and First Results SO PURE AND APPLIED GEOPHYSICS LA English DT Article; Proceedings Paper CT Evison Symposium on Seismogenesis and Earthquake Forecasting CY JUL 18-22, 2008 CL Wellington, NEW ZEALAND DE Earthquakes; forecasting; California seismicity; earthquake hazard ID SAN-ANDREAS FAULT; SOUTHERN-CALIFORNIA; SYNTHETIC SEISMICITY; MODEL; STATISTICS; HAZARD; EVENT; SLIP AB In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed "model steering". Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California. C1 [Van Aalsburg, Jordan; Rundle, John B.; Rundle, Paul B.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Van Aalsburg, Jordan; Rundle, John B.; Rundle, Paul B.; Yakovlev, Gleb] Univ Calif Davis, Computat Sci & Engn Ctr, Davis, CA 95616 USA. [Grant, Lisa B.] Univ Calif Irvine, Program Publ Hlth, Irvine, CA 92697 USA. [Turcotte, Donald L.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Donnellan, Andrea] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tiampo, Kristy F.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. [Fernandez, Jose] Inst Astron & Geodesia CSIC UCM, Fac CC Matemat, Madrid 28040, Spain. RP Van Aalsburg, J (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM jvan@cse.ucdavis.edu RI Ludwig, Lisa Grant/G-6442-2012; Fernandez, Jose/K-1669-2014; Tiampo, Kristy/I-1355-2015 OI Ludwig, Lisa Grant/0000-0001-6538-8067; Fernandez, Jose/0000-0001-5745-3527; Tiampo, Kristy/0000-0002-5500-7600 FU NASA's Earth-Sun System Technology Office; University of California, Davis; University of California, Irvine; National Science Foundation [ATM 0327558] FX This work has been supported by grants from the Computational Technologies Program of NASA's Earth-Sun System Technology Office to the Jet Propulsion Laboratory, the University of California, Davis, and the University of California, Irvine (JBR, PBR, JVA, GY, AD, LG), and by grant ATM 0327558 from the National Science Foundation (DLT). NR 36 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD AUG PY 2010 VL 167 IS 8-9 BP 967 EP 977 DI 10.1007/s00024-010-0091-3 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 643XF UT WOS:000281333000009 ER PT J AU Schimmerling, W AF Schimmerling, Walter TI Accepting space radiation risks SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Review AB The human exploration of space inevitably involves exposure to radiation. Associated with this exposure are multiple risks, i.e., probabilities that certain aspects of an astronaut's health or performance will be degraded. The management of these risks requires that such probabilities be accurately predicted, that the actual exposures be verified, and that comprehensive records be maintained. Implicit in these actions is the fact that, at some point, a decision has been made to accept a certain level of risk. This paper examines ethical and practical considerations involved in arriving at a determination that risks are acceptable, roles that the parties involved may play, and obligations arising out of reliance on the informed consent paradigm seen as the basis for ethical radiation risk acceptance in space. C1 NASA USRA, Washington, DC 20015 USA. RP Schimmerling, W (reprint author), NASA USRA, Washington, DC 20015 USA. EM walter2205@mac.com NR 4 TC 9 Z9 10 U1 6 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2010 VL 49 IS 3 BP 325 EP 329 DI 10.1007/s00411-010-0286-0 PG 5 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 628QT UT WOS:000280136400005 PM 20414667 ER PT J AU Theriot, CA Casey, RC Moore, VC Mitchell, L Reynolds, JO Burgoyne, M Partha, R Huff, JL Conyers, JL Jeevarajan, A Wu, HL AF Theriot, Corey A. Casey, Rachael C. Moore, Valerie C. Mitchell, Linsey Reynolds, Julia O. Burgoyne, Madeline Partha, Ranga Huff, Janice L. Conyers, Jodie L. Jeevarajan, Antony Wu, Honglu TI Dendro[C-60]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID SOLUBLE FULLERENE DERIVATIVES; LIPID-PEROXIDATION; IONIZING-RADIATION; SUBACUTE TOXICITY; DNA-DAMAGE; IN-VIVO; C-60; CYTOTOXICITY; REPAIR; RATS AB In this study, the ability of the C-60 fullerene derivative DF-1 to protect radiosensitive cells from the effects of high doses of gamma irradiation was examined. Earlier reports of DF-1's lack of toxicity in these cells were confirmed, and DF-1 was also observed to protect both human lymphocytes and rat intestinal crypt cells against radiation-induced cell death. We determined that DF-1 protected both cell types against radiation-induced DNA damage, as measured by inhibition of micronucleus formation. DF-1 also reduced the levels of reactive oxygen species in the crypt cells, a unique capability of fullerenes because of their enhanced reactivity toward electron-rich species. The ability of DF-1 to protect against the cytotoxic effects of radiation was comparable to that of amifostine, another ROS-scavenging radioprotector. Interestingly, localization of fluorescently labeled DF-1 in fibroblast was observed throughout the cell. Taken together, these results suggest that DF-1 provides powerful protection against several deleterious cellular consequences of irradiation in mammalian systems including oxidative stress, DNA damage, and cell death. C1 [Theriot, Corey A.; Jeevarajan, Antony; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Casey, Rachael C.; Huff, Janice L.] Univ Space Res Assoc, Houston, TX 77058 USA. [Moore, Valerie C.; Mitchell, Linsey; Partha, Ranga; Conyers, Jodie L.] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA. [Reynolds, Julia O.; Burgoyne, Madeline] Centenary Coll Louisiana, Shreveport, LA 71104 USA. RP Wu, HL (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mail Code SK, Houston, TX 77058 USA. EM honglu.wu-1@nasa.gov FU NASA FX We would like to thank Delia Danila (University of Texas Medical School at Houston) for her expertise in covalent labeling of nanoparticles, and Tego Biosciences for providing DF-1. This research was supported by the NASA Focused Investment Group program. The research conducted by C. Theriot was supported by an appointment to the NASA Postdoctoral Program at the Johnson Space Center, administered by Oak Ridge Associated Universities through a contract with NASA. Sources of Support for Research: NASA Technology Investment Fund EXCX22008D. NR 35 TC 14 Z9 15 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2010 VL 49 IS 3 BP 437 EP 445 DI 10.1007/s00411-010-0310-4 PG 9 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 628QT UT WOS:000280136400019 PM 20582595 ER PT J AU Anderson, JA Harper, JV Cucinotta, FA O'Neill, P AF Anderson, Jennifer A. Harper, Jane V. Cucinotta, Francis A. O'Neill, Peter TI Participation of DNA-PKcs in DSB Repair after Exposure to High- and Low-LET Radiation SO RADIATION RESEARCH LA English DT Article ID DEPENDENT PROTEIN-KINASE; DOUBLE-STRAND BREAKS; IONIZING-RADIATION; CELL-CYCLE; ESCHERICHIA-COLI; MAMMALIAN-CELLS; CATALYTIC SUBUNIT; GAMMA-H2AX FOCI; HOMOLOGOUS RECOMBINATION; MUTATION FREQUENCY AB Cellular lesions (e.g. DSBs) are induced into DNA upon exposure to radiation, with DSB complexity increasing with radiation ionization density. Using M059K and M059J human glioblastoma cells (proficient and deficient in DNA-PKcs activity, respectively), we investigated the repair of DNA damage, including DSBs, induced by high- and low-LET radiation [gamma rays, a particles and high-charge and energy (HZE) ions]. In the absence of DNA-PKcs activity, less DSB repair and increased recruitment of RAD51 was seen at 24 h. After exposure to 5 Fe heavy ions, the number of cells with RAD51 tracks was less than the number of cells with gamma-H2AX at 24 h with both cell lines. Using a particles, comparable numbers of cells with visible gamma-H2AX and RAD51 were seen at 24 h in both cell lines. M059J cells irradiated with alpha particles accumulated in S phase, with a greater number of cyclin A and RAD51 co-stained cells seen at 24 h compared with M059K cells, where an S-phase block is absent. It is proposed that DNA-PKcs plays a role in the repair of some frank DSBs, which are longer-lived in NHEJ-deficient cells, and some non-DSB clustered damage sites that are converted into DSBs at replication as the cell cycles through to S phase. (C) 2010 by Radiation Research Society C1 [Anderson, Jennifer A.; Harper, Jane V.; O'Neill, Peter] Univ Oxford, DNA Damage Grp, Gray Inst Radiat Oncol & Biol, Oxford OX3 7DQ, England. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP O'Neill, P (reprint author), Univ Oxford, DNA Damage Grp, Gray Inst Radiat Oncol & Biol, Old Rd Res Campus,Roosevelt Dr, Oxford OX3 7DQ, England. EM peter.oneill@rob.ox.ac.uk FU Office of Science (BER), U.S. Department of Energy [DE-FG02-05ER64090, DE-A103-05ER64088] FX The authors wish to thank Cathy de Lam for assistance with PFGE and cell survival experiments, Stuart Townsend for assistance with confocal microscopy, David Stevens and Mark Hill for help with alpha-particle irradiations, and the staff of NSRL for their assistance with HZE-particle irradiations. This research was supported in part by the Office of Science (BER), U.S. Department of Energy, grants DE-FG02-05ER64090 and DE-A103-05ER64088. NR 71 TC 30 Z9 31 U1 0 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD AUG PY 2010 VL 174 IS 2 BP 195 EP 205 DI 10.1667/RR2071.1 PG 11 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 639OM UT WOS:000280984100008 PM 20681786 ER PT J AU Goebel, DM Watkins, RM AF Goebel, Dan M. Watkins, Ronald M. TI Compact lanthanum hexaboride hollow cathode SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MODERN DISPENSER CATHODES; WORK FUNCTION; FILAMENTS; ION AB A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB6 hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current. c 2010 American Institute of Physics. [doi: 10.1063/1.3474921] C1 [Goebel, Dan M.; Watkins, Ronald M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Goebel, DM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dan.m.goebel@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 34 TC 13 Z9 13 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2010 VL 81 IS 8 AR 083504 DI 10.1063/1.3474921 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 651DZ UT WOS:000281906100010 PM 20815605 ER PT J AU Olsen, N Hulot, G Sabaka, TJ AF Olsen, N. Hulot, G. Sabaka, T. J. TI Measuring the Earth's Magnetic Field from Space: Concepts of Past, Present and Future Missions SO SPACE SCIENCE REVIEWS LA English DT Review DE Low earth-orbiting satellites; Magnetic field modeling; POGO; Magsat; Orsted; SAC-C; ST-5; CHAMP; Swarm ID GEOMAGNETIC-FIELD; SWARM CONSTELLATION; ALIGNED CURRENTS; ANOMALY MAP; MAGSAT DATA; ELECTROMAGNETIC INDUCTION; SATELLITE ALTITUDE; SECULAR VARIATION; GLOBAL VECTOR; MODEL AB Observations of the Earth's magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth's magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led to the latest Swarm constellation concept. We conclude with some considerations about future concepts that could possibly be implemented to ensure the much needed continuity of LEO space magnetometry, possibly with enhanced scientific return, by the time the Swarm mission ends. C1 [Olsen, N.] Tech Univ Denmark, DTU Space, DK-2100 Copenhagen, Denmark. [Hulot, G.] Univ Paris Diderot, Equipe Geomagnetisme, Inst Phys Globe Paris, INSU,CNRS, F-75252 Paris 05, France. [Sabaka, T. J.] NASA, Goddard Space Flight Ctr, Geodynam Branch, Greenbelt, MD 20771 USA. RP Olsen, N (reprint author), Tech Univ Denmark, DTU Space, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. EM nio@space.dtu.dk RI Hulot, Gauthier/A-5627-2011; Olsen, Nils/H-1822-2011; Sabaka, Terence/D-5618-2012 OI Olsen, Nils/0000-0003-1132-6113; NR 97 TC 7 Z9 9 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2010 VL 155 IS 1-4 BP 65 EP 93 DI 10.1007/s11214-010-9676-5 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682TX UT WOS:000284427000004 ER PT J AU Thebault, E Purucker, M Whaler, KA Langlais, B Sabaka, TJ AF Thebault, Erwan Purucker, Michael Whaler, Kathryn A. Langlais, Benoit Sabaka, Terence J. TI The Magnetic Field of the Earth's Lithosphere SO SPACE SCIENCE REVIEWS LA English DT Review DE Lithospheric magnetic field; Modelling; Regional modelling; Planetary magnetic field; Satellite ID GEOMAGNETIC SECULAR VARIATION; CAP HARMONIC-ANALYSIS; ANOMALY MAP; SATELLITE DATA; REMANENT MAGNETIZATION; CRUSTAL MAGNETIZATION; REGIONAL-ANALYSIS; LUNAR PROSPECTOR; POWER SPECTRUM; NORTH-AMERICA AB The lithospheric contribution to the Earth's magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth's sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth's lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth's magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth's lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth's lithosphere. The lessons learned in measuring and processing Earth's magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties. C1 [Thebault, Erwan] Inst Phys Globe Paris, Equipe Geomagnetisme, CNRS, UMR7154, F-75252 Paris, France. [Purucker, Michael] NASA, Goddard Space Flight Ctr, Raytheon Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Whaler, Kathryn A.] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland. [Langlais, Benoit] Univ Nantes, F-44000 Nantes, France. [Langlais, Benoit] CNRS, UMR 6112, Lab Planetol & Geodynam, F-44000 Nantes, France. [Sabaka, Terence J.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Branch, Greenbelt, MD 20771 USA. RP Thebault, E (reprint author), Inst Phys Globe Paris, Equipe Geomagnetisme, CNRS, UMR7154, 4 Pl Jussieu, F-75252 Paris, France. EM ethebault@ipgp.jussieu.fr; michael.e.purucker@nasa.gov; kathy.whaler@ed.ac.uk; benoit.langlais@univ-nantes.fr; Terence.J.Sabaka@nasa.gov RI Sabaka, Terence/D-5618-2012; Langlais, Benoit/K-5366-2012; Thebault, Erwan/A-5670-2011 OI Langlais, Benoit/0000-0001-5207-304X; NR 174 TC 34 Z9 43 U1 1 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2010 VL 155 IS 1-4 BP 95 EP 127 DI 10.1007/s11214-010-9667-6 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682TX UT WOS:000284427000005 ER PT J AU Fournier, A Hulot, G Jault, D Kuang, WJ Tangborn, A Gillet, N Canet, E Aubert, J Lhuillier, F AF Fournier, Alexandre Hulot, Gauthier Jault, Dominique Kuang, Weijia Tangborn, Andrew Gillet, Nicolas Canet, Elisabeth Aubert, Julien Lhuillier, Florian TI An Introduction to Data Assimilation and Predictability in Geomagnetism SO SPACE SCIENCE REVIEWS LA English DT Review DE Geomagnetic secular variation; Dynamo: theories and simulations; Earth's core dynamics; Inverse theory; Data assimilation; Satellite magnetics; Predictability ID EARTHS MAGNETIC-FIELD; ADJOINT VORTICITY EQUATION; SPHERICAL COUETTE-FLOW; SECULAR VARIATION; METEOROLOGICAL OBSERVATIONS; SATELLITE DATA; SURFACE FLOWS; VARIATIONAL ASSIMILATION; TORSIONAL OSCILLATIONS; SEISMIC TOMOGRAPHY AB Data assimilation in geomagnetism designates the set of inverse methods for geomagnetic data analysis which rely on an underlying prognostic numerical model of core dynamics. Within that framework, the time-dependency of the magnetohydrodynamic state of the core need no longer be parameterized: The model trajectory (and the secular variation it generates at the surface of the Earth) is controlled by the initial condition, and possibly some other static control parameters. The primary goal of geomagnetic data assimilation is then to combine in an optimal fashion the information contained in the database of geomagnetic observations and in the dynamical model, by adjusting the model trajectory in order to provide an adequate fit to the data. The recent developments in that emerging field of research are motivated mostly by the increase in data quality and quantity during the last decade, owing to the ongoing era of magnetic observation of the Earth from space, and by the concurrent progress in the numerical description of core dynamics. In this article we review briefly the current status of our knowledge of core dynamics, and elaborate on the reasons which motivate geomagnetic data assimilation studies, most notably (a) the prospect to propagate the current quality of data backward in time to construct dynamically consistent historical core field and flow models, (b) the possibility to improve the forecast of the secular variation, and (c) on a more fundamental level, the will to identify unambiguously the physical mechanisms governing the secular variation. We then present the fundamentals of data assimilation (in its sequential and variational forms) and summarize the observations at hand for data assimilation practice. We present next two approaches to geomagnetic data assimilation: The first relies on a three-dimensional model of the geodynamo, and the second on a quasi-geostrophic approximation. We also provide an estimate of the limit of the predictability of the geomagnetic secular variation based upon a suite of three-dimensional dynamo models. We finish by discussing possible directions for future research, in particular the assimilation of laboratory observations of liquid metal analogs of Earth's core. C1 [Fournier, Alexandre; Hulot, Gauthier] Univ Paris Diderot, Inst Phys Globe Paris, CNRS, F-75252 Paris 5, France. [Jault, Dominique; Gillet, Nicolas; Canet, Elisabeth] Univ Grenoble 1, CNRS, Lab Geophys Interne & Tectonophys, Grenoble, France. [Kuang, Weijia] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Tangborn, Andrew] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Canet, Elisabeth] ETH, Inst Geophys, CH-8093 Zurich, Switzerland. RP Fournier, A (reprint author), Univ Paris Diderot, Inst Phys Globe Paris, CNRS, 4 Pl Jussieu, F-75252 Paris 5, France. EM fournier@ipgp.fr RI Aubert, Julien/A-5616-2011; Hulot, Gauthier/A-5627-2011; Fournier, Alexandre/A-5774-2011; Lhuillier, Florian/A-1117-2012; Lhuillier, Florian/E-3264-2013; Kuang, Weijia/K-5141-2012; Jault, Dominique/B-8820-2017 OI Aubert, Julien/0000-0002-2756-0724; Fournier, Alexandre/0000-0003-3276-0496; Kuang, Weijia/0000-0001-7786-6425; Jault, Dominique/0000-0001-5592-5746 NR 154 TC 58 Z9 58 U1 1 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2010 VL 155 IS 1-4 BP 247 EP 291 DI 10.1007/s11214-010-9669-4 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 682TX UT WOS:000284427000010 ER PT J AU Kern, S Kaleschke, L Spreen, G AF Kern, S. Kaleschke, L. Spreen, G. TI Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992-2008 SO TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY LA English DT Article ID ARCTIC-OCEAN; INTERANNUAL VARIABILITY; FRESH-WATER; SSM/I; CIRCULATION; EXTENT; MODEL; ALGORITHMS; CONVECTION; SIGNATURES AB The ice cover of the Arctic peripheral seas bordering the Northern North Atlantic is examined for 1992-2008 using the ARTIST Sea Ice (ASI) algorithm applied to derive the sea ice concentration from 85 GHz SSM/I measurements. Our analysis reveals a 2 months longer ice-free season in the Irminger Sea (IS), and reductions in ice area and extent between 1992-1999 and 2000-2008 by 10-20% during winter and 30-55% in summer. Barents Sea (BS) ice-cover anomalies (ICA) persist twice as long as ICA in the other regions. Early winter ICA in region IS are correlated to late summer/fall Greenland Sea (GS) ICA. Summertime GS and wintertime IS ICA are correlated to winter Fram Strait ice-area flux anomalies. The wintertime GS ice-cover decrease is associated with less Is Odden events. Our analysis suggests a large-scale, interregional ocean-ice-atmosphere feedback mechanism involving regions BS, Kara (KS) and White/Pechora Sea (WPS). To understand this mechanism the current and preceding general atmospheric circulation, associated variations in Arctic Ocean ice export and oceanic heat advection are needed. However, our results suggest (1) BS ICA could play a key role to predict subsequent KS ICA and (2) anomalous Arctic Ocean ice export into BS could trigger long-lasting BS ICA. C1 [Kern, S.; Kaleschke, L.; Spreen, G.] Univ Hamburg, Ctr Marine & Climate Res, Inst Oceanog, D-20146 Hamburg, Germany. [Spreen, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kern, S (reprint author), Univ Hamburg, Ctr Marine & Climate Res, Inst Oceanog, Bundesstr 53, D-20146 Hamburg, Germany. EM stefan.kern@zmaw.de RI Spreen, Gunnar/A-4533-2010; OI Spreen, Gunnar/0000-0003-0165-8448; Kaleschke, Lars/0000-0001-7086-3299 FU German Science Foundation (DFG) [SFB512] FX Satellite data provision by the National Snow and Ice Data Centre (NSIDC), Boulder, Co, USA, and provision of the operational ice-concentration maps by CERSAT/IFREMER, Brest, France is greatly acknowledged. Thanks go the Carmen Ulmen, CLISAP, University of Hamburg, Hamburg, Germany, for median-filtering of the ASI data. This work has been funded by the German Science Foundation (DFG) via SFB512, Teilprojekt E1 and E5. The authors also wish to thank two anonymous reviewers whose comments together with those of the editor helped to substantially improve the manuscript. NR 68 TC 13 Z9 13 U1 1 U2 5 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6495 EI 1600-0870 J9 TELLUS A JI Tellus Ser. A-Dyn. Meteorol. Oceanol. PD AUG PY 2010 VL 62 IS 4 BP 411 EP 434 DI 10.1111/j.1600-0870.2010.00457.x PG 24 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 623NY UT WOS:000279750300006 ER PT J AU Merino, JH Rozas, LP Minello, TJ Sheridan, PF AF Merino, Joy H. Rozas, Lawrence P. Minello, Thomas J. Sheridan, Peter F. TI Effects of Marsh Terracing on Nekton Abundance at Two Locations in Galveston Bay, Texas SO WETLANDS LA English DT Article DE Decapods; Fishes; Gulf of Mexico; Habitat value; Restoration ID SALT MARSHES; DECAPOD CRUSTACEANS; GULF-COAST; HABITAT; FISH; RESTORATION; ASSEMBLAGE; ESTUARINE; NURSERIES; SELECTION AB We evaluated two marsh terracing restoration projects (GI=Galveston Island State Park, PM=Pierce Marsh) to compare nekton density and biomass between locations and among habitat types (open water pre-construction, open water post-construction, terrace marsh, terrace pond). Most (72%) animals collected were decapod crustaceans. Few differences in nekton abundance were observed over time (pre-construction versus post-construction open water). Comparisons of pre-construction to post-construction open water showed that the locations differed environmentally (e.g., turbidity) and in populations of nekton species. Density and biomass of gulf menhaden Brevoortia patronus and spot Leiostomus xanthurus in spring and density of white shrimp Litopenaeus setiferus in fall were higher at PM than GI, whereas densities and biomass of blue crab Callinectes sapidus, density of pink shrimp Farfantepenaeus duorarum, and biomass of brown shrimp Farfantepenaeus aztecus in the fall were higher at GI than PM. Despite location differences, constructing terraces appeared to benefit fishery species at both locations. Densities of brown shrimp, blue crab, white shrimp (fall), and pink shrimp (fall) and the biomass of brown shrimp, blue crab, and white shrimp (fall) were higher in terrace marsh than open water. Marsh terracing appears to be an effective tool for enhancing fishery habitat in degraded coastal systems. C1 [Merino, Joy H.; Rozas, Lawrence P.] Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Estuarine Habitats & Coastal Fisheries Lab, Lafayette, LA 70506 USA. [Minello, Thomas J.] Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Galveston Lab, Galveston, TX 77551 USA. [Sheridan, Peter F.] Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Panama City Lab, Panama City Beach, FL 32408 USA. RP Merino, JH (reprint author), Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Estuarine Habitats & Coastal Fisheries Lab, 646 Cajundome Blvd, Lafayette, LA 70506 USA. EM joy.merino@noaa.gov FU NOAA Fisheries Service Restoration Center; Southeast Fisheries Science Center FX Funding for this research was provided by the NOAA Fisheries Service Restoration Center and Southeast Fisheries Science Center. The research was conducted through the NOAA Fisheries Service Southeast Fisheries Science Center by personnel from the Fishery Ecology Branch located at the Galveston Laboratory and the Estuarine Habitats and Coastal Fisheries Center in Lafayette, LA. In particular, field and laboratory assistance was provided by Philip Caldwell, Harley Clinton, Molly Dillender, Jim Ditty, Jennifer Doerr, Shawn Hillen, Joni Kernan, Kirk Kilfoyle, Seth King, Genni Miller, Freddie Nix, Matt Prine, Juan Salas, Katie Turner, Katrinyda Williams, and Elizabeth Wilson. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the NOAA Fisheries Service. NR 44 TC 2 Z9 2 U1 3 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0277-5212 J9 WETLANDS JI Wetlands PD AUG PY 2010 VL 30 IS 4 BP 693 EP 704 DI 10.1007/s13157-010-0079-x PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 646TG UT WOS:000281565300005 ER PT J AU Sleeman, JC Meekan, MG Wilson, SG Polovina, JJ Stevens, JD Boggs, GS Bradshaw, CJA AF Sleeman, Jai C. Meekan, Mark G. Wilson, Steven G. Polovina, Jeffrey J. Stevens, John D. Boggs, Guy S. Bradshaw, Corey J. A. TI To go or not to go with the flow: Environmental influences on whale shark movement patterns SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Geostrophic currents; Migration; Oceanography; Passive diffusion model; Rhincodon typus; Satellite tracking ID CENTRAL NORTH PACIFIC; RHINCODON-TYPUS; WESTERN-AUSTRALIA; NINGALOO REEF; BASKING SHARKS; OCEAN CURRENTS; SEA-TURTLES; MULTIMODEL INFERENCE; SATELLITE TRACKING; FORAGING BEHAVIOR AB Seven whale sharks were tracked using satellite-linked tags from Ningaloo Reef, off northern Western Australia, following tagging in April and June 2002 and April-May 2005. We investigated how the movements of those whale shark tracks were influenced by geostrophic surface currents during sequential one-week periods by using a passive diffusion model parameterised with observed starting locations of the sharks and weekly maps of surface current velocity and direction (derived from altimetry). We compared the outputs from the passive diffusion model and maps of chlorophyll-a concentration (SeaWiFs/MODIS) and with the actual tracks of the sharks using GIS and generalized linear mixed-effects models (GLMM). The GLMM indicated very little support for passive diffusion with sea-surface ocean currents influencing whale shark distributions in the north eastern Indian Ocean. Moreover, the sharks' movements correlated only weakly with the spatial distribution of sea-surface chlorophyll-a concentrations. The seven whale sharks had average swimming speeds comparable with those recorded in other satellite tracking studies of this species. Swimming speeds of the seven sharks were similar to those reported in previous studies and up to three times greater than the maximum sea-surface current velocities that the sharks encountered while traversing into lower southerly latitudes (moving northward towards the equator). Our results indicate that whale sharks departing from Ningaloo travel actively and independently of near-surface currents where they spend most of their time despite additional metabolic costs of this behaviour. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sleeman, Jai C.; Boggs, Guy S.] Charles Darwin Univ, GIS & Remote Sensing Grp, Darwin, NT 0909, Australia. [Meekan, Mark G.] Australian Inst Marine Sci, Casuarina Mc, NT 0811, Australia. [Wilson, Steven G.] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. [Polovina, Jeffrey J.] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA. [Stevens, John D.] CSIRO Marine & Atmospher Res, Hobart, Tas 7001, Australia. [Bradshaw, Corey J. A.] Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia. [Bradshaw, Corey J. A.] Univ Adelaide, Sch Earth & Environm Sci, Adelaide, SA 5005, Australia. [Bradshaw, Corey J. A.] S Australian Res & Dev Inst, Henley Beach, SA 5022, Australia. RP Sleeman, JC (reprint author), Charles Darwin Univ, GIS & Remote Sensing Grp, Darwin, NT 0909, Australia. EM jai.sleeman@cdu.edu.au RI Bradshaw, Corey/A-1311-2008 OI Bradshaw, Corey/0000-0002-5328-7741 FU Osso Blue; Australian Institute of Marine Science; CSIRO Marine and Atmospheric Research; BHP Billiton Ltd.; Woodside Energy Ltd.; Chevron; U.S. NOAA Fisheries; DEC; Hubbs-SeaWorld Research Institute FX We thank C. McLean (AIMS), M. Horsham (CSIRO Marine & Atmospheric Research), G. Taylor and T. Maxwell for assistance in the field and M. Horsham for his design and modification of the satellite tag applicator. We also thank the R. Mau and the Western Australian Department of Environment and Conservation (formerly CALM) for their logistic assistance and T. Maxwell for support from his vessel Osso Blue. This research was supported by funding from the Australian Institute of Marine Science, CSIRO Marine and Atmospheric Research, BHP Billiton Ltd., Woodside Energy Ltd., Chevron, U.S. NOAA Fisheries, DEC and Hubbs-SeaWorld Research Institute. [SS] NR 41 TC 22 Z9 23 U1 1 U2 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD JUL 31 PY 2010 VL 390 IS 2 BP 84 EP 98 DI 10.1016/j.jembe.2010.05.009 PG 15 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 630YU UT WOS:000280313600003 ER PT J AU Bay, RC Rohde, RA Price, PB Bramall, NE AF Bay, R. C. Rohde, R. A. Price, P. B. Bramall, N. E. TI South Pole paleowind from automated synthesis of ice core records SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LAST GLACIAL PERIOD; SCALE CLIMATE-CHANGE; SNOW ACCUMULATION; ATMOSPHERIC CO2; ANTARCTICA; RECOGNITION; DEPOSITION; TRANSPORT; OCEAN; WIND AB We develop a fully automated reconstruction of South Pole surface roughness as a measure of past wind intensity, using dynamic warping feature recognition and internal consistency checks to reduce subjectivity and analysis time. We synchronized millimeter-resolution optical profiles of deep South Pole glacial dust together with ice core data between the ages 26 and 90 thousand years B. P. The images were captured using a laser dust logger in six boreholes of the IceCube neutrino detector array, a massive construction project in the ice at South Pole and an unusual opportunity for glaciology and paleoclimate research. South Pole surface roughness anticorrelated with curves of Antarctic pCO(2) and temperature, which we propose were connected through secular migrations of the Southern Hemisphere westerlies. This new paleoclimate signal may be direct evidence of atmospheric reorganization during the glacial, helping to deconvolve the thermodynamics and biogeochemistry of climate change. We also found that local intensity of atmospheric circulation roughly tracked the quantity of wind-borne particulates deposited in Antarctic ice during the glacial period, although the largest dust increases were likely furnished by the source regions. C1 [Bay, R. C.; Rohde, R. A.; Price, P. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bramall, N. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bay, RC (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. EM bay@berkeley.edu FU U.S. National Science Foundation (Office of Polar Programs and Physics Division); University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council, Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastracture for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU Marie Curie OIF Program; Capes Foundation, Ministry of Education, Brazil FX We thank Tim Markle, Ed Brook, Jakob Schwander, Jinho Ahn, Kirill Filimonov, Eric Wolff, and Bob Hawley for insightful discussion. Three anonymous reviewers improved the paper. We are grateful to the members of the IceCube collaboration for their support and splendid performance, in particular Tom Ham, Mark Thoma, Andres Morey, and the Enhanced Hot Water Drill team. This research was supported by the U.S. National Science Foundation (Office of Polar Programs and Physics Division), University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, National Energy Research Scientific Computing Center, Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council, Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastracture for Computing (SNIC), Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; EU Marie Curie OIF Program; and Capes Foundation, Ministry of Education, Brazil. NR 42 TC 9 Z9 9 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 31 PY 2010 VL 115 AR D14126 DI 10.1029/2009JD013741 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MW UT WOS:000280587400005 ER PT J AU Dobrea, EZN Bishop, JL McKeown, NK Fu, R Rossi, CM Michalski, JR Heinlein, C Hanus, V Poulet, F Mustard, RJF Murchie, S McEwen, AS Swayze, G Bibring, JP Malaret, E Hash, C AF Dobrea, E. Z. Noe Bishop, J. L. McKeown, N. K. Fu, R. Rossi, C. M. Michalski, J. R. Heinlein, C. Hanus, V. Poulet, F. Mustard, R. J. F. Murchie, S. McEwen, A. S. Swayze, G. Bibring, J. -P. Malaret, E. Hash, C. TI Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INFRARED-SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; THERMAL-CONDUCTIVITY; MARS; SMECTITES; SERPENTINES; EVOLUTION; SURFACES; CHLORITE; OLIVINE AB Analyses of MRO/CRISM images of the greater Mawrth Vallis region of Mars affirm the presence of two primary phyllosilicate assemblages throughout a region similar to 1000 x 1000 km. These two units consist of an Fe/Mg-phyllosilicate assemblage overlain by an Al-phyllosilicate and hydrated silica assemblage. The lower unit contains Fe/Mg-smectites, sometimes combined with one or more of these other Fe/Mg-phyllosilicates: serpentine, chlorite, biotite, and/or vermiculite. It is more than 100 m thick and finely layered at meter scales. The upper unit includes Al-smectite, kaolin group minerals, and hydrated silica. It is tens of meters thick and finely layered as well. A common phyllosilicate stratigraphy and morphology is observed throughout the greater region wherever erosional windows are present. This suggests that the geologic processes forming these units must have occurred on at least a regional scale. Sinuous ridges (interpreted to be inverted channels) and narrow channels cut into the upper clay-bearing unit suggesting that aqueous processes were prevalent after, and possibly during, the deposition of the layered units. We propose that layered units may have been deposited at Mawrth Vallis and then subsequently altered to form the hydrated units. The Fe/Mg-phyllosilicate assemblage is consistent with hydrothermal alteration or pedogenesis of mafic to ultramafic rocks. The Al-phyllosilicate/hydrated silica unit may have formed through alteration of felsic material or via leaching of basaltic material through pedogenic alteration or a mildly acidic environment. These phyllosilicate-bearing units are overlain by a darker, relatively unaltered, and indurated material that has probably experienced a complex geological history. C1 [Dobrea, E. Z. Noe; Fu, R.; Rossi, C. M.; Heinlein, C.; Hanus, V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dobrea, E. Z. Noe; Michalski, J. R.] Planetary Sci Inst, Tucson, AZ 85710 USA. [Bishop, J. L.] SETI Inst, Mountain View, CA 94043 USA. [McKeown, N. K.; Michalski, J. R.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Poulet, F.; Bibring, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Mustard, R. J. F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Murchie, S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McEwen, A. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Swayze, G.] US Geol Survey, Denver, CO 80225 USA. [Malaret, E.; Hash, C.] Appl Coherent Technol Corp, Herndon, VA 20170 USA. RP Dobrea, EZN (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM eldar@caltech.edu RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU Mars Data Analysis Program; MRO FX We would like to thank Matt Golombek for extensive discussions and advice on geologic interpretations and two anonymous reviewers for greatly improving the manuscript. This work was funded under the Mars Data Analysis Program as part of landing site selection studies and the MRO Participating Scientist Program. NR 74 TC 42 Z9 42 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 31 PY 2010 VL 115 AR E00D19 DI 10.1029/2009JE003351 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 634NJ UT WOS:000280589400001 ER PT J AU Lillis, RJ Bougher, SW Gonzalez-Galindo, F Forget, F Smith, MD Chamberlin, PC AF Lillis, Robert J. Bougher, Stephen W. Gonzalez-Galindo, Francisco Forget, Francois Smith, Michael D. Chamberlin, Phillip C. TI Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS GLOBAL SURVEYOR; CRUSTAL MAGNETIC-FIELD; GENERAL-CIRCULATION MODEL; SOLAR-CYCLE VARIATION; UPPER-ATMOSPHERE; AEROBRAKING OPERATIONS; ACCELEROMETER DATA; THERMAL TIDES; VARIABILITY; TRANSPORT AB The long-term dynamics of the Martian upper thermosphere near the exobase (similar to 160-200 km) are still relatively poorly constrained by data. Electron reflectometry (ER) provides a way to derive, from electron loss cones, neutral mass densities at these altitudes in the night hemisphere. Because the Mars Global Surveyor Electron Reflectometer was not designed for this purpose, uncertainties in individual measurements are large and thus upper thermospheric variability can be characterized only on time scales of weeks or longer. Density measurements are presented at 2 A.M. local time and 185 km altitude, from April 1999 until November 2006, spanning similar to 4 Martian years. We observe a weaker correlation with lower atmospheric dust activity than is seen in the lower thermosphere and a weaker correlation with solar EUV flux than is observed in the dayside exosphere. Seasonally repeating features are (1) overall expansion/contraction of the nighttime thermosphere with heliocentric distance, (2) much lower densities at the aphelion winter pole compared to the perihelion winter pole, and (3) a short-lived local density maximum at aphelion in the southern hemisphere. Interannual differences are also observed; in particular, the interval of low densities in the southern winter occurs progressively later as solar EUV flux decreases from solar maximum to solar minimum. Results are compared with predictions from the Mars Thermosphere General Circulation Model and LMD Mars Global Circulation atmospheric model frameworks for Ls - 90 degrees - 180 degrees, which generally underestimate and overestimate neutral densities, respectively. This disagreement reflects the difficulty in simulating nightside dynamical and cooling processes. C1 [Lillis, Robert J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bougher, Stephen W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Gonzalez-Galindo, Francisco; Forget, Francois] Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-75005 Paris, France. [Smith, Michael D.; Chamberlin, Phillip C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lillis, RJ (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RI Smith, Michael/C-8875-2012; Chamberlin, Phillip/C-9531-2012; Bougher, Stephen/C-1913-2013; Gonzalez-Galindo, Francisco/I-2495-2015; Lillis, Robert/A-3281-2008 OI Chamberlin, Phillip/0000-0003-4372-7405; Bougher, Stephen/0000-0002-4178-2729; Gonzalez-Galindo, Francisco/0000-0001-9443-291X; Lillis, Robert/0000-0003-0578-517X FU NASA [NNX07AV42G, NNX07AO84G] FX This work was generously funded by the NASA Mars Data Analysis Program, grants NNX07AV42G and NNX07AO84G. We would like to thank Don Woodraska for helpful information regarding the TIMED-SEE data. NR 69 TC 9 Z9 9 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 31 PY 2010 VL 115 AR E07014 DI 10.1029/2009JE003529 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 634NJ UT WOS:000280589400003 ER PT J AU Morlighem, M Rignot, E Seroussi, H Larour, E Ben Dhia, H Aubry, D AF Morlighem, M. Rignot, E. Seroussi, H. Larour, E. Ben Dhia, H. Aubry, D. TI Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THWAITES GLACIERS; ICE FLOW; SATELLITE; ACCELERATION; ELEVATION AB Basal drag is a fundamental control on ice stream dynamics that remains poorly understood or constrained by observations. Here, we apply control methods on ice surface velocities of Pine Island Glacier, West Antarctica to infer the spatial pattern of basal drag using a full-Stokes (FS) model of ice flow and compare the results obtained with two commonly-used simplified solutions: the MacAyeal shelfy stream model and the Blatter-Pattyn model. Over most of the model domain, the three models yield similar patterns of basal drag, yet near the glacier grounding-line, the simplified models yield high basal drag while FS yields almost no basal drag. The simplified models overestimate basal drag because they neglect bridging effects in an ice stream region of rapidly varying ice thickness. This result reinforces theoretical studies that a FS treatment of ice flow is essential near glacier grounding lines. Citation: Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853. C1 [Morlighem, M.] CALTECH, Jet Prop Lab, Radar Sci & Engn Sect, Commun Tracking & Radar Div, Pasadena, CA 91109 USA. [Morlighem, M.; Seroussi, H.; Ben Dhia, H.; Aubry, D.] Ecole Cent Paris, CNRS, UMR 8579, Lab MSSMat, F-92295 Chatenay Malabry, France. [Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Morlighem, M (reprint author), CALTECH, Jet Prop Lab, Radar Sci & Engn Sect, Commun Tracking & Radar Div, 334,MS 300-319,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mathieu.morlighem@jpl.nasa.gov; erignot@uci.edu; helene.seroussi@jpl.nasa.gov; eric.larour@jpl.nasa.gov; hachmi.ben-dhia@ecp.fr; denis.aubry@ecp.fr RI Rignot, Eric/A-4560-2014; Aubry, Denis/M-7880-2014; Morlighem, Mathieu/O-9942-2014 OI Rignot, Eric/0000-0002-3366-0481; Morlighem, Mathieu/0000-0001-5219-1310 FU National Aeronautics and Space Administration FX We would like to thank the two reviewers for their constructive comments. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, at the Department of Earth System Science, University of California Irvine, and at Laboratoire MSSMat, Ecole Centrale Paris, under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program. NR 27 TC 102 Z9 102 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 30 PY 2010 VL 37 AR L14502 DI 10.1029/2010GL043853 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 634MC UT WOS:000280585100004 ER PT J AU Tselioudis, G Tromeur, E Rossow, WB Zerefos, CS AF Tselioudis, George Tromeur, Eric Rossow, William B. Zerefos, C. S. TI Decadal changes in tropical convection suggest effects on stratospheric water vapor SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPOPAUSE TEMPERATURES; WESTERN PACIFIC; CLOUD REGIMES; CIRCULATION AB Analysis of satellite observations of tropical Weather States derived from a cluster analysis of ISCCP cloud property retrievals, shows that the deep convection Weather State increased in frequency from 1983 to about 2000 and remained at a nearly constant level after that. The sharpest deep convection increase occurred between 1993 and 2000. This convection variability is driven by changes that occur in the Indian Ocean and the Western-Central Pacific regions, which are the regions where the majority of deep tropical convection occurs. Analysis modifications to account for satellite coverage changes during the period under examination do not alter these findings. Previous studies showed that stratospheric water vapor increased from 1980 to 2000 and dropped after that to lower levels that persist until today, and that this change could explain part of the recent global temperature variability. Since tropical deep convection is an important mechanism affecting stratospheric water vapor concentrations, the observed decadal changes in tropical deep convection could explain in part the stratospheric water vapor variability patterns. Citation: Tselioudis, G., E. Tromeur, W. B. Rossow, and C. S. Zerefos (2010), Decadal changes in tropical convection suggest effects on stratospheric water vapor, Geophys. Res. Lett., 37, L14806, doi:10.1029/2010GL044092. C1 [Tselioudis, George] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Tselioudis, George; Zerefos, C. S.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens 11251, Greece. [Tromeur, Eric; Rossow, William B.] CUNY, NOAA, CREST, New York, NY 10031 USA. RP Tselioudis, G (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM gtselioudis@giss.nasa.gov RI Rossow, William/F-3138-2015 FU NASA [08MAP0004, NNXD7AN04G] FX We thank an anonymous reviewer for thorough and constructive comments. Work by GT and W. B. R was supported by the NASA Modeling and Analysis Program (managed by David Considine, formerly by Don Anderson), under grants 08MAP0004 and NNXD7AN04G. NR 15 TC 11 Z9 11 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 30 PY 2010 VL 37 AR L14806 DI 10.1029/2010GL044092 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 634MC UT WOS:000280585100007 ER PT J AU Bierwirth, E Wendisch, M Jakel, E Ehrlich, A Schmidt, KS Stark, H Pilewskie, P Esselborn, M Gobbi, GP Ferrare, R Muller, T Clarke, A AF Bierwirth, Eike Wendisch, Manfred Jaekel, Evelyn Ehrlich, Andre Schmidt, K. Sebastian Stark, Harald Pilewskie, Peter Esselborn, Michael Gobbi, Gian Paolo Ferrare, Richard Mueller, Thomas Clarke, Antony TI A new method to retrieve the aerosol layer absorption coefficient from airborne flux density and actinic radiation measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; SAHARAN DUST; SAMUM 2006; OPTICAL-PROPERTIES; LOWER TROPOSPHERE; PHOTOLYSIS FREQUENCY; LIGHT-ABSORPTION; MOROCCO; OZONE; CLOUD AB A new method is presented to derive the mean value of the spectral absorption coefficient of an aerosol layer from combined airborne measurements of spectral net irradiance and actinic flux density. While the method is based on a theoretical relationship of radiative transfer theory, it is applied to atmospheric radiation measurements for the first time. The data have been collected with the Spectral Modular Airborne Radiation Measurement System (SMART-Albedometer), the Solar Spectral Flux Radiometer (SSFR), and the Actinic Flux Spectroradiometer (AFSR) during four field campaigns between 2002 and 2008 (the Saharan Mineral Dust Experiment (SAMUM), the Influence of Clouds on the Spectral Actinic Flux in the Lower Troposphere (INSPECTRO) project, and the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites and Aerosol, Radiation, and Cloud Processes Affecting Arctic Climate (ARCTAS/ARCPAC) projects). The retrieval algorithm is tested in a series of radiative transfer model runs and then applied to measurement cases with different aerosol species and loading. The method is shown to be a feasible approach to obtain the mean aerosol absorption coefficient across a given accessible altitude range. The results indicate that the method is viable whenever the difference of the net irradiance at the top and bottom of a layer is equal to or higher than the measurement uncertainty for net irradiance. This can be achieved by a high optical depth or a low single-scattering albedo within the layer. C1 [Bierwirth, Eike; Wendisch, Manfred; Ehrlich, Andre] Univ Leipzig, Leipziger Inst Meteorol, D-04103 Leipzig, Germany. [Bierwirth, Eike; Schmidt, K. Sebastian; Pilewskie, Peter] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Jaekel, Evelyn] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, D-55099 Mainz, Germany. [Stark, Harald] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Esselborn, Michael] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Germany. [Gobbi, Gian Paolo] CNR, Inst Atmospher Sci & Climate, I-00133 Rome, Italy. [Ferrare, Richard] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Mueller, Thomas] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [Clarke, Antony] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. RP Bierwirth, E (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392 UCB, Boulder, CO 80309 USA. EM eike.bierwirth@gmx.de RI Stark, Harald/E-7433-2010; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Ehrlich, Andre/H-9670-2013; Wendisch, Manfred/E-4175-2013; Mueller, Thomas/E-5426-2015 OI SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Wendisch, Manfred/0000-0002-4652-5561; FU German Research Foundation (Research Group SAMUM); NASA (ARCTAS); NOAA (ARCPAC) FX The authors are grateful to all field campaign participants who made the experiments possible, especially the aircraft operators, pilots, and coordinators. The field campaigns were supported by the German Research Foundation (Research Group SAMUM), NASA (ARCTAS), and NOAA (ARCPAC). Analyses used in this paper were produced with TOMS data from the Giovanni online data system, developed and maintained by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). NR 47 TC 5 Z9 5 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2010 VL 115 AR D14211 DI 10.1029/2009JD013636 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MV UT WOS:000280587200007 ER PT J AU Colarco, P da Silva, A Chin, M Diehl, T AF Colarco, Peter da Silva, Arlindo Chin, Mian Diehl, Thomas TI Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INDIAN-OCEAN EXPERIMENT; REGIONAL AIR-QUALITY; SAHARAN DUST; UNITED-STATES; ATMOSPHERIC AEROSOLS; RADIATIVE PROPERTIES; SPECTRAL RADIANCES; SIZE DISTRIBUTION; PLANETARY ALBEDO; GOCART MODEL AB We have implemented a module for tropospheric aerosols (GOCART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume. C1 [Colarco, Peter; Chin, Mian; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [da Silva, Arlindo] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Diehl, Thomas] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Colarco, P (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. RI da Silva, Arlindo/D-6301-2012; Colarco, Peter/D-8637-2012; Chin, Mian/J-8354-2012 OI da Silva, Arlindo/0000-0002-3381-4030; Colarco, Peter/0000-0003-3525-1662; FU NASA FX We acknowledge the valuable insights to two anonymous reviewers. We thank Huisheng Bian for providing the oxidant fields used for sulfate chemistry in this study. Brent Holben leads the AERONET program and provided access to that data set. Ralph Kahn and Cynthia Randles provided valuable comments on early drafts of this paper. This work was supported by a grant from the NASA Modeling, Analysis, and Prediction program, with Don Anderson acting as the technical director. NR 97 TC 79 Z9 79 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2010 VL 115 AR D14207 DI 10.1029/2009JD012820 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MV UT WOS:000280587200003 ER PT J AU Huang, ZW Huang, JP Bi, JR Wang, GY Wang, WC Fu, QA Li, ZQ Tsay, SC Shi, JS AF Huang, Zhongwei Huang, Jianping Bi, Jianrong Wang, Guoyin Wang, Wencai Fu, Qiang Li, Zhanqing Tsay, Si-Chee Shi, Jinsen TI Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-US joint dust field experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL DEPTH; ANTHROPOGENIC AEROSOLS; BACKSCATTER PROFILES; INVERSION TECHNIQUE; LOESS PLATEAU; SAHARAN DUST; MINERAL DUST; EAST-ASIA; ATMOSPHERE; TRANSPORT AB The 2008 China-U.S. joint dust field experiment, which aims to estimate the effect of dust on radiative forcing and its associated climatic impacts, was conducted during the dust-intensive period from March to June of 2008 over the Loess Plateau of northwest China. Dust aerosol vertical profiles and long-range transport of dust storm were measured with the three MPL-net Micro-Pulse Lidar (MPL) systems as well as other ground-based instruments and spaceborne remote sensing techniques. In this study, to ensure the effectiveness of the retrieval results, an effective algorithm was introduced for retrieving aerosol optical properties and vertical profiles from Mie lidar measurements. The advantage of this algorithm is that Aerosol Optical Depth (AOD) retrieval from lidar measurements can be accomplished without the use of the so-called lidar ratio for the corresponding quantities obtained from the AERONET Sun photometer. Dust aerosol vertical profiles are derived successfully from three MPL lidar systems using this algorithm. A dust storm that affected a large part of northwest China on 2 May 2008 was studied using measurements obtained from the three ground-based lidar systems, satellite-borne instruments and NCEP reanalysis data. The results show that different aerosol vertical structures were present at each site, and the colder Siberia air mass and stronger and longer cyclones around Mongolia are key features leading to the dust storm. C1 [Huang, Zhongwei; Huang, Jianping; Bi, Jianrong; Wang, Guoyin; Wang, Wencai; Shi, Jinsen] Lanzhou Univ, Key Lab Semiarid Climate Change, Minist Educ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Fu, Qiang] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, ZW (reprint author), Lanzhou Univ, Key Lab Semiarid Climate Change, Minist Educ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. EM hjp@lzu.edu.cn RI Huang, Zhongwei/K-5484-2013; zhang, zhijuan/H-9917-2016; Li, Zhanqing/F-4424-2010 OI zhang, zhijuan/0000-0002-5328-7506; Li, Zhanqing/0000-0001-6737-382X FU National Science Foundation of China [40725015, 40633017] FX This work was funded by the National Science Foundation of China under grants 40725015 and 40633017. The cooperative experiment was conducted by Lanzhou University, University of Maryland (USA), and Institute of Atmospheric Physics (CAS, China). The authors would like to thank all the people who worked for the 2008 China-U.S. joint dust field experiment so as to get such high-quality data sets. We are grateful to R. Coulter of the Argonne National Lab for loaning a MPL used in this study. We also thank the OMI and CALIPSO team for providing satellite data sets. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.html) used in this publication. NR 81 TC 40 Z9 44 U1 2 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2010 VL 115 AR D00K15 DI 10.1029/2009JD013273 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MV UT WOS:000280587200005 ER PT J AU Ott, L Duncan, B Pawson, S Colarco, P Chin, M Randles, C Diehl, T Nielsen, E AF Ott, Lesley Duncan, Bryan Pawson, Steven Colarco, Peter Chin, Mian Randles, Cynthia Diehl, Thomas Nielsen, Eric TI Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INTERANNUAL VARIABILITY; CARBON-MONOXIDE; GLOBAL-MODEL; ENSEMBLE; EMISSIONS; SIMULATIONS; CLIMATE; SATELLITE; POLLUTION; CLOUDS AB The direct and semidirect effects of aerosols produced by Indonesian biomass burning (BB) during August-November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, version 5, (GEOS-5) atmospheric general circulation model (AGCM). Simulations were driven by two sets of aerosol forcing fields calculated offline by a separate aerosol transport model, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the midtroposphere (similar to 25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or similar to 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere. C1 [Ott, Lesley; Randles, Cynthia; Diehl, Thomas] Univ Maryland, Goddard Earth Sci & Technol Ctr, Greenbelt, MD USA. [Duncan, Bryan; Colarco, Peter; Chin, Mian] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Pawson, Steven] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20706 USA. [Nielsen, Eric] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Ott, L (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Greenbelt, MD USA. EM lesley.e.ott@nasa.gov RI Duncan, Bryan/A-5962-2011; Colarco, Peter/D-8637-2012; Ott, Lesley/E-2250-2012; Chin, Mian/J-8354-2012; Randles, Cynthia/B-6972-2013; Pawson, Steven/I-1865-2014 OI Colarco, Peter/0000-0003-3525-1662; Pawson, Steven/0000-0003-0200-717X FU NASA FX This research was supported by NASA's Modeling, Analysis, and Prediction Program. We thank Michele Rienecker for her support and encouragement to perform this research in the Global Modeling and Assimilation Office. NR 54 TC 28 Z9 28 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2010 VL 115 AR D14121 DI 10.1029/2009JD013181 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MV UT WOS:000280587200004 ER PT J AU Briggs, MS Fishman, GJ Connaughton, V Bhat, PN Paciesas, WS Preece, RD Wilson-Hodge, C Chaplin, VL Kippen, RM von Kienlin, A Meegan, CA Bissaldi, E Dwyer, JR Smith, DM Holzworth, RH Grove, JE Chekhtman, A AF Briggs, M. S. Fishman, G. J. Connaughton, V. Bhat, P. N. Paciesas, W. S. Preece, R. D. Wilson-Hodge, C. Chaplin, V. L. Kippen, R. M. von Kienlin, A. Meegan, C. A. Bissaldi, E. Dwyer, J. R. Smith, D. M. Holzworth, R. H. Grove, J. E. Chekhtman, A. TI First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID BREAKDOWN; SPACE; SPRITES; AIR AB The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope detected 12 intense terrestrial gamma ray flashes (TGFs) during its first year of observation. Typical maximum energies for most of the TGFs are similar to 30 MeV, with one TGF having a 38 MeV photon; two of the TGFs are softer and longer than the others. After correcting for instrumental effects, a representative bright TGF is found to have a fluence of similar to 0.7 photons cm (2). Pulses are either symmetrical or have faster risetimes than fall times; they are well fit with Gaussian or lognormal functions. The fastest risetime observed was 7 mu s, constraining the source radius to be less than about 2 km from the velocity of light. TGFs with multiple pulses separated in time have been known since their discovery; the GBM sample also includes clear cases of partially overlapping pulses. Four TGFs are associated with lightning locations from the World Wide Lightning Location Network. With the several mu s absolute time accuracy of GBM, the time order can be confidently identified: one TGF occurred before the lightning, two were simultaneous, and one TGF occurred after the lightning. C1 [Briggs, M. S.; Connaughton, V.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Chaplin, V. L.] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Fishman, G. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Paciesas, W. S.; Preece, R. D.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [von Kienlin, A.; Bissaldi, E.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Meegan, C. A.] Univ Space Res Assoc, Huntsville, AL 35805 USA. [Dwyer, J. R.] Florida Inst Technol, Melbourne, FL 32901 USA. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Holzworth, R. H.] Univ Washington, Seattle, WA 98195 USA. [Kippen, R. M.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. [Grove, J. E.; Chekhtman, A.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Chekhtman, A.] George Mason Univ, Fairfax, VA 22030 USA. RP Briggs, MS (reprint author), Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM michael.briggs@nasa.gov; jerry.fishman@nasa.gov; mkippen@lanl.gov; azk@mpe.mpg.de; jdwyer@fit.edu; dsmith@scipp.ucsc.edu; bobholz@ess.washington.edu; eric.grove@nrl.navy.mil RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335 FU NASA, United States; DRL, Germany; NSF [ATM 0607885] FX The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany. This work was supported in part by NSF grant ATM 0607885. The authors wish to thank the World Wide Lightning Location Network, a collaboration among over 40 universities and institutions, for providing the lightning location data used in this paper. NR 39 TC 97 Z9 98 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 30 PY 2010 VL 115 AR A07323 DI 10.1029/2009JA015242 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 634NQ UT WOS:000280590200004 ER PT J AU Davies, AG Keszthelyi, LP Harris, AJL AF Davies, Ashley Gerard Keszthelyi, Laszlo P. Harris, Andrew J. L. TI The thermal signature of volcanic eruptions on Io and Earth SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE volcanism; Io; Earth; remote sensing; planetary science ID INFRARED MAPPING SPECTROMETER; GALILEO NIMS DATA; TRACK SCANNING RADIOMETER; LAVA EFFUSION RATES; JUPITERS MOON IO; SILICATE VOLCANISM; MOUNT-ETNA; ACTIVE VOLCANISM; EREBUS VOLCANO; HOT-SPOTS AB We investigate a spectrum-based technique to identify the style of active volcanic eruptions on Jupiter's moon Io. Thermal remote sensing of Io has had to rely primarily on low-spatial-resolution data, similar to low-spatial-resolution satellite data applied to detecting and charting the temporal evolution of terrestrial hot spots. These terrestrial analyses use data from sensors designed to monitor the weather and sea surface temperature. On Io, such low-spatial-resolution data are used to classify eruption styles (modes of emplacement) by means of several criteria related to the temporal evolution of the infrared spectrum associated with the eruptive activity at each hot spot, which we term "thermal signature." We find that the ratio of the emission at 2 and 5 mu m, and how this ratio changes with time, is often diagnostic of eruption style, even in low-spatial-resolution data. Tests using thermal data for terrestrial "ground truth" cases show that our classification system is valid on Earth. The results of our analysis can be used to aid in the design of future space-based instruments that can be used for volcano monitoring on Io, as well as Earth. (C) 2010 Published by Elsevier B.V. C1 [Davies, Ashley Gerard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Keszthelyi, Laszlo P.] USGS Astrogeol Branch, Flagstaff, AZ USA. [Harris, Andrew J. L.] Univ Clermont Ferrand, CNRS, OPGC, Lab Magmas & Volcans, F-63038 Clermont Ferrand, France. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, Ms 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashley.Davies@jpl.nasa.gov FU NASA [WBS344.30.99.05, NNH08AI471] FX Part of this work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA (c) 2010. All rights reserved. The authors thank Robert Wright (University of Hawai'i) and David Williams (Arizona State University) for their detailed reviews of the manuscript-this paper was greatly improved as a result. AGD thanks Alison Canning Davies for her meticulous editorial review of the manuscript, and Greg Vaughan for additional comments on the manuscript. AGD is supported by the NASA Outer Planets Research Program Grant WBS344.30.99.05. LPK is supported by NASA Outer Planets Research Program Grant NNH08AI471. NR 105 TC 21 Z9 21 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD JUL 30 PY 2010 VL 194 IS 4 BP 75 EP 99 DI 10.1016/j.jvolgeores.2010.04.009 PG 25 WC Geosciences, Multidisciplinary SC Geology GA 634YH UT WOS:000280621700001 ER PT J AU Gladden, JR Li, G Adebisi, R Firdosy, S Caillat, T Ravi, V AF Gladden, J. R. Li, G. Adebisi, R. Firdosy, S. Caillat, T. Ravi, V. TI High-temperature elastic moduli of bulk nanostructured n- and p-type silicon germanium SO PHYSICAL REVIEW B LA English DT Article ID RESONANT ULTRASOUND SPECTROSCOPY; CONSTANTS AB Resonant ultrasound spectroscopy (RUS) has been used to measure the elastic moduli of n- and p-type doped polycrystalline bulk nanostructured silicon germanium alloys at elevated temperatures. A direct contact RUS transducer system with a working temperature range up to 900 K was successfully constructed for these measurements. For higher temperatures (up to 1300 K), we employed a traditional buffer rod RUS system. Experimental results show the Young's and shear moduli of p-type SiGe alloys monotonically decrease with increasing temperatures in the 300-1200 K range. The n-type samples show a marked stiffening beginning at 675 K which does not repeat upon cooling or subsequent reheating. We attribute the stiffening of the n-type samples to the thermally activated precipitation of the phosphorous dopant. Electrical resistivity and Seebeck coefficient data are also presented for both types of SiGe which support this conclusion. C1 [Gladden, J. R.; Li, G.; Adebisi, R.] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. [Firdosy, S.; Caillat, T.; Ravi, V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ravi, V.] Calif State Polytech Univ Pomona, Pomona, CA 91768 USA. RP Gladden, JR (reprint author), Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. RI Li, Guangyan/A-9854-2013 FU Department of Energy, EPSCoR [DE-FG02-04ER46121]; NASA [NM0710850] FX J.R.G. acknowledges the Department of Energy, EPSCoR (Award No. DE-FG02-04ER46121) and NASA (Award No. NM0710850) for support of this project as well as P. Smith for fruitful discussions. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 20 TC 11 Z9 11 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 30 PY 2010 VL 82 IS 4 AR 045209 DI 10.1103/PhysRevB.82.045209 PG 6 WC Physics, Condensed Matter SC Physics GA 633BT UT WOS:000280475200005 ER PT J AU Tiscareno, MS Burns, JA Cuzzi, JN Hedman, MM AF Tiscareno, Matthew S. Burns, Joseph A. Cuzzi, Jeffrey N. Hedman, Matthew M. TI Cassini imaging search rules out rings around Rhea SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SATURNS AB We have conducted an intensive search using the Cassini ISS narrow-angle camera to identify any material that may orbit Rhea. Our results contradict an earlier and surprising inference that Rhea, the second-largest moon of Saturn, possesses a system of narrow rings embedded in a broad circum-satellite disk or cloud. Citation: Tiscareno, M. S., J. A. Burns, J. N. Cuzzi, and M. M. Hedman (2010), Cassini imaging search rules out rings around Rhea, Geophys. Res. Lett., 37, L14205, doi:10.1029/2010GL043663. C1 [Tiscareno, Matthew S.; Burns, Joseph A.; Hedman, Matthew M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Burns, Joseph A.] Cornell Univ, Coll Engn, Ithaca, NY 14853 USA. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Tiscareno, MS (reprint author), Cornell Univ, Dept Astron, 328 Space Sci Bldg, Ithaca, NY 14853 USA. EM matthewt@astro.cornell.edu RI Tiscareno, Matthew/D-6963-2011 FU Cassini Project; NASA [NNX08AQ72G, NNX10AG67G] FX We thank G. H. Jones and E. Roussos for helpful discussions, and B. M. Byington for assistance with image processing. We acknowledge K. Perry, B. Wallis, the Cassini Project, and the Cassini Imaging Team for making these observations possible. We acknowledge funding from the Cassini Project and from NASA's Cassini Data Analysis Program (NNX08AQ72G and NNX10AG67G). NR 16 TC 13 Z9 13 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 29 PY 2010 VL 37 AR L14205 DI 10.1029/2010GL043663 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 634MB UT WOS:000280584900004 ER PT J AU Kim, HI Kim, H Shin, YS Beegle, LW Goddard, WA Heath, JR Kanik, I Beauchamp, JL AF Kim, Hugh I. Kim, Hyungjun Shin, Young Shik Beegle, Luther W. Goddard, William A. Heath, James R. Kanik, Isik Beauchamp, J. L. TI Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CONTINUUM DIELECTRIC THEORY; LUNG SURFACTANT; AIR/WATER INTERFACE; SP-C; MONOLAYERS; MODEL; OZONOLYSIS; MECHANISM; PROTEINS; DYNAMICS AB Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoylsn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress. C1 [Shin, Young Shik; Heath, James R.; Beauchamp, J. L.] CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA. [Kim, Hugh I.] Pohang Univ Sci & Technol POSTECH, Dept Chem, Pohang 790784, South Korea. [Kim, Hyungjun; Goddard, William A.] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea. [Kim, Hyungjun; Goddard, William A.] CALTECH, Beckman Inst, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [Beegle, Luther W.; Kanik, Isik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Beauchamp, JL (reprint author), CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA. EM jlbchamp@caltech.edu RI Kim, Hugh/G-4476-2011; Kim, Hyungjun/B-4527-2013 FU National Aeronautics and Space Administration; Director's Research and Development Fund; National Science Foundation (NSF) [CHE-0416381]; Beckman Institute Mass Spectrometry Resource Center; Ministry of Education, Science and Technology [R31-2008-000-10055-0]; National Cancer Institute [5U54 CA119347] FX The research described in this paper was carried out at the Beckman Institute and the Noyes Laboratory of Chemical Physics at the California Institute of Technology, and the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration and funded through the Director's Research and Development Fund. We gratefully acknowledge financial support provided by National Science Foundation (NSF) under grant No. CHE-0416381 (J.L.B., Principal Investigator) and the Beckman Institute Mass Spectrometry Resource Center. H.K. and W.A.G. acknowledge support from the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10055-0). Y.S.S. and J.R.H. acknowledge the support of the National Cancer Institute under grant No. 5U54 CA119347 (J.R.H., Principal Investigator). NR 40 TC 17 Z9 17 U1 0 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 29 PY 2010 VL 114 IS 29 BP 9496 EP 9503 DI 10.1021/jp102332g PG 8 WC Chemistry, Physical SC Chemistry GA 627VJ UT WOS:000280071400019 PM 20608690 ER PT J AU Siegel, DA Franz, BA AF Siegel, David A. Franz, Bryan A. TI OCEANOGRAPHY Century of phytoplankton change SO NATURE LA English DT Editorial Material ID OCEAN; PRODUCTIVITY AB Phytoplankton biomass is a crucial measure of the health of ocean ecosystems. An impressive synthesis of the relevant data, stretching back to more than 100 years ago, provides a connection with climate change. C1 [Siegel, David A.] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. [Siegel, David A.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Franz, Bryan A.] NASA, Ocean Biol Proc Grp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Siegel, DA (reprint author), Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. EM davey@eri.ucsb.edu RI Franz, Bryan/D-6284-2012; Reboreda, Rosa/A-2518-2012; Siegel, David/C-5587-2008 OI Franz, Bryan/0000-0003-0293-2082; NR 15 TC 25 Z9 25 U1 2 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUL 29 PY 2010 VL 466 IS 7306 BP 569 EP + DI 10.1038/466569a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 632HA UT WOS:000280412100041 PM 20671698 ER PT J AU King, MD Platnick, S Wind, G Arnold, GT Dominguez, RT AF King, Michael D. Platnick, Steven Wind, Galina Arnold, G. Thomas Dominguez, Roseanne T. TI Remote sensing of radiative and microphysical properties of clouds during TC4: Results from MAS, MASTER, MODIS, and MISR SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BULK SCATTERING PROPERTIES; OPTICAL-CONSTANTS; WATER-VAPOR; ICE CLOUDS; PART I; PRODUCTS; THICKNESS; AEROSOL; RADIUS; MODELS AB The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 mu m (12.9 mu m for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC4, is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness of liquid water clouds from MISR. Results of this analysis are compared and contrasted. C1 [King, Michael D.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Wind, Galina; Arnold, G. Thomas] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Dominguez, Roseanne T.] NASA, Ames Res Ctr, Airborne Sensor Facil, Moffett Field, CA 94035 USA. [King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. RP King, MD (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Campus Box 392, Boulder, CO 80309 USA. EM michael.king@lasp.colorado.edu RI King, Michael/C-7153-2011; Platnick, Steven/J-9982-2014 OI King, Michael/0000-0003-2645-7298; Platnick, Steven/0000-0003-3964-3567 FU MODIS Science Team; NASA [NNX09AG74G] FX The research reported in this article was supported by the MODIS Science Team and NASA's TC4 project. M.D.K. was supported by NASA grant NNX09AG74G to the University of Colorado. NR 25 TC 17 Z9 17 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2010 VL 115 AR D00J07 DI 10.1029/2009JD013277 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MS UT WOS:000280586900003 ER PT J AU Vaughan, MA Liu, ZY McGill, MJ Hu, YX Obland, MD AF Vaughan, Mark A. Liu, Zhaoyan McGill, Matthew J. Hu, Yongxiang Obland, Michael D. TI On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP's 1064 nm calibration assumptions using cloud physics lidar measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL-PROPERTIES; STRATOSPHERIC AEROSOL; RESOLUTION LIDAR; RAMAN LIDAR; MICROPHYSICAL PROPERTIES; MULTIPLE-SCATTERING; WATER CLOUDS; EXTINCTION; PROFILES; DEPOLARIZATION AB Recent space-based lidar missions rely on assumptions about the spectral dependence of the backscatter signals from cirrus clouds to calibrate measurements made at 1064 nm. In particular, the calibration procedure employed by the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission assumes that the backscatter color ratio, defined as the ratio of particulate backscatter coefficients at 1064 nm and 532 nm, has a value of 1.00, with an expected standard deviation on the order of 0.04. This work assesses the accuracy of this assumption, and its implications for the CALIPSO 1064 nm calibration scheme, using over 400 h of lidar measurements acquired in the northern hemisphere between 2002 and 2007 by the Cloud Physics Lidar (CPL). For the strongly scattering cirrus clouds typically used for CALIPSO calibrations, the uncorrected CPL-derived backscatter color ratio is 0.83 +/- 0.19. Accounting for computational biases introduced by the CPL assumption of pristine air in the calibration region yields a best estimate cirrus cloud color ratio of 1.01 +/- 0.25. C1 [Vaughan, Mark A.; Hu, Yongxiang; Obland, Michael D.] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. [Liu, Zhaoyan] NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23666 USA. [McGill, Matthew J.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Branch, Greenbelt, MD 20771 USA. RP Vaughan, MA (reprint author), NASA, Langley Res Ctr, Climate Sci Branch, 100 NASA Rd, Hampton, VA 23681 USA. EM mark.a.vaughan@nasa.gov RI Liu, Zhaoyan/B-1783-2010; McGill, Matthew/D-8176-2012; Hu, Yongxiang/K-4426-2012 OI Liu, Zhaoyan/0000-0003-4996-5738; NR 70 TC 27 Z9 28 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2010 VL 115 AR D14206 DI 10.1029/2009JD013086 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 634MS UT WOS:000280586900002 ER PT J AU Fu, HS Tu, J Cao, JB Song, P Reinisch, BW Gallagher, DL Yang, B AF Fu, H. S. Tu, J. Cao, J. B. Song, P. Reinisch, B. W. Gallagher, D. L. Yang, B. TI IMAGE and DMSP observations of a density trough inside the plasmasphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EXTREME-ULTRAVIOLET IMAGER; SUBAURORAL ION DRIFTS; MAGNETOSPHERE; PLASMAPAUSE; FIELD; CONVECTION; SATELLITE; FREQUENCY; RADIATION; DYNAMICS AB We report coordinated observations of a density trough within the plasmasphere using the measurements from the radio plasma imager (RPI) and extreme ultraviolet imager (EUV) on the IMAGE satellite and the measurements from DMSP F-15. The density trough inside the plasmasphere with a width of similar to 0.7 R(E) in terms of L shell (from L similar to 2.3 to L similar to 3.0) was observed in situ by RPI when IMAGE traversed the plasmasphere in similar to 2130 magnetic local time (MLT) sector. The plasmasphere images taken by the IMAGE EUV instrument confirm that the density trough is inside the plasmasphere. A2-Delectron density image constructed from the RPI active sounding measurements reveals that the density trough extends along the magnetic field from the IMAGE orbit to at least 41 degrees magnetic latitude. Meanwhile, the DMSP-F15 satellite, circling the Earth at about 850 km altitude, detected a light ion density trough at the same time on the same L shells and similar MLT sector. The coordinated observations with the IMAGE and DMSP-F15 satellite demonstrate, for the first time, that the density trough is a low-density plasmaspheric structure extending from the plasmasphere to the topside ionosphere along the geomagnetic field lines. C1 [Fu, H. S.; Tu, J.; Song, P.; Reinisch, B. W.; Yang, B.] Univ Massachusetts Lowell, Ctr Atmospher Res, Lowell, MA 01854 USA. [Fu, H. S.; Cao, J. B.] State Key Lab Space Weather CSSAR, Beijing 100190, Peoples R China. [Fu, H. S.] Chinese Acad Sci, Grad Univ, Beijing, Peoples R China. [Gallagher, D. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Yang, B.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. RP Fu, HS (reprint author), Univ Massachusetts Lowell, Ctr Atmospher Res, 600 Suffolk St,3rd Floor, Lowell, MA 01854 USA. EM huishanf@gmail.com RI fu, huishan/E-1507-2012 FU NASA [NNX07AG38G, NNX08AF31G]; NSF [ATM-0902965]; NSFC [40931054]; 973 Program [2006CB806305]; State Key Laboratories of Space Weather in China FX This work was supported by NASA grants NNX07AG38G and NNX08AF31G and NSF grant ATM-0902965 to the University of Massachusetts Lowell. Work by J. B. Cao was supported by NSFC grant 40931054, 973 Program 2006CB806305 and the Specialized Research Fund of State Key Laboratories of Space Weather in China. We gratefully acknowledge the Center for Space Sciences at the University of Texas at Dallas and the U. S. Air Force for providing the DMSP thermal plasma data. Kp and Dst indices were obtained through the Website of the World Data Center for Geomagnetism, Kyoto. ACE spacecraft data were obtained through the CDAWeb (http://cdaweb.gsfc.nasa.gov). NR 42 TC 17 Z9 19 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 27 PY 2010 VL 115 AR A07227 DI 10.1029/2009JA015104 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 634NO UT WOS:000280589900003 ER PT J AU Rajsfus, DE Meador, MAB Frimer, AA AF Rajsfus, David E. Meador, Mary Ann B. Frimer, Aryeh A. TI Methylated Tetrahydrophthalic Anhydrides as End Caps in Addition Polyimides SO MACROMOLECULES LA English DT Article ID DIELS-ALDER REACTIONS; C-H BONDS; OXIDATIVE-DEGRADATION; CAPPED POLYIMIDES; NMR; POLYMERS; ORBITALS; DIENES; PMR-15 AB Thermolysis of methylenedianiline (MDA) 1,2,3,6-tetrahydrophthalic (THP) bismides up to 371 degrees C, produces aromatic product, with a concomitant lowering in cross-linking This aromatization is responsible for both the unmoved thermal oxidative stability of THP end-capped polyimides and their substantial frangibility In the hope of inhibiting precuring aromatization, 2,3-dimethyl, 3,3-dimethyl, and,2,3-trimethyl THP analogues were synthesized and reacted with MDA in a 2.1 ratio, heating gradually from 204 to 371 degrees C In the lower temperature range, monoimide transforms to bisimide At temperatures above 320 degrees C. cross-linking predominates generally reaching similar to 30% at 371 degrees C, though it was as much as 69% for 3,3-dimethyl THP The surprising facility of cross-linking in the latter was con elated to the double bond length of the it imide formed via thermal enolization The aromatization (2-25%) observed in these methylated systems at higher temperatures presumably results from oxidative decarboxylation of the pendant methyls, which is the preferred pathway for degradation after cross-linking C1 [Rajsfus, David E.; Frimer, Aryeh A.] Bar Ilan Univ, Ethel & David Resnick Chair Act Oxygen Chem, IL-52900 Ramat Gan, Israel. [Meador, Mary Ann B.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Frimer, AA (reprint author), Bar Ilan Univ, Ethel & David Resnick Chair Act Oxygen Chem, IL-52900 Ramat Gan, Israel. OI Meador, Mary Ann/0000-0003-2513-7372 NR 35 TC 5 Z9 6 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 27 PY 2010 VL 43 IS 14 BP 5971 EP 5980 DI 10.1021/ma100973r PG 10 WC Polymer Science SC Polymer Science GA 627PT UT WOS:000280053000012 ER PT J AU Lee, T McPhaden, MJ AF Lee, Tong McPhaden, Michael J. TI Increasing intensity of El Nino in the central-equatorial Pacific SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-SURFACE TEMPERATURE; WARM POOL; CLIMATE; EVENTS; OCEAN AB Satellite observations suggest that the intensity of El Nino events in the central equatorial Pacific (CP) has almost doubled in the past three decades, with the strongest warming occurring in 2009-10. This is related to the increasing intensity as well as occurrence frequency of the so-called CP El Nino events since the 1990s. While sea surface temperature (SST) in the CP region during El Nino years has been increasing, those during neutral and La Nina years have not. Therefore, the well-documented warming trend of the warm pool in the CP region is primarily a result of more intense El Nino events rather than a general rise of background SST. Citation: Lee, T., and M. J. McPhaden (2010), Increasing intensity of El Nino in the central-equatorial Pacific, Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007. C1 [Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Lee, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tong.lee@jpl.nasa.gov RI McPhaden, Michael/D-9799-2016 FU Jet Propulsion Laboratory, California Institute of Technology with NASA; NOAA/Pacific Marine Environmental Laboratory FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA; and at NOAA/Pacific Marine Environmental Laboratory. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged. We thank Daria Halkides for assistance in processing the satellite SST data. This is PMEL publication 3555. NR 18 TC 249 Z9 259 U1 5 U2 56 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 24 PY 2010 VL 37 AR L14603 DI 10.1029/2010GL044007 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 631DI UT WOS:000280326400005 ER PT J AU Drury, E Jacob, DJ Spurr, RJD Wang, J Shinozuka, Y Anderson, BE Clarke, AD Dibb, J McNaughton, C Weber, R AF Drury, Easan Jacob, Daniel J. Spurr, Robert J. D. Wang, Jun Shinozuka, Yohei Anderson, Bruce E. Clarke, Antony D. Dibb, Jack McNaughton, Cameron Weber, Rodney TI Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID UNITED-STATES; CHEMICAL-COMPOSITION; MINERAL DUST; TRACE-P; CARBONACEOUS AEROSOLS; TROPOSPHERIC AEROSOL; OPTICAL-THICKNESS; AIR-QUALITY; ABSORPTION; VISIBILITY AB We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls. C1 [Drury, Easan] Natl Renewable Energy Lab, Sch Engn & Appl Sci, Golden, CO 80401 USA. [Anderson, Bruce E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Clarke, Antony D.; McNaughton, Cameron] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Dibb, Jack] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Shinozuka, Yohei] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Spurr, Robert J. D.] RT Solut Inc, Cambridge, MA 02138 USA. [Wang, Jun] Univ Nebraska, Dept Geosci, Lincoln, NE 68508 USA. [Weber, Rodney] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Drury, E (reprint author), Natl Renewable Energy Lab, Sch Engn & Appl Sci, 1617 Cole Blvd, Golden, CO 80401 USA. EM easan.drury@nrel.gov RI Chem, GEOS/C-5595-2014; Wang, Jun/A-2977-2008 OI Wang, Jun/0000-0002-7334-0490 FU NASA FX This work was funded by the NASA Atmospheric Composition Modeling and Analysis Program. Easan Drury was supported by a NASA Earth and Space Science Graduate Fellowship. J. Wang acknowledges the support by the NASA Earth Sciences New Investigator Program. NR 68 TC 58 Z9 58 U1 2 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 24 PY 2010 VL 115 AR D14204 DI 10.1029/2009JD012629 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EI UT WOS:000280329000001 ER PT J AU Yu, HB Chin, M Winker, DM Omar, AH Liu, ZY Kittaka, C Diehl, T AF Yu, Hongbin Chin, Mian Winker, David M. Omar, Ali H. Liu, Zhaoyan Kittaka, Chieko Diehl, Thomas TI Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; TO-BACKSCATTER RATIO; OPTICAL-PROPERTIES; SAHARAN DUST; RAMAN LIDAR; INITIAL ASSESSMENT; MODIS RETRIEVALS; MODEL GOCART; AIR-QUALITY; EAST-ASIA AB This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed. C1 [Yu, Hongbin; Chin, Mian; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Yu, Hongbin; Diehl, Thomas] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Liu, Zhaoyan] Natl Inst Aerosp, Hampton, VA 23666 USA. [Kittaka, Chieko] Sci Syst & Applicat Inc, Hampton, VA USA. RP Yu, HB (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM hongbin.yu-1@nasa.gov RI Liu, Zhaoyan/B-1783-2010; Yu, Hongbin/C-6485-2008; Chin, Mian/J-8354-2012; Omar, Ali/D-7102-2017 OI Liu, Zhaoyan/0000-0003-4996-5738; Yu, Hongbin/0000-0003-4706-1575; Omar, Ali/0000-0003-1871-9235 FU NASA FX This research was supported by the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), CALIPSO program and EOS program of NASA. We are grateful to Lorraine Remer for insightful comments. We thank the reviewers for their comments, which helped us improve the manuscript. The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. NR 60 TC 68 Z9 70 U1 5 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 24 PY 2010 VL 115 AR D00H30 DI 10.1029/2009JD013364 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EI UT WOS:000280329000003 ER PT J AU Hutchens, SB Hall, LJ Greer, JR AF Hutchens, Shelby B. Hall, Lee J. Greer, Julia R. TI In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID TURF AB Uniaxial compression studies are performed on 50-mu m-diameter bundles of nominally vertical, intertwined carbon nanotubes grown via chemical vapor deposition from a photolithographically defined catalyst. The inhomogeneous microstructure is examined, demonstrating density and tube orientation gradients, believed to play a role in the unique periodic buckling deformation mechanism. Through in situ uniaxial compression experiments it is discovered that the characteristic bottom-to-top sequential buckling proceeds by first nucleating on the bundle surface and subsequently propagating laterally through the bundle, gradually collapsing the entire structure. The effects of strain rate are explored, and storage and loss stiffnesses are analyzed in the context of energy dissipation. C1 [Hutchens, Shelby B.; Greer, Julia R.] CALTECH, Pasadena, CA 91125 USA. [Hall, Lee J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hutchens, SB (reprint author), CALTECH, 1200 E Calif Blvd,MC 309-81, Pasadena, CA 91125 USA. EM jrgreer@caltech.edu RI Hutchens, Shelby/E-8189-2010; Hutchens, Shelby/B-1569-2013 OI Hutchens, Shelby/0000-0003-0349-1792 FU Army Research Office through the Institute for Collaborative Biotechnologies (ICB) at Caltech [UCSB.ICB4b]; Kavli Nanoscience Institute at Caltech FX The authors gratefully acknowledge the financial support of the Army Research Office through the Institute for Collaborative Biotechnologies (ICB) at Caltech (ARO Award # UCSB.ICB4b). We also gratefully acknowledge the critical support and infrastructure provided by the Kavli Nanoscience Institute at Caltech as well as the method development assistance of the engineers in the Nanotechnology Measurement Operation of Agilent Corp., especially Brian Crawford and jenny Hay. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with National Aeronautics and Space Administration (NASA). We thank Dr. Harish Manohara for discussions and advice regarding CNT bundle growth. CNT pillars were synthesized using CVD growth facilities within the MicroDevices Laboratory at the Jet Propulsion Laboratory. Supporting Information is available online from Wiley InterScience or from the authors. NR 18 TC 80 Z9 81 U1 0 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 23 PY 2010 VL 20 IS 14 BP 2338 EP 2346 DI 10.1002/adfm.201000305 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632LU UT WOS:000280427000018 ER PT J AU Morris, RV Ruff, SW Gellert, R Ming, DW Arvidson, RE Clark, BC Golden, DC Siebach, K Klingelhofer, G Schroder, C Fleischer, I Yen, AS Squyres, SW AF Morris, Richard V. Ruff, Steven W. Gellert, Ralf Ming, Douglas W. Arvidson, Raymond E. Clark, Benton C. Golden, D. C. Siebach, Kirsten Klingelhoefer, Goestar Schroeder, Christian Fleischer, Iris Yen, Albert S. Squyres, Steven W. TI Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover SO SCIENCE LA English DT Article ID MARTIAN METEORITE ALH84001; TERRESTRIAL ANALOG; MINERALS; SPITSBERGEN; GLOBULES; SVALBARD; OLIVINE; ORIGIN; ROCKS; AGE AB Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era. C1 [Morris, Richard V.; Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ruff, Steven W.] Arizona State Univ, Tempe, AZ 85287 USA. [Gellert, Ralf] Univ Guelph, Guelph, ON N1G 2W1, Canada. [Arvidson, Raymond E.; Siebach, Kirsten] Washington Univ, St Louis, MO 63130 USA. [Clark, Benton C.] Space Sci Inst, Boulder, CO 80301 USA. [Golden, D. C.] Engn & Sci Contract Grp Hamilton Sundstrand, Houston, TX 77058 USA. [Klingelhoefer, Goestar; Fleischer, Iris] Johannes Gutenberg Univ Mainz, Mainz, Germany. [Schroeder, Christian] Univ Bayreuth, Tubingen, Germany. [Schroeder, Christian] Univ Tubingen, Tubingen, Germany. [Yen, Albert S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Squyres, Steven W.] Cornell Univ, Ithaca, NY 14853 USA. RP Morris, RV (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM richard.v.morris@nasa.gov RI Schroder, Christian/B-3870-2009; OI Schroder, Christian/0000-0002-7935-6039; Siebach, Kirsten/0000-0002-6628-6297 FU NASA Johnson Space Center; NASA; NASA Ames Astrobiology Institute; German Space Agency DLR [50QM9902] FX R.V.M. and D.W.M. acknowledge the NASA Johnson Space Center and the NASA Mars Exploration Program for support. R. V. M. acknowledges the NASA Ames Astrobiology Institute for support. S. W. R. acknowledges the NASA Mars Data Analysis Program for support. G. K. and I. F. acknowledge support by the German Space Agency DLR under contract 50QM9902. A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank P. B. Niles for carbonate samples, L. Le for carbonate microprobe analyses, and J. L. Campbell for calculation of excess light-element concentrations from APXS data. NR 38 TC 166 Z9 170 U1 5 U2 51 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUL 23 PY 2010 VL 329 IS 5990 BP 421 EP 424 DI 10.1126/science.1189667 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 629KJ UT WOS:000280196500032 PM 20522738 ER PT J AU Tilmes, S Pan, LL Hoor, P Atlas, E Avery, MA Campos, T Christensen, LE Diskin, GS Gao, RS Herman, RL Hintsa, EJ Loewenstein, M Lopez, J Paige, ME Pittman, JV Podolske, JR Proffitt, MR Sachse, GW Schiller, C Schlager, H Smith, J Spelten, N Webster, C Weinheimer, A Zondlo, MA AF Tilmes, S. Pan, L. L. Hoor, P. Atlas, E. Avery, M. A. Campos, T. Christensen, L. E. Diskin, G. S. Gao, R-S. Herman, R. L. Hintsa, E. J. Loewenstein, M. Lopez, J. Paige, M. E. Pittman, J. V. Podolske, J. R. Proffitt, M. R. Sachse, G. W. Schiller, C. Schlager, H. Smith, J. Spelten, N. Webster, C. Weinheimer, A. Zondlo, M. A. TI An aircraft-based upper troposphere lower stratosphere O-3, CO, and H2O climatology for the Northern Hemisphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR MEASUREMENTS; DIODE-LASER HYGROMETER; IN-SITU MEASUREMENTS; FAST-RESPONSE; OZONE CLIMATOLOGY; POLAR VORTEX; UT/LS OZONE; OPEN-PATH; TRANSPORT; CHEMISTRY AB We present a climatology of O-3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high-resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause-referenced tracer profiles and tracer-tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O-3-CO correlations, show two characteristic modes in the tracer-tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1-2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation. C1 [Tilmes, S.; Pan, L. L.; Campos, T.; Pittman, J. V.; Weinheimer, A.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Atlas, E.] Univ Miami, Dept Marine & Atmospher Chem, RSMAS, Miami, FL 33149 USA. [Avery, M. A.; Diskin, G. S.; Loewenstein, M.; Lopez, J.; Podolske, J. R.; Sachse, G. W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Christensen, L. E.; Herman, R. L.; Webster, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gao, R-S.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Hintsa, E. J.] NOAA, Global Monitoring Div, Boulder, CO 80307 USA. [Hoor, P.] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, D-55099 Mainz, Germany. [Paige, M. E.] SW Sci Inc, Santa Fe, NM 87505 USA. [Proffitt, M. R.] Proffitt Instruments, Austin, TX 78746 USA. [Schiller, C.; Spelten, N.] Res Ctr Julich, ICG 1, D-52425 Julich, Germany. [Schlager, H.] Inst Phys Atmosphere, D-82234 Wessling, Germany. [Hintsa, E. J.; Smith, J.] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA. [Zondlo, M. A.] Princeton Univ, Ctr Midinfrared Technol Hlth & Environm, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP Tilmes, S (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA. EM tilmes@ucar.edu RI hoor, peter/G-5421-2010; Herman, Robert/H-9389-2012; Schiller, Cornelius/B-1004-2013; Gao, Ru-Shan/H-7455-2013; Pan, Laura/A-9296-2008; Atlas, Elliot/J-8171-2015; Zondlo, Mark/R-6173-2016; Manager, CSD Publications/B-2789-2015 OI hoor, peter/0000-0001-6582-6864; Herman, Robert/0000-0001-7063-6424; Pan, Laura/0000-0001-7377-2114; Zondlo, Mark/0000-0003-2302-9554; FU National Science Foundation; NASA FX This work is supported in part by the National Center for Atmospheric Research (NCAR) in support by the National Science Foundation and by the NASA Upper Atmosphere Program. Research at the Jet Propulsion Laboratory was performed under contract with NASA. Thanks are also due to NCEP Environmental Modeling Center (EMC) for providing meteorological analysis. The authors thank Louisa Emmons and Rolando Garcia for helpful comments and suggestions. NR 69 TC 29 Z9 29 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 22 PY 2010 VL 115 AR D14303 DI 10.1029/2009JD012731 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EG UT WOS:000280328800001 ER PT J AU Huemmrich, KF Kinoshita, G Gamon, JA Houston, S Kwon, H Oechel, WC AF Huemmrich, K. F. Kinoshita, G. Gamon, J. A. Houston, S. Kwon, H. Oechel, W. C. TI Tundra carbon balance under varying temperature and moisture regimes SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID ECOSYSTEM CO2 EXCHANGE; ARCTIC TUNDRA; EDDY COVARIANCE; NORTHERN ALASKA; FLUX; CLIMATE; VEGETATION; FERTILIZATION; RESPONSES; BIOMASS AB To understand the effects of environmental change on tundra carbon balance, a manipulation experiment was performed in wet sedge tundra near Barrow, Alaska. Three replicates of six environmental treatments were made: control, heating, raising or lowering water table, and heating along with raising or lowering water table. Carbon fluxes were measured using a portable chamber for six days during the 2001 growing season. Spectral reflectance and meteorological measurements were also collected. Empirical models derived from flux measurements were developed for daily gross ecosystem production (GEP) and ecosystem respiration (Re). The amount of photosynthetically active radiation absorbed by the plants was strongly correlated with GEP. This relationship was not affected by treatment or time during the growing season. Re was related to soil temperature with a different relationship for each water level treatment. Re in the lowered water table treatment had a strong response to temperature changes, while the raised water table treatment showed little temperature response. These models calculated daily net ecosystem exchange for all of the treatments over the growing season. Warming increased both the seasonal carbon gain and carbon loss. By the end of summer the lowered water table treatments, both heated and unheated, were net carbon sources while all other treatments were sinks. Warming and/or raising the water table increased the strength of the net sink. Over the timescale of this experiment, water table primarily determined whether the ecosystem was a source or sink, with temperature modifying the strength of the source or sink. C1 [Huemmrich, K. F.; Gamon, J. A.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Huemmrich, K. F.] Joint Ctr Earth Syst Technol, Baltimore, MD USA. [Huemmrich, K. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kinoshita, G.] ICF Int, San Diego, CA 92131 USA. [Kinoshita, G.; Oechel, W. C.] San Diego State Univ, Dept Biol, Global Change Res Grp, San Diego, CA 92182 USA. [Gamon, J. A.; Houston, S.] Calif State Univ Los Angeles, Dept Biol Sci, Los Angeles, CA 90032 USA. [Gamon, J. A.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. [Gamon, J. A.] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada. [Kwon, H.] Yonsei Univ, Dept Atmospher Sci, Biometeorol Lab, Seoul 120749, South Korea. [Kwon, H.] Yonsei Univ, Dept Atmospher Sci, Global Environm Lab, Seoul 120749, South Korea. RP Huemmrich, KF (reprint author), Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. EM karl.f.huemmrich@nasa.gov RI Oechel, Walter/F-9361-2010 OI Oechel, Walter/0000-0002-3504-026X FU International Arctic Research Center FX This research was funded through a grant from the International Arctic Research Center to J.G. and F. H. at the Desert Research Institute, Reno, Nevada. The authors wish to thank the field crews for all of their work: Erika Anderson, Spring Strahm, Michelle Perl, Leticia Sanchez, Chris Donovan, Joe Verfaillie, and Rommel Zulueta, and the Barrow Arctic Science Consortium for logistics support. NR 39 TC 22 Z9 22 U1 2 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUL 22 PY 2010 VL 115 AR G00I02 DI 10.1029/2009JG001237 PG 8 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 631FS UT WOS:000280332600001 ER PT J AU Hansen, AE Fuelberg, HE Pickering, KE AF Hansen, Amanda E. Fuelberg, Henry E. Pickering, Kenneth E. TI Vertical distributions of lightning sources and flashes over Kennedy Space Center, Florida SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MESOSCALE CONVECTIVE SYSTEM; SIMULATED ELECTRIFICATION; ELECTRICAL STRUCTURE; RADAR REFLECTIVITY; TOGA COARE; STEPS; STORM; THUNDERSTORM; TEXAS; PARAMETERIZATION AB Warm season vertical distributions of lightning sources and flash segments are presented using data from the lightning detection and ranging network at Kennedy Space Center, Fla. We emphasize the percentage of sources/flash segments at each level compared to the vertical total and present the distributions as a function of storm top above ground level (AGL). The vertical profiles of sources and flash segments are compared with each other and with those from previous studies. Results indicate that storms with tops higher than similar to 10 km AGL often have a bimodal or multiple peak distribution of percentage sources and flash segments. However, distributions for storms with tops lower than similar to 10 km AGL exhibit only a single dominant peak. Temporal variations in the vertical distributions of flash percentages are examined for four clusters of storms occurring on different days. Results reveal considerable storm-to-storm and intrastorm variability. However, two similarities are observed between the four cases: (1) maximum flash density (flash segments km(-3)) occurs as the maximum storm top is reached and (2) as the storms increase in intensity, both maximum flash density and flash segment percentage increase in altitude, and then both decrease in altitude as the storms decay. The distributions are useful for understanding lightning characteristics as a function of storm evolution, specifying the vertical distribution of lightning-produced nitrogen oxides in chemical transport models and verifying model-simulated lightning. C1 [Hansen, Amanda E.; Fuelberg, Henry E.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hansen, AE (reprint author), Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. EM ahopkins@met.fsu.edu; fuelberg@met.fsu.edu; kenneth.e.pickering@nasa.gov RI Pickering, Kenneth/E-6274-2012 FU NASA [NNX08AH72G] FX This research was supported in part by NASA's Global Tropospheric Chemistry Program through grant NNX08AH72G to Florida State University. We appreciate the assistance of Dennis Buechler and Geoffrey Stano at NASA's Marshall Space Flight Center who answered many questions about source distributions in northern Alabama and Kennedy Space Center, Fla. We also thank Robert Hart and Scott Rudlosky at The Florida State University for their technological assistance, and Eric Bruning at the University of Maryland for his technical advice and expertise. Jon Ahlquist at Florida State assisted with the statistical analyses. Finally, three anonymous reviewers provided valuable suggestions that improved the manuscript. NR 57 TC 4 Z9 5 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 21 PY 2010 VL 115 AR D14203 DI 10.1029/2009JD013143 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EB UT WOS:000280328300007 ER PT J AU Kato, S Sun-Mack, S Miller, WF Rose, FG Chen, Y Minnis, P Wielicki, BA AF Kato, Seiji Sun-Mack, Sunny Miller, Walter F. Rose, Fred G. Chen, Yan Minnis, Patrick Wielicki, Bruce A. TI Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANGULAR-DISTRIBUTION MODELS; RADIATIVE FLUX ESTIMATION; ENERGY SYSTEM INSTRUMENT; TERRA SATELLITE; RADAR DATA; PART I; PRECIPITATION; METHODOLOGY; MISSION; HEIGHTS AB A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences. C1 [Kato, Seiji; Minnis, Patrick; Wielicki, Bruce A.] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. RP Kato, S (reprint author), NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. EM Seiji.Kato@nasa.gov; Szedung.Sun-Mack-1@nasa.gov; Walter.F.Miller@nasa.gov; Fred.G.Rose@nasa.gov; Yuan.Chen@nasa.gov; P.Minnis@nasa.gov; Bruce.A.Wielicki@nasa.gov RI Minnis, Patrick/G-1902-2010; OI Minnis, Patrick/0000-0002-4733-6148; Rose, Fred G/0000-0003-0769-0772 FU NASA Science Mission Directorate FX We thank David Winker, Charles Trepte, Mark Vaughan, Gerald Mace, Roger Marchand, Larry Di Girolamo, Robert Holz, Lazaros Oreopoulos, Toshihisa Matsui, and one anonymous reviewer for helpful discussions and comments. The work was supported by the NASA Science Mission Directorate through the NASA Energy Water Cycle Study (NEWS) project. NR 31 TC 58 Z9 59 U1 3 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 21 PY 2010 VL 115 AR D00H28 DI 10.1029/2009JD012277 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EB UT WOS:000280328300001 ER PT J AU Yost, CR Minnis, P Ayers, JK Spangenberg, DA Heymsfield, AJ Bansemer, A McGill, MJ Hlavka, DL AF Yost, Christopher R. Minnis, Patrick Ayers, J. Kirk Spangenberg, Douglas A. Heymsfield, Andrew J. Bansemer, Aaron McGill, Matthew J. Hlavka, Dennis L. TI Comparison of GOES-retrieved and in situ measurements of deep convective anvil cloud microphysical properties during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SINGLE-SCATTERING PROPERTIES; SATELLITE; RADIATION; ALGORITHM; RADAR; LIDAR AB One of the main goals of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) during July and August 2007 was to gain a better understanding of the formation and life cycle of cirrus clouds in the upper troposphere and lower stratosphere and how their presence affects the exchange of water vapor between these layers. Additionally, it is important to compare in situ measurements taken by aircraft instruments with products derived from satellite observations and find a meaningful way to interpret the results. In this study, cloud properties derived using radiance measurements from the Geostationary Operational Environmental Satellite (GOES) imagers are compared to similar quantities from aircraft in situ observations and are examined for meaningful relationships. A new method using dual-angle satellite measurements is used to derive the ice water content (IWC) for the top portion of deep convective clouds and anvils. The results show the in situ and remotely sensed mean microphysical properties agree to within similar to 10 mu m in the top few kilometers of thick anvils despite the vastly different temporal and spatial resolutions of the aircraft and satellite instruments. Mean particle size and IWC are shown to increase with decreasing altitude in the top few kilometers of the cloud. Given these relationships, it may be possible to derive parameterizations for effective particle size and IWC as a function of altitude from satellite observations. C1 [Yost, Christopher R.; Ayers, J. Kirk; Spangenberg, Douglas A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Heymsfield, Andrew J.; Bansemer, Aaron] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Hlavka, Dennis L.] Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [McGill, Matthew J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Yost, CR (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM christopher.r.yost@nasa.gov RI Heymsfield, Andrew/E-7340-2011; McGill, Matthew/D-8176-2012; Minnis, Patrick/G-1902-2010; OI Minnis, Patrick/0000-0002-4733-6148; Hlavka, Dennis/0000-0002-2976-7243 FU NASA; Department of Energy [DE-AI02-07ER64546]; NOAA Center for Satellite Applications and Research FX This research was supported by the NASA Applied Sciences Program, the Department of Energy Atmospheric Radiation Measurement Program through Interagency Agreement DE-AI02-07ER64546, and the NOAA Center for Satellite Applications and Research GOES-R Program. NR 25 TC 2 Z9 2 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 21 PY 2010 VL 115 AR D00J06 DI 10.1029/2009JD013313 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631EB UT WOS:000280328300010 ER PT J AU Smrekar, SE Hoogenboom, T Stofan, ER Martin, P AF Smrekar, Suzanne E. Hoogenboom, Trudi Stofan, Ellen R. Martin, Paula TI Gravity analysis of Parga and Hecate chasmata: Implications for rift and corona formation SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID EFFECTIVE ELASTIC THICKNESS; VENUS RESURFACING HISTORY; OF-SIGHT ACCELERATIONS; CONTINENTAL LITHOSPHERE; ISOSTATIC COMPENSATION; OCEANIC LITHOSPHERE; GLOBAL DISTRIBUTION; TECTONIC PATTERNS; FLEXURAL RIGIDITY; TYPE-2 CORONAE AB The two largest rift systems on Venus, Parga, and Hecate chasmata contain one third of all coronae. We map variations in elastic thickness and apparent depth of compensation (ADC) in these two regions using the admittance function for gravity and topography. We examine the relationship between rifting and coronae by comparing lithospheric structure with corona characteristics including volcanism, topographic shape, fracture pattern, diameter, and stratigraphic age. At Hecate chasmata, both ADC and elastic thickness correlate with two main rift branches, the fracture style and corona characteristics. Hecate chasma thus appears to be dominated by extensional processes. Parga chasma shows little correlation between lithospheric properties and the location of coronae or rift segments. The ADC at Hecate and Parga chasmata is mostly less than 75-100 km, implying that there is not large-scale upwelling underlying the rift systems. The variations in the corona population sizes between Parga chasma, which has 131 coronae, and Hecate chasma, with 50 coronae, suggest differences in the evolution of the two rift systems. The much larger population of coronae at Parga contains more small coronae, many of which have relatively low volcanism and post date the rift. Further, many of the small coronae occur in chains and have similar diameters, as predicted by Rayleigh-Taylor type instabilities. These characteristics suggest that the smaller coronaemay formvia a later, secondary decompression melting phase. Thus, Hecate chasma may be younger than Parga chasma and could experience a secondary stage of corona formation in the future. C1 [Smrekar, Suzanne E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hoogenboom, Trudi] ExxonMobil, Grav Magnet Grp, Houston, TX 77060 USA. [Stofan, Ellen R.] Proxemy Res, Laytonville, MD 20882 USA. [Martin, Paula] Univ Durham, Dept Earth Sci, Sci Labs, Durham DH1 3LE, England. RP Smrekar, SE (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ssmrekar@jpl.nasa.gov FU Planetary Geology and Geophysics Program; National Aeronautics and Space Administration FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by Planetary Geology and Geophysics Program and the National Aeronautics and Space Administration. NR 79 TC 4 Z9 4 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 21 PY 2010 VL 115 AR E07010 DI 10.1029/2009JE003435 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 631GY UT WOS:000280335900001 ER PT J AU Melendez, M Kraemer, SB Schmitt, HR AF Melendez, M. Kraemer, S. B. Schmitt, H. R. TI A new radio loudness diagnostic for active galaxies: a radio-to-mid-infrared parameter SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE Galaxy: stellar content; galaxies: Seyfert; infrared: galaxies ID BLACK-HOLE MASS; SPITZER-SPACE-TELESCOPE; EXTENDED 12-MU-M SAMPLE; X-RAY LUMINOSITY; SEYFERT-GALAXIES; GALACTIC NUCLEI; STAR-FORMATION; LIMITED SAMPLE; MU-M; ENERGY-DISTRIBUTIONS AB We have studied the relationship between the nuclear (high-resolution) radio emission, at 8.4 GHz (3.6 cm) and 1.4 GHz (20 cm), the [O iv] lambda 25.89 mu m, [Ne iii] lambda 15.56 mu m and [Ne ii] lambda 12.81 mu m emission lines and the black hole mass accretion rate for a sample of Seyfert galaxies. In order to characterize the radio contribution for the Seyfert nuclei we used the 8.4 GHz/[O iv] ratio, assuming that [O iv] scales with the luminosity of the active galactic nuclei (AGN). From this we find that Seyfert 1s (i.e. Seyfert 1.0s, 1.2s and 1.5s) and Seyfert 2s (i.e. Seyfert 1.8s, 1.9s and 2.0s) have similar radio contributions, relative to the AGN. On the other hand, sources in which the [Ne ii] emission is dominated either by the AGN or star formation have statistically different radio contributions, with star formation dominated sources more 'radio loud', by a factor of similar to 2.8 on average, than AGN dominated sources. We show that star formation dominated sources with relatively larger radio contribution have smaller mass accretion rates. Overall, we suggest that 8.4 GHz/[O iv], or alternatively, 1.4 GHz/[O iv] ratios, can be used to characterize the radio contribution, relative to the AGN, without the limitation of previous methods that rely on optical observables. C1 [Melendez, M.; Kraemer, S. B.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Melendez, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kraemer, S. B.] Catholic Univ Amer, Dept Phys, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Schmitt, H. R.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Schmitt, H. R.] Interferometrics Inc, Herndon, VA 20171 USA. RP Melendez, M (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM marcio.b.melendez@nasa.gov FU National Aeronautics and Space Administration; National Science Foundation FX We thank the referee for very useful comments that improved the paper. We would also like to acknowledge D. M. Crenshaw for valuable comments on the work. This research has made use of NASA's Astrophysics Data System. Also, this research has made use of the NASA/IPAC Extragalactic Data base (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The VLA is operated by the US National Radio Astronomy Observatory which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. SMART was developed by the IRS Team at Cornell University and is available through the Spitzer Science Center at Caltech. Basic research in astronomy at the NRL is supported by 6.1 base funding. NR 98 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2010 VL 406 IS 1 BP 493 EP 504 DI 10.1111/j.1365-2966.2010.16679.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 623TI UT WOS:000279766800061 ER PT J AU Wickramasinghe, T Ukwatta, TN AF Wickramasinghe, T. Ukwatta, T. N. TI An analytical approach for the determination of the luminosity distance in a flat universe with dark energy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE distance scale AB Recent cosmological observations indicate that the present universe is flat and dark energy dominated. In such a universe, the calculation of the luminosity distance, d(L), involves repeated numerical calculations. In this paper, it is shown that a quite efficient approximate analytical expression, having very small uncertainties, can be obtained for d(L). The analytical calculation is shown to be exceedingly efficient, as compared to the traditional numerical methods, and is potentially useful for Monte Carlo simulations involving luminosity distances. C1 [Wickramasinghe, T.] Coll New Jersey, Dept Phys, Ewing, NJ 08628 USA. [Ukwatta, T. N.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Ukwatta, T. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wickramasinghe, T (reprint author), Coll New Jersey, Dept Phys, Ewing, NJ 08628 USA. EM tilan.ukwatta@gmail.com NR 4 TC 12 Z9 12 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2010 VL 406 IS 1 BP 548 EP 550 DI 10.1111/j.1365-2966.2010.16686.x PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 623TI UT WOS:000279766800066 ER PT J AU Goulding, AD Alexander, DM Lehmer, BD Mullaney, JR AF Goulding, A. D. Alexander, D. M. Lehmer, B. D. Mullaney, J. R. TI Towards a complete census of active galactic nuclei in nearby galaxies: the incidence of growing black holes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: evolution; galaxies: nuclei; galaxies: Seyfert; infrared: galaxies ID SPECTRAL ENERGY-DISTRIBUTIONS; HIGH-RESOLUTION SPECTROSCOPY; SPITZER-SPACE-TELESCOPE; EMISSION-LINE REGIONS; DWARF SEYFERT NUCLEI; X-RAY SPECTROSCOPY; DIGITAL SKY SURVEY; XMM-NEWTON; VELOCITY DISPERSION; LUMINOSITY FUNCTION AB We investigate the local supermassive black hole (SMBH) density function and relative mass accretion rates of all active galactic nuclei (AGNs) identified in a volume-limited sample of infrared (IR) bright galaxies (L-IR > 3 x 109 L-circle dot) to D < 15 Mpc. A data base of accurate SMBH mass (M-BH) estimates is compiled from literature sources using physically motivated AGN modelling techniques (reverberation mapping, maser mapping and gas kinematics) and well-established indirect M-BH estimation methods (the M-Sigma(*) and M-BH-L-K,L-bul relations). For the three sources without previously published M-BH estimates, we use Two Micron All Sky Survey (2MASS) K-band imaging and galfit to constrain the bulge luminosities, and hence SMBH masses. In general, we find the AGNs in the sample host SMBHs which are spread over a wide mass range [M-BH approximate to (0.1-30) x 107 M-circle dot], but with the majority in the poorly studied M-BH approximate to 106-107 M-circle dot region. Using sensitive hard X-ray (2-10 keV) and mid-IR constraints we calculate the bolometric luminosities of the AGNs (L-Bol,L-AGN) and use them to estimate relative mass accretion rates. We use these data to calculate the volume-averaged SMBH growth rate of galaxies in the local Universe and find that the AGNs hosting SMBHs in the mass range M-BH approximate to 106-107 M-circle dot are dominated by optically unidentified AGNs. These relatively small SMBHs are acquiring a significant proportion of their mass in the present day, and are amongst the most rapidly growing in the local Universe (SMBH mass-doubling times of approximate to 6 Gyr). Additionally, we find tentative evidence for an increasing volume-weighted AGN fraction with decreasing SMBH mass in the M-BH approximate to 106-108 M-circle dot range. Overall, we conclude that significant mass accretion on to small SMBHs may be missed in even the most sensitive optical surveys due to absent or weak optical AGN signatures. C1 [Goulding, A. D.; Alexander, D. M.; Lehmer, B. D.; Mullaney, J. R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Goulding, AD (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM andrew.goulding@durham.ac.uk OI Alexander, David/0000-0002-5896-6313 FU Science & Technologies Facilities Council; Royal Society; Leverhulme Trust FX We thank the referee for a considered report which significantly improved the paper. We also thank the Science & Technologies Facilities Council (ADG, BDL), the Royal Society (DMA), the Leverhulme Trust (DMA, JRM) and the Einstein Postdoctoral Fellowship (grant number PF9-00064; BDL) for funding. We would like to thank A. Edge, J. Geach, J. Greene, J. Lucey, M. Norris, I. Smail and V. Wild for useful conversations. The authors acknowledge the use of the galfit program of Peng et al. This research has made use of the NASA/IPAC Extragalactic Database (NED) and the NASA Spitzer Space Telescope which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication also makes use of data from the 2MASS Extended Mission Ancillary Products, a project collaboration between The University of Massachusetts and the Infrared Processing and Analysis Center (JPL/Caltech). NR 106 TC 37 Z9 37 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2010 VL 406 IS 1 BP 597 EP 611 DI 10.1111/j.1365-2966.2010.16700.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 623TI UT WOS:000279766800073 ER PT J AU Edmondson, JK Antiochos, SK DeVore, CR Zurbuchen, TH AF Edmondson, J. K. Antiochos, S. K. DeVore, C. R. Zurbuchen, T. H. TI FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: magnetic topology ID HYPERBOLIC FLUX TUBES; MAGNETIC RECONNECTION; MASS EJECTIONS; ENERGY-RELEASE; FIELDS; EVOLUTION; DYNAMICS; MODEL; ERUPTIONS; BREAKOUT AB Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. C1 [Edmondson, J. K.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeVore, C. R.] USN, Res Lab, Washington, DC 20375 USA. [Zurbuchen, T. H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48105 USA. RP Edmondson, JK (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM jkedmond@umich.edu RI Antiochos, Spiro/D-4668-2012; DeVore, C/A-6067-2015 OI Antiochos, Spiro/0000-0003-0176-4312; DeVore, C/0000-0002-4668-591X FU NASA; DoD High Performance Computing Modernization Program FX This work was supported in part by the NASA HTP and SR&T programs. J.K.E. acknowledges support from the NASA GSRP Program. The numerical simulation was performed under a grant of time from the DoD High Performance Computing Modernization Program. NR 50 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 72 EP 85 DI 10.1088/0004-637X/718/1/72 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800010 ER PT J AU Aravena, M Carilli, C Daddi, E Wagg, J Walter, F Riechers, D Dannerbauer, H Morrison, GE Stern, D Krips, M AF Aravena, M. Carilli, C. Daddi, E. Wagg, J. Walter, F. Riechers, D. Dannerbauer, H. Morrison, G. E. Stern, D. Krips, M. TI COLD MOLECULAR GAS IN MASSIVE, STAR-FORMING DISK GALAXIES AT z=1.5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: starburst ID QUASAR HOST GALAXY; SIMILAR-TO 2; SUBMILLIMETER GALAXIES; NEARBY GALAXIES; HIGH-REDSHIFT; CONVERSION FACTOR; LINES; FIELD; EXCITATION; RESERVOIRS AB We report the detection of the CO J = 1-0 emission line in three near-infrared selected star-forming galaxies at z similar to 1.5 with the Very Large Array and the Green Bank Telescope. These observations directly trace the bulk of molecular gas in these galaxies. We find H(2) gas masses of 8.3 +/- 1.9 x 10(10) M(circle dot), 5.6 +/- 1.4 x 10(10) M(circle dot), and 1.23 +/- 0.34 x 10(11) M(circle dot) for BzK-4171, BzK-21000, and BzK-16000, respectively, assuming a conversion alpha(CO) = 3.6 M(circle dot) (K km s(-1) pc(2))(-1). We combined our observations with previous CO 2-1 detections of these galaxies to study the properties of their molecular gas. We find brightness temperature ratios between the CO 2-1 and CO 1-0 emission lines of 0.80(-0.22)(+0.35), 1.22(-0.36)(+0.61), and 0.41(-0.13)(+0.23) for BzK-4171, BzK-21000, and BzK-16000, respectively. At the depth of our observations it is not possible to discern between thermodynamic equilibrium or sub-thermal excitation of the molecular gas at J = 2. However, the low temperature ratio found for BzK-16000 suggests sub-thermal excitation of CO already at J = 2. For BzK-21000, a large velocity gradient model of its CO emission confirms previous results of the low excitation of the molecular gas at J = 3. From a stacked map of the CO 1-0 images, we measure a CO 2-1 to CO 1-0 brightness temperature ratio of 0.92(-0.19)(+0.28). This suggests that, on average, the gas in these galaxies is thermalized up to J = 2, has star formation efficiencies of similar to 100 L(circle dot) (K km s(-1) pc(2))(-1), and gas consumption timescales of similar to 0.4 Gyr, unlike submillimeter galaxies and quasi-stellar objects at high redshifts. C1 [Aravena, M.; Carilli, C.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Daddi, E.; Dannerbauer, H.] CEA Saclay, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Wagg, J.] European So Observ, Vitacura Santiago, Chile. [Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Krips, M.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. RP Aravena, M (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. RI Daddi, Emanuele/D-1649-2012; Aravena, Manuel/O-2361-2014 OI Daddi, Emanuele/0000-0002-3331-9590; FU Max-Planck-Gesellschaft; Humboldt-Stiftung; NASA [HST-HF-51235.01, NAS 5-26555] FX M.A. thanks A. Leroy for useful discussions. We thank Christian Henkel for providing us with the LVG code in its original version. C.C. thanks the Max-Planck-Gesellschaft and the Humboldt-Stiftung for support through the Max-Planck-Forschungspreis. D.R. acknowledges support from NASA through Hubble Fellowship grant HST-HF-51235.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The work of D.S. was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 41 TC 46 Z9 46 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 177 EP 183 DI 10.1088/0004-637X/718/1/177 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800017 ER PT J AU Gogus, E Cusumano, G Levan, AJ Kouveliotou, C Sakamoto, T Barthelmy, SD Campana, S Kaneko, Y Stappers, BW Postigo, AD Strohmayer, T Palmer, DM Gelbord, J Burrows, DN van der Horst, AJ Munoz-Darias, T Gehrels, N Hessels, JWT Kamble, AP Wachter, S Wiersema, K Wijers, RAMJ Woods, PM AF Gogus, E. Cusumano, G. Levan, A. J. Kouveliotou, C. Sakamoto, T. Barthelmy, S. D. Campana, S. Kaneko, Y. Stappers, B. W. Postigo, A. de Ugarte Strohmayer, T. Palmer, D. M. Gelbord, J. Burrows, D. N. van der Horst, A. J. Munoz-Darias, T. Gehrels, N. Hessels, J. W. T. Kamble, A. P. Wachter, S. Wiersema, K. Wijers, R. A. M. J. Woods, P. M. TI DISCOVERY OF A NEW SOFT GAMMA REPEATER, SGR J1833-0832 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR J1833-0832); X- rays: bursts ID X-RAY PULSARS; MAGNETIZED NEUTRON-STARS; HIGH-ENERGY TRANSIENT; RADIO PULSATIONS; EMISSION; BURSTS; OUTBURST; SEARCH AB On 2010 March 19, the Swift/Burst Alert Telescope triggered on a short burst with temporal and spectral characteristics similar to those of soft gamma repeater (SGR) bursts. The source location, however, did not coincide with any known SGR. Subsequent observations of the source error box with the Swift/X-Ray Telescope and the Rossi X-ray Timing Explorer led to the discovery of a new X-ray source with a spin period of 7.56 s, confirming SGR J1833-0832 as a new magnetar. Based on our detailed temporal and spectral analyses, we show that the new SGR is rapidly spinning down (4 x 10(-12) s s(-1)) and find an inferred dipole magnetic field of 1.8 x 10(14) G. We also show that the X-ray flux of SGR J1833-0832 remained constant for approximately 20 days following the burst and then started to decline. We derived an accurate location of the source with the Chandra X-ray Observatory and we searched for a counterpart in deep optical and infrared observations of SGR J1833-0832, and for radio pulsed emission with the Westerbork Radio Synthesis Telescope. Finally, we compare the spectral and temporal properties of the source to other magnetar candidates. C1 [Gogus, E.; Kaneko, Y.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Cusumano, G.] Ist Nazl Astrofis INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, IASF Palermo, I-90146 Palermo, Italy. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kouveliotou, C.; van der Horst, A. J.] NASA, Space Sci Off, VP62, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Sakamoto, T.; Barthelmy, S. D.; Strohmayer, T.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campana, S.; Postigo, A. de Ugarte; Munoz-Darias, T.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gelbord, J.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Hessels, J. W. T.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Hessels, J. W. T.; Kamble, A. P.; Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. [Wachter, S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Woods, P. M.] Dynetics Inc, Huntsville, AL 35806 USA. RP Gogus, E (reprint author), Sabanci Univ, TR-34956 Istanbul, Turkey. EM ersing@sabanciuniv.edu RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; OI Wijers, Ralph/0000-0002-3101-1808; Cusumano, Giancarlo/0000-0002-8151-1990; de Ugarte Postigo, Antonio/0000-0001-7717-5085 FU EU [MTKD-CT-2006-042722]; NASA [NAS5-00136, NNH07ZDA001-GLAST]; Netherlands foundation for Scientific Research FX E.G. and Y.K. acknowledge EU FP6 Transfer of Knowledge Project "Astrophysics of Neutron Stars" (MTKD-CT-2006-042722). J.G. and D.N.B. acknowledge support from NASA contract NAS5-00136. A.J.v.d.H. was supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. C.K. acknowledges support by NASA grant NNH07ZDA001-GLAST. Partly based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in the island of La Palma. The WSRT is operated by ASTRON (Netherlands Institute for Radio Astronomy) with support from the Netherlands foundation for Scientific Research. Partly based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 084.D-0621. NR 39 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 331 EP 339 DI 10.1088/0004-637X/718/1/331 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800027 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Fukazawa, Y Fukui, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Rodriguez, Y Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Uchiyama, Y Uehara, T Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yamamoto, H Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Fukazawa, Y. Fukui, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rodriguez, Y. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Uchiyama, Y. Uehara, T. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yamamoto, H. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT W28 (G6.4-0.1) SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; gamma rays: ISM; ISM: individual objects (W28, G6.4-0.1); ISM: supernova remnants ID GAMMA-RAY EMISSION; H-II REGIONS; SHOCKED MOLECULAR GAS; GALACTIC COSMIC-RAYS; MHZ OH MASERS; IC 443; DISCOVERY; OUTFLOW; CLOUDS; W44 AB We present detailed analysis of two gamma-ray sources, 1FGL J1801.3-2322c and 1FGL J1800.5-2359c, that have been found toward the supernova remnant (SNR) W28 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. 1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28, and to extensively overlap with the TeV gamma-ray source HESS J1801-233, which is associated with a dense molecular cloud interacting with the SNR. The gamma-ray spectrum measured with the LAT from 0.2 to 100 GeV can be described by a broken power-law function with a break at similar to 1 GeV and photon indices of 2.09 +/- 0.08 (stat) +/- 0.28 (sys) below the break and 2.74 +/- 0.06 (stat) +/- 0.09 (sys) above the break. Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV-TeV band, we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud. The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provides a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved. An upper limit on the size of the gamma-ray emission was estimated to be similar to 16' using events above similar to 2 GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B, which is considered to be associated with a dense molecular cloud that contains the ultra compact H II region W28A2 (G5.89-0.39). We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C. The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10 GeV and 100 GeV. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, CNRS,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Gehrels, N.; Harding, A. K.; Hays, E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Lemoine-Goumard, M.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, UMR 5797, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Fukui, Y.; Yamamoto, H.] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM katagiri@hep01.hepl.hiroshima-u.ac.jp; htajima@slac.stanford.edu; ttanaka@slac.stanford.edu; uchiyama@slac.stanford.edu RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Baldini, Luca/0000-0002-9785-7726 FU K.A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program.; National Aeronautics and Space Administration; Department of Energy, United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules, France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization; Japan Aerospace Exploration Agency (JAXA), Japan; Swedish Research Council; Swedish National Space Board, Sweden FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K.A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 48 TC 128 Z9 130 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 348 EP 356 DI 10.1088/0004-637X/718/1/348 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800029 ER PT J AU Shrader, CR Titarchuk, L Shaposhnikov, N AF Shrader, Chris R. Titarchuk, Lev Shaposhnikov, Nikolai TI NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; radiation mechanisms: non-thermal; stars: individual (Cygnus X-3, GRS 1915+105) ID CYG X-3; SCATTERING HALO; EMISSION-LINES; RAY-EMISSION; VARIABILITY; DISTANCE; STAR AB The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M(circle dot), thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M(circle dot) and 14.4 M(circle dot). Our favored estimate, based on a 9.0 kpc distance estimate, is similar to 10 M(circle dot), with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source. C1 [Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Shrader, Chris R.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Titarchuk, Lev] Univ Ferrara, I-44100 Ferrara, Italy. [Titarchuk, Lev] George Mason Univ, Dept Computat Sci, Fairfax, VA 22030 USA. [Shaposhnikov, Nikolai] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Shrader, CR (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 661, Greenbelt, MD 20771 USA. EM Chris.R.Shrader@nasa.gov FU NASA [NNX08AD75G, NX09AF02G] FX The authors wish to acknowledge the support of this work provided by NASA grants NNX08AD75G (C.R.S.) and NX09AF02G (L.T. & N.S.). NR 21 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 488 EP 493 DI 10.1088/0004-637X/718/1/488 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800042 ER PT J AU Sturrock, PA Scargle, JD AF Sturrock, Peter A. Scargle, Jeffrey D. TI FALSE-ALARM PROBABILITY IN RELATION TO OVERSAMPLED POWER SPECTRA, WITH APPLICATION TO SUPER-KAMIOKANDE SOLAR NEUTRINO DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: statistical; neutrinos; Sun: particle emission ID TIME-SERIES; SPACED DATA AB The term "false-alarm probability" denotes the probability that at least one out of M independent power values in a prescribed search band of a power spectrum computed from a white-noise time series is expected to be as large as or larger than a given value. The usual formula is based on the assumption that powers are distributed exponentially, as one expects for power measurements of normally distributed random noise. However, in practice, one typically examines peaks in an oversampled power spectrum. It is therefore more appropriate to compare the strength of a particular peak with the distribution of peaks in oversampled power spectra derived from normally distributed random noise. We show that this leads to a formula for the false-alarm probability that is rather more conservative than the familiar formula. We also show how to combine these results with a Bayesian method for estimating the probability of the null hypothesis (that there is no oscillation in the time series), and we discuss as an example the application of these procedures to Super-Kamiokande solar neutrino data. C1 [Sturrock, Peter A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Scargle, Jeffrey D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. FU NSF [AST-0607572] FX One of us (P.A.S.) acknowledges support from the NSF through grant AST-0607572. NR 10 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2010 VL 718 IS 1 BP 527 EP 529 DI 10.1088/0004-637X/718/1/527 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 631IU UT WOS:000280340800047 ER PT J AU Yamaleev, NK Diskin, B Nielsen, EJ AF Yamaleev, Nail K. Diskin, Boris Nielsen, Eric J. TI Local-in-time adjoint-based method for design optimization of unsteady flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Time-dependent optimization; Discrete adjoint equations; Gradient methods; Design optimization; Euler equations AB We present a new local-in-time discrete adjoint-based methodology for solving design optimization problems arising in unsteady aerodynamic applications. The new methodology circumvents storage requirements associated with the straightforward implementation of a global adjoint-based optimization method that stores the entire flow solution history for all time levels. This storage cost may quickly become prohibitive for large-scale applications. The key idea of the local-in-time method is to divide the entire time interval into several subintervals and to approximate the solution of the unsteady adjoint equations and the sensitivity derivative as a combination of the corresponding local quantities computed on each time subinterval. Since each subinterval contains relatively few time levels, the storage cost of the local-in-time method is much lower than that of the global methods, thus making the time-dependent adjoint optimization feasible for practical applications. Another attractive feature of the new technique is that the converged solution obtained with the local-in-time method is a local extremum of the original optimization problem. The new method carries no computational overhead as compared with the global implementation of adjoint-based methods. The paper presents a detailed comparison of the global- and local-in-time adjoint-based methods for design optimization problems governed by the unsteady compressible 2-D Euler equations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Yamaleev, Nail K.] N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA. [Diskin, Boris] Natl Inst Aerosp, Hampton, VA 23666 USA. [Diskin, Boris] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Nielsen, Eric J.] NASA, Computat AeroSci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Yamaleev, NK (reprint author), N Carolina Agr & Tech State Univ, Dept Math, Greensboro, NC 27411 USA. EM nkyamale@ncat.edu FU NASA [NNL07AA23C]; Army Research Laboratory [W911NF-06-R-006] FX The work of the first and second authors has been supported by NASA under Contract NNL07AA23C. The first author would also like to acknowledge the partial support from the Army Research Laboratory through Grant W911NF-06-R-006. NR 24 TC 9 Z9 9 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2010 VL 229 IS 14 BP 5394 EP 5407 DI 10.1016/j.jcp.2010.03.045 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 615MK UT WOS:000279139200006 ER PT J AU Cunha, C Huterer, D Dore, O AF Cunha, Carlos Huterer, Dragan Dore, Olivier TI Primordial non-Gaussianity from the covariance of galaxy cluster counts SO PHYSICAL REVIEW D LA English DT Article ID 3-POINT CORRELATION-FUNCTION; PROBE WMAP OBSERVATIONS; HALO BIAS; RICHNESS RELATION; REDSHIFT SURVEYS; POWER-SPECTRUM; MASS FUNCTION; DARK ENERGY; CONSTRAINTS; PERTURBATIONS AB It has recently been proposed that the large-scale bias of dark matter halos depends sensitively on primordial non-Gaussianity of the local form. In this paper we point out that the strong scale dependence of the non-Gaussian halo bias imprints a distinct signature on the covariance of cluster counts. We find that using the full covariance of cluster counts results in improvements on constraints on the non-Gaussian parameter f(NL) of 3 (1) orders of magnitude relative to cluster counts (counts + clustering variance) constraints alone. We forecast f(NL) constraints for the upcoming Dark Energy Survey in the presence of uncertainties in the mass-observable relation, halo bias, and photometric redshifts. We find that the Dark Energy Survey can yield constraints on non-Gaussianity of sigma(f(NL)) similar to 1-5 even for relatively conservative assumptions regarding systematics. Excess of correlations of cluster counts on scales of hundreds of megaparsecs would represent a smoking-gun signature of primordial non-Gaussianity of the local type. C1 [Cunha, Carlos; Huterer, Dragan] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Dore, Olivier] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dore, Olivier] CALTECH, Pasadena, CA 91125 USA. RP Cunha, C (reprint author), Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. FU DOE [DE-FG02-95ER40899]; NSF [AST-0807564]; NASA [NNX09AC89G]; National Aeronautics and Space Administration FX We are extremely grateful to Neal Dalal for contributing crucially to this project at its early stages. We thank Wayne Hu for pointing out Ref. [70] to us, and to Anze Slosar and Adam Becker for useful discussions. We also thank the Aspen Center for Physics, where this work started, for hospitality. C. C. and D. H. are supported by the DOE OJI grant under Contract No. DE-FG02-95ER40899. D. H. is additionally supported by NSF under Contract No. AST-0807564, and NASA under Contract No. NNX09AC89G. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 81 TC 41 Z9 41 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 19 PY 2010 VL 82 IS 2 AR 023004 DI 10.1103/PhysRevD.82.023004 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 627UF UT WOS:000280067700001 ER PT J AU Chang, FL Minnis, P Ayers, JK McGill, MJ Palikonda, R Spangenberg, DA Smith, WL Yost, CR AF Chang, Fu-Lung Minnis, Patrick Ayers, J. Kirk McGill, Matthew J. Palikonda, Rabindra Spangenberg, Douglas A. Smith, William L., Jr. Yost, Christopher R. TI Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SURFACE-ROUGHNESS; CIRRUS CLOUDS; ICE PARTICLES; TEXTURE AB Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) < 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July-August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs < 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers. C1 [Chang, Fu-Lung; Ayers, J. Kirk; Palikonda, Rabindra; Spangenberg, Douglas A.; Yost, Christopher R.] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. [McGill, Matthew J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Minnis, Patrick; Smith, William L., Jr.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Chang, FL (reprint author), Sci Syst & Applicat Inc, MS 420, Hampton, VA 23681 USA. EM fu-lung.chang-1@nasa.gov RI McGill, Matthew/D-8176-2012; Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA; Department of Energy [DE-AI02-07ER64546]; NOAA Center for Satellite Applications and Research FX This research was supported by the NASA Radiation Science Program TC4 project, the NASA Applied Sciences Program, the Department of Energy Atmospheric Radiation Measurement Program through interagency agreement DE-AI02-07ER64546, and the NOAA Center for Satellite Applications and Research GOES-R program. NR 27 TC 8 Z9 8 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2010 VL 115 AR D00J05 DI 10.1029/2009JD013305 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NU UT WOS:000280047300005 ER PT J AU Chiu, JC Huang, CH Marshak, A Slutsker, I Giles, DM Holben, BN Knyazikhin, Y Wiscombe, WJ AF Chiu, J. Christine Huang, Chiung-Huei Marshak, Alexander Slutsker, Ilya Giles, David M. Holben, Brent N. Knyazikhin, Yuri Wiscombe, Warren J. TI Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR RADIOMETRIC MEASUREMENTS; LIQUID WATER PATH; RADIATIVE-TRANSFER; LAND PRODUCTS; VEGETATION; REMOTE; ALGORITHM; THICKNESS; ALBEDOS; SNOW AB Cloud optical depth is one of the most poorly observed climate variables. The new "cloud mode" capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program's Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground-based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale. C1 [Chiu, J. Christine] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Huang, Chiung-Huei] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Marshak, Alexander; Holben, Brent N.; Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Slutsker, Ilya; Giles, David M.] Sigma Space Corp, Lanham, MD USA. [Knyazikhin, Yuri] Boston Univ, Boston, MA 02215 USA. [Wiscombe, Warren J.] Brookhaven Natl Lab, New York, NY USA. RP Chiu, JC (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. EM christine.chiu@nasa.gov RI Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU Office of Science (BER, US Department of Energy, Interagency agreement) [DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency agreement DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564) as part of the ARM program. We also thank the AERONET team for providing instrument calibration, deployment, and data processing. NR 38 TC 21 Z9 21 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2010 VL 115 AR D14202 DI 10.1029/2009JD013121 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NU UT WOS:000280047300003 ER PT J AU Shen, BW Tao, WK Lau, WK Atlas, R AF Shen, B. -W. Tao, W. -K. Lau, W. K. Atlas, R. TI Predicting tropical cyclogenesis with a global mesoscale model: Hierarchical multiscale interactions during the formation of tropical cyclone Nargis (2008) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; SUMMER MONSOON; NORTH PACIFIC; ROSSBY WAVES; NWP SYSTEM; CONVECTION; PARAMETERIZATION; MODULATION; DIAGNOSIS; STATE AB Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence. C1 [Shen, B. -W.; Tao, W. -K.; Lau, W. K.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Shen, B. -W.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Atlas, R.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. RP Shen, BW (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613, Greenbelt, MD 20771 USA. EM Bo-Wen.Shen-1@nasa.gov RI Atlas, Robert/A-5963-2011; Lau, William /E-1510-2012 OI Atlas, Robert/0000-0002-0706-3560; Lau, William /0000-0002-3587-3691 FU NASA Advanced Information System Technology (AIST); Modeling Analysis Prediction (MAP) programs; NSF Science and Technology Center FX We would like to thank three reviewers for their valuable suggestions, which have substantially improved the manuscript. We are grateful for support from the NASA Advanced Information System Technology (AIST) and Modeling Analysis Prediction (MAP) programs and the NSF Science and Technology Center for this study. We would like to thank Steve Lang and K.-S. Yeh for proofreading and reviewing this manuscript, B. Green for visualizations, K.-S. Kuo for the preparation of Figure 1, and H.-T. (Jenny) Wu, and Y. Jin (NRL) for valuable discussions. We also thank the NASA Advanced Supercomputing Division and NASA Center for Computational Sciences for computer time used in this research. NR 37 TC 16 Z9 17 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2010 VL 115 AR D14102 DI 10.1029/2009JD013140 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NU UT WOS:000280047300004 ER PT J AU Lillis, RJ Purucker, ME Halekas, JS Louzada, KL Stewart-Mukhopadhyay, ST Manga, M Frey, HV AF Lillis, Robert J. Purucker, Michael E. Halekas, Jasper S. Louzada, Karin L. Stewart-Mukhopadhyay, Sarah T. Manga, Michael Frey, Herbert V. TI Study of impact demagnetization at Mars using Monte Carlo modeling and multiple altitude data SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SPHERICAL HARMONIC MODEL; CRUSTAL MAGNETIC-FIELD; MARTIAN CRUST; SHOCK; EVOLUTION; PYRRHOTITE; ANOMALIES; GEOLOGY; DYNAMO; ROCKS AB The magnetic field signatures of large demagnetized impact basins on Mars offer a unique opportunity to study the magnetic properties of the crust and the processes of basin formation and impact shock demagnetization. We present a framework for determining the effects on such signatures due to the dominant direction, strength, thickness, and vertical and horizontal coherence wavelengths of the surrounding crustal magnetization, as well as the demagnetization radius and the width of the demagnetization gradient zone caused by impact shock. By comparing model results with observed magnetic field profiles at 185 km and 400 km over the five largest apparently demagnetized impact structures, we find that (1) the dominant lateral size of coherently magnetized regions of crust falls in the range similar to 325 km to 600 km, (2) the magnetic field observed over a circular demagnetized region is such that clear demagnetization signatures should only be visible in magnetic field maps at 185 km and 400 km altitude for demagnetization diameters larger than similar to 600 km and similar to 1000 km, respectively, (3) demagnetization radii can be meaningfully constrained despite relatively poor constraints on associated demagnetization gradient zone widths, (4) the ratio of demagnetization diameter to the outer topographic ring diameter is close to 0.8 for the Isidis, Hellas, Argyre, and Utopia basins, suggesting that similar basin-forming and shock demagnetization processes occurred in each of these four ancient impacts, and (5) if used in conjunction with impact simulations, such modeling may lead to improved constraints on peak pressure contours and impact energies for these basins. C1 [Lillis, Robert J.; Halekas, Jasper S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Purucker, Michael E.; Frey, Herbert V.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Louzada, Karin L.; Stewart-Mukhopadhyay, Sarah T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Manga, Michael] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Louzada, Karin L.] Royal Netherlands Embassy, Netherlands Off Sci & Technol, Washington, DC USA. RP Lillis, RJ (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. RI Manga, Michael/D-3847-2013; Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Louzada, Karin/0000-0002-9873-5405; Manga, Michael/0000-0003-3286-4682; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNX07AN94G, NNX09AN18G, NNX07AQ69G] FX We wish to thank an anonymous reviewer for some helpful suggestions. This work was supported by the NASA Mars Data Analysis program (grant NNX07AN94G) and Mars Fundamental Research program (grants NNX09AN18G and NNX07AQ69G). NR 60 TC 25 Z9 25 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 17 PY 2010 VL 115 AR E07007 DI 10.1029/2009JE003556 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 627OF UT WOS:000280048500002 ER PT J AU Huang, CS de La Beaujardiere, O Pfaff, RF Retterer, JM Roddy, PA Hunton, DE Su, YJ Su, SY Rich, FJ AF Huang, Chao-Song de La Beaujardiere, O. Pfaff, R. F. Retterer, J. M. Roddy, P. A. Hunton, D. E. Su, Y. -J. Su, S. -Y. Rich, F. J. TI Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SPREAD-F BUBBLES; NONLINEAR EVOLUTION; IRREGULARITIES; DEPLETIONS; DYNAMICS; VELOCITIES AB It has been observed that the zonal drift velocity of equatorial plasma bubbles is generally eastward. However, it has not been well understood whether the zonal drift of plasma bubbles is the same as the ambient plasma drift and what process causes differences in the drift velocities of the ambient plasma and bubbles. In this study we analyze the ion drift velocities measured by the Defense Meteorological Satellites Program and ROCSAT-1 satellites and the electric fields measured by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the presence of equatorial spread F. We find that the zonal drift velocity of the plasma particles inside plasma bubbles is significantly different from the ambient plasma drift. The relative zonal velocity of the ions inside the depletion region with respect to the ambient plasma is generally westward. In most cases it can be as high as several hundreds of meters per second. The plasma bubbles detected by the C/NOFS satellite in the midnight-dawn sector are still growing, and the polarization electric field inside the postmidnight bubbles is much stronger than the electric field in the ambient plasma. We suggest that the zonal drift velocity of the plasma particles inside the depletion region is driven by polarization electric field. When a plasma bubble is tilted, the E x B drift velocity caused by the polarization electric field has an upward component and a zonal component. Because of the zonal motion of the plasma particles inside the bubble, the eastward drift velocity of the bubble structure is faster than the ambient plasma drift for a west-tilted bubble and slower than the ambient plasma drift for an east-tilted bubble. C1 [Huang, Chao-Song] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. [de La Beaujardiere, O.; Retterer, J. M.; Roddy, P. A.; Hunton, D. E.; Su, Y. -J.] USAF, Space Vehicles Directorate, Hanscom Afb, MA 01731 USA. [Pfaff, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rich, F. J.] MIT, Lincoln Lab, Lexington, MA 02421 USA. [Su, S. -Y.] Natl Cent Univ, Inst Space Sci, Chungli 32054, Taiwan. [Su, S. -Y.] Natl Cent Univ, Ctr Space & Remote Sensing Res, Chungli 32054, Taiwan. RP Huang, CS (reprint author), Boston Coll, Inst Sci Res, 402 St Clements Hall,140 Commonwealth Ave, Chestnut Hill, MA 02467 USA. EM chaosong.huang.ctr@hanscom.af.mil RI Pfaff, Robert/F-5703-2012 OI Pfaff, Robert/0000-0002-4881-9715 FU Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0321]; Air Force Research Laboratory; Department of Defense; NASA; Naval Research Laboratory; Aerospace Corporation FX Work by C. S. H. was supported by the Air Force Office of Scientific Research (AFOSR) award FA9550-09-1-0321. The C/NOFS mission is supported by the Air Force Research Laboratory, the Department of Defense Space Test Program, NASA, the Naval Research Laboratory, and The Aerospace Corporation. We thank Eftyhia Zesta for helpful discussion on the DMSP VEFI data. We gratefully acknowledge the Air Force Research Laboratory for providing the DMSP thermal plasma data. NR 35 TC 23 Z9 23 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 17 PY 2010 VL 115 AR A07316 DI 10.1029/2010JA015324 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627PF UT WOS:000280051400007 ER PT J AU Paranicas, C Mitchell, DG Krimigis, SM Carbary, JF Brandt, PC Turner, FS Roussos, E Krupp, N Kivelson, MG Khurana, KK Cooper, JF Armstrong, TP Burton, M AF Paranicas, C. Mitchell, D. G. Krimigis, S. M. Carbary, J. F. Brandt, P. C. Turner, F. S. Roussos, E. Krupp, N. Kivelson, M. G. Khurana, K. K. Cooper, J. F. Armstrong, T. P. Burton, M. TI Asymmetries in Saturn's radiation belts SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ENERGETIC ELECTRONS; INNER MAGNETOSPHERE; PROTONS AB We present both energetic proton and electron data from the main radiation belts of Saturn. When organized by L shell and equatorial pitch angle, data from Cassini's Magnetospheric Imaging Instrument reveal proton radiation belts that are highly symmetric in local time. The energetic electron radiation belts are asymmetric in two principal ways. Using data from two close passes of the planet, we find for energies near a few MeV, electron intensity levels are different between noon and midnight. Furthermore, when Cassini was inbound to Saturn, electron fluxes dropped precipitously before the spacecraft reached the main rings. Outbound, electron fluxes returned to high levels when the spacecraft moved outward of the main rings. In this paper, we suggest that electron flux level asymmetries are due in part to the presence of local time stationary particles in Saturn's inner magnetosphere. We also consider possible mechanisms to account the drop off of electrons near the ring edge on the dayside. C1 [Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Carbary, J. F.; Brandt, P. C.; Turner, F. S.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Armstrong, T. P.] Fundamental Technol LLC, Lawrence, KS 66046 USA. [Burton, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cooper, J. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kivelson, M. G.; Khurana, K. K.] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90095 USA. [Roussos, E.; Krupp, N.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Paranicas, C (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM chris.paranicas@jhuapl.edu RI Roussos, Elias/H-2249-2011; Cooper, John/D-4709-2012; Kivelson, Margaret/I-9019-2012; Paranicas, Christopher/B-1470-2016; Carbary, James/C-2086-2016; Brandt, Pontus/N-1218-2016; OI Kivelson, Margaret/0000-0003-3859-8581; Paranicas, Christopher/0000-0002-4391-8255; Carbary, James/0000-0003-1781-3078; Brandt, Pontus/0000-0002-4644-0306; Roussos, Elias/0000-0002-5699-0678 NR 22 TC 18 Z9 18 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 17 PY 2010 VL 115 AR A07216 DI 10.1029/2009JA014971 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627PF UT WOS:000280051400004 ER PT J AU Gorham, PW Allison, P Baughman, BM Beatty, JJ Belov, K Besson, DZ Bevan, S Binns, WR Chen, C Chen, P Clem, JM Connolly, A Detrixhe, M De Marco, D Dowkontt, PF Du Vernois, M Grashorn, EW Hill, B Hoover, S Huang, M Israel, MH Javaid, A Liewer, KM Matsuno, S Mercurio, BC Miki, C Mottram, M Nam, J Nichol, RJ Palladino, K Romero-Wolf, A Ruckman, L Saltzberg, D Seckel, D Varner, GS Vieregg, AG Wang, Y AF Gorham, P. W. Allison, P. Baughman, B. M. Beatty, J. J. Belov, K. Besson, D. Z. Bevan, S. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Detrixhe, M. De Marco, D. Dowkontt, P. F. Du Vernois, M. Grashorn, E. W. Hill, B. Hoover, S. Huang, M. Israel, M. H. Javaid, A. Liewer, K. M. Matsuno, S. Mercurio, B. C. Miki, C. Mottram, M. Nam, J. Nichol, R. J. Palladino, K. Romero-Wolf, A. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Vieregg, A. G. Wang, Y. TI Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment SO PHYSICAL REVIEW D LA English DT Article ID COHERENT RADIO EMISSION; UPPER LIMIT; RAYS; SPECTRUM; DETECTOR; CHARGE AB The Antarctic Impulsive Transient Antenna (ANITA) completed its second Long Duration Balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultrahigh energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in payload sensitivity, efficiency, and flight trajectory. Analysis of in-flight calibration pulses from surface and subsurface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97 +/- 0.42 events. We set the strongest limit to date for 10(18)-10(21) eV cosmic neutrinos, excluding several current cosmogenic neutrino models. C1 [Gorham, P. W.; Allison, P.; Du Vernois, M.; Hill, B.; Matsuno, S.; Miki, C.; Romero-Wolf, A.; Ruckman, L.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Baughman, B. M.; Beatty, J. J.; Grashorn, E. W.; Mercurio, B. C.; Palladino, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Belov, K.; Hoover, S.; Saltzberg, D.; Vieregg, A. G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Besson, D. Z.; Detrixhe, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bevan, S.; Connolly, A.; Mottram, M.; Nichol, R. J.] UCL, Dept Phys & Astron, London, England. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, C.; Chen, P.; Huang, M.; Nam, J.; Wang, Y.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Clem, J. M.; De Marco, D.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [Liewer, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gorham, PW (reprint author), Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Belov, Konstantin/D-2520-2013; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011 OI Beatty, James/0000-0003-0481-4952 NR 35 TC 114 Z9 114 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 16 PY 2010 VL 82 IS 2 AR 022004 DI 10.1103/PhysRevD.82.022004 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 626ZO UT WOS:000280007500001 ER PT J AU Alperin, M Hoehler, T AF Alperin, Marc Hoehler, Tori TI BIOGEOCHEMISTRY The Ongoing Mystery of Sea-Floor Methane SO SCIENCE LA English DT Editorial Material ID ANAEROBIC OXIDATION; BACTERIA; CONSTRAINTS; SEDIMENTS; CONSORTIUM; ARCHAEA C1 [Alperin, Marc] Univ N Carolina, Chapel Hill, NC 27599 USA. [Hoehler, Tori] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. RP Alperin, M (reprint author), Univ N Carolina, Chapel Hill, NC 27599 USA. EM alperin@email.unc.edu; tori.m.hoehler@nasa.gov RI Wright, Dawn/A-4518-2011 OI Wright, Dawn/0000-0002-2997-7611 NR 16 TC 18 Z9 21 U1 1 U2 29 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 16 PY 2010 VL 329 IS 5989 BP 288 EP 289 DI 10.1126/science.1189966 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 625VW UT WOS:000279925900028 PM 20647456 ER PT J AU Jin, SG Komjathy, A AF Jin, Shuanggen Komjathy, Attila TI GNSS reflectometry and remote sensing: New objectives and results SO ADVANCES IN SPACE RESEARCH LA English DT Article DE GNSS; Multi-path; Radio occultation; Remote sensing; Reflectometry ID GLOBAL POSITIONING SYSTEM; SURFACE SOIL-MOISTURE; GPS REFLECTED SIGNALS; WIND-SPEED; RADIO OCCULTATION; OCEAN SURFACE; GPS/MET DATA; SEA-SURFACE; ALTIMETRY; SCATTERING AB The Global Navigation Satellite System (GNSS) has been a very powerful and important contributor to all scientific questions related to precise positioning on Earth's surface, particularly as a mature technique in geodesy and geosciences. With the development of GNSS as a satellite microwave (L-band) technique, more and wider applications and new potentials are explored and utilized. The versatile and available GNSS signals can image the Earth's surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. The refracted signals from GNSS radio occultation satellites together with ground GNSS observations can provide the high-resolution tropospheric water vapor, temperature and pressure, tropopause parameters and ionospheric total electron content (TEC) and electron density profile as well. The GNSS reflected signals from the ocean and land surface could determine the ocean height, wind speed and wind direction of ocean surface, soil moisture, ice and snow thickness. In this paper, GNSS remote sensing applications in the atmosphere, oceans, land and hydrology are presented as well as new objectives and results discussed. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Jin, Shuanggen] Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. [Komjathy, Attila] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Jin, SG (reprint author), Univ Texas Austin, Ctr Space Res, Austin, TX 78759 USA. EM sgjin@csr.utexas.edu RI Jin, Shuanggen/B-8094-2008 OI Jin, Shuanggen/0000-0002-5108-4828 NR 60 TC 46 Z9 47 U1 3 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUL 15 PY 2010 VL 46 IS 2 BP 111 EP 117 DI 10.1016/j.asr.2010.01.014 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 625PD UT WOS:000279906500001 ER PT J AU Ni-Meister, W Yang, WZ Kiang, NY AF Ni-Meister, Wenge Yang, Wenze Kiang, Nancy Y. TI A clumped-foliage canopy radiative transfer model for a global dynamic terrestrial ecosystem model. I: Theory SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Canopy radiative transfer; Clumping; Heterogeneity ID LEAF-AREA INDEX; PHOTOSYNTHETICALLY ACTIVE RADIATION; DISCONTINUOUS PLANT CANOPIES; BOREAL CONIFER FORESTS; US CARBON SINK; BIDIRECTIONAL REFLECTANCE; SPATIAL HETEROGENEITY; VEGETATION CANOPIES; ASYMMETRIC CROWNS; AVAILABLE ENERGY AB This study develops a simple but physically based canopy radiative transfer scheme for photosynthesis, radiative fluxes and surface albedo estimates in dynamic global vegetation models (DGVMs), and particularly for the Ent Dynamic Global Terrestrial Ecosystem Model (Ent DGTEM). The Ent DGTEM can represent vegetation in mixed as opposed to homogeneous canopies. With active growth and competition, it must predict radiative transfer for dynamically changing vegetation structure, and requires computational speed for coupling with atmospheric general circulation models (GCMs). The canopy radiative transfer scheme accounts for both vertical and horizontal heterogeneity of plant canopies by combining the simple two-stream scheme with a well-described actual vertical foliage profile, an analytically derived foliage clumping factor from geometric optical theory, and, for needleleaf trees, an empirical needle-to-shoot-clumping factor. In addition, the model accounts for the effect of trunks, which is significant in bare canopies. This model provides better radiation estimates (light profiles, albedo) than the two-stream scheme currently being used in most GCMs to describe light interactions with vegetation canopies. This scheme has the same computational cost as the current typical scheme being used in GCMs, but promises to provide better canopy radiative transfer estimates for DGVMs, particularly those that model heterogeneous vegetation canopies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ni-Meister, Wenge; Yang, Wenze] CUNY Hunter Coll, Dept Geog, New York, NY 10065 USA. [Kiang, Nancy Y.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Ni-Meister, W (reprint author), CUNY Hunter Coll, Dept Geog, 695 Pk Ave, New York, NY 10065 USA. EM Wenge.Ni-Meister@hunter.cuny.edu RI Yang, Wenze/B-8356-2012 OI Yang, Wenze/0000-0001-8514-2742 FU NASA [NNX06AD06G] FX The work is supported by the NASA Modeling, Analysis, and Prediction (MAP) program under contract NNX06AD06G. We thank two reviewers for their valuable comments on this paper. NR 76 TC 24 Z9 24 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUL 15 PY 2010 VL 150 IS 7-8 BP 881 EP 894 DI 10.1016/j.agrformet.2010.02.009 PG 14 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 627XM UT WOS:000280077500003 ER PT J AU Yang, WZ Ni-Meister, W Kiang, NY Moorcroft, PR Strahler, AH Oliphant, A AF Yang, Wenze Ni-Meister, Wenge Kiang, Nancy Y. Moorcroft, Paul R. Strahler, Alan H. Oliphant, Andrew TI A clumped-foliage canopy radiative transfer model for a Global Dynamic Terrestrial Ecosystem Model II: Comparison to measurements SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Canopy radiative transfer; Foliage clumping; Comparison to measurements ID LEAF-AREA INDEX; US CARBON SINK; VEGETATION STRUCTURE; MIDLATITUDE FOREST; DECIDUOUS FOREST; SATELLITE DATA; MODIS; CO2; PARAMETERS; FLUXES AB In a previous paper, we developed an analytical clumped two-stream model (ACTS) of canopy radiative transfer from an analytical geometric-optical and radiative transfer (GORT) scheme (Ni-Meister et al., 2010). The ACTS model accounts for clumping of foliage and the influence of trunks in vegetation canopies for modeling of photosynthesis, radiative fluxes and surface albedo in dynamic global vegetation models (DGVMs), and particularly for the Ent Dynamic Global Terrestrial Ecosystem Model (DGTEM). This study evaluates the gap probability and transmittance estimates from the ACTS model by comparing the modeled results with ground-based data, as well as with the original full GORT model and a layered Beer's law scheme. The ground data used in this study include vertical profile measurements of incident photosynthetically active radiation (PAR) in (1) mixed deciduous forests in Morgan-Monroe State Forest, IN, USA, (2) coniferous forests in central Canada, (3) mixed deciduous forests in Harvard Forest, MA, and (4) ground lidar measurements of the canopy gap fraction in woodland in Australia. The model comparisons with these measurements demonstrate that the ACTS model achieves better or similar performance compared to the full GORT and the layered Beer's law schemes with regard to agreements with field measurements and computational cost. The ACTS model has excellent accuracy and flexibility to model the canopy gap probability and transmittance for various forest scenarios. Also, it has advantages relative to the currently widely used two-stream scheme through better radiation estimation for photosynthesis by accounting for the impact of both vertical and horizontal structure heterogeneity of complex vegetation on radiative transfer. Currently the ACTS is being implemented in Ent and will be further tested for how it improves surface energy balance and carbon flux estimates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yang, Wenze; Ni-Meister, Wenge] CUNY Hunter Coll, Dept Geog, New York, NY 10065 USA. [Kiang, Nancy Y.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Moorcroft, Paul R.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Strahler, Alan H.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Oliphant, Andrew] San Francisco State Univ, Dept Geog & Human Environm Studies, San Francisco, CA 94132 USA. RP Yang, WZ (reprint author), CUNY Hunter Coll, Dept Geog, 695 Pk Ave, New York, NY 10065 USA. EM Wenze.Yang@hunter.cuny.edu RI Yang, Wenze/B-8356-2012 OI Yang, Wenze/0000-0001-8514-2742 FU NASA [NNX06AD06G] FX The work is supported by NASA under contract NNX06AD06G. We also thank Geoffrey Parker from Smithsonian Environmental Research Center, MD for lending us his giant helium balloon and Shihyan Lee for helping field data collected in Harvard Forest, MA in 2006. The authors are indebted to David L. B. Jupp and Darius. Culvenor from CSIRO for providing the hemispherical ground lidar data collected in Australia and to Steven Wofsky and J. William Munger from Harvard University for providing tree geometry measurements in Harvard Forest. We thank two reviewers for their valuable comments on this paper. NR 41 TC 17 Z9 17 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUL 15 PY 2010 VL 150 IS 7-8 BP 895 EP 907 DI 10.1016/j.agrformet.2010.02.008 PG 13 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 627XM UT WOS:000280077500004 ER PT J AU Caro, G Papanastassiou, DA Wasserburg, GJ AF Caro, G. Papanastassiou, D. A. Wasserburg, G. J. TI K-40-Ca-40 isotopic constraints on the oceanic calcium cycle SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE calcium cycle; K-40-Ca-40; ocean chemistry ID K-CA; PRECAMBRIAN CARBONATES; RB-SR; CONTINENTAL-CRUST; CO2 CONSUMPTION; STRONTIUM; RIVERS; RIDGE; GEOCHEMISTRY; MANTLE AB The contributions of crustal silicates to the oceanic calcium cycle are investigated using high-precision K-40-Ca-40 measurements in Archean and Proterozoic carbonates, river waters, and a series of terrestrial and extraterrestrial mafic/ultramafic samples. Using a multidynamic data collection scheme with strict controls on instrumental mass fractionation, we show that a reproducibility of 0.35 epsilon-units (2 sigma) is obtained for the Ca-40/Ca-44 ratio using the ThermoFinnigan Triton. This represents an improvement by a factor of 3 compared with previous generations of data. Well-defined excesses of Ca-40 from K-40 decay were found in river waters draining the Himalayas, but not in the Mississippi and Columbia Rivers. All marine carbonate samples ranging in age from Archean to recent show no discemable effects of K-40 decay to within the limit of +/-035 epsilon-units (2 sigma) in Ca-40/Ca-44. Our results, therefore, indicate that the Ca isotopic composition of seawater has remained constant and indistinguishable from that of the mantle for the past 3.5 Ga, despite the influx of radiogenic calcium delivered by weathering of the high K/Ca components of the continental crust Thus, over most of geologic time, the contributions of the high K/Ca sources from the continents are far below the contributions of hydrothermal sources. Mass balance constraints indicate that unless the present-day contribution of continental silicates is much less than 8% of the river Ca flux, the total hydrothermal flux of calcium must exceed the input from high-temperature vents at ridge axes by at least one order of magnitude. The present-day oceanic mass balance requires a high input of calcium [(4-15) x 10(12) mol Ca/yr] at low-temperature hydrothermal sites. (C) 2010 Elsevier B.V. All rights reserved. C1 [Caro, G.; Papanastassiou, D. A.; Wasserburg, G. J.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Papanastassiou, D. A.] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91109 USA. RP Caro, G (reprint author), Univ Lorraine, Ctr Rech Petrog & Geochim, CNRS, UPR2300, 15 Rue Notre Dame Pauvres, F-54501 Vandoeuvre Les Nancy, France. EM caro@crpg.cnrs-nancy.fr FU NASA; Epsilon Foundation; NASA at GSFC; JPL RTD FX We thank J. W. Schopf, P. F. Hoffman, P.-H. Blard, and the Oregon State University Marine Geology Repository and Martin Fisk, who generously provided the carbonate and basalt samples for this study. We thank Henry Ngo for his assistance and advice during development of the analytical techniques. We also thank N. Vigier, and L Reisberg for fruitful discussions and informal reviews of the manuscript. D. A. Papanastassiou was supported by JPL RTD; the laboratory is supported by a NASA Cosmochemistry RTOP. G. J. Wasserburg acknowledges support by a NASA Cosmochemistry RTOP to J. Nuth, at GSFC, and by the Epsilon Foundation. NR 44 TC 23 Z9 23 U1 0 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2010 VL 296 IS 1-2 BP 124 EP 132 DI 10.1016/j.epsl.2010.05.001 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 625OW UT WOS:000279905800012 ER PT J AU Scarnato, B Staehelin, J Stubi, R Schill, H AF Scarnato, B. Staehelin, J. Stuebi, R. Schill, H. TI Long-term total ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments (1988-2007) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SPECTROPHOTOMETERS; SERIES; TRENDS AB Dobson and Brewer spectrophotometers are the standard instruments for ground-based total ozone monitoring under the World Meteorological Organization's Global Atmosphere Watch program. Both types of instruments have been simultaneously used at Arosa station (Switzerland) since 1988; presently two Dobson and three Brewer instruments (one of which is type Mark III) are in operation. The large data set of quasi-simultaneous measurements (defined here as observations performed less than 10 min apart) allows for the determination of both inter- and intrainstrumental precision. The results for one standard deviation of total ozone are +/-0.5% for Dobson standard wavelength pair observations and +/-0.15% for Brewer total ozone measurements. To transform Dobson data into Brewer total ozone observations, empirical transfer functions are used to describe the observed difference in seasonal variations of total ozone data derived from the two types of instruments (amounting to a seasonal amplitude of approximately 2% with maximum deviation in winter). The statistical model (applied to quasi simultaneous measurements) includes the ozone effective temperature and the air mass multiplied by total ozone (ozone slant path) as explanatory variables; it removes the seasonal cycle in the difference and it allows the significance of the proxies introduced and systematic errors in the data to be determined. However, even when these transfer functions are applied, a 3% drift over about a 10 year period (1988-1997) between Arosa's Dobson and Brewer derived total ozone data series remains unexplained, adding to the model an aerosol proxy for which only part of the drift can be removed (related to the period 1992-1996). C1 [Scarnato, B.; Staehelin, J.] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Stuebi, R.] MeteoSwiss, Fed Off Meteorol & Climatol, Aerol Stn, CH-1530 Payerne, Switzerland. [Schill, H.] MeteoSwiss, Fed Off Meteorol & Climatol, Lichtklimat Observ, CH-7050 Arosa, Switzerland. RP Scarnato, B (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM bscarnato@gmail.com; johannes.staehelin@env.ethz.ch; rene.stuebi@meteoswiss.ch; herbert.schill@meteoswiss.ch FU MeteoSwiss FX The work of B. S. was supported by a research grant from MeteoSwiss as part of the MeteoSwiss Global Atmosphere Watch program. We thank Joerg Maeder for valuable advice in applying statistical modeling and data handling, the Dobson operators at Arosa for having carefully operated measurements through all these years, and Greg Bodeker for providing the NIWA satellite data. Moreover, we wish to thank Tom Peter for very valuable discussions and two anonymous reviewers for their help. NR 37 TC 14 Z9 14 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 15 PY 2010 VL 115 AR D13306 DI 10.1029/2009JD011908 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NS UT WOS:000280047100001 ER PT J AU Toon, OB Starr, DO Jensen, EJ Newman, PA Platnick, S Schoeberl, MR Wennberg, PO Wofsy, SC Kurylo, MJ Maring, H Jucks, KW Craig, MS Vasques, MF Pfister, L Rosenlof, KH Selkirk, HB Colarco, PR Kawa, SR Mace, GG Minnis, P Pickering, KE AF Toon, Owen B. Starr, David O. Jensen, Eric J. Newman, Paul A. Platnick, Steven Schoeberl, Mark R. Wennberg, Paul O. Wofsy, Steven C. Kurylo, Michael J. Maring, Hal Jucks, Kenneth W. Craig, Michael S. Vasques, Marilyn F. Pfister, Lenny Rosenlof, Karen H. Selkirk, Henry B. Colarco, Peter R. Kawa, Stephan R. Mace, Gerald G. Minnis, Patrick Pickering, Kenneth E. TI Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC WATER-VAPOR; UPPER TROPOSPHERE; CIRRUS CLOUDS; TROPOPAUSE-LAYER; ICE SUPERSATURATIONS; RADIATIVE IMPACTS; OZONE CLIMATOLOGY; HYDROGEN RADICALS; SOUTH-PACIFIC; TRANSPORT AB The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner. C1 [Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Toon, Owen B.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Starr, David O.; Newman, Paul A.; Platnick, Steven; Schoeberl, Mark R.; Colarco, Peter R.; Kawa, Stephan R.; Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Jensen, Eric J.; Craig, Michael S.; Vasques, Marilyn F.; Pfister, Lenny] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Schoeberl, Mark R.] Sci & Technol Corp, Polar Off, Columbia, MD 21046 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Wennberg, Paul O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wofsy, Steven C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Kurylo, Michael J.; Selkirk, Henry B.] NASA, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA. [Maring, Hal; Jucks, Kenneth W.] NASA, Div Earth Sci, Washington, DC 20546 USA. [Rosenlof, Karen H.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Mace, Gerald G.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. RP Toon, OB (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Campus Box 392, Boulder, CO 80309 USA. EM toon@lasp.colorado.edu RI Wennberg, Paul/A-5460-2012; Newman, Paul/D-6208-2012; Pickering, Kenneth/E-6274-2012; Kawa, Stephan/E-9040-2012; Selkirk, Henry/H-2021-2012; Kurylo, Michael/H-2201-2012; Platnick, Steven/J-9982-2014; Minnis, Patrick/G-1902-2010; Rosenlof, Karen/B-5652-2008; Colarco, Peter/D-8637-2012; Manager, CSD Publications/B-2789-2015 OI Newman, Paul/0000-0003-1139-2508; Platnick, Steven/0000-0003-3964-3567; Minnis, Patrick/0000-0002-4733-6148; Rosenlof, Karen/0000-0002-0903-8270; Colarco, Peter/0000-0003-3525-1662; FU NASA's Earth Science Division; NASA's Dryden Flight Research Center Airborne Science Directorate; NASA; University of North Dakota's National Science Education Research Center; NASA Headquarters management FX The TC4 mission was supported by the Atmospheric Composition research area of NASA's Earth Science Division. We thank the aircraft managers, engineers, and ground crews of all the aircraft that participated in TC4. We particularly thank the pilots of the ER-2, David Wright, Denis Steele, and DeLewis Porter, and Mobile Pilot Jan Nystrom, the WB-57F pilots Rob Rivers, Scott Reagan, and William Rieke, and Backseaters, John Bain, Dominic Del Russo, and Joseph Gerky, and the DC-8 pilots William Brocket, Mike Fuller, Manny Puerta, and the late Edwin Lewis. The ER-2 aircraft and pilots were very well supported by the personnel of NASA's Dryden Flight Research Center Airborne Science Directorate, the WB-57F by NASA's Johnson Space Center High Altitude Research Program, and the DC-8 by the University of North Dakota's National Science Education Research Center. We thank the ER-2 Aircraft Program Director, Robert Curry, the DC-8 Program Director, Rick Shetter, and the WB-57F Program Manager, Ken Cockrell. We also thank the ER-2 aircraft coordinators Jacques Vachon and Mike Kapitzke, the DC-8 Aircraft Manager Steve Davis and the DC-8 Mission Manager Dave Easmunt, and the WB-57F Program Engineers Shelly Baccus and Frank Caldeiro, the Mission Manager William (Bud) Meins, and the Integration Manager Marty Ross, as well as all of the aircraft crews. The NASA Ames Earth Science Project Office made tremendous contributions to the operations and overall success of TC4. Our special thanks go to Kent Schiffer, Mike Gaunce, Sue Tolley, Quincy Allison, Dan Chirica, and the late Steve Gaines. We also appreciate the support of the NPOL radar, NATIVE trailer, and Sat Com groups in Panama and the SMART mobile radar in Costa Rica. We thank the RTMM and REVEAL teams from NASA Marshall Earth Science Office and NASA Dryden Test Systems Directorate, respectively, for enabling the collection and display of airborne and ground-based data sets, which supported mission planning and enabled critical real-time decision making. The shipment of the tons of science hardware to San Jose, Costa Rica, could not have been accomplished without the tremendous efforts of the U. S. Air Force Material Command. We would also like to thank the pilots and staff of the NASA C-9, NASA G-3, and Beale Air force Base KC-135 for all their support. We would like to record our special appreciation of and thanks to Kathy Thompson for her dedication and effort throughout the planning, operation, and postmission analysis of TC4. Kathy was ably assisted by Rose Kendall, to whom we also send our thanks. Tommy Thompson's myriad skills were critical to the successful operation of the mission in the field. We thank him for being there to make sure, once again, that it all worked. The airport personnel at Juan Santamaria airport were very helpful to the mission. The various Costa Rican government, academic, and commercial organizations we worked with, including CeNAT, DGAC, Alterra, ICE, IMN, ADS, and the Servicio de Vigilancia Aerea, were invaluable. The same can be said for the Panamanian government and academic organizations. The Costa Rican National Center for Advanced Technology (CENAT), and especially Oliver Gomez, were instrumental in logistical support, both before and during the mission. The meteorological forecasting team in Costa Rica was critical to the success of TC4. This was a joint effort of the Instituto Meteorologico Nacional (IMN), the Centro de Investigaciones Geofisicas (CIGEFI) at the University of Costa Rica, and the Instituto Costarricense de Electricidad (ICE).; IMN team memberswere Evelyn Quiros Badilla, Gustavo Murillo Zumbado, and Eladio Solano Leon; the CIGEFI group, under the direction of Jorge Amador, included Erick Rivera Fernandez, Marcela Ulate Medrano, Ana Mar a Duran Quesada, and Blanca Calderon Solera, and Berny Fallas Lopez represented ICE. NASA Headquarters management and program managers supported this mission in many meaningful ways. The U. S. Embassies in Costa Rica and Panama were especially helpful in coordinating this effort. We appreciate the hospitality of Costa Rican Ambassador Mark Langdale. We appreciate the help of the people of Panama who facilitated the use of the NATIVE trailer and the NPOL radar, and the people of the Galapagos who helped with balloon launching. We especially thank the President and people of Costa Rica, who reconstructed the hangar used by the WB-57F, loaned us the President's hangar for the ER-2, and were very friendly, helpful, and hospitable. NR 99 TC 73 Z9 73 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 15 PY 2010 VL 115 AR D00J04 DI 10.1029/2009JD013073 PG 33 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NS UT WOS:000280047100006 ER PT J AU Wang, SH Pongetti, TJ Sander, SP Spinei, E Mount, GH Cede, A Herman, J AF Wang, Shuhui Pongetti, Thomas J. Sander, Stanley P. Spinei, Elena Mount, George H. Cede, Alexander Herman, Jay TI Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LEAST-SQUARES FITS; CROSS-SECTIONS; OZONE; NITROGEN; OH; TEMPERATURE; ATMOSPHERE; RETRIEVAL; ERRORS AB The NO2 total column abundance, C-NO2, was measured with a direct Sun viewing technique using three different instruments at NASA Jet Propulsion Laboratory's (JPL) Table Mountain Facility in California during an instrument intercomparison campaign in July 2007. The instruments are a high-resolution (similar to 0.001 nm) Fourier transform ultraviolet spectrometer (FTUVS) from JPL and two moderate-resolution grating spectrometers, multifunction differential optical absorption spectroscopy (MF-DOAS) (similar to 0.8 nm) from Washington State University and Pandora (similar to 0.4 nm) from NASA Goddard Space Flight Center. FTUVS uses high spectral resolution to determine the absolute NO2 column abundance independently from the exoatmospheric solar irradiance using rovibrational NO2 absorption lines. The NO2 total column is retrieved after removing the solar background using Doppler-shifted spectra from the east and west limbs of the Sun. The FTUVS measurements were used to validate the independently calibrated measurements of multifunction differential optical absorption spectroscopy (MF-DOAS) and Pandora. The latter two instruments start with measured high-Sun spectra as solar references to retrieve relative NO2 columns and then apply modified Langley or "bootstrap" methods to determine the amounts of NO2 in the references to obtain the absolute NO2 columns. The calibration offset derived from the FTUVS measurements is consistent with the values derived from Langley and bootstrap calibration plots of the NO2 slant column measured by the grating spectrometers. The calibrated total vertical column abundances of NO2, C-NO2, from all three instruments are compared showing that MF-DOAS and Pandora data agree well with each other, and both data sets agree with FTUVS data to within (1.5 +/- 4.1)% and (6.0 +/- 6.0)%, respectively. C1 [Wang, Shuhui; Pongetti, Thomas J.; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Spinei, Elena; Mount, George H.] Washington State Univ, Dept Civil & Environm Engn, Lab Atmospher Res, Pullman, WA 99164 USA. [Cede, Alexander] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Herman, Jay] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wang, SH (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-901,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shuhui.wang@jpl.nasa.gov FU NASA Upper Atmosphere Research; Aura Validation programs FX We acknowledge the support of the NASA Upper Atmosphere Research and Aura Validation programs to each of these groups: JPL, WSU, and GSFC. We also wish to thank the staff at JPL's Table Mountain Facility, especially Pam Glatfelter and Bruce Williamson, for their exceptional support during the intercomparison campaign. The WSU group thanks Robert Gibson for help in the field. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology; Washington State University; and the Goddard Space Flight Center under contract to the National Aeronautics and Space Administration. NR 33 TC 7 Z9 7 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 15 PY 2010 VL 115 AR D13305 DI 10.1029/2009JD013503 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NS UT WOS:000280047100009 ER PT J AU Bloemhof, EE AF Bloemhof, E. E. TI Absolute surface metrology by differencing spatially shifted maps from a phase-shifting interferometer SO OPTICS LETTERS LA English DT Article ID RECONSTRUCTION; FLATS AB Surface measurements of precision optics are commonly made with commercially available phase-shifting Fizeau interferometers that provide data relative to flat or spherical reference surfaces whose unknown errors are comparable to those of the surface being tested. A number of ingenious techniques provide surface measurements that are "absolute," rather than relative to any reference surface. Generally, these techniques require numerous measurements and the introduction of additional surfaces, but still yield absolute information only along certain lines over the surface of interest. A very simple alternative is presented here, in which no additional optics are required beyond the surface under test and the transmission flat (or sphere) defining the interferometric reference surface. The optic under test is measured in three positions, two of which have small lateral shifts along orthogonal directions, nominally comparable to the transverse spatial resolution of the interferometer. The phase structure in the reference surface then cancels out when these measurements are subtracted in pairs, providing a grid of absolute surface height differences between neighboring resolution elements of the surface under test. The full absolute surface, apart from overall phase and tip/tilt, is then recovered by standard wavefront reconstruction techniques. (C) 2010 Optical Society of America C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bloemhof, EE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Eric.E.Bloemhof@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 9 TC 26 Z9 30 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2010 VL 35 IS 14 BP 2346 EP 2348 PG 3 WC Optics SC Optics GA 626VC UT WOS:000279994400011 PM 20634825 ER PT J AU Shi, W Petersen, EB Yao, ZD Nguyen, DT Zong, J Stephen, MA Chavez-Pirson, A Peyghambarian, N AF Shi, Wei Petersen, Eliot B. Yao, Zhidong Nguyen, Dan T. Zong, Jie Stephen, Mark A. Chavez-Pirson, Arturo Peyghambarian, N. TI Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm SO OPTICS LETTERS LA English DT Article ID HIGH SBS-THRESHOLD; LARGE MODE-AREA; NARROW-BAND AB We demonstrate a high-stimulated-Brillouin-scattering-threshold monolithic pulsed fiber laser in a master oscillator power amplifier configuration that can operate over the C band. In the power amplifier stage, we used a newly developed single-mode, polarization maintaining, and highly Er/Yb codoped phosphate fiber with a core diameter of 25 mu m. A single-frequency actively Q-switched fiber laser was used to generate pulses in the hundreds of nanoseconds at 1530 nm. We have achieved peak power of 1.2 kW for 105 ns pulses at a repetition rate of 8 kHz, corresponding to a pulse energy of 0.126 mJ, with transform-limited linewidth and diffraction-limited beam quality. (C) 2010 Optical Society of America C1 [Shi, Wei; Petersen, Eliot B.; Yao, Zhidong; Nguyen, Dan T.; Zong, Jie; Chavez-Pirson, Arturo; Peyghambarian, N.] NP Photon Inc, Tucson, AZ 85747 USA. [Petersen, Eliot B.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Stephen, Mark A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Peyghambarian, N.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Shi, W (reprint author), NP Photon Inc, 9030 S Rita Rd, Tucson, AZ 85747 USA. EM wshi@npphotonics.com FU National Aeronautics and Space Administration (NASA) Small Business Innovation Research [NNX09CD38P, NNX10CA53C] FX This work has been funded by the National Aeronautics and Space Administration (NASA) Small Business Innovation Research under contracts NNX09CD38P and NNX10CA53C. NR 12 TC 42 Z9 44 U1 3 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2010 VL 35 IS 14 BP 2418 EP 2420 PG 3 WC Optics SC Optics GA 626VC UT WOS:000279994400035 PM 20634849 ER PT J AU McWilliams, ST Kelly, BJ Baker, JG AF McWilliams, Sean T. Kelly, Bernard J. Baker, John G. TI Observing mergers of nonspinning black-hole binaries SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-WAVES AB Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass-ratio on merger signal-to-noise ratios for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1: 1 (equal-mass) and 4: 1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass-ratio for mergers of moderate-mass-ratio systems. C1 [McWilliams, Sean T.; Kelly, Bernard J.; Baker, John G.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kelly, Bernard J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP McWilliams, ST (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Sean.T.McWilliams@nasa.gov RI Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454 FU NASA Goddard Space Flight Center; NASA [06-BEFS06-19, 08-ATFP08-0126, 09-ATP09-0136] FX We thank Jim van Meter and Joan Centrella for useful discussions. S. T. M. was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities. We acknowledge support from NASA Grant Nos. 06-BEFS06-19, 08-ATFP08-0126, and 09-ATP09-0136. NR 34 TC 24 Z9 24 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 15 PY 2010 VL 82 IS 2 AR 024014 DI 10.1103/PhysRevD.82.024014 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 626BU UT WOS:000279941700006 ER PT J AU Soenen, SA Peddle, DR Hall, RJ Coburn, CA Hall, FG AF Soenen, Scott A. Peddle, Derek R. Hall, Ronald J. Coburn, Craig A. Hall, Forrest G. TI Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Biomass; Canopy reflectance model; Inversion; Forest structure; Carbon; Mountains; Spectral mixture analysis; NDVI ID REMOTE-SENSING DATA; SPECTRAL MIXTURE ANALYSIS; MULTIPLE-FORWARD-MODE; THEMATIC MAPPER DATA; BOREAL FOREST; LANDSAT-TM; BIOPHYSICAL CHARACTERISTICS; NORTHWEST-TERRITORIES; VEGETATION INDEXES; STAND STRUCTURE AB The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass >1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions. LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies. (C) 2009 Published by Elsevier Inc. C1 [Soenen, Scott A.; Peddle, Derek R.; Hall, Ronald J.; Coburn, Craig A.] Univ Lethbridge, Dept Geog, Lethbridge, AB T1K 3M4, Canada. [Hall, Ronald J.] Nat Resources Canada, Canadian Forest Serv, Edmonton, AB T6H 3S5, Canada. [Hall, Forrest G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hall, Forrest G.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Peddle, DR (reprint author), Univ Lethbridge, Dept Geog, Water & Environm Sci Bldg,4401 Univ Dr W, Lethbridge, AB T1K 3M4, Canada. EM derek.peddle@uleth.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); Alberta Ingenuity Centre for Water Research (AICWR); Prairie Adaptation Research Collaborative (PARC); Natural Resources Canada; NASA Goddard Space Flight Centre/University of Maryland; Alberta Research Excellence Program; Center for Remote Sensing, Boston University; University of Lethbridge FX This research was supported in part by grants to Dr. Peddle and collaboration from the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Ingenuity Centre for Water Research (AICWR), Prairie Adaptation Research Collaborative (PARC), Natural Resources Canada, NASA Goddard Space Flight Centre/University of Maryland, Alberta Research Excellence Program, Center for Remote Sensing, Boston University (GOMS model), and the University of Lethbridge. Computing resources were provided through the Western Canada Research Grid (West-Grid NETERA c3.ca). SPOT imagery was acquired from Iunctus Geomatics Corporation and the Alberta Terrestrial Imaging Centre (ATIC), both of Lethbridge Alberta. We are grateful to Sam Lieff, Adam Minke, and Kristin Yaehne for field assistance and the staff at the Kananaskis Field Stations for logistical support in the field. NR 79 TC 40 Z9 51 U1 2 U2 44 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2010 VL 114 IS 7 BP 1325 EP 1337 DI 10.1016/j.rse.2009.12.012 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 598ZI UT WOS:000277878900001 ER PT J AU Bindschadler, RA Scambos, TA Choi, H Haran, TM AF Bindschadler, Robert A. Scambos, Ted A. Choi, Hyeungu Haran, Terry M. TI Ice sheet change detection by satellite image differencing SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Image differencing; Ice sheet altimetry; Landsat; ALI; MODIS; Sub-glacial lakes ID GLACIER VELOCITY; ANTARCTICA AB Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM+ sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes. (C) 2010 Elsevier Inc. All rights reserved. C1 [Bindschadler, Robert A.] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [Scambos, Ted A.; Haran, Terry M.] Univ Colorado, Natl Snow & Ice Data Ctr, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Choi, Hyeungu] SAIC, Beltsville, MD 20705 USA. RP Bindschadler, RA (reprint author), NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Lab, Code 614, Greenbelt, MD 20771 USA. EM Robert.A.Bindschadler@nasa.gov FU NASA [NNG06GA60G] FX This work was supported by NASA grant NNG06GA60G. In particular, we thank both Patricia Vornberger and Jennifer Bohlander for performing some of the image processing and helpful comments received from two anonymous reviewers. NR 29 TC 13 Z9 14 U1 0 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2010 VL 114 IS 7 BP 1353 EP 1362 DI 10.1016/j.rse.2010.01.014 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 598ZI UT WOS:000277878900003 ER PT J AU Hulley, GC Hook, SJ Baldridge, AM AF Hulley, Glynn C. Hook, Simon J. Baldridge, Alice M. TI Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Thermal infrared; Emissivity; Soil moisture; AIRS; MODIS; ASTER ID NAMIB DESERT; AMSR-E; VALIDATION; ALGORITHM; PRODUCTS; CLIMATE; LAW AB This study investigates the effects of soil moisture (SM) on thermal infrared (TIR) land surface emissivity (LSE) using field- and satellite-measurements. Laboratory measurements were used to simulate the effects of rainfall and subsequent surface evaporation on the LSE for two different sand types. The results showed that the LSE returned to the dry equilibrium state within an hour after initial wetting, and during the drying process the SM changes were uncorrelated with changes in LSE. Satellite retrievals of LSE from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) were examined for an anomalous rainfall event over the Namib Desert in Namibia during April, 2006. The results showed that increases in Advanced Microwave Scanning Radiometer (AMSR-E) derived soil moisture and Tropical Rainfall Measuring Mission (TRMM) rainfall estimates corresponded closely with LSE increases of between 0.08-0.3 at 8.6 mu m and up to 0.03 at 11 mu m for MODIS v4 and AIRS products. This dependence was lost in the more recent MODIS v5 product which artificially removed the correlation due to a stronger coupling with the split-window algorithm, and is lost in any algorithms that force the LSE to a predetermined constant as in split-window type algorithms like those planned for use with the NPOESS Visible Infrared Imager Radiometer Suite (VIIRS). Good agreement was found between MODIS land surface temperatures (LSTs) derived from the Temperature Emissivity Separation (TES) and day/night v4 algorithm (MOD11B1 v4), while the split-window dependent products (MOD11B1 v5 and MOD11A1) had cooler mean temperatures on the order of 1-2 K over the Namib Desert for the month of April 2006. (C) 2010 Published by Elsevier Inc. C1 [Hulley, Glynn C.; Hook, Simon J.; Baldridge, Alice M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hulley, GC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM glynn.hulley@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under the contract with the National Aeronautics and Space Administration. NR 37 TC 46 Z9 52 U1 2 U2 34 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUL 15 PY 2010 VL 114 IS 7 BP 1480 EP 1493 DI 10.1016/j.rse.2010.02.002 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 598ZI UT WOS:000277878900013 ER PT J AU Minschwaner, K Manney, GL Livesey, NJ Pumphrey, HC Pickett, HM Froidevaux, L Lambert, A Schwartz, MJ Bernath, PF Walker, KA Boone, CD AF Minschwaner, K. Manney, G. L. Livesey, N. J. Pumphrey, H. C. Pickett, H. M. Froidevaux, L. Lambert, A. Schwartz, M. J. Bernath, P. F. Walker, K. A. Boone, C. D. TI The photochemistry of carbon monoxide in the stratosphere and mesosphere evaluated from observations by the Microwave Limb Sounder on the Aura satellite SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; CROSS-SECTION MEASUREMENTS; LOWER THERMOSPHERE; MIDDLE ATMOSPHERE; TEMPERATURE-DEPENDENCE; TERRESTRIAL MESOSPHERE; CO; VARIABILITY; ABSORPTION; CH4 AB The photochemical production and loss rates for carbon monoxide (CO) in the stratosphere and mesosphere are evaluated using measurements from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS). The distributions of reactive trace gases involved in the photochemistry of CO, including OH, CH4, O(D-1), Cl, as well as temperatures for calculating reaction rates, are either directly observed or constrained from observations. We map the CO net production and loss as a function of pressure (10-0.02 hPa, about 30-75 km altitude), latitude (approximately +/- 70 degrees), and season. The results indicate that photochemical loss dominates over production for nearly all conditions considered here. A minimum photochemical loss lifetime of about 10 days occurs near the 2 hPa pressure level, and it follows the region of maximum sunlight exposure. At high latitudes during winter, the CO lifetime is generally longer than 30 days. Time scales become much shorter in spring, however, when CO lifetimes can be 15-20 days poleward of 60 degrees latitude in the upper stratosphere. On the basis of these results, CO is a suitable tracer during autumn to spring above the 0.1 hPa pressure level but not in the upper stratosphere near 1 hPa. C1 [Minschwaner, K.; Manney, G. L.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87891 USA. [Bernath, P. F.; Walker, K. A.; Boone, C. D.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Manney, G. L.; Livesey, N. J.; Pickett, H. M.; Froidevaux, L.; Lambert, A.; Schwartz, M. J.] CALTECH, Jet Prop Lab, Microwave Atmospher Sci Team, Pasadena, CA 91109 USA. [Pumphrey, H. C.] Univ Edinburgh, Inst Atmospher & Environm Sci, Sch Geosci, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bernath, P. F.] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Walker, K. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. RP Minschwaner, K (reprint author), New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87891 USA. EM krm@kestrel.nmt.edu RI Bernath, Peter/B-6567-2012; Schwartz, Michael/F-5172-2016 OI Bernath, Peter/0000-0002-1255-396X; Schwartz, Michael/0000-0001-6169-5094 FU JPL [1278287]; NASA [NNX08AN78G]; Canadian Space Agency FX Work at the Jet Propulsion Laboratory, California Institute of Technology was done under contract with the National Aeronautics and Space Administration. This research was also supported by a Student Research Project subcontract 1278287 from JPL to NMT and by NASA grant NNX08AN78G to NMT. The ACE mission is funded primarily by the Canadian Space Agency. We thank Ken Jucks for providing FIRS-2 OH data. NR 45 TC 18 Z9 19 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 14 PY 2010 VL 115 AR D13303 DI 10.1029/2009JD012654 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NN UT WOS:000280046600001 ER PT J AU Young, JA Malone, CP Johnson, PV Ajello, JM Liu, X Kanik, I AF Young, J. A. Malone, C. P. Johnson, P. V. Ajello, J. M. Liu, X. Kanik, I. TI Lyman-Birge-Hopfield emissions from electron-impact excited N-2 SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID COLLISION-INDUCED TRANSITIONS; EXTREME-ULTRAVIOLET EMISSION; INTEGRAL CROSS-SECTIONS; MOLECULAR NITROGEN; VACUUM-ULTRAVIOLET; RADIATIVE LIFETIME; FAR-ULTRAVIOLET; ATOMIC OXYGEN; DISSOCIATIVE EXCITATION; OSCILLATOR-STRENGTH AB Relative electron-impact-induced emission cross sections for the a(1)Pi(g) (upsilon' = 3)-X-1 Sigma(+)(g) (upsilon '' = 0) and a(1)Pi(g) (upsilon' = 2)-X-1 Sigma(+)(g) (upsilon '' = 0) transitions are presented. Critical comparison is made with existing cross sections showing significant discrepancy with the widely accepted excitation function of Ajello and Shemansky (1985 J. Geophys. Res. 90 9845-61) at energies below similar to 80 eV. A series of extensive measurements are presented that were performed to rule out any possible systematic or random errors in the present experimental apparatus and methodology. These efforts lead to the conclusion that the current measurements are robustly reproducible and, thus, should supplant the LBH cross-section shape of Ajello and Shemansky (1985 J. Geophys. Res. 90 9845-61). C1 [Young, J. A.; Malone, C. P.; Johnson, P. V.; Ajello, J. M.; Liu, X.; Kanik, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, C. P.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. RP Young, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Charles.Malone@jpl.nasa.gov; Paul.V.Johnson@jpl.nasa.gov; Isik.Kanik@jpl.nasa.gov RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); National Science Foundation; NASA/JPL; Oak Ridge Associated Universities FX This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge financial support for this work by NASA's Planetary Atmospheres Program. We thank D Dziczek (Nicolaus Copernicus University) for his assistance with the data collection system and power supplies, and thank C Fitzgerald (UC Boulder), a NASA Undergraduate Student Research Program (USRP) intern, for assistance with some diagnostics. JMA also wishes to acknowledge support from the National Science Foundation's AGS-GEO Aeronomy Program and NASA's Cassini Data Analysis Program, Geospace Science Program, and Astronomy and Physics Research and Analysis Program. XL acknowledges the support of the NASA/JPL Senior Fellowship, which is administered by Oak Ridge Associated Universities through a contract with NASA. NR 112 TC 16 Z9 16 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2010 VL 43 IS 13 AR 135201 DI 10.1088/0953-4075/43/13/135201 PG 16 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 613TI UT WOS:000279003500012 ER PT J AU Santolik, O Pickett, JS Gurnett, DA Menietti, JD Tsurutani, BT Verkhoglyadova, O AF Santolik, O. Pickett, J. S. Gurnett, D. A. Menietti, J. D. Tsurutani, B. T. Verkhoglyadova, O. TI Survey of Poynting flux of whistler mode chorus in the outer zone SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DRIVEN ELECTRON ACCELERATION; RELATIVISTIC ENERGIES; PLASMASPHERIC HISS; POLAR SPACECRAFT; RADIATION BELT; EMISSIONS; WAVES; CLUSTER; ORIGIN; DISTRIBUTIONS AB We present a survey of whistler mode chorus emissions based on high-telemetry rate data of the Plasma Wave Instrument on board the Polar spacecraft. Using simultaneous measurements of full vectors of the electric field and the magnetic field we calculate the Poynting vectors of chorus, and we parameterize the observations by their L* coordinate. Our new analysis of the angle between the direction of the Poynting vector and the magnetic field line confirms previous results on propagation of the main chorus band away from the equator. Our systematic results also prove the existence of the magnetospherically reflected component of chorus found previously by case studies. We observe weak outer zone waves that propagate toward the equator. These waves can be attributed to a poleward reflected component of equatorial chorus or chorus generated in the dayside pockets of a low magnetic field strength. We analyze the probability distribution of the Poynting flux of chorus, and we find that it shows a "heavy tail" feature that can be modeled by a power law or lognormal model. This result has consequences for theories of chorus generation and for methods of statistical characterization of chorus intensities in the frame of radiation belt modeling. We find that the Poynting flux of dayside chorus increases with L* toward the outer zone at L* > 6. We estimate that approximately 1% of the Poynting flux of chorus in the outer zone could be sufficient to accelerate electrons in the outer Van Allen radiation belt on the timescale of days. C1 [Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Menietti, J. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, O.] Inst Atmospher Phys, Prague 14131 4, Czech Republic. [Tsurutani, B. T.; Verkhoglyadova, O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. RP Santolik, O (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM ondrej.santolik@mff.cuni.cz; pickett@uiowa.edu; donald-gurnett@uiowa.edu; john-menietti@uiowa.edu; bruce.t.tsurutani@jpl.nasa.gov; olga.verkhoglyadova@jpl.nasa.gov RI Santolik, Ondrej/F-7766-2014 FU NASA [1346597, NNG05GM52G, KONTAKT ME842, GAAV 301120601, GACR 205/09/1253] FX We thank D. Boscher and his coworkers for maintaining the ONERA-DESP library (D. Boscher, S. Bourdarie, P. O'Brien, and T. Guild, ONERA-DESP library V4.2, Toulouse, France, 2004-2008) that was used to calculate the L* values, the model electron cyclotron frequencies fceM and fce0M in equation (2), and to determine the magnetic hemisphere of the spacecraft position for equation (14). We acknowledge usage of the T89c and T96 models, with the Kp indices from http://swdcwww.kugi.kyoto-u.ac.jp/kp/, and with the set of interplanetary medium parameters and SYM-H index from http://geo.phys.spbu.ru/similar to tsyganenko/, respectively. This work was supported at the University of Iowa by the NASA LWS program under JPL subcontract 1346597 and by NASA grant NNG05GM52G. Portions of this research were done at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. O.S. acknowledges support from KONTAKT ME842, GAAV 301120601, and GACR 205/09/1253. NR 52 TC 29 Z9 29 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 13 PY 2010 VL 115 AR A00F13 DI 10.1029/2009JA014925 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627OX UT WOS:000280050500003 ER PT J AU Vitek, P Edwards, HGM Jehlicka, J Ascaso, C De los Rios, A Valea, S Jorge-Villar, SE Davila, AF Wierzchos, J AF Vitek, P. Edwards, H. G. M. Jehlicka, J. Ascaso, C. De los Rios, A. Valea, S. Jorge-Villar, S. E. Davila, A. F. Wierzchos, J. TI Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE Atacama; extremophiles; Mars; biomarkers; cyanobacteria; pigments ID CYANOBACTERIAL SHEATH PIGMENT; HALOTOLERANT BACTERIUM; ANTARCTIC HABITATS; BETA-CAROTENE; SALT CRYSTAL; MARTIAN LIFE; MARS; SCYTONEMIN; ANALOGS; IDENTIFICATION AB The hyper-arid core of the Atacama Desert (Chile) is the driest place on Earth and is considered a close analogue to the extremely arid conditions on the surface of Mars. Microbial life is very rare in soils of this hyper-arid region, and autotrophic microorganisms are virtually absent. Instead, photosynthetic micro-organisms have successfully colonized the interior of halite crusts, which are widespread in the Atacama Desert. These endoevaporitic colonies are an example of life that has adapted to the extreme dryness by colonizing the interior of rocks that provide enhanced moisture conditions. As such, these colonies represent a novel example of potential life on Mars. Here, we present non-destructive Raman spectroscopical identification of these colonies and their organic remnants. Spectral signatures revealed the presence of UV-protective biomolecules as well as light-harvesting pigments pointing to photosynthetic activity. Compounds of biogenic origin identified within these rocks differed depending on the origins of specimens from particular areas in the desert, with differing environmental conditions. Our results also demonstrate the capability of Raman spectroscopy to identify biomarkers within rocks that have a strong astrobiological potential. C1 [Vitek, P.; Jehlicka, J.] Charles Univ Prague, Inst Geochem Mineral & Mineral Resources, Prague 12843 2, Czech Republic. [Edwards, H. G. M.] Univ Bradford, Sch Life Sci, Ctr Astrobiol & Extremophiles Res, Bradford BD7 1DP, W Yorkshire, England. [Ascaso, C.; De los Rios, A.; Valea, S.; Wierzchos, J.] CSIC, Inst Recursos Nat, CCMA, E-28006 Madrid, Spain. [Jorge-Villar, S. E.] Univ Burgos, Fac Humanidades & Educ, Area Geodinam Interna, Burgos 09001, Spain. [Davila, A. F.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Vitek, P (reprint author), Charles Univ Prague, Inst Geochem Mineral & Mineral Resources, Albertov 6, Prague 12843 2, Czech Republic. EM vitek2@natur.cuni.cz RI Wierzchos, Jacek/F-7036-2011; Ascaso, Carmen/F-5369-2011; Davila, Alfonso/A-2198-2013; Jorge-Villar, Susana/A-8927-2011; de los Rios, Asuncion/L-3694-2014; Jehlicka, Jan/H-9357-2016; Vitek, Petr/R-8022-2016 OI Wierzchos, Jacek/0000-0003-3084-3837; Ascaso, Carmen/0000-0001-9665-193X; Davila, Alfonso/0000-0002-0977-9909; Jorge-Villar, Susana/0000-0003-1676-4438; de los Rios, Asuncion/0000-0002-0266-3516; Jehlicka, Jan/0000-0002-4294-876X; FU Grant Agency of Charles University in Prague [83007]; Ministry of Education of the Czech Republic [MSM0021620855]; Ministry of Science and Innovation [CGL2006-04658, CGL2007-62875/BOS]; CSIC (Spanish Research Council) [PIE-631A] FX This work was supported by the Grant Agency of Charles University in Prague, grant no. 83007, and by grant MSM0021620855 from the Ministry of Education of the Czech Republic. This work was also supported by grants CGL2006-04658 and CGL2007-62875/BOS from the Ministry of Science and Innovation and grant PIE-631A from the CSIC (Spanish Research Council). NR 39 TC 41 Z9 42 U1 2 U2 32 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 13 PY 2010 VL 368 IS 1922 BP 3205 EP 3221 DI 10.1098/rsta.2010.0059 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 605ZV UT WOS:000278390500012 PM 20529955 ER PT J AU Oliver, S Frost, M Farrah, D Gonzalez-Solares, E Shupe, DL Henriques, B Roseboom, I Alfonso-Luis, A Babbedge, TSR Frayer, D Lencz, C Lonsdale, CJ Masci, F Padgett, D Polletta, M Rowan-Robinson, M Siana, B Smith, HE Surace, JA Vaccari, M AF Oliver, Seb Frost, M. Farrah, D. Gonzalez-Solares, E. Shupe, D. L. Henriques, B. Roseboom, I. Alfonso-Luis, A. Babbedge, T. S. R. Frayer, D. Lencz, C. Lonsdale, C. J. Masci, F. Padgett, D. Polletta, M. Rowan-Robinson, M. Siana, B. Smith, H. E. Surace, J. A. Vaccari, M. TI Specific star formation and the relation to stellar mass from 0 < z < 2 as seen in the far-infrared at 70 and 160 mu m SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys galaxies: evolution; galaxies: star formation; galaxies: stellar content; infrared: galaxies ID SPECTRAL ENERGY-DISTRIBUTIONS; HUBBLE-DEEP-FIELD; EXTRAGALACTIC LEGACY SURVEY; SPITZER-SPACE-TELESCOPE; ACTIVE GALACTIC NUCLEI; GALAXY REDSHIFT SURVEY; STARBURST GALAXIES; FORMING GALAXIES; FORMATION RATES; PHOTOMETRIC REDSHIFTS AB We use the Spitzer Wide-area InfraRed Extragalactic Legacy Survey (SWIRE) to explore the specific star formation activity of galaxies and their evolution near the peak of the cosmic far-infrared (FIR) background at 70 and 160 mu m. We use a stacking analysis to determine the mean FIR properties of well-defined subsets of galaxies at flux levels well below the FIR catalogue detection limits of SWIRE and other Spitzer surveys. We tabulate the contribution of different subsets of galaxies to the FIR background at 70 and 160 mu m. These long wavelengths provide a good constraint on the bolometric obscured emission. The large area provides good constraints at low z and in finer redshift bins than previous work. At all redshifts we find that the specific FIR luminosity decreases with increasing mass, following a trend L-FIR/M-* proportional to M beta(*) with beta = -0.38 +/- 0.14. This is a more continuous change than expected from the De Lucia & Blaizot semi-analytic model suggesting modifications to the feedback prescriptions. We see an increase in the specific FIR luminosity by about a factor of similar to 100 from 0 < z < 2 and find that the specific FIR luminosity evolves as (1 + z)alpha with alpha = 4.4 +/- 0.3 for galaxies with 10.5 < log(10) M-*/M-circle dot < 12. This is considerably steeper than the De Lucia & Blaizot semi-analytic model (alpha similar to 2.5). When separating galaxies into early and late types on the basis of the optical/IR spectral energy distributions we find that the decrease in specific FIR luminosity with stellar mass is stronger in early-type galaxies (beta similar to -0.46), while late-type galaxies exhibit a flatter trend (beta similar to -0.15). The evolution is strong for both classes but stronger for the early-type galaxies. The early types show a trend of decreasing strength of evolution as we move from lower to higher masses while the evolution of the late-type galaxies has little dependence on stellar mass. We suggest that in late-type galaxies we are seeing a consistently declining specific star formation rate alpha = 3.36 +/- 0.16 through a common phenomenon, for example, exhaustion of gas supply, i.e. not systematically dependent on the local properties of the galaxy. C1 [Oliver, Seb; Frost, M.; Farrah, D.; Henriques, B.; Roseboom, I.; Lencz, C.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Gonzalez-Solares, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Shupe, D. L.; Masci, F.; Padgett, D.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Alfonso-Luis, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Babbedge, T. S. R.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2BW, England. [Frayer, D.; Siana, B.; Surace, J. A.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Lonsdale, C. J.] Univ Virginia, Charlottesville, VA 22094 USA. [Polletta, M.] IASF INAF Milano, I-20133 Milan, Italy. [Smith, H. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. RP Oliver, S (reprint author), Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. EM s.oliver@sussex.ac.uk RI Vaccari, Mattia/R-3431-2016; OI Vaccari, Mattia/0000-0002-6748-0577; Polletta, Maria del Carmen/0000-0001-7411-5386 FU STFC [PP/C502214/1, ST/F002858/1]; Portuguese Science and Technology foundation; NASA FX Oliver, Farrah, Gonzalez-Solares, Babbedge and Roseboom have benefitted from funding from the STFC (including grants PP/C502214/1, ST/F002858/1). Frost acknowledges an STFC studentship. Henriques acknowledges his PhD fellowship from the Portuguese Science and Technology foundation.; This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 83 TC 71 Z9 71 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2010 VL 405 IS 4 BP 2279 EP 2294 DI 10.1111/j.1365-2966.2010.16643.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619SP UT WOS:000279450900012 ER PT J AU Carballido, A Cuzzi, JN Hogan, RC AF Carballido, Augusto Cuzzi, Jeffrey N. Hogan, Robert C. TI Relative velocities of solids in a turbulent protoplanetary disc SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE diffusion; MHD; turbulence; protoplanetary discs ID RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; ASTROPHYSICAL FLOWS; DUST COAGULATION; PARTICLES; GRAINS; FRAGMENTATION; SIMULATIONS; ALGORITHMS; ZEUS-2D AB We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities V(rel) are calculated between two particles i and j such that St(i) >> St(j) and St(j) << 1, the data matches the analytical model of Ormel & Cuzzi. However, if V(rel) corresponds to two particles with the same St, only the data for the more loosely coupled solids (i. e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with St approximate to 1 because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. C1 [Carballido, Augusto] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Cuzzi, Jeffrey N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hogan, Robert C.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. RP Carballido, A (reprint author), Univ Nacl Autonoma Mexico, Inst Astron, AP 70-264,Cd Univ, Mexico City 04510, DF, Mexico. EM augusto@astroscu.unam.mx FU UNAM DGAPA; NASA FX We thank two anonymous referees for valuable comments which led to the improvement of the paper. Portions of this work were carried out at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under a contract to NASA. AC acknowledges support from a UNAM DGAPA Postdoctoral Fellowship. Contributions by JC and RH were supported by NASA's Planetary Geology and Geophysics Program. NR 27 TC 14 Z9 14 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2010 VL 405 IS 4 BP 2339 EP 2344 DI 10.1111/j.1365-2966.2010.16653.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619SP UT WOS:000279450900017 ER PT J AU Cohen, DH Leutenegger, MA Wollman, EE Zsargo, J Hillier, DJ Townsend, RHD Owocki, SP AF Cohen, David H. Leutenegger, Maurice A. Wollman, Emma E. Zsargo, Janos Hillier, D. John Townsend, Richard H. D. Owocki, Stanley P. TI A mass-loss rate determination for zeta Puppis from the quantitative analysis of X-ray emission-line profiles SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; stars: early-type; stars: individual: zeta Pup; stars: mass-loss; stars: winds, outflows; X-rays: stars ID O-TYPE STARS; RADIATION-DRIVEN WINDS; HOT LUMINOUS STARS; STELLAR WINDS; H-ALPHA; GRATING SPECTROMETER; MOMENTUM RATES; IN-FLIGHT; CHANDRA; MODELS AB We fit every emission line in the high-resolution Chandra grating spectrum of. Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of 16 lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau(*) equivalent to kappa(M) over dot/4 pi R(*)upsilon(infinity), and place confidence limits on this parameter. These 16 lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau(*) with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau(*), reflected in the rather modest asymmetry in the line profiles, can moreover all be fitted simultaneously by simply assuming a moderate mass-loss rate of 3.5 +/- 0.3 x 10(-6) M(circle dot) yr(-1), without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of 2. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and Galactic evolution. C1 [Cohen, David H.; Wollman, Emma E.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [Wollman, Emma E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Zsargo, Janos; Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Zsargo, Janos] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City 07738, DF, Mexico. [Townsend, Richard H. D.; Owocki, Stanley P.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Townsend, Richard H. D.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. RP Cohen, DH (reprint author), Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. EM cohen@astro.swarthmore.edu FU NASA [AR7-8002X]; Chandra X-ray Observatory Center [TM6-7003X, NAS8-03060]; Provost's Office at Swarthmore College; NASA LTSA [NNG05GC36G]; STScI [HST-AR-10693.02] FX Support for this work was provided by NASA through Chandra award number AR7-8002X to Swarthmore College and award number TM6-7003X to the University of Pittsburgh, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. EEW was supported by a Lotte Lazarsfeld Bailyn Summer Research Fellowship from the Provost's Office at Swarthmore College. MAL also acknowledges support from the Provost's office of Swarthmore College. RHDT, SPO and DHC acknowledge support from NASA LTSA grant NNG05GC36G and JZ and DJH acknowledge support from STScI grant HST-AR-10693.02. The authors also thank Marc Gagne, Alex Fullerton, Yael Naze and Joachim Puls for careful reading of the manuscript, advice and many useful suggestions. And we thank the referee for additional useful suggestions, especially about porosity and its effect on the wavelength dependence of the wind opacity. NR 60 TC 41 Z9 41 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2010 VL 405 IS 4 BP 2391 EP 2405 DI 10.1111/j.1365-2966.2010.16606.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619SP UT WOS:000279450900022 ER PT J AU Harker, G Zaroubi, S Bernardi, G Brentjens, MA de Bruyn, AG Ciardi, B Jelic, V Koopmans, LVE Labropoulos, P Mellema, G Offringa, A Pandey, VN Pawlik, AH Schaye, J Thomas, RM Yatawatta, S AF Harker, Geraint Zaroubi, Saleem Bernardi, Gianni Brentjens, Michiel A. de Bruyn, A. G. Ciardi, Benedetta Jelic, Vibor Koopmans, Leon V. E. Labropoulos, Panagiotis Mellema, Garrelt Offringa, Andre Pandey, V. N. Pawlik, Andreas H. Schaye, Joop Thomas, Rajat M. Yatawatta, Sarod TI Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: theory; diffuse radiation; methods: statistical; radio lines: general ID 21 CENTIMETER FLUCTUATIONS; INTERGALACTIC MEDIUM; COSMIC REIONIZATION; 1ST STARS; FOREGROUNDS; HYDROGEN; LINE; GAS; SIMULATIONS; CONSTRAINTS AB One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different observational strategies which compromise between depth of observation, sky coverage and frequency coverage. A plan in which lower frequencies receive a larger fraction of the time appears to be promising. We also study the nature of the bias which foreground fitting errors induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The angular and line-of-sight power spectra have different merits in this respect, and we suggest considering them separately in the analysis of LOFAR data. C1 [Harker, Geraint] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Harker, Geraint] NASA, Ames Res Ctr, NASA Lunar Sci Inst, Moffett Field, CA 94035 USA. [Zaroubi, Saleem; Brentjens, Michiel A.; de Bruyn, A. G.; Jelic, Vibor; Koopmans, Leon V. E.; Labropoulos, Panagiotis; Offringa, Andre; Pandey, V. N.; Yatawatta, Sarod] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Bernardi, Gianni] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [de Bruyn, A. G.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Ciardi, Benedetta] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Mellema, Garrelt] Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Mellema, Garrelt] Stockholm Univ, AlbaNova, Dept Astron, SE-10691 Stockholm, Sweden. [Pawlik, Andreas H.; Schaye, Joop] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Pawlik, Andreas H.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Thomas, Rajat M.] Univ Tokyo, Inst Math & Phys Universe IPMU, Chiba 2778582, Japan. RP Harker, G (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. EM geraint.harker@colorado.edu RI Jelic, Vibor/B-2938-2014; Thomas, Rajat/B-7105-2014; Mellema, Garrelt/K-4962-2014; Harker, Geraint/C-4885-2012; Ciardi, Benedetta/N-7625-2015; Yatawatta, Sarod/E-6037-2013 OI Schaye, Joop/0000-0002-0668-5560; Jelic, Vibor/0000-0002-6034-8610; Thomas, Rajat/0000-0002-5362-4816; Mellema, Garrelt/0000-0002-2512-6748; Harker, Geraint/0000-0002-7894-4082; Yatawatta, Sarod/0000-0001-5619-4017 FU Netherlands Organisation for Scientific Research (NWO); NASA Lunar Science Institute [NNA09DB30A]; European Union; European Regional Development Fund; 'Samenwerkingsverband Noord-Nederland', EZ/KOMPAS FX For the majority of the period during which this work was undertaken, GH was supported by a grant from the Netherlands Organisation for Scientific Research (NWO), and for the latter part of this period by the LUNAR consortium (http://lunar.colorado.edu) which, headquartered at the University of Colorado, is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon. As LOFAR members, the authors are partially funded by the European Union, European Regional Development Fund and 'Samenwerkingsverband Noord-Nederland', EZ/KOMPAS. The dark matter simulation was performed on Huygens, the Dutch national supercomputer. We thank the referee, J. Bowman, for suggesting the cross-correlation technique of Section 3.3.3 and for improving the clarity of the presentation. NR 42 TC 81 Z9 81 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2010 VL 405 IS 4 BP 2492 EP 2504 DI 10.1111/j.1365-2966.2010.16628.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619SP UT WOS:000279450900030 ER PT J AU Garcia-Lorenzo, B Eff-Darwich, A Castro-Almazan, J Pinilla-Alonso, N Munoz-Tunon, C Rodriguez-Espinosa, JM AF Garcia-Lorenzo, B. Eff-Darwich, A. Castro-Almazan, J. Pinilla-Alonso, N. Munoz-Tunon, C. Rodriguez-Espinosa, J. M. TI Infrared astronomical characteristics of the Roque de los Muchachos Observatory: precipitable water vapour statistics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: miscellaneous; site testing; infrared: general ID TROPOSPHERIC DELAY ESTIMATION; ATMOSPHERIC OPACITY; GPS OBSERVATIONS; MAUNA-KEA; CALIBRATION; QUALITY; SPECTROSCOPY; TEMPERATURE; METEOROLOGY; RADIOSONDE AB We present measurements of the atmospheric water vapour content above the Roque de los Muchachos Observatory (ORM) obtained using the Global Positioning System (GPS). The GPS measurements have been evaluated by comparison with 940-nm radiometer observations. A statistical analysis of the GPS measurements points to the ORM as an observing site with suitable conditions for infrared observations, with a median column of precipitable water vapour (PWV) of 3.8 mm. PWV presents a clear seasonal behaviour, with winter and spring being the best seasons for infrared observations. The percentage of nights showing PWV values less than 3 mm is over 60 per cent in February, March and April. We have also estimated the temporal variability of water vapour content at the ORM. We present a summary of PWV statistical results at different astronomical sites, noting that these values are not directly comparable as a result of the differences in the techniques used to recorded the data. C1 [Garcia-Lorenzo, B.; Castro-Almazan, J.; Munoz-Tunon, C.; Rodriguez-Espinosa, J. M.] Inst Astrofis Canarias, Tenerife 38305, Spain. [Garcia-Lorenzo, B.; Munoz-Tunon, C.; Rodriguez-Espinosa, J. M.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Eff-Darwich, A.] Univ La Laguna, Dept Edafol & Geol, E-38205 Tenerife, Spain. [Pinilla-Alonso, N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Garcia-Lorenzo, B (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38305, Spain. EM bgarcia@iac.es RI Garcia-Lorenzo, Maria Begona/E-7011-2010 OI Garcia-Lorenzo, Maria Begona/0000-0002-7228-7173 FU Instituto de Astrofisica de Canarias; Spanish Ministerio de Educacion y Ciencia [AYA2006-13682, AYA2009-12903]; Spanish Ministerio de Educacion y Ciencia FX This work was partially funded by the Instituto de Astrofisica de Canarias and by the Spanish Ministerio de Educacion y Ciencia (AYA2006-13682 and AYA2009-12903). This work has been carried out within the framework of the European Project OPTICON and under Proposal FP6 for Site Selection for the European ELT. BG-L and AE-D are grateful for the support from the Ramon y Cajal programme by the Spanish Ministerio de Educacion y Ciencia. NR 53 TC 11 Z9 11 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2010 VL 405 IS 4 BP 2683 EP 2696 DI 10.1111/j.1365-2966.2010.16649.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619SP UT WOS:000279450900045 ER PT J AU Orio, M Nelson, T Bianchini, A Di Mille, F Harbeck, D AF Orio, Marina Nelson, Thomas Bianchini, Antonio Di Mille, Francesco Harbeck, Daniel TI A CENSUS OF THE SUPERSOFT X-RAY SOURCES IN M31 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; galaxies: individual (M31); galaxies: stellar content; ultraviolet: stars; white dwarfs; X-rays: stars ID GALAXY-EVOLUTION-EXPLORER; ACCRETING WHITE-DWARFS; SMALL-MAGELLANIC-CLOUD; XMM-NEWTON SURVEY; IA SUPERNOVAE; OPTICAL-IDENTIFICATION; LIGHT-CURVE; QUASI-SOFT; EXTERNAL GALAXIES; CARBON IGNITION AB We examined X-ray, ultraviolet, and optical archival data of 89 supersoft X-ray sources (SSS) in M31. We studied the timescales of X-ray variability and searched UV and optical counterparts. Almost a third of the SSS are known classical or recurrent novae, and at least half of the others exhibit the same temporal behavior as post-outburst novae. Non-stellar objects among SSS seem to be rare: less than 10% of the classified SSS turned out to be supernova remnants, and only one source has been identified with an active galactic nucleus in the background. Not more than 20% of the SSS that are not coincident with observed novae are persistent or recurrent X-ray sources. A few of these long-lasting sources show characteristics in common with other SSS identified as white dwarf (WD) close binaries in the Magellanic Clouds and in the Galaxy, including variability on timescales of minutes, possibly indicating the spin period of a WD. Such objects are likely to be low-mass X-ray binaries with a massive WD. A third of the non-nova SSS are in regions of recent star formation, often at the position of an O or B star, and we suggest that they may be high-mass X-ray binaries. If these sources host a massive hydrogen-burning WD, as it seems likely, they may become Type Ia supernovae (SNe Ia), constituting the star formation dependent component of the SNe Ia rate. C1 [Orio, Marina] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Orio, Marina] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Nelson, Thomas] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Nelson, Thomas] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Nelson, Thomas] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Bianchini, Antonio; Di Mille, Francesco] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Harbeck, Daniel] WIYN Observ, Natl Opt Astron Observ, Tucson, AZ 85726 USA. RP Orio, M (reprint author), Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM orio@astro.wisc.edu NR 98 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 739 EP 765 DI 10.1088/0004-637X/717/2/739 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800012 ER PT J AU Coughlin, JL Gelino, DM Harrison, TE Hoard, DW Ciardi, DR Benedict, GF Howell, SB McArthur, BE Wachter, S AF Coughlin, Jeffrey L. Gelino, Dawn M. Harrison, Thomas E. Hoard, D. W. Ciardi, David R. Benedict, G. Fritz Howell, Steve B. McArthur, Barbara E. Wachter, Stefanie TI MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; binaries: close; stars: fundamental parameters; stars: individual (QZ Vul, Cyg X-1, SS Cyg, V592 Cas, Sco X-1, AR UMa) ID AR URSAE-MAJORIS; CATACLYSMIC VARIABLES; INTERFEROMETRIC ASTROMETRY; ELLIPSOIDAL VARIATIONS; INFRARED OBSERVATIONS; ACCRETION DISKS; SECONDARY STARS; ORBITAL PERIOD; MASS AB Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a code we call reflux. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems. C1 [Coughlin, Jeffrey L.; Harrison, Thomas E.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Gelino, Dawn M.; Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Hoard, D. W.; Wachter, Stefanie] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Benedict, G. Fritz; McArthur, Barbara E.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Coughlin, JL (reprint author), New Mexico State Univ, Dept Astron, POB 30001,MSC 4500, Las Cruces, NM 88003 USA. EM jlcough@nmsu.edu OI Hoard, Donald W./0000-0002-6800-6519; Ciardi, David/0000-0002-5741-3047 FU National Aeronautics and Space Administration; Jet Propulsion Laboratory, California Institute of Technology; New Mexico Space FX This work was sponsored in part by an SIM Science Study (PI: D. Gelino) from the National Aeronautics and Space Administration through a contract with the Jet Propulsion Laboratory, California Institute of Technology. J.L.C. acknowledges additional support from a New Mexico Space Grant Consortium Fellowship. The authors thank the referee for comments which helped to improve the manuscript. NR 36 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 776 EP 786 DI 10.1088/0004-637X/717/2/776 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800014 ER PT J AU Moro-Martin, A Malhotra, R Bryden, G Rieke, GH Su, KYL Beichman, CA Lawler, SM AF Moro-Martin, Amaya Malhotra, Renu Bryden, Geoffrey Rieke, George H. Su, Kate Y. L. Beichman, Charles A. Lawler, Samantha M. TI LOCATING PLANETESIMAL BELTS IN THE MULTIPLE-PLANET SYSTEMS HD 128311, HD 202206, HD 82943, AND HR 8799 SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; Kuiper Belt: general; planetary systems; stars: individual (HD 12831, HD 202206, HR 8799, HD 82943) ID SOLAR-TYPE STARS; SUN-LIKE STARS; DEBRIS DISKS; NEARBY STARS; EXTRASOLAR PLANETS; NSTARS PROJECT; DUST; SPITZER; SEARCH; EVOLUTION AB In addition to the Sun, six other stars are known to harbor multiple planets and debris disks: HD 69830, HD 38529, HD 128311, HD 202206, HD 82943, and HR 8799. In this paper, we set constraints on the location of the dust-producing planetesimals around the latter four systems. We use a radiative transfer model to analyze the spectral energy distributions of the dust disks (including two new Spitzer IRS spectra presented in this paper), and a dynamical model to assess the long-term stability of the planetesimals' orbits. As members of a small group of stars that show evidence of harboring a multiple planets and planetesimals, their study can help us learn about the diversity of planetary systems. C1 [Moro-Martin, Amaya] Ctr Astrobiol CSIC INTA, Dept Astrophys, Madrid 28850, Spain. [Moro-Martin, Amaya] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Malhotra, Renu] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Bryden, Geoffrey] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rieke, George H.; Su, Kate Y. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Beichman, Charles A.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Lawler, Samantha M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Moro-Martin, A (reprint author), Ctr Astrobiol CSIC INTA, Dept Astrophys, Ctra de Ajalvir,Km 4, Madrid 28850, Spain. OI Malhotra, Renu/0000-0002-1226-3305; Su, Kate/0000-0002-3532-5580 FU Spanish MICINN [AYA2009-07304, 2010CSD2009-00038]; Michelson Fellowship; Spitzer archival [40412]; NSF [AST-0806828]; NASA [NNX08AQ65G] FX We thank Hal Levison for providing skeel-SyMBA for the dynamical simulations, Sebastian Wolf for providing DDS for the SED models, and Alexander Krivov for his careful reading of the manuscript and useful comments. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, managed for NASA by the California Institute of Technology. A.M.M. acknowledges funding from the Spanish MICINN (Ramon y Cajal Program and grants AYA2009-07304 and CONSOLIDER INGENIO 2010CSD2009-00038), the Michelson Fellowship, and the Spitzer archival grant 40412. She thanks the Isaac Newton Institute for Mathematical Sciences at Cambridge University for support. R.M. acknowledges support from grants by NSF (AST-0806828) and NASA (NNX08AQ65G). NR 68 TC 24 Z9 24 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 1123 EP 1139 DI 10.1088/0004-637X/717/2/1123 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800042 ER PT J AU Dunham, MK Rosolowsky, E Evans, NJ Cyganowski, CJ Aguirre, J Bally, J Battersby, C Bradley, ET Dowell, D Drosback, M Ginsburg, A Glenn, J Harvey, P Merello, M Schlingman, W Shirley, YL Stringfellow, GS Walawender, J Williams, JP AF Dunham, Miranda K. Rosolowsky, Erik Evans, Neal J., II Cyganowski, Claudia J. Aguirre, James Bally, John Battersby, Cara Bradley, Eric Todd Dowell, Darren Drosback, Meredith Ginsburg, Adam Glenn, Jason Harvey, Paul Merello, Manuel Schlingman, Wayne Shirley, Yancy L. Stringfellow, Guy S. Walawender, Josh Williams, Jonathan P. TI THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: clouds; ISM: individual objects (Gem OB1); radio lines: ISM; stars: formation ID INFRARED DARK CLOUDS; DENSE CORES; MILKY-WAY; WATER MASERS; H2O MASERS; PROTOSTELLAR CANDIDATES; INITIAL CONDITIONS; I-GEMINORUM; AMMONIA; PERSEUS AB We present the 1.1 mm Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted NH3 observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures, and line widths. We detect 34 distinct BGPS sources above 5 sigma = 0.37 Jy beam(-1) with corresponding 5s detections in the NH3(1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc and a mean gas kinetic temperature of 20 K for the sample of 34 BGPS sources with detections in the NH3(1,1) line. The observed NH3 line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120 '' aperture of 230 +/- 180 M-circle dot. We find a total mass of 8400 M-circle dot for all BGPS sources in the Gemini OB1 molecular cloud, representing 6.5% of the cloud mass. By comparing the millimeter isothermal mass to the virial mass calculated from the NH3 line widths within a radius equal to the millimeter source size, we find a mean virial parameter (M-vir/M-iso) of 1.0 +/- 0.9 for the sample. We find mean values for the distributions of column densities of 1.0 x 10(22) cm(-2) for H-2, and 3.0 x 10(14) cm(-2) for NH3, giving a mean NH3 abundance of 3.0 x 10(-8) relative to H-2. We find volume-averaged densities on the order of 10(3)-10(4) cm(-3). The sizes and densities suggest that in the Gem OB1 region the BGPS is detecting the clumps from which stellar clusters form, rather than smaller, higher density cores where single stars or small multiple systems form. C1 [Dunham, Miranda K.; Evans, Neal J., II; Harvey, Paul; Merello, Manuel] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Rosolowsky, Erik] Univ British Columbia, Kelowna, BC V1V 1V7, Canada. [Cyganowski, Claudia J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Aguirre, James] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S.] Univ Colorado, CASA, Boulder, CO 80309 USA. [Bradley, Eric Todd] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Dowell, Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91104 USA. [Drosback, Meredith] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Schlingman, Wayne; Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Walawender, Josh] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Williams, Jonathan P.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Dunham, MK (reprint author), Univ Texas Austin, Dept Astron, 1 Univ Stn,C1400, Austin, TX 78712 USA. EM nordhaus@astro.as.utexas.edu RI Ginsburg, Adam/E-6413-2011; OI Williams, Jonathan/0000-0001-5058-695X; Ginsburg, Adam/0000-0001-6431-9633 FU National Science Foundation (NSF) [AST-0708403, AST-9980846, AST-0206158, AST-0607793]; National Radio Astronomy Observatory; NRAO; NSERC of Canada FX We thank the anonymous referee, whose comments and suggestions have greatly improved this paper. The Caltech Sub-millimeter Observatory (CSO) is operated by Caltech under a contract from the National Science Foundation. The Green Bank Telescope (GBT) is operated by the National Radio Astronomy Observatory (NRAO). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. We acknowledge the staff and day crew of the CSO, and also the GBT operators and staff for their assistance. The BGPS is supported by the National Science Foundation through NSF grant AST-0708403. The first observing runs for the BGPS and the GBT observing runs were supported by travel funds provided by the National Radio Astronomy Observatory. J.A. was supported by a Jansky Fellowship from the NRAO. Support for the development of Bolocam was provided by NSF grants AST-9980846 and AST-0206158. M.K.D. and N.J.E. were supported by NSF grant AST-0607793 to the University of Texas at Austin. E.R. was supported by NSF grant AST-0502605 and a Discovery Grant from NSERC of Canada. C.J.C. was partially supported during this work by a National Science Foundation Graduate Research Fellowship. This research has made use of the NASA Astrophysics Data System (ADS) Abstract Service and of the SIMBAD database, operated at CDS, Strasbourg, France. NR 77 TC 41 Z9 41 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 1157 EP 1180 DI 10.1088/0004-637X/717/2/1157 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800044 ER PT J AU Makarov, VV Parker, D Ulrich, RK AF Makarov, V. V. Parker, D. Ulrich, R. K. TI ASTROMETRIC JITTER OF THE SUN AS A STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; open clusters and associations: general; stars: kinematics and dynamics ID VARIABILITY; IRRADIANCE AB The daily variation of the solar photocenter over some 11 yr is derived from the Mount Wilson data reprocessed by Ulrich et al. to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 mu AU and 0.39 mu AU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with solar cycle, reaching 0.91 mu AU at maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 mu AU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 mu AU for the range of periods 0.6-1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets. C1 [Makarov, V. V.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Parker, D.; Ulrich, R. K.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Makarov, VV (reprint author), CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM vvm@caltech.edu OI Makarov, Valeri/0000-0003-2336-7887 FU National Aeronautics and Space Administration; National Science Foundation (NSF) [AGS0958779]; Office of Naval Research FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Observations at the 150 ft telescope on Mount Wilson have been supported over the years by grants from the National Aeronautics and Space Administration, the National Science Foundation (NSF), and Office of Naval Research. Research is currently supported by the NSF through grant AGS0958779. NR 17 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 1202 EP 1205 DI 10.1088/0004-637X/717/2/1202 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800046 ER PT J AU Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW do Couto e Silva, E Drell, PS Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hadasch, D Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kippen, RM Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Racusin, JL Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Ripken, J Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stamatikos, M Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Tibaldo, L Torres, DF Tosti, G Tramacere, A Uehara, T Usher, TL Vandenbroucke, J van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Racusin, J. L. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ripken, J. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uehara, T. Usher, T. L. Vandenbroucke, J. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: individual (GRB090217A) ID SYNCHROTRON SHOCK MODEL; LARGE-AREA TELESCOPE; SPECTRAL COMPONENT; BURST; PROMPT AB The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to similar to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Racusin, J. L.; Stamatikos, M.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guillemot, L.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Guillemot, L.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Hadasch, D.; Torres, D. F.] Inst Catalana Recerca Estudis Avancats ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Knoedlseder, J.; Vilchez, N.] Ctr Etud Spatiale Rayonnements, CNRS, UPS, BP 44346, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Meszaros, P.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nakajima, H.] Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.] Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] Consorzio Interuniv Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] Joint Ctr Particle Nucl Phys & Cosmol J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Yamazaki, R.] Aoyama Gakuin Univ, Sagamihara, Kanagawa 2298558, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM azk@mpe.mpg.de; sarac@slac.stanford.edu; piron@lpta.in2p3.fr RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Racusin, Judith/D-2935-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X FU DOE in the United States; CEA/Irfu in France; IN2P3/CNRS in France; ASI in Italy; INFN in Italy; MEXT; KEK; JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; NASA in the US; BMWi/DLR in Germany FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Fermi GBM Collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. NR 20 TC 19 Z9 19 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2010 VL 717 IS 2 BP L127 EP L132 DI 10.1088/2041-8205/717/2/L127 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619LC UT WOS:000279430700011 ER PT J AU Markwardt, CB Strohmayer, TE AF Markwardt, C. B. Strohmayer, T. E. TI DISCOVERY OF ECLIPSES FROM THE ACCRETING MILLISECOND X-RAY PULSAR SWIFT J1749.4-2807 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: general; pulsars: individual (SWIFT J1749.4-2807); stars: neutron; X-rays: binaries ID GENERAL-RELATIVITY; RADIO PULSARS; BINARY; STAR; EQUATION; TESTS AB We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8M(circle dot) for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 degrees longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172 +/- 13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2M(circle dot). C1 [Markwardt, C. B.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Markwardt, C. B.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Strohmayer, T. E.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Markwardt, CB (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM Craig.Markwardt@nasa.gov FU RXTE; Swift projects FX The authors thank the RXTE and Swift projects for support, and useful conversations with Diego Altamirano, Deepto Chakrabarty, and Jean Swank. NR 35 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2010 VL 717 IS 2 BP L149 EP L153 DI 10.1088/2041-8205/717/2/L149 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619LC UT WOS:000279430700015 ER PT J AU Still, M Howell, SB Wood, MA Cannizzo, JK Smale, AP AF Still, Martin Howell, Steve B. Wood, Matt A. Cannizzo, John K. Smale, Alan P. TI QUIESCENT SUPERHUMPS DETECTED IN THE DWARF NOVA V344 LYRAE BY KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE novae, cataclysmic variables; stars: dwarf novae; stars: individual (V344 Lyr); white dwarfs ID CATACLYSMIC VARIABLES; ECHO OUTBURSTS; URSAE MAJORIS; STARS; BINARIES; SCIENCE; SIMULATIONS; PERFORMANCE; EVOLUTION; DISCOVERY AB The timing capabilities and sensitivity of Kepler, NASA's observatory to find Earth-sized planetswithin the habitable zone of stars, are well matched to the timescales and amplitudes of accretion disk variability in cataclysmic variables. This instrumental combination provides an unprecedented opportunity to test and refine stellar accretion paradigms with high-precision, uniform data, and containing none of the diurnal or season gaps that limit ground-based observations. We present a 3 month, 1 minute cadence Kepler light curve of V344 Lyr, a faint, little-studied dwarf nova within the Kepler field. The light curve samples V344 Lyr during five full normal outbursts and one superoutburst. Surprisingly, the superhumps found during the superoutburst continue to be detected during the following quiescent state and normal outburst. The fractional excess of the superhump period over the presumed orbital period suggests a relatively high binary mass ratio in a system where the radius of the accretion disk must vary by less than 2% in order to maintain tidal precession throughout the extended episode of superhumping. The disk radius is less restricted if the quiescent signal identified tentatively as the orbital period is a negative superhump, generated by a retrograde-precessing accretion disk, tilted with respect to the binary orbital plane. C1 [Still, Martin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Still, Martin] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Wood, Matt A.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Cannizzo, John K.] Univ Maryland, CRESST Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Cannizzo, John K.; Smale, Alan P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Still, M (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. OI Wood, Matthew/0000-0003-0372-9553 FU NASA FX Funding for this 10th Discovery mission is provided by NASA's Science Mission Directorate. We acknowledge the contributions of the entire Kepler Team. NR 31 TC 34 Z9 34 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2010 VL 717 IS 2 BP L113 EP L117 DI 10.1088/2041-8205/717/2/L113 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619LC UT WOS:000279430700008 ER PT J AU Li, F Stolarski, RS Pawson, S Newman, PA Waugh, D AF Li, Feng Stolarski, Richard S. Pawson, Steven Newman, Paul A. Waugh, Darryn TI Narrowing of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in chemistry-climate model simulations of the 21st century SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley cell's rising branch. Model results suggest that eddy forcing may also play a part in the narrowing of the rising branch of the Hadley cell. Citation: Li, F., R. S. Stolarski, S. Pawson, P. A. Newman, and D. Waugh (2010), Narrowing of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in chemistry-climate model simulations of the 21st century, Geophys. Res. Lett., 37, L13702, doi: 10.1029/2010GL043718. C1 [Li, Feng] Univ Maryland Baltimore Cty, GEST, Baltimore, MD 20771 USA. [Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Waugh, Darryn] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Li, F (reprint author), Univ Maryland Baltimore Cty, GEST, Baltimore, MD 20771 USA. EM Feng.Li@nasa.gov RI Newman, Paul/D-6208-2012; Li, Feng/H-2241-2012; Stolarski, Richard/B-8499-2013; Pawson, Steven/I-1865-2014 OI Newman, Paul/0000-0003-1139-2508; Stolarski, Richard/0000-0001-8722-4012; Pawson, Steven/0000-0003-0200-717X FU NASA FX This work is supported by NASA's Modeling and Analysis program. Computational resources for this work were provided by NASA's High-Performance Computing through the generous award of computing time at NASA Ames Research Center. NR 16 TC 9 Z9 9 U1 0 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 10 PY 2010 VL 37 AR L13702 DI 10.1029/2010GL043718 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 624MU UT WOS:000279824000006 ER PT J AU Matsui, T Mocko, D Lee, MI Tao, WK Suarez, MJ Pielke, RA AF Matsui, Toshihisa Mocko, David Lee, Myong-In Tao, Wei-Kuo Suarez, Max J. Pielke, Roger A. TI Ten-year climatology of summertime diurnal rainfall rate over the conterminous US SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MESOSCALE CONVECTIVE SYSTEM; WARM-SEASON; UNITED-STATES; PRECIPITATION; CYCLE; PREDICTABILITY; DYNAMICS AB Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Using Hovmoller diagrams, zonal phase speeds of diurnal composite rainfall are estimated in three different small domains, and are evaluated with background meteorological conditions. These rainfall propagation speeds are better linked to the convective available potential energy than to the boundary-layer dryness. Citation: Matsui, T., D. Mocko, M.-I. Lee, W.-K. Tao, M. J. Suarez, and R. A. Pielke Sr. (2010), Ten-year climatology of summertime diurnal rainfall rate over the conterminous U. S., Geophys. Res. Lett., 37, L13807, doi: 10.1029/2010GL044139. C1 [Matsui, Toshihisa; Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Matsui, Toshihisa] Univ Maryland Baltimore Cty, GEST, Baltimore, MD 21228 USA. [Mocko, David] SAIC, Beltsville, MD 20705 USA. [Mocko, David; Suarez, Max J.] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA. [Lee, Myong-In] UNIST, Sch Urban & Environm Engn, Ulsan 689798, South Korea. [Pielke, Roger A.] Univ Colorado, Dept Atmospher & Ocean Sci, CIRES, Boulder, CO 80309 USA. RP Matsui, T (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. OI Lee, Myong-In/0000-0001-8983-8624 FU NASA; NOAA FX This work was supported by the NASA Modeling Analysis and Prediction project. The authors are grateful to Dr. D. Cosidine at NASA HQ. The NLDAS project is a collaboration project among several groups and funded with support from NOAA's Climate Prediction Program for the Americas (CPPA). We thank Brian Cosgrove and Charles Alonge for leading the development of the NLDAS Phase II rainfall product. NR 15 TC 11 Z9 11 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 10 PY 2010 VL 37 AR L13807 DI 10.1029/2010GL044139 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 624MU UT WOS:000279824000007 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Interplanetary circumstances of quasi-perpendicular interplanetary shocks in 1996-2005 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; HELIOSPHERIC CURRENT SHEET; 3 SOLAR-CYCLES; PARTICLE-ACCELERATION; GEOMAGNETIC-ACTIVITY; ENERGETIC PARTICLES; INTERACTION REGIONS; MAGNETIC CLOUDS; PLASMA SHEETS; WIND AB The angle (theta(Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(Bn) >= 80 degrees and/ or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(Bn) than shocks outside ICMEs. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Dept Phys, Hobart, Tas 7001, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 FU NASA Living With a Star Targeted Research and Technology FX We thank Justin Kasper and Chuck Smith and co-workers for making available their shock parameter lists. The ACE data sets used in this study were provided by the ACE Science Center (http://www.srl.caltech.edu/ACE/ASC/). The SOHO COSTEP data were provided by the SOHO Data Archive (http://sohowww.nascom.nasa.gov/) while the ERNE data were obtained from the Space Research Laboratory, University of Turku (http://www.srl.utu.fi/). We acknowledge the use of data from the OMNI solar wind data base, compiled by the Space Physics Data Facility at the Goddard Space Flight Center (http://omniweb.gsfc.nasa.gov/). This work was supported by a NASA Living With a Star Targeted Research and Technology grant. NR 62 TC 8 Z9 8 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 10 PY 2010 VL 115 AR A07103 DI 10.1029/2009JA015039 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624NS UT WOS:000279826400002 ER PT J AU Stahl, HP Stephens, K Henrichs, T Smart, C Prince, FA AF Stahl, H. Philip Stephens, Kyle Henrichs, Todd Smart, Christian Prince, Frank A. TI Single-variable parametric cost models for space telescopes SO OPTICAL ENGINEERING LA English DT Article DE space telescope cost model; parametric cost model; cost model AB Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. Unfortunately, there is no definitive space telescope cost model. For example, historical cost estimating relationships (CERs) based on primary mirror diameter vary by an order of magnitude. We present new single-variable cost models for space telescope optical telescope assembly (OTA). They are based on data collected from 30 different space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3456582] C1 [Stahl, H. Philip; Prince, Frank A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Stephens, Kyle] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Henrichs, Todd] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Smart, Christian] MDA DOE, Sensors & Anal Div C3, Cost Estimating & Anal Directorate, Huntsville, AL 35806 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, VP 60, Huntsville, AL 35812 USA. EM h.philip.stahl@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JUL 10 PY 2010 VL 49 IS 7 AR 073006 DI 10.1117/1.3456582 PG 13 WC Optics SC Optics GA 633RR UT WOS:000280522800007 ER PT J AU Fuselier, SA Funsten, HO Heirtzler, D Janzen, P Kucharek, H McComas, DJ Mobius, E Moore, TE Petrinec, SM Reisenfeld, DB Schwadron, NA Trattner, KJ Wurz, P AF Fuselier, S. A. Funsten, H. O. Heirtzler, D. Janzen, P. Kucharek, H. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Reisenfeld, D. B. Schwadron, N. A. Trattner, K. J. Wurz, P. TI Energetic neutral atoms from the Earth's subsolar magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BOW SHOCK; MAGNETOSHEATH AB The shocked solar wind in the Earth's magnetosheath becomes nearly stationary at the subsolar magnetopause. At this location, solar wind protons are neutralized by charge exchange with neutral hydrogen atoms at the extreme limits of the Earth's tenuous exosphere. The resulting Energetic Neutral Atoms (ENAs) propagate away from the subsolar region in nearly all directions. Simultaneous observations of hydrogen ENAs from the Interstellar Boundary Explorer (IBEX) and proton distributions in the magnetosheath from the Cluster spacecraft are used to quantify this charge exchange process. By combining these observations with a relatively simple model, estimates are obtained for the ratio of ENA to shocked solar wind flux (about 10(-4)) and the exo-spheric density at distances greater than 10 Earth Radii (R-E) upstream from the Earth (about 8 cm(-3)). Citation: Fuselier, S. A., et al. (2010), Energetic neutral atoms from the Earth's subsolar magnetopause, Geophys. Res. Lett., 37, L13101, doi:10.1029/2010GL044140. C1 [Fuselier, S. A.; Petrinec, S. M.; Trattner, K. J.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Billings, MT 59812 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, 3251 Hanover St, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015 OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; FU NASA FX Solar wind data are from the Wind spacecraft and provided through NSSDC CDAWeb. Support for this study comes from NASA's Explorer program. IBEX is the result of efforts from a large number of scientists, engineers, and others. All who contributed to this mission share in its success. NR 20 TC 32 Z9 33 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 8 PY 2010 VL 37 AR L13101 DI 10.1029/2010GL044140 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 624MQ UT WOS:000279823500003 ER PT J AU Li, T Leblanc, T McDermid, IS Wu, DL Dou, XK Wang, S AF Li, Tao Leblanc, Thierry McDermid, I. Stuart Wu, Dong L. Dou, Xiankang Wang, Shui TI Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; ARCTIC STRATOSPHERIC VORTEX; MIDDLE ATMOSPHERE; SPECTRAL MODEL; RAYLEIGH LIDAR; MEAN WIND; CLIMATOLOGY; MORPHOLOGY; VARIANCE; MESOSPHERE AB The seasonal and interannual variability of gravity wave (GW) variance in the upper stratosphere (35-50 km) and lower mesosphere (48-63 km) has been studied using 10.5 years (January 1997 to June 2007) of temperature profile results obtained with the Jet Propulsion Laboratory Rayleigh lidar at Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W). Seasonal variability with a maximum in winter and a minimum in summer was observed in the upper stratosphere, suggesting dominance of the annual oscillation. In the lower mesosphere the seasonal oscillations of GW variance were dominated by a semiannual oscillation (SAO), likely due to the selective filtering of GWs by the tropical upper stratospheric SAO wind. Modulation of GW variance by the quasi-biennial oscillation was clearly present only for the long vertical wavelength band in the upper stratosphere, and not in the lower mesosphere. The United Kingdom Met Office zonal mean zonal wind further supports that enhanced GW activity in the upper stratosphere corresponds to the westerly shear phase of the zonal wind at 10 hPa (similar to 30 km), and suppressed activity corresponds to the easterly shear phase. During the strong El Nino event in the winter of 1997-1998, enhanced GW activity was observed only in the lower mesosphere, and not in the upper stratosphere. Additional enhancement of GW variance, especially clear in the upper stratosphere, was also found during 2001-2002 and winter 2005-2006. C1 [Li, Tao; Dou, Xiankang; Wang, Shui] Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei 230026, Anhui, Peoples R China. [Leblanc, Thierry; McDermid, I. Stuart] CALTECH, Jet Prop Lab, Table Mt Facil, Wrightwood, CA 92397 USA. [Wu, Dong L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Li, T (reprint author), Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei 230026, Anhui, Peoples R China. EM litao@ustc.edu.cn RI Dou, xiankang/M-9106-2013; Li, Tao/J-8950-2014; Wu, Dong/D-5375-2012 OI Li, Tao/0000-0002-5100-4429; FU National Natural Science Foundation of China [40974084]; Chinese Academy of Sciences; National Aeronautics and Space Administration; National Science Foundation [ATM-05-45704, ATM-07-37656] FX The work described in this paper was carried out at the University of Science and Technology of China, with support from National Natural Science Foundation of China grant 40974084 and the Chinese Academy of Sciences One Hundred Talent program, and at the Jet Propulsion Laboratory, California Institute of Technology, under agreements with the National Aeronautics and Space Administration. The work done in summer 2009 was partially supported by National Science Foundation grant ATM-05-45704 for the Consortium of Resonance and Rayleigh lidars and ATM-07-37656 through a visiting professorship in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. We acknowledge the U.K. Met Office for providing the wind data used in this study. NR 51 TC 16 Z9 18 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 8 PY 2010 VL 115 AR D13103 DI 10.1029/2009JD013586 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 624MY UT WOS:000279824400003 ER PT J AU Noell, AC Alconcel, LS Robichaud, DJ Okumura, M Sander, SP AF Noell, A. C. Alconcel, L. S. Robichaud, D. J. Okumura, M. Sander, S. P. TI Near-Infrared Kinetic Spectroscopy of the HO2 and C2H5O2 Self-Reactions and Cross Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LASER ABSORPTION-SPECTROSCOPY; ORGANIC PEROXY-RADICALS; GAS-PHASE REACTION; ETHYLPEROXY RADICALS; ATMOSPHERIC CHEMISTRY; TEMPERATURE-DEPENDENCE; PRESSURE-DEPENDENCE; REACTION C2H5+O-2; RATE COEFFICIENTS; HO2-H2O COMPLEX AB The self-reactions and cross reactions of the peroxy radicals C2H5O2 and HO2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO2, and UV absorption monitored C2H5O2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221-296 K. The Arrhenius expression determined for the cross reaction, k(2)(T) = (6.01(-1.47)(+1.95)) x 10(-13) exp((638 +/- 73)/T) cm(3) molecules(-1) s(-1) is in agreement with other work from the literature. The measurements of the HO2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C2H5O2 self-reaction is complicated by secondary production of HO2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary H2O. The Arrhenius expression for the self-reaction rate constant is k(3)(7) = (1.29(-0.27)(+0.34)) x 10(-13) exp((-23 +/- 61)/T) cm(3) molecules(-1) s(-1), and the branching fraction value is alpha = 0.28 +/- 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO2 self-reactions are required. C1 [Noell, A. C.; Alconcel, L. S.; Robichaud, D. J.; Okumura, M.] CALTECH, Arthur Amos Noyes Lab Chem Phys, Div Chem & Chem Phys, Pasadena, CA 91125 USA. [Noell, A. C.; Robichaud, D. J.; Sander, S. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Okumura, M (reprint author), CALTECH, Arthur Amos Noyes Lab Chem Phys, Div Chem & Chem Phys, M-S 127-72,1200 E Calif Blvd, Pasadena, CA 91125 USA. RI Okumura, Mitchio/I-3326-2013 OI Okumura, Mitchio/0000-0001-6874-1137 FU National Aeronautics and Space Administration (NASA); NASA Graduate Student Research Program (GSRP) FX This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This work was supported by the NASA Upper Atmosphere Research and Tropospheric Chemistry Programs and the NASA Graduate Student Research Program (GSRP). The authors would like to thank Dave Natzic for extensive laboratory support and Dr. Lance Christensen and the Okumura group for many discussions. NR 58 TC 12 Z9 12 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 8 PY 2010 VL 114 IS 26 BP 6983 EP 6995 DI 10.1021/jp912129j PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 617LO UT WOS:000279282500009 PM 20524693 ER PT J AU Holzer, M Primeau, FW Smethie, WM Khatiwala, S AF Holzer, Mark Primeau, Francois W. Smethie, William M., Jr. Khatiwala, Samar TI Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20 SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID LABRADOR SEA-WATER; DENMARK STRAIT OVERFLOW; FAROE BANK CHANNEL; DEEP-WATER; BOUNDARY CURRENT; MIXED-LAYER; ANTHROPOGENIC CARBON; TRANSIT-TIME; OCEAN; CIRCULATION AB A maximum entropy (ME) method is used to deconvolve tracer data for the joint distribution G of locations and times since last ventilation. The deconvolutions utilize World Ocean Circulation Experiment line A20 repeat hydrography for CFC-11, potential temperature, salinity, oxygen, and phosphate, as well as Global Ocean Data Analysis Project (GLODAP) radiocarbon data, combined with surface boundary conditions derived from the atmospheric history of CFC-11 and the World Ocean Atlas 2005 and GLODAP databases. Because of the limited number of available tracers the deconvolutions are highly underdetermined, leading to large entropic uncertainties, which are quantified using the information entropy of G relative to a prior distribution. Additional uncertainties resulting from data sparsity are estimated using a Monte Carlo approach and found to be of secondary importance. The ME deconvolutions objectively identify key water mass formation regions and quantify the local fraction of water of age tau or older last ventilated in each region. Ideal mean age and radiocarbon age are also estimated but found to have large entropic uncertainties that can be attributed to uncertainties in the partitioning of a given water parcel according to where it was last ventilated. Labrador/Irminger seawater (L water) is determined to be mostly less than similar to 40 a old in the vicinity of the deep western boundary current (DWBC) at the northern end of A20 but several decades older where the DWBC recrosses the section further south, pointing to the importance of mixing via a multitude of eddy-diffusive paths. Overflow water lies primarily below L water with young waters (tau less than or similar to 40 a) at middepth in the northern part of A20 and waters as old as similar to 600 a below similar to 3500 m. C1 [Holzer, Mark] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Holzer, Mark] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Holzer, Mark] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V5Z 1M9, Canada. [Primeau, Francois W.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Smethie, William M., Jr.; Khatiwala, Samar] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY 10964 USA. RP Holzer, M (reprint author), Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia. EM hm2220@columbia.edu; fprimeau@uci.edu; bsmeth@ldeo.columbia.edu; spk@ldeo.columbia.edu RI Primeau, Francois /A-7310-2011 OI Primeau, Francois /0000-0001-7452-9415 FU NSF, Columbia [OCE-0727229]; NSF, UV Irvine [OCE-0726871] FX This work was supported by NSF grants OCE-0727229 (Columbia) and OCE-0726871 (UC Irvine). We thank Tim Hall for discussions and Hoyle Lee for providing CFC data for line W and CFC saturation data for the North Atlantic. We are grateful to Rolf Sonnerup and two anonymous referees for providing valuable comments that led to an improved manuscript. NR 83 TC 22 Z9 22 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUL 7 PY 2010 VL 115 AR C07005 DI 10.1029/2009JC005750 PG 26 WC Oceanography SC Oceanography GA 624NG UT WOS:000279825200002 ER PT J AU Houart, R Moffitt, R AF Houart, Roland Moffitt, Robert TI A new Scabrotrophon (Gastropoda: Muricidae) from Hawaii and discussion about the generic classification of Boreotrophon kamchatkanus Dall, 1902, a related species SO NAUTILUS LA English DT Article AB A small muricid collected at 414 m off the Hawaiian Island of Oahu is described and compared, on the basis of shell characters only, with a syntype and two other specimens of Scabrotrophon kamchatkanus (Dall, 1902) (new combination) from the Northern Pacific. SEM images of the operculum, radula, and of the penis are illustrated for the new species. C1 [Houart, Roland] Inst Royal Sci Nat Belgique, B-1000 Brussels, Belgium. [Moffitt, Robert] Pacific Islands Fisheries Sci Ctr PIFSC, Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Honolulu, HI 96822 USA. RP Houart, R (reprint author), Inst Royal Sci Nat Belgique, Rue Vautier 29, B-1000 Brussels, Belgium. EM roland.houart@skynet.be; robert.moffitt@noaa.gov NR 12 TC 1 Z9 1 U1 0 U2 1 PU BAILEY-MATTHEWS SHELL MUSEUM PI SANIBEL PA C/O DR JOSE H LEAL, ASSOCIATE/MANAGING EDITOR, 3075 SANIBEL-CAPTIVA RD, SANIBEL, FL 33957 USA SN 0028-1344 J9 NAUTILUS JI Nautilus PD JUL 7 PY 2010 VL 124 IS 2 BP 112 EP 116 PG 5 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA 628AK UT WOS:000280086200006 ER PT J AU Wohl, CJ Belcher, MA Chen, L Connell, JW AF Wohl, Christopher J. Belcher, Marcus A. Chen, Lillian Connell, John W. TI Laser Ablative Patterning of Copoly(imide siloxane)s Generating Superhydrophobic Surfaces SO LANGMUIR LA English DT Article ID CONTACT-ANGLE HYSTERESIS; POLY(IMIDESILOXANE) COPOLYMERS; TEXTURED SURFACES; TOPOGRAPHY; POLYIMIDE; WETTABILITY; ADHESION; BEHAVIOR; WENZEL; CASSIE AB Low surface energy copoly(imide siloxane)s were generated via condensation polymerization reactions. The generated materials were characterized spectroscopically, thermally, mechanically, and via contact angle goniometry. The decrease in tensile modulus and opaque appearance of copoly(imide siloxane) films indicated phase segregation in the bulk. Preferential surface partitioning of the siloxane moieties was verified by X-ray photoelectron spectroscopy (XPS) and increased advancing water contact angle values (theta(A)). Pristine copoly(imide siloxane) surfaces typically exhibited theta(A) values of 111 degrees and sliding angles from 27 degrees to >60 degrees. The surface properties of these copoly(imide siloxane) films were further altered using laser ablation patterning (frequency-tripled Nd:YAG laser, 355 nm). Laser-etched square pillar arrays (25 mu m pillars with 25 mu m interspaces) changed theta(A) by up to 64 degrees. theta(A) values approaching 175 degrees and sliding angles from 1 degrees to 15 degrees were observed. ATR-IR spectroscopy and XPS indicated polymer chain scission reactions occurred as a result of laser ablation. Initial particle adhesion studies revealed that the copoly(imide siloxane)s outperformed the corresponding homopolyimides and that laser ablation patterning further enhanced this result. C1 [Wohl, Christopher J.; Belcher, Marcus A.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Chen, Lillian] NASA, Langley Res Ctr, NASA Langley Aerosp Res Summer Scholars Program, Hampton, VA 23681 USA. RP Wohl, CJ (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM christopher.wohl@nianet.org FU NASA's Exploration Technology Development Program (ETDP); NASA Langley Research Center FX The authors thank John Hopkins from NASA Langley Research Center for laser ablation patterning, Dr. Everett Carpenter and Dmitry Pestov from Virginia Commonwealth University for XPS measurements and data processing, Dr. Jeffrey Hinkley from NASA Langley Research Center for scientific discussion and guidance, the NASA postdoctoral program sponsored by Oak Ridge Associated Universities, and funding from the Dust Management Project, which is a part of NASA's Exploration Technology Development Program (ETDP), and the Creative and Innovative Research Program sponsored by NASA Langley Research Center. NR 59 TC 19 Z9 20 U1 7 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 6 PY 2010 VL 26 IS 13 BP 11469 EP 11478 DI 10.1021/la100958r PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 616VX UT WOS:000279239900146 PM 20446721 ER PT J AU Fairen, AG Chevrier, V Abramov, O Marzo, GA Gavin, P Davila, AF Tornabene, LL Bishop, JL Roush, TL Gross, C Kneissl, T Uceda, ER Dohm, JM Schulze-Makuch, D Rodriguez, JAP Amils, R McKay, CP AF Fairen, Alberto G. Chevrier, Vincent Abramov, Oleg Marzo, Giuseppe A. Gavin, Patricia Davila, Alfonso F. Tornabene, Livio L. Bishop, Janice L. Roush, Ted L. Gross, Christoph Kneissl, Thomas Uceda, Esther R. Dohm, James M. Schulze-Makuch, Dirk Rodriguez, J. Alexis P. Amils, Ricardo McKay, Christopher P. TI Noachian and more recent phyllosilicates in impact craters on Mars SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hydrothermal activity; impact cratering; Martian clays ID STABILITY; PREHNITE; WATER; EARTH AB Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (>3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times. C1 [Fairen, Alberto G.; Davila, Alfonso F.; Bishop, Janice L.] Carl Sagan Ctr Study Life Universe, Mountain View, CA 94043 USA. [Fairen, Alberto G.; Marzo, Giuseppe A.; Davila, Alfonso F.; Bishop, Janice L.; Roush, Ted L.; Uceda, Esther R.; McKay, Christopher P.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Chevrier, Vincent; Gavin, Patricia] Univ Arkansas, Arkansas Space Ctr, WM Keck Lab Space & Planetary Simulat, Fayetteville, AR 72701 USA. [Marzo, Giuseppe A.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Abramov, Oleg] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Tornabene, Livio L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Gross, Christoph; Kneissl, Thomas] Free Univ Berlin, Inst Geol Sci Planetary Sci & Remote Sensing, D-12249 Berlin, Germany. [Dohm, James M.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Schulze-Makuch, Dirk] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA. [Rodriguez, J. Alexis P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Amils, Ricardo] Ctr Astrobiol, Madrid 28850, Spain. RP Fairen, AG (reprint author), Carl Sagan Ctr Study Life Universe, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM alberto.g.fairen@nasa.gov RI Davila, Alfonso/A-2198-2013; Dohm, James/A-3831-2014; Marzo, Giuseppe/A-9765-2015 OI Davila, Alfonso/0000-0002-0977-9909; NR 29 TC 43 Z9 43 U1 2 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 6 PY 2010 VL 107 IS 27 BP 12095 EP 12100 DI 10.1073/pnas.1002889107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 621JI UT WOS:000279572100012 PM 20616087 ER PT J AU Le, G Slavin, JA Strangeway, RJ AF Le, G. Slavin, J. A. Strangeway, R. J. TI Space Technology 5 observations of the imbalance of regions 1 and 2 field-aligned currents and its implication to the cross-polar cap Pedersen currents SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-LATITUDE IONOSPHERE; CURRENT INTENSITIES; ENERGY-TRANSFER; ELECTRIC-FIELD; POYNTING FLUX; AURORAL-ZONE; ION OUTFLOW; SOLAR-WIND; MAGNETOSPHERE; CONDUCTIVITIES AB In this study, we use the in situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of region 1 (R1) and region 2 (R2) currents. During the 3 month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity, both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of similar to 0.1 MA. This study, although with a very limited data set, is one of a few attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling. C1 [Le, G.; Slavin, J. A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Le, G (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Mail Code 674, Greenbelt, MD 20771 USA. EM Guan.Le@nasa.gov RI Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X NR 34 TC 8 Z9 8 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 3 PY 2010 VL 115 AR A07202 DI 10.1029/2009JA014979 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 620UX UT WOS:000279527100003 ER PT J AU Wiseman, SM Arvidson, RE Morris, RV Poulet, F Andrews-Hanna, JC Bishop, JL Murchie, SL Seelos, FP Des Marais, D Griffes, JL AF Wiseman, Sandra M. Arvidson, R. E. Morris, R. V. Poulet, F. Andrews-Hanna, J. C. Bishop, J. L. Murchie, S. L. Seelos, F. P. Des Marais, D. Griffes, J. L. TI Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; RESOLUTION REFLECTANCE SPECTROSCOPY; ORBITER LASER ALTIMETER; IMPACT CRATER EJECTA; PLANUM LANDING SITE; TERRA-MERIDIANI; OMEGA/MARS EXPRESS; ARABIA TERRA; HYDROTHERMAL SYNTHESIS; BURNS FORMATION AB We present detailed stratigraphic and spectral analyses that focus on a region in northern Sinus Meridiani located between 1 degrees N to 5 degrees N latitude and 3 degrees W to 1 degrees E longitude. Several stratigraphically distinct units are defined and mapped using morphologic expression, spectral properties, and superposition relationships. Previously unreported exposures of hydrated sulfates and Fe/Mg smectites are identified using MRO CRISM and MEX OMEGA near-infrared (1.0 to 2.5 mu m) spectral reflectance observations. Layered deposits with monohydrated and polyhydrated sulfate spectral signatures that occur in association with a northeast-southwest trending valley are reexamined using high-resolution CRISM, HiRISE, and CTX images. Layers that are spectrally dominated by monohydrated and polyhydrated sulfates are intercalated. The observed compositional layering implies that multiple wetting events, brine recharge, or fluctuations in evaporation rate occurred. We infer that these hydrated sulfate-bearing layers were unconformably deposited following the extensive erosion of preexisting layered sedimentary rocks and may postdate the formation of the sulfate-and hematite-bearing unit analyzed by the MER Opportunity rover. Therefore, at least two episodes of deposition separated by an unconformity occurred. Fe/Mg phyllosilicates are detected in units that predate the sulfate- and hematite-bearing unit. The presence of Fe/Mg smectite in older units indicates that the relatively low pH formation conditions inferred for the younger sulfate-and hematite-bearing unit are not representative of the aqueous geochemical environment that prevailed during the formation and alteration of earlier materials. Sedimentary deposits indicative of a complex aqueous history that evolved over time are preserved in Sinus Meridiani, Mars. C1 [Wiseman, Sandra M.; Arvidson, R. E.] Washington Univ, Dept Earth & Planetary Sci, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Poulet, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Andrews-Hanna, J. C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Bishop, J. L.] SETI Inst, Mountain View, CA 94043 USA. [Bishop, J. L.; Des Marais, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Murchie, S. L.; Seelos, F. P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Griffes, J. L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91106 USA. RP Wiseman, SM (reprint author), Washington Univ, Dept Earth & Planetary Sci, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. RI Murchie, Scott/E-8030-2015; Seelos, Frank/C-7875-2016 OI Murchie, Scott/0000-0002-1616-8751; Seelos, Frank/0000-0001-9721-941X FU NASA FX The authors acknowledge financial support from the NASA Mars Reconnaissance Orbiter project and the NASA Graduate Student Research Program and thank the CRISM, OMEGA, CTX, and HiRISE operations teams for their efforts. NR 99 TC 40 Z9 41 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUL 2 PY 2010 VL 115 AR E00D18 DI 10.1029/2009JE003354 PG 31 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 620UO UT WOS:000279526100001 ER PT J AU Zehe, MJ Jaffe, RL AF Zehe, Michael J. Jaffe, Richard L. TI Theoretical Calculation of Jet Fuel Thermochemistry. 1. Tetrahydrodicylopentadiene (JP10) Thermochemistry Using the CBS-QB3 and G3(MP2)//B3LYP Methods SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL GEOMETRIES; GAUSSIAN-2 THEORY; THERMODYNAMIC FUNCTIONS; BOND SEPARATION; ENERGIES; MOLECULES; ENTHALPIES; COMBUSTION; HEATS AB High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetra-hydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10. using the Gaussian G(x) and G(x)(MP(x)) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta(f)H degrees(298) for exo-TDCPD. We find that use of the isodesmic bond separation reaction C(10)H(16) + 14CH(4) -> 12C(2)H(6) yields results for the era isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta(f)H degrees(298) within 5 kJ/mol of experiment. isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta(f)H degrees(298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively. C1 [Zehe, Michael J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Jaffe, Richard L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Zehe, MJ (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM michael.j.zehe@nasa.gov; richard.l.jaffe@nasa.gov NR 34 TC 7 Z9 7 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD JUL 2 PY 2010 VL 75 IS 13 BP 4387 EP 4391 DI 10.1021/jo100050w PG 5 WC Chemistry, Organic SC Chemistry GA 614BV UT WOS:000279030900006 PM 20509620 ER PT J AU Cable, H Durkin, GA AF Cable, Hugo Durkin, Gabriel A. TI Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion SO PHYSICAL REVIEW LETTERS LA English DT Article AB We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg'' limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation. C1 [Cable, Hugo] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore. [Durkin, Gabriel A.] NASA, Quantum Lab, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Cable, H (reprint author), Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore. EM cqthvc@nus.edu.sg RI Cable, Hugo/C-2346-2011 OI Cable, Hugo/0000-0002-9926-027X FU National Research Foundation; Ministry of Education, Singapore; Mission Critical Technologies, Inc FX The authors thank Antia Lamas, Terry Rudolph, and Alessio Serafini for helpful discussions. H.C. acknowledges support for this work by the National Research Foundation and Ministry of Education, Singapore. G.A.D. performed this work under contract with Mission Critical Technologies, Inc. NR 20 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 2 PY 2010 VL 105 IS 1 AR 013603 DI 10.1103/PhysRevLett.105.013603 PG 4 WC Physics, Multidisciplinary SC Physics GA 620FN UT WOS:000279484500001 PM 20867444 ER PT J AU Steele, A McCubbin, FM Fries, M Glamoclija, M Kater, L Nekvasil, H AF Steele, A. McCubbin, F. M. Fries, M. Glamoclija, M. Kater, L. Nekvasil, H. TI Graphite in an Apollo 17 Impact Melt Breccia SO SCIENCE LA English DT Article ID LUNAR REGOLITH; WHISKERS C1 [Steele, A.; McCubbin, F. M.; Glamoclija, M.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Fries, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kater, L.] Witec GmbH, D-89081 Ulm, Germany. [Nekvasil, H.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. RP Steele, A (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM asteele@ciw.edu RI McCubbin, Francis/D-1698-2009 FU NASA Astrobiology Science and Technology; Sample Return Laboratory; Data Analysis; Lunar Advanced Science and Exploration Research; Mars Fundamental Research FX We acknowledge support from NASA Astrobiology Science and Technology for Exploring Planets, Sample Return Laboratory Instrument and Data Analysis, Lunar Advanced Science and Exploration Research, and Mars Fundamental Research programs and thank Witec, J. Alton, and G. Lofgren. Dedicated to the memory of Annie Steele. NR 6 TC 23 Z9 23 U1 0 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 2 PY 2010 VL 329 IS 5987 BP 51 EP 51 DI 10.1126/science.1190541 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 619BL UT WOS:000279402700027 PM 20595608 ER PT J AU Meador, MAB Scherzer, CM Vivod, SL Quade, D Nguyen, BN AF Meador, Mary Ann B. Scherzer, Christopher M. Vivod, Stephanie L. Quade, Derek Nguyen, Baochau N. TI Epoxy Reinforced Aerogels Made Using a Streamlined Process SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE aerogels; polymer cross-linking; nanoporous materials; hybrid materials; sol-gel ID STRUCTURE-PROPERTY RELATIONSHIPS; POROUS 3D NANOSTRUCTURES; LINKED SILICA AEROGELS; AMINE-MODIFIED SILICA; POLYSTYRENE AB Reinforcing silica aerogels by conformally coating the nanoskeleton with a polymer has been demonstrated to be an effective way to improve mechanical properties. In addition, the mesoporosity and low thermal conductivity is maintained, making this robust form of aerogel an enabling material for a variety of aerospace applications. However, the process for making the aerogels can be quite long, involving production of the gel, solvent exchanges, and diffusion of monomer, followed by more solvent exchanges and supercritical fluid extraction. This paper for the first time compares a synthetic scheme that shortens the process to make epoxy reinforced aerogels by eliminating monomer diffusion and half of the solvent washes to the previously described diffusion-controlled process. The ethanol-soluble epoxy monomers are included in the initial step of the sol-gel process without interfering with gelation of the starting silanes. Notably, properties of aerogels made using a low amount of amine reactive sites have properties similar to those previously reported that used the longer diffusion controlled process, whereas higher amounts of amine sites produce less desirable monoliths with much higher density and lower surface areas. C1 [Meador, Mary Ann B.; Scherzer, Christopher M.; Vivod, Stephanie L.; Quade, Derek; Nguyen, Baochau N.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Meador, MAB (reprint author), NASA, Glenn Res Ctr, 21000 Brookpark Rd, Cleveland, OH 44135 USA. EM maryann.meador@nasa.gov OI Meador, Mary Ann/0000-0003-2513-7372 FU NASA FX We thank NASA's Fundamental Aeronautics Program in Hypersonics and the Innovative Partnerships Program for funding this effort, and the Undergraduate Student Researcher's Program for the student internship for C.M.S. We are also grateful to Daniel Schiemann for helium pycnometry measurements, Linda McCorkle for SEM pictures, and Anna Palczer for nitrogen porosimetry measurements. NR 19 TC 37 Z9 41 U1 3 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2010 VL 2 IS 7 BP 2162 EP 2168 DI 10.1021/am100422x PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 631SB UT WOS:000280367000054 ER PT J AU Faierson, EJ Logan, KV Stewart, BK Hunt, MP AF Faierson, Eric J. Logan, Kathryn V. Stewart, Brian K. Hunt, Michael P. TI Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction SO ACTA ASTRONAUTICA LA English DT Article DE ISRU; Moon; Regolith; SHS; Dome; Habitat AB NASA's anticipated return to the Moon by 2020 and subsequent establishment of a lunar base will necessitate the development of methods to utilize lunar resources for various construction and resource extraction applications. In this study the design of a lunar physical asset utilizing in-situ resources available at the lunar surface was examined. The design incorporated a voussoir dome type of architecture that has been in use for centuries on Earth. Production of the desired dome elements was accomplished by initiating a geothermite reaction in a mixture of lunar regolith simulant and aluminum powder. Shaping of voussoir elements was accomplished during the reaction using a custom fabricated silica-slip crucible to contain the geothermite reactant mixture. The product of the reaction retained the shape of the crucible. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Faierson, Eric J.; Logan, Kathryn V.] Natl Inst Aerosp Virginia Tech, Hampton, VA 23666 USA. [Stewart, Brian K.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hunt, Michael P.] USN, Res Lab, Washington, DC 20375 USA. RP Faierson, EJ (reprint author), Natl Inst Aerosp Virginia Tech, 100 Explorat Way, Hampton, VA 23666 USA. EM faierson@vt.edu FU National Institute of Aerospace (NIA) [VT-03-01] FX This study was funded by National Institute of Aerospace (NIA) contract number VT-03-01. The authors thank NASA Langley Research Center (LaRC) for the use of laboratory facilities. The authors also thank Dr. Norman Dowling and Mac McCord at Virginia Tech, as well as Dr. Wallace Vaughn and Craig Leggette at NASA LaRC for assistance with compressive strength testing. NR 12 TC 14 Z9 14 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUL-AUG PY 2010 VL 67 IS 1-2 BP 38 EP 45 DI 10.1016/j.actaastro.2009.12.006 PG 8 WC Engineering, Aerospace SC Engineering GA 596LG UT WOS:000277685800004 ER PT J AU Leeghim, H Choi, Y Jaroux, BA AF Leeghim, Henzeh Choi, Yoonhyuk Jaroux, Belgacem A. TI Uncorrelated unscented filtering for spacecraft attitude determination SO ACTA ASTRONAUTICA LA English DT Article DE Uncorrelated unscented filter; Attitude estimation; Quaternion normalization ID VECTOR OBSERVATIONS; KALMAN FILTER AB Spacecraft attitude estimation based on the nonlinear unscented filter is addressed to fully utilize capabilities of the unscented transformation. To overcome significant computational load, an efficient technique is proposed by appropriately eliminating correlation between random variables. This modification leads to a considerable reduction of computational burden in matrix square-root calculation for most nonlinear systems. The unscented filter makes use of a set of sample points to predict mean and covariance. For attitude estimation based on quaternions, an approach to computing quaternion means from sampled quaternions with guarantee of the normalization constraint is described by using a constrained optimization technique. Finally, the performance of the new approach is demonstrated by attitude determination using a star tracker and rate-gyro measurements. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Leeghim, Henzeh; Jaroux, Belgacem A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Choi, Yoonhyuk] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. RP Leeghim, H (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM hyunjae.lee@nasa.gov; yhchoi@ascl.kaist.ac.kr; Belgacem.A.Jaroux@nasa.gov FU Korea Research Foundation, Republic of Korea [KRF-2008-357-D00043]; KAIST-NASA ARC FX The authors acknowledge several anonymous reviewers for their suggestions on improving this article. This work was supported by the Korea Research Foundation Grant (KRF-2008-357-D00043), Republic of Korea, and partially funded by KAIST-NASA ARC Post-Doctoral Program, 2009. NR 20 TC 6 Z9 7 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUL-AUG PY 2010 VL 67 IS 1-2 BP 135 EP 144 DI 10.1016/j.actaastro.2009.12.017 PG 10 WC Engineering, Aerospace SC Engineering GA 596LG UT WOS:000277685800013 ER PT J AU Metzger, PT Lane, JE Carilli, RA Long, JM Shawn, KL AF Metzger, Philip T. Lane, John E. Carilli, Robert A. Long, Jason M. Shawn, Kathy L. TI Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch SO ACTA ASTRONAUTICA LA English DT Article DE Photogrammetry; Coefficient of drag; Launch debris; Ballistic coefficient; Pin-hole camera model; Launch pad 39A ID DRAG; PARTICLES AB A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Lane, John E.] ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. [Metzger, Philip T.] NASA, KSC Granular Mech & Regolith Operat Lab, Kennedy Space Ctr, FL 32899 USA. [Carilli, Robert A.; Shawn, Kathy L.] United Space Alliance, Kennedy Space Ctr, FL 32899 USA. ASRC Aerosp, Suitland, MD 20726 USA. RP Lane, JE (reprint author), ASRC Aerosp, ASRC 24, Kennedy Space Ctr, FL 32899 USA. EM Philip.T.Metzger@nasa.gov; John.E.Lane@nasa.gov; Robert.A.Carilli@nasa.gov; Jason.Long@noaa.gov; Kathy.L.Shawn@nasa.gov RI Metzger, Philip/R-3136-2016 OI Metzger, Philip/0000-0002-6871-5358 NR 9 TC 1 Z9 1 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUL-AUG PY 2010 VL 67 IS 1-2 BP 217 EP 229 DI 10.1016/j.actaastro.2009.10.020 PG 13 WC Engineering, Aerospace SC Engineering GA 596LG UT WOS:000277685800020 ER PT J AU Dickman, R O'Connor, B Bowersox, K Reightler, K Culbertson, F Shaw, B Nield, G Sowers, G Bloomfield, M AF Dickman, Robert O'Connor, Bryan Bowersox, Ken Reightler, Ken Culbertson, Frank Shaw, Brewster Nield, George Sowers, George Bloomfield, Michael TI HUMAN RATING for future spaceflight SO AEROSPACE AMERICA LA English DT Article C1 [O'Connor, Bryan] NASA, Washington, DC USA. [Shaw, Brewster] Boeing, Business Dev, Bellevue, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUL-AUG PY 2010 VL 48 IS 7 BP 26 EP + PG 14 WC Engineering, Aerospace SC Engineering GA V24JU UT WOS:000208407500010 ER PT J AU Diskin, B Thomas, JL Nielsen, EJ Nishikawa, H White, JA AF Diskin, Boris Thomas, James L. Nielsen, Eric J. Nishikawa, Hiroaki White, Jeffery A. TI Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 47th AIAA Aerospace Sciences Meeting and Exhibit Including the New Horizons Forum and Aerospace Exposition CY JAN 05-08, 2009 CL Orlando, FL SP AIAA ID NONUNIFORM MESHES; TURBULENT FLOWS; GRIDS; SCHEMES AB Finite-volume discretization schemes for viscous fluxes on general grids are compared using node-centered and cell-centered approaches. The grids range from regular grids to highly irregular grids, including random perturbations of the grid nodes. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes (a node-averaging scheme and two schemes using least-squares face-gradient reconstruction). The two least-squares schemes use either a nearest-neighbor or an adaptive-compact stencil at a face. The node-centered and least-squares schemes have similarly low levels of complexity. The node-averaging scheme has the highest complexity and can fail to converge to the exact solution when clipping of the node-averaged values is used. On highly anisotropic grids, typical of those encountered in grid adaptation, the least-squares schemes, the node-averaging scheme without clipping, and the node-centered scheme demonstrate similar second-order accuracies per degree of freedom. On anisotropic grids over a curved body, typical of turbulent flow simulations, the node-centered scheme is second-order accurate. The node-averaging scheme may degenerate on mixed-element grids. The least-squares schemes have to be amended to maintain second-order accuracy by either introducing a local approximate mapping or modifying the stencil to reflect the direction of strong coupling. Overall, the accuracies of the node-centered and the best cell-centered schemes are comparable at an equivalent number of degrees of freedom on isotropic and curved anisotropic grids. On stretched, randomly perturbed grids in a rectangular geometry, both gradient and discretization errors for all schemes are orders of magnitude higher than corresponding errors on regular grids. C1 [Diskin, Boris; Nishikawa, Hiroaki] NIA, Hampton, VA 23666 USA. [Thomas, James L.; Nielsen, Eric J.; White, Jeffery A.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Diskin, B (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, 100 Explorat Way, Charlottesville, VA 22904 USA. EM bdiskin@nianet.org; James.L.Thomas@nasa.gov; Eric.J.Nielsen@nasa.gov; hiro@nianet.org; Jeffery.A.White@nasa.gov RI Nishikawa, Hiroaki/M-1247-2016 OI Nishikawa, Hiroaki/0000-0003-4472-5313 NR 25 TC 20 Z9 21 U1 0 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD JUL PY 2010 VL 48 IS 7 BP 1326 EP 1338 DI 10.2514/1.44940 PG 13 WC Engineering, Aerospace SC Engineering GA 619GG UT WOS:000279416600005 ER PT J AU Bednarcyk, BA Aboudi, J Arnold, SM AF Bednarcyk, Brett A. Aboudi, Jacob Arnold, Steven M. TI Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents SO AIAA JOURNAL LA English DT Article ID GENERALIZED-METHOD; FIBER-COMPOSITES; FAILURE; CELLS AB The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading. C1 [Bednarcyk, Brett A.; Arnold, Steven M.] NASA, John H Glenn Res Ctr Lewis Field, Mech & Life Predict Branch, Cleveland, OH 44135 USA. [Aboudi, Jacob] Tel Aviv Univ, Sch Mech Engn, IL-69978 Ramat Aviv, Israel. RP Bednarcyk, BA (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Mech & Life Predict Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Brett.A.Bednarcyk@nasa.gov NR 29 TC 23 Z9 23 U1 1 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUL PY 2010 VL 48 IS 7 BP 1367 EP 1378 DI 10.2514/1.45671 PG 12 WC Engineering, Aerospace SC Engineering GA 619GG UT WOS:000279416600009 ER PT J AU Boles, JA Edwards, JR Baurle, RA AF Boles, John A. Edwards, Jack R. Baurle, Robert A. TI Large-Eddy/Reynolds-Averaged Navier-Stokes Simulations of Sonic Injection into Mach 2 Crossflow SO AIAA JOURNAL LA English DT Article ID NONREACTING SUPERSONIC COMBUSTOR; TRANSVERSE INJECTION; BOUNDARY-LAYER; JETS; PENETRATION; PREDICTIONS; STREAM AB Computational predictions of transverse injection of air, helium, and ethylene into a Mach 1.98 crossflow of air are presented. A hybrid large-eddy simulation/Reynolds-averaged Navier Stokes turbulence model is used. A blending function, dependent on modeled turbulence variables, is used to shift the turbulence closure from the Menter k-omega model near solid surfaces to a Smagorinsky subgrid model in the outer part of the incoming boundary layer and in the jet mixing zone. The results show reasonably good agreement with time-averaged Mie-scattering images of the plume structure for both helium and air injection and with experimental surface pressure distributions, even though the penetration of the jet into the crossflow is slightly overpredicted. Predictions of ethylene mole fraction at several transverse stations within the plume are in good agreement with time-averaged Raman-scattering mole-fraction data. The model results are used to examine the validity of the commonly used assumption of the constant turbulent Schmidt number in the intense mixing zone downstream of the injection location. The assumption of a constant turbulent Schmidt is shown to be inadequate for jet mixing dominated by large-scale entrainment. C1 [Boles, John A.; Edwards, Jack R.] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Baurle, Robert A.] NASA, Langley Res Ctr, Hyperson Air Breathing Prop Branch, Hampton, VA 23681 USA. RP Boles, JA (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. FU NASA [NNX07AC27A-S01] FX This work is supported by NASA under cooperative agreement NNX07AC27A-S01. Computer resources have been provided by the NASA Advanced Supercomputing division. The authors are grateful to Steven Lin of Taitech, Inc. and Campbell Carter of the U.S. Air Force Research Laboratory for providing experimental results and other information relating to their work. NR 42 TC 21 Z9 21 U1 2 U2 11 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD JUL PY 2010 VL 48 IS 7 BP 1444 EP 1456 DI 10.2514/1.J050066 PG 13 WC Engineering, Aerospace SC Engineering GA 619GG UT WOS:000279416600015 ER PT J AU ten Kate, IL AF ten Kate, Inge L. TI Organics on Mars? SO ASTROBIOLOGY LA English DT Review DE Mars; Organic degradation; Search for Mars organics; Laboratory investigations; Interpretation of planetary mission data ID VIKING BIOLOGY EXPERIMENTS; SIMULATED MARTIAN CONDITIONS; LIFE-DETECTION EXPERIMENTS; PHOTO-FENTON REACTION; PHOENIX LANDING SITE; AMINO-ACIDS; LABELED RELEASE; CARBON-ASSIMILATION; DUST DEVILS; OXIDANT ENHANCEMENT AB Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry-as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well. C1 [ten Kate, Inge L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [ten Kate, Inge L.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP ten Kate, IL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Inge.L.TenKate@nasa.gov NR 139 TC 26 Z9 26 U1 8 U2 48 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JUL PY 2010 VL 10 IS 6 BP 589 EP 603 DI 10.1089/ast.2010.0498 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 642XC UT WOS:000281254100003 PM 20735250 ER PT J AU Davila, AF Duport, LG Melchiorri, R Janchen, J Valea, S de los Rios, A Fairen, AG Mohlmann, D McKay, CP Ascaso, C Wierzchos, J AF Davila, Alfonso F. Gago Duport, Luis Melchiorri, Riccardo Jaenchen, Jochen Valea, Sergio de los Rios, Asuncion Fairen, Alberto G. Moehlmann, Diedrich McKay, Christopher P. Ascaso, Carmen Wierzchos, Jacek TI Hygroscopic Salts and the Potential for Life on Mars SO ASTROBIOLOGY LA English DT Article DE Hygroscopic salts; Evaporites; Water activity; Temperature; Endoliths; Atacama Desert; Deliquescence; Mars; Life ID ATACAMA DESERT; AQUEOUS-SOLUTIONS; WATER-VAPOR; OMEGA/MARS EXPRESS; MARTIAN REGOLITH; LIQUID WATER; CHILE; DELIQUESCENCE; TEMPERATURE; PARTICLES AB Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K. C1 [Davila, Alfonso F.; Fairen, Alberto G.] SETI Inst, Mountain View, CA USA. [Gago Duport, Luis] Univ Vigo, Vigo 36310, Spain. [Melchiorri, Riccardo] SRI Int, Mol Phys Lab, Div Phys Sci, Menlo Pk, CA 94025 USA. [Jaenchen, Jochen] Tech Univ Appl Sci Wildau, Wildau, Germany. [Valea, Sergio; de los Rios, Asuncion; Ascaso, Carmen; Wierzchos, Jacek] CSIC, CCMA, Inst Recursos Nat, Madrid, Spain. [Moehlmann, Diedrich] DLR Inst Planetenforsch, Berlin, Germany. [McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Davila, AF (reprint author), SETI Inst, 514 Wishman Rd, Mountain View, CA USA. EM adavila@seti.org RI Wierzchos, Jacek/F-7036-2011; Ascaso, Carmen/F-5369-2011; Davila, Alfonso/A-2198-2013; de los Rios, Asuncion/L-3694-2014 OI Wierzchos, Jacek/0000-0003-3084-3837; Ascaso, Carmen/0000-0001-9665-193X; Davila, Alfonso/0000-0002-0977-9909; de los Rios, Asuncion/0000-0002-0266-3516 FU Spanish Ministry of Science and Innovation [CGL2006-04658/BOS, CGL2007-62875/BOS]; CSIC (Spanish Research Council) [PIE-631A]; Helmholtz Association FX This work was supported by grants CGL2006-04658/BOS and CGL2007-62875/BOS from the Spanish Ministry of Science and Innovation and grant PIE-631A from the CSIC (Spanish Research Council), and by the Helmholtz Association through the research alliance "Planetary Evolution and Life." We greatly appreciate the comments and suggestions of Dennis Powers and an anonymous reviewer, which greatly improved the original manuscript. NR 56 TC 50 Z9 50 U1 7 U2 48 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD JUL PY 2010 VL 10 IS 6 BP 617 EP 628 DI 10.1089/ast.2009.0421 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 642XC UT WOS:000281254100005 PM 20735252 ER PT J AU De Buizer, JM Vacca, WD AF De Buizer, James M. Vacca, William D. TI DIRECT SPECTROSCOPIC IDENTIFICATION OF THE ORIGIN OF "GREEN FUZZY" EMISSION IN STAR-FORMING REGIONS SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: ISM; infrared: stars; ISM: individual objects (G19.88-0.53, G49.27-0.34); ISM: jets and outflows; ISM: lines and bands; ISM: molecules; shock waves; stars: formation ID SPITZER OBSERVATIONS; MOLECULAR-HYDROGEN; GLIMPSE; ICE; H-2; LEGACY; IRAC; BAND; CO AB "Green fuzzies" or "extended green objects" were discovered in the recent Spitzer GLIMPSE survey data. These extended sources have enhanced emission in the 4.5 mu m IRAC channel images (which are generally assigned to be green when making three-color RGB images from Spitzer data). Green fuzzies are frequently found in the vicinities of massive young stellar objects (MYSO), and it has been established that they are in some cases associated with outflows. Nevertheless, the spectral carrier(s) of this enhanced emission is (are) still uncertain. Although it has been suggested that Br alpha, H(2), [Fe II], and/or broad CO emission may be contributing to and enhancing the 4.5 mu m flux from these objects, to date there have been no direct observations of the 4-5 mu m spectra of these objects. Here we report on the first direct spectroscopic identification of the origin of the green fuzzy emission. We obtained spatially resolved L-and M-band spectra for two green fuzzy sources using NIRI on the Gemini North telescope. In the case of one source, G19.88-0.53, we detect three individual knots of green fuzzy emission around the source. The knots exhibit a pure molecular hydrogen line emission spectrum, with the 4.695 mu m nu = 0-0 S(9) line dominating the emission in the 4-5 mu m wavelength range, and no detected continuum component. Our data for G19.88-0.53 prove that green fuzzy emission can be due primarily to emission lines of molecular hydrogen within the bandpass of the IRAC 4.5 mu m channel. However, the other target observed, G49.27-0.34, does not exhibit any line emission and appears to be an embedded MYSO with a cometary UC H II region. We suggest that the effects of extinction in the 3-8 mu m wavelength range and an exaggeration in the color stretch of the 4.5 mu m filter in IRAC RGB images could lead to embedded sources such as this one falsely appearing "green." C1 [De Buizer, James M.; Vacca, William D.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. RP De Buizer, JM (reprint author), NASA, Ames Res Ctr, SOFIA USRA, MS 211-3, Moffett Field, CA 94035 USA. NR 25 TC 57 Z9 57 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2010 VL 140 IS 1 BP 196 EP 202 DI 10.1088/0004-6256/140/1/196 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 609XK UT WOS:000278691700017 ER PT J AU Absil, O Mawet, D AF Absil, Olivier Mawet, Dimitri TI Formation and evolution of planetary systems: the impact of high-angular resolution optical techniques SO ASTRONOMY AND ASTROPHYSICS REVIEW LA English DT Review DE Planetary systems; Circumstellar matter; Techniques: high-angular resolution; Techniques: interferometric ID HERBIG-AE/BE STARS; T-TAURI STARS; YOUNG STELLAR OBJECTS; MICROSCOPII DEBRIS DISK; EXTRASOLAR GIANT PLANETS; EDGE-ON DISK; KECK INTERFEROMETER OBSERVATIONS; SPATIALLY-RESOLVED SPECTROSCOPY; SPECTRAL ENERGY-DISTRIBUTIONS; TELESCOPE ADVANCED CAMERA AB The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high-angular resolution instruments which will be superseded by a new generation of instruments in the coming years. It is, therefore, an appropriate time to review the contributions of high-angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry, has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments and have thereby provided new constraints on planet formation theories. High-angular resolution techniques are also directly tracing the mechanisms governing the early evolution of planetary embryos and the dispersal of optically thick material around young stars. Finally, mature planetary systems are being studied with an unprecedented accuracy thanks to single-pupil imaging and interferometry, precisely locating dust populations and putting into light a whole new family of long-period giant extrasolar planets. C1 [Absil, Olivier] Univ Liege, Dept Astrophys Geophys & Oceanog, B-4000 Sart Tilman Par Liege, Belgium. [Mawet, Dimitri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Absil, O (reprint author), Univ Liege, Dept Astrophys Geophys & Oceanog, 17 Allee 6 Aout, B-4000 Sart Tilman Par Liege, Belgium. EM absil@astro.ulg.ac.be OI Absil, Olivier/0000-0002-4006-6237 FU Marie Curie IEF Fellowship; FRS-FNRS; Communaute Francaise de Belgique (Actions de recherche concertees-Academie Universitaire Wallonie, Europe); National Aeronautics and Space Administration (NASA) FX We are grateful to Prof. J. Surdej for encouraging us to write this article, and for giving us a deadline (to try) to meet. We also thank Drs. J.-C. Augereau, J. Krist, F. Malbet, E. Serabyn and K. Stapelfeldt for their constructive comments and suggestions on the manuscript. O. Absil acknowledges the support from a Marie Curie IEF Fellowship while at LAOG, of an FRS-FNRS postdoctoral fellowship while at IAGL, and from the Communaute Francaise de Belgique (Actions de recherche concertees-Academie Universitaire Wallonie, Europe). D. Mawet is supported by an appointment to the National Aeronautics and Space Administration (NASA) Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. NR 260 TC 24 Z9 24 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0935-4956 J9 ASTRON ASTROPHYS REV JI Astron. Astrophys. Rev. PD JUL PY 2010 VL 18 IS 3 BP 317 EP 382 DI 10.1007/s00159-009-0028-y PG 66 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613CL UT WOS:000278953800002 ER PT J AU Ali, B Tobin, JJ Fischer, WJ Poteet, CA Megeath, ST Allen, L Hartmann, L Calvet, N Furlan, E Osorio, M AF Ali, B. Tobin, J. J. Fischer, W. J. Poteet, C. A. Megeath, S. T. Allen, L. Hartmann, L. Calvet, N. Furlan, E. Osorio, M. TI Predicted colors and flux densities of protostars in the Herschel PACS and SPIRE filters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: protostars; radiative transfer; submillimeter: stars ID OBJECTS AB Upcoming surveys with the Herschel Space Observatory will yield far-IR photometry of large samples of young stellar objects, which will require careful interpretation. We investigate the color and luminosity diagnostics based on Herschel broad-band filters to identify and discern the properties of low-mass protostars. We compute a grid of 2016 protostars in various physical congurations, present the expected flux densities and flux density ratios for this grid of protostars, and compare Herschel observations of three protostars to the model results. These provide useful constraints on the range of colors and fluxes of protostar in the Herschel filters. We find that Herschel data alone is likely a useful diagnostic of the envelope properties of young stars. C1 [Ali, B.] CALTECH, NHSC IPAC, Pasadena, CA 91125 USA. [Tobin, J. J.; Hartmann, L.; Calvet, N.] Univ Michigan, Ann Arbor, MI 48109 USA. [Fischer, W. J.; Poteet, C. A.; Megeath, S. T.] Univ Toledo, Toledo, OH 43606 USA. [Allen, L.] Natl Opt Astron Observ, Tucson, AZ USA. [Furlan, E.] CALTECH, JPL, Pasadena, CA 91125 USA. [Osorio, M.] Inst Astrofis Andalucia, E-18080 Granada, Spain. RP Ali, B (reprint author), CALTECH, NHSC IPAC, Pasadena, CA 91125 USA. EM babar@ipac.caltech.edu OI Fischer, William J/0000-0002-3747-2496; Furlan, Elise/0000-0001-9800-6248 FU NASA [HST-GO-11548.04-A] FX We thank B. Whitney for making her code available publicly. B. Ali acknowledges support from NASA grant IPAC. ALI-OTKP-1-JPL.000094. J.J. Tobin acknowledges support from NASA grant HST-GO-11548.04-A. NR 12 TC 9 Z9 9 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L119 DI 10.1051/0004-6361/201014599 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200120 ER PT J AU Amblard, A Cooray, A Serra, P Temi, P Barton, E Negrello, M Auld, R Baes, M Baldry, IK Bamford, S Blain, A Bock, J Bonfield, D Burgarella, D Buttiglione, S Cameron, E Cava, A Clements, D Croom, S Dariush, A de Zotti, G Driver, S Dunlop, J Dunne, L Dye, S Eales, S Frayer, D Fritz, J Gardner, JP Gonzalez-Nuevo, J Herranz, D Hill, D Hopkins, A Hughes, DH Ibar, E Ivison, RJ Jarvis, M Jones, DH Kelvin, L Lagache, G Leeuw, L Liske, J Lopez-Caniego, M Loveday, J Maddox, S Michalowski, M Norberg, P Parkinson, H Peacock, JA Pearson, C Pascale, E Pohlen, M Popescu, C Prescott, M Robotham, A Rigby, E Rodighiero, G Samui, S Sansom, A Scott, D Serjeant, S Sharp, R Sibthorpe, B Smith, DJB Thompson, MA Tuffs, R Valtchanov, I Van Kampen, E van der Werf, P Verma, A Vieira, J Vlahakis, C AF Amblard, A. Cooray, A. Serra, P. Temi, P. Barton, E. Negrello, M. Auld, R. Baes, M. Baldry, I. K. Bamford, S. Blain, A. Bock, J. Bonfield, D. Burgarella, D. Buttiglione, S. Cameron, E. Cava, A. Clements, D. Croom, S. Dariush, A. de Zotti, G. Driver, S. Dunlop, J. Dunne, L. Dye, S. Eales, S. Frayer, D. Fritz, J. Gardner, Jonathan P. Gonzalez-Nuevo, J. Herranz, D. Hill, D. Hopkins, A. Hughes, D. H. Ibar, E. Ivison, R. J. Jarvis, M. Jones, D. H. Kelvin, L. Lagache, G. Leeuw, L. Liske, J. Lopez-Caniego, M. Loveday, J. Maddox, S. Michalowski, M. Norberg, P. Parkinson, H. Peacock, J. A. Pearson, C. Pascale, E. Pohlen, M. Popescu, C. Prescott, M. Robotham, A. Rigby, E. Rodighiero, G. Samui, S. Sansom, A. Scott, D. Serjeant, S. Sharp, R. Sibthorpe, B. Smith, D. J. B. Thompson, M. A. Tuffs, R. Valtchanov, I. Van Kampen, E. van der Werf, P. Verma, A. Vieira, J. Vlahakis, C. TI Herschel-ATLAS: Dust temperature and redshift distribution of SPIRE and PACS detected sources using submillimetre colours SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE submillimeter: galaxies; Galaxy: evolution; galaxies: high-redshift ID UNIVERSE GALAXY SURVEY; DEGREE EXTRAGALACTIC SURVEY; DEEP FIELD SOUTH; PHOTOMETRIC REDSHIFTS; INFRARED GALAXIES; STAR-FORMATION; SKY SURVEY; COLD DUST; BLAST; HISTORY AB We present colour-colour diagrams of detected sources in the Herschel-ATLAS science demonstration field from 100 to 500 mu m using both PACS and SPIRE. We fit isothermal modified black bodies to the spectral energy distribution (SED) to extract the dust temperature of sources with counterparts in Galaxy And Mass Assembly (GAMA) or SDSS surveys with either a spectroscopic or a photometric redshift. For a subsample of 330 sources detected in at least three FIR bands with a significance greater than 3 sigma, we find an average dust temperature of (28 +/- 8) K. For sources with no known redshift, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters, and compare to colours of observed sources to establish the redshift distribution of this sample. For another subsample of 1686 sources with fluxes above 35 mJy at 350 mu m and detected at 250 and 500 mu m with a significance greater than 3s, we find an average redshift of 2.2 +/- 0.6. C1 [Amblard, A.; Cooray, A.; Serra, P.; Barton, E.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Temi, P.; Leeuw, L.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Baldry, I. K.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bamford, S.; Dunne, L.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bock, J.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bonfield, D.; Jarvis, M.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Buttiglione, S.; de Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Cameron, E.] ETH, Insitute Astron, CH-8093 Zurich, Switzerland. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Clements, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Croom, S.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Driver, S.; Hill, D.; Kelvin, L.; Robotham, A.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Dunlop, J.; Michalowski, M.; Norberg, P.; Parkinson, H.; Peacock, J. A.] Univ Edinburgh, Scottish Univ Phys Alliance, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Frayer, D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Zotti, G.; Gonzalez-Nuevo, J.; Samui, S.] Scuola Int Super Studi Avanzati, I-34151 Trieste, Italy. [Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Hopkins, A.; Jones, D. H.; Sharp, R.; Sibthorpe, B.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Hughes, D. H.] INAOE, Puebla 72840, Mexico. [Ibar, E.; Ivison, R. J.; Sibthorpe, B.] Royal Observ Edinburgh, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Liske, J.; Van Kampen, E.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Verma, A.] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England. [van der Werf, P.; Vlahakis, C.] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Valtchanov, I.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. [Tuffs, R.] Max Planck Inst Nucl Astrophys MPIK, D-69117 Heidelberg, Germany. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Popescu, C.; Sansom, A.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Pearson, C.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Pearson, C.] Rutherford Appleton Lab, Space Sci & Technol Dept CCLRC RAL, Didcot OX11 0QX, Oxon, England. [Lagache, G.] IAS, F-91405 Orsay, France. [Lagache, G.] Univ Paris 11, Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-75700 Paris, France. RP Amblard, A (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM amblard@uci.edu RI Serra, Paolo/G-9678-2014; Robotham, Aaron/H-5733-2014; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013 OI Baldry, Ivan/0000-0003-0719-9385; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840; Lopez-Caniego, Marcos/0000-0003-1016-9283; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Liske, Jochen/0000-0001-7542-2927; Serra, Paolo/0000-0002-7609-3931; Robotham, Aaron/0000-0003-0429-3579; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Baes, Maarten/0000-0002-3930-2757; FU NASA; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Amblard, Barton, Cooray, Leeuw, Serra and Temi acknowledge support from NASA funds for US participants in Herschel through JPL. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. NR 35 TC 84 Z9 84 U1 0 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L9 DI 10.1051/0004-6361/201014586 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200010 ER PT J AU Baes, M Clemens, M Xilouris, EM Fritz, J Cotton, WD Davies, JI Bendo, GJ Bianchi, S Cortese, L De Looze, I Pohlen, M Verstappen, J Bohringer, H Bomans, DJ Boselli, A Corbelli, E Dariush, A Alighieri, SD Fadda, D Garcia-Appadoo, DA Gavazzi, G Giovanardi, C Grossi, M Hughes, TM Hunt, LK Jones, AP Madden, S Pierini, D Sabatini, S Smith, MWL Vlahakis, C Zibetti, S AF Baes, M. Clemens, M. Xilouris, E. M. Fritz, J. Cotton, W. D. Davies, J. I. Bendo, G. J. Bianchi, S. Cortese, L. De Looze, I. Pohlen, M. Verstappen, J. Boehringer, H. Bomans, D. J. Boselli, A. Corbelli, E. Dariush, A. Alighieri, S. di Serego Fadda, D. Garcia-Appadoo, D. A. Gavazzi, G. Giovanardi, C. Grossi, M. Hughes, T. M. Hunt, L. K. Jones, A. P. Madden, S. Pierini, D. Sabatini, S. Smith, M. W. L. Vlahakis, C. Zibetti, S. TI The Herschel Virgo Cluster Survey VI. The far-infrared view of M87 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: individual: M87; radiation mechanisms: thermal; radiation mechanisms: non-thermal; infrared: galaxies ID EARLY-TYPE GALAXIES; X-RAY; RADIATIVE-TRANSFER; RADIO-SOURCES; BLACK-HOLE; XMM-NEWTON; 1ST SURVEY; EMISSION; JET; SPECTRUM AB The origin of the far-infrared emission from the nearby radio galaxy M87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We present Herschel PACS and SPIRE observations of M87, taken as part of the science demonstration phase observations of the Herschel Virgo Cluster Survey. We compare these data with a synchrotron model based on mid-infrared, far-infrared, submm and radio data from the literature to investigate the origin of the far-infrared emission. Both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M87, which is not unexpected in the harsh X-ray environment of this radio galaxy sitting at the core of the Virgo cluster. C1 [Baes, M.; Fritz, J.; De Looze, I.; Verstappen, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Clemens, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Xilouris, E. M.] Natl Observ Athens, Athens 15236, Greece. [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Davies, J. I.; Cortese, L.; Pohlen, M.; Dariush, A.; Hughes, T. M.; Smith, M. W. L.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, Wales. [Bendo, G. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Bianchi, S.; Corbelli, E.; Alighieri, S. di Serego; Giovanardi, C.; Hunt, L. K.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Boehringer, H.; Pierini, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Bomans, D. J.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Boselli, A.] CNRS, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille, France. [Fadda, D.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Garcia-Appadoo, D. A.] ESO, Santiago, Chile. [Gavazzi, G.] Univ Milano Bicocca, I-20100 Milan, Italy. [Grossi, M.] Univ Lisbon, CAAUL, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Jones, A. P.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France. [Madden, S.] Univ Paris Diderot, CNRS, CEA, Lab AIM,DSM,Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Sabatini, S.] INAF Ist Astrofis Spaziale Fis Cosm, I-00133 Rome, Italy. [Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Zibetti, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Baes, M (reprint author), Univ Ghent, Sterrenkundig Observ, Krijgslaan 281 S9, B-9000 Ghent, Belgium. EM maarten.baes@ugent.be RI Xilouris, Emmanuel/K-9459-2013; di Serego Alighieri, Sperello/E-4067-2010; Baes, Maarten/I-6985-2013 OI Corbelli, Edvige/0000-0002-5788-2628; Grossi, Marco/0000-0003-4675-3246; Sabatini, Sabina/0000-0003-2076-5767; Hunt, Leslie/0000-0001-9162-2371; Cortese, Luca/0000-0002-7422-9823; Bianchi, Simone/0000-0002-9384-846X; di Serego Alighieri, Sperello/0000-0001-8769-2692; Baes, Maarten/0000-0002-3930-2757 NR 42 TC 24 Z9 24 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L53 DI 10.1051/0004-6361/201014555 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200054 ER PT J AU Baes, M Fritz, J Gadotti, DA Smith, DJB Dunne, L da Cunha, E Amblard, A Auld, R Bendo, GJ Bonfield, D Burgarella, D Buttiglione, S Cava, A Clements, D Cooray, A Dariush, A de Zotti, G Dye, S Eales, S Frayer, D Gonzalez-Nuevo, J Herranz, D Ibar, E Ivison, R Lagache, G Leeuw, L Lopez-Caniego, M Jarvis, M Maddox, S Negrello, M Michalowski, M Pascale, E Pohlen, M Rigby, E Rodighiero, G Samui, S Serjeant, S Temi, P Thompson, M van der Werf, P Verma, A Vlahakis, C AF Baes, M. Fritz, J. Gadotti, D. A. Smith, D. J. B. Dunne, L. da Cunha, E. Amblard, A. Auld, R. Bendo, G. J. Bonfield, D. Burgarella, D. Buttiglione, S. Cava, A. Clements, D. Cooray, A. Dariush, A. de Zotti, G. Dye, S. Eales, S. Frayer, D. Gonzalez-Nuevo, J. Herranz, D. Ibar, E. Ivison, R. Lagache, G. Leeuw, L. Lopez-Caniego, M. Jarvis, M. Maddox, S. Negrello, M. Michalowski, M. Pascale, E. Pohlen, M. Rigby, E. Rodighiero, G. Samui, S. Serjeant, S. Temi, P. Thompson, M. van der Werf, P. Verma, A. Vlahakis, C. TI Herschel-ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 754 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; dust, extinction; galaxies: ISM; infrared: galaxies ID RADIATIVE-TRANSFER; INFRARED-EMISSION; STAR-FORMATION; DISC GALAXIES; SKY SURVEY; NGC 891; EXTINCTION; BAND; DECOMPOSITION; DISTRIBUTIONS AB We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation. C1 [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Gadotti, D. A.] European So Observ, Santiago 19, Chile. [Smith, D. J. B.; Dunne, L.; Maddox, S.; Rigby, E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bendo, G. J.; Clements, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bonfield, D.; Jarvis, M.; Thompson, M.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Buttiglione, S.; de Zotti, G.; Samui, S.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [de Zotti, G.; Gonzalez-Nuevo, J.] Scuola Int Super Studi Avanzati, I-34151 Trieste, Italy. [Frayer, D.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Herranz, D.; Lopez-Caniego, M.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Ibar, E.; Ivison, R.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] IAS, F-91405 Orsay, France. [Lagache, G.] Univ Paris 11, Paris, France. [Lagache, G.] CNRS, UMR 8617, F-75700 Paris, France. [Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Michalowski, M.] Univ Edinburgh, Royal Observ, Inst Astron, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [van der Werf, P.; Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Verma, A.] Univ Oxford, Oxford OX1 3RH, England. RP Baes, M (reprint author), Univ Ghent, Sterrenkundig Observ, Krijgslaan 281 S9, B-9000 Ghent, Belgium. EM maarten.baes@ugent.be RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI da Cunha, Elisabete/0000-0001-9759-4797; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX This work used data from the UKIDSS DR5 and SDSS DR7. The UKIDSS project is defined in Lawrence et al. (2007) and uses the UKIRT Wide Field Camera (WFCAM; Casali et al. 2007). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. NR 44 TC 47 Z9 47 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L39 DI 10.1051/0004-6361/201014644 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200040 ER PT J AU Bendo, GJ Wilson, CD Pohlen, M Sauvage, M Auld, R Baes, M Barlow, MJ Bock, JJ Boselli, A Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Cortese, L Davies, JI Dwek, E Eales, SA Elbaz, D Galametz, M Galliano, F Gear, WK Glenn, J Gomez, HL Griffin, M Hony, S Isaak, KG Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Stevens, JA Sundar, S Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wozniak, H Wright, GS Zeilinger, WW AF Bendo, G. J. Wilson, C. D. Pohlen, M. Sauvage, M. Auld, R. Baes, M. Barlow, M. J. Bock, J. J. Boselli, A. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Cortese, L. Davies, J. I. Dwek, E. Eales, S. A. Elbaz, D. Galametz, M. Galliano, F. Gear, W. K. Glenn, J. Gomez, H. L. Griffin, M. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Stevens, J. A. Sundar, S. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI The Herschel Space Observatory view of dust in M81 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; galaxies: spiral; galaxies: individual: M81 ID STAR-FORMATION RATES; H-ALPHA; GALAXIES; TELESCOPE; EMISSION; SPITZER; THINGS; FIELD AB We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70-500 mu m in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 mu m are primarily dependent on radius but that the ratio of 70 to 160 mu m emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160-500 mu m emission traces 15-30 K dust heated by evolved stars in the bulge and disc whereas the 70 mu m emission includes dust heated by the active galactic nucleus and young stars in star forming regions. C1 [Bendo, G. J.; Clements, D. L.; O'Halloran, B.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Wilson, C. D.; Parkin, T. J.; Schirm, M. R. P.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Pohlen, M.; Auld, R.; Cortese, L.; Davies, J. I.; Eales, S. A.; Gear, W. K.; Gomez, H. L.; Griffin, M.; Papageorgiou, A.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sauvage, M.; Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Panuzzo, P.] Univ Paris Diderot, CEA DSM CNRS, Lab AIM, Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Charlot, S.; Roussel, H.; Sundar, S.; Vigroux, L.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. [Isaak, K. G.] Estec, ESA Astrophys Miss Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP Bendo, GJ (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM g.bendo@imperial.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Barlow, Michael/0000-0002-3875-1171; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); BMVIT (Austria); ESA-PRODEX (Belgium); DLR (Germany); CICT (Spain); MCT (Spain) FX We thank A. Fraceschini and E. Murphy for comments on this paper. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). NR 25 TC 109 Z9 109 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L65 DI 10.1051/0004-6361/201014568 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200066 ER PT J AU Boselli, A Ciesla, L Buat, V Cortese, L Auld, R Baes, M Bendo, GJ Bianchi, S Bock, J Bomans, DJ Bradford, M Castro-Rodriguez, N Chanial, P Charlot, S Clemens, M Clements, D Corbelli, E Cooray, A Cormier, D Dariush, A Davies, J De Looze, I Alighieri, SD Dwek, E Eales, S Elbaz, D Fadda, D Fritz, J Galametz, M Galliano, F Garcia-Appadoo, DA Gavazzi, G Gear, W Giovanardi, C Glenn, J Gomez, H Griffin, M Grossi, M Hony, S Hughes, TM Hunt, L Isaak, K Jones, A Levenson, L Lu, N Madden, SC O'Halloran, B Okumura, K Oliver, S Page, M Panuzzo, P Papageorgiou, A Parkin, T Perez-Fournon, I Pierini, D Pohlen, M Rangwala, N Rigby, E Roussel, H Rykala, A Sabatini, S Sacchi, N Sauvage, M Schulz, B Schirm, M Smith, MWL Spinoglio, L Stevens, J Sundar, S Symeonidis, M Trichas, M Vaccari, M Verstappen, J Vigroux, L Vlahakis, C Wilson, C Wozniak, H Wright, G Xilouris, EM Zeilinger, W Zibetti, S AF Boselli, A. Ciesla, L. Buat, V. Cortese, L. Auld, R. Baes, M. Bendo, G. J. Bianchi, S. Bock, J. Bomans, D. J. Bradford, M. Castro-Rodriguez, N. Chanial, P. Charlot, S. Clemens, M. Clements, D. Corbelli, E. Cooray, A. Cormier, D. Dariush, A. Davies, J. De Looze, I. Alighieri, S. di Serego Dwek, E. Eales, S. Elbaz, D. Fadda, D. Fritz, J. Galametz, M. Galliano, F. Garcia-Appadoo, D. A. Gavazzi, G. Gear, W. Giovanardi, C. Glenn, J. Gomez, H. Griffin, M. Grossi, M. Hony, S. Hughes, T. M. Hunt, L. Isaak, K. Jones, A. Levenson, L. Lu, N. Madden, S. C. O'Halloran, B. Okumura, K. Oliver, S. Page, M. Panuzzo, P. Papageorgiou, A. Parkin, T. Perez-Fournon, I. Pierini, D. Pohlen, M. Rangwala, N. Rigby, E. Roussel, H. Rykala, A. Sabatini, S. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. Smith, M. W. L. Spinoglio, L. Stevens, J. Sundar, S. Symeonidis, M. Trichas, M. Vaccari, M. Verstappen, J. Vigroux, L. Vlahakis, C. Wilson, C. Wozniak, H. Wright, G. Xilouris, E. M. Zeilinger, W. Zibetti, S. TI FIR colours and SEDs of nearby galaxies observed with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; galaxies: spiral; galaxies: elliptical and lenticular, cD; infrared: galaxies ID SPECTRAL ENERGY-DISTRIBUTION; STAR-FORMING GALAXIES; VIRGO CLUSTER; INFRARED-EMISSION; DUST; DISTRIBUTIONS; SPITZER; ATLAS; UV AB We present infrared colours (in the 25-500 mu m spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter beta <2 in low metallicity, active systems. C1 [Boselli, A.; Ciesla, L.; Buat, V.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Cortese, L.; Auld, R.; Dariush, A.; Davies, J.; Eales, S.; Gear, W.; Gomez, H.; Griffin, M.; Hughes, T. M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; De Looze, I.; Fritz, J.; Verstappen, J.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Bendo, G. J.; Chanial, P.; Clements, D.; O'Halloran, B.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bianchi, S.; Corbelli, E.; Alighieri, S. di Serego; Giovanardi, C.; Hunt, L.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Bock, J.; Bradford, M.; Levenson, L.; Lu, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J.; Bradford, M.; Levenson, L.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bomans, D. J.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Charlot, S.; Roussel, H.; Sundar, S.; Vigroux, L.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Clemens, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S. C.; Okumura, K.; Panuzzo, P.; Sauvage, M.] Univ Paris Diderot, CEA DSM CNRS, Lab AIM, Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Fadda, D.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Garcia-Appadoo, D. A.] ESO, Santiago, Chile. [Gavazzi, G.] Univ Milano Bicocca, I-20100 Milan, Italy. [Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. [Grossi, M.] Univ Lisbon, Ctr Astron & Astrofis, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Isaak, K.] Estec, ESA Astrophys Missions Div, NL-2200 AG Noordwijk, Netherlands. [Jones, A.] Univ Paris 11, IAS, F-91405 Orsay, France. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Parkin, T.; Schirm, M.; Wilson, C.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Pierini, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Rigby, E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sabatini, S.; Sacchi, N.; Spinoglio, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Schulz, B.; Wright, G.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Ctr, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Xilouris, E. M.] Natl Observ Athens, Inst Astron & Astrophys, Athens 15236, Greece. [Zeilinger, W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Zibetti, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Boselli, A (reprint author), CNRS, UMR6110, Lab Astrophys Marseille, 38 Rue F Joliot Curie, F-13388 Marseille, France. EM Alessandro.Boselli@oamp.fr RI Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; di Serego Alighieri, Sperello/E-4067-2010; Baes, Maarten/I-6985-2013; Xilouris, Emmanuel/K-9459-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Grossi, Marco/0000-0003-4675-3246; Sabatini, Sabina/0000-0003-2076-5767; di Serego Alighieri, Sperello/0000-0001-8769-2692; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Corbelli, Edvige/0000-0002-5788-2628; Hunt, Leslie/0000-0001-9162-2371; Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823; Bianchi, Simone/0000-0002-9384-846X FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 36 TC 49 Z9 49 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L61 DI 10.1051/0004-6361/201014534 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200062 ER PT J AU Cernicharo, J Goicoechea, JR Daniel, F Agundez, M Caux, E de Graauw, T De Jonge, A Kester, D Leduc, HG Steinmetz, E Stutzki, J Ward, JS AF Cernicharo, J. Goicoechea, J. R. Daniel, F. Agundez, M. Caux, E. de Graauw, T. De Jonge, A. Kester, D. Leduc, H. G. Steinmetz, E. Stutzki, J. Ward, J. S. TI The Cl-35/Cl-37 isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3 A SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: clouds; ISM: molecules; ISM: individual objects: W3; radiative transfer; radio lines: ISM ID SUBMILLIMETER OBSERVATIONS; INTERSTELLAR-MEDIUM; COLOGNE DATABASE; SPACE-TELESCOPE; WATER-VAPOR; SPECTROSCOPY; ABSORPTION; ABUNDANCES; IRC+10216; OMC-1 AB We report on the detection with the HIFI instrument on board the Herschel satellite of the two hydrogen chloride isotopologues, (HCl)-Cl-35 and (HCl)-Cl-37, towards the massive star-forming region W3 A. The J = 1-0 line of both species was observed with receiver 1b of the HIFI instrument at similar to 625.9 and similar to 624.9 GHz. The different hyperfine components were resolved. The observations were modeled with a non-local, non-LTE radiative transfer model that includes hyperfine line overlap and radiative pumping by dust. Both effects are found to play an important role in the emerging intensity from the different hyperfine components. The inferred (HCl)-Cl-35 column density (a few times similar to 10(14) cm(-2)), and fractional abundance relative to H nuclei (similar to 7.5 x 10(-10)), supports an upper limit to the gas phase chlorine depletion of approximate to 200. Our best-fit model estimate of the (HCl)-Cl-35/(HCl)-Cl-37 abundance ratio is approximate to 2.1 +/- 0.5, slightly lower, but still compatible with the solar isotopic abundance ratio (approximate to 3.1). Since both species were observed simultaneously, this is the first accurate estimation of the [Cl-35]/[Cl-37] isotopic ratio in molecular clouds. Our models indicate that even for large line opacities and possible hyperfine intensity anomalies, the (HCl)-Cl-35 and (HCl)-Cl-37 J = 1-0 integrated line-intensity ratio provides a good estimate of the Cl-35/Cl-37 isotopic abundance ratio. C1 [Cernicharo, J.; Goicoechea, J. R.; Daniel, F.; Agundez, M.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Agundez, M.] Observ Paris, LUTH, F-92190 Meudon, France. [Caux, E.] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [de Graauw, T.] Atacama Large Millimeter Submillimeter Array, ALMA Off, Santiago, Chile. [De Jonge, A.; Kester, D.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Leduc, H. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Steinmetz, E.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-5000 Cologne 41, Germany. [Ward, J. S.] Raytheon Co, Ft Wayne, IN USA. RP Cernicharo, J (reprint author), CSIC INTA, Ctr Astrobiol, Carretera Ajalvir,Km 4, Madrid 28850, Spain. EM jcernicharo@cab.inta-csic.es RI Agundez, Marcelino/I-5369-2012 OI Agundez, Marcelino/0000-0003-3248-3564 FU Spanish MICINN [AYA2006-14876, AYA2009-07304, CSD2009-00038]; EC [235753] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. We thank the Spanish MICINN for funding support through grants AYA2006-14876, AYA2009-07304, and and Consolider project CSD2009-00038. J.R.G. is supported by a Ramon y Cajal research contract from the Spanish MICINN. MA is supported by a Marie Curie Intra-European Individual Fellowship within the EC FP7 under grant agreement no 235753. NR 36 TC 10 Z9 10 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L115 DI 10.1051/0004-6361/201014638 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200116 ER PT J AU Clemens, MS Jones, AP Bressan, A Baes, M Bendo, GJ Bianchi, S Bomans, DJ Boselli, A Corbelli, E Cortese, L Dariush, A Davies, JI De Looze, I Alighieri, SD Fadda, D Fritz, J Garcia-Appadoo, DA Gavazzi, G Giovanardi, C Grossi, M Hughes, TM Hunt, LK Madden, S Pierini, D Pohlen, M Sabatini, S Smith, MWL Verstappen, J Vlahakis, C Xilouris, EM Zibetti, S AF Clemens, M. S. Jones, A. P. Bressan, A. Baes, M. Bendo, G. J. Bianchi, S. Bomans, D. J. Boselli, A. Corbelli, E. Cortese, L. Dariush, A. Davies, J. I. De Looze, I. Alighieri, S. di Serego Fadda, D. Fritz, J. Garcia-Appadoo, D. A. Gavazzi, G. Giovanardi, C. Grossi, M. Hughes, T. M. Hunt, L. K. Madden, S. Pierini, D. Pohlen, M. Sabatini, S. Smith, M. W. L. Verstappen, J. Vlahakis, C. Xilouris, E. M. Zibetti, S. TI The Herschel Virgo Cluster Survey III. A constraint on dust grain lifetime in early-type galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: ISM; infrared: galaxies ID ELLIPTIC GALAXIES; X-RAY; CHANDRA OBSERVATIONS; INTERSTELLAR GRAINS; OPTICAL-PROPERTIES; AMORPHOUS-CARBON; SPITZER-IRS; EMISSION; ACCRETION; GRAPHITE AB Passive early-type galaxies (ETGs) provide an ideal laboratory for studying the interplay between dust formation around evolved stars and its subsequent destruction in a hot gas. Using Spitzer-IRS and Herschel data we compare the dust production rate in the envelopes of evolved AGB stars with a constraint on the total dust mass. Early-type galaxies which appear to be truly passively evolving are not detected by Herschel. We thus derive a distance independent upper limit to the dust grain survival time in the hostile environment of ETGs of <46 +/- 25 Myr for amorphous silicate grains. This implies that ETGs which are detected at far-infrared wavelengths have acquired a cool dusty medium via interaction. Given likely time-scales for ram-pressure stripping, this also implies that only galaxies with dust in a cool (atomic) medium can release dust into the intra-cluster medium. C1 [Clemens, M. S.; Bressan, A.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Jones, A. P.] Univ Paris 11, IAS, F-91405 Orsay, France. [Bressan, A.] SISSA, ISAS, I-34014 Trieste, Italy. [Baes, M.; De Looze, I.; Fritz, J.; Verstappen, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Bendo, G. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Bianchi, S.; Corbelli, E.; Alighieri, S. di Serego; Giovanardi, C.; Hunt, L. K.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Bomans, D. J.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Boselli, A.] CNRS, UMR 6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Cortese, L.; Dariush, A.; Davies, J. I.; Hughes, T. M.; Pohlen, M.; Smith, M. W. L.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Fadda, D.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Garcia-Appadoo, D. A.] ESO, Santiago, Chile. [Gavazzi, G.] Univ Milano Bicocca, I-20100 Milan, Italy. [Grossi, M.] Univ Lisbon, CAAUL, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Madden, S.] Univ Paris Diderot, CNRS, CEA, Lab AIM,DSM,Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Pierini, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Sabatini, S.] INAF Ist Astrofis Spaziale Fis Cosm, I-00133 Rome, Italy. [Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Xilouris, E. M.] Natl Observ Athens, Athens 15236, Greece. [Zibetti, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Clemens, MS (reprint author), Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM marcel.clemens@oapd.inaf.it; Anthony.Jones@ias.u-psud.fr RI di Serego Alighieri, Sperello/E-4067-2010; Baes, Maarten/I-6985-2013; Xilouris, Emmanuel/K-9459-2013; OI di Serego Alighieri, Sperello/0000-0001-8769-2692; Baes, Maarten/0000-0002-3930-2757; Cortese, Luca/0000-0002-7422-9823; Bianchi, Simone/0000-0002-9384-846X; Corbelli, Edvige/0000-0002-5788-2628; Grossi, Marco/0000-0003-4675-3246; Sabatini, Sabina/0000-0003-2076-5767; Hunt, Leslie/0000-0001-9162-2371 FU [ASI/INAF I/016/07/0] FX M.C. and A.B. acknowledge support from contract ASI/INAF I/016/07/0. NR 36 TC 32 Z9 32 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L50 DI 10.1051/0004-6361/201014533 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200051 ER PT J AU Clements, DL Rigby, E Maddox, S Dunne, L Mortier, A Pearson, C Amblard, A Auld, R Baes, M Bonfield, D Burgarella, D Buttiglione, S Cava, A Cooray, A Dariush, A de Zotti, G Dye, S Eales, S Frayer, D Fritz, J Gardner, JP Gonzalez-Nuevo, J Herranz, D Ibar, E Ivison, R Jarvis, MJ Lagache, G Leeuw, L Lopez-Caniego, M Negrello, M Pascale, E Pohlen, M Rodighiero, G Samui, S Serjeant, S Sibthorpe, B Scott, D Smith, DJB Temi, P Thompson, M Valtchanov, I van der Werf, P Verma, A AF Clements, D. L. Rigby, E. Maddox, S. Dunne, L. Mortier, A. Pearson, C. Amblard, A. Auld, R. Baes, M. Bonfield, D. Burgarella, D. Buttiglione, S. Cava, A. Cooray, A. Dariush, A. de Zotti, G. Dye, S. Eales, S. Frayer, D. Fritz, J. Gardner, Jonathan P. Gonzalez-Nuevo, J. Herranz, D. Ibar, E. Ivison, R. Jarvis, M. J. Lagache, G. Leeuw, L. Lopez-Caniego, M. Negrello, M. Pascale, E. Pohlen, M. Rodighiero, G. Samui, S. Serjeant, S. Sibthorpe, B. Scott, D. Smith, D. J. B. Temi, P. Thompson, M. Valtchanov, I. van der Werf, P. Verma, A. TI Herschel-ATLAS: Extragalactic number counts from 250 to 500 microns SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: statistics; infrared: galaxies; submillimeter: galaxies ID SUBMILLIMETER GALAXIES; STAR-FORMATION; SURVEY SHADES; SPITZER; PREDICTIONS; MODEL; EVOLUTION; UNIVERSE; FIELD; MAPS AB Aims. The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 mu m when completed, reaching flux limits (5 sigma) from 32 to 145 mJy. We here present galaxy number counts obtained for SPIRE observations of the first similar to 14 sq. deg. observed at 250, 350 and 500 mu m. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200 mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift. C1 [Clements, D. L.; Mortier, A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Rigby, E.; Maddox, S.; Dunne, L.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Ibar, E.; Ivison, R.; Sibthorpe, B.] Royal Observ Edinburgh, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Amblard, A.; Bonfield, D.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.; Smith, D. J. B.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Pearson, C.] Rutherford Appleton Lab, SSTD, Didcot OX11 0QX, Oxon, England. [Pearson, C.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Buttiglione, S.; de Zotti, G.; Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Jarvis, M. J.; Thompson, M.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Samui, S.] Scuola Int Super Studi Avanzati, I-34151 Trieste, Italy. [Valtchanov, I.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Verma, A.] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Lagache, G.] IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, F-75700 Paris, France. [Lagache, G.] Univ Paris 11, Orsay, France. RP Clements, DL (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM d.clements@imperial.ac.uk RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 NR 43 TC 68 Z9 68 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L8 DI 10.1051/0004-6361/201014581 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200009 ER PT J AU Codella, C Lefloch, B Ceccarelli, C Cernicharo, J Caux, E Lorenzani, A Viti, S Hily-Blant, P Parise, B Maret, S Nisini, B Caselli, P Cabrit, S Pagani, L Benedettini, M Boogert, A Gueth, F Melnick, G Neufeld, D Pacheco, S Salez, M Schuster, K Bacmann, A Baudry, A Bell, T Bergin, EA Blake, G Bottinelli, S Castets, A Comito, C Coutens, A Crimier, N Dominik, C Demyk, K Encrenaz, P Falgarone, E Fuente, A Gerin, M Goldsmith, P Helmich, F Hennebelle, P Henning, T Herbst, E Jacq, T Kahane, C Kama, M Klotz, A Langer, W Lis, D Lord, S Pearson, J Phillips, T Saraceno, P Schilke, P Tielens, X van der Tak, F van der Wiel, M Vastel, C Wakelam, V Walters, A Wyrowski, F Yorke, H Borys, C Delorme, Y Kramer, C Larsson, B Mehdi, I Ossenkopf, V Stutzki, J AF Codella, C. Lefloch, B. Ceccarelli, C. Cernicharo, J. Caux, E. Lorenzani, A. Viti, S. Hily-Blant, P. Parise, B. Maret, S. Nisini, B. Caselli, P. Cabrit, S. Pagani, L. Benedettini, M. Boogert, A. Gueth, F. Melnick, G. Neufeld, D. Pacheco, S. Salez, M. Schuster, K. Bacmann, A. Baudry, A. Bell, T. Bergin, E. A. Blake, G. Bottinelli, S. Castets, A. Comito, C. Coutens, A. Crimier, N. Dominik, C. Demyk, K. Encrenaz, P. Falgarone, E. Fuente, A. Gerin, M. Goldsmith, P. Helmich, F. Hennebelle, P. Henning, Th. Herbst, E. Jacq, T. Kahane, C. Kama, M. Klotz, A. Langer, W. Lis, D. Lord, S. Pearson, J. Phillips, T. Saraceno, P. Schilke, P. Tielens, X. van der Tak, F. van der Wiel, M. Vastel, C. Wakelam, V. Walters, A. Wyrowski, F. Yorke, H. Borys, C. Delorme, Y. Kramer, C. Larsson, B. Mehdi, I. Ossenkopf, V. Stutzki, J. TI The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: individual objects: L1157; ISM: molecules; stars: formation ID 1157 MOLECULAR OUTFLOW; LINE EMISSION; SUBMILLIMETER; EVOLUTION; METHANOL; DATABASE; PROGRAM AB We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical HErschel Survey of Star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (similar to 1000-2000 K) component traced by H-2 IR-emission and the cold (similar to 10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3 sigma level of 30 mK. The emission is dominated by CO(5-4) and H2O(1(10)-1(01)) transitions, as discussed by Lefloch et al. in this volume. Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (>= 200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground. C1 [Codella, C.; Lorenzani, A.; Caselli, P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Lefloch, B.; Ceccarelli, C.; Hily-Blant, P.; Maret, S.; Pacheco, S.; Bacmann, A.; Castets, A.; Crimier, N.; Kahane, C.; Klotz, A.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Cernicharo, J.; Crimier, N.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Vastel, C.; Walters, A.] Univ Toulouse 3, CESR, F-31062 Toulouse, France. [Caux, E.; Bottinelli, S.; Coutens, A.; Demyk, K.; Vastel, C.; Walters, A.] CNRS, Toulouse, France. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Viti, S.; Benedettini, M.; Saraceno, P.] Ist Fis Spazio Interplanetario, INAF, Rome, Italy. [Parise, B.; Comito, C.; Schilke, P.; Wyrowski, F.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Nisini, B.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cabrit, S.; Pagani, L.; Salez, M.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.; Delorme, Y.] Observ Paris, CNRS, LERMA UMR 8112, F-92195 Meudon, France. [Boogert, A.] CALTECH, Infared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Gueth, F.; Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Melnick, G.] Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Bacmann, A.; Baudry, A.; Jacq, T.; Wakelam, V.] CNRS INSU, Lab Astrophys Bordeaux, Floirac, France. [Bergin, E. A.] Univ Michigan, Ann Arbor, MI 48109 USA. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6525 ED Nijmegen, Netherlands. [Fuente, A.] IGN Observ Astron Nacl, Alcala De Henares, Spain. [Goldsmith, P.; Langer, W.; Pearson, J.; Yorke, H.; Mehdi, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helmich, F.; van der Tak, F.; van der Wiel, M.] Univ Groningen, Netherlands Inst Space Res, SRON, Groningen, Netherlands. [Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Herbst, E.] Ohio State Univ, Columbus, OH USA. [Schilke, P.; Ossenkopf, V.; Stutzki, J.] Univ Cologne, Inst Phys, Cologne, Germany. [Tielens, X.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [van der Wiel, M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Kramer, C.] Inst Radio Astron Millimetr, Granada, Spain. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. RP Codella, C (reprint author), Osserv Astrofis Arcetri, INAF, Largo E Fermi 5, I-50125 Florence, Italy. EM codella@arcetri.astro.it RI Coutens, Audrey/M-4533-2014; van der Wiel, Matthijs/M-4531-2014; Fuente, Asuncion/G-1468-2016; OI Coutens, Audrey/0000-0003-1805-3920; van der Wiel, Matthijs/0000-0002-4325-3011; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554; Fuente, Asuncion/0000-0001-6317-6343; Wakelam, Valentine/0000-0001-9676-2605; Kama, Mihkel/0000-0003-0065-7267 NR 27 TC 57 Z9 57 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L112 DI 10.1051/0004-6361/201014582 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200113 ER PT J AU Cooray, A Amblard, A Wang, L Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Dowell, CD Dwek, E Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Khostovan, AA Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Marsden, G Mitchell-Wynne, K Mortier, AMJ Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Fournon, IP Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Serra, P Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Ward, R Wright, G Xu, CK Zemcov, M AF Cooray, A. Amblard, A. Wang, L. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Khostovan, A. A. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Marsden, G. Mitchell-Wynne, K. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, D. Serra, P. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE submillimeter: galaxies; large-scale structure of Universe; cosmology: observations; galaxies: evolution; galaxies: high-redshift ID STAR-FORMING GALAXIES; FORMATION HISTORY; POPULATION; COUNTS; REDSHIFTS; EVOLUTION AB We measure the angular correlation function, omega(theta), from 0.5 to 30 arcmin of detected sources in two wide fields of the Herschel Multi-tiered Extragalactic Survey (HerMES). Our measurements are consistent with the expected clustering shape from a population of sources that trace the dark matter density field, including non-linear clustering at arcminute angular scales arising from multiple sources that occupy the same dark matter halos. By making use of the halo model to connect the spatial clustering of sources to the dark matter halo distribution, we estimate source bias and halo occupation number for dusty sub-mm galaxies at z similar to 2. We find that sub-mm galaxies with 250 mu m flux densities above 30 mJy reside in dark matter halos with mass above (5 +/- 4) x 10(12) M(circle dot), while (14 +/- 8)% of such sources appear as satellites in more massive halos. C1 [Cooray, A.; Amblard, A.; Khostovan, A. A.; Mitchell-Wynne, K.; Serra, P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Marsden, G.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, OAMP, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Auld, R.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Wang, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, F-91191 Gif Sur Yvette, France. RP Cooray, A (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM acooray@uci.edu RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU NASA; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX Cooray, Amblard, Serra, Khostovan, and Mitchell-Wynne are supported by NASA funds for US participants in Herschel through an award from JPL. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). The data presented in this paper will be released through the HeDaM Database in Marseille2 NR 22 TC 49 Z9 49 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L22 DI 10.1051/0004-6361/201014597 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200023 ER PT J AU Cortese, L Bendo, GJ Boselli, A Davies, JI Gomez, HL Pohlen, M Auld, R Baes, M Bock, JJ Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Dwek, E Eales, SA Elbaz, D Galametz, M Galliano, F Gear, WK Glenn, J Griffin, M Hony, S Isaak, KG Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Sauvage, M Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Stevens, JA Srinivasan, S Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wilson, CD Wozniak, H Wright, GS Zeilinger, WW AF Cortese, L. Bendo, G. J. Boselli, A. Davies, J. I. Gomez, H. L. Pohlen, M. Auld, R. Baes, M. Bock, J. J. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Dwek, E. Eales, S. A. Elbaz, D. Galametz, M. Galliano, F. Gear, W. K. Glenn, J. Griffin, M. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Stevens, J. A. Srinivasan, S. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wilson, C. D. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI Herschel-SPIRE observations of the disturbed galaxy NGC4438 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: individual: NGC4438; infrared: galaxies; dust, extinction ID POLYCYCLIC AROMATIC-HYDROCARBONS; VIRGO CLUSTER; NGC 4438; NGC-4438; DUST; GAS; ABUNDANCES; EMISSION; SYSTEM; VIEW AB We present Herschel-SPIRE observations of the perturbed galaxy NGC4438 in the Virgo cluster. These images reveal the presence of extra-planar dust up to similar to 4-5 kpc away from the galaxy's disk. The dust closely follows the distribution of the stripped atomic and molecular hydrogen, supporting the idea that gas and dust are perturbed in a similar fashion by the cluster environment. Interestingly, the extra-planar dust lacks a warm temperature component when compared to the material still present in the disk, explaining why it was missed by previous far-infrared investigations. Our study provides evidence for dust stripping in clusters of galaxies and illustrates the potential of Herschel data for our understanding of environmental effects on galaxy evolution. C1 [Cortese, L.; Davies, J. I.; Gomez, H. L.; Pohlen, M.; Auld, R.; Eales, S. A.; Gear, W. K.; Griffin, M.; Isaak, K. G.; Papageorgiou, A.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bendo, G. J.; Clements, D. L.; O'Halloran, B.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Baes, M.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Panuzzo, P.; Sauvage, M.; Vigroux, L.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Charlot, S.; Roussel, H.; Srinivasan, S.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Isaak, K. G.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. Estec, ESA Astrophys Missions Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Parkin, T. J.; Schirm, M. R. P.; Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Ctr, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP Cortese, L (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg Parade, Cardiff CF24 3AA, S Glam, Wales. EM luca.cortese@astro.cf.ac.uk; Eli.Dwek@nasa.gov RI Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX We thank Ananda Hota, Jeff Kenney and Bernd Vollmer for providing us with an electronic version of their data. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 28 TC 21 Z9 21 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L63 DI 10.1051/0004-6361/201014547 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200064 ER PT J AU De Graauw, T Helmich, FP Phillips, TG Stutzki, J Caux, E Whyborn, ND Dieleman, P Roelfsema, PR Aarts, H Assendorp, R Bachiller, R Baechtold, W Barcia, A Beintema, DA Belitsky, V Benz, AO Bieber, R Boogert, A Borys, C Bumble, B Cais, P Caris, M Cerulli-Irelli, P Chattopadhyay, G Cherednichenko, S Ciechanowicz, M Coeur-Joly, O Comito, C Cros, A de Jonge, A de Lange, G Delforges, B Delorme, Y den Boggende, T Desbat, JM Diez-Gonzalez, C Di Giorgio, AM Dubbeldam, L Edwards, K Eggens, M Erickson, N Evers, J Fich, M Finn, T Franke, B Gaier, T Gal, C Gao, JR Gallego, JD Gauffre, S Gill, JJ Glenz, S Golstein, H Goulooze, H Gunsing, T Gusten, R Hartogh, P Hatch, WA Higgins, R Honingh, EC Huisman, R Jackson, BD Jacobs, H Jacobs, K Jarchow, C Javadi, H Jellema, W Justen, M Karpov, A Kasemann, C Kawamura, J Keizer, G Kester, D Klapwijk, TM Klein, T Kollberg, E Kooi, J Kooiman, PP Kopf, B Krause, M Krieg, JM Kramer, C Kruizenga, B Kuhn, T Laauwen, W Lai, R Larsson, B Leduc, HG Leinz, C Lin, RH Liseau, R Liu, GS Loose, A Lopez-Fernandez, I Lord, S Luinge, W Marston, A Martin-Pintado, J Maestrini, A Maiwald, FW McCoey, C Mehdi, I Megej, A Melchior, M Meinsma, L Merkel, H Michalska, M Monstein, C Moratschke, D Morris, P Muller, H Murphy, JA Naber, A Natale, E Nowosielski, W Nuzzolo, F Olberg, M Olbrich, M Orfei, R Orleanski, P Ossenkopf, V Peacock, T Pearson, JC Peron, I Phillip-May, S Piazzo, L Planesas, P Rataj, M Ravera, L Risacher, C Salez, M Samoska, LA Saraceno, P Schieder, R Schlecht, E Schloder, F Schmulling, F Schultz, M Schuster, K Siebertz, O Smit, H Szczerba, R Shipman, R Steinmetz, E Stern, JA Stokroos, M Teipen, R Teyssier, D Tils, T Trappe, N van Baaren, C van Leeuwen, BJ van de Stadt, H Visser, H Wildeman, KJ Wafelbakker, CK Ward, JS Wesselius, P Wild, W Wulff, S Wunsch, HJ Tielens, X Zaal, P Zirath, H Zmuidzinas, J Zwart, F AF De Graauw, Th. Helmich, F. P. Phillips, T. G. Stutzki, J. Caux, E. Whyborn, N. D. Dieleman, P. Roelfsema, P. R. Aarts, H. Assendorp, R. Bachiller, R. Baechtold, W. Barcia, A. Beintema, D. A. Belitsky, V. Benz, A. O. Bieber, R. Boogert, A. Borys, C. Bumble, B. Cais, P. Caris, M. Cerulli-Irelli, P. Chattopadhyay, G. Cherednichenko, S. Ciechanowicz, M. Coeur-Joly, O. Comito, C. Cros, A. de Jonge, A. de Lange, G. Delforges, B. Delorme, Y. den Boggende, T. Desbat, J. -M. Diez-Gonzalez, C. Di Giorgio, A. M. Dubbeldam, L. Edwards, K. Eggens, M. Erickson, N. Evers, J. Fich, M. Finn, T. Franke, B. Gaier, T. Gal, C. Gao, J. R. Gallego, J. -D. Gauffre, S. Gill, J. J. Glenz, S. Golstein, H. Goulooze, H. Gunsing, T. Guesten, R. Hartogh, P. Hatch, W. A. Higgins, R. Honingh, E. C. Huisman, R. Jackson, B. D. Jacobs, H. Jacobs, K. Jarchow, C. Javadi, H. Jellema, W. Justen, M. Karpov, A. Kasemann, C. Kawamura, J. Keizer, G. Kester, D. Klapwijk, T. M. Klein, Th. Kollberg, E. Kooi, J. Kooiman, P. -P. Kopf, B. Krause, M. Krieg, J. -M. Kramer, C. Kruizenga, B. Kuhn, T. Laauwen, W. Lai, R. Larsson, B. Leduc, H. G. Leinz, C. Lin, R. H. Liseau, R. Liu, G. S. Loose, A. Lopez-Fernandez, I. Lord, S. Luinge, W. Marston, A. Martin-Pintado, J. Maestrini, A. Maiwald, F. W. McCoey, C. Mehdi, I. Megej, A. Melchior, M. Meinsma, L. Merkel, H. Michalska, M. Monstein, C. Moratschke, D. Morris, P. Muller, H. Murphy, J. A. Naber, A. Natale, E. Nowosielski, W. Nuzzolo, F. Olberg, M. Olbrich, M. Orfei, R. Orleanski, P. Ossenkopf, V. Peacock, T. Pearson, J. C. Peron, I. Phillip-May, S. Piazzo, L. Planesas, P. Rataj, M. Ravera, L. Risacher, C. Salez, M. Samoska, L. A. Saraceno, P. Schieder, R. Schlecht, E. Schloeder, F. Schmuelling, F. Schultz, M. Schuster, K. Siebertz, O. Smit, H. Szczerba, R. Shipman, R. Steinmetz, E. Stern, J. A. Stokroos, M. Teipen, R. Teyssier, D. Tils, T. Trappe, N. van Baaren, C. van Leeuwen, B. -J. van de Stadt, H. Visser, H. Wildeman, K. J. Wafelbakker, C. K. Ward, J. S. Wesselius, P. Wild, W. Wulff, S. Wunsch, H. -J. Tielens, X. Zaal, P. Zirath, H. Zmuidzinas, J. Zwart, F. TI The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: spectrographs; methods: observational; infrared: general; submillimeter: general; techniques: spectroscopic AB Aims. This paper describes the Heterodyne Instrument for the Far-Infrared ( HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods. The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 x 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 kms(-1). Result. After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. C1 [De Graauw, Th.; Helmich, F. P.; Whyborn, N. D.; Dieleman, P.; Roelfsema, P. R.; Aarts, H.; Assendorp, R.; Beintema, D. A.; de Jonge, A.; de Lange, G.; Delforges, B.; den Boggende, T.; Dubbeldam, L.; Edwards, K.; Eggens, M.; Evers, J.; Golstein, H.; Goulooze, H.; Gunsing, T.; Higgins, R.; Huisman, R.; Jackson, B. D.; Jacobs, H.; Jellema, W.; Keizer, G.; Kester, D.; Kooiman, P. -P.; Laauwen, W.; Luinge, W.; Marston, A.; Meinsma, L.; Naber, A.; Olberg, M.; Ossenkopf, V.; Smit, H.; Shipman, R.; Stokroos, M.; Teyssier, D.; van Baaren, C.; van Leeuwen, B. -J.; van de Stadt, H.; Wildeman, K. J.; Wafelbakker, C. K.; Wesselius, P.; Wild, W.; Tielens, X.; Zaal, P.; Zwart, F.] Univ Groningen, SRON Netherlands Inst Space Res, Groningen, Netherlands. [De Graauw, Th.; Whyborn, N. D.; Planesas, P.] Joint Alma Observ, Santiago, Chile. [De Graauw, Th.; Tielens, X.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Phillips, T. G.; Chattopadhyay, G.; Karpov, A.; Kooi, J.; Zmuidzinas, J.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Stutzki, J.; Bieber, R.; Franke, B.; Gal, C.; Glenz, S.; Honingh, E. C.; Jacobs, K.; Justen, M.; Kopf, B.; Krause, M.; Kramer, C.; Kuhn, T.; Moratschke, D.; Muller, H.; Olbrich, M.; Ossenkopf, V.; Schieder, R.; Schloeder, F.; Schmuelling, F.; Schultz, M.; Siebertz, O.; Teipen, R.; Tils, T.; Wulff, S.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Caux, E.; Coeur-Joly, O.; Cros, A.; Ravera, L.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France. [Caux, E.; Coeur-Joly, O.; Cros, A.; Ravera, L.] CNRS INSU, UMR 5187, F-31028 Toulouse 4, France. [Bachiller, R.] Observ Astron Nacl IGN, Madrid 28014, Spain. [Barcia, A.; Diez-Gonzalez, C.; Gallego, J. -D.; Lopez-Fernandez, I.; Peron, I.; Planesas, P.] Ctr Astron Yebes, Observ Astron Nacl IGN, Guadalajara 19080, Spain. [Belitsky, V.; Cherednichenko, S.; Kollberg, E.; Liseau, R.; Merkel, H.; Olberg, M.; Zirath, H.] Chalmers, S-41296 Gothenburg, Sweden. [Benz, A. O.; Melchior, M.; Monstein, C.] ETH, Astron Inst, CH-8093 Zurich, Switzerland. [Bumble, B.; Gaier, T.; Gill, J. J.; Hatch, W. A.; Javadi, H.; Kawamura, J.; Leduc, H. G.; Lin, R. H.; Maestrini, A.; Maiwald, F. W.; Mehdi, I.; Pearson, J. C.; Samoska, L. A.; Schlecht, E.; Stern, J. A.; Ward, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cais, P.; Desbat, J. -M.; Gauffre, S.] Univ Bordeaux, Lab Astrophys Bordeaux, F-33000 Bordeaux, France. [Cais, P.; Desbat, J. -M.; Gauffre, S.] CNRS INSU, UMR 5804, F-33271 Floirac, France. [Caris, M.; Ciechanowicz, M.; Comito, C.; Guesten, R.; Kasemann, C.; Klein, Th.; Leinz, C.; Phillip-May, S.; Wunsch, H. -J.] MPI Radio Astron, D-53121 Bonn, Germany. [Cerulli-Irelli, P.; Di Giorgio, A. M.; Liu, G. S.; Nuzzolo, F.; Orfei, R.; Piazzo, L.; Saraceno, P.] Ist Fis Spazio Interplanetario INAF, I-00133 Rome, Italy. [Edwards, K.; Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Hartogh, P.; Jarchow, C.; Loose, A.; Risacher, C.; Steinmetz, E.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Delforges, B.; Delorme, Y.; Krieg, J. -M.; Salez, M.] UCP, UPMC, CNRS INSU,OP,ENS UMR 8112, Lab Etud Rayonnement & Mat Astrophys, Paris, France. [Delforges, B.; Delorme, Y.; Krieg, J. -M.; Peron, I.; Salez, M.] Observ Paris, LERMA, F-75014 Paris, France. [Baechtold, W.; Megej, A.] ETH, Inst Hochfrequenz Tech, CH-8093 Zurich, Switzerland. [Larsson, B.; Liseau, R.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Michalska, M.; Nowosielski, W.; Orleanski, P.; Rataj, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Finn, T.; Szczerba, R.] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Higgins, R.; Murphy, J. A.; Peacock, T.; Trappe, N.] Natl Univ Ireland, Expt Phys Dept, Maynooth, Kildare, Ireland. [Kruizenga, B.; Visser, H.] Netherlands Org Appl Sci Res TNO, NL-2628 CK Delft, Netherlands. [Gao, J. R.; Klapwijk, T. M.] Delft Univ Technol, Dept Appl Phys, Delft, Netherlands. [Lai, R.] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. [Martin-Pintado, J.] Ctr Astrobiol INTA CSIC, Madrid, Spain. [Peron, I.; Schuster, K.] Inst Radioastron Millimetr, F-38406 St Martin Dheres, France. [Natale, E.] Osserv Astrofis Arcetri, INAF, I-50100 Florence, Italy. [Marston, A.; Teyssier, D.] ESA, European Space Astron Ctr, Madrid 28691, Spain. [Wild, W.] European Org Astron Res So Hemisphere, D-85748 Garching, Germany. [Boogert, A.; Borys, C.; Lord, S.; Morris, P.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. RP De Graauw, T (reprint author), Univ Groningen, SRON Netherlands Inst Space Res, POB 800, Groningen, Netherlands. EM tdegraau@alma.cl RI Cherednichenko, Sergey/E-9889-2011; Planesas, Pere/G-7950-2015; Trappe, Neil/C-9014-2016; Martin-Pintado, Jesus/H-6107-2015; OI Cherednichenko, Sergey/0000-0002-5397-8024; Planesas, Pere/0000-0002-7808-3040; Trappe, Neil/0000-0003-2527-9821; Martin-Pintado, Jesus/0000-0003-4561-3508; Liu, Scige/0000-0001-7680-2139; Mueller, Holger/0000-0002-0183-8927; Piazzo, Lorenzo/0000-0002-5325-8561 FU National space agencies and science foundations; NWO [50OF000-1/2/5]; Central resources of the Max-Planck-Society; JPL, California Institute of Technology under National Aeronautics and Space Administration; NASA; Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/ INSU; Centre National d'Etudes Spatiales (CNES); Agenzia Spaziale Italiana-ASI [I/005/07/0]; Istituto Nazionale di Astrofisica INAF; Canadian Space Agency; Science and High Education Ministry of Poland [N203 393334]; Ministerio de Ciencia e Innovacin (Consejo de Investigaciones Cientificas); Ministerio de Fomento (Instituto Geografico Nacional); Swedish National Space Board [Dnr 136/04, Dnr 114/07, Dnr 286/05, Dnr 116/03]; Knut and Alice Wallenberg Foundation; Prodex grants; HIFI FX The Herschel-HIFI instrument has been constructed, tested and prepared for operations by a large set of teams of dedicated engineers, scientists, and managers from 12 European and North American countries, with additional funding by grants from their national space agencies and science foundations. We acknowledge the support for the Netherlands by NWO; for Germany by grants 50OF000-1/2/5 of the Deutsches Zentrum fur Luft-und Raumfahrt (DLR) and by central resources of the Max-Planck-Society. For the USA a portion of this research was performed at the JPL, California Institute of Technology, under contract with the National Aeronautics and Space Administration and part of the NASA Herschel Science Center guaranteed-time observer program was provided by NASA; for France by the Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/ INSU) and Centre National d'Etudes Spatiales (CNES); for Italy by Agenzia Spaziale Italiana-ASI, Contract I/005/07/0, and the Istituto Nazionale di Astrofisica INAF; for Canada by the Canadian Space Agency. For Poland this work has been partly supported by grant N203 393334 of the Science and High Education Ministry of Poland; for Spain support came from Ministerio de Ciencia e Innovacin (Consejo de Investigaciones Cientificas) and Ministerio de Fomento (Instituto Geografico Nacional); for Sweden support came from the Swedish National Space Board under grant numbers Dnr 136/04, Dnr 114/07; Dnr 286/05; Dnr 116/03, and by Knut and Alice Wallenberg Foundation. For Ireland support was provided by Enterprise Ireland through a number of Prodex grants. The home institutes have invested many resources into this project. Their contributions and continuous support are deeply appreciated by the HIFI consortium. Also the fruitful collaborations with ESA and the Herschel and HIFI industrial partners are acknowledged. This extremely challenging project is a team effort based upon the creativity, dedication, and perseverance of many individuals participating in this scientific and technological enterprise, amongst others: W. Aalders, A. Abrams, W. Ader, C. Amoros, G. Arbery, O. Armengaud, J. Baker, P. Baldetti, P. Barras, T. Bartels, A. Baryshev, A. Baudry, G. Beaudin, A. Beckers, M. Belgacem, C. Berthod, N. Biver, Y. Blanc, J. Bleeker, M. Bonenkamp, A. Boner, F. Boulanger, J.-C. Bouquier, H. Braafhart, J. Braine, M. Bruijn, C. Bruineman, P. Bruneau, N. Bruning, A. Campbell, M. Carter, C. Casteels, C. Chappert, P. Chavatte, W. Chun, J. Couterets, P. Crosby, J.-P. Crussaire, A. Csillaghy, Y. Cupissol, E. Dartois, F. Dauplay, N. Giurleo, R. de Haan, Doug Johnstone, T. de Jong, A. de Kleine, R. de la Rie, R. de Lange, J.-H. de Raignac, D. Deboffle, L. deJong, K. Deng, J. Dercksen, A. Deschamps, J. Diez Gamero, H. Doedens, C. du Maine, P. Encrenaz, R. Ferber, A. Feret, F. Flederus, M. Frerking, A. Fung, S. Gadomski, R. Garcia-Nogal, R. Gathier, T. Harper, L. Hotte, J. Gavira Izquierdo, N. Gehniau, A. Girard, F. Glize, J.-M. Glorian, G. Grund, S. Halleguen, D. Harding, F. Herpin, G. Hiemstra, L. Hiemstra, N. Hoac, W. Horinga, M. Houde, W. Janssen, H. Janzen, M. Jochemsen, G. Juchnikowski, A. Karl, S. Kikken, T. Kirst, P. Kohsiek, J. Koops van het Jagt, M. Kroug, B. Kuip, D. Lagrange, J. Lankwaarden, J.-M. Larr, P. Laubert, A. Lecacheux, B. Lecomte, E. Lecomte, K. Liao, Y. Longval, A. Loung, P. Lowes, Peter Martin, G. Martinez-Medina, H. E. Matthews, S. Matthias, J.-Y. Mayvial, W. McCutcheon, W. McGrath, K. Mercier, D. Miller, D. Monnier, G. Montignac, A. Morbidini, R. Moreno, P.; Mueller, J Newell, T. Newman, A. Nieuwenhuizen, J. Novag, H. Ode, A. Orzati, J. Panman, M. Paquette, G. Parks, A. Peralta, M. Perault, A. Perez Lopez, S. Phillips, E. Pizzi, G. Ploeger, Rene Plume, D. Pukala, J.-R. Rabasse, P. Ramon, M. Rataj, J. Recine, M. Ridder, R. Roelfsema, D. Romefort, C. Rosolen, L. Roucayrol, M. Rudin, K. Saad, W. Salomons, E. Sanchez, M. Schekkerman, R. Schuurhof, N. Snijders, J. Spatazz, J. Swift, B. Thomas, A. Tizon, M. Torres, C. Troung, R. Tsang, J. van der Eb, A. van der Horst, K. van der Hucht, R. van der Schuur, P. van Leeuwen, W. van Leeuwen, D. Van Nguyen, J. van Veldhuizen, H. van Weers, C. Vastel, J. Veenendaal, J. Velebir, H. Wang, D. Warden, S. Weinreb, M. Wells, K. Wielinga, M. Winkler, G. Winnewisser, S. Withington, Q. Xie, P. Yocom and A. Zijlstra. Thanks to their efforts the instrument could be tested and delivered to ESA and its scientific community. We are gratefull to the astronomers of the HIFI Key-Program teams and their Principal Investigators, in particular E. van Dishoeck, E. Bergin, C. Ceccarelli, M. Gerin, V. Bujarrabal, whose imagination about what HIFI would be able to observe helped us to get through the difficult phases in the HIFI development program. Also many thanks go to the members of the various FIRST/Herschel Science Teams and ESA Project Teams that worked for this mission and in particular to G. Winnewisser, H. Olthof, R. Genzel, U. Frisk, S. Volonte, G. Pilbratt, J. Riedinger, Th. Passvogel, C. Schamberg, and G. Crone. NR 11 TC 381 Z9 381 U1 6 U2 46 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L6 DI 10.1051/0004-6361/201014698 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200007 ER PT J AU Del Zanna, G Andretta, V Chamberlin, PC Woods, TN Thompson, WT AF Del Zanna, G. Andretta, V. Chamberlin, P. C. Woods, T. N. Thompson, W. T. TI The EUV spectrum of the Sun: long-term variations in the SOHO CDS NIS spectral responsivities SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: corona; techniques: spectroscopic ID CORONAL DIAGNOSTIC SPECTROMETER; RADIOMETRIC CALIBRATION; QUIET SUN; SOLAR-CYCLE; DETECTOR; RADIANCE; UV AB We present SOHO Coronal Diagnostic Spectrometer (CDS) normal incidence, extreme-ultraviolet spectra of the Sun taken from the beginning of the mission in 1996 until now. We use various methods to study the performance of the instrument during such a long time span. Assuming that the basal chromospheric-transition region emission in the quiet parts of the Sun does not vary over the cycle, we find a slow decrease in the instrument sensitivity over time. We applied a correction to the NIS (Normal Incidence Spectrograph) data, using as a starting reference the NIS absolute calibration obtained from a comparison with a rocket flight in May 1997. We then obtained NIS full-Sun spectral irradiances from observations in 2008 and compared them with the EUV irradiances obtained from the rocket that flew on April 14, 2008 a prototype of the Solar Dynamics Observatory EVE instrument. Excellent agreement is found between the EUV irradiances from NIS and from the EVE-prototype, confirming the NIS radiometric calibration. The NIS instrument over 13 years has performed exceptionally well, with only a factor of about 2 decrease in responsivity for most wavelengths. C1 [Del Zanna, G.] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. [Andretta, V.] INAF Osservatorio Astron Capodimonte, Naples, Italy. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Woods, T. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Thompson, W. T.] NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Greenbelt, MD 20771 USA. RP Del Zanna, G (reprint author), Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. EM GDelZanna@spd.aas.org RI Chamberlin, Phillip/C-9531-2012; Thompson, William/D-7376-2012; OI Chamberlin, Phillip/0000-0003-4372-7405; Andretta, Vincenzo/0000-0003-1962-9741 NR 36 TC 17 Z9 17 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR A49 DI 10.1051/0004-6361/200912904 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500004 ER PT J AU Dye, S Dunne, L Eales, S Smith, DJB Amblard, A Auld, R Baes, M Baldry, IK Bamford, S Blain, AW Bonfield, DG Bremer, M Burgarella, D Buttiglione, S Cameron, E Cava, A Clements, DL Cooray, A Croom, S Dariush, A de Zotti, G Driver, S Dunlop, JS Frayer, D Fritz, J Gardner, JP Gomez, HL Gonzalez-Nuevo, J Herranz, D Hill, D Hopkins, A Ibar, E Ivison, RJ Jarvis, MJ Jones, DH Kelvin, L Lagache, G Leeuw, L Liske, J Lopez-Caniego, M Loveday, J Maddox, S Michalowski, MJ Negrello, M Norberg, P Page, MJ Parkinson, H Pascale, E Peacock, JA Pohlen, M Popescu, C Prescott, M Rigopoulou, D Robotham, A Rigby, E Rodighiero, G Samui, S Scott, D Serjeant, S Sharp, R Sibthorpe, B Temi, P Thompson, MA Tuffs, R Valtchanov, I van der Werf, PP van Kampen, E Verma, A AF Dye, S. Dunne, L. Eales, S. Smith, D. J. B. Amblard, A. Auld, R. Baes, M. Baldry, I. K. Bamford, S. Blain, A. W. Bonfield, D. G. Bremer, M. Burgarella, D. Buttiglione, S. Cameron, E. Cava, A. Clements, D. L. Cooray, A. Croom, S. Dariush, A. de Zotti, G. Driver, S. Dunlop, J. S. Frayer, D. Fritz, J. Gardner, Jonathan P. Gomez, H. L. Gonzalez-Nuevo, J. Herranz, D. Hill, D. Hopkins, A. Ibar, E. Ivison, R. J. Jarvis, M. J. Jones, D. H. Kelvin, L. Lagache, G. Leeuw, L. Liske, J. Lopez-Caniego, M. Loveday, J. Maddox, S. Michalowski, M. J. Negrello, M. Norberg, P. Page, M. J. Parkinson, H. Pascale, E. Peacock, J. A. Pohlen, M. Popescu, C. Prescott, M. Rigopoulou, D. Robotham, A. Rigby, E. Rodighiero, G. Samui, S. Scott, D. Serjeant, S. Sharp, R. Sibthorpe, B. Temi, P. Thompson, M. A. Tuffs, R. Valtchanov, I. van der Werf, P. P. van Kampen, E. Verma, A. TI Herschel-ATLAS: Evolution of the 250 mu m luminosity function out to z = 0.5 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: luminosity function; mass function; cosmology: observations; large-scale structure of Universe ID DEEP-FIELD-SOUTH; SUBMILLIMETER LUMINOSITY; REDSHIFT SURVEY; STAR-FORMATION; SKY SURVEY; IDENTIFICATION; GALAXIES; RADIO; COUNTERPARTS; SPITZER AB We have determined the luminosity function of 250 mu m-selected galaxies detected in the similar to 14 deg(2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 mu m luminosity density out to z = 0.2 where it is 3.6(-0.9)(+1.4) times higher than the local value. C1 [Dye, S.; Eales, S.; Auld, R.; Dariush, A.; Gomez, H. L.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Baldry, I. K.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Dunne, L.; Smith, D. J. B.; Bamford, S.; Maddox, S.; Rigby, E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bonfield, D. G.; Jarvis, M. J.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Buttiglione, S.; de Zotti, G.; Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Cameron, E.] ETH, Insitute Astron, CH-8093 Zurich, Switzerland. [Cava, A.] Univ La Laguna, IAC, Tenerife, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Croom, S.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Driver, S.; Hill, D.; Kelvin, L.; Robotham, A.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Gonzalez-Nuevo, J.; Samui, S.] Scuola Int Super Studi Avanzati, I-34151 Trieste, Italy. [Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Hopkins, A.; Jones, D. H.; Sharp, R.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Bremer, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Blain, A. W.; Robotham, A.] CALTECH, Pasadena, CA 91125 USA. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [van der Werf, P. P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Rigopoulou, D.; Verma, A.] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England. [Valtchanov, I.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. [Tuffs, R.] Max Planck Inst Nucl Astrophys MPIK, D-69117 Heidelberg, Germany. [Popescu, C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Dunlop, J. S.; Michalowski, M. J.; Norberg, P.; Parkinson, H.; Peacock, J. A.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Loveday, J.] Univ Sussex, Sch Maths & Phys Sci, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Liske, J.; van Kampen, E.] European So Observ, D-85748 Garching, Germany. [Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Ibar, E.; Ivison, R. J.; Sibthorpe, B.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] CNRS, UMR 8617, F-75700 Paris, France. [Lagache, G.] Univ Paris 11, Orsay, France. [Lagache, G.] Inst Astrophys Spatiale, F-91405 Orsay, France. RP Dye, S (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM s.dye@astro.cf.ac.uk RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Robotham, Aaron/H-5733-2014; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; OI Maddox, Stephen/0000-0001-5549-195X; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Lopez-Caniego, Marcos/0000-0003-1016-9283 FU UK STFC FX S. D. Acknowledges the UK STFC for support. NR 27 TC 40 Z9 40 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L10 DI 10.1051/0004-6361/201014614 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200011 ER PT J AU Eales, SA Smith, MWL Wilson, CD Bendo, GJ Cortese, L Pohlen, M Boselli, A Gomez, HL Auld, R Baes, M Barlow, MJ Bock, JJ Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Davies, JI Dwek, E Elbaz, D Galametz, M Galliano, F Gear, WK Glenn, J Griffin, M Hony, S Isaak, KG Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Sauvage, M Schulz, B Schirm, MRP Spinoglio, L Srinivasan, S Stevens, JA Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wozniak, H Wright, GS Zeilinger, WW AF Eales, S. A. Smith, M. W. L. Wilson, C. D. Bendo, G. J. Cortese, L. Pohlen, M. Boselli, A. Gomez, H. L. Auld, R. Baes, M. Barlow, M. J. Bock, J. J. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Davies, J. I. Dwek, E. Elbaz, D. Galametz, M. Galliano, F. Gear, W. K. Glenn, J. Griffin, M. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. R. P. Spinoglio, L. Srinivasan, S. Stevens, J. A. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI Mapping the interstellar medium in galaxies with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; galaxies: spiral; dust, extinction; ISM: abundances ID STAR-FORMATION LAW; SPIRAL GALAXIES; MOLECULAR GAS; COLD DUST; NEARBY GALAXIES; CLOUD MASSES; EMISSION; ATLAS; I. AB The standard method of mapping the interstellar medium in a galaxy, by observing the molecular gas in the CO 1-0 line and the atomic gas in the 21-cm line, is largely limited with current telescopes to galaxies in the nearby universe. In this letter, we use SPIRE observations of the galaxies M99 and M100 to explore the alternative approach of mapping the interstellar medium using the continuum emission from the dust. We have compared the methods by measuring the relationship between the star-formation rate and the surface density of gas in the galaxies using both methods. We find the two methods give relationships with a similar dispersion, confirming that observing the continuum emission from the dust is a promising method of mapping the interstellar medium in galaxies. C1 [Eales, S. A.; Smith, M. W. L.; Cortese, L.; Pohlen, M.; Gomez, H. L.; Auld, R.; Davies, J. I.; Gear, W. K.; Griffin, M.; Papageorgiou, A.; Rykala, A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Bendo, G. J.; Clements, D. L.; O'Halloran, B.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bock, J. J.; Bradford, M.; Levenson, L. R.] CALTECH, Pasadena, CA 91125 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Castro-Rodriguez, N.; Lu, N.; Perez-Fournon, I.] Univ La Laguna, IAC, Tenerife, Spain. [Castro-Rodriguez, N.; Lu, N.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Panuzzo, P.; Sauvage, M.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Charlot, S.; Roussel, H.; Srinivasan, S.; Vigroux, L.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. [Isaak, K. G.] Estec, ESA Astrophys Missions Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wilson, C. D.; Parkin, T. J.; Schirm, M. R. P.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Ctr, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP Eales, SA (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM Steve.Eales@astro.cf.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Spinoglio, Luigi/0000-0001-8840-1551; Barlow, Michael/0000-0002-3875-1171; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Cortese, Luca/0000-0002-7422-9823 FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 28 TC 25 Z9 25 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L62 DI 10.1051/0004-6361/201014536 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200063 ER PT J AU Eales, SA Raymond, G Roseboom, IG Altieri, B Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Brisbin, D Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Harwit, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Morrison, GE Mortier, AMJ Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Page, MJ Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Rigopoulou, D Rizzo, D Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Eales, S. A. Raymond, G. Roseboom, I. G. Altieri, B. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Brisbin, D. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Harwit, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lonsdale, C. J. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Morrison, G. E. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Page, M. J. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Rigopoulou, D. Rizzo, D. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI First results from HerMES on the evolution of the submillimetre luminosity function SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evoluton; galaxies: formation; galaxies: high-redshift; submillimeter: galaxies ID STAR-FORMING GALAXIES; REDSHIFT SURVEY; BLAST; UNIVERSE; DENSITY; HISTORY; FIELD AB We have carried out two extremely deep surveys with SPIRE, one of the two cameras on Herschel, at 250 mu m, close to the peak of the far-infrared background. We have used the results to investigate the evolution of the rest-frame 250-mu m luminosity function out to z = 2. We find evidence for strong evolution out to z similar or equal to 1 but evidence for at most weak evolution beyond this redshift. Our results suggest that a significant part of the stars and metals in the universe today were formed at z <= 1.4 in spiral galaxies. C1 [Eales, S. A.; Raymond, G.; Auld, R.; Dye, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Roseboom, I. G.; Farrah, D.; Oliver, S. J.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] IAC, Tenerife 38200, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lonsdale, C. J.; Owen, F. N.; Pannella, M.; Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Morrison, G. E.] Canada France Hawaii Telescope, Kamuela, HI 96743 USA. [Morrison, G. E.; Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Maffei, B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. RP Eales, SA (reprint author), Cardiff Univ, Cardiff Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM Steve.Eales@astro.cf.ac.uk RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Dye, Simon/0000-0002-1318-8343; Altieri, Bruno/0000-0003-3936-0284 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 28 TC 38 Z9 38 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L23 DI 10.1051/0004-6361/201014675 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200024 ER PT J AU Egami, E Rex, M Rawle, TD Perez-Gonzalez, PG Richard, J Kneib, JP Schaerer, D Altieri, B Valtchanov, I Blain, AW Fadda, D Zemcov, M Bock, JJ Boone, F Bridge, CR Clement, B Combes, F Dessauges-Zavadsky, M Dowell, CD Ilbert, O Ivison, RJ Jauzac, M Lutz, D Metcalfe, L Omont, A Pello, R Pereira, MJ Rieke, GH Rodighiero, G Smail, I Smith, GP Tramoy, G Walth, GL van der Werf, P Werner, AW AF Egami, E. Rex, M. Rawle, T. D. Perez-Gonzalez, P. G. Richard, J. Kneib, J. -P. Schaerer, D. Altieri, B. Valtchanov, I. Blain, A. W. Fadda, D. Zemcov, M. Bock, J. J. Boone, F. Bridge, C. R. Clement, B. Combes, F. Dessauges-Zavadsky, M. Dowell, C. D. Ilbert, O. Ivison, R. J. Jauzac, M. Lutz, D. Metcalfe, L. Omont, A. Pello, R. Pereira, M. J. Rieke, G. H. Rodighiero, G. Smail, I. Smith, G. P. Tramoy, G. Walth, G. L. van der Werf, P. Werner, Andm. W. TI The Herschel Lensing Survey (HLS): Overview SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: galaxies; submillimeter: galaxies; galaxies: evolution; galaxies: high-redshift; galaxies: clusters: general ID BULLET CLUSTER 1E0657-56; STAR-FORMATION; SUBMILLIMETER GALAXIES; INFRARED GALAXY; SPITZER VIEW; BRIGHT; COUNTS AB The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of similar to 40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e. g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel'dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas. C1 [Egami, E.; Rex, M.; Rawle, T. D.; Perez-Gonzalez, P. G.; Pereira, M. J.; Rieke, G. H.; Walth, G. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Perez-Gonzalez, P. G.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Richard, J.; Smail, I.] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Kneib, J. -P.; Clement, B.; Ilbert, O.; Jauzac, M.; Tramoy, G.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Schaerer, D.; Dessauges-Zavadsky, M.] Univ Geneva, Observ Geneva, CH-1290 Versoix, Switzerland. [Schaerer, D.; Boone, F.; Pello, R.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Altieri, B.; Valtchanov, I.; Metcalfe, L.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. [Boone, F.; Combes, F.; Dowell, C. D.] Observ Paris, LERMA, F-75014 Paris, France. [van der Werf, P.] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Smith, G. P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Omont, A.] Univ Paris 06, F-75014 Paris, France. [Omont, A.] CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Lutz, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Royal Observ, Sci & Technol Facil Council, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Fadda, D.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Zemcov, M.; Bock, J. J.; Werner, Andm. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Egami, E (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM eegami@as.arizona.edu RI Smail, Ian/M-5161-2013; Jauzac, Mathilde/B-1966-2015; Perez-Gonzalez, Pablo/J-2871-2016; Ivison, R./G-4450-2011; Pello, Roser/G-4754-2010 OI Smail, Ian/0000-0003-3037-257X; Perez-Gonzalez, Pablo/0000-0003-4528-5639; Ivison, R./0000-0001-5118-1313; Rodighiero, Giulia/0000-0002-9415-2296; Combes, Francoise/0000-0003-2658-7893; Altieri, Bruno/0000-0003-3936-0284; FU International Space Science Institute in Berne; NASA FX We thank the following people for providing various data sets/information to us: D. Clowe (Magellan/IMACS images), S. M. Chung and A. H. Gonzalcz (IMACS spectroscopic redshifts), J.-G. Cuby (VLT/HAWKI images), D. Johansson, C. Horellou, and the LABOCA team (LABOCA map), and D. Hughes, I. Aretxaga, and the AzTEC team (AzTEC map and far-infrared photometric redshifts). We thank the NASA Herschel Science Center for its excellent user support, and the International Space Science Institute in Berne for their support through the International team 181. EE would like to thank D. Elbaz for communicating his results before publication.; This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 33 TC 50 Z9 50 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L12 DI 10.1051/0004-6361/201014696 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200013 ER PT J AU Eiroa, C Fedele, D Maldonado, J Gonzalez-Garcia, BM Rodmann, J Heras, AM Pilbratt, GL Augereau, JC Mora, A Montesinos, B Ardila, D Bryden, G Liseau, R Stapelfeldt, K Launhardt, R Solano, E Bayo, A Absil, O Arevalo, M Barrado, D Beichmann, C Danchi, W del Burgo, C Ertel, S Fridlund, M Fukagawa, M Gutierrez, R Grun, E Kamp, I Krivov, A Lebreton, J Lohne, T Lorente, R Marshall, J Martinez-Arnaiz, R Meeus, G Montes, D Morbidelli, A Muller, S Mutschke, H Nakagawa, T Olofsson, G Ribas, I Roberge, A Sanz-Forcada, J Thebault, P Walker, H White, GJ Wolf, S AF Eiroa, C. Fedele, D. Maldonado, J. Gonzalez-Garcia, B. M. Rodmann, J. Heras, A. M. Pilbratt, G. L. Augereau, J. -Ch. Mora, A. Montesinos, B. Ardila, D. Bryden, G. Liseau, R. Stapelfeldt, K. Launhardt, R. Solano, E. Bayo, A. Absil, O. Arevalo, M. Barrado, D. Beichmann, C. Danchi, W. del Burgo, C. Ertel, S. Fridlund, M. Fukagawa, M. Gutierrez, R. Gruen, E. Kamp, I. Krivov, A. Lebreton, J. Loehne, T. Lorente, R. Marshall, J. Martinez-Arnaiz, R. Meeus, G. Montes, D. Morbidelli, A. Mueller, S. Mutschke, H. Nakagawa, T. Olofsson, G. Ribas, I. Roberge, A. Sanz-Forcada, J. Thebault, P. Walker, H. White, G. J. Wolf, S. TI Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: general; planetary system; space vehicles: instruments ID MAIN-SEQUENCE STARS; DEBRIS DISKS; PLANETS AB We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5). C1 [Eiroa, C.; Fedele, D.; Maldonado, J.; Mora, A.; Meeus, G.] Univ Autonoma Madrid, Fac Ciencias, Dpt Fis Teor, E-28049 Madrid, Spain. [Fedele, D.; Launhardt, R.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Fedele, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21210 USA. [Gonzalez-Garcia, B. M.] INSA ESAC, Madrid 28691, Spain. [Rodmann, J.] Estec, ESA Space Environm & Effects Sect, NL-2200 AG Noordwijk, Netherlands. [Heras, A. M.; Pilbratt, G. L.; Fridlund, M.] ESTEC SRE SA, ESA Astrophys & Fundamental Phys Missions Div, NL-2201 AZ Noordwijk, Netherlands. [Augereau, J. -Ch.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Montesinos, B.; Solano, E.; Arevalo, M.; Barrado, D.; Gutierrez, R.; Sanz-Forcada, J.] ESAC, CSIC, INTA, Ctr Astrobiol,LAEX, Madrid, Spain. [Ardila, D.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Bryden, G.; Stapelfeldt, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Liseau, R.] Chalmers, Onsala Space Observ, SE-43992 Onsala, Sweden. [Bayo, A.] European Space Observ, Santiago 19, Chile. [Absil, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Sart Tilman Par Liege, Belgium. [Beichmann, C.] CALTECH, NASA ExoPlanet Sci Inst, Pasadena, CA 91125 USA. [Danchi, W.; Roberge, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [del Burgo, C.] Univ Nova Lisboa, UNINOVA CA3, P-2825149 Caparica, Portugal. [Fukagawa, M.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Gruen, E.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Kamp, I.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Krivov, A.; Loehne, T.; Mueller, S.; Mutschke, H.] Univ Jena, Inst Astrophys, D-07745 Jena, Germany. [Krivov, A.; Loehne, T.; Mueller, S.; Mutschke, H.] Univ Jena, Univ Sternwarte, D-07745 Jena, Germany. [Lorente, R.] ESAC ESA, Herschel Sci Ctr, Madrid 28691, Spain. [Marshall, J.; White, G. J.] Open Univ, Dept Phys & Astrophys, Milton Keynes MK7 6AA, Bucks, England. [Martinez-Arnaiz, R.; Montes, D.] Univ Complutense Madrid, Fac Ciencias Fis, Dpt Astrofis, E-28040 Madrid, Spain. [Morbidelli, A.] Observ Cote Azur, F-06304 Nice 4, France. [Nakagawa, T.] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Olofsson, G.] Stockholm Univ, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Ribas, I.] Fac Ciencies, IEEC, CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. [Thebault, P.] Observ Paris, LESIA, F-92195 Meudon, France. [Walker, H.; White, G. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ertel, S.; Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. RP Eiroa, C (reprint author), Univ Autonoma Madrid, Fac Ciencias, Dpt Fis Teor, E-28049 Madrid, Spain. EM carlos.eiroa@uam.es RI Roberge, Aki/D-2782-2012; Stapelfeldt, Karl/D-2721-2012; Fedele, Davide/L-8688-2013; Montes, David/B-9329-2014; Ribas, Ignasi/M-2134-2014; Barrado Navascues, David/C-1439-2017; Solano, Enrique/C-2895-2017; Sanz-Forcada, Jorge/C-3176-2017; Montesinos, Benjamin/C-3493-2017 OI Roberge, Aki/0000-0002-2989-3725; Fedele, Davide/0000-0001-6156-0034; Montes, David/0000-0002-7779-238X; Ribas, Ignasi/0000-0002-6689-0312; Barrado Navascues, David/0000-0002-5971-9242; Sanz-Forcada, Jorge/0000-0002-1600-7835; Montesinos, Benjamin/0000-0002-7982-2095 NR 20 TC 44 Z9 44 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L131 DI 10.1051/0004-6361/201014594 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200132 ER PT J AU Elbaz, D Hwang, HS Magnelli, B Daddi, E Aussel, H Altieri, B Amblard, A Andreani, P Arumugam, V Auld, R Babbedge, T Berta, S Blain, A Bock, J Bongiovanni, A Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Cepa, J Chanial, P Chary, RR Cimatti, A Clements, DL Conley, A Conversi, L Cooray, A Dickinson, M Dominguez, H Dowell, CD Dunlop, JS Dwek, E Eales, S Farrah, D Schreiber, NF Fox, M Franceschini, A Gear, W Genzel, R Glenn, J Griffin, M Gruppioni, C Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Le Borgne, D Le Floc'h, E Levenson, L Lu, N Lutz, D Madden, S Maffei, B Magdis, G Mainetti, G Maiolino, R Marchetti, L Mortier, AMJ Nguyen, HT Nordon, R O'Halloran, B Okumura, K Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Fournon, IP Garcia, AMP Poglitsch, A Pohlen, M Popesso, P Pozzi, F Rawlings, JI Rigopoulou, D Riguccini, L Rizzo, D Rodighiero, G Roseboom, IG Rowan-Robinson, M Saintonge, A Portal, MS Santini, P Sauvage, M Schulz, B Scott, D Seymour, N Shao, L Shupe, DL Smith, AJ Stevens, JA Sturm, E Symeonidis, M Tacconi, L Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, J Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Elbaz, D. Hwang, H. S. Magnelli, B. Daddi, E. Aussel, H. Altieri, B. Amblard, A. Andreani, P. Arumugam, V. Auld, R. Babbedge, T. Berta, S. Blain, A. Bock, J. Bongiovanni, A. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Cepa, J. Chanial, P. Chary, R. -R. Cimatti, A. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dickinson, M. Dominguez, H. Dowell, C. D. Dunlop, J. S. Dwek, E. Eales, S. Farrah, D. Schreiber, N. Foerster Fox, M. Franceschini, A. Gear, W. Genzel, R. Glenn, J. Griffin, M. Gruppioni, C. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Le Borgne, D. Le Floc'h, E. Levenson, L. Lu, N. Lutz, D. Madden, S. Maffei, B. Magdis, G. Mainetti, G. Maiolino, R. Marchetti, L. Mortier, A. M. J. Nguyen, H. T. Nordon, R. O'Halloran, B. Okumura, K. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Fournon, I. Perez Garcia, A. M. Perez Poglitsch, A. Pohlen, M. Popesso, P. Pozzi, F. Rawlings, J. I. Rigopoulou, D. Riguccini, L. Rizzo, D. Rodighiero, G. Roseboom, I. G. Rowan-Robinson, M. Saintonge, A. Portal, M. Sanchez Santini, P. Sauvage, M. Schulz, B. Scott, D. Seymour, N. Shao, L. Shupe, D. L. Smith, A. J. Stevens, J. A. Sturm, E. Symeonidis, M. Tacconi, L. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI Herschel unveils a puzzling uniformity of distant dusty galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: active; galaxies: starburst; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; INFRARED LUMINOUS GALAXIES; FORMATION HISTORY; REDSHIFT SURVEY; FIELD; ENERGY; UNIVERSE; EVOLUTION; COUNTS AB The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of star-formation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 mu m to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 mu m prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e. g. at 24 mu m, to identify "isolated" galaxies whose flux is not boosted by bright neighbors. Below z similar to 1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to z similar to 0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, L(IR) >= 10(12) L(circle dot)). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 mu m, 250 mu m or 350 mu m bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above similar to 150 mu m (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, L(IR) >= 10(11) L(circle dot)) around z similar to 1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z similar to 1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of beta = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid-over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies. C1 [Elbaz, D.; Hwang, H. S.; Daddi, E.; Aussel, H.; Le Floc'h, E.; Madden, S.; Magdis, G.; Okumura, K.; Panuzzo, P.; Riguccini, L.; Sauvage, M.] Univ Paris Diderot, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, CEA Saclay, F-91191 Gif Sur Yvette, France. [Magnelli, B.; Berta, S.; Schreiber, N. Foerster; Genzel, R.; Lutz, D.; Nordon, R.; Poglitsch, A.; Popesso, P.; Saintonge, A.; Shao, L.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Altieri, B.; Conversi, L.; Portal, M. Sanchez; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Andreani, P.; Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Andreani, P.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Arumugam, V.; Dunlop, J. S.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bongiovanni, A.; Castro-Rodriguez, N.; Cava, A.; Cepa, J.; Fournon, I. Perez; Garcia, A. M. Perez] Inst Astrofis Canarias, San Cristobal la Laguna 38200, Spain. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA, UCB 389, Boulder, CO 80309 USA. [Dickinson, M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Dominguez, H.; Maiolino, R.; Santini, P.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Gruppioni, C.; Pozzi, F.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Halpern, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Le Borgne, D.; Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, JPL, Infrared Proc & Anal Ctr, MS 100 22, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Dept Phys, Lethbridge, AB T1J 1B1, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Elbaz, D (reprint author), Univ Paris Diderot, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, CEA Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM delbaz@cea.fr RI Dwek, Eli/C-3995-2012; Daddi, Emanuele/D-1649-2012; Oliver, Seb/A-2479-2013; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; Magdis, Georgios/C-7295-2014; Bongiovanni, Angel/J-6176-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; OI Daddi, Emanuele/0000-0002-3331-9590; Oliver, Seb/0000-0001-7862-1032; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Gruppioni, Carlotta/0000-0002-5836-4056; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Santini, Paola/0000-0002-9334-8705; Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Seymour, Nicholas/0000-0003-3506-5536; Rodighiero, Giulia/0000-0002-9415-2296; Altieri, Bruno/0000-0003-3936-0284 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 30 TC 145 Z9 145 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L29 DI 10.1051/0004-6361/201014687 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200030 ER PT J AU Elia, D Schisano, E Molinari, S Robitaille, T Angles-Alcazar, D Bally, J Battersby, C Benedettini, M Billot, N Calzoletti, L Di Giorgio, AM Faustini, F Li, JZ Martin, P Morgan, L Motte, F Mottram, JC Natoli, P Olmi, L Paladini, R Piacentini, F Pestalozzi, M Pezzuto, S Polychroni, D Smith, MD Strafella, F Stringfellow, GS Testi, L Thompson, MA Traficante, A Veneziani, M AF Elia, D. Schisano, E. Molinari, S. Robitaille, T. Angles-Alcazar, D. Bally, J. Battersby, C. Benedettini, M. Billot, N. Calzoletti, L. Di Giorgio, A. M. Faustini, F. Li, J. Z. Martin, P. Morgan, L. Motte, F. Mottram, J. C. Natoli, P. Olmi, L. Paladini, R. Piacentini, F. Pestalozzi, M. Pezzuto, S. Polychroni, D. Smith, M. D. Strafella, F. Stringfellow, G. S. Testi, L. Thompson, M. A. Traficante, A. Veneziani, M. TI A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: pre-main sequence ID YOUNG STELLAR OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; GALACTIC PLANE; SEDS AB We present a first study of the star-forming compact dust condensations revealed by Herschel in the two 2 degrees x2 degrees Galactic Plane fields centered at [l, b] = [30 degrees, 0 degrees] and [l, b] = [59 degrees, 0 degrees], respectively, and observed during the science demonstration phase for the Herschel Infrared GALactic plane survey (Hi-GAL) key-project. Compact source catalogs extracted for the two fields in the five Hi-GAL bands (70, 160, 250, 350 and 500 mu m) were merged based on simple criteria of positional association and spectral energy distribution (SED) consistency into a final catalog which contains only coherent SEDs with counterparts in at least three adjacent Herschel bands. These final source lists contain 528 entries for the l = 30 degrees field, and 444 entries for the l = 59 degrees field. The SED coverage has been augmented with ancillary data at 24 mu m and 1.1 mm. SED modeling for the subset of 318 and 101 sources (in the two fields, respectively) for which the distance is known was carried out using both a structured star/disk/envelope radiative transfer model and a simple isothermal grey-body. Global parameters like mass, luminosity, temperature and dust properties have been estimated. The L(bo)l/M(env) ratio spans four orders of magnitudes from values compatible with the pre-protostellar phase to embedded massive zero-age main sequence stars. Sources in the l = 59 degrees field have on average lower L/M, possibly outlining an overall earlier evolutionary stage with respect to the sources in the l = 30 degrees field. Many of these cores are actively forming high-mass stars, although the estimated core surface densities appear to be an order of magnitude below the 1 g cm(-2) critical threshold for high-mass star formation. C1 [Elia, D.; Schisano, E.; Molinari, S.; Benedettini, M.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S.; Polychroni, D.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Elia, D.] Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Schisano, E.] Univ Naples Federico 2, Dipartimento Sci Fisiche, Naples, Italy. [Robitaille, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Angles-Alcazar, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Olmi, L.] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Bally, J.; Battersby, C.; Stringfellow, G. S.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Billot, N.] CALTECH, NASA, Herschel Sci Ctr, IPAC, Pasadena, CA 91125 USA. [Calzoletti, L.; Faustini, F.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Li, J. Z.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Martin, P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Martin, P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Morgan, L.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Motte, F.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Mottram, J. C.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Olmi, L.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Paladini, R.] CALTECH, Spitzer Sci Ctr, IPAC, Pasadena, CA 91125 USA. [Smith, M. D.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Strafella, F.] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy. [Testi, L.] ESO, D-85748 Garching, Germany. [Thompson, M. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Natoli, P.; Traficante, A.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Piacentini, F.; Veneziani, M.] Univ Roma 1 La Sapienza, Dipartimento Fis, Rome, Italy. RP Elia, D (reprint author), INAF, Ist Fis Spazio Interplanetario, Via Fosso del Cavaliere, I-00133 Rome, Italy. EM davide.elia@ifsi-roma.inaf.it RI Molinari, Sergio/O-4095-2016; Piacentini, Francesco/E-7234-2010; OI Molinari, Sergio/0000-0002-9826-7525; Piacentini, Francesco/0000-0002-5444-9327; Pezzuto, Stefano/0000-0001-7852-1971; Olmi, Luca/0000-0002-1162-7947; Elia, Davide/0000-0002-9120-5890; Robitaille, Thomas/0000-0002-8642-1329 FU ASI [I/038/080/0] FX Data processing and maps production has been possible thanks to ASI generous support via contract I/038/080/0. NR 19 TC 40 Z9 40 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L97 DI 10.1051/0004-6361/201014651 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200098 ER PT J AU Falgarone, E Ossenkopf, V Gerin, M Lesaffre, P Godard, B Pearson, J Cabrit, S Joblin, C Benz, AO Boulanger, F Fuente, A Gusten, R Harris, A Klein, T Kramer, C Lord, S Martin, P Martin-Pintado, J Neufeld, D Phillips, TG Rollig, M Simon, R Stutzki, J van der Tak, F Teyssier, D Yorke, H Erickson, N Fich, M Jellema, W Marston, A Risacher, C Salez, M Schmulling, F AF Falgarone, E. Ossenkopf, V. Gerin, M. Lesaffre, P. Godard, B. Pearson, J. Cabrit, S. Joblin, Ch. Benz, A. O. Boulanger, F. Fuente, A. Guesten, R. Harris, A. Klein, T. Kramer, C. Lord, S. Martin, P. Martin-Pintado, J. Neufeld, D. Phillips, T. G. Roellig, M. Simon, R. stutzki, J. van der Tak, F. Teyssier, D. Yorke, H. Erickson, N. Fich, M. Jellema, W. Marston, A. Risacher, C. Salez, M. Schmuelling, F. TI Strong CH+ J=1-0 emission and absorption in DR21 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; ISM: molecules; ISM: kinematics and dynamics; turbulence ID INTERSTELLAR-MEDIUM; MOLECULAR OUTFLOW; DIFFUSE CLOUDS; DR-21; LINE; CHEMISTRY; REGIONS; SHOCKS; SPECTROSCOPY; PROFILES AB We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR 21 molecular ridge and foreground gas. These observations allow us to determine a (CH+)-C-12 J = 1-0 line frequency of v = 835 137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 10(13) cm(-2) in the gas seen in emission, and > 10(14) cm(-2) in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2 x 10(-8). We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines. C1 [Falgarone, E.; Gerin, M.; Lesaffre, P.] Observ Paris, CNRS, LERMA, F-75005 Paris, France. [Falgarone, E.; Gerin, M.; Lesaffre, P.] Ecole Normale Super, F-75005 Paris, France. [Ossenkopf, V.; Roellig, M.; Simon, R.; stutzki, J.; Schmuelling, F.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Ossenkopf, V.; van der Tak, F.; Jellema, W.; Risacher, C.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Godard, B.; Boulanger, F.] CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Godard, B.; Boulanger, F.] Univ Paris 11, F-91405 Orsay, France. [Pearson, J.; Yorke, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cabrit, S.; Salez, M.] CNRS, LERMA, Paris, France. [Cabrit, S.] Observ Paris, F-75014 Paris, France. [Joblin, Ch.] CNRS, CESR, F-31062 Toulouse, France. [Joblin, Ch.] Univ Toulouse 3, F-31062 Toulouse, France. [Benz, A. O.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Fuente, A.] OAN, Madrid 28803, Spain. [Guesten, R.; Klein, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kramer, C.] IRAM, E-18012 Granada, Spain. [Lord, S.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Martin, P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Teyssier, D.; Marston, A.] European Space Astron Ctr, Madrid 28080, Spain. [Erickson, N.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Fich, M.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. RP Falgarone, E (reprint author), Observ Paris, CNRS, LERMA, 24 Rue Lhomond, F-75005 Paris, France. EM maryvonne.gerin@lra.ens.fr RI Fuente, Asuncion/G-1468-2016; Martin-Pintado, Jesus/H-6107-2015 OI Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508 FU Centre National de Recherche Spatiale (CNES); German DeutscheForschungsgemeinschaft, DFG [Os177/1-1] FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States (NASA) under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron mico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. M. G. and E. F. acknowledge the support from the Centre National de Recherche Spatiale (CNES). Part of this work was supported by the German DeutscheForschungsgemeinschaft, DFG project # Os177/1-1. We thank G. Pineau des Forets for providing us with his version of the code for C-shock models. NR 35 TC 31 Z9 31 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L118 DI 10.1051/0004-6361/201014671 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200119 ER PT J AU Fich, M Johnstone, D van Kempen, TA McCoey, C Fuente, A Caselli, P Kristensen, LE Plume, R Cernicharo, J Herczeg, GJ van Dishoeck, EF Wampfler, S Gaufre, P Gill, JJ Javadi, H Justen, M Laauwen, W Luinge, W Ossenkopf, V Pearson, J Bachiller, R Baudry, A Benedettini, M Bergin, E Benz, AO Bjerkeli, P Blake, G Bontemps, S Braine, J Bruderer, S Codella, C Daniel, F di Giorgio, AM Dominik, C Doty, SD Encrenaz, P Giannini, T Goicoechea, JR de Graauw, T Helmich, F Herpin, F Hogerheijde, MR Jacq, T Jorgensen, JK Larsson, B Lis, D Liseau, R Marseille, M Melnick, G Nisini, B Olberg, M Parise, B Risacher, C Santiago, J Saraceno, P Shipman, R Tafalla, M van der Tak, F Visser, R Wyrowski, F Yildiz, UA AF Fich, M. Johnstone, D. van Kempen, T. A. McCoey, C. Fuente, A. Caselli, P. Kristensen, L. E. Plume, R. Cernicharo, J. Herczeg, G. J. van Dishoeck, E. F. Wampfler, S. Gaufre, P. Gill, J. J. Javadi, H. Justen, M. Laauwen, W. Luinge, W. Ossenkopf, V. Pearson, J. Bachiller, R. Baudry, A. Benedettini, M. Bergin, E. Benz, A. O. Bjerkeli, P. Blake, G. Bontemps, S. Braine, J. Bruderer, S. Codella, C. Daniel, F. di Giorgio, A. M. Dominik, C. Doty, S. D. Encrenaz, P. Giannini, T. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herpin, F. Hogerheijde, M. R. Jacq, T. Jorgensen, J. K. Larsson, B. Lis, D. Liseau, R. Marseille, M. Melnick, G. Nisini, B. Olberg, M. Parise, B. Risacher, C. Santiago, J. Saraceno, P. Shipman, R. Tafalla, M. van der Tak, F. Visser, R. Wyrowski, F. Yildiz, U. A. TI Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: molecules ID YOUNG STELLAR OBJECTS; STAR-FORMATION; HH 46; EVOLUTION; OUTFLOW; REGIONS; GAS; I. AB Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode ( R = 1000-5000) with 15 spectral bands between 63 and 185 mu m. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks. C1 [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G, Canada. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.; Kristensen, L. E.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [van Kempen, T. A.; van Dishoeck, E. F.; Hogerheijde, M. R.; Melnick, G.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Fuente, A.; Bachiller, R.; Santiago, J.; Tafalla, M.] IGN Observ Astron Nacl, Alcala De Henares 28800, Spain. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Cernicharo, J.; Goicoechea, J. R.] INTA CSIC, Dept Astrophys, CAB, Torrejon De Ardoz 28850, Spain. [Herczeg, G. J.; van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Wampfler, S.; Benz, A. O.; Bruderer, S.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Gaufre, P.; Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS INSU, UMR 5804, Floirac, France. [Gill, J. J.; Javadi, H.; Pearson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Justen, M.; Ossenkopf, V.] Univ Cologne, KOSMA, Inst Phys 1, D-50937 Cologne, Germany. [Laauwen, W.; Luinge, W.; de Graauw, Th.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.] SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. [Bjerkeli, P.; Liseau, R.; Olberg, M.] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, S-43992 Onsala, Sweden. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Benedettini, M.; Codella, C.; di Giorgio, A. M.; Giannini, T.; Nisini, B.; Saraceno, P.] INAF, Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Benedettini, M.; Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Blake, G.; Lis, D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Daniel, F.] CNRS, Observ Paris Meudon, LERMA, UMR 8112, F-92195 Meudon, France. [Daniel, F.] CSIC, Dept Mol & Infrared Astrophys, Madrid 28006, Spain. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Doty, S. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Jorgensen, J. K.] Univ Copenhagen, Ctr Star & Planet Format, Nat Hist Museum Denmark, DK-1350 Copenhagen, Denmark. [Larsson, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Parise, B.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Parise, B.] Univ Cologne, Inst Phys, D-50937 Cologne, Germany. [Caselli, P.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. RP Fich, M (reprint author), Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G, Canada. EM fich@uwaterloo.ca RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Codella, Claudio/0000-0003-1514-3074; Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Giannini, Teresa/0000-0002-0224-096X; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Bjerkeli, Per/0000-0002-7993-4118; , Brunella Nisini/0000-0002-9190-0113 FU Spanish MCINN [CSD2009-00038]; National Aeronautics and Space Administration; [AYA2006-14786]; [AYA2009-07304] FX We thank Bruno Merin, Jeroen Bouwman, and Bart VandenBussche of the PACS ICC for all of their help with the data reduction. J.C. and A. F. thank theo Spanish MCINN for funding support under program CONSOLIDER INGENIO 2010 ref: CSD2009-00038, and J.C., under programs AYA2006-14786 and AYA2009-07304. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This program is made possible thanks to the HIFI guaranteed time program and the PACS instrument builders. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research Groningen, The Netherlands and with major contributions from Germany, France, and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INT); Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Obseratory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. NR 23 TC 19 Z9 19 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L86 DI 10.1051/0004-6361/201014672 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200087 ER PT J AU Fischer, WJ Megeath, ST Ali, B Tobin, JJ Osorio, M Allen, LE Kryukova, E Stanke, T Stutz, AM Bergin, E Calvet, N Di Francesco, J Furlan, E Hartmann, L Henning, T Krause, O Manoj, P Maret, S Muzerolle, J Myers, P Neufeld, D Pontoppidan, K Poteet, CA Watson, DM Wilson, T AF Fischer, W. J. Megeath, S. T. Ali, B. Tobin, J. J. Osorio, M. Allen, L. E. Kryukova, E. Stanke, T. Stutz, A. M. Bergin, E. Calvet, N. Di Francesco, J. Furlan, E. Hartmann, L. Henning, T. Krause, O. Manoj, P. Maret, S. Muzerolle, J. Myers, P. Neufeld, D. Pontoppidan, K. Poteet, C. A. Watson, D. M. Wilson, T. TI Herschel-PACS imaging of protostars in the HH 1-2 outflow complex SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: protostars; circumstellar matter; infrared: ISM; infrared: stars ID HERBIG-HARO OBJECT-1; INTERMEDIATE-MASS STARS; PROPER MOTIONS; DISTRIBUTIONS; EXTINCTION; CLOUD AB We present 70 and 160 mu m Herschel science demonstration images of a field in the Orion A molecular cloud that contains the prototypical Herbig-Haro objects HH 1 and 2, obtained with the Photodetector Array Camera and Spectrometer (PACS). These observations demonstrate Herschel's unprecedented ability to study the rich population of protostars in the Orion molecular clouds at the wavelengths where they emit most of their luminosity. The four protostars previously identified by Spitzer 3.6-40 mu m imaging and spectroscopy are detected in the 70 mu m band, and three are clearly detected at 160 mu m. We measure photometry of the protostars in the PACS bands and assemble their spectral energy distributions (SEDs) from 1 to 870 mu m with these data, Spitzer spectra and photometry, 2MASS data, and APEX sub-mm data. The SEDs are fit to models generated with radiative transfer codes. From these fits we can constrain the fundamental properties of the protostars. We find luminosities in the range 12-84 L(circle dot) and envelope densities spanning over two orders of magnitude. This implies that the four protostars have a wide range of envelope infall rates and evolutionary states: two have dense, infalling envelopes, while the other two have only residual envelopes. We also show the highly irregular and filamentary structure of the cold dust and gas surrounding the protostars as traced at 160 mu m. C1 [Fischer, W. J.; Megeath, S. T.; Kryukova, E.; Poteet, C. A.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Ali, B.] CALTECH, IPAC, NHSC, Pasadena, CA 91125 USA. [Tobin, J. J.; Bergin, E.; Calvet, N.; Hartmann, L.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Osorio, M.] CSIC, Inst Astrofis Andalucia, Granada 18008, Spain. [Allen, L. E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Stanke, T.; Wilson, T.] ESO, D-85748 Garching, Germany. [Stutz, A. M.; Henning, T.; Krause, O.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Stutz, A. M.] Univ Arizona, Dept Astron & Steward Observ, Tucson, AZ 85721 USA. [Di Francesco, J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Di Francesco, J.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Furlan, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Manoj, P.; Watson, D. M.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Maret, S.] Univ Grenoble 1, CNRS, UMR 571, Lab Astrophys Grenoble, F-38041 Grenoble, France. [Muzerolle, J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Myers, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Pontoppidan, K.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Fischer, WJ (reprint author), Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. EM wfische@utnet.utoledo.edu OI Fischer, William J/0000-0002-3747-2496; Stutz, Amelia/0000-0003-2300-8200; Furlan, Elise/0000-0001-9800-6248; Maret, Sebastien/0000-0003-1104-4554 FU NASA FX This work is based on observations made with the Herschel Space Observatory, a European Space Agency Cornerstone Mission with significant participation by NASA, and with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for the Herschel and Spitzer analysis was provided by NASA through awards issued by JPL/Caltech. We are grateful to Barbara Whitney and her collaborators for making their radiative transfer code available to the community. NR 20 TC 24 Z9 24 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L122 DI 10.1051/0004-6361/201014636 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200123 ER PT J AU Fouque, P Heyrovsky, D Dong, S Gould, A Udalski, A Albrow, MD Batista, V Beaulieu, JP Bennett, DP Bond, IA Bramich, DM Novati, SC Cassan, A Coutures, C Dieters, S Dominik, M Prester, DD Greenhill, J Horne, K Jorgensen, UG Kozlowski, S Kubas, D Lee, CH Marquette, JB Mathiasen, M Menzies, J Monard, LAG Nishiyama, S Papadakis, I Street, R Sumi, T Williams, A Yee, JC Brillant, S Caldwell, JAR Cole, A Cook, KH Donatowicz, J Kains, N Kane, SR Martin, R Pollard, KR Sahu, KC Tsapras, Y Wambsganss, J Zub, M Depoy, DL Gaudi, BS Han, C Lee, CU Park, BG Pogge, RW Kubiak, M Szymanski, MK Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L Abe, F Fukui, A Furusawa, K Gilmore, AC Hearnshaw, JB Itow, Y Kamiya, K Kilmartin, PM Korpela, AV Lin, W Ling, CH Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Ohnishi, K Okumura, T Perrott, Y Rattenbury, NJ Saito, T Sako, T Sato, S Skuljan, L Sullivan, D Sweatman, W Tristram, PJ Yock, PCM Allan, A Bode, MF Burgdorf, MJ Clay, N Fraser, SN Hawkins, E Kerins, E Lister, TA Mottram, CJ Saunders, ES Snodgrass, C Steele, IA Wheatley, PJ Anguita, T Bozza, V Harpsoe, K Hinse, TC Hundertmark, M Kjaergaard, P Liebig, C Mancini, L Masi, G Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Thone, CC Riffeser, A Seitz, S Bender, R AF Fouque, P. Heyrovsky, D. Dong, S. Gould, A. Udalski, A. Albrow, M. D. Batista, V. Beaulieu, J. -P. Bennett, D. P. Bond, I. A. Bramich, D. M. Novati, S. Calchi Cassan, A. Coutures, C. Dieters, S. Dominik, M. Prester, D. Dominis Greenhill, J. Horne, K. Jorgensen, U. G. Kozlowski, S. Kubas, D. Lee, C. -H. Marquette, J. -B. Mathiasen, M. Menzies, J. Monard, L. A. G. Nishiyama, S. Papadakis, I. Street, R. Sumi, T. Williams, A. Yee, J. C. Brillant, S. Caldwell, J. A. R. Cole, A. Cook, K. H. Donatowicz, J. Kains, N. Kane, S. R. Martin, R. Pollard, K. R. Sahu, K. C. Tsapras, Y. Wambsganss, J. Zub, M. DePoy, D. L. Gaudi, B. S. Han, C. Lee, C. -U. Park, B. -G. Pogge, R. W. Kubiak, M. Szymanski, M. K. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. Abe, F. Fukui, A. Furusawa, K. Gilmore, A. C. Hearnshaw, J. B. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. V. Lin, W. Ling, C. H. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Ohnishi, K. Okumura, T. Perrott, Y. Rattenbury, N. J. Saito, To Sako, T. Sato, S. Skuljan, L. Sullivan, D. Sweatman, W. Tristram, P. J. Yock, P. C. M. Allan, A. Bode, M. F. Burgdorf, M. J. Clay, N. Fraser, S. N. Hawkins, E. Kerins, E. Lister, T. A. Mottram, C. J. Saunders, E. S. Snodgrass, C. Steele, I. A. Wheatley, P. J. Anguita, T. Bozza, V. Harpsoe, K. Hinse, T. C. Hundertmark, M. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Thone, C. C. Riffeser, A. Seitz, S. Bender, R. CA PLANET Collaboration FUN Collaboration OGLE Collaboration MOA Collaboration RoboNet-II Collaboration MiNDSTEp Consortium WeCAPP Collaboration TI OGLE 2008-BLG-290: an accurate measurement of the limb darkening of a galactic bulge K Giant spatially resolved by microlensing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: micro; techniques: high angular resolution; stars: atmospheres; stars: individual: OGLE 2008-BLG-290 ID SURFACE BRIGHTNESS RELATIONS; DETACHED ECLIPSING BINARIES; INTERSTELLAR EXTINCTION LAW; STELLAR ATMOSPHERE MODELS; DIFFERENCE IMAGE-ANALYSIS; JOVIAN-MASS PLANET; RED CLUMP STARS; EVENT MOA-2007-BLG-192; HIGH-MAGNIFICATION; LIGHT CURVES AB Context. Not only is gravitational microlensing a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. Aims. In high-magnification events, the lens caustic may cross over the source disk, which allows determination of the angular size of the source and measurement of its limb darkening. Methods. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczy ' nski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. Results. In the case of the microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification at about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darkening coefficients of the source in six photometric bands. The best-measured coefficients lead to an estimate of the source effective temperature of about 4700(-200)(+100) K. However, the photometric estimate from colour-magnitude diagrams favours a cooler temperature of 4200 +/- 100 K. Conclusions. Because the limb-darkening measurements, at least in the CTIO/SMARTS2 V-s- and I-s-bands, are among the most accurate obtained, the above disagreement needs to be understood. A solution is proposed, which may apply to previous events where such a discrepancy also appeared. C1 [Dong, S.; Gould, A.; Kozlowski, S.; Yee, J. C.; DePoy, D. L.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Albrow, M. D.; Pollard, K. R.; Gilmore, A. C.; Hearnshaw, J. B.; Lin, W.; Skuljan, L.; Sweatman, W.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kubas, D.; Brillant, S.; Snodgrass, C.] ESO, Santiago, Chile. [Bramich, D. M.] ESO, D-85748 Garching, Germany. [Batista, V.; Beaulieu, J. -P.; Coutures, C.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, Inst Astrophys Paris, CNRS, F-75014 Paris, France. [Cassan, A.; Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Heidelberg Univ, ARI, Zentrum Astron, D-69120 Heidelberg, Germany. [Dominik, M.; Horne, K.; Kains, N.] Univ St Andrews, Scottish Univ Phys Alliance, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bennett, D. P.; Caldwell, J. A. R.] Univ Texas, McDonald Observ, Ft Davis, TX 79734 USA. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Fac Arts & Sci, Rijeka 51000, Croatia. [Donatowicz, J.; Ling, C. H.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Greenhill, J.; Cole, A.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Williams, A.; Martin, R.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7925 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Han, C.] Chungbuk Natl Univ, Dept Phys, Inst Basic Sci Res, Chonju 361763, South Korea. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Monard, L. A. G.] Bronberg Observ, Pretoria, South Africa. [Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Astron Grp, Concepcion, Chile. [Wyrzykowski, L.; Kilmartin, P. M.; Tristram, P. J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bond, I. A.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand. [Papadakis, I.; Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Kerins, E.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Perrott, Y.; Rattenbury, N. J.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1142, New Zealand. [Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1160003, Japan. [Sato, S.] Nagoya Univ, Dept Phys & Astrophys, Fac Sci, Nagoya, Aichi 4648602, Japan. [Korpela, A. V.; Sullivan, D.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Street, R.; Tsapras, Y.; Hawkins, E.; Lister, T. A.; Saunders, E. S.] Las Cumbres Observ, Goleta, CA 93117 USA. [Bode, M. F.; Clay, N.; Fraser, S. N.; Mottram, C. J.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Street, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Jorgensen, U. G.; Mathiasen, M.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Thone, C. C.] Univ Copenhagen, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Lee, C. -H.; Riffeser, A.; Seitz, S.; Bender, R.] Univ Observ Munich, D-81679 Munich, Germany. [Seitz, S.; Bender, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Heyrovsky, D.] Charles Univ Prague, Inst Theoret Phys, Prague 18000, Czech Republic. [Masi, G.] Bellatrix Observ, I-03023 Ceccano, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis, Salerno, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, Ireland. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Thone, C. C.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Nishiyama, S.] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. [Tsapras, Y.] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England. RI Papadakis, Iossif/C-3235-2011; Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; Williams, Andrew/K-2931-2013; Heyrovsky, David/A-2031-2015; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; Heyrovsky, David/0000-0002-5198-5343; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855 FU Bronberg; Canopus; CTIO; ESO; IRSF; LCOGT; Liverpool; LOAO; MOA; OGLE; Perth; SAAO; Skinakas; Polish MNiSW [N20303032/4275]; French Agence Nationale de la Recherche; Czech Science Foundation [GACR 205/07/0824]; Czech Ministry of Education [MSM0021620860]; National Research Foundation of Korea [2009-0081561]; Department for Culture, Arts and Leisure, Northern Ireland, UK; Communaute francaise de Belgique - Actions de recherche concertees - Academie universitaire Wallonie-Europe; Danish National Research Council; National Aeronautics and Space Administration; National Science Foundation FX We express our gratitude to ESO for a two months invitation at Santiago headquarters, Chile, where part of this work was achieved. We are very grateful to the observatories that support our science (Bronberg, Canopus, CTIO, ESO, IRSF, LCOGT, Liverpool, LOAO, MOA, OGLE, Perth, SAAO, Skinakas) via the generous allocation of time that makes this work possible. The operation of Canopus Observatory is in part supported by a financial contribution from David Warren. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. Allocation of the Holmes grant from the French Agence Nationale de la Recherche has been indispensable to finance observing trips and meeting travels, and is gratefully acknowledged here. D. H. was supported by Czech Science Foundation grant GACR 205/07/0824 and by the Czech Ministry of Education project MSM0021620860. C. H. was supported by the grant 2009-0081561 of National Research Foundation of Korea. T. C. H. was financed for his astronomical research at the Armagh Observatory by the Department for Culture, Arts and Leisure, Northern Ireland, UK. D. R. and J.S. acknowledge support from the Communaute francaise de Belgique - Actions de recherche concertees - Academie universitaire Wallonie-Europe. The Dark Cosmology Centre is funded by the Danish National Research Council. P. F. wishes to thank Noriyuki Matsunaga for discussions about the interplay between adopted distance and derived extinction, David Nataf for measuring the red giant clump in the recently released OGLE-III photometric catalogue, and Etienne Bachelet for checking the whole chain from extinction to source size using a refined method. We are grateful to the anonymous referee for constructive comments that helped us improve the manuscript.; This publication makes use of data products from the 2MASS project, as well as the SIMBAD database, Aladin and Vizier catalogue operation tools (CDS Strasbourg, France). The Two Micron All Sky Survey is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 71 TC 9 Z9 9 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR A51 DI 10.1051/0004-6361/201014053 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500029 ER PT J AU Galametz, M Madden, SC Galliano, F Hony, S Sauvage, M Pohlen, M Bendo, GJ Auld, R Baes, M Barlow, MJ Bock, JJ Boselli, A Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Cortese, L Davies, JI Dwek, E Eales, SA Elbaz, D Gear, WK Glenn, J Gomez, HL Griffin, M Isaak, KG Levenson, LR Lu, N O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Stevens, JA Sundar, S Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wilson, CD Wozniak, H Wright, GS Zeilinger, WW AF Galametz, M. Madden, S. C. Galliano, F. Hony, S. Sauvage, M. Pohlen, M. Bendo, G. J. Auld, R. Baes, M. Barlow, M. J. Bock, J. J. Boselli, A. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Cortese, L. Davies, J. I. Dwek, E. Eales, S. A. Elbaz, D. Gear, W. K. Glenn, J. Gomez, H. L. Griffin, M. Isaak, K. G. Levenson, L. R. Lu, N. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Stevens, J. A. Sundar, S. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wilson, C. D. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI Herschel photometric observations of the nearby low metallicity irregular galaxy NGC 6822 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; galaxies: dwarf; galaxies: photometry ID STAR-FORMATION HISTORY; LOCAL GROUP; INTERSTELLAR DUST; INFRARED-EMISSION; AMORPHOUS-CARBON; GRAPHITE; SPITZER AB We present the first Herschel PACS and SPIRE images of the low-metallicity galaxy NGC 6822 observed from 70 to 500 mu m and clearly resolve the H II regions with PACS and SPIRE. We find that the ratio 250/500 is dependent on the 24 mu m surface brightness in NGC 6822, which would locally link the heating processes of the coldest phases of dust in the ISM to the star formation activity. We model the SEDs of some regions H II regions and less active regions across the galaxy and find that the SEDs of H II regions show warmer ranges of dust temperatures. We derive very high dust masses when graphite is used in our model to describe carbon dust. Using amorphous carbon, instead, requires less dust mass to account for submm emission due to its lower emissivity properties. This indicates that SED models including Herschel constraints may require different dust properties than commonly used. The global G/D of NGC 6822 is finally estimated to be 186, using amorphous carbon. C1 [Galametz, M.; Madden, S. C.; Galliano, F.; Hony, S.; Sauvage, M.; Chanial, P.; Cormier, D.; Elbaz, D.; Okumura, K.; Panuzzo, P.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Pohlen, M.; Auld, R.; Cortese, L.; Davies, J. I.; Eales, S. A.; Gear, W. K.; Gomez, H. L.; Griffin, M.; Papageorgiou, A.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bendo, G. J.; Clements, D. L.; O'Halloran, B.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Baes, M.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Castro-Rodriguez, N.; Perez-Fournon, I.] ULL, Dept Astrofis, Tenerife, Spain. [Castro-Rodriguez, N.; Perez-Fournon, I.] ULL, IAC, Tenerife, Spain. [Charlot, S.; Roussel, H.; Sundar, S.; Vigroux, L.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, CASA CB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Isaak, K. G.] Estec, ESA Astrophys Mission Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Parkin, T. J.; Schirm, M. R. P.; Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. RP Galametz, M (reprint author), CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. EM maud.galametz@cea.fr RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016 OI Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823; Barlow, Michael/0000-0002-3875-1171; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX We thank the referee for his comments that help to improve the quality of this paper. We also thank Erwin de Blok for the integrated H I map of NGC 6822. PACS has been developed by MPE (Germany); UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by Cardiff University (UK); Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); SNSB (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 29 TC 33 Z9 33 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L55 DI 10.1051/0004-6361/201014604 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200056 ER PT J AU Gerin, M De Luca, M Black, J Goicoechea, JR Herbst, E Neufeld, DA Falgarone, E Godard, B Pearson, JC Lis, DC Phillips, TG Bell, TA Sonnentrucker, P Boulanger, F Cernicharo, J Coutens, A Dartois, E Encrenaz, P Giesen, T Goldsmith, PF Gupta, H Gry, C Hennebelle, P Hily-Blant, P Joblin, C Kazmierczak, M Kolos, R Krelowski, J Martin-Pintado, J Monje, R Mookerjea, B Perault, M Persson, C Plume, R Rimmer, PB Salez, M Schmidt, M Stutzki, J Teyssier, D Vastel, C Yu, S Contursi, A Menten, K Geballe, T Schlemmer, S Shipman, R Tielens, AGGM Philipp-May, S Cros, A Zmuidzinas, J Samoska, LA Klein, K Lorenzani, A AF Gerin, M. De Luca, M. Black, J. Goicoechea, J. R. Herbst, E. Neufeld, D. A. Falgarone, E. Godard, B. Pearson, J. C. Lis, D. C. Phillips, T. G. Bell, T. A. Sonnentrucker, P. Boulanger, F. Cernicharo, J. Coutens, A. Dartois, E. Encrenaz, P. Giesen, T. Goldsmith, P. F. Gupta, H. Gry, C. Hennebelle, P. Hily-Blant, P. Joblin, C. Kazmierczak, M. Kolos, R. Krelowski, J. Martin-Pintado, J. Monje, R. Mookerjea, B. Perault, M. Persson, C. Plume, R. Rimmer, P. B. Salez, M. Schmidt, M. Stutzki, J. Teyssier, D. Vastel, C. Yu, S. Contursi, A. Menten, K. Geballe, T. Schlemmer, S. Shipman, R. Tielens, A. G. G. M. Philipp-May, S. Cros, A. Zmuidzinas, J. Samoska, L. A. Klein, K. Lorenzani, A. TI Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: molecules; ISM: clouds ID HII-REGIONS; CLOUDS; SPECTROSCOPY; ABSORPTION AB We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6-0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6-0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms(-1) we estimate total column densities of N(OH+) >= 2.5 x 10(14) cm(-2), N(H2O+) similar to 6 x 10(13) cm(-2) and N(H3O+) similar to 4.0 x 10(13) cm(-2). These detections confirm the role of O+ and OH+ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form. C1 [Gerin, M.; De Luca, M.; Falgarone, E.; Godard, B.; Encrenaz, P.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Black, J.; Persson, C.] Chalmers, S-41296 Gothenburg, Sweden. [Goicoechea, J. R.; Cernicharo, J.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Herbst, E.; Rimmer, P. B.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P. B.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Herbst, E.; Rimmer, P. B.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Neufeld, D. A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Pearson, J. C.; Goldsmith, P. F.; Gupta, H.; Yu, S.; Samoska, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lis, D. C.; Phillips, T. G.; Bell, T. A.; Monje, R.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Giesen, T.; Stutzki, J.; Schlemmer, S.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Joblin, C.; Vastel, C.; Cros, A.] CNRS, UMR5187, F-31028 Toulouse, France. [Kolos, R.] Polish Acad Sci, Inst Phys Chem, PL-00901 Warsaw, Poland. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Schmidt, M.] ESA, European Space Astron Ctr, Madrid, Spain. [Teyssier, D.] MPI Extraterr Phys, Garching, Germany. [Contursi, A.] MPI Radioastron, Bonn, Germany. [Menten, K.] Gemini Telescope, Hilo, HI USA. [Tielens, A. G. G. M.] Sterrewacht Leiden, Leiden, Netherlands. [Philipp-May, S.; Klein, K.] Deutsch Zentrum Luft & Raumfahrt eV, Raumfahrt Agentur, Bonn, Germany. Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. RP Gerin, M (reprint author), Observ Paris, CNRS, LERMA, Paris, France. EM maryvonne.gerin@ens.fr RI Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016 OI Martin-Pintado, Jesus/0000-0003-4561-3508; Lorenzani, Andrea/0000-0002-4685-3434; Rimmer, Paul/0000-0002-7180-081X; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; FU ANR [ANR-09-BLAN-231]; MNiSW [N203393334]; CNES FX HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astron mico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. MG, EF, MDL acknowledge the support from CNES, and ANR through the SCHISM project (ANR-09-BLAN-231). M. S. acknowledges support from grant N203393334 (MNiSW). NR 29 TC 104 Z9 104 U1 0 U2 17 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L110 DI 10.1051/0004-6361/201014576 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200111 ER PT J AU Gillon, M Deming, D Demory, BO Lovis, C Seager, S Mayor, M Pepe, F Queloz, D Segransan, D Udry, S Delmelle, S Magain, P AF Gillon, M. Deming, D. Demory, B. -O. Lovis, C. Seager, S. Mayor, M. Pepe, F. Queloz, D. Segransan, D. Udry, S. Delmelle, S. Magain, P. TI The Spitzer search for the transits of HARPS low-mass planets I. No transit for the super-Earth HD 40307b SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: eclipsing; planetary systems; stars: individual: HD 40307; techniques: photometric ID EXTRA-SOLAR PLANETS; M-CIRCLE-PLUS; EMISSION-SPECTRUM; SPACE-TELESCOPE; MU-M; NEPTUNE; ATMOSPHERE; EXOPLANET; 189733B; RADIUS AB We used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The hypothesis that the planet transits could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, the hypothesis that the planet transited during the observed phase window is firmly rejected, while the probability that the planet does transit but that the eclipse was missed by our observations is nearly negligible (0.26%). C1 [Gillon, M.; Delmelle, S.; Magain, P.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Gillon, M.; Demory, B. -O.; Lovis, C.; Mayor, M.; Pepe, F.; Queloz, D.; Segransan, D.; Udry, S.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Deming, D.] NASA, Goddard Space Flight Ctr, Planetary Syst Branch, Greenbelt, MD 20771 USA. [Demory, B. -O.; Seager, S.] MIT, Dept Earth Atmospher & Planetary Sci, Dept Phys, Cambridge, MA 02139 USA. RP Gillon, M (reprint author), Univ Liege, Inst Astrophys & Geophys, Allee 6 Aout 17,Bat B5C, B-4000 Liege, Belgium. EM michael.gillon@ulg.ac.be FU NASA; Belgian Science Policy Office FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA. M. Gillon acknowledges support from the Belgian Science Policy Office in the form of a Return Grant, and thanks J. Montalban for her valuable suggestions about bolometric corrections. NR 47 TC 7 Z9 7 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR A25 DI 10.1051/0004-6361/201014144 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500033 ER PT J AU Gomez, HL Baes, M Cortese, L Smith, MWL Boselli, A Ciesla, L Bendo, GJ Pohlen, M Alighieri, SD Auld, R Barlow, MJ Bock, JJ Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Clements, DL Cooray, A Cormier, D Davies, JI Dwek, E Eales, S Elbaz, D Galametz, M Galliano, F Gear, WK Glenn, J Griffin, M Hony, S Isaak, KG Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Sauvage, M Schirm, MRP Schulz, B Spinoglio, L Srinivasan, S Stevens, JA Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wilson, CD Wozniak, H Wright, GS Zeilinger, WW AF Gomez, H. L. Baes, M. Cortese, L. Smith, M. W. L. Boselli, A. Ciesla, L. Bendo, G. J. Pohlen, M. Alighieri, S. di Serego Auld, R. Barlow, M. J. Bock, J. J. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Clements, D. L. Cooray, A. Cormier, D. Davies, J. I. Dwek, E. Eales, S. Elbaz, D. Galametz, M. Galliano, F. Gear, W. K. Glenn, J. Griffin, M. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Sauvage, M. Schirm, M. R. P. Schulz, B. Spinoglio, L. Srinivasan, S. Stevens, J. A. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wilson, C. D. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI The dust morphology of the elliptical Galaxy M 86 with SPIRE SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ellipticals and lenticular, cD; galaxies: individual: M 86; submillimeter: ISM; dust, extinction ID MULTIPHASE INTERSTELLAR-MEDIUM; VIRGO CLUSTER; COLD DUST; GAS; EMISSION; NGC-4406; M-86; M86 AB We present Herschel-SPIRE observations at 250-500 mu m of the giant elliptical galaxy M 86 and examine the distribution of the resolved cold dust emission and its relation with other galactic tracers. The SPIRE images reveal three dust components: emission from the central region; a dust lane extending north-south; and a bright emission feature 10 kpc to the south-east. We estimate that similar to 10(6) M(circle dot) of dust is spatially coincident with atomic and ionized hydrogen, originating from stripped material from the nearby spiral NGC 4438 due to recent tidal interactions with M 86. The gas-to-dust ratio of the cold gas component ranges from similar to 20-80. We discuss the different heating mechanisms for the dust features. C1 [Gomez, H. L.; Cortese, L.; Smith, M. W. L.; Pohlen, M.; Auld, R.; Davies, J. I.; Eales, S.; Gear, W. K.; Griffin, M.; Papageorgiou, A.; Rykala, A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Boselli, A.; Ciesla, L.; Buat, V.; O'Halloran, B.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bendo, G. J.; Clements, D. L.; Trichas, M.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Alighieri, S. di Serego] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.; Lu, N.] CALTECH, Pasadena, CA 91125 USA. [Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain. [Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Panuzzo, P.; Sauvage, M.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [Charlot, S.; Roussel, H.; Srinivasan, S.; Vigroux, L.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. [Isaak, K. G.] Estec, ESA Astrophys Missions Div, NL-2200 AG Noordwijk, Netherlands. [Oliver, S.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Parkin, T. J.; Schirm, M. R. P.; Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Stevens, J. A.] Univ Hertfordshire, Res Ctr, Ctr Astrophys Res Sci & Technol, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP Gomez, HL (reprint author), Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. EM haley.gomez@astro.cf.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; di Serego Alighieri, Sperello/E-4067-2010; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016 OI Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823; Barlow, Michael/0000-0002-3875-1171; di Serego Alighieri, Sperello/0000-0001-8769-2692; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX We thank Jeff Kenney & Jacqueline van Gorkom for providing electronic versions of their data. The images were produced with APLpy, thanks to Edward Gomez & Eli Bressart. We thank the referee for their constructive comments. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 30 TC 31 Z9 31 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L45 DI 10.1051/0004-6361/201014530 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200046 ER PT J AU Gonzalez-Nuevo, J De Zotti, G Andreani, P Barton, EJ Bertoldi, F Birkinshaw, M Bonavera, L Buttiglione, S Cooke, J Cooray, A Danese, G Dunne, L Eales, S Fan, L Jarvis, MJ Klockner, HR Hatziminaoglou, E Herranz, D Hughes, DH Lapi, A Lawrence, A Leeuw, L Lopez-Caniego, M Massardi, M Mauch, T Michalowski, MJ Negrello, M Rawlings, S Rodighiero, G Samui, S Serjeant, S Vieira, JD White, G Amblard, A Auld, R Baes, M Bonfield, DG Burgarella, D Cava, A Clements, DL Dariush, A Dye, S Frayer, D Fritz, J Ibar, E Ivison, RJ Lagache, G Maddox, S Pascale, E Pohlen, M Rigby, E Sibthorpe, B Smith, DJB Temi, P Thompson, M Valtchanov, I Verma, A AF Gonzalez-Nuevo, J. De Zotti, G. Andreani, P. Barton, E. J. Bertoldi, F. Birkinshaw, M. Bonavera, L. Buttiglione, S. Cooke, J. Cooray, A. Danese, G. Dunne, L. Eales, S. Fan, L. Jarvis, M. J. Kloeckner, H. -R. Hatziminaoglou, E. Herranz, D. Hughes, D. H. Lapi, A. Lawrence, A. Leeuw, L. Lopez-Caniego, M. Massardi, M. Mauch, T. Michalowski, M. J. Negrello, M. Rawlings, S. Rodighiero, G. Samui, S. Serjeant, S. Vieira, J. D. White, G. Amblard, A. Auld, R. Baes, M. Bonfield, D. G. Burgarella, D. Cava, A. Clements, D. L. Dariush, A. Dye, S. Frayer, D. Fritz, J. Ibar, E. Ivison, R. J. Lagache, G. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. Sibthorpe, B. Smith, D. J. B. Temi, P. Thompson, M. Valtchanov, I. Verma, A. TI Herschel-ATLAS: Blazars in the science demonstration phase field SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: general; quasars: general; submillimeter: general ID BL-LACERTAE OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; SKY-SURVEY; RADIO; CATALOG; GHZ; QUASARS; COUNTS; SAMPLE; VIEW AB To investigate the poorly constrained sub-mm counts and spectral properties of blazars we searched for these in the Herschel-ATLAS (H-ATLAS) science demonstration phase (SDP) survey catalog. We cross-matched 500 mu m sources brighter than 50 mJy with the FIRST radio catalogue. We found two blazars, both previously known. Our study is among the first blind blazar searches at sub-mm wavelengths, i.e., in the spectral regime where little is still known about the blazar SEDs, but where the synchrotron peak of the most luminous blazars is expected to occur. Our early results are consistent with educated extrapolations of lower frequency counts and question indications of substantial spectral curvature downwards and of spectral upturns at mm wavelengths. One of the two blazars is identified with a Fermi/LAT gamma-ray source and a WMAP source. The physical parameters of the two blazars are briefly discussed. These observations demonstrate that the H-ATLAS survey will provide key information about the physics of blazars and their contribution to sub-mm counts. C1 [Gonzalez-Nuevo, J.; De Zotti, G.; Bonavera, L.; Danese, G.; Fan, L.; Lapi, A.; Samui, S.] SISSA, I-34014 Trieste, Italy. [De Zotti, G.; Buttiglione, S.; Massardi, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Andreani, P.; Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Andreani, P.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Barton, E. J.; Cooke, J.; Cooray, A.; Amblard, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bertoldi, F.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Birkinshaw, M.] Univ Bristol, Dept Phys, Bristol BS8 1TL, Avon, England. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Dunne, L.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Eales, S.; Auld, R.; Dariush, A.; Dye, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Jarvis, M. J.; Bonfield, D. G.; Thompson, M.] Univ Hertfordshire, Ctr Astrophys, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Kloeckner, H. -R.; Mauch, T.; Rawlings, S.; Verma, A.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Herranz, D.; Lopez-Caniego, M.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Hughes, D. H.] INAOE, Puebla 72840, Mexico. [Lapi, A.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Lawrence, A.; Michalowski, M. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Negrello, M.; Serjeant, S.; White, G.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6BJ, Bucks, England. [Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Vieira, J. D.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [White, G.] Rutherford Appleton Lab, Dept Space Sci, Chilton, England. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Cava, A.] IAC, Tenerife 38200, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Ibar, E.; Ivison, R. J.; Sibthorpe, B.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] IAS, F-91405 Orsay, France. [Lagache, G.] Univ Paris 11, Paris, France. [Lagache, G.] CNRS, UMR 8617, F-75700 Paris, France. [Valtchanov, I.] ESA, ESAC, Herschel Sci Ctr, Madrid 28691, Spain. RP Gonzalez-Nuevo, J (reprint author), SISSA, Via Beirut 2-4, I-34014 Trieste, Italy. EM gnuevo@sissa.it RI amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Fan, Lulu/P-2168-2016; Cava, Antonio/C-5274-2017; bonavera, laura/E-9368-2017; Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; OI amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Fan, Lulu/0000-0003-4200-4432; Cava, Antonio/0000-0002-4821-1275; bonavera, laura/0000-0001-8039-3876; Lopez-Caniego, Marcos/0000-0003-1016-9283; Maddox, Stephen/0000-0001-5549-195X; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 FU Italian Space Agency [I/016/07/0, I/072/09/0] FX We are grateful to the referee, P. Padovani, for very useful comments. Thanks are due to the PACO collaboration for having made available the data on the 2 blazars. M. M. and L. B. thanks the staff at the Australia Telescope Compact Array site, Narrabri (NSW), for the valuable support they provide in running the telescope. Work partially supported by the Italian Space Agency (contract I/016/07/0 "COFIS" and ASI/INAF Agreement I/072/09/0 for the Planck LFI Activity of Phase E2). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 28 TC 16 Z9 16 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L38 DI 10.1051/0004-6361/201014637 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200039 ER PT J AU Griffin, MJ Abergel, A Abreu, A Ade, PAR Andre, P Augueres, JL Babbedge, T Bae, Y Baillie, T Baluteau, JP Barlow, MJ Bendo, G Benielli, D Bock, JJ Bonhomme, P Brisbin, D Brockley-Blatt, C Caldwell, M Cara, C Castro-Rodriguez, N Cerulli, R Chanial, P Chen, S Clark, E Clements, DL Clerc, L Coker, J Communal, D Conversi, L Cox, P Crumb, D Cunningham, C Daly, F Davis, GR De Antoni, P Delderfield, J Devin, N Di Giorgio, A Didschuns, I Dohlen, K Donati, M Dowell, A Dowell, CD Duband, L Dumaye, L Emery, RJ Ferlet, M Ferrand, D Fontignie, J Fox, M Franceschini, A Frerking, M Fulton, T Garcia, J Gastaud, R Gear, WK Glenn, J Goizel, A Griffin, DK Grundy, T Guest, S Guillemet, L Hargrave, PC Harwit, M Hastings, P Hatziminaoglou, E Herman, M Hinde, B Hristov, V Huang, M Imhof, P Isaak, KJ Israelsson, U Ivison, RJ Jennings, D Kiernan, B King, KJ Lange, AE Latter, W Laurent, G Laurent, P Leeks, SJ Lellouch, E Levenson, L Li, B Li, J Lilienthal, J Lim, T Liu, SJ Lu, N Madden, S Mainetti, G Marliani, P McKay, D Mercier, K Molinari, S Morris, H Moseley, H Mulder, J Mur, M Naylor, DA Nguyen, H O'Halloran, B Oliver, S Olofsson, G Olofsson, HG Orfei, R Page, MJ Pain, I Panuzzo, P Papageorgiou, A Parks, G Parr-Burman, P Pearce, A Pearson, C Perez-Fournon, I Pinsard, F Pisano, G Podosek, J Pohlen, M Polehampton, ET Pouliquen, D Rigopoulou, D Rizzo, D Roseboom, IG Roussel, H Rowan-Robinson, M Rownd, B Saraceno, P Sauvage, M Savage, R Savini, G Sawyer, E Scharmberg, C Schmitt, D Schneider, N Schulz, B Schwartz, A Shafer, R Shupe, DL Sibthorpe, B Sidher, S Smith, A Smith, AJ Smith, D Spencer, L Stobie, B Sudiwala, R Sukhatme, K Surace, C Stevens, JA Swinyard, BM Trichas, M Tourette, T Triou, H Tseng, S Tucker, C Turner, A Vaccari, M Valtchanov, I Vigroux, L Virique, E Voellmer, G Walker, H Ward, R Waskett, T Weilert, M Wesson, R White, GJ Whitehouse, N Wilson, CD Winter, B Woodcraft, AL Wright, GS Xu, CK Zavagno, A Zemcov, M Zhang, L Zonca, E AF Griffin, M. J. Abergel, A. Abreu, A. Ade, P. A. R. Andre, P. Augueres, J. -L. Babbedge, T. Bae, Y. Baillie, T. Baluteau, J. -P. Barlow, M. J. Bendo, G. Benielli, D. Bock, J. J. Bonhomme, P. Brisbin, D. Brockley-Blatt, C. Caldwell, M. Cara, C. Castro-Rodriguez, N. Cerulli, R. Chanial, P. Chen, S. Clark, E. Clements, D. L. Clerc, L. Coker, J. Communal, D. Conversi, L. Cox, P. Crumb, D. Cunningham, C. Daly, F. Davis, G. R. De Antoni, P. Delderfield, J. Devin, N. Di Giorgio, A. Didschuns, I. Dohlen, K. Donati, M. Dowell, A. Dowell, C. D. Duband, L. Dumaye, L. Emery, R. J. Ferlet, M. Ferrand, D. Fontignie, J. Fox, M. Franceschini, A. Frerking, M. Fulton, T. Garcia, J. Gastaud, R. Gear, W. K. Glenn, J. Goizel, A. Griffin, D. K. Grundy, T. Guest, S. Guillemet, L. Hargrave, P. C. Harwit, M. Hastings, P. Hatziminaoglou, E. Herman, M. Hinde, B. Hristov, V. Huang, M. Imhof, P. Isaak, K. J. Israelsson, U. Ivison, R. J. Jennings, D. Kiernan, B. King, K. J. Lange, A. E. Latter, W. Laurent, G. Laurent, P. Leeks, S. J. Lellouch, E. Levenson, L. Li, B. Li, J. Lilienthal, J. Lim, T. Liu, S. J. Lu, N. Madden, S. Mainetti, G. Marliani, P. McKay, D. Mercier, K. Molinari, S. Morris, H. Moseley, H. Mulder, J. Mur, M. Naylor, D. A. Nguyen, H. O'Halloran, B. Oliver, S. Olofsson, G. Olofsson, H. -G. Orfei, R. Page, M. J. Pain, I. Panuzzo, P. Papageorgiou, A. Parks, G. Parr-Burman, P. Pearce, A. Pearson, C. Perez-Fournon, I. Pinsard, F. Pisano, G. Podosek, J. Pohlen, M. Polehampton, E. T. Pouliquen, D. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Roussel, H. Rowan-Robinson, M. Rownd, B. Saraceno, P. Sauvage, M. Savage, R. Savini, G. Sawyer, E. Scharmberg, C. Schmitt, D. Schneider, N. Schulz, B. Schwartz, A. Shafer, R. Shupe, D. L. Sibthorpe, B. Sidher, S. Smith, A. Smith, A. J. Smith, D. Spencer, L. Stobie, B. Sudiwala, R. Sukhatme, K. Surace, C. Stevens, J. A. Swinyard, B. M. Trichas, M. Tourette, T. Triou, H. Tseng, S. Tucker, C. Turner, A. Vaccari, M. Valtchanov, I. Vigroux, L. Virique, E. Voellmer, G. Walker, H. Ward, R. Waskett, T. Weilert, M. Wesson, R. White, G. J. Whitehouse, N. Wilson, C. D. Winter, B. Woodcraft, A. L. Wright, G. S. Xu, C. K. Zavagno, A. Zemcov, M. Zhang, L. Zonca, E. TI The Herschel-SPIRE instrument and its in-flight performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: photometers; instrumentation: spectrographs; space vehicles: instruments; submillimeter: general ID DESIGN AB The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2. C1 [Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Roussel, H.; Vigroux, L.] CNRS, UPMC, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Pisano, G.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Olofsson, G.; Olofsson, H. -G.] Stockholm Univ, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Oliver, S.; Roseboom, I. G.; Savage, R.; Smith, A. J.; Ward, R.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Naylor, D. A.; Pearson, C.; Polehampton, E. T.; Spencer, L.] Univ Lethbridge, Inst Space Imaging Sci, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. [Mercier, K.] Ctr Natl Etud Spatiale, F-31401 Toulouse 9, France. [Lellouch, E.] LESIA CNRS, Observ Paris, F-92195 Meudon, France. [Latter, W.; Lu, N.; Schulz, B.; Schwartz, A.; Shupe, D. L.; Xu, C. K.; Zhang, L.] NASA Herschel Sci Ctr, IPAC, Pasadena, CA 91125 USA. [Jennings, D.; Moseley, H.; Shafer, R.; Voellmer, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Isaak, K. J.; Marliani, P.; Schmitt, D.] ESA ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Hristov, V.; Lange, A. E.; Levenson, L.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Hatziminaoglou, E.] European So Observ, D-85748 Garching, Germany. [Glenn, J.; Laurent, G.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Fulton, T.; Imhof, P.; Rownd, B.] Blue Sky Spect Inc, Lethbridge, AB T1J 0N9, Canada. [Franceschini, A.; Mainetti, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Davis, G. R.] Joint Astron Ctr, Hilo, HI 96720 USA. [Cox, P.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Clerc, L.; Communal, D.; Duband, L.; Guillemet, L.] CEA, INAC SBT, F-38054 Grenoble, France. [Chen, S.; Huang, M.; Li, B.; Li, J.] Chinese Acad Sci, Natl Astron Observ, Beijing, Peoples R China. [Cerulli, R.; Di Giorgio, A.; Liu, S. J.; Molinari, S.; Orfei, R.; Saraceno, P.] Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Castro-Rodriguez, N.; Hatziminaoglou, E.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Castro-Rodriguez, N.; Hatziminaoglou, E.; Perez-Fournon, I.] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain. [Caldwell, M.; Clark, E.; Delderfield, J.; Dowell, A.; Emery, R. J.; Ferlet, M.; Goizel, A.; Griffin, D. K.; Grundy, T.; Guest, S.; King, K. J.; Leeks, S. J.; Lim, T.; McKay, D.; Morris, H.; Pearce, A.; Pearson, C.; Polehampton, E. T.; Rigopoulou, D.; Sawyer, E.; Sidher, S.; Smith, D.; Swinyard, B. M.; Walker, H.; White, G. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Brisbin, D.; Harwit, M.] Cornell Univ, Ithaca, NY 14853 USA. [Bonhomme, P.; Brockley-Blatt, C.; Coker, J.; Page, M. J.; Smith, A.; Winter, B.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Barlow, M. J.; Savini, G.; Wesson, R.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Baluteau, J. -P.; Benielli, D.; Dohlen, K.; Ferrand, D.; Garcia, J.; Laurent, P.; Pouliquen, D.; Scharmberg, C.; Surace, C.; Zavagno, A.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Baillie, T.; Cunningham, C.; Hastings, P.; Ivison, R. J.; Pain, I.; Parr-Burman, P.; Sibthorpe, B.; Stobie, B.; Woodcraft, A. L.; Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Bae, Y.; Bock, J. J.; Crumb, D.; Dowell, C. D.; Frerking, M.; Herman, M.; Hinde, B.; Israelsson, U.; Lilienthal, J.; Mulder, J.; Nguyen, H.; Parks, G.; Podosek, J.; Sukhatme, K.; Tseng, S.; Turner, A.; Weilert, M.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Babbedge, T.; Bendo, G.; Chanial, P.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Andre, P.; Augueres, J. -L.; Cara, C.; Chanial, P.; Daly, F.; De Antoni, P.; Devin, N.; Donati, M.; Dumaye, L.; Fontignie, J.; Gastaud, R.; Madden, S.; Mur, M.; Panuzzo, P.; Pinsard, F.; Sauvage, M.; Schmitt, D.; Schneider, N.; Tourette, T.; Triou, H.; Vigroux, L.; Virique, E.; Zonca, E.] CEA, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Abreu, A.; Conversi, L.; Valtchanov, I.] ESA Herschel Sci Ctr, ESAC, Villaneuva De La Canada, Spain. [Abergel, A.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, P. A. R.; Didschuns, I.; Gear, W. K.; Hargrave, P. C.; Isaak, K. J.; Kiernan, B.; Papageorgiou, A.; Pisano, G.; Pohlen, M.; Savini, G.; Spencer, L.; Sudiwala, R.; Tucker, C.; Waskett, T.; Whitehouse, N.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. RI Barlow, Michael/A-5638-2009; Oliver, Seb/A-2479-2013; Ivison, R./G-4450-2011; Molinari, Sergio/O-4095-2016; Vaccari, Mattia/R-3431-2016; OI Barlow, Michael/0000-0002-3875-1171; Oliver, Seb/0000-0001-7862-1032; Savini, Giorgio/0000-0003-4449-9416; Ivison, R./0000-0001-5118-1313; Molinari, Sergio/0000-0002-9826-7525; Vaccari, Mattia/0000-0002-6748-0577; Liu, Scige/0000-0001-7680-2139 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). NR 25 TC 1023 Z9 1023 U1 4 U2 62 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L3 DI 10.1051/0004-6361/201014519 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200004 ER PT J AU Grossi, M Hunt, LK Madden, S Vlahakis, C Bomans, DJ Baes, M Bendo, GJ Bianchi, S Boselli, A Clemens, M Corbelli, E Cortese, L Dariush, A Davies, JI De Looze, I Alighieri, SD Fadda, D Fritz, J Garcia-Appadoo, DA Gavazzi, G Giovanardi, C Hughes, TM Jones, AP Pierini, D Pohlen, M Sabatini, S Smith, MWL Verstappen, J Xilouris, EM Zibetti, S AF Grossi, M. Hunt, L. K. Madden, S. Vlahakis, C. Bomans, D. J. Baes, M. Bendo, G. J. Bianchi, S. Boselli, A. Clemens, M. Corbelli, E. Cortese, L. Dariush, A. Davies, J. I. De Looze, I. Alighieri, S. di Serego Fadda, D. Fritz, J. Garcia-Appadoo, D. A. Gavazzi, G. Giovanardi, C. Hughes, T. M. Jones, A. P. Pierini, D. Pohlen, M. Sabatini, S. Smith, M. W. L. Verstappen, J. Xilouris, E. M. Zibetti, S. TI The Herschel Virgo Cluster Survey V. Star-forming dwarf galaxies - dust in metal-poor environments SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: dwarf; galaxies: ISM; dust, extinction; infrared: ISM ID DIGITAL SKY SURVEY; HI SOURCE CATALOG; FAST ALPHA SURVEY; TO-GAS RATIO; IRREGULAR GALAXIES; INTERSTELLAR DUST; NEARBY GALAXIES; MOLECULAR GAS; ATOMIC GAS; COLD DUST AB We present the dust properties of a small sample of Virgo cluster dwarf galaxies drawn from the science demonstration phase data set of the Herschel Virgo Cluster Survey. These galaxies have low metallicities (7.8 < 12 + log(O/H) < 8.3) and star-formation rates <= 10(-1) M-circle dot yr(-1). We measure the spectral energy distribution (SED) from 100 to 500 mu m and derive dust temperatures and dust masses. The SEDs are fitted by a cool component of temperature T <= 20 K, implying dust masses around 10(5) M-circle dot and dust-to-gas ratios D within the range 10(-3)-10(-2). The completion of the full survey will yield a larger set of galaxies, which will provide more stringent constraints on the dust content of star-forming dwarf galaxies. C1 [Grossi, M.] Univ Lisbon, CAAUL, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Hunt, L. K.; Bianchi, S.; Corbelli, E.; Alighieri, S. di Serego; Giovanardi, C.] INAF Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Madden, S.] Univ Paris Diderot, CNRS, CEA, Lab AIM,DSM,Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Vlahakis, C.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bomans, D. J.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Baes, M.; De Looze, I.; Fritz, J.; Verstappen, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Bendo, G. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Boselli, A.] CNRS, UMR 6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Clemens, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cortese, L.; Dariush, A.; Hughes, T. M.; Pohlen, M.; Smith, M. W. L.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, Wales. [Dariush, A.; Fadda, D.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Garcia-Appadoo, D. A.] ESO, Santiago, Chile. [Gavazzi, G.] Univ Milano Bicocca, I-20100 Milan, Italy. [Jones, A. P.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France. [Pierini, D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Sabatini, S.] INAF Ist Astrofis Spaziale Fis Cosm, I-00133 Rome, Italy. [Xilouris, E. M.] Natl Observ Athens, Inst Astron & Astrophys, Athens 15236, Greece. [Zibetti, S.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Grossi, M (reprint author), Univ Lisbon, CAAUL, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. EM grossi@oal.ul.pt RI Baes, Maarten/I-6985-2013; Xilouris, Emmanuel/K-9459-2013; di Serego Alighieri, Sperello/E-4067-2010 OI Baes, Maarten/0000-0002-3930-2757; Grossi, Marco/0000-0003-4675-3246; Sabatini, Sabina/0000-0003-2076-5767; Cortese, Luca/0000-0002-7422-9823; Bianchi, Simone/0000-0002-9384-846X; di Serego Alighieri, Sperello/0000-0001-8769-2692 NR 44 TC 31 Z9 31 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L52 DI 10.1051/0004-6361/201014653 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200053 ER PT J AU Hatziminaoglou, E Omont, A Stevens, JA Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Halpern, M Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Mortier, AMJ Nguyen, HT O'Halloran, B Oliver, SJ Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Hatziminaoglou, E. Omont, A. Stevens, J. A. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Halpern, M. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: Far infrared properties of known AGN in the HerMES fields SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: Seyfert; galaxies: star formation; infrared: general; quasars: general ID ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; DIGITAL SKY SURVEY; ULIRG EVOLUTION; SPITZER QUASAR; LOCKMAN HOLE; EMISSION; DETECTIONS; SELECTION; QUEST AB Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the far-infrared (FIR) spectral energy distributions (SEDs) of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5 sigma detections at 250 mu m, in agreement with previous (sub) mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours (specifically S(250)/S(70) vs S(70)/S(24)) quite clearly separate them from the non-AGN, star forming galaxy population, as their 24 mu m flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2 we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) alpha L(acc)(0.35). Type 2 AGN detected at 250 mu m show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star formation activity. C1 [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dye, S.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA DSM Irfu, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, Lab Astrophys Marseille, OAMP, CNRS, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, IAC, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA. [Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Halpern, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. RP Hatziminaoglou, E (reprint author), ESO, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM ehatzimi@eso.org RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). The data presented in this paper will be released through the Herschel Database in Marseille HeDaM2. This work makes use of data taken with the Spitzer Space Telescope, the Sloan Digital Sky Survey (http://www.sdss.org) and the Two Micron All Sky Survey (http://www.ipac.caltech.edu/2mass/overview/access.html). This work made use of Virtual Observatory tools and services for catalogue searches, cross-correlation and plotting namely TOPCAT (http://www.star.bris.ac.uk/similar to mbt/topcat/), and VizieR (http://vizier.u-strasbg.fr/cgi-bin/VizieR). E. H. would like to thank Kambiz Fathi and Jacopo Fritz for the very useful discussions. We thank the anonymous referee for the very insightful comments. NR 30 TC 100 Z9 100 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L33 DI 10.1051/0004-6361/201014679 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200034 ER PT J AU Ivison, RJ Magnelli, B Ibar, E Andreani, P Elbaz, D Altieri, B Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Berta, S Blain, A Bock, J Bongiovanni, A Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Cepa, J Chanial, P Cimatti, A Cirasuolo, M Clements, DL Conley, A Conversi, L Cooray, A Daddi, E Dominguez, H Dowell, CD Dwek, E Eales, S Farrah, D Schreiber, NF Fox, M Franceschini, A Gear, W Genzel, R Glenn, J Griffin, M Gruppioni, C Halpern, M Hatziminaoglou, E Isaak, K Lagache, G Levenson, L Lu, N Lutz, D Madden, S Maffei, B Magdis, G Mainetti, G Maiolino, R Marchetti, L Morrison, GE Mortier, AMJ Nguyen, HT Nordon, R O'Halloran, B Oliver, SJ Omont, A Owen, FN Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Garcia, AMP Poglitsch, A Pohlen, M Popesso, P Pozzi, F Rawlings, JI Raymond, G Rigopoulou, D Riguccini, L Rizzo, D Rodighiero, G Roseboom, IG Rowan-Robinson, M Saintonge, A Portal, MS Santini, P Schulz, B Scott, D Seymour, N Shao, L Shupe, DL Smith, AJ Stevens, JA Sturm, E Symeonidis, M Tacconi, L Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, J Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, A AF Ivison, R. J. Magnelli, B. Ibar, E. Andreani, P. Elbaz, D. Altieri, B. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Berta, S. Blain, A. Bock, J. Bongiovanni, A. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Cepa, J. Chanial, P. Cimatti, A. Cirasuolo, M. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Daddi, E. Dominguez, H. Dowell, C. D. Dwek, E. Eales, S. Farrah, D. Schreiber, N. Foerster Fox, M. Franceschini, A. Gear, W. Genzel, R. Glenn, J. Griffin, M. Gruppioni, C. Halpern, M. Hatziminaoglou, E. Isaak, K. Lagache, G. Levenson, L. Lu, N. Lutz, D. Madden, S. Maffei, B. Magdis, G. Mainetti, G. Maiolino, R. Marchetti, L. Morrison, G. E. Mortier, A. M. J. Nguyen, H. T. Nordon, R. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Perez Garcia, A. M. Poglitsch, A. Pohlen, M. Popesso, P. Pozzi, F. Rawlings, J. I. Raymond, G. Rigopoulou, D. Riguccini, L. Rizzo, D. Rodighiero, G. Roseboom, I. G. Rowan-Robinson, M. Saintonge, A. Portal, M. Sanchez Santini, P. Schulz, B. Scott, D. Seymour, N. Shao, L. Shupe, D. L. Smith, A. J. Stevens, J. A. Sturm, E. Symeonidis, M. Tacconi, L. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The far-infrared/radio correlation as probed by Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: starburst; infrared: galaxies; submillimeter: galaxies; radio continuum: galaxies ID GOODS-N FIELD; STAR-FORMING GALAXIES; HIGH-REDSHIFT; FIR/RADIO CORRELATION; STARBURST GALAXIES; SPIRAL GALAXIES; RADIO-SOURCES; 1.4 GHZ; EVOLUTION; CONSTRAINTS AB We set out to determine the ratio, q(IR), of rest-frame 8-1000-mu m flux, S(IR), to monochromatic radio flux, S 1.4 GHz, for galaxies selected at far-infrared (IR) and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, T(d), and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation (FIRRC) is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-mu m and 1.4-GHz samples, obtained using Herschel and the Very Large Array (VLA) in GOODS-North (-N). We determine bolometric IR output using ten bands spanning lambda(obs) = 24-1250 mu m, exploiting data from PACS and SPIRE (PEP; HerMES), as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with redshift, spanning log L(IR) = 11-12 L(circle dot) and z = 0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies in GOODS-N, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4 GHz) similar to 10(22.7) WHz(-1), where active galactic nuclei (AGN) are starting to dominate the radio power density, and of weaker correlations with redshift and T(d). From our 250-mu m-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L1.4 GHz, L(IR), T(d) and redshift, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) proportional to (1+ z)(gamma), where gamma = -0.04 +/- 0.03 at z = 0 -2; however, discounting the least reliable data at z < 0.5 we find gamma = -0.26 +/- 0.07, modest evolution which may be related to the radio background seen by ARCADE 2, perhaps driven by < 10-mu Jy radio activity amongst ordinary star-forming galaxies at z > 1. C1 [Ivison, R. J.; Ibar, E.; Cirasuolo, M.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; Arumugam, V.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Magnelli, B.; Berta, S.; Schreiber, N. Foerster; Genzel, R.; Lutz, D.; Nordon, R.; Poglitsch, A.; Popesso, P.; Saintonge, A.; Shao, L.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Andreani, P.; Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Andreani, P.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Elbaz, D.; Aussel, H.; Daddi, E.; Madden, S.; Magdis, G.; Riguccini, L.] Univ Paris Diderot, Lab AIM Paris Saclay, CEA DSM Irfu,CNRS, CE Saclay, F-91191 Gif Sur Yvette, France. [Altieri, B.; Conversi, L.; Portal, M. Sanchez; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Auld, R.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bongiovanni, A.; Castro-Rodriguez, N.; Cava, A.; Cepa, J.; Perez-Fournon, I.; Perez Garcia, A. M.] Univ La Laguna, IAC, Tenerife, Spain. [Bongiovanni, A.; Castro-Rodriguez, N.; Cava, A.; Cepa, J.; Perez-Fournon, I.; Perez Garcia, A. M.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, OAMP, Lab Astrophys Marseille, CNRS, F-13388 Marseille 13, France. [Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA, UCB 389, Boulder, CO 80309 USA. [Dominguez, H.; Maiolino, R.; Santini, P.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Gruppioni, C.; Pozzi, F.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Halpern, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, MS 100 22, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Owen, F. N.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Owen, F. N.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Ivison, RJ (reprint author), Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM rji@roe.ac.uk RI amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; Dwek, Eli/C-3995-2012; Daddi, Emanuele/D-1649-2012; Magdis, Georgios/C-7295-2014; Bongiovanni, Angel/J-6176-2012; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Gruppioni, Carlotta/0000-0002-5836-4056; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Santini, Paola/0000-0002-9334-8705; Seymour, Nicholas/0000-0003-3506-5536; Daddi, Emanuele/0000-0002-3331-9590; Magdis, Georgios/0000-0002-4872-2294; Rodighiero, Giulia/0000-0002-9415-2296; Altieri, Bruno/0000-0003-3936-0284 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); CICYT/MCYT (Spain) FX The data presented in this paper will be released through the Herschel Database in Marseille HeDaM (hedam.oamp.fr/HerMES). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICYT/MCYT (Spain). NR 43 TC 104 Z9 104 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L31 DI 10.1051/0004-6361/201014552 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200032 ER PT J AU Ivison, RJ Swinbank, AM Swinyard, B Smail, I Pearson, CP Rigopoulou, D Polehampton, E Baluteau, JP Barlow, MJ Blain, AW Bock, J Clements, DL Coppin, K Cooray, A Danielson, A Dwek, E Edge, AC Franceschini, A Fulton, T Glenn, J Griffin, M Isaak, K Leeks, S Lim, T Naylor, D Oliver, SJ Page, MJ Fournon, IP Rowan-Robinson, M Savini, G Scott, D Spencer, L Valtchanov, I Vigroux, L Wright, GS AF Ivison, R. J. Swinbank, A. M. Swinyard, B. Smail, I. Pearson, C. P. Rigopoulou, D. Polehampton, E. Baluteau, J. -P. Barlow, M. J. Blain, A. W. Bock, J. Clements, D. L. Coppin, K. Cooray, A. Danielson, A. Dwek, E. Edge, A. C. Franceschini, A. Fulton, T. Glenn, J. Griffin, M. Isaak, K. Leeks, S. Lim, T. Naylor, D. Oliver, S. J. Page, M. J. Perez Fournon, I. Rowan-Robinson, M. Savini, G. Scott, D. Spencer, L. Valtchanov, I. Vigroux, L. Wright, G. S. TI Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z=2.3 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; infrared: galaxies; infrared: ISM; radio continuum: galaxies; submillimeter: galaxies ID STAR-FORMATION; PHOTODISSOCIATION REGIONS; EMISSION; COUNTS; DUST; GAS AB We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMMJ2135-0102 (hereafter SMMJ2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxy's spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-mu m luminosity, L(bol), of (2.3 +/- 0.2) x 10(12) L(circle dot) and a likely star-formation rate (SFR) of similar to 400 M(circle dot) yr(-1). The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At greater than or similar to 70 mu m, the SED can be described adequately by dust components with dust temperatures, T(d) similar to 30 and 60 k. Using SPIRE's Fourier-transform spectrometer (FTS) we report a detection of the [CII] 158 mu m cooling line. If the [CII], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n similar to 10(3) cm(-3), and a far-ultraviolet (-UV) radiation field, G(0), 10(3) x stronger than the Milky Way. L([CII])/L(bol) is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMMJ2135 being powered by starburst clumps distributed across similar to 2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIRE's FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found. C1 [Ivison, R. J.; Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Swinbank, A. M.; Smail, I.; Coppin, K.; Danielson, A.; Edge, A. C.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Swinyard, B.; Pearson, C. P.; Rigopoulou, D.; Polehampton, E.; Leeks, S.; Lim, T.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.; Polehampton, E.; Naylor, D.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Baluteau, J. -P.] Observ Astron Marseille Provence, F-13248 Marseille 04, France. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Blain, A. W.; Bock, J.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Rowan-Robinson, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Franceschini, A.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Fulton, T.] Blue Sky Spect, Lethbridge, AB, Canada. [Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Griffin, M.; Isaak, K.; Spencer, L.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Oliver, S. J.] Univ Sussex, Ctr Astron, Dept Phys Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Perez Fournon, I.] IAC, Tenerife 38200, Spain. [Perez Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Savini, G.] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Valtchanov, I.] European Space Astron Ctr, Madrid 28691, Spain. [Vigroux, L.] Inst Astrophys Paris, F-75014 Paris, France. RP Ivison, RJ (reprint author), Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM rji@roe.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Smail, Ian/M-5161-2013; Ivison, R./G-4450-2011; OI Edge, Alastair/0000-0002-3398-6916; Barlow, Michael/0000-0002-3875-1171; Smail, Ian/0000-0003-3037-257X; Ivison, R./0000-0001-5118-1313; Scott, Douglas/0000-0002-6878-9840; /0000-0002-0729-2988; Savini, Giorgio/0000-0003-4449-9416 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); STFC; JCMT; Canadian Foundation for Innovation FX We thank Steve Hailey-Dunsheath for useful discussion. We thank Fred Lo for granting DDT observations, and Wayne Holland for observing SMMJ2135 during SCUBA-2 commissioning. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). SCUBA-2 is funded by STFC, the JCMT Development Fund and the Canadian Foundation for Innovation. NR 32 TC 105 Z9 105 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L35 DI 10.1051/0004-6361/201014548 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200036 ER PT J AU Lefloch, B Cabrit, S Codella, C Melnick, G Cernicharo, J Caux, E Benedettini, M Boogert, A Caselli, P Ceccarelli, C Gueth, F Hily-Blant, P Lorenzani, A Neufeld, D Nisini, B Pacheco, S Pagani, L Pardo, JR Parise, B Salez, M Schuster, K Viti, S Bacmann, A Baudry, A Bell, T Bergin, EA Blake, G Bottinelli, S Castets, A Comito, C Coutens, A Crimier, N Dominik, C Demyk, K Encrenaz, P Falgarone, E Fuente, A Gerin, M Goldsmith, P Helmich, F Hennebelle, P Henning, T Herbst, E Jacq, T Kahane, C Kama, M Klotz, A Langer, W Lis, D Lord, S Maret, S Pearson, J Phillips, T Saraceno, P Schilke, P Tielens, X Van der Tak, F van der Wiel, M Vastel, C Wakelam, V Walters, A Wyrowski, F Yorke, H Bachiller, R Borys, C De Lange, G Delorme, Y Kramer, C Larsson, B Lai, R Maiwald, FW Martin-Pintado, J Mehdi, I Ossenkopf, V Siegel, P Stutzki, J Wunsch, JH AF Lefloch, B. Cabrit, S. Codella, C. Melnick, G. Cernicharo, J. Caux, E. Benedettini, M. Boogert, A. Caselli, P. Ceccarelli, C. Gueth, F. Hily-Blant, P. Lorenzani, A. Neufeld, D. Nisini, B. Pacheco, S. Pagani, L. Pardo, J. R. Parise, B. Salez, M. Schuster, K. Viti, S. Bacmann, A. Baudry, A. Bell, T. Bergin, E. A. Blake, G. Bottinelli, S. Castets, A. Comito, C. Coutens, A. Crimier, N. Dominik, C. Demyk, K. Encrenaz, P. Falgarone, E. Fuente, A. Gerin, M. Goldsmith, P. Helmich, F. Hennebelle, P. Henning, T. Herbst, E. Jacq, T. Kahane, C. Kama, M. Klotz, A. Langer, W. Lis, D. Lord, S. Maret, S. Pearson, J. Phillips, T. Saraceno, P. Schilke, P. Tielens, X. van der Tak, F. van der Wiel, M. Vastel, C. Wakelam, V. Walters, A. Wyrowski, F. Yorke, H. Bachiller, R. Borys, C. De lange, G. Delorme, Y. Kramer, C. Larsson, B. Lai, R. Maiwald, F. W. Martin-Pintado, J. Mehdi, I. Ossenkopf, V. Siegel, P. Stutzki, J. Wunsch, J. H. TI The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: jets and outflows; ISM: individual objects: L1157 ID 1157 MOLECULAR OUTFLOW; SIO LINE EMISSION; INTERSTELLAR JETS; WATER; WAVES; MANTLES AB Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program "Chemical HErschel Surveys of star forming regions" (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods. The CO 5-4 and o-H2O 1(10)-1(01) lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results. Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 x 10(5) cm(-3)) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) x 10(4) cm-3), which appears to dominate the flux of the water line at 179 mu m observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8x10(-7) up to 8x10(-5). The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. C1 [Lefloch, B.; Ceccarelli, C.; Hily-Blant, P.; Pacheco, S.; Bacmann, A.; Bottinelli, S.; Crimier, N.; Kahane, C.; Maret, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Cabrit, S.; Pagani, L.; Salez, M.; Encrenaz, P.; Falgarone, E.; Gerin, M.; Hennebelle, P.] Observ Paris, CNRS, LERMA UMR 8112, F-92195 Meudon, France. [Codella, C.; Lorenzani, A.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Melnick, G.] Ctr Astrophys, Cambridge, MA 02138 USA. [Cernicharo, J.; Pardo, J. R.; Crimier, N.; Delorme, Y.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid, Spain. [Caux, E.; Blake, G.; Comito, C.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse 3, CESR, F-31062 Toulouse, France. [Caux, E.; Blake, G.; Comito, C.; Coutens, A.; Demyk, K.; Klotz, A.; Vastel, C.; Walters, A.] CNRS, Toulouse, France. [Benedettini, M.; Saraceno, P.] Ist Fis Spazio Interplanetario, INAF, Rome, Italy. [Boogert, A.] CALTECH, NASA, Herschel Sci Ctr, IPAC, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Gueth, F.; Schuster, K.] Inst Radio Astron Millimetr, Grenoble, France. [Neufeld, D.] Johns Hopkins Univ, Baltimore, MD USA. [Nisini, B.; Viti, S.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Parise, B.; Castets, A.; Schilke, P.; Wyrowski, F.; Wunsch, J. H.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Bacmann, A.; Jacq, T.; Wakelam, V.] Univ Bordeaux, Lab Astrophys Bordeaux, Florac, France. [Bacmann, A.; Jacq, T.; Wakelam, V.] CNRS INSU, Floirac, France. [Baudry, A.; Bergin, E. A.; Lis, D.; Lord, S.; Phillips, T.; Borys, C.] CALTECH, Pasadena, CA 91125 USA. [Bell, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.; van der Tak, F.; van der Wiel, M.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Goldsmith, P.; Langer, W.; Pearson, J.; Yorke, H.; Maiwald, F. W.; Mehdi, I.; Siegel, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Helmich, F.; De lange, G.] Univ Groningen, Netherlands Inst Space Res, SRON, Groningen, Netherlands. [Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Henning, T.] Ohio State Univ, Columbus, OH 43210 USA. [Herbst, E.; Stutzki, J.] Univ Cologne, Inst Phys, Cologne, Germany. [Schilke, P.; Kramer, C.; Ossenkopf, V.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Tielens, X.] IRAM, E-18012 Granada, Spain. [Kramer, C.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Larsson, B.; Lai, R.] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. RP Lefloch, B (reprint author), Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. EM lefloch@obs.ujf-grenoble.fr RI Fuente, Asuncion/G-1468-2016; Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; van der Wiel, Matthijs/M-4531-2014; OI Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508; Coutens, Audrey/0000-0003-1805-3920; van der Wiel, Matthijs/0000-0002-4325-3011; Kama, Mihkel/0000-0003-0065-7267; Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Maret, Sebastien/0000-0003-1104-4554 NR 24 TC 48 Z9 48 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L113 DI 10.1051/0004-6361/201014630 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200114 ER PT J AU Lellouch, E Hartogh, P Feuchtgruber, H Vandenbussche, B de Graauw, T Moreno, R Jarchow, C Cavalie, T Orton, G Banaszkiewicz, M Blecka, MI Bockelee-Morvan, D Crovisier, J Encrenaz, T Fulton, T Kuppers, M Lara, LM Lis, DC Medvedev, AS Rengel, M Sagawa, H Swinyard, B Szutowicz, S Bensch, F Bergin, E Billebaud, F Biver, N Blake, GA Blommaert, JADL Cernicharo, J Courtin, R Davis, GR Decin, L Encrenaz, P Gonzalez, A Jehin, E Kidger, M Naylor, D Portyankina, G Schieder, R Sidher, S Thomas, N de Val-Borro, M Verdugo, E Waelkens, C Walker, H Aarts, H Comito, C Kawamura, JH Maestrini, A Peacocke, T Teipen, R Tils, T Wildeman, K AF Lellouch, E. Hartogh, P. Feuchtgruber, H. Vandenbussche, B. de Graauw, T. Moreno, R. Jarchow, C. Cavalie, T. Orton, G. Banaszkiewicz, M. Blecka, M. I. Bockelee-Morvan, D. Crovisier, J. Encrenaz, T. Fulton, T. Kueppers, M. Lara, L. M. Lis, D. C. Medvedev, A. S. Rengel, M. Sagawa, H. Swinyard, B. Szutowicz, S. Bensch, F. Bergin, E. Billebaud, F. Biver, N. Blake, G. A. Blommaert, J. A. D. L. Cernicharo, J. Courtin, R. Davis, G. R. Decin, L. Encrenaz, P. Gonzalez, A. Jehin, E. Kidger, M. Naylor, D. Portyankina, G. Schieder, R. Sidher, S. Thomas, N. de Val-Borro, M. Verdugo, E. Waelkens, C. Walker, H. Aarts, H. Comito, C. Kawamura, J. H. Maestrini, A. Peacocke, T. Teipen, R. Tils, T. Wildeman, K. TI First results of Herschel-PACS observations of Neptune SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: individual: Neptune; planets and satellites: composition; techniques: spectroscopic ID GIANT PLANETS; ABUNDANCE; ATMOSPHERES; URANUS AB We report on the initial analysis of a Herschel-PACS full range spectrum of Neptune, covering the 51-220 mu m range with a mean resolving power of similar to 3000, and complemented by a dedicated observation of CH4 at 120 mu m. Numerous spectral features due to HD (R(0) and R(1)), H2O, CH4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptune's mean thermal profile is warmer by similar to 3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5 +/- 1) x 10(-5), confirming the enrichment of Neptune in deuterium over the protosolar value (similar to 2.1 x 10(-5)); (iii) the CH4 mixing ratio in the mid stratosphere is (1.5 +/- 0.2) x 10(-3), and CH4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH4 stratospheric injection from Neptune's warm south polar region; (iv) the H2O stratospheric column is (2.1 +/- 0.5) x 10(14) cm(-2) but its vertical distribution is still to be determined, so the H2O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations. C1 [Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Crovisier, J.; Encrenaz, T.; Biver, N.; Courtin, R.] Observ Paris, LESIA, F-92195 Meudon, France. [Hartogh, P.; Jarchow, C.; Cavalie, T.; Medvedev, A. S.; Rengel, M.; Sagawa, H.; Gonzalez, A.; de Val-Borro, M.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Feuchtgruber, H.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Vandenbussche, B.; Blommaert, J. A. D. L.; Decin, L.; Waelkens, C.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [de Graauw, T.; Aarts, H.; Wildeman, K.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Orton, G.; Blake, G. A.; Kawamura, J. H.] CALTECH, JPL, Pasadena, CA 91125 USA. [Banaszkiewicz, M.; Szutowicz, S.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Fulton, T.] Blue Sky Spect Inc, Lethbridge, AB, Canada. [Kueppers, M.] European Space Astron Ctr, Madrid, Spain. [Lara, L. M.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Swinyard, B.; Sidher, S.; Walker, H.] Rutherford Appleton Lab, Oxford, England. [Bensch, F.] Deutsch Zentrum Luft & Raumfahrt DLR, Bonn, Germany. [Bergin, E.] Univ Michigan, Ann Arbor, MI 48109 USA. [Billebaud, F.] Univ Bordeaux, Observ Aquitain Sci Univers, CNRS, Lab Astrophys Bordeaux,UMR 5804, Bordeaux, France. [Cernicharo, J.] CSIC, INTA, Lab Astrofis Mol, Madrid, Spain. [Davis, G. R.] Joint Astron Ctr, Hilo, HI 96720 USA. [Encrenaz, P.; Maestrini, A.] Univ Paris 06, Observ Paris, LERMA, Paris, France. [Jehin, E.] Inst Astrophys & Geophy, FRS FNRS, Liege, Belgium. [Kidger, M.] ESA Ctr, Herschel Sci Ctr, Madrid, Spain. [Naylor, D.] Univ Lethbridge, Lethbridge, AB T1K 3M4, Canada. [Portyankina, G.; Thomas, N.] Univ Bern, CH-3012 Bern, Switzerland. [Schieder, R.; Teipen, R.; Tils, T.] Univ Cologne, D-5000 Cologne 41, Germany. [Comito, C.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Peacocke, T.] Natl Univ Ireland Maynooth Co, Expt Phys Dept, Kildare, Ireland. RP Lellouch, E (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM emmanuel.lellouch@obspm.fr RI de Val-Borro, Miguel/H-1319-2013; OI de Val-Borro, Miguel/0000-0002-0455-9384; Medvedev, Alexander/0000-0003-2713-8977 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI (Italy); CICT/MCT (Spain); ESA FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). Additional funding support for some instrument activities has been provided by ESA. Data presented in this paper were analysed using "HIPE", a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. We are indebted to Bruno Bezard for important discussions on the HD and CH4 line parameters. NR 23 TC 30 Z9 30 U1 1 U2 12 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L152 DI 10.1051/0004-6361/201014600 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200153 ER PT J AU Liseau, R Eiroa, C Fedele, D Augereau, JC Olofsson, G Gonzalez, B Maldonado, J Montesinos, B Mora, A Absil, O Ardila, D Barrado, D Bayo, A Beichman, CA Bryden, G Danchi, WC del Burgo, C Ertel, S Fridlund, CWM Heras, AM Krivov, AV Launhardt, R Lebreton, J Lohne, T Marshall, JP Meeus, G Muller, S Pilbratt, GL Roberge, A Rodmann, J Solano, E Stapelfeldt, KR Thebault, P White, GJ Wolf, S AF Liseau, R. Eiroa, C. Fedele, D. Augereau, J. -C. Olofsson, G. Gonzalez, B. Maldonado, J. Montesinos, B. Mora, A. Absil, O. Ardila, D. Barrado, D. Bayo, A. Beichman, C. A. Bryden, G. Danchi, W. C. del Burgo, C. Ertel, S. Fridlund, C. W. M. Heras, A. M. Krivov, A. V. Launhardt, R. Lebreton, J. Loehne, T. Marshall, J. P. Meeus, G. Mueller, S. Pilbratt, G. L. Roberge, A. Rodmann, J. Solano, E. Stapelfeldt, K. R. Thebault, Ph. White, G. J. Wolf, S. TI Resolving the cold debris disc around a planet-hosting star PACS photometric imaging observations of q(1) Eridani (HD 10647, HR 506) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: q(1) Eri (HD 10647, HR 506, HIP 7978); planetary systems; stars: formation; circumstellar matter ID SPITZER; BELT; HST AB Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q(1) Eri is known to be surrounded by debris, extended on scales of less than or similar to 30 ''. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 '' to 12 '' over the wavelength range of 60 mu m to 210 mu m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q(1) Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 mu m, 100 mu m and 160 mu m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53 degrees. The results of image de-convolution indicate that i likely is larger than 63 degrees, where 90 degrees corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q(1) Eri is surrounded by an about 40 AU wide ring at the radial distance of similar to 85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed. C1 [Liseau, R.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Eiroa, C.; Fedele, D.; Maldonado, J.; Mora, A.; Meeus, G.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Fedele, D.; Launhardt, R.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Fedele, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21210 USA. [Augereau, J. -C.; Lebreton, J.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Olofsson, G.] AlbaNova Univ Ctr, Stockholm Observ, S-10691 Stockholm, Sweden. [Gonzalez, B.] INSA ESAC, Madrid 28691, Spain. [Montesinos, B.; Barrado, D.; Bayo, A.; Solano, E.] Ctr Astrobiol INTA CSIC, Dept Astrofis, LAEX CAB, Villanueva De La Canada 28691, Spain. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Absil, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Sart Tilman Par Liege, Belgium. [Ardila, D.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Barrado, D.] Ctr Astron Hispano Aleman de Calar Alto, Almeria 04004, Spain. [Beichman, C. A.] NASA, CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Bryden, G.; Stapelfeldt, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys, Greenbelt, MD 20771 USA. [del Burgo, C.] Univ Nova Lisboa, UNINOVA CA3, P-2825149 Caparica, Portugal. [Ertel, S.; Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Fridlund, C. W. M.; Heras, A. M.; Pilbratt, G. L.] ESTEC SRE SA, ESA Astrophys & Fund Phys Miss Div, NL-2201 AZ Noordwijk, Netherlands. [Krivov, A. V.; Mueller, S.] Univ Jena, Astrophys Inst & Univ Sternwarte, D-07745 Jena, Germany. [Marshall, J. P.; White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Rodmann, J.] ESA ESTEC Space Environm & Effects Sect, NL-2200 AG Noordwijk, Netherlands. [Thebault, Ph.] Observ Paris, LESIA, F-92195 Meudon, France. [White, G. J.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Bayo, A.] European So Observ, Santiago, Chile. RP Liseau, R (reprint author), Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. EM rene.liseau@chalmers.se RI Fedele, Davide/L-8688-2013; Barrado Navascues, David/C-1439-2017; Solano, Enrique/C-2895-2017; Montesinos, Benjamin/C-3493-2017; Roberge, Aki/D-2782-2012; Stapelfeldt, Karl/D-2721-2012 OI Fedele, Davide/0000-0001-6156-0034; Barrado Navascues, David/0000-0002-5971-9242; Montesinos, Benjamin/0000-0002-7982-2095; del Burgo, Carlos/0000-0002-8949-5200; Marshall, Jonathan/0000-0001-6208-1801; Roberge, Aki/0000-0002-2989-3725; FU SNSB; CNES; PNP; MICINN FX We wish to acknowledge the support by the SNSB, the CNES, the PNP and the MICINN. In addition, we have benefited from HCSS / HSpot / HIPE which are joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. NR 20 TC 24 Z9 24 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L132 DI 10.1051/0004-6361/201014601 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200133 ER PT J AU Maddox, SJ Dunne, L Rigby, E Eales, S Cooray, A Scott, D Peacock, JA Negrello, M Smith, DJB Benford, D Amblard, A Auld, R Baes, M Bonfield, D Burgarella, D Buttiglione, S Cava, A Clements, D Dariush, A de Zotti, G Dye, S Frayer, D Fritz, J Gonzalez-Nuevo, J Herranz, D Ibar, E Ivison, R Jarvis, MJ Lagache, G Leeuw, L Lopez-Caniego, M Pascale, E Pohlen, M Rodighiero, G Samui, S Serjeant, S Temi, P Thompson, M Verma, A AF Maddox, S. J. Dunne, L. Rigby, E. Eales, S. Cooray, A. Scott, D. Peacock, J. A. Negrello, M. Smith, D. J. B. Benford, D. Amblard, A. Auld, R. Baes, M. Bonfield, D. Burgarella, D. Buttiglione, S. Cava, A. Clements, D. Dariush, A. de Zotti, G. Dye, S. Frayer, D. Fritz, J. Gonzalez-Nuevo, J. Herranz, D. Ibar, E. Ivison, R. Jarvis, M. J. Lagache, G. Leeuw, L. Lopez-Caniego, M. Pascale, E. Pohlen, M. Rodighiero, G. Samui, S. Serjeant, S. Temi, P. Thompson, M. Verma, A. TI Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE submillimeter: galaxies; galaxies: statistics ID NUMBER COUNTS; EVOLUTION; MODEL; MAPS AB We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 mu m-selected sample we detect no significant clustering, consistent with the expectation that the 250 mu m-selected sources are mostly normal galaxies at z <= 1. For our 350 mu m and 500 mu m-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z similar to 2-3 we detect significant strong clustering, leading to an estimate of r(0) similar to 7-11 h(-1) Mpc. The slope of our clustering measurements is very steep, delta similar to 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies. C1 [Maddox, S. J.; Dunne, L.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Eales, S.; Auld, R.; Dariush, A.; Dye, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Bonfield, D.; Jarvis, M. J.; Thompson, M.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Buttiglione, S.; de Zotti, G.; Rodighiero, G.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Clements, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.; Amblard, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Frayer, D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Gonzalez-Nuevo, J.; Samui, S.] Scuola Int Super Studi Avanzati, I-34151 Trieste, Italy. [Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Ibar, E.; Ivison, R.] Royal Observ Edinburgh, UK Astron Technol Ctr, Edinburgh, Midlothian, Scotland. [Lagache, G.] IAS, F-91405 Orsay, France. [Lagache, G.] Univ Paris 11, Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-75700 Paris, France. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Peacock, J. A.] Univ Edinburgh, Royal Observ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Scott, D.] Univ British Colombia, Vancouver, BC V6T 1Z1, Canada. [Verma, A.] Univ Oxford, Oxford Astrophys, Oxford OX1 3RH, England. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Benford, D.; Leeuw, L.; Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Maddox, SJ (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. EM steve.maddox@nottingham.ac.uk RI Benford, Dominic/D-4760-2012; Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; amblard, alexandre/L-7694-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840; Benford, Dominic/0000-0002-9884-4206; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; amblard, alexandre/0000-0002-2212-5395; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 NR 27 TC 43 Z9 43 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L11 DI 10.1051/0004-6361/201014663 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200012 ER PT J AU Mathews, GS Dent, WRF Williams, JP Howard, CD Meeus, G Riaz, B Roberge, A Sandell, G Vandenbussche, B Duchene, G Kamp, I Menard, F Montesinos, B Pinte, C Thi, WF Woitke, P Alacid, JM Andrews, SM Ardila, DR Aresu, G Augereau, JC Barrado, D Brittain, S Ciardi, DR Danchi, W Eiroa, C Fedele, D Grady, CA de Gregorio-Monsalvo, I Heras, A Huelamo, N Krivov, A Lebreton, J Liseau, R Martin-Zaidi, C Mendigutia, I Mora, A Morales-Calderon, M Nomura, H Pantin, E Pascucci, I Phillips, N Podio, L Poelman, DR Ramsay, S Rice, K Riviere-Marichalar, P Solano, E Tilling, I Walker, H White, GJ Wright, G AF Mathews, G. S. Dent, W. R. F. Williams, J. P. Howard, C. D. Meeus, G. Riaz, B. Roberge, A. Sandell, G. Vandenbussche, B. Duchene, G. Kamp, I. Menard, F. Montesinos, B. Pinte, C. Thi, W. F. Woitke, P. Alacid, J. M. Andrews, S. M. Ardila, D. R. Aresu, G. Augereau, J. C. Barrado, D. Brittain, S. Ciardi, D. R. Danchi, W. Eiroa, C. Fedele, D. Grady, C. A. de Gregorio-Monsalvo, I. Heras, A. Huelamo, N. Krivov, A. Lebreton, J. Liseau, R. Martin-Zaidi, C. Mendigutia, I. Mora, A. Morales-Calderon, M. Nomura, H. Pantin, E. Pascucci, I. Phillips, N. Podio, L. Poelman, D. R. Ramsay, S. Rice, K. Riviere-Marichalar, P. Solano, E. Tilling, I. Walker, H. White, G. J. Wright, G. TI GAS in Protoplanetary Systems (GASPS) I. First results SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: pre-main sequence; protoplanetary disks; infrared: stars ID ETA-CHAMAELEONTIS CLUSTER; FINE-STRUCTURE LINES; HERBIG-AE; TW-HYDRAE; YOUNG STARS; MASS-LOSS; ISO-LWS; MU-M; DISK; EMISSION AB Context. Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel Space Observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims. We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods. We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at gimel similar to 60-190 mu m using the Photodetector Array Camera and Spectrometer instrument on the Herschel Space Observatory. Results. We detect [OI] 63 mu m emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 mu m. Extensive models are presented in associated papers. C1 [Mathews, G. S.; Williams, J. P.] Univ Hawaii, Inst Astron IfA, Honolulu, HI 96822 USA. [Dent, W. R. F.; de Gregorio-Monsalvo, I.] ALMA, Santiago, Chile. [Dent, W. R. F.; de Gregorio-Monsalvo, I.] European So Observ, Santiago 19, Chile. [Howard, C. D.; Sandell, G.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Riaz, B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Roberge, A.; Grady, C. A.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Vandenbussche, B.; Lebreton, J.; Martin-Zaidi, C.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Duchene, G.; Menard, F.; Pinte, C.; Thi, W. F.; Augereau, J. C.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Duchene, G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kamp, I.; Aresu, G.; Huelamo, N.; Podio, L.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Montesinos, B.; Barrado, D.; Mendigutia, I.; Riviere-Marichalar, P.] CSIC, INTA, Ctr Astrobiol, Dept Astrofis,LAEX, Villanueva De La Canada 28691, Spain. [Pinte, C.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Thi, W. F.; Woitke, P.; Rice, K.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Woitke, P.; Phillips, N.; Tilling, I.; Wright, G.] Univ Edinburgh, Royal Observ, UK Inst Astron, Royal Observ Edinburgh,Inst Astron,SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Woitke, P.; Poelman, D. R.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Alacid, J. M.; Solano, E.] CSIC, INTA, Ctr Astrobiol, Dept Astrofis,Unidad Archivo Datos, Villanueva De La Canada 28691, Spain. [Andrews, S. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ardila, D. R.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Barrado, D.] Ctr Astron Hispano Aleman, Calar Alto Observ, Almeria 04004, Spain. [Brittain, S.] Clemson Univ, Clemson, SC 29631 USA. [Ciardi, D. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Danchi, W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Fedele, D.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Fedele, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21210 USA. [Heras, A.; Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Krivov, A.] Univ Jena, Inst Astrophys, D-07745 Jena, Germany. [Krivov, A.] Univ Jena, Univ Sternwarte, D-07745 Jena, Germany. [Liseau, R.] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, S-43992 Onsala, Sweden. [Morales-Calderon, M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nomura, H.] Kyoto Univ, Grad Sch Sci, Dept Astron, Kyoto 6068502, Japan. [Pantin, E.] CEA, IRFU SAp, AIM UMR 7158, F-91191 Gif Sur Yvette, France. [Ramsay, S.] European So Observ, D-85748 Garching, Germany. [Walker, H.; White, G. J.] Rutherford Appleton Lab, Didcot OX11 ONL, Oxon, England. [White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Meeus, G.; Eiroa, C.; Fedele, D.; Pascucci, I.] Univ Autonoma Madrid, Fac Ciencias, Dep Fis Teor, E-28049 Madrid, Spain. RP Mathews, GS (reprint author), Univ Hawaii, Inst Astron IfA, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM gmathews@ifa.hawaii.edu RI Rice, Ken/H-5084-2011; Roberge, Aki/D-2782-2012; Brittain, Sean/K-9001-2012; Fedele, Davide/L-8688-2013; Barrado Navascues, David/C-1439-2017; Solano, Enrique/C-2895-2017; Huelamo, Nuria/C-3042-2017; Montesinos, Benjamin/C-3493-2017; Morales-Calderon, Maria/C-8384-2017; OI Rice, Ken/0000-0002-6379-9185; Roberge, Aki/0000-0002-2989-3725; Brittain, Sean/0000-0001-5638-1330; Fedele, Davide/0000-0001-6156-0034; Barrado Navascues, David/0000-0002-5971-9242; Huelamo, Nuria/0000-0002-2711-8143; Montesinos, Benjamin/0000-0002-7982-2095; Williams, Jonathan/0000-0001-5058-695X; Morales-Calderon, Maria/0000-0001-9526-9499; Mendigutia, Ignacio/0000-0002-0233-5328; Ciardi, David/0000-0002-5741-3047 FU NASA/JPL; EC [PIEF-GA-2008-220891]; Spanish MICINN [AYA2008-02156]; PNPS; CNES; ANR [ANR-07-BLAN-0221]; NASA; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); [AYA 2008-01727] FX We thank the PACS instrument team for their dedicated support. G.S.M., D.R.A., S.D.B., W.D., C.A.G., C.D.H., I.P., B.R., A.R., G.S. and J.P.W. acknowledge NASA/JPL for funding support. C.E., G.M., I.M., and B.M. are partly supported by Spanish grant AYA 2008-01727, and J.M.A. and E.S. by Spanish grant AYA2008-02156. C.P. acknowledges the funding from the EC 7th Framework Program as a Marie Curie Intra-European Fellow (PIEF-GA-2008-220891). E.S. and J.M.A. acknowledge funding from the Spanish MICINN through grant AYA2008-02156. The members of LAOG acknowledge PNPS, CNES and ANR (contract ANR-07-BLAN-0221) for financial support. This work is based on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF- IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. NR 40 TC 24 Z9 25 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L127 DI 10.1051/0004-6361/201014595 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200128 ER PT J AU Meeus, G Pinte, C Woitke, P Montesinos, B Mendigutia, I Riviere-Marichalar, P Eiroa, C Mathews, GS Vandenbussche, B Howard, CD Roberge, A Sandell, G Duchene, G Menard, F Grady, CA Dent, WRF Kamp, I Augereau, JC Thi, WF Tilling, I Alacid, JM Andrews, S Ardila, DR Aresu, G Barrado, D Brittain, S Ciardi, DR Danchi, W Fedele, D de Gregorio-Monsalvo, I Heras, A Huelamo, N Krivov, A Lebreton, J Liseau, R Martin-Zaidi, C Mora, A Morales-Calderon, M Nomura, H Pantin, E Pascucci, I Phillips, N Podio, L Poelman, DR Ramsay, S Riaz, B Rice, K Solano, E Walker, H White, GJ Williams, JP Wright, G AF Meeus, G. Pinte, C. Woitke, P. Montesinos, B. Mendigutia, I. Riviere-Marichalar, P. Eiroa, C. Mathews, G. S. Vandenbussche, B. Howard, C. D. Roberge, A. Sandell, G. Duchene, G. Menard, F. Grady, C. A. Dent, W. R. F. Kamp, I. Augereau, J. C. Thi, W. F. Tilling, I. Alacid, J. M. Andrews, S. Ardila, D. R. Aresu, G. Barrado, D. Brittain, S. Ciardi, D. R. Danchi, W. Fedele, D. de Gregorio-Monsalvo, I. Heras, A. Huelamo, N. Krivov, A. Lebreton, J. Liseau, R. Martin-Zaidi, C. Mora, A. Morales-Calderon, M. Nomura, H. Pantin, E. Pascucci, I. Phillips, N. Podio, L. Poelman, D. R. Ramsay, S. Riaz, B. Rice, K. Solano, E. Walker, H. White, G. J. Williams, J. P. Wright, G. TI Gas in the protoplanetary disc of HD 169142: Herschel's view SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; circumstellar matter; stars: pre-main sequence; protoplanetary disks; infrared: planetary systems ID RADIATIVE-TRANSFER; STARS; DUST; SCATTERING; CONTINUUM; HD-169142; EMISSION; SPECTRA; SYSTEMS; GRAINS AB In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 mu m, [CII] 157.7 mu m, CO 72.8 and 90.2 mu m, and o-H(2)O 78.7 and 179.5 mu m. We only detect the [OI] 63.2 mu m line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and (12/13)CO data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDIMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 +/- 2.0 x 10(-3) M(circle dot) is still present in this disc, in agreement with earlier CO observations. C1 [Meeus, G.; Eiroa, C.; Fedele, D.] Univ Autonoma Madrid, Fac Ciencias, Dep Fis Teor, E-28049 Madrid, Spain. [Pinte, C.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Pinte, C.; Duchene, G.; Menard, F.; Augereau, J. C.; Thi, W. F.; Lebreton, J.; Martin-Zaidi, C.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Woitke, P.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Woitke, P.; Thi, W. F.; Tilling, I.; Phillips, N.; Rice, K.] Univ Edinburgh, Royal Observ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Woitke, P.; Thi, W. F.; Tilling, I.; Phillips, N.; Rice, K.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Woitke, P.; Poelman, D. R.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Montesinos, B.; Mendigutia, I.; Riviere-Marichalar, P.; Barrado, D.; Huelamo, N.] Ctr Astrobiol INTA CSIC, Dept Astrofis, LAEX, Villanueva De La Canada 28691, Spain. [Mathews, G. S.; Williams, J. P.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Vandenbussche, B.] Katholieke Univ Leuven, Inst Sterrenkunde, Leuven, Belgium. [Howard, C. D.; Sandell, G.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Roberge, A.; Grady, C. A.; Danchi, W.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Duchene, G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Grady, C. A.] Eureka Sci, Oakland, CA 96002 USA. [Dent, W. R. F.; de Gregorio-Monsalvo, I.] ALMA, Santiago, Chile. [Dent, W. R. F.; de Gregorio-Monsalvo, I.] European So Observ, Santiago, Chile. [Kamp, I.; Aresu, G.; Podio, L.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Alacid, J. M.; Solano, E.] Ctr Astrobiol INTA CSIC, Dept Astrofis, Unidad Archivo Datos, Spanish Virtual Observ, Villanueva De La Canada 28691, Spain. [Andrews, S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Ardila, D. R.] NASA, Herschel Sci Ctr, CALTECH, Pasadena, CA USA. [Barrado, D.] Ctr Astron Hispanoaleman, Calar Alto Observ, Almeria 04004, Spain. [Brittain, S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Ciardi, D. R.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Fedele, D.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Fedele, D.; Pascucci, I.; Riaz, B.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Heras, A.] ESTEC SRE C, Res & Sci Support Dept ESA, NL-2200 AG Noordwijk, Netherlands. [Krivov, A.] Univ Jena, Astrophys Inst & Univ Sternwarte, D-07745 Jena, Germany. [Liseau, R.] Chalmers, Dept Radio & Space Sci, Onsala Space Observ, S-43992 Onsala, Sweden. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Morales-Calderon, M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nomura, H.] Kyoto Univ, Grad Sch Sci, Dept Astron, Kyoto 6068502, Japan. [Pantin, E.] CEA IRFU SAP, AIM UMR 7158, F-91191 Gif Sur Yvette, France. [Ramsay, S.] European So Observ, D-85748 Garching, Germany. [Walker, H.; White, G. J.] Rutherford Appleton Lab, Didcot OX11 OQL, Oxon, England. [White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. RP Meeus, G (reprint author), Univ Autonoma Madrid, Fac Ciencias, Dep Fis Teor, UAM Campus Cantoblanco, E-28049 Madrid, Spain. EM gwendolyn.meeus@uam.es RI Montesinos, Benjamin/C-3493-2017; Morales-Calderon, Maria/C-8384-2017; Rice, Ken/H-5084-2011; Roberge, Aki/D-2782-2012; Brittain, Sean/K-9001-2012; Fedele, Davide/L-8688-2013; Barrado Navascues, David/C-1439-2017; Solano, Enrique/C-2895-2017; Huelamo, Nuria/C-3042-2017; OI Montesinos, Benjamin/0000-0002-7982-2095; Morales-Calderon, Maria/0000-0001-9526-9499; Mendigutia, Ignacio/0000-0002-0233-5328; Williams, Jonathan/0000-0001-5058-695X; Rice, Ken/0000-0002-6379-9185; Roberge, Aki/0000-0002-2989-3725; Brittain, Sean/0000-0001-5638-1330; Fedele, Davide/0000-0001-6156-0034; Barrado Navascues, David/0000-0002-5971-9242; Huelamo, Nuria/0000-0002-2711-8143; Ciardi, David/0000-0002-5741-3047 FU AYA [2008-01727, 2008-02156, 2008-06189]; EC [PIEF-GA-2008-220891]; PNPS; CNES; ANR [ANR-07-BLAN-0221]; NASA/JPL; BMVIT (Austria); ESA-PRODEX (Belgium); CEA (France); DLR (Germany); ASI (Italy); CICT (Spain); MCT (Spain); CNES (France) FX We thank the PACS instrument team for their dedicated support, O. Panic for a discussion on her data and A. Juhasz for providing the Spitzer/IRS data. C. Eiroa, G. Meeus, I. Mendigutia and B. Montesinos are partly supported by AYA 2008-01727; J. M. Alacid and E. Solano by AYA 2008-02156 and I. d. Gregorio by AYA 2008-06189 (Spanish grants). C. Pinte acknowledges funding from the EC 7th FP as a Marie Curie Intra-European Fellow (PIEF-GA-2008-220891). J.-C. Augereau, G. Duchene, J. Lebreton, C. Martin-Zaidi, F. Mcnard and C. Pinte acknowledge PNPS, CNES and ANR (contract ANR-07-BLAN-0221) for financial support. D. R. Ardila, S. D. Brittain, B. Danchi, C. A. Grady, I. Pascucci, B. Riaz, A. Roberge, G. Sandell and C. D. Howards acknowledge NASA/JPL for funding support. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). NR 26 TC 28 Z9 29 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L124 DI 10.1051/0004-6361/201014557 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200125 ER PT J AU Miville-Deschenes, MA Martin, PG Abergel, A Bernard, JP Boulanger, F Lagache, G Anderson, LD Andre, P Arab, H Baluteau, JP Blagrave, K Bontemps, S Cohen, M Compiegne, M Cox, P Dartois, E Davis, G Emery, R Fulton, T Gry, C Habart, E Huang, M Joblin, C Jones, SC Kirk, J Lim, T Madden, S Makiwa, G Menshchikov, A Molinari, S Moseley, H Motte, F Naylor, DA Okumura, K Goncalves, DP Polehampton, E Rodon, JA Russeil, D Saraceno, P Schneider, N Sidher, S Spencer, L Swinyard, B Ward-Thompson, D White, GJ Zavagno, A AF Miville-Deschenes, M. -A. Martin, P. G. Abergel, A. Bernard, J. -P. Boulanger, F. Lagache, G. Anderson, L. D. Andre, P. Arab, H. Baluteau, J. -P. Blagrave, K. Bontemps, S. Cohen, M. Compiegne, M. Cox, P. Dartois, E. Davis, G. Emery, R. Fulton, T. Gry, C. Habart, E. Huang, M. Joblin, C. Jones, S. C. Kirk, J. Lim, T. Madden, S. Makiwa, G. Menshchikov, A. Molinari, S. Moseley, H. Motte, F. Naylor, D. A. Okumura, K. Goncalves, D. Pinheiro Polehampton, E. Rodon, J. A. Russeil, D. Saraceno, P. Schneider, N. Sidher, S. Spencer, L. Swinyard, B. Ward-Thompson, D. White, G. J. Zavagno, A. TI Herschel-SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: structure; submillimetre: ISM; dust, extinction; turbulence ID STAR-FORMING REGIONS; IRAM KEY-PROJECT; COLD DUST AB We present a power spectrum analysis of the Herschel-SPIRE observations of the Polaris flare, a high Galactic latitude cirrus cloud midway between the diffuse and molecular phases. The SPIRE images of the Polaris flare reveal for the first time the structure of the diffuse interstellar medium down to 0.01 parsec over a 10 square degrees region. These exceptional observations highlight the highly filamentary and clumpy structure of the interstellar medium even in diffuse regions of the map. The power spectrum analysis shows that the structure of the interstellar medium is well described by a single power law with an exponent of -2.7 +/- 0.1 at all scales from 30 '' to 8 degrees That the power spectrum slope of the dust emission is constant down to the SPIRE angular resolution is an indication that the inertial range of turbulence extends down to the 0.01 pc scale. The power spectrum analysis also allows the identification of a Poissonian component at sub-arcminute scales in agreement with predictions of the cosmic infrared background level at SPIRE wavelengths. Finally, the comparison of the SPIRE and IRAS 100 mu m data of the Polaris flare clearly assesses the capability of SPIRE in maping diffuse emission over large areas. C1 [Miville-Deschenes, M. -A.; Abergel, A.; Boulanger, F.; Lagache, G.; Arab, H.; Dartois, E.; Habart, E.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Anderson, L. D.; Baluteau, J. -P.; Gry, C.; Rodon, J. A.; Russeil, D.; Zavagno, A.] CNRS, UMR 6110, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Anderson, L. D.; Baluteau, J. -P.; Gry, C.; Rodon, J. A.; Russeil, D.; Zavagno, A.] Univ Aix Marseille 1, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Kirk, J.; Ward-Thompson, D.] Cardiff Univ, Dept Phys & Astron, Cardiff, S Glam, Wales. [Andre, P.; Madden, S.; Menshchikov, A.; Motte, F.; Okumura, K.; Schneider, N.] CEA, Saclay, France. [Bernard, J. -P.; Joblin, C.] Univ Toulouse, UPS, CESR, CNRS,UMR5187, F-31028 Toulouse 4, France. [Cohen, M.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Cox, P.] IRAM, Grenoble, France. [Miville-Deschenes, M. -A.; Martin, P. G.; Blagrave, K.; Compiegne, M.; Goncalves, D. Pinheiro] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Molinari, S.; Saraceno, P.] CNR, Ist Fis Spazio Interplanetario, Rome, Italy. [Jones, S. C.; Makiwa, G.; Naylor, D. A.; Polehampton, E.; Spencer, L.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Emery, R.; Lim, T.; Polehampton, E.; Sidher, S.; Swinyard, B.; White, G. J.] Rutherford Appleton Lab, Dept Space Sci, Chilton, England. [Moseley, H.] NASA, Goddard SFC, Washington, DC USA. [Fulton, T.] Blue Sky Spect Inc, Lethbridge, AB, Canada. [White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Bontemps, S.] CNRS INSU, Lab Astrophys Bordeaux, UMR 5804, F-33271 Floirac, France. RP Miville-Deschenes, MA (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. RI Molinari, Sergio/O-4095-2016 OI Molinari, Sergio/0000-0002-9826-7525 FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). NR 16 TC 64 Z9 64 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L104 DI 10.1051/0004-6361/201014678 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200105 ER PT J AU Molinari, S Swinyard, B Bally, J Barlow, M Bernard, JP Martin, P Moore, T Noriega-Crespo, A Plume, R Testi, L Zavagno, A Abergel, A Ali, B Anderson, L Andre, P Baluteau, JP Battersby, C Beltran, MT Benedettini, M Billot, N Blommaert, J Bontemps, S Boulanger, F Brand, J Brunt, C Burton, M Calzoletti, L Carey, S Caselli, P Cesaroni, R Cernicharo, J Chakrabarti, S Chrysostomou, A Cohen, M Compiegne, M de Bernardis, P de Gasperis, G di Giorgio, AM Elia, D Faustini, F Flagey, N Fukui, Y Fuller, GA Ganga, K Garcia-Lario, P Glenn, J Goldsmith, PF Griffin, M Hoare, M Huang, M Ikhenaode, D Joblin, C Joncas, G Juvela, M Kirk, JM Lagache, G Li, JZ Lim, TL Lord, SD Marengo, M Marshall, DJ Masi, S Massi, F Matsuura, M Minier, V Miville-Deschenes, MA Montier, LA Morgan, L Motte, F Mottram, JC Muller, TG Natoli, P Neves, J Olmi, L Paladini, R Paradis, D Parsons, H Peretto, N Pestalozzi, M Pezzuto, S Piacentini, F Piazzo, L Polychroni, D Pomares, M Popescu, CC Reach, WT Ristorcelli, I Robitaille, JF Robitaille, T Rodon, JA Roy, A Royer, P Russeil, D Saraceno, P Sauvage, M Schilke, P Schisano, E Schneider, N Schuller, F Schulz, B Sibthorpe, B Smith, HA Smith, MD Spinoglio, L Stamatellos, D Strafella, F Stringfellow, GS Sturm, E Taylor, R Thompson, MA Traficante, A Tuffs, RJ Umana, G Valenziano, L Vavrek, R Veneziani, M Viti, S Waelkens, C Ward-Thompson, D White, G Wilcock, LA Wyrowski, F Yorke, HW Zhang, Q AF Molinari, S. Swinyard, B. Bally, J. Barlow, M. Bernard, J. -P. Martin, P. Moore, T. Noriega-Crespo, A. Plume, R. Testi, L. Zavagno, A. Abergel, A. Ali, B. Anderson, L. Andre, P. Baluteau, J. -P. Battersby, C. Beltran, M. T. Benedettini, M. Billot, N. Blommaert, J. Bontemps, S. Boulanger, F. Brand, J. Brunt, C. Burton, M. Calzoletti, L. Carey, S. Caselli, P. Cesaroni, R. Cernicharo, J. Chakrabarti, S. Chrysostomou, A. Cohen, M. Compiegne, M. de Bernardis, P. de Gasperis, G. di Giorgio, A. M. Elia, D. Faustini, F. Flagey, N. Fukui, Y. Fuller, G. A. Ganga, K. Garcia-Lario, P. Glenn, J. Goldsmith, P. F. Griffin, M. Hoare, M. Huang, M. Ikhenaode, D. Joblin, C. Joncas, G. Juvela, M. Kirk, J. M. Lagache, G. Li, J. Z. Lim, T. L. Lord, S. D. Marengo, M. Marshall, D. J. Masi, S. Massi, F. Matsuura, M. Minier, V. Miville-Deschenes, M. -A. Montier, L. A. Morgan, L. Motte, F. Mottram, J. C. Mueller, T. G. Natoli, P. Neves, J. Olmi, L. Paladini, R. Paradis, D. Parsons, H. Peretto, N. Pestalozzi, M. Pezzuto, S. Piacentini, F. Piazzo, L. Polychroni, D. Pomares, M. Popescu, C. C. Reach, W. T. Ristorcelli, I. Robitaille, J. -F. Robitaille, T. Rodon, J. A. Roy, A. Royer, P. Russeil, D. Saraceno, P. Sauvage, M. Schilke, P. Schisano, E. Schneider, N. Schuller, F. Schulz, B. Sibthorpe, B. Smith, H. A. Smith, M. D. Spinoglio, L. Stamatellos, D. Strafella, F. Stringfellow, G. S. Sturm, E. Taylor, R. Thompson, M. A. Traficante, A. Tuffs, R. J. Umana, G. Valenziano, L. Vavrek, R. Veneziani, M. Viti, S. Waelkens, C. Ward-Thompson, D. White, G. Wilcock, L. A. Wyrowski, F. Yorke, H. W. Zhang, Q. TI Clouds, filaments, and protostars: The Herschel Hi-GAL Milky Way SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: structure; ISM: clouds; Galaxy: general ID MOLECULAR CLOUDS; GALACTIC PLANE; MU-M AB We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2 degrees x 2 degrees tiles approximately centered at l = 30 degrees and l = 59 degrees. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A(V) similar to 1 is exceeded for the regions in the l = 59 degrees field; a A(V) value between 5 and 10 is found for the l = 30 degrees field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm(-2). Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows. C1 [Molinari, S.; Benedettini, M.; di Giorgio, A. M.; Elia, D.; Pestalozzi, M.; Pezzuto, S.; Polychroni, D.; Saraceno, P.; Schisano, E.; Spinoglio, L.] INAF Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Swinyard, B.; Lim, T. L.; White, G.] Rutherford Appleton Labs, STFC, Didcot, Oxon, England. [Bally, J.; Battersby, C.; Glenn, J.; Stringfellow, G. S.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA, Boulder, CO 80309 USA. [Barlow, M.; Matsuura, M.; Viti, S.] UCL, Dept Phys & Astron, London, England. [Barlow, M.; Matsuura, M.; Viti, S.] Univ Toulouse, UPS, CESR, Toulouse, France. [Barlow, M.; Matsuura, M.; Viti, S.] CNRS, UMR5187, Toulouse, France. [Martin, P.; Roy, A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Moore, T.; Morgan, L.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5UX, Merseyside, England. [Noriega-Crespo, A.; Carey, S.; Flagey, N.; Paladini, R.; Paradis, D.; Reach, W. T.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Testi, L.; Beltran, M. T.; Cesaroni, R.; Massi, F.; Olmi, L.] INAF Osservatorio Astrofis Arcetri, Florence, Italy. [Testi, L.] European So Observ, D-8046 Garching, Germany. [Zavagno, A.; Anderson, L.; Baluteau, J. -P.; Pomares, M.; Rodon, J. A.; Russeil, D.] Univ Aix Marseille 1, LAM, Marseille, France. [Abergel, A.; Boulanger, F.; Lagache, G.; Miville-Deschenes, M. -A.] Univ Paris 11, Inst Astrophys Spatiale, Orsay, France. [Ali, B.; Billot, N.; Lord, S. D.; Schulz, B.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Andre, P.; Bontemps, S.; Minier, V.; Motte, F.; Peretto, N.; Sauvage, M.; Schneider, N.] Univ Paris Diderot, CEA DSM INSU CNRS, Lab AIM, IRFU SAp,CEA Saclay, F-91191 Gif Sur Yvette, France. [Blommaert, J.; Royer, P.; Waelkens, C.] Katholieke Univ Leuven, Inst Astron, Louvain, Belgium. [Bontemps, S.] Univ Bordeaux, LAB, CNRS, F-33271 Floirac, France. [Brand, J.] INAF Ist Radioastron, Bologna, Italy. Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Burton, M.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Strafella, F.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Caselli, P.; Hoare, M.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Cernicharo, J.] CSIC, INTA, Ctr Astrobiol, Madrid, Spain. [Marengo, M.; Robitaille, T.; Smith, H. A.; Zhang, Q.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chrysostomou, A.] Joint Astron Ctr, Hilo, HI USA. [Cohen, M.] UCB, Radio Astron Lab, Berkeley, CA USA. [Compiegne, M.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [de Bernardis, P.; Masi, S.; Piacentini, F.; Veneziani, M.] Univ Rome 1, Dipartimento Fis, I-00185 Rome, Italy. [de Gasperis, G.; Natoli, P.; Traficante, A.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Schilke, P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Fukui, Y.] Nagoya Univ, Dept Astrophys, Nagoya, Aichi 464, Japan. [Fuller, G. A.; Peretto, N.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ganga, K.] Univ Paris 07, APC, CNRS, F-75205 Paris 13, France. [Garcia-Lario, P.; Vavrek, R.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28080, Spain. [Goldsmith, P. F.; Yorke, H. W.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Griffin, M.; Kirk, J. M.; Sibthorpe, B.; Stamatellos, D.; Ward-Thompson, D.; Wilcock, L. A.] Cardiff Univ, Sch Phys & Astron, Cardiff, S Glam, Wales. [Huang, M.; Li, J. Z.] Chinese Acad Sci, Natl Astron Observ, Beijing, Peoples R China. [Joncas, G.; Robitaille, J. -F.] Univ Laval, Dept Phys, Quebec City, PQ G1K 7P4, Canada. [Juvela, M.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Neves, J.; Parsons, H.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Mueller, T. G.; Sturm, E.] MPE MPG, Garching, Germany. [Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Schuller, F.; Wyrowski, F.] MPifR MPG, Bonn, Germany. [Smith, M. D.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury, Kent, England. [Taylor, R.] Univ Calgary, Ctr Radio Astron, Calgary, AB, Canada. [Tuffs, R. J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [Valenziano, L.] INAF Ist Astrofis Spaziale & Fis Cosm, Bologna, Italy. [Ikhenaode, D.; Piazzo, L.] Univ Roma 1 La Sapienza, Dipartimento Sci & Tecn Informaz & Comunicaz, Rome, Italy. [Calzoletti, L.; Faustini, F.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [White, G.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Chakrabarti, S.] UCB Berkeley, Dept Astron, Berkeley, CA USA. [Schisano, E.] Univ Naples Federico 2, Dipartimento Fis, Naples, Italy. [Matsuura, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Molinari, S (reprint author), INAF Ist Fis Spazio Interplanetario, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM sergio.molinari@ifsi-roma.inaf.it RI Goldsmith, Paul/H-3159-2016; Molinari, Sergio/O-4095-2016; Piacentini, Francesco/E-7234-2010; Juvela, Mika/H-6131-2011; Barlow, Michael/A-5638-2009; de Gasperis, Giancarlo/C-8534-2012; OI Reach, William/0000-0001-8362-4094; Robitaille, Thomas/0000-0002-8642-1329; Zhang, Qizhou/0000-0003-2384-6589; Molinari, Sergio/0000-0002-9826-7525; Piacentini, Francesco/0000-0002-5444-9327; Brand, Jan/0000-0003-1615-9043; Massi, Fabrizio/0000-0001-6407-8032; Valenziano, Luca/0000-0002-1170-0104; Juvela, Mika/0000-0002-5809-4834; Barlow, Michael/0000-0002-3875-1171; de Gasperis, Giancarlo/0000-0003-2899-2171; Cesaroni, Riccardo/0000-0002-2430-5103; Stamatellos, Dimitris/0000-0002-4502-8344 FU Italian Space Agency [I/038/080/0] FX Data processing and map production has been possible thanks to generous support from the Italian Space Agency via contract I/038/080/0. We are indebted to Nicola Giordano for the production of the trichromatic overlay images. Data presented in this paper were also analyzed using The Herschel interactive processing environment (HIPE), a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. NR 34 TC 259 Z9 260 U1 1 U2 22 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L100 DI 10.1051/0004-6361/201014659 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200101 ER PT J AU Neufeld, DA Sonnentrucker, P Phillips, TG Lis, DC De Luca, M Goicoechea, JR Black, JH Gerin, M Bell, T Boulanger, F Cernicharo, J Coutens, A Dartois, E Kazmierczak, M Encrenaz, P Falgarone, E Geballe, TR Giesen, T Godard, B Goldsmith, PF Gry, C Gupta, H Hennebelle, P Herbst, E Hily-Blant, P Joblin, C Kolos, R Krelowski, J Martin-Pintado, J Menten, KM Monje, R Mookerjea, B Pearson, J Perault, M Persson, C Plume, R Salez, M Schlemmer, S Schmidt, M Stutzki, J Teyssier, D Vastel, C Yu, S Cais, P Caux, E Liseau, R Morris, P Planesas, P AF Neufeld, D. A. Sonnentrucker, P. Phillips, T. G. Lis, D. C. De Luca, M. Goicoechea, J. R. Black, J. H. Gerin, M. Bell, T. Boulanger, F. Cernicharo, J. Coutens, A. Dartois, E. Kazmierczak, M. Encrenaz, P. Falgarone, E. Geballe, T. R. Giesen, T. Godard, B. Goldsmith, P. F. Gry, C. Gupta, H. Hennebelle, P. Herbst, E. Hily-Blant, P. Joblin, C. Kolos, R. Krelowski, J. Martin-Pintado, J. Menten, K. M. Monje, R. Mookerjea, B. Pearson, J. Perault, M. Persson, C. Plume, R. Salez, M. Schlemmer, S. Schmidt, M. Stutzki, J. Teyssier, D. Vastel, C. Yu, S. Cais, P. Caux, E. Liseau, R. Morris, P. Planesas, P. TI Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: molecules; submillimeter: ISM; molecular processes ID HII-REGIONS; DISCOVERY; ABUNDANCE; CHEMISTRY AB We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J = 1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km s(-1), accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km s(-1). The spectrum is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H(2)O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6 x 1014 cm(-2) on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6 x 10(-9) relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between similar to 30% and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions. C1 [Neufeld, D. A.; Sonnentrucker, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Phillips, T. G.; Lis, D. C.; Bell, T.; Monje, R.] CALTECH, Pasadena, CA 91125 USA. [De Luca, M.; Gerin, M.; Encrenaz, P.; Falgarone, E.; Godard, B.; Hennebelle, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, Paris, France. [Goicoechea, J. R.; Cernicharo, J.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Black, J. H.; Persson, C.; Liseau, R.] Chalmers, S-41296 Gothenburg, Sweden. [Boulanger, F.; Dartois, E.] IAS, Orsay, France. [Coutens, A.; Joblin, C.; Vastel, C.; Caux, E.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coutens, A.; Joblin, C.; Vastel, C.; Caux, E.] CNRS, UMR5187, F-31028 Toulouse 4, France. [Kazmierczak, M.; Krelowski, J.] Nicholas Copernicus Univ, Torun, Poland. [Geballe, T. R.] Gemini Telescope, Hilo, HI USA. [Giesen, T.; Schlemmer, S.; Stutzki, J.] Univ Cologne, Inst Phys 1, D-5000 Cologne 41, Germany. [Goldsmith, P. F.; Gupta, H.; Pearson, J.; Yu, S.; Morris, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gry, C.] Univ Aix Marseille, OAMP, LAM, Marseille, France. [Gry, C.] CNRS, Marseille, France. Ohio State Univ, Dept Phys Astron & Chem, Columbus, OH 43210 USA. [Hily-Blant, P.] Lab Astrophys Grenoble, Grenoble, France. [Kolos, R.] PAS, Inst Phys Chem, Warsaw, Poland. [Menten, K. M.] MPI Radioastron, Bonn, Germany. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid, Spain. [Cais, P.] Inst Univ Bordeaux, Bordeaux, France. [Cais, P.] CNRS, Bordeaux, France. [Planesas, P.] Observ Astron Nacl IGN, Santiago, Chile. [Planesas, P.] ALMA, Santiago, Chile. RP Neufeld, DA (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. EM neufeld@pha.jhu.edu RI Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; Schlemmer, Stephan/E-2903-2015; Planesas, Pere/G-7950-2015; Yu, Shanshan/D-8733-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015 OI Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; Schlemmer, Stephan/0000-0002-1421-7281; Planesas, Pere/0000-0002-7808-3040; Martin-Pintado, Jesus/0000-0003-4561-3508 FU National Aeronautics and Space Administration FX This research was performed through a JPL contract funded by the National Aeronautics and Space Administration. NR 20 TC 62 Z9 62 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L108 DI 10.1051/0004-6361/201014523 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200109 ER PT J AU Nguyen, HT Schulz, B Levenson, L Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Chapin, E Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Marsden, G Marshall, J O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Fournon, IP Pohlen, M Rangwala, N Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Ward, R Wiebe, D Wright, G Xu, CK Zemcov, M AF Nguyen, H. T. Schulz, B. Levenson, L. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Chapin, E. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Marsden, G. Marshall, J. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez Fournon, I. Pohlen, M. Rangwala, N. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wiebe, D. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: The SPIRE confusion limit SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE space vehicules: instruments; surveys; submillimeter: diffuse background; submillimiter: galaxies AB We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the science demonstration phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 mu m, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion limited maps, and provide a noise estimate for maps obtained by SPIRE. C1 [Nguyen, H. T.; Bock, J.; Dowell, C. D.; Marshall, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schulz, B.; Lu, N.; Shupe, D. L.; Xu, C. K.] CALTECH, JPL, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA DSM Irfu, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Boselli, A.; Buat, V.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille, France. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Chapin, E.; Halpern, M.; Marsden, G.; Scott, D.; Wiebe, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Conley, A.; Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol, Greenbelt, MD 20771 USA. [Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Nguyen, HT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM htnguyen@jpl.nasa.gov RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Marchetti, Lucia/0000-0003-3948-7621; Scott, Douglas/0000-0002-6878-9840; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). NR 9 TC 155 Z9 155 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L5 DI 10.1051/0004-6361/201014680 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200006 ER PT J AU Nisini, B Benedettini, M Codella, C Giannini, T Liseau, R Neufeld, D Tafalla, M van Dishoeck, EF Bachiller, R Baudry, A Benz, AO Bergin, E Bjerkeli, P Blake, G Bontemps, S Braine, J Bruderer, S Caselli, P Cernicharo, J Daniel, F Encrenaz, P di Giorgio, AM Dominik, C Doty, S Fich, M Fuente, A Goicoechea, JR de Graauw, T Helmich, F Herczeg, G Herpin, F Hogerheijde, M Jacq, T Johnstone, D Jorgensen, J Kaufman, M Kristensen, L Larsson, B Lis, D Marseille, M McCoey, C Melnick, G Olberg, M Parise, B Pearson, J Plume, R Risacher, C Santiago, J Saraceno, P Shipman, R van Kempen, TA Visser, R Viti, S Wampfler, S Wyrowski, F van der Tak, F Yildiz, UA Delforge, B Desbat, J Hatch, WA Peron, I Schieder, R Stern, JA Teyssier, D Whyborn, N AF Nisini, B. Benedettini, M. Codella, C. Giannini, T. Liseau, R. Neufeld, D. Tafalla, M. van Dishoeck, E. F. Bachiller, R. Baudry, A. Benz, A. O. Bergin, E. Bjerkeli, P. Blake, G. Bontemps, S. Braine, J. Bruderer, S. Caselli, P. Cernicharo, J. Daniel, F. Encrenaz, P. di Giorgio, A. M. Dominik, C. Doty, S. Fich, M. Fuente, A. Goicoechea, J. R. de Graauw, Th. Helmich, F. Herczeg, G. Herpin, F. Hogerheijde, M. Jacq, T. Johnstone, D. Jorgensen, J. Kaufman, M. Kristensen, L. Larsson, B. Lis, D. Marseille, M. McCoey, C. Melnick, G. Olberg, M. Parise, B. Pearson, J. Plume, R. Risacher, C. Santiago, J. Saraceno, P. Shipman, R. van Kempen, T. A. Visser, R. Viti, S. Wampfler, S. Wyrowski, F. van der Tak, F. Yildiz, U. A. Delforge, B. Desbat, J. Hatch, W. A. Peron, I. Schieder, R. Stern, J. A. Teyssier, D. Whyborn, N. TI Water cooling of shocks in protostellar outflows Herschel-PACS map of L1157 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: jets and outflows; ISM: molecules ID CHESS SPECTRAL SURVEY; CLASS-0 SOURCES; ARRAY CAMERA; EMISSION; REGIONS; GAS; PROGRAM; DUST; SWAS; ICE AB Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 mu m transition obtained toward the young outflow L1157. Methods. The 179 mu m map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 mu m emission is spatially correlated with emission from H-2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 mu m intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10(-4). This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is similar to 10(-1) L-circle dot, about 40% of the cooling due to H-2 and 23% of the total energy released in shocks along the L1157 outflow. C1 [Nisini, B.; Giannini, T.; Bergin, E.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.; Viti, S.] INAF Ist Fis Spazio Interplanetario, Area Ric Tor Vergata, I-00133 Rome, Italy. [Codella, C.; Caselli, P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Liseau, R.; Bjerkeli, P.] Chalmers, Onsala Space Observ, Dept Radio & Space Sci, S-43992 Onsala, Sweden. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tafalla, M.; Bachiller, R.; Fuente, A.; Santiago, J.] IGN Observ Astron Nacl, Alcala De Henares 28800, Spain. [van Dishoeck, E. F.; Hogerheijde, M.; Kristensen, L.; Visser, R.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, E. F.; Herczeg, G.] Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.; Desbat, J.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Baudry, A.; Bontemps, S.; Braine, J.; Herpin, F.; Jacq, T.; Desbat, J.] CNRS INSU, UMR 5804, F-33271 Floirac, France. [Benz, A. O.; Bruderer, S.; Wampfler, S.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Bergin, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Blake, G.; Lis, D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Cernicharo, J.; Daniel, F.; Goicoechea, J. R.] CSIC INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28850, Spain. [Encrenaz, P.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Encrenaz, P.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Doty, S.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Fich, M.; McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [de Graauw, Th.; Helmich, F.; Marseille, M.; Risacher, C.; Shipman, R.; van der Tak, F.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Johnstone, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Johnstone, D.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Jorgensen, J.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Kaufman, M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Larsson, B.; Parise, B.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Melnick, G.; van Kempen, T. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Pearson, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Plume, R.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Viti, S.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [van der Tak, F.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Delforge, B.; Peron, I.] UCP, UPMC, Inst Lab Etud Rayonnement & Matire Astrophys,ENS, UMR 8112,CNRS,INSU,OP, Paris, France. [Peron, I.] IRAM, Inst Inst Radioastron Millimetr, F-38406 St Martin Dheres, France. [Schieder, R.] Univ Cologne, KOSMA, Inst Phys 1, D-50937 Cologne, Germany. [Teyssier, D.] ESA, European Space Astron Ctr, Madrid 28691, Spain. RP Nisini, B (reprint author), Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. EM nisini@oa-roma.inaf.it RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Visser, Ruud/J-8574-2012; Wampfler, Susanne/D-2270-2015; Fuente, Asuncion/G-1468-2016; OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Wampfler, Susanne/0000-0002-3151-7657; Fuente, Asuncion/0000-0001-6317-6343; Codella, Claudio/0000-0003-1514-3074 NR 29 TC 60 Z9 60 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L120 DI 10.1051/0004-6361/201014603 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200121 ER PT J AU O'Halloran, B Galametz, M Madden, SC Auld, R Baes, M Barlow, MJ Bendo, GJ Bock, JJ Boselli, A Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cormier, D Cooray, A Cortese, L Davies, JI Dwek, E Eales, SA Elbaz, D Galliano, F Gear, WK Glenn, J Gomez, HL Hony, S Isaak, KG Levenson, LR Lu, N Okumura, K Oliver, S Page, MJ Panuzzo, P Papageorgiou, A Parkin, TJ Perez-Fournon, I Pohlen, M Rangwala, N Rigby, EE Roussel, H Rykala, A Sacchi, N Sauvage, M Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Srinivasan, S Stevens, JA Symeonidis, M Trichas, M Vaccari, M Vigroux, L Wilson, CD Wozniak, H Wright, GS Zeilinger, WW AF O'Halloran, B. Galametz, M. Madden, S. C. Auld, R. Baes, M. Barlow, M. J. Bendo, G. J. Bock, J. J. Boselli, A. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cormier, D. Cooray, A. Cortese, L. Davies, J. I. Dwek, E. Eales, S. A. Elbaz, D. Galliano, F. Gear, W. K. Glenn, J. Gomez, H. L. Hony, S. Isaak, K. G. Levenson, L. R. Lu, N. Okumura, K. Oliver, S. Page, M. J. Panuzzo, P. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Pohlen, M. Rangwala, N. Rigby, E. E. Roussel, H. Rykala, A. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Srinivasan, S. Stevens, J. A. Symeonidis, M. Trichas, M. Vaccari, M. Vigroux, L. Wilson, C. D. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI Herschel photometric observations of the low metallicity dwarf galaxy NGC 1705 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: dwarf; dust, extinction; evolution ID POLYCYCLIC AROMATIC-HYDROCARBONS; SPECTRAL ENERGY-DISTRIBUTION; SPINNING DUST GRAINS; INTERSTELLAR DUST; AMORPHOUS-CARBON; HII-REGIONS; MILKY-WAY; EMISSION; STARBURST; NGC-1705 AB We present Herschel SPIRE and PACS photometeric observations of the low metallicity (Z similar to 0.35 Z(circle dot)) nearby dwarf galaxy, NGC 1705, in six wavelength bands as part of the Dwarf Galaxy Survey guaranteed time Herschel key program. We confirm the presence of two dominant circumnuclear IR-bright regions surrounding the central super star cluster that had been previously noted at mid-IR wavelengths and in the sub-mm by LABOCA. On constructing a global spectral energy distribution using the SPIRE and PACS photometry, in conjunction with archival IR measurements, we note the presence of an excess at sub-mm wavelengths. This excess suggests the presence of a signipcant cold dust component within NGC 1705 and was modeled as an additional cold component in the SED. Although alternative explanations for the sub-mm excess beyond 350 mu m, such as changes to the dust emissivity cannot be ruled out, the most likely explanation for the observed submillimetre excess is that of an additional cold dust component. C1 [O'Halloran, B.; Bendo, G. J.; Chanial, P.; Clements, D. L.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Galametz, M.; Madden, S. C.; Cormier, D.; Elbaz, D.; Galliano, F.; Hony, S.; Okumura, K.; Panuzzo, P.; Sauvage, M.] Univ Paris Diderot, CEA DSM CNRS, Lab AIM, Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Auld, R.; Cortese, L.; Davies, J. I.; Eales, S. A.; Gear, W. K.; Gomez, H. L.; Isaak, K. G.; Papageorgiou, A.; Pohlen, M.; Rykala, A.; Smith, M. W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Barlow, M. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bock, J. J.; Bradford, M.; Levenson, L. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Bradford, M.; Levenson, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Ciesla, L.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Tenerife, Spain. [Charlot, S.; Roussel, H.; Srinivasan, S.; Vigroux, L.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Glenn, J.; Rangwala, N.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA CB 389, Boulder, CO 80309 USA. [Lu, N.; Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Oliver, S.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9RH, E Sussex, England. [Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Parkin, T. J.; Schirm, M. R. P.; Wilson, C. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Rigby, E. E.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sacchi, N.; Spinoglio, L.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Ctr, Hatfield AL10 9AB, Herts, England. [Vaccari, M.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Wozniak, H.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Wright, G. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zeilinger, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. RP O'Halloran, B (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM b.ohalloran@imperial.ac.uk RI Barlow, Michael/A-5638-2009; Dwek, Eli/C-3995-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Ciesla, Laure/C-5535-2014; Wozniak, Herve/O-4704-2015; Vaccari, Mattia/R-3431-2016; OI Barlow, Michael/0000-0002-3875-1171; Baes, Maarten/0000-0002-3930-2757; Wozniak, Herve/0000-0001-5691-247X; Vaccari, Mattia/0000-0002-6748-0577; Spinoglio, Luigi/0000-0001-8840-1551; Cortese, Luca/0000-0002-7422-9823 FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA); BMVIT (Austria); ESA-PRODEX (Belgium); DLR (Germany); CICT (Spain); CNES (France); CNRS (France); MCT (Spain) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech/JPL, IPAC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICT/MCT (Spain). NR 42 TC 34 Z9 34 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L58 DI 10.1051/0004-6361/201014580 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200059 ER PT J AU Oliver, SJ Wang, L Smith, AJ Altieri, B Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Mitchell-Wynne, K Mortier, AMJ Nguyen, HT O'Halloran, B Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Savage, R Schulz, B Scott, D Seymour, N Shupe, DL Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valiante, E Valtchanov, I Vieira, JD Vigroux, L Ward, R Wright, G Xu, CK Zemcov, M AF Oliver, S. J. Wang, L. Smith, A. J. Altieri, B. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Mitchell-Wynne, K. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Savage, R. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valiante, E. Valtchanov, I. Vieira, J. D. Vigroux, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI HerMES: SPIRE galaxy number counts at 250, 350, and 500 mu m SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; submillimeter: galaxies; surveys ID STAR-FORMATION HISTORY; DEEP-FIELD-SOUTH; SUBMILLIMETER; MODEL; EVOLUTION; UNIVERSE; SPITZER; MAPS AB Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to similar to 20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts < 100 mJy. We have directly resolved similar to 15% of the infrared extra-galactic background at the wavelength near where it peaks. C1 [Oliver, S. J.; Wang, L.; Smith, A. J.; Roseboom, I. G.; Savage, R.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.; Mitchell-Wynne, K.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] IAC, Tenerife 38200, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Conley, A.; Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Scott, D.; Valiante, E.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Savage, R.] Univ Warwick, Warwick Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Oliver, SJ (reprint author), Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM S.Oliver@Sussex.ac.uk RI Dwek, Eli/C-3995-2012; Oliver, Seb/A-2479-2013; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Oliver, Seb/0000-0001-7862-1032; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX Oliver, Wang and Smith were supported by UK's Science and Technology Facilities Council grant ST/F002858/1. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). HIPE is a joint development (are joint developments) by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia". The data presented in this paper will be released through the Herschel Database in Marseille HeDaM (hedam. oamp. fr/HerMES). NR 38 TC 141 Z9 141 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L21 DI 10.1051/0004-6361/201014697 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200022 ER PT J AU Ossenkopf, V Muller, HSP Lis, DC Schilke, P Bell, TA Bruderer, S Bergin, E Ceccarelli, C Comito, C Stutzki, J Bacman, A Baudry, A Benz, AO Benedettini, M Berne, O Blake, G Boogert, A Bottinelli, S Boulanger, F Cabrit, S Caselli, P Caux, E Cernicharo, J Codella, C Coutens, A Crimier, N Crockett, NR Daniel, F Demyk, K Dieleman, P Dominik, C Dubernet, ML Emprechtinger, M Encrenaz, P Falgarone, E France, K Fuente, A Gerin, M Giesen, TF di Giorgio, AM Goicoechea, JR Goldsmith, PF Gusten, R Harris, A Helmich, F Herbst, E Hily-Blant, P Jacobs, K Jacq, T Joblin, C Johnstone, D Kahane, C Kama, M Klein, T Klotz, A Kramer, C Langer, W Lefloch, B Leinz, C Lorenzani, A Lord, SD Maret, S Martin, PG Martin-Pintado, J McCoey, C Melchior, M Melnick, GJ Menten, KM Mookerjea, B Morris, P Murphy, JA Neufeld, DA Nisini, B Pacheco, S Pagani, L Parise, B Pearson, JC Perault, M Phillips, TG Plume, R Quin, SL Rizzo, R Rollig, M Salez, M Saraceno, P Schlemmer, S Simon, R Schuster, K van der Tak, FFS Tielens, AGGM Teyssier, D Trappe, N Vastel, C Viti, S Wakelam, V Walters, A Wang, S Whyborn, N van der Wiel, M Yorke, HW Yu, S Zmuidzinas, J AF Ossenkopf, V. Mueller, H. S. P. Lis, D. C. Schilke, P. Bell, T. A. Bruderer, S. Bergin, E. Ceccarelli, C. Comito, C. Stutzki, J. Bacman, A. Baudry, A. Benz, A. O. Benedettini, M. Berne, O. Blake, G. Boogert, A. Bottinelli, S. Boulanger, F. Cabrit, S. Caselli, P. Caux, E. Cernicharo, J. Codella, C. Coutens, A. Crimier, N. Crockett, N. R. Daniel, F. Demyk, K. Dieleman, P. Dominik, C. Dubernet, M. L. Emprechtinger, M. Encrenaz, P. Falgarone, E. France, K. Fuente, A. Gerin, M. Giesen, T. F. di Giorgio, A. M. Goicoechea, J. R. Goldsmith, P. F. Guesten, R. Harris, A. Helmich, F. Herbst, E. Hily-Blant, P. Jacobs, K. Jacq, T. Joblin, Ch. Johnstone, D. Kahane, C. Kama, M. Klein, T. Klotz, A. Kramer, C. Langer, W. Lefloch, B. Leinz, C. Lorenzani, A. Lord, S. D. Maret, S. Martin, P. G. Martin-Pintado, J. McCoey, C. Melchior, M. Melnick, G. J. Menten, K. M. Mookerjea, B. Morris, P. Murphy, J. A. Neufeld, D. A. Nisini, B. Pacheco, S. Pagani, L. Parise, B. Pearson, J. C. Perault, M. Phillips, T. G. Plume, R. Quin, S. -L. Rizzo, R. Roellig, M. Salez, M. Saraceno, P. Schlemmer, S. Simon, R. Schuster, K. van der Tak, F. F. S. Tielens, A. G. G. M. Teyssier, D. Trappe, N. Vastel, C. Viti, S. Wakelam, V. Walters, A. Wang, S. Whyborn, N. van der Wiel, M. Yorke, H. W. Yu, S. Zmuidzinas, J. TI Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; line: identification; molecular data; ISM: abundances; ISM: molecules; ISM: clouds ID LASER MAGNETIC-RESONANCE; ROTATIONAL SPECTRUM; COMET-KOHOUTEK; GROUND-STATE; SPECTROSCOPY; ABSORPTION; OH; IDENTIFICATION; EMISSION; NGC-6334 AB Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. Methods. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. Results. In DR21, the velocity distribution of H2O+ matches that of the [C II] line at 158 mu m and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the H II-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2 x 10(12) cm(-2) in NGC 6334, 2.3 x 10(13) cm(-2) in DR21, and 1.1 x 10(15) cm(-2) in Sgr B2. C1 [Ossenkopf, V.; Mueller, H. S. P.; Schilke, P.; Stutzki, J.; Giesen, T. F.; Jacobs, K.; Quin, S. -L.; Roellig, M.; Schlemmer, S.; Simon, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Ossenkopf, V.; Dieleman, P.; Helmich, F.; van der Tak, F. F. S.; van der Wiel, M.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Lis, D. C.; Bell, T. A.; Blake, G.; Boogert, A.; Emprechtinger, M.; Lord, S. D.; Morris, P.; Phillips, T. G.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Schilke, P.; Comito, C.; Guesten, R.; Klein, T.; Leinz, C.; Menten, K. M.; Parise, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bergin, E.; Crockett, N. R.; Wang, S.] Univ Michigan, Ann Arbor, MI 48197 USA. [Ceccarelli, C.; Bacman, A.; Crimier, N.; Hily-Blant, P.; Kahane, C.; Lefloch, B.; Maret, S.; Pacheco, S.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Bacman, A.; Baudry, A.; Jacq, T.; Wakelam, V.] Univ Bordeaux, Lab Astrophys Bordeaux, Bordeaux, France. [Bacman, A.; Baudry, A.; Jacq, T.; Wakelam, V.] CNRS INSU, UMR 5804, Floirac, France. [Bruderer, S.; Benz, A. O.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Benedettini, M.; di Giorgio, A. M.; Saraceno, P.] Ist Fis Spazio Interplanetario INAF, I-00133 Rome, Italy. [Boulanger, F.; Pagani, L.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Cabrit, S.; Daniel, F.; Encrenaz, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, UMR 8112, F-75014 Paris, France. [Cabrit, S.; Daniel, F.; Encrenaz, P.; Perault, M.; Salez, M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Bottinelli, S.; Caux, E.; Coutens, A.; Demyk, K.; Joblin, Ch.; Klotz, A.; Vastel, C.; Walters, A.] Univ Toulouse, UPS, CESR, F-31062 Toulouse 4, France. [Caux, E.; Joblin, Ch.; Vastel, C.] CNRS, UMR 5187, F-31028 Toulouse, France. [Cernicharo, J.; Crimier, N.; Daniel, F.; Goicoechea, J. R.; Martin-Pintado, J.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Codella, C.; Lorenzani, A.] NAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Falgarone, E.; Gerin, M.] Observ Paris, CNRS, UMR 8112, F-75231 Paris 05, France. [Falgarone, E.; Gerin, M.] Observ Paris, CNRS, LERMA, F-75231 Paris 05, France. [Falgarone, E.; Gerin, M.] Ecole Normale Super, F-75231 Paris 05, France. [Dominik, C.; Kama, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Dominik, C.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Dubernet, M. L.] Univ Paris 06, LPMAA UMR CNRS 7092, F-75252 Paris 05, France. [Fuente, A.; Rizzo, R.] Observ Astron Nacl, Alcala De Henares 28803, Spain. [Goldsmith, P. F.; Langer, W.; Pearson, J. C.; Yorke, H. W.; Yu, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Herbst, E.] Ohio State Univ, Columbus, OH 43210 USA. [Johnstone, D.] NRC HIA, Victoria, BC V9E 2E7, Canada. [Kramer, C.; Schuster, K.] IRAM, Granada 18012, Spain. [France, K.; Martin, P. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [McCoey, C.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Melchior, M.] FHNW, Inst Technol 4D, Windisch, Switzerland. [Melnick, G. J.] Ctr Astrophys, Cambridge, MA 02138 USA. [Murphy, J. A.; Trappe, N.] Natl Univ Ireland, Expt Phys Dept, Maynooth, Kildare, Ireland. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Nisini, B.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Plume, R.] Univ Calgary, Ctr Radio Astron, Calgary, AB T2N 1N4, Canada. [van der Tak, F. F. S.; van der Wiel, M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Berne, O.; Tielens, A. G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Teyssier, D.] European Space Astron Ctr, Madrid 28080, Spain. [Viti, S.] UCL, Dept Phys & Astron, London, England. [Whyborn, N.] Atacama Large Millimeter Array, Joint ALMA Off, Santiago, Chile. [Mookerjea, B.] TIFR, Bombay 400005, Maharashtra, India. [McCoey, C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. RP Ossenkopf, V (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM ossk@pk1.uni-koeln.de RI Fuente, Asuncion/G-1468-2016; Goldsmith, Paul/H-3159-2016; Martin-Pintado, Jesus/H-6107-2015; Coutens, Audrey/M-4533-2014; Giesen, Thomas /B-9476-2015; van der Wiel, Matthijs/M-4531-2014; Schlemmer, Stephan/E-2903-2015; Rizzo, J. Ricardo/N-5879-2014; Trappe, Neil/C-9014-2016; Yu, Shanshan/D-8733-2016 OI Codella, Claudio/0000-0003-1514-3074; , Brunella Nisini/0000-0002-9190-0113; Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508; Lorenzani, Andrea/0000-0002-4685-3434; Mueller, Holger/0000-0002-0183-8927; Coutens, Audrey/0000-0003-1805-3920; Giesen, Thomas /0000-0002-2401-0049; van der Wiel, Matthijs/0000-0002-4325-3011; Schlemmer, Stephan/0000-0002-1421-7281; Rizzo, J. Ricardo/0000-0002-8443-6631; Trappe, Neil/0000-0003-2527-9821; FU German Deutsche Forschungsgemeinschaft, DFG [Os 177/1-1]; Bundesministerium fur Bildung und Forschung (BMBF); NSF [AST-0540882]; National Aeronautics and Space administration. FX This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 177/1-1. HSPM is grateful to the Bundesministerium fur Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). D. C. L. is supported by the NSF, award AST-0540882 to the Caltech Submillimeter Observatory. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space administration. NR 33 TC 52 Z9 52 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L111 DI 10.1051/0004-6361/201014577 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200112 ER PT J AU Ossenkopf, V Rollig, M Simon, R Schneider, N Okada, Y Stutzki, J Gerin, M Akyilmaz, M Beintema, D Benz, AO Berne, O Boulanger, F Bumble, B Coeur-Joly, O Dedes, C Diez-Gonzalez, MC France, K Fuente, A Gallego, JD Goicoechea, JR Gusten, R Harris, A Higgins, R Jackson, B Jarchow, C Joblin, C Klein, T Kramer, C Lord, S Martin, P Martin-Pintado, J Mookerjea, B Neufeld, DA Phillips, T Rizzo, JR van der Tak, FFS Teyssier, D Yorke, H AF Ossenkopf, V. Roellig, M. Simon, R. Schneider, N. Okada, Y. Stutzki, J. Gerin, M. Akyilmaz, M. Beintema, D. Benz, A. O. Berne, O. Boulanger, F. Bumble, B. Coeur-Joly, O. Dedes, C. Diez-Gonzalez, M. C. France, K. Fuente, A. Gallego, J. D. Goicoechea, J. R. Guesten, R. Harris, A. Higgins, R. Jackson, B. Jarchow, C. Joblin, C. Klein, T. Kramer, C. Lord, S. Martin, P. Martin-Pintado, J. Mookerjea, B. Neufeld, D. A. Phillips, T. Rizzo, J. R. van der Tak, F. F. S. Teyssier, D. Yorke, H. TI HIFI observations of warm gas in DR21: Shock versus radiative heating SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: kinematics and dynamics; ISM: molecules; HII regions; submillimeter: ISM ID PHOTON-DOMINATED REGIONS; STAR-FORMING REGION; DR-21; ABSORPTION; EMISSION; CLOUD AB Context. The molecular gas in the DR21 massive star formation region is known to be affected by the strong UV field from the central star cluster and by a fast outflow creating a bright shock. The relative contribution of both heating mechanisms is the matter of a long debate. Aims. By better sampling the excitation ladder of various tracers we provide a quantitative distinction between the different heating mechanisms. Methods. HIFI observations of mid-J transitions of CO and HCO(+) isotopes allow us to bridge the gap in excitation energies between observations from the ground, characterizing the cooler gas, and existing ISO LWS spectra, constraining the properties of the hot gas. Comparing the detailed line profiles allows to identify the physical structure of the different components. Results. In spite of the known shock-excitation of H(2) and the clearly visible strong outflow, we find that the emission of all lines up to greater than or similar to 2 THz can be explained by purely radiative heating of the material. However, the new Herschel/HIFI observations reveal two types of excitation conditions. We find hot and dense clumps close to the central cluster, probably dynamically affected by the outflow, and a more widespread distribution of cooler, but nevertheless dense, molecular clumps. C1 [Ossenkopf, V.; Roellig, M.; Simon, R.; Okada, Y.; Stutzki, J.; Akyilmaz, M.; Higgins, R.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Ossenkopf, V.; Beintema, D.; Jackson, B.; van der Tak, F. F. S.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Schneider, N.] Univ Paris Diderot, Lab AIM, CEA DSM, INSU CNRS,IRFU SAp,CEA Saclay, F-91191 Gif Sur Yvette, France. [Gerin, M.] Observ Paris, LERMA, F-75231 Paris 05, France. [Gerin, M.] Observ Paris, CNRS, UMR 8112, F-75231 Paris 05, France. [Gerin, M.] Ecole Normale Super, F-75231 Paris 05, France. [Benz, A. O.; Dedes, C.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Berne, O.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Boulanger, F.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bumble, B.; Yorke, H.] Jet Prop Lab, Pasadena, CA 91109 USA. [Coeur-Joly, O.; Joblin, C.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 4, France. [Coeur-Joly, O.; Joblin, C.] CNRS, UMR 5187, F-31028 Toulouse, France. [Diez-Gonzalez, M. C.; Gallego, J. D.] Ctr Astron Yebes, Observ Astron Nacl IGN, E-19080 Guadalajara, Spain. [France, K.; Martin, P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Fuente, A.] OAN, Alcala De Henares 28803, Madrid, Spain. [Goicoechea, J. R.; Martin-Pintado, J.; Rizzo, J. R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Guesten, R.; Klein, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Harris, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Higgins, R.] Natl Univ Ireland, Expt Phys Dept, Maynooth, Kildare, Ireland. [Jarchow, C.] MPI Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Kramer, C.] IRAM, Granada 18012, Spain. [Lord, S.] IPAC Caltech, Pasadena, CA 91125 USA. [Mookerjea, B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Phillips, T.] CALTECH, Pasadena, CA 91125 USA. [van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Teyssier, D.] European Space Astron Ctr, Madrid 28080, Spain. RP Ossenkopf, V (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. RI Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016; Martin-Pintado, Jesus/H-6107-2015 OI Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343; Martin-Pintado, Jesus/0000-0003-4561-3508 FU German Deutsche Forschungsgemeinschaft, DFG [Os 177/1-1]; National Aeronautics and Space Administration FX This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 177/1-1. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 25 TC 9 Z9 9 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L79 DI 10.1051/0004-6361/201014579 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646GQ UT WOS:000281527200080 ER PT J AU Patzold, M Andert, TP Hausler, B Tellmann, S Anderson, JD Asmar, SW Barriot, JP Bird, MK AF Paetzold, M. Andert, T. P. Haeusler, B. Tellmann, S. Anderson, J. D. Asmar, S. W. Barriot, J. -P. Bird, M. K. TI Pre-flyby estimates of the precision of the mass determination of asteroid (21) Lutetia from Rosetta radio tracking SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE minor planets, asteroids: general; minor planets, asteroids: individual: (21) Lutetia ID BULK-DENSITY; MISSION; SCIENCE; TARGET; ORBIT; GAIA AB The Rosetta spacecraft will fly by its second target asteroid (21) Lutetia on 10 July 2010. Simulations based on the currently known size of Lutetia and assumptions on the bulk density show that tracking of two radio-carrier frequencies at X-band (8.4 GHz) and S-band (2.3 GHz) during the flyby will determine the mass at less than 1% accuracy. Derivation of the asteroid volume by camera observation will drive the uncertainty in derivation of the bulk density. Mass and bulk density provide valuable clues that might help resolve the difficulties in determining the taxonomic class of the asteroid. C1 [Paetzold, M.; Tellmann, S.] Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, D-50931 Cologne, Germany. [Andert, T. P.; Haeusler, B.] Univ Bundeswehr Munchen, Inst Raumfahrttech, Neubiberg, Germany. [Anderson, J. D.; Asmar, S. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barriot, J. -P.] Univ Polynesie Francaise, F-98702 Faaa, Polynesie Franc, Fr Polynesia. [Bird, M. K.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. RP Patzold, M (reprint author), Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, Aachener Str 209, D-50931 Cologne, Germany. EM Martin.Paetzold@uni-koeln.de FU DLR Bonn-Oberkassel [50QM0701, 50QM1002]; NASA FX The German part of the Rosetta Radio Science Investigations Experiment is funded by the DLR Bonn-Oberkassel under grants 50QM0701 and 50QM1002. The US part is funded by a contract with NASA. We thank all colleagues involved in the Rosetta project at ESOC, ESAC, ESTEC, the ESA-ESTRACK network, and the NASA-Deep Space Network for their valuable and continuous support. NR 25 TC 3 Z9 3 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR L156 DI 10.1051/0004-6361/201014325 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500050 ER PT J AU Panuzzo, P Rangwala, N Rykala, A Isaak, KG Glenn, J Wilson, CD Auld, R Baes, M Barlow, MJ Bendo, GJ Bock, JJ Boselli, A Bradford, M Buat, V Castro-Rodriguez, N Chanial, P Charlot, S Ciesla, L Clements, DL Cooray, A Cormier, D Cortese, L Davies, JI Dwek, E Eales, SA Elbaz, D Fulton, T Galametz, M Galliano, F Gear, WK Gomez, HL Griffin, M Hony, S Levenson, LR Lu, N Madden, S O'Halloran, B Okumura, K Oliver, S Page, MJ Papageorgiou, A Parkin, TJ Perez-Fournon, I Pohlen, M Polehampton, ET Rigby, EE Roussel, H Sacchi, N Sauvage, M Schulz, B Schirm, MRP Smith, MWL Spinoglio, L Stevens, JA Srinivasan, S Symeonidis, M Swinyard, B Trichas, M Vaccari, M Vigroux, L Wozniak, H Wright, GS Zeilinger, WW AF Panuzzo, P. Rangwala, N. Rykala, A. Isaak, K. G. Glenn, J. Wilson, C. D. Auld, R. Baes, M. Barlow, M. J. Bendo, G. J. Bock, J. J. Boselli, A. Bradford, M. Buat, V. Castro-Rodriguez, N. Chanial, P. Charlot, S. Ciesla, L. Clements, D. L. Cooray, A. Cormier, D. Cortese, L. Davies, J. I. Dwek, E. Eales, S. A. Elbaz, D. Fulton, T. Galametz, M. Galliano, F. Gear, W. K. Gomez, H. L. Griffin, M. Hony, S. Levenson, L. R. Lu, N. Madden, S. O'Halloran, B. Okumura, K. Oliver, S. Page, M. J. Papageorgiou, A. Parkin, T. J. Perez-Fournon, I. Pohlen, M. Polehampton, E. T. Rigby, E. E. Roussel, H. Sacchi, N. Sauvage, M. Schulz, B. Schirm, M. R. P. Smith, M. W. L. Spinoglio, L. Stevens, J. A. Srinivasan, S. Symeonidis, M. Swinyard, B. Trichas, M. Vaccari, M. Vigroux, L. Wozniak, H. Wright, G. S. Zeilinger, W. W. TI Probing the molecular interstellar medium of M82 with Herschel-SPIRE spectroscopy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; galaxies: starburst; galaxies: individual: M82; ISM: molecules; submillimeter: galaxies ID STARBURST GALAXY M82; THERMAL BALANCE; CLOUDS; GAS; EMISSION; LINE; TEMPERATURE; CO; TURBULENCE; NUCLEUS AB We present the observations of the starburst galaxy M82 taken with the Herschel SPIRE Fourier-transform spectrometer. The spectrum (194-671 mu m) shows a prominent CO rotational ladder from J = 4-3 to 13-12 emitted by the central region of M82. The fundamental properties of the gas are well constrained by the high J lines observed for the first time. Radiative transfer modeling of these high-S/N (12)CO and (13)CO lines strongly indicates a very warm molecular gas component at similar to 500 K and pressure of similar to 3 x 10(6) K cm(-3), in good agreement with the H(2) rotational lines measurements from Spitzer and ISO. We suggest that this warm gas is heated by dissipation of turbulence in the interstellar medium (ISM) rather than X-rays or UV flux from the straburst. This paper illustrates the promise of the SPIRE FTS for the study of the ISM of nearby galaxies. C1 [Panuzzo, P.; Chanial, P.; Cormier, D.; Elbaz, D.; Galametz, M.; Galliano, F.; Hony, S.; Madden, S.; Okumura, K.; Sauvage, M.] CEA, Irfu SAp, Lab AIM, F-91191 Gif Sur Yvette, France. [Rangwala, N.; Glenn, J.] Univ Colorado, CASA, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Rykala, A.; Isaak, K. G.; Auld, R.; Cortese, L.; Davies,